WO2019199137A1 - Method for improving properties of separator through post-treatment crosslinking and separator thereby - Google Patents

Method for improving properties of separator through post-treatment crosslinking and separator thereby Download PDF

Info

Publication number
WO2019199137A1
WO2019199137A1 PCT/KR2019/004477 KR2019004477W WO2019199137A1 WO 2019199137 A1 WO2019199137 A1 WO 2019199137A1 KR 2019004477 W KR2019004477 W KR 2019004477W WO 2019199137 A1 WO2019199137 A1 WO 2019199137A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
post
physical properties
treatment
improving
Prior art date
Application number
PCT/KR2019/004477
Other languages
French (fr)
Korean (ko)
Inventor
김영복
김민지
남관우
이제안
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190042803A external-priority patent/KR102314366B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/646,595 priority Critical patent/US20200287187A1/en
Priority to EP19785657.8A priority patent/EP3663337A4/en
Priority to CN201980003596.1A priority patent/CN110914346B/en
Publication of WO2019199137A1 publication Critical patent/WO2019199137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a method for improving physical properties of a membrane by post-treatment crosslinking and a separator by which a crosslinkable site is formed on a binder molecule through post-treatment on a completed separator with or without an olefin base, and then crosslinked.
  • the present invention relates to a method of improving the insulating and mechanical properties of the separator and a separator having improved physical properties by the post-treatment crosslinking.
  • the separator of the present invention can be used in a battery or the like, in particular can be used in a secondary battery.
  • Lithium secondary battery is an electrode assembly capable of charging and discharging a cathode / separator / cathode structure in the battery case, the electrode of the positive electrode and the negative electrode is coated with a slurry containing an electrode active material, etc. on one or both sides of the metal current collector It is prepared by drying and rolling.
  • the separator is one of the most important factors that determine the life of the secondary battery.
  • the anode and the cathode must be electrically insulated while the electrolyte can be smoothly passed through.
  • the high temperature stability is high while the mechanical strength is high.
  • US Patent No. 883354 discloses a microporous polymer layer composed of organic modified aluminum boehmite and organic polymers, but these have a problem in that the mechanical strength is weak and the defect rate during the process is high.
  • Korean Unexamined Patent Publication No. 2016-0140211 relates to a lithium battery electrolyte, and a negative electrode and a lithium battery including the same, and discloses an intermediate layer composed of an electrolyte, a solid electrolyte, and the like between a positive electrode and a negative electrode and serving as a separator.
  • the electrolyte is a structure corresponding to the present invention in that the electrolyte may be interposed between the positive electrode and the negative electrode, or may include a separator.
  • the surface-modified nanoparticle composite is different from the present invention in that it is dispersed in the block copolymer.
  • Korean Laid-Open Patent Publication No. 2012-0093772 discloses a binder including an amine group and a separator coating layer including the same; And it is described with respect to the separator containing a monomer containing a crosslinkable functional group, the content of a specific step of adding a solution containing a basic material or a material having an amine group is not disclosed.
  • J Appl Electrochem 46:69, 2016 discloses boehmite nanoparticles and polyvinylidene fluoride polymers as separators for lithium secondary batteries, but mentions that they are not suitable for high stress battery cell assembly.
  • RSC Adv., 6, 102762-102772, 2016, relates to a method of improving the properties of an electroosmotic membrane, in which TFC (m-phenylene diamine) and TMC (trimesoyl chloride) are combined with an electrospun PVDF support. film composite).
  • TFC m-phenylene diamine
  • TMC trimesoyl chloride
  • film composite triethyl amine
  • the present invention is to solve the above problems, an object of the present invention is to provide a method for improving the physical properties of the membrane can be improved insulation, tensile strength and elongation, and to provide a separator with improved physical properties through the method.
  • the present invention is characterized in that it is applied to an already prepared separator.
  • a first aspect of the present invention for solving the above problems comprises the steps of: a) preparing a separator in which a layer comprising a binder is formed on a substrate including or not containing a polyolefin substrate; b) desorbing some elements of the binder to transform them into crosslinkable linkages; and c) treating the separator with a cross-linking initiator and / or a reaction catalyst after the treatment of step b).
  • a crosslinking agent may be added at the same time.
  • the separator having a coating layer including a binder on the substrate including or not including the polyolefin substrate is a separator having a coating layer including a binder formed on the polyolefin substrate, or does not include a polyolefin substrate, and bonds between inorganic particles and the inorganic particles. Separation membrane comprising a binder for.
  • the inorganic particles are high dielectric constant inorganic particles having a dielectric constant of 1 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transfer ability, alumina hydrate or a mixture of two or more thereof.
  • binder is at least one selected from the group consisting of PVdF, TFE and polyimide.
  • step b) is to desorb some elements of the binder to transform a single bond into a double bond, or to add a solution containing a substance having a basic substance or an amine group to the separator.
  • the basic material or the material having an amine group is at least one selected from alkali metal oxides, alkaline earth metal oxides, zeolites, limestone, sodium carbonate, ammonia, monoalkylamines, bialkylamines, trialkylamines, and the alkyl is one to one carbon. 10.
  • an azo compound or a peroxide compound may be used as a crosslinking initiator.
  • diaminoalkanes having 1 to 15 carbon atoms may be selected.
  • diaminoalkanes include 1,6-diaminohexane 1,5-diaminopentane.
  • the second aspect of the present invention provides a separator having improved physical properties by the physical property improving method of the separator of the present invention.
  • the third aspect of the present invention provides an electrochemical device including the separator having improved properties.
  • the method of improving physical properties of the separator according to the present invention has an advantage of providing a separator having improved insulation and tensile strength as compared to a conventional separator.
  • the present invention can be applied to both membranes with or without polyolefin substrate.
  • the conventional method is applied to a process for preparing a separator
  • the present invention provides a completely different approach in that it improves the physical properties of the prepared membrane.
  • 5 is a value of comparing the tensile strength and the stretching of the after-treatment and in-coating treatment of the BA1 separator.
  • Figure 6 is a value measured by comparing the volume resistance and resistance of the post-coating treatment and the coating treatment of the BA1 separator.
  • the present invention is a method for improving physical properties of the membrane by post-treatment crosslinking
  • It provides a method for improving the physical properties of the separator through a post-treatment comprising a.
  • Step b) may be a step of removing some elements of the binder to transform a single bond into a double bond to form a crosslinking site. Wherein some of the elements are H or F or Cl.
  • Step b) may be a step of adding a solution containing a substance having a basic substance or an amine group to the separator.
  • a crosslinking agent may be additionally added simultaneously with the crosslinking initiator.
  • the step c) is the cross-linking initiator is bonded to the bonding portion, the binding between the binder is made in the bonding portion, a separate cross-linking is formed between the cross-linking initiator, the cross-linking agent is bonded to the bonding portion, or the cross-linking It is the step of forming a separate crosslink between the agents.
  • Modification to the crosslinkable linking portion of step b) is to desorb H, F, Cl, etc. in the binder polymer to form a double bond.
  • Crosslinking is formed through the linkage between the crosslinking sites formed in step b), or the crosslinking initiator, crosslinking agent and / or reaction catalyst introduced in step c) bind between the crosslinking sites or separate crosslinking between the crosslinking initiator and the crosslinking agent. It appears that a bond is formed.
  • the separator having a coating layer including a binder on the substrate including or not including the polyolefin substrate is a separator having a coating layer including a binder formed on the polyolefin substrate, or does not include a polyolefin substrate, and bonds between inorganic particles and the inorganic particles. It may be a separator comprising a binder for.
  • polyethylene, polypropylene, or the like may be used as the polyolefin substrate used in a conventional separator, and technical details thereof are well known to those skilled in the art, and thus a detailed description thereof will be omitted.
  • a conventional membrane base material is omitted, and materials constituting the inorganic layer constitute a separator.
  • the separator composed of only the inorganic layer has a problem in that a short circuit may occur due to a decrease in the overall strength of the separator because the substrate of the polyolefin separator is omitted, resulting in damage to the separator interposed between the electrode assemblies.
  • Separation properties improvement method according to the present invention can be applied to a separator without a polyolefin-based separator substrate already completed, through which mechanical strength and insulation properties can be increased.
  • the inorganic particles according to the present invention serve as a kind of spacer which enables the formation of empty spaces between the inorganic particles to form fine pores and maintains a physical form, and generally at a high temperature of 200 ° C. or more. It has a property that the physical property does not change.
  • Such inorganic particles are not particularly limited as long as they are electrochemically stable, i.e., the inorganic particles that can be used in the present invention are oxidized and / or in the operating voltage range of the battery to be applied (for example, 0 to 5 V on a Li / Li + basis). Or it will not specifically limit, if a reduction reaction does not occur.
  • inorganic particles having high electrolyte ion transfer ability are used, since the performance in the electrochemical device can be improved, it is preferable that the electrolyte ion transfer ability as high as possible.
  • the inorganic particles have a high density, it is not only difficult to disperse when forming the separator, but also has a problem of weight increase during battery manufacturing, and therefore, the smallest possible density is preferable.
  • an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the inorganic particles are high dielectric constant inorganic particles having a dielectric constant of 1 or more, preferably 10 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transfer ability, alumina hydrate or these It may be a mixture of two or more of them.
  • Examples of the inorganic particles having a dielectric constant of 1 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, or a mixture thereof. There is, but is not limited to this.
  • the piezoelectric inorganic particles are insulators at normal pressure, but mean a material having electrical properties through electrical structure change when a predetermined pressure is applied.
  • the piezoelectricity inorganic particles not only exhibit a high dielectric constant having a dielectric constant of 100 or more, but also have a constant pressure. When tension or compression is applied, electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
  • the inorganic particles having the above characteristics when the internal short circuit of the positive electrode occurs due to external impact such as local crush, nail, etc., the anode and the cathode do not directly contact due to the inorganic particles coated on the separator, Due to the piezoelectricity of the inorganic particles, a potential difference in the particles is generated, and as a result, electron movement between both electrodes, that is, a minute current flows, thereby reducing the voltage of a gentle battery and thereby improving safety.
  • Examples of the inorganic particles having piezoelectric properties include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) hafnia (HfO 2 ) or mixtures thereof, but is not limited thereto.
  • the inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since the lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
  • Examples of the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), and lithium aluminum Titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38 TiO 2 -39P 2 O 5 (LiAlTiP) xOy series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) , such as, Li 3.25 Ge Li germanium thiophosphate such as 0.25 P 0.75 S 4 or the like (Li x Ge y P z S w ,
  • the alumina hydrate is classified into crystalline and gel-like according to the preparation method.
  • the crystalline alumina hydrate is gib ZUID i-Al (OH) 3, via light Al (OH) 3, Dyer Spore i-AlOOH, bohe and four species of boehmite i-AlOOH, gel shape of alumina hydrate is containing aluminum ions This corresponds to aluminum hydroxide in which an aqueous solution is precipitated with ammonia, and preferably boehmite i-AlOOH may be used.
  • the size of the inorganic particles is not limited, but is preferably in the range of 0.001 ⁇ m to 10 ⁇ m as much as possible for film formation of a uniform thickness and proper porosity. If it is less than 0.001 ⁇ m, it is difficult to control the properties of the separator due to the deterioration of dispersibility, and if it exceeds 10 ⁇ m, the thickness of the separator manufactured with the same solids content is increased, and the mechanical properties are deteriorated. The internal short circuit is more likely to occur during charging and discharging.
  • the binder is also commonly referred to as a polymeric binder and may have a feature that can be gelled during liquid electrolyte impregnation to exhibit a high degree of swelling.
  • the binder polymers are polymers having an excellent electrolyte impregnation rate, the electrolyte injected after battery assembly is permeated into the polymer, and the polymer having the absorbed electrolyte has electrolyte ion conducting ability.
  • the wettability of the battery electrolyte is improved and the polar electrolyte solution for the battery, which has been difficult to be used in the related art, is also possible.
  • the polymer solubility parameter of 15 to 45MPa preferably 1/2, more preferably from 15 to 25MPa 1/2 and 1/2 of 30 to 45MPa range.
  • solubility parameter greater than 1/2 to less than 15MPa and 45MPa 1/2 it is difficult to be impregnated with (swelling) by conventional liquid electrolyte batteries.
  • polyvinylidene fluoride polyvinylidene fluoride, polyvinylidene fluoride, hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate, polyacrylo Nitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyano Ethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, acrylonitrile styrene butadiene copolymer, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyren
  • the substance having a basic substance or an amine group is at least one selected from alkali metal oxides, alkaline earth metal oxides, zeolites, limestone, sodium carbonate, ammonia, monoalkylamines, bialkylamines and trialkylamines.
  • the crosslinking initiator is an azo compound or a peroxide compound, and specifically, the azo compound is 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis. At least one of (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) The above is selected, Preferably it is 2,2'- azobis (isobutyronitrile) (AIBN).
  • AIBN 2,2'- azobis (isobutyronitrile)
  • the peroxide compound is tetramethylbutyl peroxy neodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxy carbonate, butyl peroxy neodecanoate, dipropyl per Oxy dicarbonate, diisopropyl peroxy dicarbonate, diethoxyethyl peroxy dicarbonate, diethoxyhexyl peroxy dicarbonate, hexyl peroxy dicarbonate, dimethoxybutyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethylbutyl per Peroxypivalate, hexyl peroxy pivalate, butyl peroxy pivalate, trimethyl hexanoyl peroxide
  • the content of the crosslinking initiator, the crosslinking agent and / or the reaction catalyst is, based on the total weight of solids, more than 0% by weight to 5% by weight, preferably more than 0.2% by weight and 5% by weight or less, and more preferably more than 0.5 and 5% by weight. % Or less, most preferably more than 1% and 2% or less.
  • cross-linking may not occur completely.
  • the crosslinking initiator reacts at a specific temperature to form a crosslinked structure, and as the density of the crosslinked structure increases, physical properties related to rigidity are improved and insulation resistance is increased because it affects the movement of electrons.
  • the reaction temperature of the crosslinking initiator may be in the range of 40 ° C to 150 ° C, more preferably in the range of 50 ° C to 130 ° C. At a low temperature before reaching the temperature range, the reaction rate of the crosslinking initiator is slow, and the reaction occurs as the temperature range is reached, thereby forming a three-dimensional network structure by crosslinking.
  • reaction temperature of the cross-linking initiator is lower than 40 ° C, cross-linking reaction is difficult to occur, and when the reaction temperature is higher than 150 ° C, deformation of the conventional separator may occur or it may melt itself, which is not preferable.
  • the crosslinking agent may be at least one selected from diaminoalkanes having 1 to 15 carbon atoms, and specifically, at least one or more selected from 1,6-diaminohexane and 1,5-diaminopentane. Can be.
  • the present invention also provides an electrochemical device including an anode and a cathode, the separator interposed between the cathode and the cathode, and an electrolyte, wherein the electrochemical device may be a lithium secondary battery.
  • the positive electrode is manufactured by applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector, followed by drying, and optionally, a filler may be further added.
  • the positive electrode current collector is generally made of a thickness of 3 ⁇ m or more and 500 ⁇ m or less. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode material on a negative electrode current collector, and optionally, the components as described above may be further included if necessary.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m or more and 500 ⁇ m or less.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • the present invention may also provide a battery pack including the electrochemical device.
  • the battery pack may be used as a power source of a device requiring high temperature safety, long cycle characteristics, high rate characteristics, and the like, and a detailed example of such a device may include a mobile device and a wearable device.
  • a power tool that is driven by an electric motor Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; An energy storage system and the like, but are not limited thereto.
  • the CSP gen1 separator is a separator consisting of aluminum oxide Al 2 O 3 particles and PVDF binder only
  • BA1_B09PA1 separator is a separator having a coating layer consisting of Al 2 O 3 inorganic particles and PVDF binder on a polyethylene fabric substrate.
  • Triethylamine was used as a material for forming the crosslinking site. Each membrane was cut into 10 cm ⁇ 10 cm, and the membrane was immersed in 99% TEA solution at room temperature for 5 minutes, then taken out and dried in a fume hood.
  • a membrane formed with a crosslinking site was immersed in a solution obtained by dissolving 1.5% by weight of azobisisobutyronitrile (AIBN, 2,2'-Azobisiosbutyronitrile) in an ethanol solvent and treated for 30 minutes at 60 ° C. The membrane was then washed with ethanol and dried in a fume hood.
  • AIBN azobisisobutyronitrile
  • Electrode size and shape 19.6cm2 round
  • 1 to 4 show the measurement results of physical properties of Comparative Examples 1 and 2 and Examples 1, 2, 3, and 4 according to the present invention, respectively.
  • Gen1 membrane Bare is Comparative Example 1 without any treatment, TEA is Example 1, TEA + AIBN is Example 3, Bare in the BA1 membrane is Comparative Example 2 without any treatment, TEA is Example 2 , TEA + AIBN is Example 4.
  • the insulating properties (volume resistance) and mechanical strength of the separator were partially reduced in Example 1, but in Example 2 and Examples 3 and 4 after treatment with AIBN solution for crosslinking. Increased.
  • AIBN when treated to AIBN it can be seen that the insulation properties and mechanical strength increased in all separators. It can be seen that the physical property improvement method of the separator through the post-treatment according to the present invention can be applied to the already completed separator as described above to improve the physical properties of the separator.
  • triethylamine which is a material for forming a crosslinking site, in the preparation of slurry of the coating layer material and azo for crosslinking.
  • Electrode size and shape 19.6cm2 round
  • Comparative Example 3 In Coating
  • Example 4 After Coating
  • crosslinking in the process is Comparative Example 3 in which TEA and AIBN were added in the preparation of the coating layer slurry
  • post-processing crosslinking was Example 4 in which TEA and AIBN were treated after the coating layer was formed.
  • Example 5 treated with TEA and AIBN after the formation of the coating layer showed that the insulating properties (volume resistance) and mechanical strength of the coating layer slurry were increased compared to Comparative Example 3 in which TEA and AIBN were added. Therefore, it can be seen that the crosslinking separator through post-treatment is superior to the separator undergoing crosslinking during the coating process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

