WO2019200529A1 - 图像处理方法、装置和电子设备 - Google Patents

图像处理方法、装置和电子设备 Download PDF

Info

Publication number
WO2019200529A1
WO2019200529A1 PCT/CN2018/083362 CN2018083362W WO2019200529A1 WO 2019200529 A1 WO2019200529 A1 WO 2019200529A1 CN 2018083362 W CN2018083362 W CN 2018083362W WO 2019200529 A1 WO2019200529 A1 WO 2019200529A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixel value
fingerprint
light intensity
test
Prior art date
Application number
PCT/CN2018/083362
Other languages
English (en)
French (fr)
Inventor
程雷刚
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880000380.5A priority Critical patent/CN108496184B/zh
Priority to PCT/CN2018/083362 priority patent/WO2019200529A1/zh
Publication of WO2019200529A1 publication Critical patent/WO2019200529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the embodiments of the present application relate to identification technologies, and in particular, to an image processing method, apparatus, and electronic device.
  • the display screen of electronic devices has gradually developed to a comprehensive screen, and the higher and higher screen ratio, which makes the current mainstream capacitive fingerprint module nowhere to be placed.
  • the on-screen optical fingerprinting scheme can place the fingerprint sensor on the back of the display screen without occupying the area of the non-display area, thereby effectively increasing the screen ratio.
  • the light with the fingerprint information needs to penetrate the display screen to reach the fingerprint sensor, form a fingerprint image on the surface of the fingerprint sensor, and then perform fingerprint recognition based on the fingerprint image.
  • the embodiment of the present application provides an image processing method, device, and electronic device to improve the accuracy and accuracy of fingerprint recognition.
  • the embodiment of the present application provides an image processing method, which is applied to an electronic device having fingerprint identification, the electronic device includes: a display screen and a fingerprint sensor; the fingerprint sensor is located below the display screen, and the fingerprint sensor includes a plurality of pixels, the method comprising:
  • An embodiment of the present application further provides an image processing apparatus, which is applied to an electronic device having fingerprint identification, the electronic device comprising: a display screen and a fingerprint sensor located below the display screen; the fingerprint sensor includes a plurality of pixels Point, the device comprises:
  • a determining module configured to determine a linear relationship between an output pixel value of each pixel of the fingerprint sensor and an incident light intensity
  • An acquisition module configured to: when a finger is pressed, collect a fingerprint pixel value output by each pixel at a first light intensity
  • a calibration module configured to calibrate the fingerprint pixel value according to the linear relationship to obtain a fingerprint image.
  • the embodiment of the present application further provides an electronic device, including: a display screen and a fingerprint sensor located below the display screen; the fingerprint sensor includes a plurality of pixel points, and the electronic device further includes: a memory and a processor; the display screen, the fingerprint sensor, and the memory are respectively connected to the processor through a bus;
  • the memory is configured to store program instructions
  • the processor is configured to execute the image processing method when the program instruction stored in the memory is called.
  • the embodiment of the present application further provides a computer readable storage medium, where the storage medium stores a computer program, and the computer program is implemented by a processor to implement the image processing method described above.
  • the image processing method, device and electronic device can determine the linear relationship between the output pixel value of each pixel point of the fingerprint sensor and the incident light intensity, and when the finger is pressed, the pixel is collected.
  • the fingerprint pixel value outputted under the first light intensity is calibrated according to a linear relationship to obtain a fingerprint image. Since the linear relationship between the output pixel value and the incident light intensity obtained from the test pixel value can be used to characterize the photographic performance difference and the optical path difference of each pixel point, the method determines the output pixel value of each pixel point according to the method.
  • the linear relationship between the intensity and the incident light intensity calibrates the fingerprint pixel value, which can effectively reduce the interference of the pixel difference between the pixel difference and the optical path difference, improve the sharpness of the fingerprint image, and improve the accuracy of the fingerprint recognition. Accuracy.
  • 1A is a schematic layer diagram of implementing an optical fingerprint on a screen in an AMOLED hard display provided by an embodiment of the present application;
  • FIG. 1B is a schematic diagram of reflected light when a surface of an AMOLED hard display screen is not pressed by a finger according to an embodiment of the present application;
  • 1C is a schematic diagram of reflected light when a surface of an AMOLED hard display screen is pressed by a finger according to an embodiment of the present application;
  • FIG. 2A is a flowchart of an image processing method according to an embodiment of the present application.
  • 2B is a schematic diagram of photographic performance and optical path difference of each pixel in a fingerprint sensor according to an embodiment of the present disclosure
  • 2C is a schematic layer diagram of collecting pixel values when a test unit is pressed in an AMOLED hard display according to an embodiment of the present application;
  • FIG. 3 is a flowchart of another image processing method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an image processing apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the image processing method, device, electronic device and storage medium provided by the following embodiments of the present application can be applied to any electronic device having a screen optical fingerprint recognition function, such as a smart phone, a notebook computer, a wearable device, and a home appliance.
  • the under-screen optical fingerprint can be partially implemented in the display area of the display screen or in full screen.
  • the active-Matrix Organic Light Emitting Diode (AMOLED) hard display is taken as an example to illustrate the implementation of the optical fingerprint under the screen.
  • Other types of displays such as organic light-emitting diodes (such as organic light-emitting diodes)
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal display
  • FIG. 1A is a schematic stacked diagram of implementing an under-screen optical fingerprint in an AMOLED hard display according to an embodiment of the present application.
  • the AMOLED display panel includes: a substrate glass, a display pixel, a sealing glass, a Touch Plane (TP) layer, and a cover glass.
  • Various organic materials are distilled on the substrate glass to form display pixels, and then sealed by using sealing glass, and the substrate glass, the sealing glass and the laminated display driving circuit between them realize the display function of the display screen.
  • the upper surface of the sealing glass is coated with a conductive material to form a TP layer.
  • the conductive material may be, for example, Indium Tin Oxide (ITO), metal, or the like.
  • the conductive material of the TP layer can also be applied to the surface of the film, which is attached to the surface of the sealing glass.
  • the TP layer can also be other structural forms, and details are not described herein again.
  • the TP layer cooperates with the touch driving circuit to realize the touch function of the display screen.
  • the TP layer is etched into various patterns.
  • the AMOLED hard display is also provided with a circular polarizer to suppress the reflection of the display screen to ambient light, achieving higher display contrast, and the circular polarizer is located between the TP layer and the cover glass.
  • the TP layer is bonded to the circular polarizer by a transparent optical adhesive (OCA), and the circular polarizer is bonded to the cover glass through the OCA.
  • OCA transparent optical adhesive
  • FIG. 1A is only one example of the structure of each stack in the AMOLED hard display.
  • the structure of each stack of the AMOLED hard display may be other forms. This will not be repeated here.
  • the on-screen optical fingerprinting scheme can also be implemented in the AMOLED flexible display screen, and the laminated structure of the AMOLED flexible display screen is similar to the structure of FIG. 1A, except that in the AMOLED flexible display screen, flexible is available due to the folding requirement.
  • the substrate glass shown in FIG. 1A above may be replaced with a substrate film
  • the sealing glass may be replaced with a sealing film.
  • a fingerprint sensor can be located below the substrate glass.
  • the fingerprint sensor is also called an optical fingerprint sensor.
  • the fingerprint sensor can be placed or attached to the lower surface of the substrate glass.
  • the light source may be any display source such as a display pixel of an OLED display, a surface light source of an LCD display, or a light-emitting diode (LED) external to the display screen.
  • the reflectivity of the interface is determined by the refractive index of the material laminated on both sides of the interface.
  • the refractive index of glass is usually 1.5
  • the refractive index of ITO is 1.8
  • the refractive index of air is 1
  • the refractive index of OCA, circular polarizer, and finger is about 1.4.
  • the vertical reflectivity of the interface between the two media can be determined according to the vertical reflectivity formula at the interface of the two layers of media.
  • the vertical reflectance formula at the interface of the two layers of media is as follows (1):
  • R is the vertical reflectivity at the interface
  • n 1 and n 2 represent the refractive indices of the media on both sides of the interface, respectively.
  • the vertical reflectance of the interface between the glass and the air can be 4%
  • the vertical reflectance of the interface between the glass and the finger can be 0.12%.
  • the vertical reflectance of the interface between the glass and the air may be a first value due to the difference in the material of the glass, the individual difference of the fingers, etc., and the difference between the first value and 4% may be within a preset range.
  • the vertical reflectivity of the interface between the glass and the finger may also be a second value, and the difference between the second value and 0.12% may be within a preset range.
  • FIG. 1B is a schematic diagram of reflected light when a surface of an AMOLED hard display screen is not pressed by a finger according to an embodiment of the present invention
  • FIG. 1C is a schematic diagram of reflected light when a surface of an AMOLED hard display screen is pressed by a finger according to an embodiment of the present disclosure
  • the finger ridge line is in contact with the glass, but air remains in the finger valley line, and the light is both in the glass and the finger ridge line.
  • the interface reflection can also be reflected at the interface between the glass and the finger valley line (air), wherein the vertical reflectance of the interface between the glass and the finger ridge line is 0.12%, and the vertical reflection of the interface between the glass and the finger valley line
  • the rate can be 4%.
  • P FP stands for pure fingerprint information.
  • a screen protector (not shown in the drawing) may be attached to the cover glass, such that when the finger is pressed, the reflected light on the upper surface of the protective film may carry fingerprint information.
  • the specific implementation of the on-screen optical fingerprinting scheme is similar to the specific implementation of the under-screen optical fingerprinting scheme of the display screen without the screen protective film, and details are not described herein again.
  • Reflected light on the upper surface of the cover glass, finger reflection light, etc. carry fingerprint information.
  • the stacks of light-transmitting display screens carrying the fingerprint information are incident on the fingerprint sensor disposed on the lower layer of the substrate glass together with the reflected light inside the display screen, and then the pixel values output by the fingerprint sensor are processed. Thereby, a fingerprint image, that is, fingerprint information to be extracted is obtained.
  • the deviation of the chip manufacturing process makes it impossible to completely match the electrical characteristics between the pixel points of the fingerprint sensor. Therefore, there may be a difference in photographic performance between pixels of the fingerprint sensor.
  • the illuminating pixel points and the metal traces in the display pixel layer are not completely transparent, the light above the display pixel layer passes through the display pixel layer, and part of the light is blocked, which causes each pixel of the fingerprint sensor located under the display display screen.
  • the light paths of the dots are different, so that there is a difference in optical path between the pixels of the fingerprint sensor.
  • the following embodiments of the present application can perform the calibration process on the pixel values output by the fingerprint sensor, thereby effectively reducing the sensitivity of the pixel point and the interference of the optical path difference on the fingerprint image formation, so that the obtained fingerprint image is more Accurate and effectively improve the accuracy and accuracy of fingerprint recognition.
  • the image processing method can be applied to an electronic device having fingerprint recognition, the electronic device comprising: a display screen and a fingerprint sensor.
  • the fingerprint sensor can be located below the display screen, and the fingerprint sensor includes a plurality of pixel points.
  • the method may be implemented by software of the electronic device by means of software and/or hardware, or by other processors connected to the fingerprint sensor, such as a calibration processor, by software and/or hardware.
  • the image processing method can be performed during the process of calibrating the display module of the electronic device or the electronic device or during calibration of the user using the fingerprint application. As shown in FIG. 2A, the method can include:
  • a linear fit is performed by using a test pixel value outputted by the pixel at the at least one light intensity to obtain a linear relationship between the output pixel value of each pixel point and the incident light intensity.
  • FIG. 2B is a schematic diagram of photographic performance and optical path difference of each pixel in a fingerprint sensor according to an embodiment of the present disclosure.
  • a uniform light source is placed above the fingerprint sensor, and each pixel receives light of the same light intensity, but the output raw data of the pixel is inconsistent, and the pixel raw data output by each pixel point is still linear with the received light intensity.
