WO2019198536A1 - Photovoltaic power generation system equipped with reflection mirror - Google Patents

Photovoltaic power generation system equipped with reflection mirror Download PDF

Info

Publication number
WO2019198536A1
WO2019198536A1 PCT/JP2019/013738 JP2019013738W WO2019198536A1 WO 2019198536 A1 WO2019198536 A1 WO 2019198536A1 JP 2019013738 W JP2019013738 W JP 2019013738W WO 2019198536 A1 WO2019198536 A1 WO 2019198536A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
power generation
generation system
wavelength
reflection mirror
Prior art date
Application number
PCT/JP2019/013738
Other languages
French (fr)
Japanese (ja)
Inventor
デン羽皋
森田秀幸
森健太郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019517439A priority Critical patent/JPWO2019198536A1/en
Publication of WO2019198536A1 publication Critical patent/WO2019198536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic power generation system provided with a reflection mirror.
  • Photovoltaic power generation generally has a structure in which a transparent front substrate / transparent encapsulant / solar cell element / encapsulant / solar cell back surface protective sheet is laminated in this order from the light-receiving surface side where sunlight enters. Performed by the battery module. Sunlight irradiated on the light receiving surface of the solar cell module reaches the solar cell element through the transparent front substrate and the transparent sealing material, and is converted into electric energy by the solar cell element. The electric energy obtained in this way is taken out through the lead wire connected to the solar cell element, and then supplied to various electric devices.
  • the amount of power generated by the solar cell module is usually proportional to the illuminance of sunlight that reaches the solar cell element.
  • a photovoltaic power plant represented by mega solar about 10 solar cell modules are connected in series, and are operated as a photovoltaic power generation system by operating at an optimal current value and voltage value with a power conditioner. Embodiments are common.
  • the amount of power generated by the solar cell module varies depending on the installation angle of the solar cell module because it is affected not only by the solar radiation intensity reaching the ground surface but also by the solar altitude. Therefore, in order to improve the power generation amount of the photovoltaic power generation system, it is important to adjust the installation angle of the solar cell module according to the latitude and longitude of the installation environment and increase the amount of light incident on the solar cell element.
  • Patent Document 1 A solar power generation system using a reflection mirror is also known for the purpose of reflecting sunlight and condensing the solar cell module.
  • the amount of power generation per unit area of the solar cell module does not increase, so the power generation efficiency is insufficient, and the cost for improving the output is often not commensurate.
  • the amount of power generated by solar power generation may become unstable and may place a load on the power generation system.
  • the solar power generation system described in Patent Document 2 since the light transmittance of the reflection mirror used is low, sunlight is shielded by the reflection mirror when the solar altitude is low, and light irradiated from the back of the reflection mirror can be used. However, since the output temporarily decreases, the power generation efficiency may be insufficient.
  • weather conditions such as cloudy weather, sunlight enters from each direction of the sky, so a mirror with high mirror reflectivity only and low light diffusivity may have insufficient power generation efficiency.
  • an object of the present invention is to provide a solar power generation system excellent in power generation efficiency and power generation stability.
  • the present invention has the following configuration.
  • a solar cell module and a reflective mirror provided at a position where reflected light is applied to a light receiving surface of the solar cell module, the specular reflectance at a wavelength of 800 nm of the reflective mirror being 15% or more and 45% or less,
  • the solar power generation system characterized in that the reflection mirror has a light transmittance of 20% to 45% at a wavelength of 800 nm.
  • the light transmittance at a wavelength of 1,800 nm of the reflection mirror is 80% or more, and the average light transmittance at a wavelength of 1,200 nm to 1,400 nm of the reflection mirror is 60% to 80%.
  • the solar power generation system as described in (1) characterized by the above-mentioned.
  • the reflection mirror includes a film composed of two types of layers mainly composed of a thermoplastic resin, and the two types of layers (a layer having a high refractive index is a layer A and a layer having a low refractive index is a layer B).
  • the A layer and the B layer are alternately positioned in the thickness direction, the total number of the A layer and the B layer is 600 or more, and JIS K 5600-5-6 :
  • the photovoltaic power generation system according to any one of (1) to (3), wherein the photovoltaic power generation system is 10% or more and 30% or less.
  • the specular reflectance of the reflection mirror at a wavelength of 700 nm is 15% or more and 45% or less, and the light transmittance of the reflection mirror at a wavelength of 700 nm is 20% or more and 45% or less.
  • the reflection mirror has a front substrate, a sealing material, and the A layer and the B layer alternately positioned in the thickness direction, and the total number of the A layer and the B layer is It has a multilayer film of 600 or more in this order, the front substrate contains any one of tempered glass, polycarbonate and polymethyl methacrylate, and the sealing material is an ethylene / vinyl acetate copolymer (EVA)
  • EVA ethylene / vinyl acetate copolymer
  • the solar light reflection system according to any one of (3) to (7), wherein any one of, transparent silicon, and polymethyl methacrylate is a main component.