The present invention relates to a method for improving properties of a separator so as to allow the separator to have enhanced insulating properties, tensile strength, and elongation, and to a separator having improved properties through the method. Especially, the present invention is characterized by being applied to an already manufactured separator. A crosslinkage may be formed through a double bond after the formation of the double bond in a binder of the already manufactured separator, or a crosslinkage may be formed by adding a separate crosslinkage initiator to a binder of the already manufactured separator.

Description

후처리 가교에 의한 분리막의 물성 향상 방법 및 이에 의한 분리막Method for improving physical properties of membrane by post-treatment crosslinking and membrane
본 출원은 2018년 04월 13일자 한국 특허 출원 제 2018-0043356 호 및 2019년 04월 12일자 한국 특허 출원 제 2019-0042803 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2018-0043356 dated April 13, 2018 and Korean Patent Application No. 2019-0042803 dated April 12, 2019. The contents are included as part of this specification.
본원 발명은 후처리 가교에 의한 분리막의 물성 향상 방법 및 이에 의한 분리막으로서, 구체적으로 올레핀 기재가 있거나 또는 올레핀 기재가 없는 완성된 분리막에 후처리를 통해 바인더 분자에 가교 가능 사이트를 형성하고 이를 가교시켜 상기 분리막의 절연 물성 및 기계적 특성을 향상시키는 방법 및 상기 후처리 가교에 의해 물성이 향상된 분리막에 관한 것이다. 본원 발명의 분리막은 전지 등에 사용될 수 있으며, 특히 이차전지에 사용될 수 있다.The present invention is a method for improving physical properties of a membrane by post-treatment crosslinking and a separator by which a crosslinkable site is formed on a binder molecule through post-treatment on a completed separator with or without an olefin base, and then crosslinked. The present invention relates to a method of improving the insulating and mechanical properties of the separator and a separator having improved physical properties by the post-treatment crosslinking. The separator of the present invention can be used in a battery or the like, in particular can be used in a secondary battery.
최근 스마트폰, 노트북, 태블릿 PC, 휴대용 게임기와 같은 휴대용 기기의 경량화 및 고기능화에 따라, 이들의 구동 전원으로 사용되는 이차전지에 대한 수요가 증가하고 있다. 과거에는 니켈-카드뮴, 니켈-수소, 니켈-아연 전지 등이 사용되었으나, 현재는 작동 전압이 높고 단위 중량 당 에너지 밀도가 높은 리튬 이차전지가 가장 많이 사용되고 있다.Recently, with the reduction in weight and high functionality of portable devices such as smartphones, laptops, tablet PCs, and portable game machines, demand for secondary batteries used as driving power thereof is increasing. In the past, nickel-cadmium, nickel-hydrogen, nickel-zinc batteries and the like have been used. Currently, lithium secondary batteries with high operating voltage and high energy density per unit weight are used.
리튬 이차전지의 경우, 모바일 기기 관련 시장의 급격한 성장과 비례하여 그 수요가 증가하고 있고, 최근에는 전기자동차(EV), 하이브리드 전기자동차(HEV)의 동력원까지 그 사용영역이 확대되고 있다.In the case of lithium secondary batteries, the demand is increasing in proportion to the rapid growth of the mobile device-related market, and in recent years, the use area of electric vehicles (EVs) and hybrid electric vehicles (HEVs) has been expanded.
리튬 이차전지는 양극/분리막/음극 구조의 충방전이 가능한 전극조립체를 전지케이스에 장착한 것으로서, 상기 양극 및 음극의 전극은 금속 집전체의 일면 또는 양면에 전극 활물질 등을 포함하는 슬러리를 도포하고 건조 및 압연함으로써 제조된다.Lithium secondary battery is an electrode assembly capable of charging and discharging a cathode / separator / cathode structure in the battery case, the electrode of the positive electrode and the negative electrode is coated with a slurry containing an electrode active material, etc. on one or both sides of the metal current collector It is prepared by drying and rolling.
이 중 분리막은 이차전지의 수명을 결정짓는 가장 중요한 요소 중 하나로서, 양극과 음극은 전기적으로 절연 시키면서 전해액은 원활하게 통과시킬 수 있어야 한다. 아울러 기계적 강도가 높으면서 고온 안정성이 높은 것이 바람직하다.Among them, the separator is one of the most important factors that determine the life of the secondary battery. The anode and the cathode must be electrically insulated while the electrolyte can be smoothly passed through. In addition, it is preferable that the high temperature stability is high while the mechanical strength is high.
분리막의 절연저항을 높이고 기계적 강도를 높이기 위한 다양한 시도가 이루어지고 있다. 리튬이온 전지의 경우 자가 방전으로 인한 저전압현상이 문제가 되는데, 분리막의 낮은 절연저항이 중요한 원인이다.Various attempts have been made to increase the insulation resistance of the separator and to increase the mechanical strength. In the case of lithium ion batteries, low voltage phenomenon due to self discharge becomes a problem, and low insulation resistance of the separator is an important cause.
미국 등록특허공보 제8883354호는 유기 개질된 알루미늄 보헤마이트 및 유기 고분자로 구성된 미세 다공성 고분자층을 개시하고 있으나, 이들은 기계적 강도가 약해서 공정 중 불량률이 높다는 문제점이 있다.US Patent No. 883354 discloses a microporous polymer layer composed of organic modified aluminum boehmite and organic polymers, but these have a problem in that the mechanical strength is weak and the defect rate during the process is high.
대한민국 공개특허공보 제2016-0140211호는 리튬 전지용 전해질, 및 이를 포함하는 음극 및 리튬 전지에 관한 것으로서, 양극과 음극 사이에 전해질 및 고체 전해질 등으로 구성되며 분리막의 역할을 하는 중간층을 개시하고 있다. 상기 전해질이 양극 및 음극 사이에 개재되거나, 분리막을 포함할 수 있다는 점에서 본원 발명과 대응되는 구조다. 표면 개질된 나노입자 복합체가 블록 공중합체에 분산되어 있는 점에서, 본원 발명과 차이가 있다.Korean Unexamined Patent Publication No. 2016-0140211 relates to a lithium battery electrolyte, and a negative electrode and a lithium battery including the same, and discloses an intermediate layer composed of an electrolyte, a solid electrolyte, and the like between a positive electrode and a negative electrode and serving as a separator. The electrolyte is a structure corresponding to the present invention in that the electrolyte may be interposed between the positive electrode and the negative electrode, or may include a separator. The surface-modified nanoparticle composite is different from the present invention in that it is dispersed in the block copolymer.
대한민국 공개특허공보 제2012-0093772호는 아민기를 포함한 바인더 및 이를 포함한 분리막 코팅층; 및 가교성 관능기 포함한 단량체를 함유하는 분리막에 관하여 기재하고 있으나, 염기성 물질 또는 아민기를 가지는 물질을 포함하는 용액을 부가하는 구체적인 단계에 관한 내용이 개시되어 있지 않다.Korean Laid-Open Patent Publication No. 2012-0093772 discloses a binder including an amine group and a separator coating layer including the same; And it is described with respect to the separator containing a monomer containing a crosslinkable functional group, the content of a specific step of adding a solution containing a basic material or a material having an amine group is not disclosed.
Journal of Power Sources 144(1):238-243, June 2005는 PVdF-HFP/PEGDMA(폴리에틸렌글리콜디메타크릴레이트)의 가교에 대하여 개시되어 있으나, 상기 물질을 분리막에 적용한 것은 개시하지 않고, 고분자 전해액에만 적용하고 있다.Journal of Power Sources 144 (1): 238-243, June 2005 discloses cross-linking of PVdF-HFP / PEGDMA (polyethylene glycol dimethacrylate), but does not disclose the application of the material to a separator, but a polymer electrolyte solution. Applies only to
J Appl Electrochem 46: 69, 2016은 보헤마이트 나노입자와 폴리비닐리덴플루오라이드 고분자를 리튬 이차전지용 분리막으로 개시하고 있으나, 스트레스가 높은 전지셀 조립 과정에 적용하기에는 부적절하다고 언급하고 있다.J Appl Electrochem 46:69, 2016 discloses boehmite nanoparticles and polyvinylidene fluoride polymers as separators for lithium secondary batteries, but mentions that they are not suitable for high stress battery cell assembly.
Journal of Membrane Science, 103, 2014는 유연성이 있고 열적 안정성이 있는 리튬 이차전지의 분리막으로서 마그네슘 알루미네이트를 기반으로 하는 다공성 세라믹막을 개시하고 있으나, 강도를 향상시키기 위한 방법을 개시하지 못하고 있다.Journal of Membrane Science, 103, 2014 discloses a porous ceramic membrane based on magnesium aluminate as a separator for a flexible and thermally stable lithium secondary battery, but does not disclose a method for improving strength.
RSC Adv., 6, 102762-102772, 2016은 정삼투압 분리막의 물성을 향상시키는 방법에 관한 것으로서, 전기방사한 PVDF 지지체에 MPD(m-phenylene diamine)과 TMC(trimesoyl chloride)가 결합된 TFC(thin film composite) 분리막에 관한 것이다. 전기방사한 PVDF 지지체의 친수성 등을 증가시키기 위해서 전기방사한 PVDF 지지체에 TEA(triethyl amine)를 처리하였다.RSC Adv., 6, 102762-102772, 2016, relates to a method of improving the properties of an electroosmotic membrane, in which TFC (m-phenylene diamine) and TMC (trimesoyl chloride) are combined with an electrospun PVDF support. film composite). In order to increase the hydrophilicity of the electrospun PVDF support, triethyl amine (TEA) was treated on the electrospun PVDF support.
J. Appl. Polym. Sci. 8, 1415, 1964는 분리막 후처리에 따른 가교 기작을 보여주고 있으며, Colloids and surfaces a:Physicochem. Eng. Aspects 297, 267, 2007은 가교된 분리막의 기계적 특성이 향상된다는 효과를 나타내고 있다. "Effect of cross-linking on the electrical properties of LDPE and its lightning impulse ageing characteristics", International Symposium on High Voltage Engineering, Hannover, Germany, 2011, August 22는 가교된 분리막의 절연특성이 향상된다는 점을 기재하고 있다.J. Appl. Polym. Sci. 8, 1415, 1964 show the cross-linking mechanism of membrane post-treatment. Colloids and surfaces a: Physicochem. Eng. Aspects 297, 267 and 2007 show the effect of improving the mechanical properties of the crosslinked separator. "Effect of cross-linking on the electrical properties of LDPE and its lightning impulse ageing characteristics", International Symposium on High Voltage Engineering, Hannover, Germany, 2011, August 22, describes the improved insulation properties of crosslinked separators. .
한편 종래의 분리막의 특성을 개선하는 방법 등은 분리막을 제조하는 과정 중 추가의 수단 또는 공정을 부가하여 분리막의 물성을 향상시키고 있다. 그러나 이미 완성된 분리막의 후처리를 통해서 분리막의 물성을 향상시키는 방법은 아직까지 제시되지 않았다.On the other hand, the conventional method for improving the properties of the membrane and the like to add additional means or processes in the process of manufacturing the separator to improve the physical properties of the membrane. However, a method of improving the physical properties of the separator through the post-treatment of the already completed membrane has not been proposed until now.