  • the relationship between the pixel raw data outputted by the nth pixel and the received light intensity can be expressed as Where R n is the pixel raw data output by the nth pixel point, The linear slope of the pixel raw data and the received light intensity output for the nth pixel, The received light intensity for the nth pixel, The linear intercept of the pixel raw data and the received light intensity output for the nth pixel. with Can be used to characterize the difference in photographic performance of the nth pixel.
  • the illuminating pixel points and the metal traces in the display pixel layer are not completely transparent, the light above the display pixel layer passes through the display pixel layer, and part of the light is blocked.
  • a uniform light source is placed above the display pixel layer. After the display pixel layer is partially blocked, the light intensity received by each pixel of the fingerprint sensor is inconsistent, but each pixel of the fingerprint sensor is inconsistent.
  • the received light intensity is still linear with the incident light intensity of each pixel, and the relationship between the received light intensity of the nth pixel and the incident light intensity can be expressed as among them,
  • the received light intensity for the nth pixel Is the linear slope of the received light intensity and incident light intensity at the nth pixel point,
  • the incident light intensity at the nth pixel point Is the linear slope of the received light intensity and incident light intensity at the nth pixel point.
  • the incident light at each pixel point refers to light corresponding to each pixel point above the display pixel layer.
  • the incident light intensity of each pixel of the fingerprint sensor is zero
  • the received light intensity of each pixel of the fingerprint sensor is also zero. Therefore, the relationship between the pixel raw data outputted by the nth pixel and the incident light intensity can be expressed as among them,
  • the linear slope of the original pixel data and the incident light intensity output for the nth pixel point, b n is the linear intercept of the original pixel data output from the nth pixel point and the incident light intensity.
  • k n can be used to characterize the difference in photographic performance and optical path difference at the nth pixel
  • b n can be used to characterize the difference in photographic performance of the nth pixel.
  • determining a linear relationship between the output pixel value of each pixel point and the incident light intensity may be determining a difference in photographic performance and an optical path difference of each pixel point of the fingerprint sensor. That is to say, the linear relationship may include: sensitivity difference of each pixel point of the fingerprint sensor and parameter information of the optical path difference.
  • the first light intensity may be the same as or different from the light intensity at which the test pixel values are acquired.
  • the fingerprint pixel value of all the pixel points of the fingerprint sensor at the first light intensity can be obtained by performing the S202.
  • the fingerprint pixel value outputted by the pixel at the first light intensity may be represented by pixel raw data output by the pixel at the first light intensity when pressed by a finger.
  • the fingerprint pixel value outputted by the nth pixel of the fingerprint sensor at the first light intensity i can be expressed by the following formula (2).
  • the fingerprint pixel value output at the nth pixel point of the fingerprint sensor at the first light intensity i when pressed by the finger To reflect light inside the screen corresponding to the nth pixel point at the first light intensity i, Reflecting light on the upper surface of the cover glass corresponding to the nth pixel point at the first light intensity i, In order to reflect the light corresponding to the finger corresponding to the nth pixel point at the first light intensity i, k n is the difference in the photosensitive performance of the nth pixel point and the optical path difference, and b n is the difference in the photosensitive performance of the nth pixel point. among them With strong fingerprint information, With weak fingerprint information, Pattern information with each laminate inside the screen.
  • the fingerprint information is interfered by factors such as the difference in the photographic performance of each pixel, the optical path difference of each pixel, and the reflected light pattern information inside the screen.
  • the fingerprint pixel value needs to be calibrated according to the linear relationship to obtain a fingerprint image, and each pixel of the fingerprint sensor is reduced. Differences in photographic performance and interference from optical path differences.
  • the image processing method provided by the embodiment of the present application can determine the linear relationship between the output pixel value of each pixel point of the fingerprint sensor and the incident light intensity.
  • the pixel is collected at the first light intensity.
  • the fingerprint pixel value outputted is calibrated according to the linear relationship to obtain a fingerprint image. Since the linear relationship between the output pixel value and the incident light intensity obtained from the test pixel value can be used to characterize the photographic performance difference and the optical path difference of each pixel point, the method determines the output pixel value of each pixel point according to the method.
  • the linear relationship between the intensity and the incident light intensity calibrates the fingerprint pixel value, which can effectively reduce the interference of the pixel difference between the pixel difference and the optical path difference, improve the sharpness of the fingerprint image, and improve the accuracy of the fingerprint recognition. Accuracy.
  • the test unit when the test unit is pressed, the test pixel value outputted by each pixel at at least one light intensity is collected, and then linearly fitted according to the test pixel value, thereby obtaining the A first linear relationship between the output pixel value of each pixel and the incident light intensity.
  • test unit when the test unit is used for pressing, the test unit can be pressed on the upper surface of the display screen, such as the upper surface of the cover glass of the display screen, and each pixel of the fingerprint sensor is outputted under at least one light intensity. Test pixel value.
  • the test unit can be a test probe, also called a test head.
  • FIG. 2C is a schematic stacked diagram of collecting pixel values when a test unit is pressed in an AMOLED hard display provided by an embodiment of the present application. 2C differs from FIG. 1A described above in that, in the drawing shown in FIG. 2C, a test unit is pressed against the cover glass. When the test unit is pressed on the upper surface of the cover glass, when the light source is lit, the light emitted by the light source propagates upward, and is sequentially reflected by the laminate of sealing glass, TP layer, OCA glue, circular polarizer, cover glass, etc. to the test unit.
  • the light source may be any display source such as a display pixel of an OLED display, a surface light source of an LCD display, or a light-emitting diode (LED) external to the display screen.
  • all operations in the text to change the light intensity may include: changing the exposure time of the fingerprint sensor. For example, increasing the light intensity can increase the exposure time of the fingerprint sensor. If the light source is turned off, that is, the light intensity is zero, the exposure time of the fingerprint sensor can be set to zero.
  • changing the exposure time of the fingerprint sensor For example, increasing the light intensity can increase the exposure time of the fingerprint sensor. If the light source is turned off, that is, the light intensity is zero, the exposure time of the fingerprint sensor can be set to zero.
  • test unit if the test unit is pressed against the upper surface of the display screen, such as the upper surface of the cover glass of the display screen, the test pixel value output by each pixel of the fingerprint sensor at at least one light intensity is acquired.
  • a light intensity may correspond to a light intensity gear, and the at least one light intensity may be at least one light source light intensity, which respectively correspond to different light intensity gear positions.
  • the at least one light intensity can include two light intensities, for example, the brightness of the display screen is the brightest and the two light intensities when extinguished.
  • the test pixel value output by each pixel at each light intensity can be represented by pixel raw data (Rawdata) output by each pixel at each light intensity.
  • test unit as referred to above may be implemented by one test unit or by two or more test units. Whether it includes several test units, each test unit needs to be able to uniformly reflect the outgoing light of the light source. That is to say, the surface of each test unit is flat, which can uniformly reflect light.
  • test unit includes a test unit, when the test unit is pressed, the test pixel value outputted by each pixel at a plurality of light intensities is collected. If the test unit comprises a plurality of test pixels, the test pixel value of each pixel at at least one light intensity is collected when each test unit is pressed.
  • the surface of the test unit when the test unit is pressed, can be hollowed out, so that the test unit faces the display screen with a concave surface to effectively prevent the test unit from being covered by the display screen. Pattern interference caused by uneven contact between the plates.
  • the test unit when the test unit is pressed on the cover glass of the display screen, the external ambient light outside the display screen can be effectively shielded. Since the test unit needs to shield the ambient light, each test unit needs to be a non-transparent test unit, regardless of the number of test units required.
  • the test unit can include: a test unit, such as a first test unit.
  • the first test unit may be a flat test head of flesh-colored or other colors.
  • the reflectivity of the first test unit is better than that of most of the fingers.
  • the material of the first test unit may be silica gel, glass, or film. (Film), metal, etc., and the first test unit needs to be able to shield the ambient light.
  • test unit includes a test unit, taking the first test unit as an example, determining a linear relationship between the output pixel value of each pixel of the fingerprint sensor and the incident light intensity in S201 in the above method may include:
  • a linear relationship between the output pixel value of each pixel point and the incident light intensity is determined according to the first test pixel value.
  • the incident light of the nth pixel of the fingerprint sensor at the mth light intensity may include: the internal reflection light of the screen corresponding to the nth pixel point of the mth light intensity Reflected light on the upper surface of the cover glass corresponding to the nth pixel point at the mth light intensity
  • the reflected light of the first test unit corresponding to the nth pixel point at the mth light intensity Therefore, when the first test unit is pressed, the first test pixel value outputted by the nth pixel of the fingerprint sensor under the M light intensity can be expressed by the following formula (3).
  • the first test pixel value output by the nth pixel of the fingerprint sensor at the mth light intensity when the first test unit is pressed Including the surface reflected light of the first test unit and the internal diffused light, Carrying the pattern information of each laminate inside the display, obviously with Both have a linear relationship with the light source intensity that is approximately zero-crossing, and the reflected light is zero when the light source intensity is zero.
  • the intensity of the pattern information carried is also a linear relationship with the light source intensity that is approximately zero crossing.
  • the first test pixel value outputted under a plurality of light intensities of each pixel is linearly fitted, such as a least squares linear fit, and the output pixel value and incidence of each pixel are determined.
  • the linear relationship between light intensities can also be other fitting manners, and details are not described herein again.
  • the linear relationship between the output pixel value of each pixel and the incident light intensity includes: a linear slope and a linear intercept; the linear slope is a linear slope of the output pixel value of each pixel and the incident light intensity The linear intercept is a linear intercept of the output pixel value of each pixel point and the incident light intensity.
  • the consistency of Pixel for all pixels can be guaranteed by controlling the cleanliness of the upper surface of the cover glass.
  • the consistency of Pixel for all pixels can be guaranteed by controlling the flatness and cleanliness of the first test unit 1, but Carrying the pattern information of each layer inside the display screen, such as the pattern information of the TP layer, it is impossible to make all Pixel pixel points consistent, so Inconsistency for all pixels Therefore, the above formula (3) can be transformed to obtain the following formula (4).
  • k n can be used to indicate the difference in photographic performance and optical path difference of each pixel of the fingerprint sensor. It can be used to indicate information such as the upper surface of the cover glass of the display or the dirty scratches indicated by the first test unit or the second test unit.
  • K' n is a linear slope, which not only indicates the difference in photographic performance and optical path difference of each pixel of the fingerprint sensor, but also indicates the upper surface of the cover glass of the display screen or the dirty scratch indicated by the first test unit or the second test unit.
  • b' n b n
  • b' n is a linear intercept, which can indicate the difference in photographic performance of each pixel of the fingerprint sensor.
  • N is the number of pixels of the fingerprint sensor.
  • the fingerprint pixel value output by the nth pixel of the fingerprint sensor at the first light intensity i can be expressed by the above formula (2) when the finger is pressed.
  • a linear fitting is performed by taking the least squares method as an example.
  • other linear fitting methods may be used to obtain the linear slope and the linear intercept.
  • the nth pixel When the finger is not pressed, the nth pixel reflects light on the surface of the corresponding cover glass under the first light intensity i without fingerprint information; When pressed for a finger, the nth pixel point reflects light on the upper surface of the corresponding cover glass under the first light intensity i, with fingerprint information; For finger pressing, the nth pixel points correspond to the fingerprint information at the first light intensity i.
  • the obtained fingerprint image is not interfered by the difference of the photosensitive pixels and the optical path difference of each pixel, thereby improving the definition of the fingerprint image and improving the accuracy and accuracy of the fingerprint recognition.
  • the application can also provide an image processing method.
  • the image processing method is a possible example of the image processing method in the case of a test unit described in the above embodiment.
