WO2019198606A1 - Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom - Google Patents

Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom Download PDF

Info

Publication number
WO2019198606A1
WO2019198606A1 PCT/JP2019/014919 JP2019014919W WO2019198606A1 WO 2019198606 A1 WO2019198606 A1 WO 2019198606A1 JP 2019014919 W JP2019014919 W JP 2019014919W WO 2019198606 A1 WO2019198606 A1 WO 2019198606A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
parts
mass
formula
resin composition
Prior art date
Application number
PCT/JP2019/014919
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
政隆 中西
篤彦 長谷川
一貴 松浦
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201980020008.5A priority Critical patent/CN111918889B/en
Priority to KR1020207025334A priority patent/KR20200141982A/en
Priority to JP2020513229A priority patent/JP7153994B2/en
Publication of WO2019198606A1 publication Critical patent/WO2019198606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles

Definitions

  • the present invention relates to an alkenyl group-containing compound, a curable resin composition, and a cured product thereof, a semiconductor element sealing material, a liquid crystal display element sealing material, an organic EL element sealing material, a printed wiring board, It is suitably used for electrical and electronic parts such as build-up laminates, and lightweight and high-strength structural composite materials such as carbon fiber reinforced plastic and glass fiber reinforced plastic.
  • Patent Document 1 uses a phenol resin substituted with a propenyl group, the electrical characteristics are insufficient.
  • Patent Document 2 since all the phenolic resin substituted with an allyl group is used, the reactivity is poor, and it is difficult to say that the performance is satisfactory from the viewpoint of heat resistance. Development of a curing system is desired.
  • the present invention has been made in view of such circumstances, and provides an alkenyl group-containing compound and a curable resin composition that exhibit excellent heat resistance and electrical properties when cured, and a cured product thereof. With the goal.
  • the present inventors have found that the cured product is excellent in heat resistance and electrical characteristics by using a specific alkenyl group-containing compound, and have completed the present invention. It was. That is, the present invention relates to the following [1] to [6].
  • X represents an arbitrary organic group.
  • Y represents an alkenyl group, and when a plurality of Y are present, they may be the same or different.
  • Z is independently a hydrogen atom.
  • Represents a hydrocarbon group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and when there are a plurality of Z, they may be the same or different, and l is a natural number of 1 to 6 M and n are each an integer of 0 or more, satisfying m + n 1 to 5, and at least one of l m is 1 or more.
  • the curable resin composition using the alkenyl group-containing compound of the present invention has excellent curability, and the cured product has excellent electrical characteristics and heat resistance.
  • the alkenyl group-containing compound of the present invention has high reactivity with the maleimide group, and there is almost no decrease in electrical characteristics due to the phenolic hydroxyl group. Therefore, insulating materials for electrical and electronic parts (such as highly reliable semiconductor sealing materials) and laminates (printed wiring boards, ball grid array (BGA) substrates, build-up substrates, etc.), liquid crystal sealing materials, organic EL sealing materials It can be used for various composite materials such as adhesives (conductive adhesives, etc.) and carbon fiber reinforced plastics (CFRP), paints and the like.
  • 2 is a 1 H-NMR chart of the compound of Example 4 of the present invention.
  • 2 is a 1 H-NMR chart of the compound of Example 5 of the present invention.
  • 2 is a 1 H-NMR chart of the compound of Example 6 of the present invention.
  • It is a 1 H-NMR chart of the compound of Example 8 of the present invention.
  • 2 is a 1 H-NMR chart of the compound of Example 9 of the present invention.
  • the alkenyl group-containing compound used in the present invention is represented by the following formula (1).
  • “to” represents a range including upper and lower limits (for example, 1 to 3 represents 1 or more and 3 or less).
  • Y represents an alkenyl group, and when a plurality of Y are present, they may be the same or different.
  • the alkenyl group for Y is not particularly limited, but is preferably an alkenyl group having 1 to 5 carbon atoms, more preferably an alkenyl group having 1 to 3 carbon atoms, and an allyl group or a methallyl group from the viewpoint of curability and electrical properties.
  • 1-propenyl group or 2-methylpropenyl group is more preferable, and an allyl group or 1-propenyl group is particularly preferable.
  • Z represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms, or an alkoxy group having 1 to 15 carbon atoms, and when a plurality of Z are present, they may be the same or different.
  • Z is preferably a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, from the viewpoint of electrical characteristics.
  • l represents a natural number of 1 to 6.
  • X represents an arbitrary organic group.
  • X is not particularly limited as long as it is an organic group, but is preferably a compound having a biphenylene structure, a phenylene structure, an S-triazine structure, or a diphenylsulfone structure, and is represented by the following formulas (2-1) to (2-4). Illustrated in structure.
  • * represents a bond to the oxygen atom in the formula (1).
  • l in the above formula (1) is 2 when the structure has two *, and l in the above formula (1) has a structure having three *. 3
  • a more preferable structure as X in the formula (1) is a structure represented by the formula (2-1) to the formula (2-3).
  • the formula (2-2) or the formula (2-3) Particularly preferred is the structure represented.
  • the alkenyl group-containing compound of the present invention does not have a phenolic hydroxyl group as a reactive group. Therefore, there is no deterioration in electrical characteristics due to the phenolic hydroxyl group, and high heat resistance is exhibited because of excellent radical polymerizability.
  • the alkenyl group-containing compound used in the present invention can be produced using, for example, a compound having a phenolic hydroxyl group represented by the following formula (3) and any halogen compound as a raw material.
  • Y, Z, m, and n are the same as in formula (1).
  • Examples of the compound having a phenolic hydroxyl group represented by the formula (3) include 2-allylphenol, 2-methallylphenol, 2- (2-propenyl) phenol, 2- (1-propenyl) phenol, eugenol, Examples thereof include, but are not limited to, isoeugenol.
  • Any known halogen compound may be used as long as it is a known one.
  • Preferred are those containing in the molecule the structures represented by the above formulas (2-1) to (2-4), such as 4.000-xylylene difluoride, m-xylylene difluoride, p -Xylylene difluoride, 4.000-xylylene dichloride, m-xylylene dichloride, p-xylylene dichloride, Occasionally-xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, THER-xylylene diiodide, m -Xylylene diiodide, p-xylylene diiodide, 4,4'-bisfluoromethylene biphenyl, 4,4'-bischloromethylene biphenyl, 4,4'-bisbromomethylene biphenyl, 4,4'-bisiodide Methylene biphenyl,
  • halogen compounds other than the above include 2,2′-difluorodiphenyl sulfone, 2,3′-difluorodiphenyl sulfone, 2,4′-difluorodiphenyl sulfone, 3,3′-difluorodiphenyl sulfone, 3, 4'-difluorodiphenyl sulfone, 4,4'-difluorodiphenyl sulfone, 2,2'-dichlorodiphenyl sulfone, 2,3'-dichlorodiphenyl sulfone, 2,4'-dichlorodiphenyl sulfone, 3,3'-dichlorodiphenyl Sulfone, 3,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone, 2,2′-dibromodiphenyl sulfone, 2,3′-d
  • the reaction with the compound having a phenolic hydroxyl group represented by the formula (3) and any halogen compound can be carried out by a known method, and generally a halogen compound using a base such as an alkali metal hydroxide. And a compound having a phenolic hydroxyl group are reacted to be etherified.
  • a highly polar solvent such as methanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone is used. It is preferable to use it.
  • the amount of the polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the total amount of the raw materials (the compound having a phenolic hydroxyl group and any halogen compound). These high-polarity solvents may be used alone or in combination, and low polarity solvents such as toluene and xylene may be used in combination.
  • the amount of the low-polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the total amount of raw materials (compound having a phenolic hydroxyl group and any halogen compound).
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added, and any desired compound is added at 30 to 250 ° C.
  • the halogen compound is added over 1 to 10 hours, and then reacted at 30 to 250 ° C. for 1 to 30 hours.
  • toluene, methyl isobutyl ketone, etc. are added, and the by-produced salt is removed by filtration, washing with water, etc., and further, solvents such as toluene, methyl isobutyl ketone, etc. are distilled off under heating and reduced pressure. Can be obtained.
  • the alkenyl group-containing compound used in the present invention can contain the raw materials used in the synthesis as impurities. If no impurities are contained, the solubility may be reduced. On the other hand, in the case where a large amount of impurities is contained, volatilization occurs in the remaining raw material during the curing reaction, and there is a concern about bad effects on odor and work commission environment.
  • impurities include, but are not limited to, raw materials and solvents used for synthesis.
  • combination, etc. are mentioned.
  • the impurity content is preferably 0.0001 to 5%, more preferably 0.0001 to 3%, and still more preferably 0.0001 to 1%.
  • the curable resin composition of the present invention may contain a maleimide resin.
  • a conventionally known maleimide resin can be used as the maleimide resin.
  • Specific examples of the maleimide resin include 4,4′-bismaleimide diphenylmethane, polyphenylmethane maleimide, m-phenylenebismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, and the like.
  • polyphenylmethane maleimide and maleimide resins having a molecular weight distribution such as maleimide resins described in Japanese Patent Application Laid-Open No. 2009-001783 and Japanese Patent Application Laid-Open No. 01-294661 are preferable. . These may be used alone or in combination of two or more.
  • the compounding amount of the maleimide resin is preferably in the range of 0.5 to 5 times, more preferably 1 to 3 times by mass ratio with respect to the alkenyl group-containing compound represented by the formula (1).
  • maleimide resins described in Japanese Patent Application Laid-Open No. 2009-001783 and Japanese Patent Application Laid-Open No. 01-294661 are particularly preferable because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
  • a radical polymerization initiator to react alkenyl groups of the alkenyl group-containing compound with each other or between the alkenyl group and the maleimide group.
  • the radical polymerization initiator include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis- (t-butylperoxy).
  • Dialkyl peroxides such as isopropyl) -benzene, peroxyketals such as t-butylperoxybenzoate, 1,1-di-t-butylperoxycyclohexane, ⁇ -cumylperoxyneodecanoate, t-butyl Peroxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoe , Alkyl peresters such as t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amylperoxybenzoate, di Peroxy such as -2-ethylhexyl peroxydicarbon
  • Ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, percarbonates, and the like are preferable, and dialkyl peroxides are more preferable.
  • the addition amount of the radical polymerization initiator is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is large, the molecular weight may not be sufficiently extended during the polymerization reaction.
  • the curable resin composition of the present invention may contain an epoxy resin.
  • the epoxy resin any conventionally known epoxy resin can be used. Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes.
  • glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate
  • the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
  • an epoxy resin obtained from a phenol aralkyl resin obtained by a condensation reaction of a phenol and a bishalogenomethyl aralkyl derivative or an aralkyl alcohol derivative as a raw material and having a dehydrochlorination reaction with epichlorohydrin has low moisture absorption, difficulty. Since it is excellent in flammability and dielectric properties, it is particularly preferable as an epoxy resin.
  • the curable resin composition of the present invention contains an epoxy resin
  • various epoxy resin curing agents and epoxy resin curing catalysts curing accelerators
  • the epoxy resin curing agent amine compounds, acid anhydride compounds, amide compounds, phenol compounds, active ester resins, and the like can be used.
  • Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride.
  • an active ester resin When an active ester resin is used as a curing agent, two ester groups with high reaction activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compound esters in one molecule. Compounds having the above are preferred.
  • the active ester curing agent is preferably obtained by a condensation reaction between at least one of a carboxylic acid compound and a thiocarboxylic acid compound and at least one of a hydroxy compound and a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing obtained from a carboxylic acid compound and at least one of a phenol compound and a naphthol compound.
  • Agents are preferred.
  • the amount of the epoxy resin curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents per 1 equivalent of epoxy group (or glycidyl group). When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete, and good cured properties may not be obtained.
  • Examples of the epoxy resin curing catalyst include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl- Imidazoles such as 2-ethyl-4-methylimidazole, triethylamine, triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) ) Amines such as phenol and benzyldimethylamine, and phosphines such as triphenylphosphine, tributylphosphine and trioctylphosphine.
  • the compounding amount of the curing catalyst is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass in total of the curable resin composition.
  • the curable resin composition of the present invention may contain a cyanate ester resin.
  • a conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensates of bisphenols and various aldehydes. Examples include cyanate ester compounds obtained by reacting a condensate with a cyanogen halide, but are not limited thereto. These may be used alone or in combination of two or more.
  • phenols examples include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, and the like.
  • cyanate ester compounds include dicyanate benzene, tricyanate benzene, dicyanate naphthalene, dicyanate biphenyl, 2, 2'-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) Methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2'-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2'-bis (4-cyanatophenyl) ethane, 2 , 2'-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolac cyanate, phenol-dicyclopentadiene co-condensate Can be converted to cyanate group.
  • cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because of their low hygroscopicity, flame retardancy, and dielectric properties.
  • the curable resin composition of the present invention contains a cyanate resin
  • zinc naphthenate, cobalt naphthenate, copper naphthenate, naphthenic acid are used to form a sym-triazine ring by trimerizing cyanate groups as necessary.
  • Catalysts such as lead, zinc octylate, tin octylate, lead acetylacetonate, and dibutyltin maleate can also be included in the curable resin composition of the present invention.
  • the catalyst is generally used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, based on 100 parts by weight of the total weight of the curable resin composition.
  • the curable resin composition of the present invention includes fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia as necessary.
  • Add powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, or inorganic fillers in which these are spherical or crushed. Can do.
  • the amount of the inorganic filler used is usually in the range of 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. It is.
  • additives can be blended as necessary.
  • additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, silane coupling agents, and the like.
  • Coloring agents such as surface treatment agents, release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used.
  • the amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less, with respect to 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention can be made into a varnish-like composition (hereinafter simply referred to as varnish) by adding an organic solvent.
  • varnish a varnish-like composition
  • the viscosity at the time of preparation of the curable resin composition is lowered, the handling property is improved, and the impregnation property to a substrate such as a glass cloth tends to be further improved.
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone
  • Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned.
  • the boiling point of the solvent to be used is too high, it may remain as a residual solvent.
  • the solvent As a boiling point of the solvent to be used, 200 degrees C or less is preferable, More preferably, it is 180 degrees C or less.
  • the solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by mass, preferably 20 to 70% by mass.
  • the curing reaction of the curable resin composition of the present invention all known reactions that can react with unsaturated double bonds can be applied. For example, radical polymerization, ene reaction, Diels-Alder reaction and the like can be mentioned. When curing using these reactions, unlike the curing reaction that utilizes the ring-opening reaction of epoxy groups, polar groups are not generated during the curing process, resulting in poor water absorption and electrical properties due to improved heat resistance. Is less.
  • the curable resin composition of the present invention can contain any alkenyl group-containing compound in the composition. At the time of curing, radical polymerization by a combination of the alkenyl compound described in the present invention and an arbitrary alkenyl group-containing compound can be used.
  • the arbitrary alkenyl group includes a substituted or unsubstituted linear, branched or cyclic alkenyl group, and is not particularly limited as long as it is a known alkenyl group.
  • Preferred specific examples include vinyl group, propenyl group, butenyl.
  • any number of hydrogen atoms in any alkenyl group is a halogen atom, a substituted or unsubstituted linear, branched or cyclic alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl, respectively. It may be substituted with a group, a substituted or unsubstituted linear, branched or cyclic alkenyl group, hydroxyl group, alkoxy group, amino group, cyano group, carbonyl group, carboxyl group or ester group.
  • each component may be simply mixed or prepolymerized.
  • the alkenyl group-containing compound represented by the formula (1) and the maleimide resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives are added to the alkenyl group-containing compound represented by the formula (1) and the maleimide resin as necessary. Then, it may be prepolymerized.
  • an extruder, a kneader, or a roll is used in the absence of a solvent, and a reaction kettle with a stirring device is used in the presence of a solvent.
  • the curable resin composition of the present invention can be obtained, for example, by uniformly mixing the above components at a predetermined ratio. Further, for example, by pre-curing the curable resin composition of the present invention usually at 130 to 180 ° C. for 30 to 500 seconds and further post-curing at 150 to 200 ° C. for 2 to 15 hours, Sufficient curing reaction proceeds to obtain the cured product of the present invention.
  • the components of the curable resin composition can be uniformly dispersed or dissolved in a solvent or the like, and the solvent can be removed and then cured.
  • the cured product of the curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, and high adhesion. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance, and high adhesion. Specifically, it is useful as a material for all electrical and electronic components such as an insulating material, a laminated board (printed wiring board, BGA substrate, build-up substrate, etc.), a sealing material, and a resist. In addition to molding materials and composite materials, they can also be used in fields such as paint materials and adhesives. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial. A semiconductor device has what was sealed with the curable resin composition of this invention.
  • DIP Device Inline Package
  • QFP Quad Flat Package
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • SOP Small Outline Package
  • TSOP Thin Small Outline Package
  • TQFP Seink Quad Flat Package
  • the curable resin composition of the present invention may be obtained by melting by heating, lowering the viscosity, and impregnating a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber. It can. Specific examples thereof include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, and inorganic fibers other than glass and poly glass.
  • Paraphenylene terephthalamide Kevlar (registered trademark), manufactured by DuPont Co., Ltd.
  • organic fibers such as polyparaphenylene benzoxazole, polyimide, and carbon fiber, but are particularly limited to these. Not.
  • a woven fabric, a nonwoven fabric, roving, a chopped strand mat etc. are mentioned.
  • a weaving method of the woven fabric a plain weave, a nanako weave, a twill weave and the like are known, and these can be appropriately selected and used according to the intended use and performance.
  • a woven fabric that has been subjected to fiber opening treatment or a glass woven fabric that has been surface treated with a silane coupling agent or the like is preferably used.
  • the thickness of the substrate is not particularly limited, but is preferably about 0.01 to 0.4 mm.
  • the above prepreg is cut into a desired shape, laminated with copper foil if necessary, and the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, it is possible to obtain an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material.
  • Example 1 In a flask equipped with a thermometer, condenser, and stirrer, 15.0 parts by mass of cyanuric chloride, 40.8 parts by mass of toluene, 4.1 parts by mass of dimethylformamide, 32.9 parts by mass of 2-allylphenol, 67 of potassium carbonate .6 parts by mass was added, and the internal temperature was raised to 100 ° C. The reaction was carried out at 100 ° C. for 6 hours. After standing to cool, 200 parts by mass of toluene was added, washed with water, and concentrated under reduced pressure to give an etherification reaction product of cyanuric chloride and 2-allylphenol represented by the following formula (4) ( AP-CC) 37.9 parts by mass (yield 98%) was obtained. The melting point of the obtained reaction product was 110 ° C.
  • Example 2 In a flask equipped with a thermometer, condenser, and stirrer, 18.4 parts by weight of cyanuric chloride, 50 parts by weight of toluene, 5.0 parts by weight of dimethylformamide, 40.3 parts by weight of 2- (1-propenyl) phenol, carbonic acid 82.9 parts by mass of potassium was added, and the internal temperature was raised to 100 ° C. The reaction was carried out at 100 ° C. for 6 hours, and after cooling, 200 parts by mass of toluene was added, washed with water, and concentrated under reduced pressure to give ether of cyanuric chloride represented by the following formula (5) and 2- (1-propenyl) phenol. Reaction product (PP-CC) 39.2 parts by mass (yield 82%) was obtained. The melting point of the obtained reaction product was 131 ° C.
  • Example 3 To a flask equipped with a thermometer, a condenser, and a stirrer, 100 parts by mass of acetone, 18.4 parts by mass of cyanuric chloride and 49.3 parts by mass of eugenol were added and stirring was started, and the internal temperature was raised to 30 ° C. 12.6 parts by mass of sodium hydroxide was added over 1.5 hours and reacted at 30 ° C. for 6 hours. Acetone was removed by concentration under reduced pressure, 100 g of toluene was added, washed with water, and concentrated under reduced pressure to obtain 47.6 etherification reaction product (Eu-CC) of cyanuric chloride and eugenol represented by the following formula (6). Part by mass (yield 84%) was obtained. The melting point of the obtained reaction product was 125 ° C.
  • Example 4 To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2-allylphenol, 117 parts by mass of dimethyl sulfoxide and 58.8 parts by mass of water were added, and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 26.3 parts by mass of p-xylylene dichloride was added over 1 hour and reacted at 70 ° C. for 2 hours.
  • Example 5 To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2- (1-propenyl) phenol, 117 parts by mass of dimethyl sulfoxide and 58.8 parts by mass of water were added and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 26.3 parts by mass of p-xylylene dichloride was added over 1 hour and reacted at 70 ° C. for 2 hours.
  • Example 6 A flask equipped with a thermometer, condenser, and stirrer was charged with 35.0 parts by mass of p-xylylene dichloride, 65.7 parts by mass of eugenol, 66.3 parts by mass of potassium carbonate, and 210 mL of dimethylformamide at room temperature for 6 hours. After the reaction, the temperature was raised to 70 ° C. and reacted for 6 hours. 500 parts by mass of water was added to precipitate a solid, and this solid was collected by filtration. The solid separated by filtration is washed with a large amount of water, washed with a large amount of methanol, and dried at 80 ° C.
  • Example 7 A flask equipped with a thermometer, condenser, and stirrer was charged with 35.0 parts by mass of p-xylylene dichloride, 65.7 parts by mass of isoeugenol, 66.3 parts by mass of potassium carbonate, and 210 mL of dimethylformamide at room temperature. After the time reaction, the temperature was raised to 70 ° C. and reacted for 6 hours. 500 parts by mass of water was added to precipitate a solid, and this solid was collected by filtration. The solid separated by filtration is washed with a large amount of water, washed with a large amount of methanol, and dried at 80 ° C.
  • Example 8 To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2-allylphenol, 230 parts by mass of dimethyl sulfoxide, and 58.8 parts by mass of water were added, and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 37.7 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours.
  • the precipitated crystals were separated by filtration, and 60.9 parts by mass of an etherification product (AP-BCMB) of p-bischloromethylenebiphenyl and 2-allylphenol represented by the following formula (11) (91% yield) )Met.
  • the melting point of the obtained reaction product was 105 ° C.
  • the measured 1 H-NMR chart is shown in FIG. 1 H-NMR (400 MHz, DMSO-d6); ⁇ (ppm) 3.4 (d, 4H), 5.01-5.09 (m, 4H), 5.18 (s, 4H), 5.99 (Tt, 2H), 6.91 (t, 2H), 7.05-7.25 (m, 6H), 7.65 (dd, 8H)
  • Example 9 To a flask equipped with a thermometer, a condenser, and a stirrer, 20.2 parts by mass of 2- (1-propenyl) phenol, 230 parts by mass of dimethyl sulfoxide, and 29.4 parts by mass of water were added, and stirring was started. Sodium hydroxide (12.3 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 18.8 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours.
  • Example 10 To a flask equipped with a thermometer, a condenser, and a stirrer, 24.6 parts by mass of eugenol, 250 parts by mass of dimethyl sulfoxide, and 29.4 parts by mass of water were added, and stirring was started. Sodium hydroxide (12.3 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 18.8 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours.
  • Examples 11 to 19, Comparative Example 1 The alkenyl group-containing compounds, maleimide resins, and radical polymerization initiators obtained in Examples 1, 2, 4, 5 and 9 were blended in the proportions (parts by weight) shown in Table 1, heated and melted and mixed in a metal container as they were. Poured into a mold and cured at 220 ° C. for 2 hours.
  • Comparative Example 1 an epoxy resin, a maleimide resin, and the like are blended in the proportions (parts by weight) shown in Table 1, kneaded with a mixing roll, converted into a tablet, a resin molded body is prepared by transfer molding, and further at 200 ° C. for 2 hours. Cured at 220 ° C. for 6 hours.
  • Table 1 The results of measuring the physical properties of the cured product thus obtained for the following items are shown in Table 1.
  • ⁇ Heat resistance test> Glass transition temperature: Temperature measured by a dynamic viscoelasticity tester and tan ⁇ is a maximum value.
  • BMI 4,4′-bismaleimide diphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • MIR Maleimide resin epoxy resin described in Example 4 of Japanese Unexamined Patent Publication No. 2009-001783: NC-3000-L (manufactured by Nippon Kayaku Co., Ltd.)
  • Phenolic resin GPH-65 (Nippon Kayaku Co., Ltd.)
  • 2E-4MZ 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • DCP Dicumyl peroxide (manufactured by Kayaku Akzo)
  • the alkenyl group-containing compound of the present invention comprises an insulating material for electrical and electronic parts (such as a highly reliable semiconductor encapsulating material), a laminated board (such as a printed wiring board, a BGA substrate, a build-up substrate), an adhesive (conductive). It is useful for applications such as adhesives, various composite materials including CFRP, and paints.
  • an insulating material for electrical and electronic parts such as a highly reliable semiconductor encapsulating material
  • a laminated board such as a printed wiring board, a BGA substrate, a build-up substrate
  • an adhesive conductive

Abstract

An alkenyl-group-containing compound represented by formula (1). (In formula (1), X represents any organic group; Y represents an alkenyl group, and when more than one Y is present, then the Y's may be the same or different; Z represents a hydrogen atom, a C1-15 hydrocarbon group, or a C1-15 alkoxy group, and when more than one Z is present, the Z's may be the same or different; l is a natural number of 1 to 6; and m and n are each an integer of 0 or larger and satisfy that m+n = 1 to 5, at least one of the l m's being 1 or larger.)