본원 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 절연성, 인장강도 및 연신율이 높일 수 있는 분리막의 물성을 개선하는 방법 및 상기 방법을 통해서 물성이 개선된 분리막을 제공하는 것을 목적으로 한다. 특히 본원 발명은 이미 제조된 분리막에 적용되는 점에 특징이 있다.The present invention is to solve the above problems, an object of the present invention is to provide a method for improving the physical properties of the membrane can be improved insulation, tensile strength and elongation, and to provide a separator with improved physical properties through the method. In particular, the present invention is characterized in that it is applied to an already prepared separator.
상기와 같은 문제점을 해결하기 위한 본원 발명의 제1양태는 a) 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 층이 형성된 분리막을 준비하는 단계; b) 상기 바인더의 일부 원소를 탈리시켜 가교가 가능한 결합부로 변형시키는 단계; c) 단계 b)의 처리 후에 상기 분리막에 가교개시제 및/또는 반응촉매를 처리하는 단계;를 포함하는 후처리를 통한 분리막의 물성 향상 방법을 제공한다.A first aspect of the present invention for solving the above problems comprises the steps of: a) preparing a separator in which a layer comprising a binder is formed on a substrate including or not containing a polyolefin substrate; b) desorbing some elements of the binder to transform them into crosslinkable linkages; and c) treating the separator with a cross-linking initiator and / or a reaction catalyst after the treatment of step b).
상기 단계 c)에서 가교개시제 외에 가교제를 동시에 추가로 투입할 수 있다.In addition to the crosslinking initiator in step c), a crosslinking agent may be added at the same time.
상기 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막은 폴리올레핀 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막이거나, 폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 상기 무기물 입자 간의 결합을 위한 바인더를 포함하는 분리막이다.The separator having a coating layer including a binder on the substrate including or not including the polyolefin substrate is a separator having a coating layer including a binder formed on the polyolefin substrate, or does not include a polyolefin substrate, and bonds between inorganic particles and the inorganic particles. Separation membrane comprising a binder for.
상기 무기물 입자는 유전율 상수가 1 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 가진 무기물 입자, 리튬 이온 전달 능력을 가진 무기물 입자, 알루미나 수화물 또는 이들의 둘 이상의 혼합물이다.The inorganic particles are high dielectric constant inorganic particles having a dielectric constant of 1 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transfer ability, alumina hydrate or a mixture of two or more thereof.
상기 바인더의 대표적인 예로는 PVdF, TFE 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상이다.Representative examples of the binder is at least one selected from the group consisting of PVdF, TFE and polyimide.
상기 단계 b)는 구체적으로 상기 바인더의 일부 원소를 탈리시켜 단일 결합을 이중 결합으로 변형시키거나, 분리막에 염기성 물질 또는 아민기를 갖는 물질을 포함하는 용액을 부가하는 것이다. 상기 염기성 물질 또는 아민기를 갖는 물질은 알칼리금속산화물, 알칼리토금속산화물, 제올라이트, 석회석, 탄산나트륨, 암모니아, 모노알킬아민, 바이알킬아민, 트리알킬아민 중에서 선택되는 1종 이상이며, 상기 알킬은 탄소 1 내지 10개이다.Specifically, step b) is to desorb some elements of the binder to transform a single bond into a double bond, or to add a solution containing a substance having a basic substance or an amine group to the separator. The basic material or the material having an amine group is at least one selected from alkali metal oxides, alkaline earth metal oxides, zeolites, limestone, sodium carbonate, ammonia, monoalkylamines, bialkylamines, trialkylamines, and the alkyl is one to one carbon. 10.
가교개시제로는 아조(azo)계 화합물 또는 퍼옥사이드(peroxide)계 화합물이 사용될 수 있다. As a crosslinking initiator, an azo compound or a peroxide compound may be used.
가교제로는 탄소수가 1 내지 15인 디아미노알칸 중에서 적어도 하나 이상이 선택될 수 있다. 디아미노알칸의 구체적인 예로는 1,6-diaminohexane 1,5-diaminopentane가 있다.As the crosslinking agent, at least one or more of diaminoalkanes having 1 to 15 carbon atoms may be selected. Specific examples of diaminoalkanes include 1,6-diaminohexane 1,5-diaminopentane.
본원 발명의 제2양태는 본원 발명의 분리막의 물성 향상 방법에 의해서 물성이 향상된 분리막을 제공한다.The second aspect of the present invention provides a separator having improved physical properties by the physical property improving method of the separator of the present invention.
본원 발명의 제3양태는 상기 물성이 향상된 분리막을 포함하는 전기화학소자를 제공한다.The third aspect of the present invention provides an electrochemical device including the separator having improved properties.
본원 발명에 따른 분리막의 물성 향상 방법은 종래의 분리막에 대비하여 절연성, 인장강도가 향상된 분리막을 제공할 수 있다는 장점이 있다. 본원 발명은 폴리올레핀 기재가 있거나 없는 분리막에 모두 적용할 수 있다. 특히 종래의 방법이 분리막을 제조하는 공정에 적용하는 반면 본원 발명은 이미 제조된 분리막의 물성을 개선한다는 점에서 전혀 다른 접근 방법을 제공한다. 기존 양산되고 있는 분리막의 조성 및 공정 조건을 전혀 변화할 필요가 없다는 장점이 있다.The method of improving physical properties of the separator according to the present invention has an advantage of providing a separator having improved insulation and tensile strength as compared to a conventional separator. The present invention can be applied to both membranes with or without polyolefin substrate. In particular, while the conventional method is applied to a process for preparing a separator, the present invention provides a completely different approach in that it improves the physical properties of the prepared membrane. There is an advantage that it is not necessary to change the composition and process conditions of the existing mass-produced membrane at all.
도 1은 GEN 1 분리막의 인장강도 및 연신을 비교 측정한 값이다.1 is a comparison of measured tensile strength and elongation of GEN 1 membrane.
도 2은 GEN 1 분리막의 체적저항 및 저항을 비교 측정한 값이다.2 is a value of comparing the volume resistance and resistance of the GEN 1 membrane.
도 3은 BA1 분리막의 인장강도 및 연신을 비교 측정한 값이다.3 is a comparison of tensile strength and elongation of BA1 membrane.
도 4는 BA1 분리막의 체적저항 및 저항을 비교 측정한 값이다.4 is a value obtained by comparing the volume resistance and the resistance of the BA1 membrane.
도 5는 BA1 분리막의 코팅 후 처리 및 코팅 중 처리의 인장강도 및 연신을 비교 측정한 값이다.5 is a value of comparing the tensile strength and the stretching of the after-treatment and in-coating treatment of the BA1 separator.
도6은 BA1 분리막의 코팅 후 처리 및 코팅 중 처리의 체적저항 및 저항을 비교 측정한 값이다.Figure 6 is a value measured by comparing the volume resistance and resistance of the post-coating treatment and the coating treatment of the BA1 separator.
이하, 본원 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본원 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 제시된 구성은 본원 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본원 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should properly introduce the concept of terms in order to best explain their own inventions. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the configurations presented in the embodiments described herein are only one of the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations.
본원 발명은 후처리 가교에 의한 분리막의 물성 향상 방법으로서,The present invention is a method for improving physical properties of the membrane by post-treatment crosslinking,
a) 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 층이 형성된 분리막을 준비하는 단계;a) preparing a separator in which a layer including a binder is formed on a substrate with or without a polyolefin substrate;
b) 상기 바인더의 일부 원소를 탈리시켜 가교가 가능한 결합부로 변형시키는 단계;b) desorbing some elements of the binder to transform them into crosslinkable linkages;
c) 단계 b)의 처리 후에 상기 분리막에 가교개시제 및/또는 반응촉매를 처리하는 단계;c) treating the separator with a crosslinking initiator and / or a reaction catalyst after the step b);
를 포함하는 후처리를 통한 분리막의 물성 향상 방법을 제공한다.It provides a method for improving the physical properties of the separator through a post-treatment comprising a.
상기 단계 b)는 상기 바인더의 일부 원소를 탈리시켜 단일 결합을 이중 결합으로 변형시켜서 가교사이트를 형성하는 단계일 수 있다. 이때 상기 일부 원소는 H 또는 F 또는 Cl이다.Step b) may be a step of removing some elements of the binder to transform a single bond into a double bond to form a crosslinking site. Wherein some of the elements are H or F or Cl.
상기 단계 b)는 분리막에 염기성 물질 또는 아민기를 갖는 물질을 포함하는 용액을 부가하는 단계일 수 있다.Step b) may be a step of adding a solution containing a substance having a basic substance or an amine group to the separator.
상기 단계 c)는 상기 가교개시제 외에 선택적으로 가교제를 동시에 추가로 투입할 수 있다.In step c), a crosslinking agent may be additionally added simultaneously with the crosslinking initiator.
상기 단계 c)는 상기 결합부에 상기 가교개시제가 결합하거나, 상기 결합부에서 상기 바인더 간의 결합이 이루어지거나, 상기 가교개시제 간의 별도 가교가 형성되거나, 상기 결합부에 상기 가교제가 결합하거나, 상기 가교제제 간의 별도 가교가 형성되는 단계이다.The step c) is the cross-linking initiator is bonded to the bonding portion, the binding between the binder is made in the bonding portion, a separate cross-linking is formed between the cross-linking initiator, the cross-linking agent is bonded to the bonding portion, or the cross-linking It is the step of forming a separate crosslink between the agents.
단계 b)의 가교 가능한 결합부로 변형하는 것은 바인더 고분자 중 H, F, Cl등을 탈리시켜 이중결합을 형성하는 것이다. b) 단계에서 형성된 상기 가교 사이트간의 결합을 통해서 가교가 형성되거나, 단계 c)에서 투입된 가교개시제, 가교제 및/또는 반응촉매가 상기 가교 사이트간을 결합시키거나, 상기 가교개시제 및 가교제 간 별도의 가교 결합이 형성되는 것으로 보인다.Modification to the crosslinkable linking portion of step b) is to desorb H, F, Cl, etc. in the binder polymer to form a double bond. Crosslinking is formed through the linkage between the crosslinking sites formed in step b), or the crosslinking initiator, crosslinking agent and / or reaction catalyst introduced in step c) bind between the crosslinking sites or separate crosslinking between the crosslinking initiator and the crosslinking agent. It appears that a bond is formed.