  • FIG. 3 is a flowchart of another image processing method according to an embodiment of the present application. As shown in FIG. 3, the method can include:
  • the first test pixel value outputted by each of the pixel points under the M light intensity may be represented by the above formula (3), which may be: M is an integer greater than or equal to 2.
  • the reflectance of the first test unit is better than that of most of the fingers.
  • the fingerprint pixel value outputted by each pixel at the light intensity i can be expressed by the above formula (2),
  • the fingerprint pixel value can be based on the linear slope k' n and the linear intercept b' n Perform calibration to obtain a fingerprint image P, where
  • the embodiment provides a method for calibrating the fingerprint pixel value according to the determined linear relationship between the output pixel value of each pixel and the incident light intensity in a test unit, thereby effectively reducing the sensitivity of each pixel point.
  • the difference between the difference and the optical path difference on the fingerprint pixel value improve the sharpness of the fingerprint image, and improve the accuracy and accuracy of fingerprint recognition.
  • the test unit can include a first test unit and a second test unit.
  • the first test unit may be a flesh-colored or other color flat test head.
  • the reflectivity of the first test unit is better than that of most of the fingers.
  • the material of the first test unit may be silica gel, glass, or film. , metal, etc., and the first test unit needs to be able to shield ambient light.
  • the second test unit may be a flat test head of black or other color, and the emissivity of the second test unit is better than that of most of the fingers, since the reflectance of the first test unit is greater than that of most of the fingers. The reflectivity, therefore, the reflectivity of the second test unit is also less than the reflectivity of the first test unit.
  • the material of the second test unit may also be silica gel, glass, film, metal, etc., and the second test unit needs to be able to shield ambient light.
  • the second test unit can be, for example, a black box, a black cover, or the like.
  • test unit Since the test unit needs to shield the ambient light, it is a non-transparent test unit regardless of the first test unit or the second test unit.
  • determining a linear relationship between the output pixel value of each pixel of the fingerprint sensor and the incident light intensity in S201 in the above method may include:
  • the implementation of acquiring the first test pixel value is similar to the above process including one test unit, except that in the example, the light intensity required when the first test unit is pressed is collected.
  • the number M is greater than or equal to 1.
  • the incident light of the nth pixel of the fingerprint sensor at the mth light intensity may include: the internal reflection light of the screen corresponding to the nth pixel point of the mth light intensity Reflected light on the upper surface of the cover glass corresponding to the nth pixel point at the mth light intensity
  • the reflected light of the second test unit corresponding to the nth pixel point under the mth light intensity Therefore, when the second test unit is pressed, the second test pixel value outputted by the nth pixel of the fingerprint sensor under the M light intensity can be expressed by the following formula (7).
  • the second test pixel value output by the nth pixel of the fingerprint sensor at the mth light intensity when the second test unit is pressed Including the surface reflected light of the second test unit and the internal diffused light, Carrying the pattern information of each laminate inside the display, obviously with Both are linear with the light source intensity, and the reflected light is also zero when the light source intensity is zero.
  • the intensity of the pattern information carried is also a linear relationship with the light source intensity that is approximately zero crossing.
  • the M light intensity when the first test pixel value is collected is the same as the M light intensity when the second test pixel value is collected.
  • the same gear position has the same light intensity.
  • the first test pixel value under the M light intensity may be acquired, and for the second test unit, the second test pixel value under the M light intensity is also acquired, the mth of the first test unit The light intensity is the same as the mth light intensity of the second test unit.
  • the linear relationship as shown above may include: a linear slope k' n and a linear intercept b' n .
  • the linear slope is a linear slope of the output pixel value of each pixel point and the incident light intensity, the linear intercept being a linear intercept of the output pixel value of each pixel point and the incident light intensity.
  • the test pixel values output by each pixel point are subtracted, that is, according to the first test pixel value and the second test.
  • the pixel value is obtained by the following formula (8).
  • k n can be used to indicate the difference in photographic performance and optical path difference of each pixel of the fingerprint sensor. It can be used to indicate information such as the upper surface of the cover glass of the display screen or the dirty scratches of the first test unit and the second test unit.
  • K' n is a linear slope, which can be used not only to indicate the difference in photographic performance and optical path difference of each pixel of the fingerprint sensor, but also to indicate that the cover glass of the display indicates the dirty scratch of the first test unit and the second test unit.
  • b' n b n
  • b' n is a linear intercept, which can indicate the difference in photographic performance of each pixel of the fingerprint sensor.
  • N is the number of pixels of the fingerprint sensor. The least squares linear fitting is performed on the equations represented by the above formula (9) to obtain k' n and b' n as shown in the following formula (10).
  • the method can also calibrate the fingerprint pixel values in a variety of ways.
  • a linear fitting is performed by taking the least squares method as an example.
  • other linear fitting methods may be used to obtain the linear slope and the linear intercept.
  • the method provided by this embodiment may calibrate the fingerprint pixel value according to the determined linear relationship to obtain a fingerprint image.
  • the fingerprint pixel value can be directly calibrated according to the determined linear relationship in a manner similar to the above formula (6) to obtain a fingerprint image.
  • the fingerprint pixel value may be calibrated according to the determined linear relationship and other parameter information, such as a preset reference pixel value, to obtain a fingerprint image.
  • the method S203 shown above calibrates the fingerprint pixel value according to the linear relationship, and obtaining the fingerprint image may include:
  • the fingerprint pixel value is calibrated according to the linear relationship and the preset reference pixel value to obtain the fingerprint image.
  • the preset reference pixel value may be obtained according to a historical experience value, or may be determined from the first test pixel value or the second test pixel value mentioned above, and the application is not limited.
  • the fingerprint pixel value is calibrated according to the linear relationship and the preset reference pixel value, and the method further includes:
  • test pixel value outputted by each pixel at the second light intensity is determined as the reference pixel value.
  • a second test pixel value that is output by the pixel point under the second light intensity j may be selected from the second test pixel value of the at least one light intensity of each pixel, and determined as the The reference pixel value.
  • the first light intensity i may be the same as or different from the second light intensity j; if the first light intensity i is different from the second light intensity j, the smaller the difference, the smaller the interference of the pattern information. That is to say, the difference between the first light intensity i and the second light intensity j may also be within a preset range.
  • the second test pixel value that each pixel point outputs at the second light intensity j when the second test unit is pressed As a fixed reference pixel value, the reference pixel value can be expressed as
  • the fingerprint pixel value output by the nth pixel of the fingerprint sensor at the first light intensity i can be expressed by the above formula (2) when the finger is pressed.
  • the second test pixel outputted by the nth pixel point of the fingerprint sensor at the second light intensity j when the second test unit is pressed may be pressed value Save the fingerprint pixel value represented by the above formula (2) as a fixed reference pixel value First subtract the corresponding The calibration of the fingerprint pixel value is performed in combination with the linear slope k' n and the linear intercept b' n to obtain a fingerprint image P as shown in the following formula (11).
  • the nth pixel point Reflecting light inside the screen corresponding to the first light intensity i for the nth pixel;
  • the nth pixel point reflects light on the upper surface of the corresponding cover glass under the first light intensity i, with fingerprint information;
  • the nth pixel points reflect light at the corresponding finger under the first light intensity i.
  • the reflected light of the second test unit corresponding to the first light intensity i at the nth pixel point correspond to the fingerprint information at the first light intensity i.
  • a and B are constants, obviously when the first light intensity i and the second light intensity j are identical, After calibration, a pure fingerprint image can be obtained, which is not affected by the difference in the photographic performance of each pixel of the fingerprint sensor, the optical path difference of each pixel, and the laminated pattern information inside the screen.
  • the first light intensity i and the second light intensity j may also be different. If the first light intensity i is different from the second light intensity j, After the calibration, the fingerprint image can be obtained, or the interference of the pattern information of each laminate inside the display screen is received, and the smaller the difference between the first light intensity i and the second light intensity j, the smaller the interference of the pattern information.
  • the embodiment provides a method for calibrating the fingerprint pixel value according to the determined linear relationship between the output pixel value of each pixel point and the incident light intensity in the case of two test units, thereby effectively reducing the pixel points.
  • Sensitivity to fingerprint pixel values such as sensitization difference and optical path difference; and, if the light intensity corresponding to the reference pixel value is the same as the light intensity when the fingerprint value is collected, or the difference between the light intensity is within a preset range,
  • the interference of the pattern information carried in the reflected light inside the small display screen on the fingerprint image makes the interference of the pattern information carried in the reflected light inside the display screen to the fingerprint image within a certain range or even disappears completely, thereby improving the clarity of the fingerprint image. Degree, improve the accuracy and accuracy of fingerprint recognition.
  • the application can also provide an image processing method.
  • the image processing method is one possible example of the image processing method in the case of the two test units described in the above embodiments.
  • FIG. 4 is a flowchart of still another image processing method according to an embodiment of the present application. As shown in FIG. 4, the method can include:
  • the first test pixel value outputted by each pixel at the M light intensity may be represented by the above formula (3), which may be: M is an integer greater than or equal to 1.
  • M is an integer greater than or equal to 1.
  • the reflectance of the first test unit is better than that of most of the fingers.
  • the second test pixel value outputted by the respective pixel points under the M light intensity may be represented by the above formula (7), which may be: M is an integer greater than or equal to 1.
  • the reflectance of the second test unit is preferably less than the reflectance of most of the fingers.
  • the difference between the first test pixel value and the second test pixel value of each pixel at the same light intensity m may be expressed as: E 1 , E 2 , . . . , E M . among them,
  • the second test pixel value outputted by each pixel point under the light intensity j can be expressed as
  • the fingerprint pixel value outputted by each pixel at the light intensity i can be expressed by the above formula (2),
  • the fingerprint pixel value can be based on the linear slope k' n , the linear intercept b' n , and the reference pixel FixBase. Perform calibration to obtain a fingerprint image P, where
  • the embodiment provides a method, which can effectively reduce the interference of the pixel difference between the pixel difference and the optical path difference in the case of two test units, and can also reduce the pattern information in the reflected light inside the display screen.
  • the interference of the fingerprint image makes the interference of the pattern information in the reflected light inside the display screen to a certain range within the certain range, or even disappears completely, thereby improving the definition of the fingerprint image and improving the accuracy and accuracy of the fingerprint recognition.
  • FIG. 5 is a schematic structural diagram of an image processing apparatus according to an embodiment of the present application.
  • the image processing apparatus can be applied to an electronic device having fingerprint recognition, the electronic device comprising: a display screen and a fingerprint sensor; the fingerprint sensor being located below the display screen, the fingerprint sensor comprising a plurality of pixel points.
  • the image processing device can be implemented by software and/or hardware and can be integrated inside the electronic device.
  • the image processing apparatus 50 includes a determination module 51, an acquisition module 52, and a calibration module 53.
  • the determining module 51 is configured to determine a linear relationship between an output pixel value of each pixel point of the fingerprint sensor and an incident light intensity.
  • the acquisition module 52 is further configured to collect, when the finger is pressed, the fingerprint pixel value output by the pixel at the first light intensity.
  • the calibration module 53 is configured to calibrate the fingerprint pixel value according to the linear relationship to obtain a fingerprint image.
  • the test unit includes a first test unit.
  • the acquiring module 52 is further configured to: when the first test unit is pressed, collect the first test pixel value of each pixel under multiple light intensities;
  • the determining module 51 is configured to determine a linear relationship between the output pixel value of each pixel point and the incident light intensity according to the first test pixel value.
  • the test unit includes a first test unit and a second test unit.
  • the collecting module 52 is configured to: when the first testing unit is pressed, collect the first test pixel value of each pixel at the at least one light intensity; and when the second testing unit presses, collect the pixel Pointing at a second test pixel value at the at least one light intensity;
  • the determining module 51 is configured to determine a linear relationship between the output pixel value of each pixel point and the incident light intensity according to the first test pixel value and the second test pixel value.