Description

アルケニル基含有化合物、硬化性樹脂組成物及びその硬化物Alkenyl group-containing compound, curable resin composition and cured product thereof
 本発明は、アルケニル基含有化合物、硬化性樹脂組成物及びその硬化物に関するものであり、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、プリント配線基板、ビルドアップ積層板等の電気・電子部品や、炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料に好適に使用される。 The present invention relates to an alkenyl group-containing compound, a curable resin composition, and a cured product thereof, a semiconductor element sealing material, a liquid crystal display element sealing material, an organic EL element sealing material, a printed wiring board, It is suitably used for electrical and electronic parts such as build-up laminates, and lightweight and high-strength structural composite materials such as carbon fiber reinforced plastic and glass fiber reinforced plastic.
 近年、電気・電子部品を搭載する積層板は、その利用分野の拡大により、要求特性が広範かつ高度化している。従来の半導体チップは金属製のリードフレームに搭載されることが主流であったが、中央処理装置(以下、CPUと表す。)などの処理能力の高い半導体チップは、高分子材料で作られる積層板に搭載されることが多くなってきている。CPU等の素子の処理速度の高速化が進み、クロック周波数が高くなるにつれ、信号伝搬遅延や伝送損失が問題となっていることから、積層板は、低誘電率化、低誘電正接化が求められている。また、素子の処理速度の高速化に伴い、チップの発熱が大きくなるため、耐熱性の向上も同時に求められている。 In recent years, the required characteristics of laminated boards carrying electrical / electronic components have been broadened and advanced due to the expansion of their fields of use. Conventional semiconductor chips are mainly mounted on metal lead frames, but semiconductor chips with high processing capability such as a central processing unit (hereinafter referred to as CPU) are laminated layers made of a polymer material. Increasingly mounted on boards. As the processing speed of elements such as CPUs has increased and the clock frequency has increased, signal propagation delay and transmission loss have become a problem, so laminated boards are required to have low dielectric constants and low dielectric loss tangents. It has been. Further, as the processing speed of the device increases, the heat generation of the chip increases, so that improvement in heat resistance is also required at the same time.
 特にスマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)の小型化、薄型化および高密度化に伴い、PKG基板の薄型化が求められているが、PKG基板が薄くなると、剛性が低下するため、PKGをマザーボード(PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために、半田実装温度以上の高Tg(例えば、260℃以上、近年では288℃以上)のPKG基板材料が求められている。 In particular, as a semiconductor package (hereinafter referred to as PKG) used for smartphones is reduced in size, thickness, and density, there is a demand for a thin PKG substrate. Therefore, the heat generated when soldering the PKG to the mother board (PCB) causes problems such as a large warp. In order to reduce this, a PKG substrate material having a high Tg (for example, 260 ° C. or higher, and recently 288 ° C. or higher) higher than the solder mounting temperature is required.
 また、一方で近年の大容量・高速通信化に伴い、情報通信機器で扱う電気信号の周波数は年々高くなる傾向にあるが、信号周波数が高くなるほど、電気信号が回路中で熱に変換されるため、伝送損失が増加し、信号を効率よく伝送することが難しくなる。これを低減するために、誘電正接が低い基板材料も求められている。 On the other hand, the frequency of electrical signals handled by information communication equipment tends to increase year by year with the recent increase in capacity and speed, but the higher the signal frequency, the more electrical signals are converted into heat in the circuit. Therefore, transmission loss increases and it becomes difficult to transmit signals efficiently. In order to reduce this, a substrate material having a low dielectric loss tangent is also required.
 特に現在開発が加速している第5世代通信システム「5G」では、スマートフォンをはじめとした様々な機器のデータ通信において、さらなる大容量化と高速通信が進むことが予想されている。低誘電正接材料のニーズがますます高まってきており、少なくとも1GHzで0.005以下の誘電正接が求められており、この耐熱性、誘電特性(誘電正接)を達成できる材料が求められている。更に、自動車分野においては電子化が進み、エンジン駆動部付近に精密電子機器が配置されることもあるため、より高水準での耐熱・耐湿性が求められる。加えて、電車やエアコン等にはSiC半導体が使用され始めており、半導体素子の封止材には極めて高い耐熱性が要求されるため、従来のエポキシ樹脂封止材では対応できなくなっている。 In particular, in the 5G communication system “5G”, which is currently under development, it is expected that further increase in capacity and high-speed communication will progress in data communication of various devices including smartphones. The need for a low dielectric loss tangent material is increasing, and a dielectric loss tangent of 0.005 or less at 1 GHz is required. A material capable of achieving this heat resistance and dielectric characteristics (dielectric loss tangent) is required. Furthermore, in the automobile field, since digitization has progressed and precision electronic devices may be disposed near the engine drive unit, higher levels of heat resistance and moisture resistance are required. In addition, SiC semiconductors are beginning to be used in trains, air conditioners, and the like, and extremely high heat resistance is required for the sealing material of semiconductor elements, so that conventional epoxy resin sealing materials cannot be used.
 しかしながら、特許文献1は全てプロペニル基で置換されたフェノール樹脂を用いているため、電気特性が不十分である。また特許文献2では全てアリル基で置換されたフェノール樹脂を用いているため反応性に乏しく、耐熱性の観点から性能として満足できるものとは言い難く、高い耐熱性と電気特性を両立できる材料や硬化系の開発が望まれている。 However, since all of Patent Document 1 uses a phenol resin substituted with a propenyl group, the electrical characteristics are insufficient. In addition, in Patent Document 2, since all the phenolic resin substituted with an allyl group is used, the reactivity is poor, and it is difficult to say that the performance is satisfactory from the viewpoint of heat resistance. Development of a curing system is desired.
日本国特開平04-359911号公報Japanese Laid-Open Patent Publication No. 04-359911 国際公開2016/002704号International Publication No. 2016/002704
 本発明は、このような状況を鑑みてなされたものであり、硬化させた場合に優れた耐熱性と電気特性を示すアルケニル基含有化合物及び硬化性樹脂組成物、並びにその硬化物を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an alkenyl group-containing compound and a curable resin composition that exhibit excellent heat resistance and electrical properties when cured, and a cured product thereof. With the goal.
 本発明者等は上記課題を解決するため誠心誠意検討した結果、特定のアルケニル基含有化合物を用いることにより、その硬化物が耐熱性、電気特性に優れることを見出し、本発明を完成させるに至った。
 すなわち本発明は、以下の[1]~[6]に関する。
[1]
 下記式(1)で表されるアルケニル基含有化合物。
As a result of sincere and sincere studies to solve the above problems, the present inventors have found that the cured product is excellent in heat resistance and electrical characteristics by using a specific alkenyl group-containing compound, and have completed the present invention. It was.
That is, the present invention relates to the following [1] to [6].
[1]
An alkenyl group-containing compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Xは任意の有機基を表す。Yはアルケニル基を表し、Yが複数存在する場合、それらは同一であっても異なっていてもよい。Zは独立して水素原子、炭素数1~15の炭化水素基、または炭素数1~15のアルコキシ基を表し、Zが複数存在する場合、それらは同一であっても異なっていてもよい。lは1~6の自然数を表す。mおよびnはそれぞれ0以上の整数であり、m+n=1~5を満たし、l個あるmのうち少なくとも1つは1以上である。)
[2]
 前記式(1)中のXが、下記式(2-1)~(2-4)で表される構造のうちいずれか1種を含有する、前項[1]に記載のアルケニル基含有化合物。
(In formula (1), X represents an arbitrary organic group. Y represents an alkenyl group, and when a plurality of Y are present, they may be the same or different. Z is independently a hydrogen atom. Represents a hydrocarbon group having 1 to 15 carbon atoms or an alkoxy group having 1 to 15 carbon atoms, and when there are a plurality of Z, they may be the same or different, and l is a natural number of 1 to 6 M and n are each an integer of 0 or more, satisfying m + n = 1 to 5, and at least one of l m is 1 or more.)
[2]
The alkenyl group-containing compound according to [1], wherein X in the formula (1) contains any one of structures represented by the following formulas (2-1) to (2-4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2-1)~(2-4)中、*は式(1)の酸素原子への結合を表す。)
[3]
 前記式(1)中のXが、前記式(2-2)で表される、前項[2]に記載のアルケニル基含有化合物。
[4]
 前項[1]~[3]のいずれか一項に記載のアルケニル基含有化合物と、マレイミド樹脂とを含有する、硬化性樹脂組成物。
[5]
 さらに、ラジカル重合開始剤を含有する、前項[4]に記載の硬化性樹脂組成物。
[6]
 前項[4]又は[5]に記載の硬化性樹脂組成物を硬化させた、硬化物。
(In formulas (2-1) to (2-4), * represents a bond to the oxygen atom of formula (1).)
[3]
The alkenyl group-containing compound according to [2], wherein X in the formula (1) is represented by the formula (2-2).
[4]
A curable resin composition comprising the alkenyl group-containing compound according to any one of [1] to [3] above and a maleimide resin.
[5]
Furthermore, the curable resin composition of the preceding item [4] containing a radical polymerization initiator.
[6]
Hardened | cured material which hardened the curable resin composition of the preceding clause [4] or [5].
 本発明のアルケニル基含有化合物を用いた硬化性樹脂組成物は優れた硬化性を有し、その硬化物は電気特性、耐熱性に優れる。また、本発明のアルケニル基含有化合物は、マレイミド基との反応性が高く、フェノール性水酸基に起因する電気特性の低下はほとんどない。そのため、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ボールグリッドアレイ(BGA)基板、ビルドアップ基板など)、液晶封止材、有機EL封止材、接着剤(導電性接着剤等)や炭素繊維強化プラスチック(CFRP)を始めとする各種複合材料、塗料等の用途に用いることができる。 The curable resin composition using the alkenyl group-containing compound of the present invention has excellent curability, and the cured product has excellent electrical characteristics and heat resistance. In addition, the alkenyl group-containing compound of the present invention has high reactivity with the maleimide group, and there is almost no decrease in electrical characteristics due to the phenolic hydroxyl group. Therefore, insulating materials for electrical and electronic parts (such as highly reliable semiconductor sealing materials) and laminates (printed wiring boards, ball grid array (BGA) substrates, build-up substrates, etc.), liquid crystal sealing materials, organic EL sealing materials It can be used for various composite materials such as adhesives (conductive adhesives, etc.) and carbon fiber reinforced plastics (CFRP), paints and the like.
本発明の実施例4の化合物のH-NMRチャートである。2 is a 1 H-NMR chart of the compound of Example 4 of the present invention. 本発明の実施例5の化合物のH-NMRチャートである。2 is a 1 H-NMR chart of the compound of Example 5 of the present invention. 本発明の実施例6の化合物のH-NMRチャートである。2 is a 1 H-NMR chart of the compound of Example 6 of the present invention. 本発明の実施例8の化合物のH-NMRチャートである。It is a 1 H-NMR chart of the compound of Example 8 of the present invention. 本発明の実施例9の化合物のH-NMRチャートである。2 is a 1 H-NMR chart of the compound of Example 9 of the present invention.
 以下、本発明の硬化性樹脂組成物について詳細に説明する。
 本発明に使用するアルケニル基含有化合物は、下記式(1)で表される。
 なお、本明細書において、「~」は上下限を含む範囲を表す(例えば、1~3としたときは1以上3以下を表す)。
Hereinafter, the curable resin composition of the present invention will be described in detail.
The alkenyl group-containing compound used in the present invention is represented by the following formula (1).
In the present specification, “to” represents a range including upper and lower limits (for example, 1 to 3 represents 1 or more and 3 or less).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Yはアルケニル基を表し、Yが複数存在する場合、それらは同一であっても異なっていてもよい。Yのアルケニル基としては、特に限定はされないが、硬化性及び電気特性の観点から、炭素数1~5のアルケニル基が好ましく、炭素数1~3のアルケニル基がより好ましく、アリル基、メタリル基、1-プロペニル基、又は2-メチルプロペニル基がさらに好ましく、アリル基または1-プロペニル基が特に好ましい。
 Zは水素原子、炭素数1~15の炭化水素基、または炭素数1~15のアルコキシ基を表し、Zが複数存在する場合、それらは同一であっても異なっていてもよい。Zは、電気特性の観点から、水素原子、炭素数1~10の炭化水素基、又は炭素数1~10のアルコキシ基が好ましく、より好ましくは水素原子、炭素数1~6の炭化水素基、又は炭素数1~6のアルコキシ基である。
 lは1~6の自然数を表す。mおよびnはそれぞれ0以上の整数であり、m+n=1~5を満たし、l個あるmのうち少なくとも1つは1以上である。
In formula (1), Y represents an alkenyl group, and when a plurality of Y are present, they may be the same or different. The alkenyl group for Y is not particularly limited, but is preferably an alkenyl group having 1 to 5 carbon atoms, more preferably an alkenyl group having 1 to 3 carbon atoms, and an allyl group or a methallyl group from the viewpoint of curability and electrical properties. 1-propenyl group or 2-methylpropenyl group is more preferable, and an allyl group or 1-propenyl group is particularly preferable.
Z represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms, or an alkoxy group having 1 to 15 carbon atoms, and when a plurality of Z are present, they may be the same or different. Z is preferably a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, more preferably a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, from the viewpoint of electrical characteristics. Or an alkoxy group having 1 to 6 carbon atoms.