1) 분리막의 종류1) Types of separator
상기 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막은 폴리올레핀 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막이거나, 폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 상기 무기물 입자 간의 결합을 위한 바인더를 포함하는 분리막일 수 있다.The separator having a coating layer including a binder on the substrate including or not including the polyolefin substrate is a separator having a coating layer including a binder formed on the polyolefin substrate, or does not include a polyolefin substrate, and bonds between inorganic particles and the inorganic particles. It may be a separator comprising a binder for.
폴리올레핀 기재는 통상의 분리막에 사용되는 폴리올레핀 기재로서 폴리에틸렌, 폴리프로필렌 등이 사용될 수 있으며, 이에 대한 기술적인 사항은 통상의 기술자에게 널리 알려져 있는바 자세한 설명은 생략한다.As the polyolefin substrate, polyethylene, polypropylene, or the like may be used as the polyolefin substrate used in a conventional separator, and technical details thereof are well known to those skilled in the art, and thus a detailed description thereof will be omitted.
폴리올레핀 계열의 분리막 기재가 없는 구조는 종래의 분리막 기재를 생략하고 무기물층을 구성하는 물질들이 바로 분리막을 구성한다. 이러한 무기물층으로만 구성되는 분리막은, 폴리올레핀 분리막 기재가 생략되기 때문에 분리막의 전체적인 강도가 낮아짐에 따라 전극조립체 사이에 개재된 분리막이 손상되어 단락이 일어날 가능성이 높은 문제가 있다. 본원 발명에 따른 분리막 물성 향상 방법은 이미 완성된 이러한 폴리올레핀 계열의 분리막 기재가 없는 분리막에도 적용이 가능하며, 이를 통해서 기계적 강도 및 절연특성을 증가시킬 수 있다.In the structure without a polyolefin-based separator base material, a conventional membrane base material is omitted, and materials constituting the inorganic layer constitute a separator. The separator composed of only the inorganic layer has a problem in that a short circuit may occur due to a decrease in the overall strength of the separator because the substrate of the polyolefin separator is omitted, resulting in damage to the separator interposed between the electrode assemblies. Separation properties improvement method according to the present invention can be applied to a separator without a polyolefin-based separator substrate already completed, through which mechanical strength and insulation properties can be increased.
2) 무기물 입자2) inorganic particles
본원 발명에 따른 무기물 입자는, 무기물 입자들간 빈 공간의 형성을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 되고, 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖는다.The inorganic particles according to the present invention serve as a kind of spacer which enables the formation of empty spaces between the inorganic particles to form fine pores and maintains a physical form, and generally at a high temperature of 200 ° C. or more. It has a property that the physical property does not change.
이러한 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 한정되지 않고, 즉, 본원 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 한정되지 않는다. 특히, 전해질 이온 전달 능력이 높은 무기물 입자를 사용하는 경우, 전기화학소자 내의 성능 향상을 도모할 수 있으므로, 가능한 전해질 이온 전달 능력이 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 분리막 형성시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.Such inorganic particles are not particularly limited as long as they are electrochemically stable, i.e., the inorganic particles that can be used in the present invention are oxidized and / or in the operating voltage range of the battery to be applied (for example, 0 to 5 V on a Li / Li + basis). Or it will not specifically limit, if a reduction reaction does not occur. In particular, when inorganic particles having high electrolyte ion transfer ability are used, since the performance in the electrochemical device can be improved, it is preferable that the electrolyte ion transfer ability as high as possible. In addition, when the inorganic particles have a high density, it is not only difficult to disperse when forming the separator, but also has a problem of weight increase during battery manufacturing, and therefore, the smallest possible density is preferable. In addition, in the case of an inorganic material having a high dielectric constant, it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
상기와 같은 이유들로 인해, 상기 무기물 입자는 유전율 상수가 1 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자, 알루미나 수화물 또는 이들의 둘 이상의 혼합물일 수 있다.For the above reasons, the inorganic particles are high dielectric constant inorganic particles having a dielectric constant of 1 or more, preferably 10 or more, inorganic particles having piezoelectricity, inorganic particles having lithium ion transfer ability, alumina hydrate or these It may be a mixture of two or more of them.
상기 유전율 상수가 1 이상인 무기물 입자의 예로는 SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, TiO 2, SiC 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다.Examples of the inorganic particles having a dielectric constant of 1 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, or a mixture thereof. There is, but is not limited to this.
상기 압전성(piezoelectricity) 무기물 입자는 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을 나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 물질이다.The piezoelectric inorganic particles are insulators at normal pressure, but mean a material having electrical properties through electrical structure change when a predetermined pressure is applied. The piezoelectricity inorganic particles not only exhibit a high dielectric constant having a dielectric constant of 100 or more, but also have a constant pressure. When tension or compression is applied, electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
상기와 같은 특징을 갖는 무기물 입자를 사용하는 경우, Local crush, Nail 등의 외부 충격에 의해 양 전극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물 입자로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물 입자의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양 전극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.In the case of using the inorganic particles having the above characteristics, when the internal short circuit of the positive electrode occurs due to external impact such as local crush, nail, etc., the anode and the cathode do not directly contact due to the inorganic particles coated on the separator, Due to the piezoelectricity of the inorganic particles, a potential difference in the particles is generated, and as a result, electron movement between both electrodes, that is, a minute current flows, thereby reducing the voltage of a gentle battery and thereby improving safety.
상기 압전성을 갖는 무기물 입자의 예로는 BaTiO 3, Pb(Zr,Ti)O 3 (PZT), Pb 1-xLa xZr 1-yTi yO 3 (PLZT), Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3 (PMN-PT) hafnia (HfO 2) 또는 이들의 혼합물 등이 있으나 이에 한정되는 것은 아니다.Examples of the inorganic particles having piezoelectric properties include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2 / 3 ) O 3 -PbTiO 3 (PMN-PT) hafnia (HfO 2 ) or mixtures thereof, but is not limited thereto.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다.The inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since the lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 예로는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0<x<2, 0<y<1, 0<z<3), 14Li 2O-9Al 2O 3-38TiO 2-39P 2O 5 등과 같은 (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트(Li xLa yTiO 3, 0<x<2, 0<y<3), Li 3.25Ge 0.25P 0.75S 4 등과 같은 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li 3N 등과 같은 리튬나이트라이드(Li xN y, 0<x<4, 0<y<2), Li 3PO 4-Li 2S-SiS 2 등과 같은 SiS 2 계열 glass(Li xSi yS z, 0<x<3, 0<y<2, 0<z<4), LiI-Li 2S-P 2S 5 등과 같은 P 2S 5 계열 glass (Li xP yS z, 0<x<3, 0<y<3, 0<z<7), 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다.Examples of the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), and lithium aluminum Titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), 14Li 2 O-9Al 2 O 3 -38 TiO 2 -39P 2 O 5 (LiAlTiP) xOy series glass (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3, 0 <x <2, 0 <y <3) , such as, Li 3.25 Ge Li germanium thiophosphate such as 0.25 P 0.75 S 4 or the like (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5), Li 3 Li nitride such as N (Li x N y , 0 <x <4, 0 <y <2), Si 3 series glass such as Li 3 PO 4 -Li 2 S-SiS 2 (Li x Si y S z , P 2 S 5 series glass (Li x P y S z , 0 <x <3, 0) such as 0 <x <3, 0 <y <2, 0 <z <4), LiI-Li 2 SP 2 S 5 <y <3, 0 <z <7), or mixtures thereof, but is not limited thereto.
상기 알루미나 수화물은 제조방법에 따라 결정질인 것과 겔 모양인 것으로 분류된다. 상기 결정질 알루미나 수화물은 기브자이트 i-Al(OH) 3, 바이어라이트 Al(OH) 3, 다이어스포어 i-AlOOH, 보헤마이트 i-AlOOH의 4종이 있고, 겔 모양인 알루미나 수화물에는 알루미늄 이온을 함유하는 수용액을 암모니아에 의해 침전시킨 수산화알루미늄이 이에 해당되며, 바람직하게는 보헤마이트 i-AlOOH가 사용될 수 있다.The alumina hydrate is classified into crystalline and gel-like according to the preparation method. The crystalline alumina hydrate is gib ZUID i-Al (OH) 3, via light Al (OH) 3, Dyer Spore i-AlOOH, bohe and four species of boehmite i-AlOOH, gel shape of alumina hydrate is containing aluminum ions This corresponds to aluminum hydroxide in which an aqueous solution is precipitated with ammonia, and preferably boehmite i-AlOOH may be used.
전술한 고유전율 무기물 입자, 압전성을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 알루미나 수화물들을 혼용할 경우, 이들의 상승 효과는 배가 될 수 있다.When the aforementioned high dielectric constant inorganic particles, piezoelectric inorganic particles, inorganic particles having lithium ion transfer capability and alumina hydrates are mixed, their synergistic effect may be doubled.