  • the linear relationship includes; a linear slope and a linear intercept.
  • the linear slope is a linear slope of the output pixel value of each pixel point and the incident light intensity, the linear intercept being a linear intercept of the output pixel value of each pixel point and the incident light intensity.
  • the calibration module 53 is specifically configured to calibrate the fingerprint pixel value according to the linear relationship and the preset reference pixel value to obtain the fingerprint image.
  • the determining module 51 is further configured to determine the test pixel value output by each pixel point at the second light intensity as the reference pixel value.
  • the first light intensity is equal to the second light intensity.
  • the image processing apparatus provided in this embodiment can perform the image processing method shown in any of the above-mentioned FIG. 1 to FIG. 4, and the specific implementation and effective effects thereof can be referred to the above, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 60 of the present embodiment includes a display screen 61 and a fingerprint sensor 62; the fingerprint sensor 62 is located below the display screen 61, and the fingerprint sensor 62 includes a plurality of pixel points.
  • the electronic device 60 also includes a memory 63 and a processor 64.
  • the display screen 61, the fingerprint sensor 62, and the memory 63 are respectively connected to the processor 54 via the bus 65.
  • the memory 63 is configured to store program instructions.
  • the processor 64 when used to call the program instruction stored in the memory 63, performs the following steps:
  • the fingerprint pixel value is calibrated to obtain a fingerprint image.
  • the test unit includes a first test unit.
  • the processor 64 is configured to: when the first test unit is pressed, collect a first test pixel value of each pixel at a plurality of light intensities; and determine, according to the first test pixel value, each of the pixel points A linear relationship between the output pixel value and the incident light intensity.
  • the test unit includes a first test unit and a second test unit.
  • the processor 64 is configured to: when the first test unit is pressed, collect the first test pixel value of each pixel at the at least one light intensity; and when the second test unit presses, collect the pixel point. a second test pixel value at the at least one light intensity; determining a linear relationship between the output pixel value of each pixel point and the incident light intensity based on the first test pixel value and the second test pixel value.
  • the linear relationship includes; a linear slope and a linear intercept.
  • the processor 64 is configured to determine the linear slope and the linear intercept according to the first test pixel value and the second test pixel value; the linear slope is a linear relationship between the output pixel value of each pixel and the incident light intensity A slope that is a linear intercept of the output pixel value of each pixel and the incident light intensity.
  • the processor 64 is configured to perform calibration on the fingerprint pixel value according to the linear relationship and the preset reference pixel value to obtain the fingerprint image.
  • the processor 64 is further configured to determine the test pixel value output by each pixel point at the second light intensity as the reference pixel value.
  • the first light intensity is equal to the second light intensity.
  • the electronic device provided in this embodiment can perform the image processing method shown in any of the above-mentioned FIG. 1 to FIG. 4, and the specific implementation and effective effects thereof can be referred to the above, and details are not described herein again.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer program is stored, and the computer program can be executed by the processor 64 shown in FIG. 6 to implement the image processing method shown in any of the embodiments.
  • the computer program can be executed by the processor 64 shown in FIG. 6 to implement the image processing method shown in any of the embodiments.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本申请提供一种图像处理方法、装置、设备及存储介质。该方法包括确定每个像素点的输出像素值与入射光强之间的线性关系;当手指按压,采集每个像素点在第一光强下的指纹像素值;根据线性关系进行指纹像素值的校准。本申请可提高指纹识别的准确度。

Description

图像处理方法、装置和电子设备 技术领域
本申请实施例涉及识别技术,尤其涉及一种图像处理方法、装置和电子设备。
背景技术
随着电子技术的发展,电子设备的显示屏逐渐向全面屏发展,越来越高的屏占比,这使得目前主流的电容式指纹模组无处放置。
屏下光学指纹方案,可将指纹传感器放置在显示屏的背部,不占用非显示区域的面积,有效提高屏占比。屏下光学指纹方案中,带有指纹信息的光需穿透显示屏到达指纹传感器,在指纹传感器的表面成像形成指纹图像,继而基于该指纹图像进行指纹识别。
然而,指纹传感器上各像素点的感光性能及光路差异的都会对指纹图像形成干扰,从而影响指纹识别的精度及准确度。
发明内容
本申请实施例提供一种图像处理方法、装置和电子设备,以提高指纹识别的准确度及精度。
本申请实施例提供一种图像处理方法,应用于具有指纹识别的电子设备中,所述电子设备包括:显示屏和指纹传感器;所述指纹传感器位于所述显示屏的下方,所述指纹传感器包括多个像素点,所述方法包括:
确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系;
当手指按压时,采集所述每个像素点在第一光强下输出的指纹像素值;
根据所述线性关系,对所述指纹像素值进行校准,得到指纹图像,
本申请实施例还提供一种图像处理装置,应用于具有指纹识别的电子设备中,所述电子设备包括:显示屏和位于所述显示屏的下方的指纹传感器;所述指纹传感器包括多个像素点,所述装置包括:
确定模块,用于确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系;
采集模块,用于当手指按压,采集所述每个像素点在第一光强下输出的指纹像素值;
校准模块,用于根据所述线性关系,对所述指纹像素值进行校准,得到指纹图像。
本申请实施例还提供一种电子设备,所述电子设备包括:显示屏和位于所述显示屏的下方的指纹传感器;所述指纹传感器包括多个像素点,所述电子设备还包括:存储器和处理器;所述显示屏、所述指纹传感器、所述存储器分别通过总线与所述处理器连接;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器存储的所述程序指令时,执行上述图像处理方法。
本申请实施例还提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述的图像处理方法
本申请实施例提供的图像处理方法、装置和电子设备,可通过确定指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系,当手指按压,采集该每个像素点在第一光强下输出的指纹像素值,根据线性关系,对该指纹像素值进行校准得到指纹图像。由于根据测试像素值所得到的输出像素值与入射光强之间的线性关系可用于表征每个像素点的感光性能差异和光路差异,因而,该方法中根据确定每个像素点的输出像素值与入射光强之间的线性关系对指纹像素值进行校准,可有效减小各像素点的感光差异和光路差异等对指纹像素值的干扰,提高指纹图像的清晰度,提高指纹识别的精度及准确度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为本申请实施例提供的一种AMOLED硬质显示屏中实现屏下光学指纹的简要叠层图;
图1B为本申请实施例提供的一种AMOLED硬质显示屏表面无按压手指时的反射光示意图;
图1C为本申请实施例提供的一种AMOLED硬质显示屏表面按压手指时的反射光示意图;
图2A为本申请实施例提供的一种图像处理方法的流程图;
图2B为本申请实施例提供的一种指纹传感器中各像素点的感光性能及光路差异的示意图;
图2C为本申请实施例提供的一种AMOLED硬质显示屏中测试单元被按压时采集像素值的简要叠层图;
图3为本申请实施例提供的另一种图像处理方法的流程图
图4为本申请实施例提供的又一种图像处理方法的流程图;
图5为本申请实施例提供的一种图像处理装置的结构示意图;