l represents a natural number of 1 to 6. m and n are each an integer of 0 or more, satisfying m + n = 1 to 5, and at least one of 1 m is 1 or more.
 式(1)中、Xは任意の有機基を表す。Xは有機基であれば特に限定されないが、ビフェニレン構造、フェニレン構造、S-トリアジン構造、ジフェニルスルホン構造を有する化合物が好ましく、下記式(2-1)~式(2-4)で表される構造で例示される。 In formula (1), X represents an arbitrary organic group. X is not particularly limited as long as it is an organic group, but is preferably a compound having a biphenylene structure, a phenylene structure, an S-triazine structure, or a diphenylsulfone structure, and is represented by the following formulas (2-1) to (2-4). Illustrated in structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2-1)~式(2-4)中、*は式(1)の酸素原子への結合を表す。
 式(2-1)~式(2-4)中、*を2つ有する構造のとき上記式(1)のlは2となり、*を3つ有する構造のとき上記式(1)のlは3となる。
In the formulas (2-1) to (2-4), * represents a bond to the oxygen atom in the formula (1).
In the formulas (2-1) to (2-4), l in the above formula (1) is 2 when the structure has two *, and l in the above formula (1) has a structure having three *. 3
 前記式(1)中のXとして、更に好ましい構造は、式(2-1)~式(2-3)で表される構造であり、式(2-2)または式(2-3)で表される構造であるときが特に好ましい。 A more preferable structure as X in the formula (1) is a structure represented by the formula (2-1) to the formula (2-3). In the formula (2-2) or the formula (2-3), Particularly preferred is the structure represented.
 本発明のアルケニル基含有化合物は、反応性基としてフェノール性水酸基を持たない。そのため、フェノール性水酸基に起因する電気特性の悪化がなく、ラジカル重合性にも優れるため高い耐熱性を示す。 The alkenyl group-containing compound of the present invention does not have a phenolic hydroxyl group as a reactive group. Therefore, there is no deterioration in electrical characteristics due to the phenolic hydroxyl group, and high heat resistance is exhibited because of excellent radical polymerizability.
 次に、本発明に使用するアルケニル基含有化合物の製造方法について説明する。
 本発明に使用するアルケニル基含有化合物は、例えば、下記式(3)で表されるフェノール性水酸基を有する化合物、および任意のハロゲン化合物を原料として製造できる。
Next, the manufacturing method of the alkenyl group containing compound used for this invention is demonstrated.
The alkenyl group-containing compound used in the present invention can be produced using, for example, a compound having a phenolic hydroxyl group represented by the following formula (3) and any halogen compound as a raw material.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中、Y、Z、m、nは式(1)と同様である。
 式(3)で表されるフェノール性水酸基を有する化合物としては、例えば、2-アリルフェノール、2-メタリルフェノール、2-(2-プロペニル)フェノール、2-(1-プロペニル)フェノール、オイゲノール、イソオイゲノール等が挙げられるが、これに限定されない。
In formula (3), Y, Z, m, and n are the same as in formula (1).
Examples of the compound having a phenolic hydroxyl group represented by the formula (3) include 2-allylphenol, 2-methallylphenol, 2- (2-propenyl) phenol, 2- (1-propenyl) phenol, eugenol, Examples thereof include, but are not limited to, isoeugenol.
 任意のハロゲン化合物としては公知のものであれば如何なるものを用いても良い。好ましくは、前記式(2-1)~式(2-4)で表される構造を分子中に含有するものが挙げられ、例えば、о-キシリレンジフルオライド、m-キシリレンジフルオライド、p-キシリレンジフルオライド、о-キシリレンジクロリド、m-キシリレンジクロリド、p-キシリレンジクロリド、о-キシリレンジブロミド、m-キシリレンジブロミド、p-キシリレンジブロミド、о-キシリレンジアイオダイド、m-キシリレンジアイオダイド、p-キシリレンジアイオダイド、4,4’-ビスフルオロメチレンビフェニル、4,4’-ビスクロロメチレンビフェニル、4,4’-ビスブロモメチレンビフェニル、4,4’-ビスヨードメチレンビフェニル、2,4’-ビスフルオロメチレンビフェニル、2,4’-ビスクロロメチレンビフェニル、2,4’-ビスブロモメチレンビフェニル、2,4’-ビスヨードメチレンビフェニル、2,2’-ビスフルオロメチレンビフェニル、2,2’-ビスクロロメチレンビフェニル、2,2’-ビスブロモメチレンビフェニル、2,2’-ビスヨードメチレンビフェニルが挙げられ、合成時の原料の反応性の観点から、クロライド系化合物、ブロマイド系化合物、アイオダイド系化合物が好ましく、より好ましくはクロライド系化合物、ブロマイド系化合物が挙げられる。 Any known halogen compound may be used as long as it is a known one. Preferred are those containing in the molecule the structures represented by the above formulas (2-1) to (2-4), such as о-xylylene difluoride, m-xylylene difluoride, p -Xylylene difluoride, о-xylylene dichloride, m-xylylene dichloride, p-xylylene dichloride, о-xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, о-xylylene diiodide, m -Xylylene diiodide, p-xylylene diiodide, 4,4'-bisfluoromethylene biphenyl, 4,4'-bischloromethylene biphenyl, 4,4'-bisbromomethylene biphenyl, 4,4'-bisiodide Methylene biphenyl, 2,4'-bisfluoromethylene biphenyl, 2,4'-bischloromethylene bi Enyl, 2,4′-bisbromomethylene biphenyl, 2,4′-bisiodomethylene biphenyl, 2,2′-bisfluoromethylene biphenyl, 2,2′-bischloromethylene biphenyl, 2,2′-bisbromomethylene Biphenyl and 2,2′-bisiodomethylene biphenyl are mentioned, and from the viewpoint of the reactivity of the raw materials at the time of synthesis, chloride compounds, bromide compounds and iodide compounds are preferred, and chloride compounds and bromide compounds are more preferred. Is mentioned.
 また、上記以外の任意のハロゲン化合物としては、2,2’-ジフルオロジフェニルスルホン、2,3’-ジフルオロジフェニルスルホン、2,4’-ジフルオロジフェニルスルホン、3,3’-ジフルオロジフェニルスルホン、3,4’-ジフルオロジフェニルスルホン、4,4’-ジフルオロジフェニルスルホン、2,2’-ジクロロジフェニルスルホン、2,3’-ジクロロジフェニルスルホン、2,4’-ジクロロジフェニルスルホン、3,3’-ジクロロジフェニルスルホン、3,4’-ジクロロジフェニルスルホン、4,4’-ジクロロジフェニルスルホン、2,2’-ジブロモジフェニルスルホン、2,3’-ジブロモジフェニルスルホン、2,4’-ジブロモジフェニルスルホン、3,3’-ジブロモジフェニルスルホン、3,4’-ジブロモジフェニルスルホン、4,4’-ジブロモジフェニルスルホン、2,2’-ジヨードジフェニルスルホン、2,3’-ジヨードジフェニルスルホン、2,4’-ジヨードジフェニルスルホン、3,3’-ジヨードジフェニルスルホン、3,4’-ジヨードジフェニルスルホン、4,4’-ジヨードジフェニルスルホン、シアヌルフルオライド、シアヌルクロリド、シアヌルブロミド、シアヌルアイオダイド等が挙げられ、合成時の原料の反応性と原料の入手しやすさの観点から、フルオライド系化合物、クロライド系化合物、ブロマイド系化合物が好ましく、より好ましくはフルオライド系化合物、クロライド系化合物が挙げられるがこれに限定されるものではない。 Other optional halogen compounds other than the above include 2,2′-difluorodiphenyl sulfone, 2,3′-difluorodiphenyl sulfone, 2,4′-difluorodiphenyl sulfone, 3,3′-difluorodiphenyl sulfone, 3, 4'-difluorodiphenyl sulfone, 4,4'-difluorodiphenyl sulfone, 2,2'-dichlorodiphenyl sulfone, 2,3'-dichlorodiphenyl sulfone, 2,4'-dichlorodiphenyl sulfone, 3,3'-dichlorodiphenyl Sulfone, 3,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone, 2,2′-dibromodiphenyl sulfone, 2,3′-dibromodiphenyl sulfone, 2,4′-dibromodiphenyl sulfone, 3,3 '-Dibromodiphenylsulfone 3,4′-dibromodiphenyl sulfone, 4,4′-dibromodiphenyl sulfone, 2,2′-diiododiphenyl sulfone, 2,3′-diiododiphenyl sulfone, 2,4′-diiododiphenyl sulfone, 3'-diiododiphenylsulfone, 3,4'-diiododiphenylsulfone, 4,4'-diiododiphenylsulfone, cyanur fluoride, cyanuric chloride, cyanuric bromide, cyanuric iodide, etc. From the standpoint of the reactivity and availability of raw materials, preferred are fluoride compounds, chloride compounds and bromide compounds, and more preferred are fluoride compounds and chloride compounds, but not limited thereto. .
 前記式(3)で表されるフェノール性水酸基を有する化合物、および任意のハロゲン化合物との反応は公知の方法で行うことができ、一般的にアルカリ金属水酸化物等の塩基を用いてハロゲン化合物とフェノール性水酸基を有する化合物を反応させてエーテル化する。
 この際、メタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン等の極性の高い溶剤を使用することが好ましい。極性溶剤の使用量は通常、原料(フェノール性水酸基を有する化合物と任意のハロゲン化合物)の総量100質量部に対して50~400質量部、好ましくは70~300質量部である。またこれらの高極性溶剤は単独で用いても併用しても良く、またトルエン、キシレンなどの極性の低い溶剤を併用しても良い。低極性溶剤の使用量は通常、原料(フェノール性水酸基を有する化合物と任意のハロゲン化合物)の総量100質量部に対して50~400質量部、好ましくは70~300質量部である。
 より詳細には、フェノール性水酸基含有化合物を前記のジメチルホルムアミドやジメチルスルホキシドなどに溶解させた後、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を添加し、30~250℃で任意のハロゲン化合物を1~10時間かけて添加し、その後30~250℃で1~30時間反応させる。反応終了後、トルエン、メチルイソブチルケトンなどを加え、副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下でトルエン、メチルイソブチルケトン等の溶媒を留去することにより、本発明に使用されるアルケニル基含有化合物を得ることができる。
The reaction with the compound having a phenolic hydroxyl group represented by the formula (3) and any halogen compound can be carried out by a known method, and generally a halogen compound using a base such as an alkali metal hydroxide. And a compound having a phenolic hydroxyl group are reacted to be etherified.
At this time, a highly polar solvent such as methanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone is used. It is preferable to use it. The amount of the polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the total amount of the raw materials (the compound having a phenolic hydroxyl group and any halogen compound). These high-polarity solvents may be used alone or in combination, and low polarity solvents such as toluene and xylene may be used in combination. The amount of the low-polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the total amount of raw materials (compound having a phenolic hydroxyl group and any halogen compound).
More specifically, after the phenolic hydroxyl group-containing compound is dissolved in the above dimethylformamide, dimethylsulfoxide, or the like, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added, and any desired compound is added at 30 to 250 ° C. The halogen compound is added over 1 to 10 hours, and then reacted at 30 to 250 ° C. for 1 to 30 hours. After completion of the reaction, toluene, methyl isobutyl ketone, etc. are added, and the by-produced salt is removed by filtration, washing with water, etc., and further, solvents such as toluene, methyl isobutyl ketone, etc. are distilled off under heating and reduced pressure. Can be obtained.
 本発明に使用するアルケニル基含有化合物は、不純物として合成に使用した原料を含有することができる。不純物を全く含有しない場合、溶解性が低下する恐れがある。一方で、不純物を多量に含有している場合では、硬化反応時に残存原料に揮発が起き、臭気や作業委環境への悪影響が懸念される。不純物としては、合成に使用する原料および溶剤等が挙げられるが、これらに限定されるものではない。例えば、前記式(3)で表されるフェノール性水酸基を有する化合物、および合成に使用した任意のハロゲン化合物等が挙げられる。不純物の含有量としては0.0001~5%が好ましく、より好ましくは0.0001~3%、さらに好ましくは0.0001~1%である。 The alkenyl group-containing compound used in the present invention can contain the raw materials used in the synthesis as impurities. If no impurities are contained, the solubility may be reduced. On the other hand, in the case where a large amount of impurities is contained, volatilization occurs in the remaining raw material during the curing reaction, and there is a concern about bad effects on odor and work commission environment. Examples of impurities include, but are not limited to, raw materials and solvents used for synthesis. For example, the compound which has the phenolic hydroxyl group represented by the said Formula (3), the arbitrary halogen compounds used for the synthesis | combination, etc. are mentioned. The impurity content is preferably 0.0001 to 5%, more preferably 0.0001 to 3%, and still more preferably 0.0001 to 1%.
 本発明の硬化性樹脂組成物はマレイミド樹脂を含有してもよい。
 マレイミド樹脂としては従来公知のマレイミド樹脂を使用することができる。マレイミド樹脂の具体例としては、4,4’-ビスマレイミドジフェニルメタン、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられる。溶剤溶解性の観点から、ポリフェニルメタンマレイミドや、日本国特開2009-001783号公報、日本国特開平01-294662号公報に記載されているマレイミド樹脂のような分子量分布を有するマレイミド樹脂が好ましい。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド樹脂の配合量は、前記式(1)で表されるアルケニル基含有化合物に対して、質量比で好ましくは0.5~5倍、より好ましくは1~3倍の範囲である。
 また、日本国特開2009-001783号公報、日本国特開平01-294662号公報に記載されているマレイミド樹脂は、低吸湿性、難燃性、誘電特性に優れているため特に好ましい。
The curable resin composition of the present invention may contain a maleimide resin.
A conventionally known maleimide resin can be used as the maleimide resin. Specific examples of the maleimide resin include 4,4′-bismaleimide diphenylmethane, polyphenylmethane maleimide, m-phenylenebismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, and the like. From the viewpoint of solvent solubility, polyphenylmethane maleimide and maleimide resins having a molecular weight distribution such as maleimide resins described in Japanese Patent Application Laid-Open No. 2009-001783 and Japanese Patent Application Laid-Open No. 01-294661 are preferable. . These may be used alone or in combination of two or more. The compounding amount of the maleimide resin is preferably in the range of 0.5 to 5 times, more preferably 1 to 3 times by mass ratio with respect to the alkenyl group-containing compound represented by the formula (1).
In addition, maleimide resins described in Japanese Patent Application Laid-Open No. 2009-001783 and Japanese Patent Application Laid-Open No. 01-294661 are particularly preferable because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