상기 무기물 입자의 크기는 제한이 없으나, 균일한 두께의 필름 형성 및 적절한 공극률을 위하여 가능한 한 0.001㎛ 내지 10㎛ 범위인 것이 바람직하다. 0.001㎛ 미만인 경우 분산성이 저하되어 분리막의 물성을 조절하기가 어려우며, 10㎛ 를 초과하는 경우 동일한 고형분 함량으로 제조되는 분리막의 두께가 증가하여 기계적 물성이 저하되며, 또한 지나치게 큰 기공 크기로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아진다.The size of the inorganic particles is not limited, but is preferably in the range of 0.001 μm to 10 μm as much as possible for film formation of a uniform thickness and proper porosity. If it is less than 0.001㎛, it is difficult to control the properties of the separator due to the deterioration of dispersibility, and if it exceeds 10㎛, the thickness of the separator manufactured with the same solids content is increased, and the mechanical properties are deteriorated. The internal short circuit is more likely to occur during charging and discharging.
3) 바인더3) binder
상기 바인더는 통상적으로 고분자 바인더로도 불리며 액체 전해액 함침시 겔화되어 높은 전해액 함침율(degree of swelling)을 나타낼 수 있는 특징을 가질 수 있다. 실제로, 상기 바인더 고분자들이 전해액 함침율이 우수한 고분자인 경우, 전지 조립 후 주입되는 전해액은 상기 고분자로 스며들게 되고, 흡수된 전해액을 보유하는 고분자는 전해질 이온 전도 능력을 갖게 된다. 또한, 종래 소수성 폴리올레핀 계열 분리막에 비해 전지용 전해액에 대한 젖음성(wetting)이 개선될 뿐만 아니라 종래에 사용되기 어려웠던 전지용 극성 전해액의 적용도 가능하다는 장점이 있다. 따라서, 가능하면 용해도 지수가 15 내지 45MPa 1/2인 고분자가 바람직하며, 15 내지 25MPa 1/2 및 30 내지 45MPa 1/2 범위가 더욱 바람직하다. 용해도 지수가 15MPa 1/2 미만 및 45MPa 1/2를 초과하는 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵게 된다.The binder is also commonly referred to as a polymeric binder and may have a feature that can be gelled during liquid electrolyte impregnation to exhibit a high degree of swelling. In fact, when the binder polymers are polymers having an excellent electrolyte impregnation rate, the electrolyte injected after battery assembly is permeated into the polymer, and the polymer having the absorbed electrolyte has electrolyte ion conducting ability. In addition, compared with the conventional hydrophobic polyolefin-based separator, the wettability of the battery electrolyte is improved and the polar electrolyte solution for the battery, which has been difficult to be used in the related art, is also possible. Thus, from, the polymer solubility parameter of 15 to 45MPa preferably 1/2, more preferably from 15 to 25MPa 1/2 and 1/2 of 30 to 45MPa range. When the solubility parameter greater than 1/2 to less than 15MPa and 45MPa 1/2, it is difficult to be impregnated with (swelling) by conventional liquid electrolyte batteries.
구체적으로 폴리비닐리덴플로라이드, 폴리비닐리덴 플로라이드-헥사플루오로프로필렌, 폴리비닐리덴플로라이드-트리클로로에틸렌, 폴리비닐리덴플로라이드-클로로트리플로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀룰로오스, 아크릴로니트릴스티렌부타디엔 공중합체, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), TFE, 불소 고무 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상이며, 바람직하게는 PVdF, TFE 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상이다.Specifically, polyvinylidene fluoride, polyvinylidene fluoride, hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate, polyacrylo Nitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyano Ethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, acrylonitrile styrene butadiene copolymer, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), TFE, fluorine rubber And at least one member selected from the group consisting of polyimide It said, preferably at least one member selected from the group consisting of PVdF, TFE and polyimide.
4) 염기성 물질 또는 아민기를 갖는 물질4) a substance having a basic substance or an amine group
염기성 물질 또는 아민기를 갖는 물질은 알칼리금속산화물, 알칼리토금속산화물, 제올라이트, 석회석, 탄산나트륨, 암모니아, 모노알킬아민, 바이알킬아민, 트리알킬아민 중에서 선택되는 1종 이상이다.The substance having a basic substance or an amine group is at least one selected from alkali metal oxides, alkaline earth metal oxides, zeolites, limestone, sodium carbonate, ammonia, monoalkylamines, bialkylamines and trialkylamines.
5) 가교개시제5) Crosslinking initiator
상기 가교개시제는 아조(azo)계 화합물 또는 퍼옥사이드(peroxide)계 화합물로서, 구체적으로 상기 아조계 화합물은 2,2'-아조비스(2-메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴), 2,2'-아조비스(2,4-디메틸발레로니트릴) 및 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴) 중에서 적어도 하나 이상이 선택되는 것이며, 바람직하게는 2,2'-아조비스(이소부티로니트릴) (AIBN)이다.The crosslinking initiator is an azo compound or a peroxide compound, and specifically, the azo compound is 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis. At least one of (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) The above is selected, Preferably it is 2,2'- azobis (isobutyronitrile) (AIBN).
상기 퍼옥사이드계 화합물은 테트라메틸부틸퍼옥시 네오데카노에이트, 비스(4-부틸시클로헥실)퍼옥시디카보네이트, 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트, 디프로필 퍼옥시 디카보네이트, 디이소프로필 퍼옥시 디카보네이트, 디에톡시에틸 퍼옥시 디카보네이트, 디에톡시헥실퍼옥시 디카보네이트, 헥실 퍼옥시 디카보네이트, 디메톡시부틸 퍼옥시 디카보네이트, 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트, 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸(dimyristyl) 퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트, 부틸 퍼옥시 피발레이트, 트리메틸 헥사노일 퍼옥사이드, 디메틸 히드록시 부틸 퍼옥시 네오 데카노에이트, 아밀 퍼옥시 네오 데카노에이트, Atofina, 부틸 퍼옥시 네오 데카노에이트, t-부틸퍼옥시네오헵타노에이트, 아밀퍼옥시 피발레이트, t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트,라우릴 퍼옥사이드, 디라우로일(dilauroyl) 퍼옥사이드, 디데카노일 퍼옥사이드, 벤조일 퍼옥사이드 또는 디벤조일 퍼옥사이드 중에서 적어도 하나 이상이 선택되는 것이다.The peroxide compound is tetramethylbutyl peroxy neodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxy carbonate, butyl peroxy neodecanoate, dipropyl per Oxy dicarbonate, diisopropyl peroxy dicarbonate, diethoxyethyl peroxy dicarbonate, diethoxyhexyl peroxy dicarbonate, hexyl peroxy dicarbonate, dimethoxybutyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethylbutyl per Peroxypivalate, hexyl peroxy pivalate, butyl peroxy pivalate, trimethyl hexanoyl peroxide, dimethyl hydroxy butyl peroxy neo decanoate, amyl peroxy Neo decanoate, Atofina, butyl peroxy neo decanoate, t-butylperoxy neoheptanoate, amylperoxy pivalate, t-butylperoxy pivalate, t-amyl peroxy-2-ethylhexano At least one or more of an ate, lauryl peroxide, dilauuroyl peroxide, didecanoyl peroxide, benzoyl peroxide or dibenzoyl peroxide is selected.
상기 가교개시제, 가교제 및/또는 반응촉매의 함량은, 고형분 전체 중량을 기준으로 0중량% 초과 내지 5중량% 이하, 바람직하게는 0.2중량% 초과 5중량% 이하, 더욱 바람직하게는 0.5초과 5중량% 이하, 가장 바람직하게는 1중량% 초과 2중량% 이하이다.The content of the crosslinking initiator, the crosslinking agent and / or the reaction catalyst is, based on the total weight of solids, more than 0% by weight to 5% by weight, preferably more than 0.2% by weight and 5% by weight or less, and more preferably more than 0.5 and 5% by weight. % Or less, most preferably more than 1% and 2% or less.
상기 분리막에서 가교개시제, 가교제 및/또는 반응촉매의 함량이 하한가 보다 낮은 경우에는 가교가 완벽히 일어나지 않을 수 있다.If the content of the cross-linking initiator, cross-linking agent and / or reaction catalyst in the separator is lower than the lower limit, cross-linking may not occur completely.
본원 발명은 상기 가교개시제가 특정한 온도에서 반응이 이루어져 가교 구조를 이루고, 가교 구조의 특성상 밀도가 높아짐에 따라 강성과 관련된 물성이 향상되고, 전자의 이동에 영향을 주기 때문에 절연저항이 높아지게 된다.According to the present invention, the crosslinking initiator reacts at a specific temperature to form a crosslinked structure, and as the density of the crosslinked structure increases, physical properties related to rigidity are improved and insulation resistance is increased because it affects the movement of electrons.
상기 가교개시제의 반응 온도는 40℃ 내지 150℃의 범위일 수 있으며, 더욱 바람직하게는 50℃ 내지 130℃의 범위일 수 있다. 상기 온도 범위에 도달하기 전의 낮은 온도에서는 가교개시제의 반응 속도가 느리고, 상기 온도 범위에 도달함에 따라 반응이 일어나면서 가교 결합에 의해 3차원 망상 구조가 형성된다.The reaction temperature of the crosslinking initiator may be in the range of 40 ° C to 150 ° C, more preferably in the range of 50 ° C to 130 ° C. At a low temperature before reaching the temperature range, the reaction rate of the crosslinking initiator is slow, and the reaction occurs as the temperature range is reached, thereby forming a three-dimensional network structure by crosslinking.
상기 가교개시제의 반응 온도가 40℃ 보다 낮은 경우에는 가교반응이 일어나기 어렵고, 150℃보다 높은 경우에는 종래 분리막에 변형이 발생하거나 자체가 용융될 수 있으므로 바람직하지 않다.When the reaction temperature of the cross-linking initiator is lower than 40 ° C, cross-linking reaction is difficult to occur, and when the reaction temperature is higher than 150 ° C, deformation of the conventional separator may occur or it may melt itself, which is not preferable.
5) 가교제5) Crosslinking agent
가교제는 탄소수가 1 내지 15인 디아미노알칸 중에서 적어도 하나 이상이 선택될 수 있으며, 구체적으로 1,6-디아미노헥산(diaminohexane), 1,5-디아미노펜탄(diaminopentane) 중에서 적어도 하나 이상이 선택될 수 있다.The crosslinking agent may be at least one selected from diaminoalkanes having 1 to 15 carbon atoms, and specifically, at least one or more selected from 1,6-diaminohexane and 1,5-diaminopentane. Can be.
6) 전극조립체 구성 및 응용6) Composition and Application of Electrode Assembly
본원 발명은 또한, 양극과 음극, 상기 양극과 음극 사이에 개재된 상기 분리막, 및 전해질을 포함하는 전기화학소자를 제공하고, 여기서 상기 전기화학소자는 리튬 이차전지일 수 있다.The present invention also provides an electrochemical device including an anode and a cathode, the separator interposed between the cathode and the cathode, and an electrolyte, wherein the electrochemical device may be a lithium secondary battery.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 충진제를 더 첨가하기도 한다.The positive electrode is manufactured by applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector, followed by drying, and optionally, a filler may be further added.
상기 양극 집전체는 일반적으로 3㎛ 이상 내지 500㎛ 이하의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The positive electrode current collector is generally made of a thickness of 3 μm or more and 500 μm or less. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. The surface-treated with carbon, nickel, titanium, silver, etc. can be used. The current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2-x M x O 2 (wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like, but are not limited to these.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