  • the photovoltaic power generation system according to any one of (8) and (9), wherein a UV-resistant layer is provided on a surface opposite to the light receiving surface of the multilayer film.
  • the side view of the solar energy power generation system concerning one embodiment of the present invention.
  • the top view of the photovoltaic power generation system concerning one embodiment of the present invention.
  • the top view of the photovoltaic power generation system concerning one embodiment of the present invention.
  • Sectional drawing which shows an example of the multilayer film used for a reflective mirror.
  • Sectional drawing which shows an example of the reflective mirror which can be used in this invention.
  • Sectional drawing which shows an example of the solar cell module which can be used in this invention.
  • the solar power generation system of the present invention it is important for the solar power generation system of the present invention to include a solar cell module and a reflection mirror provided at a position where the reflected light is applied to the light receiving surface of the solar cell module.
  • a solar cell module By setting it as such an aspect, since the sunlight reflected by the reflective mirror is irradiated to a solar cell module, the sunlight which reaches
  • the arrangement of the reflection mirror is not particularly limited as long as the effect of the present invention is not impaired.
  • the reflection mirror is positioned in front of the light receiving surface of the solar cell module. It is preferable that the light receiving surface of the reflecting mirror and the light receiving surface of the solar cell module face each other. By setting it as such an aspect, most sunlight reflected by the reflective mirror will inject into the light-receiving surface of a solar cell module, and the output of a solar cell module will improve.
  • the light receiving surface refers to a surface located on the opposite side of the ground surface, and usually sunlight is irradiated onto the light receiving surface.
  • the solar cell module When installing the solar power generation system of the present invention in an area located north of the south return line, it is preferable to install the solar cell module with the light receiving surface facing the south side.
  • the south side includes not only the direction of true south but also the direction inclined 45 ° or less west or east from the direction of true south, and the north side is interpreted in the same manner.
  • the solar power generation system of the present invention has an angle of 5 between the horizontal plane and the light receiving surface of the reflection mirror from the viewpoint of increasing the sunlight reaching the solar cell element, depending on the season and the latitude of the installation point. It is preferable that the angle is from 50 ° to 50 °.
  • the angle between the horizontal plane and the light receiving surface of the reflecting mirror is 5 ° or more, the reflected light from the reflecting mirror is directed not to the sky but to the solar cell module, so the amount of reflected light incident on the solar cell module is become more.
  • the angle formed by the horizontal plane and the light receiving surface of the reflection mirror is 50 ° or less, sunlight is not easily blocked by the reflection mirror, and a decrease in the amount of light directly incident on the solar cell module can be suppressed.
  • FIG. 1 is a side view of a photovoltaic power generation system according to an embodiment of the present invention
  • FIGS. 2 and 3 are top views of the photovoltaic power generation system according to an embodiment of the present invention.
  • this one embodiment is shown as a specific example, and this invention is not limited to this.
  • the solar cell module 1 includes a solar cell module mount 3 so that the light receiving surface faces the south side and the angle between the light receiving surface and the horizontal plane is 25 °. It is fixed by.
  • the reflection mirror 2 is fixed by the reflection mirror mount 4 in front of the light receiving surface of the solar cell module 1 so that the light receiving surface faces the north side and the angle between the light receiving surface and the horizontal surface is 25 °.
  • the solar cell module mount 3 and the reflection mirror mount 4 may be collectively referred to as a mount.
  • the reflected light from the reflection mirror 2 is not shielded by the back surface of the solar cell module 1, the frame (not shown), etc. This is preferable because it reaches the light receiving surface of the module 1. 1 to 3, the solar cell module and the reflecting mirror are drawn in a parallel positional relationship in the long side direction, but they are not necessarily parallel, and the positions thereof are appropriately determined according to the terrain of the place where the solar cell module is installed. The relationship can be adjusted.
  • the solar cell module 1 and the reflecting mirror 2 are both drawn as a rectangular parallelepiped having no irregularities.
  • the surface of the solar cell module 1 and the reflecting mirror 2 can be obtained even if the surface has irregularities. May be a curved surface.
  • the areas of the light receiving surface of the solar cell module 1 and the light receiving surface of the reflection mirror 2 are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately adjusted in consideration of installation space and the like.
  • the area of both may be equal as shown in FIG. 2 or the area of both may be different as shown in FIG. 3 (the example of FIG.
  • the reflecting mirror has a frame (not shown) at the end from the viewpoint of improving its rigidity and enhancing resistance to natural environments such as strong winds.
  • the frame is preferably made of a metal such as iron, aluminum, brass, silver, or copper from the viewpoint of improving rigidity, and is preferably made of aluminum from the balance of rigidity and cost.