 本発明の硬化性樹脂組成物において、アルケニル基含有化合物のアルケニル基同士や、アルケニル基とマレイミド基を反応させるために、ラジカル重合開始剤を使用することが好ましい。用い得るラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン等のジアルキルパーオキサイド類、t-ブチルパーオキシベンゾエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物の公知の硬化促進剤が挙げられるが、これらに特に限定されるものではない。ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。ラジカル重合開始剤の添加量としては、硬化性樹脂組成物の質量100質量部に対して0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。用いるラジカル重合開始剤の量が多いと、重合反応時に分子量が十分に伸長しない恐れがある。 In the curable resin composition of the present invention, it is preferable to use a radical polymerization initiator to react alkenyl groups of the alkenyl group-containing compound with each other or between the alkenyl group and the maleimide group. Examples of the radical polymerization initiator that can be used include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis- (t-butylperoxy). Dialkyl peroxides such as isopropyl) -benzene, peroxyketals such as t-butylperoxybenzoate, 1,1-di-t-butylperoxycyclohexane, α-cumylperoxyneodecanoate, t-butyl Peroxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoe , Alkyl peresters such as t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amylperoxybenzoate, di Peroxy such as -2-ethylhexyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butylperoxyisopropyl carbonate, 1,6-bis (t-butylperoxycarbonyloxy) hexane Organic peroxides such as carbonates, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxy octoate, lauroyl peroxide, azobisisobutyronitrile, 4,4′-azobis (4-cyano Valeric acid), 2,2′-azobis (2,4- Known curing accelerators for azo compounds such as (dimethylvaleronitrile) can be mentioned, but are not particularly limited to these. Ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, percarbonates, and the like are preferable, and dialkyl peroxides are more preferable. The addition amount of the radical polymerization initiator is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is large, the molecular weight may not be sufficiently extended during the polymerization reaction.
 本発明の硬化性樹脂組成物においてはエポキシ樹脂を含有させても良い。エポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができる。エポキシ樹脂の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物及びアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 また、フェノール類と、ビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているため、エポキシ樹脂として特に好ましい。
The curable resin composition of the present invention may contain an epoxy resin. As the epoxy resin, any conventionally known epoxy resin can be used. Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes. And glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate Examples of the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
Moreover, an epoxy resin obtained from a phenol aralkyl resin obtained by a condensation reaction of a phenol and a bishalogenomethyl aralkyl derivative or an aralkyl alcohol derivative as a raw material and having a dehydrochlorination reaction with epichlorohydrin has low moisture absorption, difficulty. Since it is excellent in flammability and dielectric properties, it is particularly preferable as an epoxy resin.
 本発明の硬化性樹脂組成物は、エポキシ樹脂を含有する場合、必要に応じて様々なエポキシ樹脂硬化剤やエポキシ樹脂硬化用の触媒(硬化促進剤)を配合することができる。
 エポキシ樹脂硬化剤としては、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物、活性エステル樹脂などが使用できる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類及びこれらの変性物、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体などが挙げられる。
 硬化剤として活性エステル樹脂を使用する場合は、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。当該活性エステル系硬化剤は、カルボン酸化合物及びチオカルボン酸化合物の少なくともいずれかの化合物と、ヒドロキシ化合物及びチオール化合物の少なくともいずれかの化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及びナフトール化合物の少なくともいずれかの化合物とから得られる活性エステル系硬化剤が好ましい。
 エポキシ樹脂硬化剤の使用量は、エポキシ基(またはグリシジル基)1当量に対して0.5~1.5当量が好ましく、0.6~1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり、良好な硬化物性が得られない恐れがある。
When the curable resin composition of the present invention contains an epoxy resin, various epoxy resin curing agents and epoxy resin curing catalysts (curing accelerators) can be blended as necessary.
As the epoxy resin curing agent, amine compounds, acid anhydride compounds, amide compounds, phenol compounds, active ester resins, and the like can be used. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols, phenols (phenol, alkyl substituted) Polymerization of phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) with various aldehydes, phenols and various diene compounds , Polycondensates of phenols with aromatic dimethylol, biphenols and modified products thereof, imidazo - Le, BF 3 - amine complex, guanidine derivatives.
When an active ester resin is used as a curing agent, two ester groups with high reaction activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compound esters in one molecule. Compounds having the above are preferred. The active ester curing agent is preferably obtained by a condensation reaction between at least one of a carboxylic acid compound and a thiocarboxylic acid compound and at least one of a hydroxy compound and a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing obtained from a carboxylic acid compound and at least one of a phenol compound and a naphthol compound. Agents are preferred.
The amount of the epoxy resin curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents per 1 equivalent of epoxy group (or glycidyl group). When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete, and good cured properties may not be obtained.
 上記エポキシ樹脂硬化用の触媒(硬化促進剤)としては、例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類などが挙げられる。硬化用の触媒の配合量は、硬化性樹脂組成物の合計100質量部に対して、好ましくは10質量部以下、より好ましくは5質量部以下の範囲である Examples of the epoxy resin curing catalyst (curing accelerator) include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl- Imidazoles such as 2-ethyl-4-methylimidazole, triethylamine, triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) ) Amines such as phenol and benzyldimethylamine, and phosphines such as triphenylphosphine, tributylphosphine and trioctylphosphine. The compounding amount of the curing catalyst is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass in total of the curable resin composition.
 本発明の硬化性樹脂組成物においてはシアネートエステル樹脂を含有させても良い。本発明の硬化性樹脂組成物に配合し得るシアネートエステル化合物としては、従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 シアネートエステル化合物の具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’ービス(4ーシアナートフェニル)プロパン、ビス(4ーシアナートフェニル)メタン、ビス(3,5ージメチルー4ーシアナートフェニル)メタン、2,2’ービス(3,5-ジメチルー4ーシアナートフェニル)プロパン、2,2’ービス(4ーシアナートフェニル)エタン、2,2’ービス(4ーシアナートフェニル)ヘキサフロロプロパン、ビス(4ーシアナートフェニル)スルホン、ビス(4ーシアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるが、これらに限定されるものではない。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているため、シアネートエステル化合物として特に好ましい。
The curable resin composition of the present invention may contain a cyanate ester resin. A conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix | blended with the curable resin composition of this invention. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensates of bisphenols and various aldehydes. Examples include cyanate ester compounds obtained by reacting a condensate with a cyanogen halide, but are not limited thereto. These may be used alone or in combination of two or more.
Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, and the like.
Specific examples of cyanate ester compounds include dicyanate benzene, tricyanate benzene, dicyanate naphthalene, dicyanate biphenyl, 2, 2'-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) Methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2'-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2'-bis (4-cyanatophenyl) ethane, 2 , 2'-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolac cyanate, phenol-dicyclopentadiene co-condensate Can be converted to cyanate group. It is not limited to that.
In addition, cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because of their low hygroscopicity, flame retardancy, and dielectric properties.
 本発明の硬化性樹脂組成物がシアネート樹脂を含む場合、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を本発明の硬化性樹脂組成物に含有させることもできる。触媒は、硬化性樹脂組成物の合計質量100質量部に対して、通常0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用する。 In the case where the curable resin composition of the present invention contains a cyanate resin, zinc naphthenate, cobalt naphthenate, copper naphthenate, naphthenic acid are used to form a sym-triazine ring by trimerizing cyanate groups as necessary. Catalysts such as lead, zinc octylate, tin octylate, lead acetylacetonate, and dibutyltin maleate can also be included in the curable resin composition of the present invention. The catalyst is generally used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, based on 100 parts by weight of the total weight of the curable resin composition.
 さらに、本発明の硬化性樹脂組成物には、必要に応じて溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材を添加することができる。また、特に半導体封止用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は、硬化性樹脂組成物中、通常80~92質量%、好ましくは83~90質量%の範囲である。 Further, the curable resin composition of the present invention includes fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia as necessary. Add powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, or inorganic fillers in which these are spherical or crushed. Can do. In particular, when obtaining a curable resin composition for semiconductor encapsulation, the amount of the inorganic filler used is usually in the range of 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. It is.
 本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100質量部に対して、好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。 In the curable resin composition of the present invention, known additives can be blended as necessary. Specific examples of additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, silane coupling agents, and the like. Coloring agents such as surface treatment agents, release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used. The amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less, with respect to 100 parts by mass of the curable resin composition.
 本発明の硬化性樹脂組成物は、有機溶剤を添加してワニス状の組成物(以下、単にワニスという。)とすることができる。溶剤添加により硬化性樹脂組成物の調製時における粘度が下がり、ハンドリング性が向上するとともに、ガラスクロス等の基材への含浸性がより向上する傾向にある。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。また、積層板を作成する際は、使用する溶剤の沸点が高すぎると残溶剤として残ってしまう可能性がある。使用する溶剤の沸点としては、200℃以下が好ましく、より好ましくは180℃以下である。溶剤は、得られたワニス中の溶剤を除く固形分濃度が、通常10~80質量%、好ましくは20~70質量%となる範囲で使用する。 The curable resin composition of the present invention can be made into a varnish-like composition (hereinafter simply referred to as varnish) by adding an organic solvent. By adding a solvent, the viscosity at the time of preparation of the curable resin composition is lowered, the handling property is improved, and the impregnation property to a substrate such as a glass cloth tends to be further improved. Examples of the solvent used include amide solvents such as γ-butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned. Moreover, when producing a laminated board, when the boiling point of the solvent to be used is too high, it may remain as a residual solvent. As a boiling point of the solvent to be used, 200 degrees C or less is preferable, More preferably, it is 180 degrees C or less. The solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by mass, preferably 20 to 70% by mass.
 本発明の硬化性樹脂組成物の硬化反応として、不飽和二重結合と反応しうる公知の反応全てを適応することができる。例えば、ラジカル重合、ene反応、Diels-Alder反応などが挙げられる。これらの反応を用いて硬化を行った場合、エポキシ基の開環反応を利用する硬化反応とは異なり、硬化過程において極性基が発生しないため、耐熱性の向上に伴う吸水性や電気特性の悪化が少なくて済む。
 また、本発明の硬化性樹脂組成物には、任意のアルケニル基含有化合物を組成物中に含有することができる。硬化時には、本発明記載のアルケニル化合物と任意のアルケニル基含有化合物との組み合わせによるラジカル重合を利用することができる。任意のアルケニル基としては、置換もしくは無置換の直線状、分岐状または環状のアルケニル基が挙げられ、公知のものであれば特に限定されないが、好ましい具体例としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、エイコセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロノネニル基、シクロデセニル基、シクロウンデセニル基、シクロドデセニル基、シクロトリデセニル基、シクロテトラデセニル基、シクロペンタデセニル基、シクロヘキサデセニル基、シクロヘプタデセニル基、シクロオクタデセニル基、シクロノナデセニル基、シクロエイコセニル基等が挙げられ、さらにノルボルニル基等の多環式化合物もこの範疇に含まれる。また、任意のアルケニル基としては、C~C20の1~4環のアルケニル基がより好ましい。また、任意のアルケニル基における任意の数の水素原子が、それぞれハロゲン原子、置換もしくは無置換の直線状、分岐状または環状のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換の直線状、分岐状または環状のアルケニル基、水酸基、アルコキシ基、アミノ基、シアノ基、カルボニル基、カルボキシル基、エステル基で置換されていてもよい。
As the curing reaction of the curable resin composition of the present invention, all known reactions that can react with unsaturated double bonds can be applied. For example, radical polymerization, ene reaction, Diels-Alder reaction and the like can be mentioned. When curing using these reactions, unlike the curing reaction that utilizes the ring-opening reaction of epoxy groups, polar groups are not generated during the curing process, resulting in poor water absorption and electrical properties due to improved heat resistance. Is less.