상기 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.The negative electrode is manufactured by coating and drying a negative electrode material on a negative electrode current collector, and optionally, the components as described above may be further included if necessary.
상기 음극 집전체는 일반적으로 3㎛ 이상 내지 500㎛ 이하의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to a thickness of 3 μm or more and 500 μm or less. Such a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, and Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.As said negative electrode active material, For example, carbon, such as hardly graphitized carbon and graphite type carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1-x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.
본원 발명은 또한, 상기 전기화학소자를 포함하는 전지팩을 제공할 수 있다.The present invention may also provide a battery pack including the electrochemical device.
구체적으로, 상기 전지팩은 고온 안전성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있으며, 이러한 디바이스의 상세한 예로는, 모바일 전자기기(mobile device), 웨어러블 전자기기(wearable device), 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력 저장 장치(Energy Storage System) 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specifically, the battery pack may be used as a power source of a device requiring high temperature safety, long cycle characteristics, high rate characteristics, and the like, and a detailed example of such a device may include a mobile device and a wearable device. A power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; An energy storage system and the like, but are not limited thereto.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.Since the structure of these devices and their fabrication methods are known in the art, detailed description thereof is omitted herein.
- 실시 예-Example
이하, 본원 발명의 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본원 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본원 발명에 따른 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본원 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안된다. 본원 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본원 발명을 본다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples, but the present invention is not limited to these Examples and Experimental Examples. Embodiments according to the present invention may be modified in many different forms, and the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to fully explain the present invention to those skilled in the art.
<제조 방법><Manufacturing method>
(분리막 1, 2의 제조)(Manufacture of Separators 1 and 2)
실험을 위해서 이미 생산된 CSP gen1(분리막 1), BA1_B09PA1(분리막 2) 2종류의 분리막을 사용하였다. 상기 CSP gen1 분리막은 산화 알루미늄 Al 2O 3 입자와 PVDF 바인더만으로 이루어진 분리막이며, BA1_B09PA1 분리막은 polyethylene 원단 기재에 Al 2O 3무기물 입자와 PVDF 바인더로 이루어진 코팅층을 갖는 분리막이다.For the experiment, two kinds of membranes, CSP gen1 (membrane 1) and BA1_B09PA1 (membrane 2), which were already produced, were used. The CSP gen1 separator is a separator consisting of aluminum oxide Al 2 O 3 particles and PVDF binder only, BA1_B09PA1 separator is a separator having a coating layer consisting of Al 2 O 3 inorganic particles and PVDF binder on a polyethylene fabric substrate.
가교 사이트 형성을 위한 물질로는 트리에틸아민(TEA, Triethylamine)를 사용하였다. 각각의 분리막을 10㎝X10㎝로 절단 후 상온에서 99% TEA용액에 분리막을 5분동안 담근 후, 꺼내어 흄 후드 안에서 건조 하였다.Triethylamine (TEA) was used as a material for forming the crosslinking site. Each membrane was cut into 10 cm × 10 cm, and the membrane was immersed in 99% TEA solution at room temperature for 5 minutes, then taken out and dried in a fume hood.
가교 형성을 위해서 에탄올 용매에 1.5중량% 아조비스이소부티로니트릴(AIBN, 2,2'-Azobisiosbutyronitrile)을 용해시킨 용액에 가교사이트가 형성된 분리막을 담가 60℃에서 30분 처리 하였다. 이후 분리막을 에탄올로 세척하여 흄후드에서 건조하였다.In order to form a crosslink, a membrane formed with a crosslinking site was immersed in a solution obtained by dissolving 1.5% by weight of azobisisobutyronitrile (AIBN, 2,2'-Azobisiosbutyronitrile) in an ethanol solvent and treated for 30 minutes at 60 ° C. The membrane was then washed with ethanol and dried in a fume hood.
<비교 실험1>Comparative Experiment 1
상기 분리막 1, 2에 대해서 아무런 처리를 하지 않은 비교예 1, 2; 본원 발명에 따른 TEA만을 처리한 실시예 1, 2; TEA 및 AIBN을 처리한 실시예 3, 4에 대해서 각각의 인장강도, 연신, 절연 저항, 저항을 아래와 같은 방법에 따라 측정하였다.Comparative Examples 1 and 2 which did not perform any treatment on the separation membranes 1 and 2; Examples 1 and 2, which treated only TEA according to the present invention; For Examples 3 and 4 treated with TEA and AIBN, the tensile strength, stretching, insulation resistance, and resistance were measured according to the following method.
<절연저항 측정 조건><Insulation resistance measurement condition>
인가전압 : 100VVoltage applied: 100V
측정 시간 : 3S Measurement time: 3S
전극 크기 및 모양 : 19.6㎠ 원형Electrode size and shape: 19.6㎠ round
<인장강도 측정 조건><Tensile strength measurement condition>
분리막 폭 : 2㎝Membrane Width: 2cm
인장속도 : 500㎜/minTensile Speed: 500㎜ / min
<실험결과><Experiment Result>
도 1 내지 4는 비교예 1, 2와 본원 발명에 따른 실시예 1, 2, 3, 4의 각각 물성의 측정 결과이다. Gen1 분리막에서 Bare는 아무런 처리를 하지 않은 비교예 1이며, TEA는 실시예 1, TEA+AIBN은 실시예 3이며, BA1 분리막에서 Bare는 아무런 처리를 하지 않은 비교예 2이며, TEA는 실시예 2, TEA+AIBN은 실시예 4이다.1 to 4 show the measurement results of physical properties of Comparative Examples 1 and 2 and Examples 1, 2, 3, and 4 according to the present invention, respectively. In the Gen1 membrane, Bare is Comparative Example 1 without any treatment, TEA is Example 1, TEA + AIBN is Example 3, Bare in the BA1 membrane is Comparative Example 2 without any treatment, TEA is Example 2 , TEA + AIBN is Example 4.
가교사이트 형성을 위한 TEA 처리 후 분리막의 절연특성 (체적저항) 및 기계적 강도가 일부 분리막인 실시예 1에서는 감소 특성을 보였나 실시예 2 및 가교 형성을 위한 AIBN 용액 처리 후인 실시예 3, 4에서는 모두 증가하였다. 특히 AIBN까지 처리할 경우에는 절연특성 및 기계적 강도가 모든 분리막에서 증가함을 확인할 수 있다. 본원 발명에 따른 후처리를 통한 분리막의 물성 향상 방법은 상기와 같이 이미 완성된 분리막에도 적용하여 분리막의 물성을 향상시킬 수 있음을 알 수 있다.After the TEA treatment for crosslinking site formation, the insulating properties (volume resistance) and mechanical strength of the separator were partially reduced in Example 1, but in Example 2 and Examples 3 and 4 after treatment with AIBN solution for crosslinking. Increased. In particular, when treated to AIBN it can be seen that the insulation properties and mechanical strength increased in all separators. It can be seen that the physical property improvement method of the separator through the post-treatment according to the present invention can be applied to the already completed separator as described above to improve the physical properties of the separator.
<비교실험2><Comparative Experiment 2>
상기 분리막 2에 대해서 Al 2O 3무기물 입자와 PVDF 바인더로 이루어진 코팅층을 형성하기 전, 코팅층 물질의 슬러리 준비 과정에서 가교 사이트 형성을 위한 물질인 트리에틸아민(TEA, Triethylamine)과 가교 형성을 위한 아조비스이소부티로니트릴(AIBN, 2,2'-Azobisiosbutyronitrile)을 첨가하여 슬러리 제조 후 코팅한 비교예3; 본원 발명에 따른 트리에틸아민(TEA, Triethylamine)및 아조비스이소부티로니트릴(AIBN, 2,2'-Azobisiosbutyronitrile)을 처리한 실시예4에 대해서 각각의 인장강도, 연신, 전연저항, 저항을 아래와 같은 방법에 따라 측정하였다.Before forming the coating layer consisting of Al 2 O 3 inorganic particles and PVDF binder with respect to the separator 2, triethylamine (TEA, Triethylamine), which is a material for forming a crosslinking site, in the preparation of slurry of the coating layer material and azo for crosslinking. Comparative Example 3 after coating the slurry after adding bisisobutyronitrile (AIBN, 2,2'-Azobisiosbutyronitrile) to prepare a slurry; For Example 4 treated with triethylamine (TEA, Triethylamine) and azobisisobutyronitrile (AIBN, 2,2'-Azobisiosbutyronitrile) according to the present invention, the tensile strength, elongation, rolling resistance and resistance of It measured according to the same method.
<절연저항 측정 조건><Insulation resistance measurement condition>
인가전압 : 100VApplied Voltage: 100V
측정 시간 : 3S Measurement time: 3S
전극 크기 및 모양 : 19.6㎠ 원형Electrode size and shape: 19.6㎠ round
<인장강도 측정 조건><Tensile strength measurement condition>
분리막 폭 : 1.5㎝Membrane Width: 1.5cm
인장속도 : 500㎜/minTensile Speed: 500㎜ / min
<실험결과><Experiment Result>
도 5 내지 6은 비교예 3(In Coating)과 본원 발명에 따른 실시예 4(After Coating)의 각각 물성의 측정 결과이다. BA1 분리막에서 공정 중 가교는 코팅층 슬러리 준비 과정에서 TEA와 AIBN을 첨가한 비교예3이며, 후 처리 가교는 코팅층 형성 후 TEA와 AIBN 처리를 한 실시예4이다.5 to 6 are measurement results of physical properties of Comparative Example 3 (In Coating) and Example 4 (After Coating) according to the present invention. In the BA1 separator, crosslinking in the process is Comparative Example 3 in which TEA and AIBN were added in the preparation of the coating layer slurry, and post-processing crosslinking was Example 4 in which TEA and AIBN were treated after the coating layer was formed.
코팅층 형성 후 TEA와 AIBN 처리를 한 실시예5는 코팅층 슬러리 준비 과정에서 TEA와 AIBN을 첨가한 비교예3에 비해 그 절연특성 (체적저항) 및 기계적 강도가 증가함을 확인할 수 있다. 따라서 후 처리를 통한 가교형성 분리막은 코팅공정 중 가교형성을 진행한 분리막보다 우수한 것을 알 수 있다. Example 5 treated with TEA and AIBN after the formation of the coating layer showed that the insulating properties (volume resistance) and mechanical strength of the coating layer slurry were increased compared to Comparative Example 3 in which TEA and AIBN were added. Therefore, it can be seen that the crosslinking separator through post-treatment is superior to the separator undergoing crosslinking during the coating process.