图6为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请下述各实施例提供的图像处理方法、装置、电子设备及存储介质 可应用于智能手机、笔记本电脑、可穿戴设备、家电设备等任一具有屏下光学指纹识别功能的电子设备中。屏下光学指纹可以在显示屏的显示区域中局部实现,也可以全屏实现。
如下先以有源矩阵有机发光二极体(Active-Matrix Organic Light Emitting Diode,简称AMOLED)硬质显示屏为例,对屏下光学指纹实现方式进行说明,其他种类的显示屏如有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示屏或液晶显示屏(Liquid Crystal Display,简称LCD)等的实现方式与AMOLED硬质显示屏一致或相似,在此不再赘述。
图1A为本申请实施例提供的一种AMOLED硬质显示屏中实现屏下光学指纹的简要叠层图。如图1A所示,AMOLED显示屏包括:基板玻璃、显示像素、密封玻璃、触控面板(Touch Plane,简称TP)层及盖板玻璃。基板玻璃上蒸馏各种有机材料形成显示像素,再使用密封玻璃进行密封,基板玻璃、密封玻璃及其之间的叠层配合显示驱动电路实现显示屏的显示功能。密封玻璃上表面涂有导电材料形成TP层。该导电材料例如可以为氧化铟锡(Indium Tin Oxide,简称ITO)、金属等。需要指出的是,TP层的导电材料也可涂在薄膜(Film)表面,该薄膜贴合在密封玻璃的表面。当然,TP层还可以是其它的结构形式,在此不再赘述。TP层配合触控驱动电路实现显示屏的触控功能。其中TP层被蚀刻成各种图案。此外AMOLED硬质显示屏中还设置有一层圆偏光片,以抑制显示屏对环境光的反射,实现更高的显示对比度,圆偏光片位于TP层和盖板玻璃之间。其中,TP层通过透明光学胶(Optically Clear Aadhesive,简称OCA)与圆偏光片粘合,圆偏光片通过OCA与盖板玻璃粘合。需要说明的是,图1A为仅为AMOLED硬质显示屏中各叠层的结构的一种示例,随着技术的发展,AMOLED硬质显示屏的各叠层的结构还可以是其它形式,在此不再赘述。同时,屏下光学指纹方案也可在AMOLED柔性显示屏中实现,其AMOLED柔性显示屏的叠层结构与图1A的结构类似,区别在于,在AMOLED柔性显示屏中,由于折叠需求,可用柔性的薄膜代替硬质玻璃,例如可将上述图1A中示出的基板玻璃替换为基板薄膜,密封玻璃可替换为密封薄膜。
基于AMOLED硬质显示屏的屏下光学指纹方案中,指纹传感器(sensor)可位于基板玻璃的下方。指纹传感器也称光学指纹传感器。指纹传感器可放 置或贴合在基板玻璃的下表面。当手指按压在盖板玻璃上表面,光源点亮时,光源发出的光向上传播,依次通过密封玻璃、TP、OCA胶、圆偏光片、盖板玻璃等叠层到达手指后被反射,同时光通过各交界面时也都会反射回一部分光,最终达到指纹传感器上,使得指纹传感器的各像素点输出对应的像素值,继而通过对该各像素点输出的像素值进行处理,得到指纹图像。其中,该光源例如可以是OLED显示屏的显示像素、LCD显示屏的面光源、显示屏外部的发光二极管(Light-Emitting Diode,简称LED)等任一光源。
交界面的反射率是由交界面两侧叠层的材质的折射率决定。玻璃的折射率通常为1.5,ITO的折射率为1.8,空气的折射率为1,OCA、圆偏光片、手指的折射率均在1.4左右。根据两层介质交界面处的垂直反射率公式可确定两种介质交界面的垂直反射率。该两层介质交界面处的垂直反射率公式为如下公式(1):
Figure PCTCN2018083362-appb-000001
其中,R为交界面处的垂直反射率,n 1和n 2分别表示交界面两侧介质的折射率。结合上述公式(1)可知玻璃与空气交界面的垂直反射率可以为4%,玻璃与手指交界面的垂直反射率可以为0.12%。需要说明的是,由于玻璃材质的差异、手指的个体差异等,该玻璃与空气交界面的垂直反射率还可以为第一数值,该第一数值与4%的差值可在预设范围内,玻璃与手指交界面的垂直反射率也可以为第二数值,该第二数值与0.12%的差值可在预设范围内。
图1B为本申请实施例提供的一种AMOLED硬质显示屏表面无按压手指时的反射光示意图;图1C为本申请实施例提供的一种AMOLED硬质显示屏表面按压手指时的反射光示意图。
如图1B所示,当显示屏的表面,也就是盖板玻璃的上表面无手指按压时,光线可在空气与玻璃的交界面处发生反射,当无按压手指时盖板玻璃上表面反射光为均匀光,不携带指纹信息,表示为P GAF,其中,空气与玻璃交界面处的垂直反射率为可以4%,故当不按压手指时盖板玻璃上表面反射光不带有指纹信息。
如图1C所示,当显示屏的表面,也就是盖板玻璃的上表面按压手指时,手指脊线与玻璃接触,但手指谷线中仍残留空气,光线既可在玻璃与手指脊 线的交界面反射,还可在玻璃与手指谷线(空气)的交界面处反射,其中,玻璃与手指脊线的交界面的垂直反射率为0.12%,玻璃与手指谷线的交界面的垂直反射率可以为4%。由于盖板玻璃上表面在手指脊线与手指谷线处的反射率存在差异,故当按压手指时盖板玻璃上表面反射光中携带有指纹信息,用P GFF=P GAF-P FP表示,其中P FP代表纯粹的指纹信息。在一些场景中,该盖板玻璃上还可以帖附有屏幕保护膜(附图中未示出),如此,当按压手指时,保护膜上表面的反射光中便可携带有指纹信息。对于具有屏幕保护膜的显示屏,其屏下光学指纹方案的具体实现,与不具有屏幕保护膜的显示屏的屏下光学指纹方案的具体实现类似,在此不再赘述。
盖板玻璃上表面的反射光手指反射光等携带有指纹信息。该些携带有指纹信息的光穿透显示屏的各叠层和显示屏内部反射光一起入射至设置于基板玻璃的下层的指纹传感器上,继而通过对该指纹传感器所输出的像素值进行处理,从而得到指纹图像,也就是待提取的指纹信息。
芯片制程工艺的偏差,使得指纹传感器的各像素点之间的电气特性不可能完全一致。因此,指纹传感器的各像素点之间可能会存在感光性能的差异。
由于显示像素层中各发光像素点及金属走线不完全透光,故显示像素层上方的光通过显示像素层后部分光会遭到遮挡,这使得位于显示显示屏下的指纹传感器的各像素点的光路不同,使得指纹传感器的各像素点之间存在光路差异。
基于此,本申请下述可实施例可通过对指纹传感器输出的像素值进行校准处理,可有效的减小像素点的感光性能及光路差异的对指纹图像形成的干扰,使得到的指纹图像更准确,有效提高指纹识别的精度及准确度。
如下结合多个实例对本申请实施例提供的进行说明。
图2A为本申请实施例提供的一种图像处理方法的流程图。该图像处理方法可应用于具有指纹识别的电子设备中,该电子设备包括:显示屏和指纹传感器。其中,指纹传感器可位于该显示屏的下方,该指纹传感器包括多个像素点。该方法可由该电子设备的处理器通过软件和/或硬件的方式实现,也可由于该指纹传感器连接的其它处理器如校准处理器通过软件和/或硬件的方式实现。该图像处理方法可在电子设备或电子设备的显示模块出厂前或者 用户使用指纹应用过程中对其进行校准的过程中执行。如图2A所示,该方法可包括:
S201、确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系。
该方法中可通过对该每个像素点在该至少一种光强下输出的测试像素值,进行线性拟合,得到该每个像素点的输出像素值与入射光强之间的线性关系。
由于芯片制程工艺的偏差,指纹传感器的各像素点之间的电气特性不可能完全一致。图2B为本申请实施例提供的一种指纹传感器中各像素点的感光性能及光路差异的示意图。根据图2B可知,在指纹传感器上方放置均匀光源,各像素点接收相同光强的光,但是输出的像素原始数据并不一致,而各像素点输出的像素原始数据仍与接收光强成线性关系,第n个像素点输出的像素原始数据与接收光强的关系可表示为
Figure PCTCN2018083362-appb-000002
其中,R n为第n个像素点输出的像素原始数据,
Figure PCTCN2018083362-appb-000003
为第n个像素点输出的像素原始数据与接收光强的线性斜率,
Figure PCTCN2018083362-appb-000004
为第n个像素点的接收光强,
Figure PCTCN2018083362-appb-000005
为第n个像素点输出的像素原始数据与接收光强的线性截距。
Figure PCTCN2018083362-appb-000006
Figure PCTCN2018083362-appb-000007
可用于表征第n个像素点的感光性能差异。
由于显示像素层中各发光像素点及金属走线不完全透光,故显示像素层上方的光通过显示像素层后部分光会遭到遮挡。继续参照图2B,在显示像素层上方放置均匀光源,经过显示像素层后,由于部分光遭到遮挡,使得指纹传感器的各像素点接收到的光强并不一致,但指纹传感器的各像素点的接收光强仍与各像素点的入射光强成线性关系,第n个像素点的接收光强与入射光强的关系可表示为
Figure PCTCN2018083362-appb-000008
其中,
Figure PCTCN2018083362-appb-000009
为第n个像素点的接收光强,
Figure PCTCN2018083362-appb-000010
为第n个像素点的接收光强与入射光强的线性斜率,
Figure PCTCN2018083362-appb-000011
为第n个像素点的入射光强。
各像素点的入射光是指来自显示像素层上方各像素点所对应的光。指纹传感器的各像素点的入射光强为零,则指纹传感器的各像素点的接收光强也为零。因而,第n个像素点输出的像素原始数据与入射光强的关系可表示为
Figure PCTCN2018083362-appb-000012
其中,
Figure PCTCN2018083362-appb-000013
为第n个像素点输出的原始像素数据和入射光强的线性斜率,b n为第n个像素点输出的原始像素数据与入射光强的线性截距。k n可用于表征第n个像素点的感光性能差异和光路差异, b n可用于表征第n个像素点的感光性能差异。
在该实施例中,确定该每个像素点的输出像素值与入射光强之间的线性关系可以是确定指纹传感器的各像素点的感光性能差异和光路差异。也就是说,该线性关系可以包括:该指纹传感器的各像素点的感光性能差异以及光路差异的参数信息。
S202、当手指按压时,采集该每个像素点在第一光强输出下的指纹像素值。
该第一光强可以与采集测试像素值时的光强相同,也可不同。
当手指按压在显示屏的上表面,如显示屏的盖板玻璃的上表面,通过执行该S202可得到指纹传感器的所有像素点在该第一光强下的指纹像素值。该每个像素点在该第一光强下输出的指纹像素值可通过手指按压时,该每个像素点在该第一光强下输出的像素原始数据表示。
指纹传感器的第n个像素点在该第一光强i下输出的指纹像素值可通过如下公式(2)表示。
Figure PCTCN2018083362-appb-000014
其中
Figure PCTCN2018083362-appb-000015
为手指按压时,在第一光强i下指纹传感器的第n个像素点输出的指纹像素值,
Figure PCTCN2018083362-appb-000016
为在第一光强i下第n个像素点对应的屏幕内部反射光,
Figure PCTCN2018083362-appb-000017
为在第一光强i下第n个像素点对应的盖板玻璃上表面反射光,
Figure PCTCN2018083362-appb-000018
为在第一光强i下第n个像素点对应的手指反射光,k n为第n个像素点感光性能差异和光路差异,b n为第n个像素点的感光性能差异。其中
Figure PCTCN2018083362-appb-000019
带有较强指纹信息,
Figure PCTCN2018083362-appb-000020
带有微弱指纹信息,
Figure PCTCN2018083362-appb-000021
带有屏幕内部各叠层的图案信息。
根据该公式(2)可知,如果不对指纹传感器输出的像素进行校准,显然指纹信息会受到各像素点的感光性能差异、各像素点的光路差异、屏幕内部反射光图案信息等因素的干扰。
S203、根据该线性关系,对该指纹像素值进行校准,得到指纹图像。
因此,在确定可用于表征每个像素点的感光性能差异和光路差异的线性关系的基础上,需根据该线性关系对该指纹像素值进行校准,得到指纹图像,减小指纹传感器的各像素点的感光性能差异和光路差异的干扰。
本申请实施例提供的图像处理方法,可通过确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系,当手指按压,采集该每个像 素点在第一光强下输出的指纹像素值,根据该线性关系,对该指纹像素值进行校准得到指纹图像。由于根据测试像素值所得到的输出像素值与入射光强之间的线性关系可用于表征每个像素点的感光性能差异和光路差异,因而,该方法中根据确定每个像素点的输出像素值与入射光强之间的线性关系对指纹像素值进行校准,可有效减小各像素点的感光差异和光路差异等对指纹像素值的干扰,提高指纹图像的清晰度,提高指纹识别的精度及准确度。
可选的,本申请提供的图像处理方法中,可采用测试单元进行按压时,采集每个像素点在至少一个光强下输出的测试像素值,继而根据测试像素值进行线性拟合,得到该每个像素点的输出像素值与入射光强之间的第一线性关系。
具体实现时,采用测试单元进行按压时,可以将测试单元按压在显示屏的上表面,如显示屏的盖板玻璃的上表面,采集指纹传感器的每个像素点在至少一种光强下输出的测试像素值。
该测试单元可以为测试探头,也称测试头。
以AMOLED硬质显示屏为例,图2C为本申请实施例提供的一种AMOLED硬质显示屏中测试单元被按压时采集像素值的简要叠层图。该图2C与上述图1A的区别在于,图2C所示的附图中,盖板玻璃上按压有测试单元。当测试单元被按压在盖板玻璃上表面,光源点亮时,光源发出的光向上传播,依次通过密封玻璃、TP层、OCA胶、圆偏光片、盖板玻璃等叠层到达测试单元被反射,且光通过各交界面时也都会反射回一部分光,最终达到指纹传感器,使得指纹传感器的各像素点输出对应的测试像素值。其中,该光源例如可以是OLED显示屏的显示像素、LCD显示屏的面光源、显示屏外部的发光二极管(Light-Emitting Diode,简称LED)等任一光源。