The curable resin composition of the present invention can contain any alkenyl group-containing compound in the composition. At the time of curing, radical polymerization by a combination of the alkenyl compound described in the present invention and an arbitrary alkenyl group-containing compound can be used. The arbitrary alkenyl group includes a substituted or unsubstituted linear, branched or cyclic alkenyl group, and is not particularly limited as long as it is a known alkenyl group. Preferred specific examples include vinyl group, propenyl group, butenyl. Group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, eicosenyl group Cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl, cyclodecenyl, cycloundecenyl, cyclododecenyl, cyclotridecenyl, cyclo Tetradecenyl group, cyclopentadecenyl group, cyclohexadecenyl group, cycloheptadecenyl group, cyclooctadecenyl group, cyclononadecenyl group, cycloeicocenyl group, etc., and norbornyl group Such polycyclic compounds are also included in this category. Further, as the arbitrary alkenyl group, a C 6 -C 20 1-4 alkenyl group is more preferable. In addition, any number of hydrogen atoms in any alkenyl group is a halogen atom, a substituted or unsubstituted linear, branched or cyclic alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl, respectively. It may be substituted with a group, a substituted or unsubstituted linear, branched or cyclic alkenyl group, hydroxyl group, alkoxy group, amino group, cyano group, carbonyl group, carboxyl group or ester group.
 本発明の硬化性樹脂組成物の調製方法は、公知の方法に従い実施することができるが、これに限定されるものではない。例えば、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。具体的には、前記式(1)で表されるアルケニル基含有化合物とマレイミド樹脂とを、触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、前記式(1)で表されるアルケニル基含有化合物とマレイミド樹脂に、必要によりエポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物及びその他添加剤を追加して、プレポリマー化してもよい。各成分の混合またはプレポリマー化は、溶剤の不存在下では、例えば、押出機、ニーダ、ロールなどを用い、溶剤の存在下では、攪拌装置つきの反応釜などを使用する。 The preparation method of the curable resin composition of the present invention can be carried out according to a known method, but is not limited thereto. For example, each component may be simply mixed or prepolymerized. Specifically, the alkenyl group-containing compound represented by the formula (1) and the maleimide resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. . Similarly, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives are added to the alkenyl group-containing compound represented by the formula (1) and the maleimide resin as necessary. Then, it may be prepolymerized. For mixing or prepolymerization of each component, for example, an extruder, a kneader, or a roll is used in the absence of a solvent, and a reaction kettle with a stirring device is used in the presence of a solvent.
 本発明の硬化性樹脂組成物は、例えば、上記各成分を所定の割合で均一に混合することにより得られる。また、例えば、通常130~180℃で30~500秒の範囲で本発明の硬化性樹脂組成物を予備硬化し、更に、150~200℃で2~15時間の範囲で後硬化することにより、充分な硬化反応が進行し、本発明の硬化物が得られる。又、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後で、硬化させることもできる。 The curable resin composition of the present invention can be obtained, for example, by uniformly mixing the above components at a predetermined ratio. Further, for example, by pre-curing the curable resin composition of the present invention usually at 130 to 180 ° C. for 30 to 500 seconds and further post-curing at 150 to 200 ° C. for 2 to 15 hours, Sufficient curing reaction proceeds to obtain the cured product of the present invention. Alternatively, the components of the curable resin composition can be uniformly dispersed or dissolved in a solvent or the like, and the solvent can be removed and then cured.
 こうして得られる本発明の硬化性樹脂組成物の硬化物は、耐湿性、耐熱性、高接着性を有する。従って、本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤等の分野にも用いることが出来る。特に半導体封止においては、耐ハンダリフロー性が有益なものとなる。
 半導体装置は、本発明の硬化性樹脂組成物で封止されたものを有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。
The cured product of the curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, and high adhesion. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance, and high adhesion. Specifically, it is useful as a material for all electrical and electronic components such as an insulating material, a laminated board (printed wiring board, BGA substrate, build-up substrate, etc.), a sealing material, and a resist. In addition to molding materials and composite materials, they can also be used in fields such as paint materials and adhesives. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
A semiconductor device has what was sealed with the curable resin composition of this invention. As semiconductor devices, for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small Outline Package), TSOP (Thin Small Outline Package), TQFP (Sink Quad Flat Package).
 本発明の硬化性樹脂組成物は、加熱溶融し、低粘度化して、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることにより、プリプレグを得ることもできる。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維、更にガラス以外の無機物の繊維やポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、全芳香族ポリアミド、ポリエステル;並びに、ポリパラフェニレンベンズオキサゾール、ポリイミド及び炭素繊維などの有機繊維が挙げられるが、これらに特に限定されない。基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01~0.4mm程度である。
 さらに、上記プリプレグを所望の形に裁断し、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより、電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
The curable resin composition of the present invention may be obtained by melting by heating, lowering the viscosity, and impregnating a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber. it can. Specific examples thereof include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, and inorganic fibers other than glass and poly glass. Paraphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont Co., Ltd.), wholly aromatic polyamide, polyester; and organic fibers such as polyparaphenylene benzoxazole, polyimide, and carbon fiber, but are particularly limited to these. Not. Although it does not specifically limit as a shape of a base material, For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat etc. are mentioned. Moreover, as a weaving method of the woven fabric, a plain weave, a nanako weave, a twill weave and the like are known, and these can be appropriately selected and used according to the intended use and performance. Further, a woven fabric that has been subjected to fiber opening treatment or a glass woven fabric that has been surface treated with a silane coupling agent or the like is preferably used. The thickness of the substrate is not particularly limited, but is preferably about 0.01 to 0.4 mm.
Furthermore, the above prepreg is cut into a desired shape, laminated with copper foil if necessary, and the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, it is possible to obtain an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material.
 以下、本発明を実施例により詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。また実施例において、各物性は以下の条件で測定した。
<融点>
DSCにより測定。吸熱ピークトップの値を融点とした。
装置:Q-2000 TA-instruments社製
モード:M(モジュレート)DSCモード
昇温速度:10℃/min
測定温度範囲:30℃から300℃
H-NMR>
装置:JNM-ECS400 日本電子株式会社製
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to these examples. In the examples, each physical property was measured under the following conditions.
<Melting point>
Measured by DSC. The value of the endothermic peak top was taken as the melting point.
Apparatus: Q-2000 TA-instruments, Inc. Mode: M (modulate) DSC mode Temperature rising rate: 10 ° C./min
Measurement temperature range: 30 ° C to 300 ° C
<1 H-NMR>
Device: JNM-ECS400 JEOL Ltd.
(実施例1)
 温度計、冷却管、撹拌機を取り付けたフラスコに、シアヌルクロリド15.0質量部、トルエン40.8質量部、ジメチルホルムアミド4.1質量部、2-アリルフェノール32.9質量部、炭酸カリウム67.6質量部を加え、内温を100℃まで昇温した。100℃で6時間反応を行い、放冷後、トルエン200質量部を加え水洗し、減圧濃縮することにより、下記式(4)で表されるシアヌルクロリドと2-アリルフェノールのエーテル化反応物(AP-CC)37.9質量部(収率98%)を得た。得られた反応物の融点は110℃であった。
Example 1
In a flask equipped with a thermometer, condenser, and stirrer, 15.0 parts by mass of cyanuric chloride, 40.8 parts by mass of toluene, 4.1 parts by mass of dimethylformamide, 32.9 parts by mass of 2-allylphenol, 67 of potassium carbonate .6 parts by mass was added, and the internal temperature was raised to 100 ° C. The reaction was carried out at 100 ° C. for 6 hours. After standing to cool, 200 parts by mass of toluene was added, washed with water, and concentrated under reduced pressure to give an etherification reaction product of cyanuric chloride and 2-allylphenol represented by the following formula (4) ( AP-CC) 37.9 parts by mass (yield 98%) was obtained. The melting point of the obtained reaction product was 110 ° C.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(実施例2)
 温度計、冷却管、撹拌機を取り付けたフラスコに、シアヌルクロリド18.4質量部、トルエン50質量部、ジメチルホルムアミド5.0質量部、2-(1-プロペニル)フェノール40.3質量部、炭酸カリウム82.9質量部を加え、内温を100℃まで昇温した。100℃で6時間反応を行い、放冷後、トルエン200質量部を加え水洗し、減圧濃縮することにより、下記式(5)で表されるシアヌルクロリドと2-(1-プロペニル)フェノールのエーテル化反応物(PP-CC)39.2質量部(収率82%)を得た。得られた反応物の融点は131℃であった。
(Example 2)
In a flask equipped with a thermometer, condenser, and stirrer, 18.4 parts by weight of cyanuric chloride, 50 parts by weight of toluene, 5.0 parts by weight of dimethylformamide, 40.3 parts by weight of 2- (1-propenyl) phenol, carbonic acid 82.9 parts by mass of potassium was added, and the internal temperature was raised to 100 ° C. The reaction was carried out at 100 ° C. for 6 hours, and after cooling, 200 parts by mass of toluene was added, washed with water, and concentrated under reduced pressure to give ether of cyanuric chloride represented by the following formula (5) and 2- (1-propenyl) phenol. Reaction product (PP-CC) 39.2 parts by mass (yield 82%) was obtained. The melting point of the obtained reaction product was 131 ° C.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(実施例3)
 温度計、冷却管、撹拌機を取り付けたフラスコに、アセトン100質量部、シアヌルクロリド18.4質量部、オイゲノール49.3質量部を加え撹拌を開始し、内温を30℃まで昇温した。水酸化ナトリウム12.6質量部を1.5時間かけて添加し、30℃で6時間反応を行った。減圧濃縮によりアセトンを取り除いた後、トルエン100gを加え、水洗を行い、減圧濃縮することにより、下記式(6)で表されるシアヌルクロリドとオイゲノールのエーテル化反応物(Eu-CC)47.6質量部(収率84%)を得た。得られた反応物の融点は125℃であった。
(Example 3)
To a flask equipped with a thermometer, a condenser, and a stirrer, 100 parts by mass of acetone, 18.4 parts by mass of cyanuric chloride and 49.3 parts by mass of eugenol were added and stirring was started, and the internal temperature was raised to 30 ° C. 12.6 parts by mass of sodium hydroxide was added over 1.5 hours and reacted at 30 ° C. for 6 hours. Acetone was removed by concentration under reduced pressure, 100 g of toluene was added, washed with water, and concentrated under reduced pressure to obtain 47.6 etherification reaction product (Eu-CC) of cyanuric chloride and eugenol represented by the following formula (6). Part by mass (yield 84%) was obtained. The melting point of the obtained reaction product was 125 ° C.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(実施例4)
 温度計、冷却管、撹拌機を取り付けたフラスコに、2-アリルフェノール40.3質量部、ジメチルスルホキシド117質量部、水58.8質量部を加え撹拌を開始した。水酸化ナトリウム24.6gを1時間かけて分割添加し、内温を70℃へ昇温した。p-キシリレンジクロリド26.3質量部を1時間かけて添加し、70℃で2時間反応させた。放冷後、析出した結晶を濾過で濾別し、下記式(7)で表されるp-キシレンジクロリドと2-アリルフェノールのエーテル化反応物(AP-XLC)49.1質量部(収率88%)で得た。得られた反応物の融点は46℃であった。測定したH-NMRチャートは図1に示す。
 H-NMR(400MHz,DMSO-d6);δ(ppm)4.98-5.08(m,4H),5.13(s,4H),5.97(tt,2H),6.89(t,2H),7.03(d,2H),7.10-7.21(m,4H),7.48(s,4H)
Example 4
To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2-allylphenol, 117 parts by mass of dimethyl sulfoxide and 58.8 parts by mass of water were added, and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 26.3 parts by mass of p-xylylene dichloride was added over 1 hour and reacted at 70 ° C. for 2 hours. After allowing to cool, the precipitated crystals were separated by filtration, and 49.1 parts by mass of an etherification product (AP-XLC) of p-xylene dichloride and 2-allylphenol represented by the following formula (7) (yield) 88%). The melting point of the obtained reaction product was 46 ° C. The measured 1 H-NMR chart is shown in FIG.