Claims (22)

  1. a) 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 층이 형성된 분리막을 준비하는 단계;a) preparing a separator in which a layer including a binder is formed on a substrate with or without a polyolefin substrate;
    b) 상기 바인더의 일부 원소를 탈리시켜 가교가 가능한 결합부로 변형시키는 단계;b) desorbing some elements of the binder to transform them into crosslinkable linkages;
    c) 단계 b)의 처리 후에 상기 분리막에 가교개시제 및/또는 반응촉매를 처리하는 단계;c) treating the separator with a crosslinking initiator and / or a reaction catalyst after the step b);
    를 포함하는 후처리를 통한 분리막의 물성 향상 방법.Method of improving the physical properties of the separator through a post-treatment comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 단계 c)에서 상기 가교개시제 외에 선택적으로 가교제를 동시에 추가로 투입하는 것인 후처리를 통한 분리막의 물성 향상 방법.Method of improving the physical properties of the membrane through the post-treatment step in addition to the step of selectively adding a crosslinking agent at the same time in addition to the crosslinking initiator.
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리올레핀 기재를 포함하거나 포함하지 않는 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막은Separation membrane formed with a coating layer comprising a binder on the substrate including or without the polyolefin substrate is
    폴리올레핀 기재 상에 바인더를 포함하는 코팅층이 형성된 분리막이거나,Or a separator in which a coating layer including a binder is formed on a polyolefin substrate,
    폴리올레핀 기재를 포함하지 않으며, 무기물 입자, 상기 무기물 입자 간의 결합을 위한 바인더를 포함하는 분리막인 후처리를 통한 분리막의 물성 향상 방법.It does not include a polyolefin substrate, inorganic particles, a method for improving the physical properties of the separator through a post-treatment membrane comprising a binder for bonding between the inorganic particles.
  4. 제3항에 있어서,The method of claim 3,
    상기 무기물 입자는 유전율 상수가 1 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 가진 무기물 입자, 리튬 이온 전달 능력을 가진 무기물 입자, 알루미나 수화물 또는 이들의 둘 이상의 혼합물인 후처리를 통한 분리막의 물성 향상 방법.The inorganic particles may be a high dielectric constant inorganic particle having a dielectric constant of 1 or more, an inorganic particle having piezoelectricity, an inorganic particle having lithium ion transfer ability, an alumina hydrate, or a mixture of two or more thereof. .
  5. 제3항에 있어서,The method of claim 3,
    상기 무기물 입자는 Al 2O 3, AlOOH, SiO 2, MgO, TiO 2 및 BaTiO 2로 이루어진 군에서 선택되는 1종 이상인 후처리를 통한 분리막의 물성 향상 방법.The inorganic particles are Al 2 O 3 , AlOOH, SiO 2 , MgO, TiO 2 and BaTiO 2 is one or more selected from the group consisting of post-treatment method for improving the physical properties of the membrane.
  6. 제3항에 있어서,The method of claim 3,
    상기 바인더는 폴리비닐리덴플로라이드(PVdF), 폴리비닐리덴 플로라이드-헥사플루오로프로필렌, 폴리비닐리덴플로라이드-트리클로로에틸렌, 폴리비닐리덴플로라이드-클로로트리플로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀룰로오스, 아크릴로니트릴스티렌부타디엔 공중합체, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 테트라플루오루에틸렌(TFE), 불소 고무 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상인 후처리를 통한 분리막의 물성 향상 방법.The binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate , Polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl Alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, acrylonitrile styrene butadiene copolymer, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), Tetrafluoroethylene (TFE), fluororubber and polyimide Method for improving the physical properties of the membrane through one or more post-treatment selected from the group.
  7. 제6항에 있어서,The method of claim 6,
    상기 바인더는 PVdF, TFE 및 폴리이미드로 이루어진 군에서 선택되는 1종 이상인 후처리를 통한 분리막의 물성 향상 방법.The binder is PVdF, TFE and polyimide is a method of improving the physical properties of the separator through at least one selected from the group consisting of.
  8. 제1항에 있어서,The method of claim 1,
    상기 단계 b)는 상기 바인더의 일부 원소를 탈리시켜 단일 결합을 이중 결합으로 변형시켜서 가교사이트를 형성하는 단계인 후처리를 통한 분리막의 물성 향상 방법.The step b) is a step of desorbing some elements of the binder to deform a single bond to a double bond to form a crosslinking site to improve the physical properties of the separator through post-treatment.
  9. 제8항에 있어서,The method of claim 8,
    상기 일부 원소는 H 또는 F 또는 Cl인 후처리를 통한 분리막의 물성 향상 방법.The method of improving the physical properties of the separator through the post-treatment of the element is H or F or Cl.
  10. 제1항에 있어서,The method of claim 1,
    상기 단계 b)는 분리막에 염기성 물질 또는 아민기를 갖는 물질을 포함하는 용액을 부가하는 단계인 후처리를 통한 분리막의 물성 향상 방법.Wherein step b) is a step of adding a solution containing a substance having a basic material or an amine group to the separation membrane through the post-treatment method.
  11. 제10항에 있어서,The method of claim 10,
    상기 염기성 물질 또는 아민기를 갖는 물질은 알칼리금속산화물, 알칼리토금속산화물, 제올라이트, 석회석, 탄산나트륨, 암모니아, 모노알킬아민, 바이알킬아민, 트리알킬아민 중에서 선택되는 1종 이상이며, 상기 알킬은 탄소 1 내지 10개인 후처리를 통한 분리막의 물성 향상 방법.The basic material or the material having an amine group is at least one selected from alkali metal oxides, alkaline earth metal oxides, zeolites, limestone, sodium carbonate, ammonia, monoalkylamines, bialkylamines, trialkylamines, and the alkyl is one to one carbon. How to improve the properties of the membrane through 10 post-treatment.
  12. 제2항에 있어서,The method of claim 2,
    상기 단계 c)는 상기 결합부에 상기 가교개시제가 결합하거나, 상기 결합부에서 상기 바인더 간의 결합이 이루어지거나, 상기 가교개시제 간의 별도 가교가 형성되거나, 상기 결합부에 상기 가교제가 결합하거나, 상기 가교제제 간의 별도 가교가 형성되는 단계인 후처리를 통한 분리막의 물성 향상 방법.In the step c), the crosslinking initiator is bonded to the bonding portion, bonds are formed between the binders at the bonding portion, separate crosslinking is formed between the crosslinking initiators, the crosslinking agent is bonded to the bonding portion, or the crosslinking. Method for improving the physical properties of the separator through post-treatment is a step of forming a separate cross-linking between the preparations.
  13. 제1항에 있어서,The method of claim 1,
    상기 가교개시제는 아조(azo)계 화합물 또는 퍼옥사이드(peroxide)계 화합물인 후처리를 통한 분리막의 물성 향상 방법.The cross-linking initiator is azo (azo) compound or a method of improving the physical properties of the membrane through the post-treatment (peroxide) compound.
  14. 제13항에 있어서,The method of claim 13,
    상기 아조계 화합물은 2,2'-아조비스(2-메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴), 2,2'-아조비스(2,4-디메틸발레로니트릴) 및 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴) 중에서 적어도 하나 이상이 선택되는 후처리를 통한 분리막의 물성 향상 방법.The azo compounds include 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvalero Nitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) wherein at least one is selected.
  15. 제13항에 있어서,The method of claim 13,
    상기 퍼옥사이드계 화합물은 테트라메틸부틸퍼옥시 네오데카노에이트, 비스(4-부틸시클로헥실)퍼옥시디카보네이트, 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트, 디프로필 퍼옥시 디카보네이트, 디이소프로필 퍼옥시 디카보네이트, 디에톡시에틸 퍼옥시 디카보네이트, 디에톡시헥실퍼옥시 디카보네이트, 헥실 퍼옥시 디카보네이트, 디메톡시부틸 퍼옥시 디카보네이트, 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트, 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸(dimyristyl) 퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트, 부틸 퍼옥시 피발레이트, 트리메틸 헥사노일 퍼옥사이드, 디메틸 히드록시 부틸 퍼옥시 네오 데카노에이트, 아밀 퍼옥시 네오 데카노에이트, Atofina, 부틸 퍼옥시 네오 데카노에이트, t-부틸퍼옥시네오헵타노에이트, 아밀퍼옥시 피발레이트, t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트,라우릴 퍼옥사이드, 디라우로일(dilauroyl) 퍼옥사이드, 디데카노일 퍼옥사이드, 벤조일 퍼옥사이드 또는 디벤조일 퍼옥사이드 중에서 적어도 하나 이상이 선택되는 후처리를 통한 분리막의 물성 향상 방법.The peroxide compound is tetramethylbutyl peroxy neodecanoate, bis (4-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxy carbonate, butyl peroxy neodecanoate, dipropyl per Oxy dicarbonate, diisopropyl peroxy dicarbonate, diethoxyethyl peroxy dicarbonate, diethoxyhexyl peroxy dicarbonate, hexyl peroxy dicarbonate, dimethoxybutyl peroxy dicarbonate, bis (3-methoxy-3 -Methoxybutyl) peroxy dicarbonate, dibutyl peroxy dicarbonate, dicetyl peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethylbutyl per Peroxypivalate, hexyl peroxy pivalate, butyl peroxy pivalate, trimethyl hexanoyl peroxide, dimethyl hydroxy butyl peroxy neo decanoate, amyl peroxy Neo decanoate, Atofina, butyl peroxy neo decanoate, t-butylperoxy neoheptanoate, amylperoxy pivalate, t-butylperoxy pivalate, t-amyl peroxy-2-ethylhexano A method of improving physical properties of a separator through post-treatment wherein at least one of ate, lauryl peroxide, dilauuroyl peroxide, didecanoyl peroxide, benzoyl peroxide or dibenzoyl peroxide is selected.
  16. 제2항에 있어서,The method of claim 2,
    상기 가교제는 탄소수가 1 내지 15인 디아미노알칸 중에서 적어도 하나 이상이 선택되는 후처리를 통한 분리막의 물성 향상 방법.The crosslinking agent is a method of improving physical properties of the separator through at least one selected from diamino alkane having 1 to 15 carbon atoms.
  17. 제16항에 있어서,The method of claim 16,
    상기 가교제는 1,6-디아미노헥산(diaminohexane), 1,5-디아미노펜탄(diaminopentane) 중에서 적어도 하나 이상이 선택되는 후처리를 통한 분리막의 물성 향상 방법.The crosslinking agent is a 1,6-diaminohexane (diaminohexane), 1,5-diaminopentane (diaminopentane) at least one or more selected from the post-treatment method of improving the physical properties of the membrane.
  18. 제2항에 있어서,The method of claim 2,
    상기 가교개시제, 가교제 및/또는 반응촉매를 처리하는 온도는 40℃ 내지 150℃인 후처리를 통한 분리막의 물성 향상 방법.The temperature of the cross-linking initiator, the cross-linking agent and / or the reaction catalyst is treated to improve the physical properties of the separator through a post-treatment is 40 ℃ to 150 ℃.
  19. 제2항에 있어서,The method of claim 2,
    상기 가교개시제, 가교제 및/또는 반응촉매의 함량은 고형분 전체 중량을 기준으로 0중량% 초과 내지 5중량% 이하로 포함되는 후처리를 통한 분리막의 물성 향상 방법.The content of the cross-linking initiator, cross-linking agent and / or reaction catalyst is based on the total weight of the solid content of more than 0% to 5% by weight of the method of improving the physical properties of the separator through a post-treatment.
  20. 제1항 내지 제19항 중 어느 한 항에 따른 후처리를 통한 분리막의 물성 향상 방법에 의해서 물성이 향상된 분리막.20. A separator having improved physical properties by a method for improving physical properties of the separator through post-treatment according to any one of claims 1 to 19.
  21. 제20항에 있어서,The method of claim 20,
    상기 물성이 향상된 분리막의 통기도는 50sec/100cc 내지 4,000sec/100cc인 전기화학소자용 분리막.The air permeability of the improved separator is 50sec / 100cc to 4,000sec / 100cc separator for an electrochemical device.
  22. 제20항에 따른 물성이 향상된 분리막을 포함하는 전기화학소자.An electrochemical device comprising a separator having improved properties according to claim 20.
PCT/KR2019/004477 2018-04-13 2019-04-13 Method for improving properties of separator through post-treatment crosslinking and separator thereby WO2019199137A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/646,595 US20200287187A1 (en) 2018-04-13 2019-04-13 Method for improving physical properties of separator by post-treatment crosslinking and separator prepared thereby
EP19785657.8A EP3663337A4 (en) 2018-04-13 2019-04-13 Method for improving properties of separator through post-treatment crosslinking and separator thereby
CN201980003596.1A CN110914346B (en) 2018-04-13 2019-04-13 Method for improving physical properties of separator by post-treatment crosslinking and separator prepared thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180043356 2018-04-13
KR10-2018-0043356 2018-04-13
KR10-2019-0042803 2019-04-12
KR1020190042803A KR102314366B1 (en) 2018-04-13 2019-04-12 Method of Improving Properties of Separator by Post Cross-linking and The Separator Produced Thereby