同时为方便描述,文中所有改变光强的操作可以包括:改变指纹传感器的曝光时间。例如,增大光强可以用增大指纹传感器的曝光时间,熄灭光源即光强为零可以用将指纹传感器的曝光时间设置为零。上述仅为示例,本申请不对此进行限制。
在该实施例中,若测试单元被按压在显示屏的上表面,如显示屏的盖板玻璃的上表面,采集指纹传感器的每个像素点在至少一种光强下输出的测试像素值。
一种光强可对应一个光强档位,该至少一种光强可以为至少一种光源光强,其分别对应不同的光强档位。该至少一种光强可包括两种光强,例如,显示屏的亮度最亮和熄灭时的两种光强。
该每个像素点在每种光强下输出的测试像素值可通过该每个像素点在每种光强下输出的像素原始数据(Rawdata)表示。
可选的,如上所涉及的测试单元可以由一个测试单元实现,也可由两个或更多个测试单元实现。无论包括几个测试单元,其每个测试单元需能够均匀反射光源的出射光。也就是说,每个测试单元的表面平整,其均可均匀进行光反射。
若该测试单元包括一个测试单元,则采用测试单元按压时,需采集每个像素点在多种光强下输出的测试像素值。若该测试单元包括多个,则采用每个测试单元按压时,需采集每个像素点在至少一种光强下的测试像素值。
在本申请的各实施方式中,采用测试单元按压时,可垫高或者,可将测试单元的表面挖空,使得测试单元朝向显示屏的一面为凹面,以有效防止测试单元与显示屏的盖板玻璃间的接触不均导致的花纹干扰。并且采用测试单元按压在显示屏的盖板玻璃上时,可有效遮蔽显示屏外部的外界环境光。由于测试单元需遮蔽外界环境光,因此,无论需要几个测试单元,每个测试单元需为非透明的测试单元。
在一种示例中,该测试单元可包括:一个测试单元,如第一测试单元。该第一测试单元可以为肉色或其它颜色的平测试头,该第一测试单元的反射率以大于绝大部分手指的反射率为佳,该第一测试单元的材质可以为硅胶、玻璃、膜(Film)、金属等,且第一测试单元需要能够遮蔽外界环境光。
若该测试单元包括一个测试单元,以第一测试单元为例,上述方法中S201中确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系可包括:
在采用第一测试单元按压时,采集每个像素点在多种光强下输出的第一测试像素值;
根据该第一测试像素值,确定该每个像素点的输出像素值与入射光强之间的线性关系。
若采用第一测试单元按压在显示屏的盖板玻璃上方,第一测试单元可被垫高或挖空,并且第一测试单元需能够遮蔽外界环境光。当第一测试单元被按压,指纹传感器的第n个像素点在第m个光强下的入射光可包括:第m个光强下第n个像素点对应的屏幕内部反射光
Figure PCTCN2018083362-appb-000022
第m个光强下第n个像素点对应的盖板玻璃上表面反射光
Figure PCTCN2018083362-appb-000023
第m个光强下第n个像素点对应的第一测试单元的反射光
Figure PCTCN2018083362-appb-000024
因此,采用第一测试单元按压时,指纹传感器的第n个像素点在M种光强下输出的第一测试像素值可通过如下公式(3)表示。
Figure PCTCN2018083362-appb-000025
其中,
Figure PCTCN2018083362-appb-000026
为第一测试单元被按压时,指纹传感器的第n个像素点在第m个光强下输出的第一测试像素值,
Figure PCTCN2018083362-appb-000027
包括第一测试单元的表面反射光和内部漫反射光,
Figure PCTCN2018083362-appb-000028
携带有显示屏内部各叠层的图案信息,显然
Figure PCTCN2018083362-appb-000029
Figure PCTCN2018083362-appb-000030
都与光源光强成近似过零点的线性关系,且光源光强为零时反射光也都为零,同时
Figure PCTCN2018083362-appb-000031
所带的图案信息强度也与光源光强成近似过零点的线性关系。
该方法中,可通过对该每个像素点在多种光强下输出的第一测试像素值进行线性拟合,如最小二乘法线性拟合,确定该每个像素点的输出像素值与入射光强之间的线性关系。当然,该线性拟合方式还可以为其它拟合方式,在此不再赘述。
可选的,每个像素点的输出像素值与入射光强之间的线性关系包括:线性斜率和线性截距;该线性斜率为该每个像素点的输出像素值与入射光强的线性斜率,该线性截距为该每个像素点的输出像素值与入射光强的线性截距。
由于
Figure PCTCN2018083362-appb-000032
Figure PCTCN2018083362-appb-000033
都未知,方程组无法求解,然而,由于
Figure PCTCN2018083362-appb-000034
Figure PCTCN2018083362-appb-000035
与光强成线性关系,它们之和也与光强成线性关系,且光强为零时,
Figure PCTCN2018083362-appb-000036
Figure PCTCN2018083362-appb-000037
之和也为零。两种不同光强下指纹传感器所有像素点输出的第一测试像素值对应相减得到差值,其差值的平均值也与光强成过零点的线性关系,因而将
Figure PCTCN2018083362-appb-000038
之和表示成两种不同光强下所有像素点输出的第一测试像素值的差值的平均值。
然而,
Figure PCTCN2018083362-appb-000039
对所有像素点Pixel的一致性可以通过控制盖板玻璃上表面的洁净度来保证,
Figure PCTCN2018083362-appb-000040
对所有像素点Pixel的一致性可以通过控制第一测试单元1的平整度和洁净度来保证,但
Figure PCTCN2018083362-appb-000041
携带有显示屏内部的各叠层的图案信息如TP层的图案信息,则不可能对所有Pixel像素点都一致,因而可将
Figure PCTCN2018083362-appb-000042
Figure PCTCN2018083362-appb-000043
对所有像素点的不一致性用
Figure PCTCN2018083362-appb-000044
因而,可对上述公式(3)进行变换得到如下公式(4)。
Figure PCTCN2018083362-appb-000045
其中,
Figure PCTCN2018083362-appb-000046
k n可用于表示指纹传感器各像素点的感光性能差异和光路差异,
Figure PCTCN2018083362-appb-000047
可用于表示显示屏的盖板玻璃上表面或第一测试单元或第二测试单元表明的脏污划痕等信息。k' n为线性斜率,其不仅表示指纹传感器各像素点的感光性能差异和光路差异,还可表示显示屏的盖板玻璃上表面或第一测试单元或第二测试单元表明的脏污划痕等信息。b' n=b n,b' n为线性截距,可表示指纹传感器各像素点感光性能差异。N为指纹传感器的像素点的个数。
Figure PCTCN2018083362-appb-000048
为指纹传感器的第n个像素点在第1个光强下输出的第一测试像素值。因而,将上述公式(4)所表示的方程组进行最小二乘法线性拟合得到下述公式(5)所示的k' n和b' n
Figure PCTCN2018083362-appb-000049
由于手指按压时,指纹传感器的第n个像素点在该第一光强i下输出的指纹像素值可通过上述公式(2)表示。
需指出的是,在该实施例中是以最小二乘法为例进行线性拟合,当然,还可以是采用其他的线性拟合方式,得到该线性斜率和线性截距。
因此,在确定该线性斜率k' n和线性截距b' n的情况下,可根据该线性斜率k' n和线性截距b' n,对上述公式(2)所表示的指纹像素值
Figure PCTCN2018083362-appb-000050
进行校准,得到如下述公式(6)所示的指纹图像P。
Figure PCTCN2018083362-appb-000051
其中,
Figure PCTCN2018083362-appb-000052
位手指未按压时,第n个像素点在第一光强i下对应的盖板玻璃的表面反射光,不带指纹信息;
Figure PCTCN2018083362-appb-000053
为手指按压时,第n个像素点在第一光强i下对应的盖板玻璃上表面反射光,带有指纹信息;其中
Figure PCTCN2018083362-appb-000054
为手指按压,第n个像素点在第一光强i下对应的指纹信息。
根据上述公式(6)可知,根据线性斜率k' n和线性截距b' n,对
Figure PCTCN2018083362-appb-000055
进行校准后,得到的指纹图像中不受各像素点的感光差异和光路差异的干扰,提高指纹图像的清晰度,提高指纹识别的精度及准确度。
本申请还可提供一种图像处理方法。该图像处理方法为上述实施例所述的一种测试单元情况下,图像处理方法的一种可能的示例。图3为本申请实施例提供的另一种图像处理方法的流程图。如图3所示,该方法可包括:
S301、采用第一测试单元按压时,采集每个像素点在M种光强下的第一测试像素值。
该每个像素点在M种光强下输出的第一测试像素值可由上述公式(3)表示,其依次可为:
Figure PCTCN2018083362-appb-000056
M为大于或等于2的整数。该第一测试单元的反射率以大于绝大部分手指的反射率为佳。
S302、根据该第一测试像素值,确定线性斜率和线性截距,该线性斜率为该每个像素点的输出像素值与入射光强的线性斜率,该线性截距为该每个像素点的输出像素值与入射光强的线性截距。
Figure PCTCN2018083362-appb-000057
进行线性拟合,得到线性斜率k' n和线性截距b' n
S303、当手指按压时,采集每个像素点在光强i下的指纹像素值。
每个像素点在光强i下输出的指纹像素值可通过上述公式(2)表示,为
Figure PCTCN2018083362-appb-000058
S304、根据该线性斜率和该线性截距,对该指纹像素值进行校准,得到指纹图像。
该方法中,可根据线性斜率k' n和线性截距b' n,对指纹像素值
Figure PCTCN2018083362-appb-000059
进行校准,得到指纹图像P,其中,
Figure PCTCN2018083362-appb-000060
该实施例提供方法,可在一个测试单元情况下,根据确定的每个像素点的输出像素值与入射光强之间的线性关系对指纹像素值进行校准,可有效减小各像素点的感光差异和光路差异等对指纹像素值的干扰,提高指纹图像的清晰度,提高指纹识别的精度及准确度。
在另一个实例中,该测试单元可包括:第一测试单元和第二测试单元。
其中,第一测试单元可以为肉色或其他颜色平测试头,该第一测试单元的反射率以大于绝大部分手指的反射率为佳,该第一测试单元的材质可以为硅胶、玻璃、膜、金属等,且该第一测试单元需要能够遮蔽外界环境光。
该第二测试单元可以为黑色或其他颜色的平测试头,该第二测试单元的发射率以小于绝大部分手指的反射率为佳,由于第一测试单元的反射率大于绝大部分手指的反射率,因此,该第二测试单元的反射率还小于第一测试单元的反射率。该第二测试单元的材质也可以为硅胶、玻璃、膜、金属等,且第二测试单元需要能够遮蔽外界环境光。该第二测试单元例如可以为黑色盒子、黑色盖板等。
由于测试单元需遮蔽外界环境光,因此,无论第一测试单元还是第二测试单元,其均为非透明的测试单元。
若该测试单元包括第一测试单元和第二测试单元,上述方法中S201中确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系可包括:
当第一测试单元被按压,采集每个像素点在至少一种光强下的第一测试像素值;
当第二测试单元被按压,采集该每个像素点在该至少一种光强下的第二测试像素值;
根据该第一测试像素值和该第二测试像素值,确定该每个像素点的输出像素值与入射光强之间的线性关系。
若采用第一测试单元按压,其采集第一测试像素值的实现,与上述包括一个测试单元的过程类似,区别在于在该实例中采集该第一测试单元被按压时所需的光强的个数M大于或等于1仅可,其具体的实现可参照上述,在此不再赘述。
若采用第二测试单元按压在显示屏的盖板玻璃上方,第二测试单元也可被垫高或挖空,并且第一测试单元需能够遮蔽外界环境光。当第二测试单元被按压,指纹传感器的第n个像素点在第m个光强下的入射光可包括:第m个光强下第n个像素点对应的屏幕内部反射光
Figure PCTCN2018083362-appb-000061
第m个光强下第n个像 素点对应的盖板玻璃上表面反射光
Figure PCTCN2018083362-appb-000062
第m个光强下第n个像素点对应的第二测试单元的反射光
Figure PCTCN2018083362-appb-000063
因此,采用第二测试单元按压时,指纹传感器的第n个像素点在M种光强下输出的第二测试像素值可通过如下公式(7)表示。
Figure PCTCN2018083362-appb-000064
其中,
Figure PCTCN2018083362-appb-000065
为采用第二测试单元按压时,指纹传感器的第n个像素点在第m个光强下输出的第二测试像素值,
Figure PCTCN2018083362-appb-000066
包括第二测试单元的表面反射光和内部漫反射光,
Figure PCTCN2018083362-appb-000067
携带有显示屏内部各叠层的图案信息,显然
Figure PCTCN2018083362-appb-000068
Figure PCTCN2018083362-appb-000069
都与光源光强成线性关系,且光源光强为零时反射光也都为零,同时
Figure PCTCN2018083362-appb-000070
所带的图案信息强度也与光源光强成近似过零点的线性关系。
需指出的是,采集的该第一测试像素值时的M种光强,与采集该第二测试像素值时的M种光强相同。对于不同的测试单元,其相同档位的光强相同。例如,对于第一测试单元,可采集M种光强下的第一测试像素值,对于第二测试单元,也采集M种光强下的第二测试像素值,第一测试单元的第m个光强与第二测试单元的第m个光强相同。