1 H-NMR (400 MHz, DMSO-d6); δ (ppm) 4.98-5.08 (m, 4H), 5.13 (s, 4H), 5.97 (tt, 2H), 6.89 (T, 2H), 7.03 (d, 2H), 7.10-7.21 (m, 4H), 7.48 (s, 4H)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(実施例5)
 温度計、冷却管、撹拌機を取り付けたフラスコに、2-(1-プロペニル)フェノール40.3質量部、ジメチルスルホキシド117質量部、水58.8質量部を加え撹拌を開始した。水酸化ナトリウム24.6gを1時間かけて分割添加し、内温を70℃へ昇温した。p-キシリレンジクロリド26.3質量部を1時間かけて添加し、70℃で2時間反応させた。放冷後、析出した結晶を濾過で濾別し、下記式(8)で表されるp-キシレンジクロリドと2-(1-プロペニル)フェノールのエーテル化反応物(PP-XLC)49.0質量部(収率88%)を得た。得られた反応物の融点は53℃であった。測定したH-NMRチャートは図2に示す。
 H-NMR(400MHz,DMSO-d6);δ(ppm)1.72-1.89(m,6H),5.10-5.18(m,6H),5.70-7.52(m,14H)
(Example 5)
To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2- (1-propenyl) phenol, 117 parts by mass of dimethyl sulfoxide and 58.8 parts by mass of water were added and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 26.3 parts by mass of p-xylylene dichloride was added over 1 hour and reacted at 70 ° C. for 2 hours. After allowing to cool, the precipitated crystals were separated by filtration, and 49.0 mass of an etherification reaction product (PP-XLC) of p-xylene dichloride represented by the following formula (8) and 2- (1-propenyl) phenol. Parts (yield 88%) were obtained. The melting point of the obtained reaction product was 53 ° C. The measured 1 H-NMR chart is shown in FIG.
1 H-NMR (400 MHz, DMSO-d6); δ (ppm) 1.72-1.89 (m, 6H), 5.10-5.18 (m, 6H), 5.70-7.52 ( m, 14H)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(実施例6)
 温度計、冷却管、撹拌機を取り付けたフラスコに、p-キシリレンジクロリド35.0質量部、オイゲノール65.7質量部、炭酸カリウム66.3質量部、ジメチルホルムアミド210mLを仕込み、室温で6時間反応後、70℃に昇温し6時間反応させた。水500質量部を加え、固体を析出させ、濾過によりこの固体を分取した。濾別した固体を多量の水で洗浄後、多量のメタノールで洗浄し、80℃で12時間乾燥させることにより、下記式(9)で表されるp-キシレンジクロリドとオイゲノールのエーテル化反応物(Eu-XLC)78.6質量部(収率91%)を得た。得られた反応物の融点は106℃であった。測定したH-NMRチャートは図3に示す。
 H-NMR(400MHz,DMSO-d6);δ(ppm)3.29(d,4H),3.73(s,6H),4.99-5.12(m,8H),5.94(dq,2H),6.68(d,2H),6.80(s,2H),6.92(d,2H),7.44(s,4H)
(Example 6)
A flask equipped with a thermometer, condenser, and stirrer was charged with 35.0 parts by mass of p-xylylene dichloride, 65.7 parts by mass of eugenol, 66.3 parts by mass of potassium carbonate, and 210 mL of dimethylformamide at room temperature for 6 hours. After the reaction, the temperature was raised to 70 ° C. and reacted for 6 hours. 500 parts by mass of water was added to precipitate a solid, and this solid was collected by filtration. The solid separated by filtration is washed with a large amount of water, washed with a large amount of methanol, and dried at 80 ° C. for 12 hours, whereby an etherification reaction product of p-xylene dichloride and eugenol represented by the following formula (9) ( Eu-XLC) was obtained 78.6 parts by mass (yield 91%). The melting point of the obtained reaction product was 106 ° C. The measured 1 H-NMR chart is shown in FIG.
1 H-NMR (400 MHz, DMSO-d6); δ (ppm) 3.29 (d, 4H), 3.73 (s, 6H), 4.99-5.12 (m, 8H), 5.94 (Dq, 2H), 6.68 (d, 2H), 6.80 (s, 2H), 6.92 (d, 2H), 7.44 (s, 4H)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(実施例7)
 温度計、冷却管、撹拌機を取り付けたフラスコに、p-キシリレンジクロリド35.0質量部、イソオイゲノール65.7質量部、炭酸カリウム66.3質量部、ジメチルホルムアミド210mLを仕込み、室温で6時間反応後、70℃に昇温し6時間反応させた。水500質量部を加え、固体を析出させ、濾過によりこの固体を分取した。濾別した固体を多量の水で洗浄後、多量のメタノールで洗浄し、80℃で12時間乾燥させることにより、下記式(10)で表されるp-キシレンジクロリドとイソオイゲノールのエーテル化反応物(IEu-XLC)76.0質量部(収率88%)を得た。得られた反応物の融点は145.8℃であった。
(Example 7)
A flask equipped with a thermometer, condenser, and stirrer was charged with 35.0 parts by mass of p-xylylene dichloride, 65.7 parts by mass of isoeugenol, 66.3 parts by mass of potassium carbonate, and 210 mL of dimethylformamide at room temperature. After the time reaction, the temperature was raised to 70 ° C. and reacted for 6 hours. 500 parts by mass of water was added to precipitate a solid, and this solid was collected by filtration. The solid separated by filtration is washed with a large amount of water, washed with a large amount of methanol, and dried at 80 ° C. for 12 hours, whereby an etherification reaction product of p-xylene dichloride represented by the following formula (10) and isoeugenol is obtained. As a result, 76.0 parts by mass (88% yield) of (IEu-XLC) was obtained. The melting point of the obtained reaction product was 145.8 ° C.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(実施例8)
 温度計、冷却管、撹拌機を取り付けたフラスコに、2-アリルフェノール40.3質量部、ジメチルスルホキシド230質量部、水58.8質量部を加え、撹拌を開始した。水酸化ナトリウム24.6gを1時間かけて分割添加し、内温を70℃へ昇温した。p-ビスクロロメチレンビフェニル37.7質量部を1時間かけて添加し、70℃で2時間反応させた。析出した結晶を濾過で濾別し、下記式(11)で表されるp-ビスクロロメチレンビフェニルと2-アリルフェノールのエーテル化反応物(AP-BCMB)60.9質量部(収率91%)であった。得られた反応物の融点は105℃であった。測定したH-NMRチャートは図4に示す。
 H-NMR(400MHz,DMSO-d6);δ(ppm)3.4(d,4H),5.01-5.09(m,4H),5.18(s,4H),5.99(tt,2H),6.91(t,2H),7.05-7.25(m,6H),7.65(dd,8H)
(Example 8)
To a flask equipped with a thermometer, a condenser, and a stirrer, 40.3 parts by mass of 2-allylphenol, 230 parts by mass of dimethyl sulfoxide, and 58.8 parts by mass of water were added, and stirring was started. Sodium hydroxide (24.6 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 37.7 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours. The precipitated crystals were separated by filtration, and 60.9 parts by mass of an etherification product (AP-BCMB) of p-bischloromethylenebiphenyl and 2-allylphenol represented by the following formula (11) (91% yield) )Met. The melting point of the obtained reaction product was 105 ° C. The measured 1 H-NMR chart is shown in FIG.
1 H-NMR (400 MHz, DMSO-d6); δ (ppm) 3.4 (d, 4H), 5.01-5.09 (m, 4H), 5.18 (s, 4H), 5.99 (Tt, 2H), 6.91 (t, 2H), 7.05-7.25 (m, 6H), 7.65 (dd, 8H)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(実施例9)
 温度計、冷却管、撹拌機を取り付けたフラスコに、2-(1-プロペニル)フェノール20.2質量部、ジメチルスルホキシド230質量部、水29.4質量部を加え、撹拌を開始した。水酸化ナトリウム12.3gを1時間かけて分割添加し、内温を70℃へ昇温した。p-ビスクロロメチレンビフェニル18.8質量部を1時間かけて添加し、70℃で2時間反応させた。析出した結晶を濾過で濾別し、下記式(12)で表されるp-ビスクロロメチレンビフェニルと2-(1-プロペニル)フェノールのエーテル化反応物(PP-BCMB)31.3質量部(収率93%)を得た。得られた反応物の融点は164℃であった。測定したH-NMRチャートは図5に示す。
 H-NMR(400MHz,DMSO-d6);δ(ppm)1.73-1.89(m,2H),3.10-3.22(m,10H),4.05-4.18(m,4H),5.12-5.22(m,2H),5.72-7.78(m,12H)
Example 9
To a flask equipped with a thermometer, a condenser, and a stirrer, 20.2 parts by mass of 2- (1-propenyl) phenol, 230 parts by mass of dimethyl sulfoxide, and 29.4 parts by mass of water were added, and stirring was started. Sodium hydroxide (12.3 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 18.8 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours. The precipitated crystals were separated by filtration, and 31.3 parts by mass of an etherification reaction product (PP-BCMB) of p-bischloromethylenebiphenyl and 2- (1-propenyl) phenol represented by the following formula (12) ( Yield 93%) was obtained. The melting point of the obtained reaction product was 164 ° C. The measured 1 H-NMR chart is shown in FIG.
1 H-NMR (400 MHz, DMSO-d6); δ (ppm) 1.73-1.89 (m, 2H), 3.10-3.22 (m, 10H), 4.05-4.18 ( m, 4H), 5.12-5.22 (m, 2H), 5.72-7.78 (m, 12H)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(実施例10)
 温度計、冷却管、撹拌機を取り付けたフラスコに、オイゲノール24.6質量部、ジメチルスルホキシド250質量部、水29.4質量部を加え、撹拌を開始した。水酸化ナトリウム12.3gを1時間かけて分割添加し、内温を70℃へ昇温した。p-ビスクロロメチレンビフェニル18.8質量部を1時間かけて添加し、70℃で2時間反応させた。析出した結晶を濾過で濾別し、下記式(13)で表されるp-ビスクロロメチレンビフェニルとオイゲノールのエーテル化反応物(Eu-BCMB)31.9質量部(収率84%)を得た。得られた反応物の融点は102℃であった。
(Example 10)
To a flask equipped with a thermometer, a condenser, and a stirrer, 24.6 parts by mass of eugenol, 250 parts by mass of dimethyl sulfoxide, and 29.4 parts by mass of water were added, and stirring was started. Sodium hydroxide (12.3 g) was added in portions over 1 hour, and the internal temperature was raised to 70 ° C. 18.8 parts by mass of p-bischloromethylenebiphenyl was added over 1 hour and reacted at 70 ° C. for 2 hours. The precipitated crystals were separated by filtration to obtain 31.9 parts (yield 84%) of an etherification reaction product (Eu-BCMB) of p-bischloromethylenebiphenyl and eugenol represented by the following formula (13). It was. The melting point of the obtained reaction product was 102 ° C.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(実施例11~19、比較例1)
 実施例1、2、4、5及び9で得られたアルケニル基含有化合物、マレイミド樹脂、ラジカル重合開始剤を表1の割合(重量部)で配合し、金属容器中で加熱溶融混合してそのまま金型に流し込み、220℃で2時間硬化させた。
 比較例1は、エポキシ樹脂、マレイミド樹脂などを表1の割合(重量部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、200℃で2時間、更に220℃で6時間硬化させた。
 このようにして得られた硬化物の物性を下記項目について測定した結果を表1に示す。
(Examples 11 to 19, Comparative Example 1)
The alkenyl group-containing compounds, maleimide resins, and radical polymerization initiators obtained in Examples 1, 2, 4, 5 and 9 were blended in the proportions (parts by weight) shown in Table 1, heated and melted and mixed in a metal container as they were. Poured into a mold and cured at 220 ° C. for 2 hours.
In Comparative Example 1, an epoxy resin, a maleimide resin, and the like are blended in the proportions (parts by weight) shown in Table 1, kneaded with a mixing roll, converted into a tablet, a resin molded body is prepared by transfer molding, and further at 200 ° C. for 2 hours. Cured at 220 ° C. for 6 hours.
The results of measuring the physical properties of the cured product thus obtained for the following items are shown in Table 1.
<耐熱性試験>
・ガラス転移温度:動的粘弾性試験機により測定し、tanδが最大値のときの温度。
 測定装置:TA-instruments製、Q-800
 測定温度範囲:30℃~350℃
 昇温速度:2℃/min
 試験片サイズ:5mm×50mm×0.8mm
<誘電率試験・誘電正接試験>
・(株)関東電子応用開発製の1GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。ただし、サンプルサイズは幅1.7mm×長さ100mmとし、厚さは1.7mmで試験を行った。
<Heat resistance test>
Glass transition temperature: Temperature measured by a dynamic viscoelasticity tester and tan δ is a maximum value.
Measuring device: Q-800, manufactured by TA-instruments
Measurement temperature range: 30 ° C-350 ° C
Temperature increase rate: 2 ° C / min
Test piece size: 5 mm x 50 mm x 0.8 mm
<Dielectric constant test and dielectric loss tangent test>
-Using a 1 GHz cavity resonator manufactured by Kanto Electronics Co., Ltd., a test was performed by the cavity resonator perturbation method. However, the test was conducted with a sample size of 1.7 mm wide × 100 mm long and a thickness of 1.7 mm.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
BMI:4,4’-ビスマレイミドジフェニルメタン(東京化成工業社製)
MIR:日本国特開2009-001783号公報実施例4に記載のマレイミド樹脂
エポキシ樹脂:NC-3000-L(日本化薬社製)
フェノール樹脂:GPH-65(日本化薬社製)
2E-4MZ:2-エチル-4-メチルイミダゾール(東京化成工業社製)
DCP:ジクミルパーオキサイド(化薬アクゾ社製)
BMI: 4,4′-bismaleimide diphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.)
MIR: Maleimide resin epoxy resin described in Example 4 of Japanese Unexamined Patent Publication No. 2009-001783: NC-3000-L (manufactured by Nippon Kayaku Co., Ltd.)
Phenolic resin: GPH-65 (Nippon Kayaku Co., Ltd.)
2E-4MZ: 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
DCP: Dicumyl peroxide (manufactured by Kayaku Akzo)
 表1の結果より、本発明のアルケニル基含化合物を用いた実施例11~19は、優れた誘電特性と高い耐熱性を有することが確認された。 From the results in Table 1, it was confirmed that Examples 11 to 19 using the alkenyl group-containing compound of the present invention had excellent dielectric properties and high heat resistance.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2018年4月9日付で出願された2つの日本国特許出願(特願2018-74454、特願2018-74456)に基づいており、それらの全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on two Japanese patent applications (Japanese Patent Application No. 2018-74445 and Japanese Patent Application No. 2018-74456) filed on April 9, 2018, which are incorporated by reference in their entirety. Also, all references cited herein are incorporated as a whole.
 したがって、本発明のアルケニル基含化合物は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)、CFRPを始めとする各種複合材料用、及び塗料等の用途に有用である。 Therefore, the alkenyl group-containing compound of the present invention comprises an insulating material for electrical and electronic parts (such as a highly reliable semiconductor encapsulating material), a laminated board (such as a printed wiring board, a BGA substrate, a build-up substrate), an adhesive (conductive). It is useful for applications such as adhesives, various composite materials including CFRP, and paints.