Publications (1)

Publication Number Publication Date
WO2019199137A1 true WO2019199137A1 (en) 2019-10-17

Family

ID=68164278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004477 WO2019199137A1 (en) 2018-04-13 2019-04-13 Method for improving properties of separator through post-treatment crosslinking and separator thereby

Country Status (2)

Country Link
CN (1) CN110914346B (en)
WO (1) WO2019199137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093895A1 (en) * 2019-11-11 2021-05-20 苏州大学 Cellulose acetate-based cross-linked composite lithium ion battery diaphragm and preparation method as well as application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268872A (en) * 1999-03-15 2000-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacture
KR20070058660A (en) * 2004-09-27 2007-06-08 가부시키가이샤 구라레 Binder fiber and separator for alkaline cell using same
KR20090056811A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
KR20100047936A (en) * 2008-10-30 2010-05-11 임지원 Novel methods to improve the membrane performances through coating the hydrophilic polymers on the hydrophobic polymeric membrane surfaces followed by the wet-crosslinking
KR20120093772A (en) 2011-02-15 2012-08-23 주식회사 엘지화학 A separator, the manufacturing method thereof, and electrochemical device containing the same
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
KR20150099648A (en) * 2014-02-21 2015-09-01 주식회사 포스코 Separator, method of manufacturing the same, lithium polymer secondary battery including the same, and method of manufacturing lithium polymer secondary battery using the same
KR20160022619A (en) * 2014-08-20 2016-03-02 한국화학연구원 A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
KR20160140211A (en) 2015-05-29 2016-12-07 삼성전자주식회사 Electrolyte for lithium battery, and negative electrode and lithium battery including the same
KR20170076552A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Binder suspension composition, method for preparing electrode for secondary battery using the same, and electrode for secondary battery prepared thereby
KR20180043356A (en) 2015-09-04 2018-04-27 아슬란 파마슈티컬스 피티이 엘티디 Treatment of cholangiocarcinoma
KR20190042803A (en) 2017-10-17 2019-04-25 (주)웨이옵틱스 Multi-channel optical receiver module and methods of manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791002B2 (en) * 2004-05-31 2011-10-12 日東電工株式会社 Battery separator and battery manufacturing method using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268872A (en) * 1999-03-15 2000-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacture
KR20070058660A (en) * 2004-09-27 2007-06-08 가부시키가이샤 구라레 Binder fiber and separator for alkaline cell using same
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
KR20090056811A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 A separator having porous coating layer, manufacturing mehtod thereof and electrochemical device containing the same
KR20100047936A (en) * 2008-10-30 2010-05-11 임지원 Novel methods to improve the membrane performances through coating the hydrophilic polymers on the hydrophobic polymeric membrane surfaces followed by the wet-crosslinking
KR20120093772A (en) 2011-02-15 2012-08-23 주식회사 엘지화학 A separator, the manufacturing method thereof, and electrochemical device containing the same
KR20150099648A (en) * 2014-02-21 2015-09-01 주식회사 포스코 Separator, method of manufacturing the same, lithium polymer secondary battery including the same, and method of manufacturing lithium polymer secondary battery using the same
KR20160022619A (en) * 2014-08-20 2016-03-02 한국화학연구원 A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
KR20160140211A (en) 2015-05-29 2016-12-07 삼성전자주식회사 Electrolyte for lithium battery, and negative electrode and lithium battery including the same
KR20180043356A (en) 2015-09-04 2018-04-27 아슬란 파마슈티컬스 피티이 엘티디 Treatment of cholangiocarcinoma
KR20170076552A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Binder suspension composition, method for preparing electrode for secondary battery using the same, and electrode for secondary battery prepared thereby
KR20190042803A (en) 2017-10-17 2019-04-25 (주)웨이옵틱스 Multi-channel optical receiver module and methods of manufacturing

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Effect of crosslinking on the electrical properties of LDPE and its lightning impulse ageing characteristics", INTERNATIONAL SYMPOSIUM ON HIGH VOLTAGE ENGINEERING, 22 August 2011 (2011-08-22)
ENG. ASPECTS, vol. 297, 2007, pages 267
J APPL ELECTROCHEM, vol. 46, 2016, pages 69
J. APPL. POLYM. SCI., vol. 8, 1964, pages 1415
JOURNAL OF MEMBRANE SCIENCE, 2014, pages 103
JOURNAL OF POWER SOURCES, vol. 144, no. 1, June 2005 (2005-06-01), pages 238 - 243
RSC ADV., vol. 6, 2016, pages 102762 - 102772
See also references of EP3663337A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093895A1 (en) * 2019-11-11 2021-05-20 苏州大学 Cellulose acetate-based cross-linked composite lithium ion battery diaphragm and preparation method as well as application thereof

Also Published As

Publication number Publication date
CN110914346A (en) 2020-03-24
CN110914346B (en) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2019203571A1 (en) Asymmetrically structured flame-retardant separator for secondary battery
WO2018216970A1 (en) Flexible electrode, method for manufacturing same, and secondary battery comprising same
WO2019216633A1 (en) Nonflammable secondary battery separator
KR20170015149A (en) Selective ion adsorbable separator, method for manufacturing the same and electrochemical cell comprising the same
KR20200005965A (en) Separator for Secondary Battery Comprising Anti-flame Inorganic Materials
WO2015065116A1 (en) Organic-inorganic complex porous membrane, separator comprising same, and electrode structure body
CN110651383B (en) Separator without separator substrate and electrochemical device comprising same
WO2020050559A1 (en) Secondary battery separator having no separator substrate
WO2019199137A1 (en) Method for improving properties of separator through post-treatment crosslinking and separator thereby
WO2020091400A1 (en) Cross-linked polyolefin separator having inorganic coating layer formed thereon, and high-output secondary battery comprising same
WO2019088698A2 (en) Separator without separator substrate and electrochemical device comprising same
KR20140014493A (en) Fabricating method of seperator and electrochemical cell having the same
WO2019103498A1 (en) Silicon-based particle-polymer composite, and cathode active material containing same
KR102314366B1 (en) Method of Improving Properties of Separator by Post Cross-linking and The Separator Produced Thereby
WO2019221401A1 (en) Separator without separator substrate
WO2019022474A1 (en) Battery separator comprising material reducing hydrofluoric acid
WO2018030810A1 (en) Electrode assembly in which electrode and separation film are partially bonded
WO2020076139A1 (en) Negative electrode and rechargeable battery comprising same
WO2023239031A1 (en) Method for manufacturing separator for lithium secondary battery, separator for lithium secondary battery manufactured thereby, and method for manufacturing lithium secondary battery using same
WO2016159658A1 (en) Cellulose-based multilayer separation membrane
WO2024043626A1 (en) Separator for electrochemical device and electrochemical device comprising same
WO2023121074A1 (en) Method for manufacturing electrode for all-solid-state battery, and electrode manufactured thereby
WO2017209495A1 (en) Lithium secondary battery separator and lithium secondary battery comprising same
CN117426007A (en) Method for manufacturing separator for lithium secondary battery, separator for lithium secondary battery manufactured by using same, and lithium secondary battery having same
WO2022055142A1 (en) Electrode assembly comprising separator having conductive layer formed thereon, and battery cell comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019785657

Country of ref document: EP

Effective date: 20200306

NENP Non-entry into the national phase

Ref country code: DE