可选的,如上所示的该线性关系可包括:线性斜率k' n和线性截距b' n
该线性斜率为该每个像素点的输出像素值与入射光强的线性斜率,该线性截距为该每个像素点的输出像素值与入射光强的线性截距。
具体实现中,可将相同光强m下采用第一测试单元和第二测试单元按压时,该每个像素点输出的测试像素值相减,即根据该第一测试像素值和该第二测试像素值,采用下述公式(8)得到该线性关系。
Figure PCTCN2018083362-appb-000071
其中,
Figure PCTCN2018083362-appb-000072
为第m个光强下每个像素点输出的第一测试像素值与第二测试像素值的差值。上述公式(8)中,虽然
Figure PCTCN2018083362-appb-000073
Figure PCTCN2018083362-appb-000074
未知,但
Figure PCTCN2018083362-appb-000075
与光强分别成线性关系,它们之差也与光源光强成线性关系,且光源光强为零时,
Figure PCTCN2018083362-appb-000076
Figure PCTCN2018083362-appb-000077
之差也为零。而
Figure PCTCN2018083362-appb-000078
Figure PCTCN2018083362-appb-000079
之差的平均值也与光源光强成过零点的线性关系,因此可以将
Figure PCTCN2018083362-appb-000080
Figure PCTCN2018083362-appb-000081
之差表示
Figure PCTCN2018083362-appb-000082
Figure PCTCN2018083362-appb-000083
之差的平均值。因此,对上述公式(8)进行变换后,得到如下公式(9)。
Figure PCTCN2018083362-appb-000084
其中,
Figure PCTCN2018083362-appb-000085
k n可用于表示指纹传感器各像素点的感光性能差异和光 路差异,
Figure PCTCN2018083362-appb-000086
可用于表示显示屏的盖板玻璃上表面或第一测试单元及第二测试单元脏污划痕等信息。k' n为线性斜率,其不仅可用于表示指纹传感器各像素点的感光性能差异和光路差异,还可表示显示屏的盖板玻璃表明或第一测试单元及第二测试单元的脏污划痕信息。b' n=b n,b' n为线性截距,可表示指纹传感器各像素点感光性能差异。N为指纹传感器的像素点的个数。对上述公式(9)所表示的方程组进行最小二乘法线性拟合得到k' n和b' n如下公式(10)所示。
Figure PCTCN2018083362-appb-000087
在确定该线性关系的情况下,该方法还可通过多种方式对该指纹像素值进行校准。
需指出的是,在该实施例中是以最小二乘法为例进行线性拟合,当然,还可以是采用其他的线性拟合方式,得到该线性斜率和线性截距。
在一种实现方式中,该实施例提供的方法可仅根据确定的该线性关系,对该指纹像素值进行校准,得到指纹图像。在该实现方式中,可直接根据确定的该线性关系,采用上述公式(6)类似的方式,对该指纹像素值进行校准,得到指纹图像。
在另一种实现方式中,可根据确定的该线性关系以及其它的一些参数信息如预设的基准像素值,对该指纹像素值进行校准,得到指纹图像。则在该另一种实现方式,如上所示的方法S203根据该线性关系,对该指纹像素值进行校准,得到指纹图像可包括:
根据该线性关系和预设的基准像素值,对该指纹像素值进行校准,得到该指纹图像。
其中,该预设的基准像素值可以根据历史经验值统计得到,也可从如上所提及的第一测试像素值或第二测试像素值中确定,本申请不予限制。
可选的,根据该线性关系和预设的基准像素值,对该指纹像素值进行校 准,得到该指纹图像之前,该方法还包括:
将该每个像素点在第二光强下输出的测试像素值,确定为该基准像素值。
示例地,可从该每个像素点在该至少一种光强下的第二测试像素值中,选择该每个像素点在第二光强j下输出的第二测试像素值,确定为该基准像素值。
该第一光强i可与该第二光强j相同,也可不同;若该第一光强i可与该第二光强j不同,其差异越小,图案信息的干扰越小。也就是说,该第一光强i与第二光强j的差值也可预设范围内也可。
在该示例中,可将第二测试单元被按压时,该每个像素点在第二光强j下输出的第二测试像素值
Figure PCTCN2018083362-appb-000088
作为固定的基准像素值,因而该基准像素值可表示为
Figure PCTCN2018083362-appb-000089
由于手指按压时,指纹传感器的第n个像素点在该第一光强i下输出的指纹像素值可通过上述公式(2)表示。
因此,在确定该线性斜率k' n和线性截距b' n的情况下,可将第二测试单元按压时指纹传感器的第n个像素点在第二光强j下输出的第二测试像素值
Figure PCTCN2018083362-appb-000090
保存作为固定基准像素值,将上述公式(2)所表示的指纹像素值
Figure PCTCN2018083362-appb-000091
先减去对应的
Figure PCTCN2018083362-appb-000092
再结合线性斜率k' n、线性截距b' n,实现指纹像素值的校准,得到如下述公式(11)所示的指纹图像P。
Figure PCTCN2018083362-appb-000093
其中,
Figure PCTCN2018083362-appb-000094
为第n个像素点在第一光强i下对应的屏幕内部反射光;
Figure PCTCN2018083362-appb-000095
为手指按压,第n个像素点在第一光强i下对应的盖板玻璃上表面反射光,带有指纹信息;
Figure PCTCN2018083362-appb-000096
为手指按压,第n个像素点在第一光强i下对应的手指反射光。
Figure PCTCN2018083362-appb-000097
为第n个像素点在第二光强j下对应的屏幕内部反射光,
Figure PCTCN2018083362-appb-000098
为第n个像素点在第二光强j下对应的盖板玻璃反射光,
Figure PCTCN2018083362-appb-000099
为第n个像素点在第二光强j下对应的第二测试单元的反射光。
Figure PCTCN2018083362-appb-000100
为第n个像素点在第一光强i下对应的第二测试单元的反射光,
Figure PCTCN2018083362-appb-000101
为手指按压,第n个像素点在第一光强i下对应的指纹信息。
由上式可知对
Figure PCTCN2018083362-appb-000102
进行校准,当第一光强i和第二光强j一致时,则校准后得到
Figure PCTCN2018083362-appb-000103
Figure PCTCN2018083362-appb-000104
混合光,但会受到
Figure PCTCN2018083362-appb-000105
的影响。如果在校准过程中能够控制盖板玻璃上表面、第一测试单元和第二测试单元无脏污划痕等不良因素,即测试单元的反射光均匀,则
Figure PCTCN2018083362-appb-000106
Figure PCTCN2018083362-appb-000107
对指纹传感器的所有像素点均相等。因而,可对上述公式(11)进行整理,得到下述公式(12)。
Figure PCTCN2018083362-appb-000108
其中A、B为常数,显然当第一光强i和第二光强j一致时,
Figure PCTCN2018083362-appb-000109
经过校准后可以得到纯粹的指纹图像,不受指纹传感器各像素点的感光性能差异、各像素点的光路差异、屏幕内部各叠层图案信息等因素的干扰。
当然,第一光强i与第二光强j也可不同,若第一光强i与第二光强j不同时,
Figure PCTCN2018083362-appb-000110
经过校准可以得到指纹图像,还是会收到显示屏内部各叠层的图案信息的干扰,并且,当第一光强i和第二光强j的差异越小,图案信息的干扰则越小。
该实施例提供方法,可在两个测试单元情况下,根据确定的每个像素点的输出像素值与入射光强之间的线性关系对指纹像素值进行校准,可有效减小各像素点的感光差异和光路差异等对指纹像素值的干扰;并且,若基准像素值对应的光强与采集指纹像素值时的光强相同,或者,光强的差值在预设范围内,还可减小显示屏内部反射光中携带的图案信息对指纹图像的干扰,使得显示屏内部反射光中携带的图案信息对指纹图像的干扰控制在一定范围内,甚至彻底消失,从而提高了指纹图像的清晰度,提高指纹识别的精度及准确度。
本申请还可提供一种图像处理方法。该图像处理方法为上述实施例所述的两一种测试单元情况下,图像处理方法的一种可能的示例。图4为本申请实施例提供的又一种图像处理方法的流程图。如图4所示,该方法可包括:
S401、采用第一测试单元按压时,采集每个像素点在M种光强下输出的第一测试像素值。
每个像素点在M种光强下输出的第一测试像素值可由上述公式(3)表示,其依次可为:
Figure PCTCN2018083362-appb-000111
M为大于或等于1的整数。该第一测试单元的反射率以大于绝大部分手指的反射率为佳。
S402、采用第二测试单元按压时,采集每个像素点在M种光强下输出的 第二测试像素值。
该每个像素点在M种光强下输出的第二测试像素值可由上述公式(7)表示,其依次可以为:
Figure PCTCN2018083362-appb-000112
M为大于或等于1的整数。该第二测试单元的反射率以小于绝大部分手指的反射率为佳。
S403、根据每个像素点在相同光强m下的第一测试像素值和第二测试像素值的差值,确定线性斜率和线性截距。
每个像素点在相同光强m下的第一测试像素值和第二测试像素值的差值可依次表示为:E 1、E 2、…、E M。其中,
Figure PCTCN2018083362-appb-000113
Figure PCTCN2018083362-appb-000114
对E 1、E 2、…、E M进行线性拟合,得到线性斜率k' n和线性截距b' n
S404、将采用第二测试单元按压时,每个像素点在光强j下输出的第二测试像素值,确定为基准像素值。
第二测试单元按压时,每个像素点在光强j下输出的第二测试像素值可表示为
Figure PCTCN2018083362-appb-000115
S405、当手指按压时,采集每个像素点在光强i下输出的指纹像素值。
每个像素点在光强i下输出的指纹像素值可通过上述公式(2)表示,为
Figure PCTCN2018083362-appb-000116
S406、根据该线性斜率、该线性截距和该基准像素值,对该指纹像素值进行校准,得到指纹图像。
该方法中,可根据线性斜率k' n、线性截距b' n、基准像素FixBase,对指纹像素值
Figure PCTCN2018083362-appb-000117
进行校准,得到指纹图像P,其中,
Figure PCTCN2018083362-appb-000118
该实施例提供方法,可在两个测试单元情况下,既可有效减小各像素点的感光差异和光路差异等对指纹像素值的干扰,还可减小显示屏内部反射光中图案信息对指纹图像的干扰,使得显示屏内部反射光中的图案信息对指纹图像的干扰控制在一定范围内,甚至彻底消失,从而提高了指纹图像的清晰度,提高指纹识别的精度及准确度。
下述为本申请装置实施例,可以用于执行本申请上述方法实施例,其实现原理和技术效果类似。
图5为本申请实施例提供的一种图像处理装置的结构示意图。该图像处理 装置可应用于具有指纹识别的电子设备中,该电子设备包括:显示屏和指纹传感器;该指纹传感器位于该显示屏的下方,该指纹传感器包括多个像素点。该图像处理装置可通过软件和/或硬件的方式实现,可集成在该电子设备内部。如图5所示,该图像处理装置50包括:确定模块51、采集模块52及校准模块53。
其中,确定模块51,用于确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系。
采集模块52,还用于当手指按压时,采集该每个像素点在第一光强下输出的指纹像素值。
校准模块53,用于根据该线性关系,对该指纹像素值进行校准,得到指纹图像。
在一种可实现方式中,该测试单元包括第一测试单元。
采集模块52,还用于当采用该第一测试单元按压时,采集该每个像素点在多种光强下的第一测试像素值;
确定模块51,具体用于根据该第一测试像素值,确定所述每个像素点的输出像素值与入射光强之间的线性关系。
在另一种可实现方式中,该测试单元包括第一测试单元和第二测试单元。
采集模块52,具体用于采用该第一测试单元按压时,采集该每个像素点在该至少一种光强下的第一测试像素值;采用第二测试单元按压时,采集该每个像素点在该至少一种光强下的第二测试像素值;
确定模块51,具体用于根据该第一测试像素值和该第二测试像素值,确定该每个像素点的输出像素值与入射光强之间的线性关系。
在又一种可实现方式中,该线性关系包括;线性斜率和线性截距。
该线性斜率为该每个像素点的输出像素值与入射光强的线性斜率,该线性截距为该每个像素点的输出像素值与入射光强的线性截距。
在再一种可实现方式中,校准模块53,具体用于根据该线性关系和预设的基准像素值,对该指纹像素值进行校准,得到该指纹图像。
在再一种可实现方式中,确定模块51,还用于将该每个像素点在第二光强下输出的测试像素值,确定为该基准像素值。
在再一种可实现方式中,该第一光强等于该第二光强。
本实施例提供的图像处理装置可执行上述图1至图4中任一所示的图像处 理方法,其具体实现及有效效果,可参见上述,在此不再赘述。
图6为本申请实施例提供的一种电子设备的结构示意图。如图6所示,本实施例的电子设备60包括:显示屏61和指纹传感器62;指纹传感器62位于显示屏61的下方,指纹传感器62包括多个像素点。电子设备60还包括:存储器63和处理器64。显示屏61、指纹传感器62、存储器63分别通过总线65与处理器54连接.