Claims (6)

  1.  下記式(1)で表されるアルケニル基含有化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは任意の有機基を表す。Yはアルケニル基を表し、Yが複数存在する場合、それらは同一であっても異なっていてもよい。Zは水素原子、炭素数1~15の炭化水素基、または炭素数1~15のアルコキシ基を表し、Zが複数存在する場合、それらは同一であっても異なっていてもよい。lは1~6の自然数を表す。mおよびnはそれぞれ0以上の整数であり、m+n=1~5を満たし、l個あるmのうち少なくとも1つは1以上である。)
    An alkenyl group-containing compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), X represents an arbitrary organic group. Y represents an alkenyl group, and when a plurality of Y are present, they may be the same or different. Z is a hydrogen atom or a carbon number. Represents a hydrocarbon group having 1 to 15 or an alkoxy group having 1 to 15 carbon atoms, and when there are a plurality of Z, they may be the same or different, and l represents a natural number of 1 to 6. m and n are each an integer of 0 or more, satisfying m + n = 1 to 5, and at least one of 1 m is 1 or more.)
  2.  前記式(1)中のXが、下記式(2-1)~(2-4)で表される構造のいずれか1種を含有する、請求項1に記載のアルケニル基含有化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)~式(2-4)中、*は式(1)の酸素原子への結合を表す。)
    The alkenyl group-containing compound according to claim 1, wherein X in the formula (1) contains any one of structures represented by the following formulas (2-1) to (2-4).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2-1) to formula (2-4), * represents a bond to the oxygen atom in formula (1).)
  3.  前記式(1)中のXが、前記式(2-2)で表される、請求項2に記載のアルケニル基含有化合物。 The alkenyl group-containing compound according to claim 2, wherein X in the formula (1) is represented by the formula (2-2).
  4.  請求項1~3のいずれか一項に記載のアルケニル基含有化合物と、マレイミド樹脂とを含有する、硬化性樹脂組成物。 A curable resin composition comprising the alkenyl group-containing compound according to any one of claims 1 to 3 and a maleimide resin.
  5.  さらに、ラジカル重合開始剤を含有する、請求項4に記載の硬化性樹脂組成物。 Furthermore, the curable resin composition of Claim 4 containing a radical polymerization initiator.
  6.  請求項4又は5に記載の硬化性樹脂組成物を硬化させた、硬化物。 A cured product obtained by curing the curable resin composition according to claim 4 or 5.
PCT/JP2019/014919 2018-04-09 2019-04-04 Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom WO2019198606A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980020008.5A CN111918889B (en) 2018-04-09 2019-04-04 Alkenyl group-containing compound, curable resin composition, and cured product thereof
KR1020207025334A KR20200141982A (en) 2018-04-09 2019-04-04 Alkenyl group-containing compound, curable resin composition and cured product thereof
JP2020513229A JP7153994B2 (en) 2018-04-09 2019-04-04 Alkenyl group-containing compound, curable resin composition and cured product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018074454 2018-04-09
JP2018074456 2018-04-09
JP2018-074456 2018-04-09
JP2018-074454 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019198606A1 true WO2019198606A1 (en) 2019-10-17

Family

ID=68164131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014919 WO2019198606A1 (en) 2018-04-09 2019-04-04 Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom

Country Status (4)

Country Link
JP (1) JP7153994B2 (en)
KR (1) KR20200141982A (en)
CN (1) CN111918889B (en)
WO (1) WO2019198606A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153315A1 (en) * 2020-01-31 2021-08-05 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
WO2023047901A1 (en) * 2021-09-21 2023-03-30 日産化学株式会社 Non-photosensitive insulation film-forming composition
TWI840647B (en) 2020-01-31 2024-05-01 日商京瓷股份有限公司 Resin composition, prepreg, metal foil laminate and wiring substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341787B (en) * 2020-11-30 2022-09-20 南亚新材料科技股份有限公司 Bio-based resin composition, metal foil-clad laminate, and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109810A (en) * 1985-11-06 1987-05-21 Sumitomo Chem Co Ltd Thermosetting resin composition
JPS6377986A (en) * 1986-09-19 1988-04-08 Sumitomo Chem Co Ltd Sealing resin composition
JPH01144410A (en) * 1987-08-17 1989-06-06 Hercules Inc Thermosetting resin composition
JPH04306244A (en) * 1990-07-30 1992-10-29 Shell Internatl Res Maatschappij Bv Polyimide composition
JPH04330066A (en) * 1990-11-26 1992-11-18 Toagosei Chem Ind Co Ltd S-triazine compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808717A (en) * 1986-09-17 1989-02-28 Sumitomo Chemical Company, Limited Thermosetting resin composition
US5095074A (en) * 1987-08-17 1992-03-10 Hercules Incorporated Thermosettable resin compositions
JP2570923B2 (en) 1991-06-07 1997-01-16 信越化学工業株式会社 Thermosetting resin composition
GB2511574B (en) 2013-03-08 2017-10-04 Magnomatics Ltd Permanent magnet assembly for mounting to a rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109810A (en) * 1985-11-06 1987-05-21 Sumitomo Chem Co Ltd Thermosetting resin composition
JPS6377986A (en) * 1986-09-19 1988-04-08 Sumitomo Chem Co Ltd Sealing resin composition
JPH01144410A (en) * 1987-08-17 1989-06-06 Hercules Inc Thermosetting resin composition
JPH04306244A (en) * 1990-07-30 1992-10-29 Shell Internatl Res Maatschappij Bv Polyimide composition
JPH04330066A (en) * 1990-11-26 1992-11-18 Toagosei Chem Ind Co Ltd S-triazine compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153315A1 (en) * 2020-01-31 2021-08-05 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
JPWO2021153315A1 (en) * 2020-01-31 2021-08-05
TWI840647B (en) 2020-01-31 2024-05-01 日商京瓷股份有限公司 Resin composition, prepreg, metal foil laminate and wiring substrate
US11976167B2 (en) 2020-01-31 2024-05-07 Kyocera Corporation Resin composition, prepreg, metal-clad laminate sheet, and wiring board
WO2023047901A1 (en) * 2021-09-21 2023-03-30 日産化学株式会社 Non-photosensitive insulation film-forming composition

Also Published As

Publication number Publication date
CN111918889B (en) 2022-12-20
KR20200141982A (en) 2020-12-21
JP7153994B2 (en) 2022-10-17
CN111918889A (en) 2020-11-10
JPWO2019198606A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7153994B2 (en) Alkenyl group-containing compound, curable resin composition and cured product thereof
JP2012251130A (en) Insulating resin composition for printed circuit board and printed circuit board including the same
JP6963565B2 (en) Alkenyl group-containing resin, curable resin composition and cured product thereof
WO2019198607A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
JP7005821B1 (en) Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
JP4082481B2 (en) Phenol resin, epoxy resin, thermosetting resin composition, and resin production method
TW202106797A (en) Curable resin composition
JP6755418B2 (en) Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
JP6979746B2 (en) Methacrylic group-containing resin, curable resin composition and its cured product
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP4111410B2 (en) Thermosetting resin composition and cured product thereof
JP2019070121A (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed circuit board, semiconductor device
JP7191275B1 (en) Thermosetting resin compositions, cured products, resin sheets, prepregs, metal foil-clad laminates, multilayer printed wiring boards, sealing materials, fiber-reinforced composite materials, adhesives, and semiconductor devices
JP6935402B2 (en) Maleimide resin composition, prepreg, cured product thereof and semiconductor device
KR20240037177A (en) Epoxy resin, curable resin composition and cured product thereof
JP2022025527A (en) Maleimide resin, curable resin composition and cured product of the same
JP2002284847A (en) Epoxy resin composition and its cured product
JP2024054289A (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
TW202307055A (en) Epoxy resin mixture, epoxy resin composition and cured product of same
JP4338062B2 (en) Resin and curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785882

Country of ref document: EP

Kind code of ref document: A1