存储器63,用于存储程序指令。
处理器64,用于调用存储器63存储的该程序指令时,执行如下步骤:
确定该指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系;
当手指按压,采集该每个像素点在第一光强下输出的指纹像素值;
根据该线性关系,对该指纹像素值进行校准,得到指纹图像。
在一种实现方式中,该测试单元包括第一测试单元。
处理器64,具体用于采用该第一测试单元按压时,采集该每个像素点在多种光强下的第一测试像素值;根据该第一测试像素值,确定该每个像素点的输出像素值与入射光强之间的线性关系。
在另一种实现方式中,该测试单元包括第一测试单元和第二测试单元。
处理器64,具体用采用该第一测试单元按压时,采集该每个像素点在该至少一种光强下的第一测试像素值;采用第二测试单元按压时,采集该每个像素点在该至少一种光强下的第二测试像素值;根据该第一测试像素值和该第二测试像素值,确定该每个像素点的输出像素值与入射光强之间的线性关系。
在又一种可实现方式中,该线性关系包括;线性斜率和线性截距。
处理器64,具体用于根据第一测试像素值和该第二测试像素值,确定该线性斜率和该线性截距;该线性斜率为该每个像素点的输出像素值与入射光强的线性斜率,该线性截距为该每个像素点的输出像素值与入射光强的线性截距。
在再一种可实现方式中,处理器64,具体用于根据该线性关系和预设的基准像素值,对该指纹像素值进行校准,得到该指纹图像。
在再一种可实现方式中,处理器64,还用于将该每个像素点在第二光强下输出的测试像素值,确定为该基准像素值。
在再一种可实现方式中,该第一光强等于该第二光强。
本实施例提供的电子设备可执行上述图1至图4中任一所示的图像处理方法,其具体实现及有效效果,可参见上述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序可被上述图6中所示的处理器64执行实现上任一实施例所示的图像处理方法,其具体实现及有效效果,可参见上述,在此不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种图像处理方法,应用于具有指纹识别的电子设备中,所述电子设备包括:显示屏和位于所述显示屏的下方的指纹传感器,所述指纹传感器包括多个像素点,其特征在于,所述方法包括:
    确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系;
    当手指按压时,采集所述每个像素点在第一光强下输出的指纹像素值;
    根据所述线性关系,对所述指纹像素值进行校准,得到指纹图像。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系,包括:
    在采用第一测试单元按压时,采集所述每个像素点在多种光强下的第一测试像素值;
    根据所述第一测试像素值,确定所述每个像素点的输出像素值与入射光强之间的线性关系。
  3. 根据权利要求1所述的方法,其特征在于,所述确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系,包括:
    在采用第一测试单元按压时,采集所述每个像素点在所述至少一种光强下的第一测试像素值;
    在采用第二测试单元按压时,采集所述每个像素点在所述至少一种光强下的第二测试像素值;
    根据所述第一测试像素值和所述第二测试像素值,确定所述每个像素点的输出像素值与入射光强之间的线性关系。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述线性关系包括;线性斜率和线性截距;
    所述线性斜率为所述每个像素点的输出像素值与入射光强的线性斜率,所述线性截距为所述每个像素点的输出像素值与入射光强的线性截距。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述线性关系,对所述指纹像素值进行校准,得到指纹图像,包括:
    根据所述线性关系和预设的基准像素值,对所述指纹像素值进行校准,得到所述指纹图像。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述线性关系和预设的基准像素值,对所述指纹像素值进行校准,得到所述指纹图像之前,所述方法还包括:
    将所述每个像素点在第二光强下输出的测试像素值,确定为所述基准像素值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一光强等于所述第二光强。
  8. 一种图像处理装置,应用于具有指纹识别的电子设备中,所述电子设备包括:显示屏和指纹传感器;所述指纹传感器位于所述显示屏的下方,所述指纹传感器包括多个像素点,其特征在于,所述装置包括:
    确定模块,用于根据所述测试像素值,确定所述指纹传感器的每个像素点的输出像素值与入射光强之间的线性关系;
    采集模块,用于当手指按压,采集所述每个像素点在第一光强下输出的指纹像素值;
    校准模块,用于根据所述线性关系,对所述指纹像素值进行校准,得到指纹图像。
  9. 一种电子设备,所述电子设备包括:显示屏和指纹传感器;所述指纹传感器位于所述显示屏的下方,所述指纹传感器包括多个像素点,其特征在于,所述电子设备还包括:存储器和处理器;所述显示屏、所述指纹传感器、所述存储器分别通过总线与所述处理器连接;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器存储的所述程序指令时,执行上述权利要求1-7中任一项所述的图像处理方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述权利要求1-7中任一项所述的图像处理方法。
PCT/CN2018/083362 2018-04-17 2018-04-17 图像处理方法、装置和电子设备 WO2019200529A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000380.5A CN108496184B (zh) 2018-04-17 2018-04-17 图像处理方法、装置和电子设备
PCT/CN2018/083362 WO2019200529A1 (zh) 2018-04-17 2018-04-17 图像处理方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083362 WO2019200529A1 (zh) 2018-04-17 2018-04-17 图像处理方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2019200529A1 true WO2019200529A1 (zh) 2019-10-24

Family

ID=63343555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083362 WO2019200529A1 (zh) 2018-04-17 2018-04-17 图像处理方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN108496184B (zh)
WO (1) WO2019200529A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255485A (zh) * 2021-12-07 2022-03-29 北京极豪科技有限公司 一种指纹传感器的检测方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091026B (zh) * 2018-10-23 2023-12-12 北京小米移动软件有限公司 指纹信号的校准方法及装置
CN109657563B (zh) * 2018-11-28 2023-07-25 北京集创北方科技股份有限公司 指纹传感***及指纹图像增强方法
CN109685032A (zh) * 2018-12-29 2019-04-26 联想(北京)有限公司 图像处理方法、装置、电子设备以及存储介质
CN111507144B (zh) * 2019-01-31 2024-02-09 北京小米移动软件有限公司 触摸面积获取方法、装置、智能设备及存储介质
WO2020210954A1 (zh) * 2019-04-15 2020-10-22 深圳市汇顶科技股份有限公司 用于校准图像的方法、装置和电子设备
CN113553995A (zh) * 2019-05-29 2021-10-26 Oppo广东移动通信有限公司 校准方法及相关设备
CN111612935B (zh) * 2020-05-22 2022-05-17 Oppo(重庆)智能科技有限公司 屏下指纹测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196660A (ja) * 2001-12-25 2003-07-11 Ntt Electornics Corp 指紋画像判定装置及びプログラム
US20090274343A1 (en) * 2008-05-05 2009-11-05 Sonavation, Inc. Dynamic optimization of a biometric sensor
CN106815564A (zh) * 2016-12-28 2017-06-09 深圳天珑无线科技有限公司 一种指纹识别***的校准方法、***及一种电子设备
CN107305411A (zh) * 2016-04-19 2017-10-31 三星电子株式会社 支持指纹验证的电子装置及其操作方法
CN107636686A (zh) * 2017-07-05 2018-01-26 深圳市汇顶科技股份有限公司 指纹采集的方法、装置、芯片和终端设备
CN107657240A (zh) * 2017-10-09 2018-02-02 上海天马微电子有限公司 一种显示装置及其指纹识别校准方法、以及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004903B (zh) * 2010-11-17 2013-07-10 深圳市中控生物识别技术有限公司 一种防伪指纹识别装置及其指纹识别方法
CN102855626B (zh) * 2012-08-09 2016-01-27 深圳先进技术研究院 光源方向标定及人体信息三维采集方法与装置
US9679212B2 (en) * 2014-05-09 2017-06-13 Samsung Electronics Co., Ltd. Liveness testing methods and apparatuses and image processing methods and apparatuses
KR101928319B1 (ko) * 2015-06-18 2018-12-12 선전 구딕스 테크놀로지 컴퍼니, 리미티드 광 감지 능력을 가지는 다기능 지문 센서
CN107239745B (zh) * 2017-05-15 2021-06-25 努比亚技术有限公司 指纹模拟方法及对应的移动终端
EP3462374A1 (en) * 2017-08-18 2019-04-03 Shenzhen Goodix Technology Co., Ltd. Fingerprint image acquisition method and device, and terminal device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196660A (ja) * 2001-12-25 2003-07-11 Ntt Electornics Corp 指紋画像判定装置及びプログラム
US20090274343A1 (en) * 2008-05-05 2009-11-05 Sonavation, Inc. Dynamic optimization of a biometric sensor
CN107305411A (zh) * 2016-04-19 2017-10-31 三星电子株式会社 支持指纹验证的电子装置及其操作方法
CN106815564A (zh) * 2016-12-28 2017-06-09 深圳天珑无线科技有限公司 一种指纹识别***的校准方法、***及一种电子设备
CN107636686A (zh) * 2017-07-05 2018-01-26 深圳市汇顶科技股份有限公司 指纹采集的方法、装置、芯片和终端设备
CN107657240A (zh) * 2017-10-09 2018-02-02 上海天马微电子有限公司 一种显示装置及其指纹识别校准方法、以及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255485A (zh) * 2021-12-07 2022-03-29 北京极豪科技有限公司 一种指纹传感器的检测方法及装置

Also Published As

Publication number Publication date
CN108496184A (zh) 2018-09-04
CN108496184B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2019200529A1 (zh) 图像处理方法、装置和电子设备
WO2019200533A1 (zh) 图像处理方法、装置和电子设备
US10503952B2 (en) Fingerprint identification display device
CN107657240B (zh) 一种显示装置及其指纹识别校准方法、以及电子设备
WO2018161541A1 (zh) 一种指纹识别显示装置及其驱动方法
EP3757666A1 (en) Display device, electronic apparatus, and image acquisition method
US9830019B2 (en) Touch-sensing LCD panel
JP6340480B2 (ja) 画像取得装置、端末装置、及び画像取得方法
US8896545B2 (en) Angularly-selective sensor-in-pixel image detection
WO2018000824A1 (zh) 显示面板及其制备方法、显示装置
US10379676B2 (en) Touch display panel and display device
CN108291838A (zh) 用于显示底板上的集成的光学传感器
US9019242B2 (en) Touch display device with dual-sided display and dual-sided touch input functions
US20200356747A1 (en) Display module and mobile terminal
WO2019153372A1 (zh) 一种显示装置
US20190244002A1 (en) Display device
US20180348925A1 (en) Touch substrate, touch screen and its manufacturing method, and display device
JP5016896B2 (ja) 表示装置
WO2019148805A1 (zh) 显示组件及其制备方法、显示装置
CN110263747A (zh) 控制方法、电子设备及非易失性计算机可读存储介质
CN110376782B (zh) 一种显示面板及显示装置
CN110286793A (zh) 控制方法、电子设备及非易失性计算机可读存储介质
WO2020238026A1 (zh) 显示面板的显示控制方法、显示控制装置及显示设备
KR20160083310A (ko) 휴대 전자 기기용 커버 윈도우 및 이를 포함하는 휴대 전자 기기
CN110276186A (zh) 控制方法、电子设备及非易失性计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915621

Country of ref document: EP

Kind code of ref document: A1