  • the mounts 3 and 4 preferably have a mechanism that can adjust the direction in which the light receiving surfaces of the solar cell module 1 and the reflection mirror 2 face and the angle with respect to the horizontal plane (hereinafter, sometimes collectively referred to as an angle adjusting mechanism).
  • the output improvement effect by the reflection mirror is affected by the change in solar altitude due to the season.
  • the pedestals 3 and 4 have an angle adjustment mechanism, so that it is easy to optimize the installation conditions of the solar cell module 1 and the reflection mirror 2 in accordance with the change of the season. It becomes easy to obtain a high output improvement effect.
  • the horizontal plane and the light receiving surface of the reflection mirror 2 it is preferable to increase the size of the angle formed within the above preferable range. This is because, when the solar altitude is high, if the angle between the horizontal plane and the light receiving surface of the reflecting mirror 2 is small, the reflected light from the reflecting mirror 2 tends to go away from the light receiving surface of the solar cell module 1. On the other hand, in winter when the solar altitude is low, it is preferable that the angle between the horizontal plane and the light receiving surface of the reflecting mirror 2 is smaller than that in summer from the above viewpoint.
  • ⁇ Reflection mirror> In the solar power generation system of the present invention, sunlight is mainly irradiated on the light receiving surface side when the solar altitude is high. However, when the solar altitude is low, sunlight is also irradiated on the side opposite to the light receiving surface. Therefore, in order to improve the power generation amount in a state where the solar altitude is high, in order to increase the incident amount to the solar cell module of the light in the wavelength band contributing to solar power generation as much as possible, in the wavelength band contributing to the power generation improvement It is preferable that the reflection mirror has a high specular reflectance.
  • the reflection mirror is required to have not only high specular reflectance in the same band but also high light transmittance in the same band, but generally the specular reflectance and light transmittance are in a trade-off relationship. It is in.
  • the balance between the specular reflectance and light transmittance of the light beam that contributes to the improvement of the power generation amount is required. It becomes important.
  • the specular reflectance of the reflection mirror at a wavelength of 800 nm is 15% or more and 45% or less, and the light transmittance at a wavelength of 800 nm is 20% or more and 45% or less. This is very important.
  • the specular reflectance at a wavelength of 800 nm of the reflecting mirror is preferably 20% to 45%, more preferably 25% to 45%.
  • the light transmittance at a wavelength of 800 nm is preferably 20% to 40%, more preferably 20% to 35%.
  • the reflection mirror Furthermore, for example, from the viewpoint of effectively using light having a wavelength of 700 nm, which is generally considered to have a higher contribution to power generation by an amorphous silicon solar cell element than a wavelength of 800 nm, from the back of the reflection mirror, the reflection mirror
  • the specular reflectance at a wavelength of 700 nm is preferably 15% or more and 45% or less, and the light transmittance at a wavelength of 700 nm is preferably 20% or more and 45% or less.
  • the specular reflectance of the reflecting mirror at a wavelength of 700 nm is more preferably 20% or more and 45% or less, and further preferably 30% or more and 45% or less.
  • the light transmittance at a wavelength of 700 nm is more preferably 25% or more and 45% or less, and further preferably 30% or more and 40% or less.
  • the average value of the specular reflectance of the reflection mirror at a wavelength of 400 nm to 700 nm is 20% or more and 45% or less, and the average value of the light transmittance at a wavelength of 400 nm to 700 nm is 20% or more and 45% or less. It is preferable. Further, it is more preferable that the average value of the specular reflectance in this wavelength band is 25% or more and 45% or less, and the average value of the light transmittance in this wavelength band is 25% or more and 45% or less. More preferably, the average value of the specular reflectance is 30% or more and 40% or less, and the average value of the light transmittance in this wavelength band is 30% or more and 40% or less.
  • a method of setting the specular reflectance of the reflection mirror at a wavelength of 800 nm to 15% to 45% or the above preferable range, and the light transmittance at a wavelength of 800 nm to 20% to 45% or the above preferable range, and a reflection mirror A method in which the specular reflectance at a wavelength of 700 nm is 20% or more and 45% or less or the above preferable range, and the light transmittance at a wavelength of 700 nm is 20% or more and 45% or less or the above preferable range is impaired.
  • a method of using a reflection mirror having a configuration in which two layers having different refractive indexes are alternately and repeatedly positioned will be described (details will be described later).
  • the light transmittance at a wavelength of 1,800 nm of the reflection mirror is 80% or more from the viewpoint of power generation efficiency and durability.
  • the influence of the light of the wavelength band which does not contribute to electric power generation and deteriorates the performance and durability of a solar cell module can be suppressed low.
  • light having a wavelength of 1,800 nm is light in the infrared region, and raises the temperature of the solar cell element or solar cell module even though it does not contribute to power generation of almost all solar cell elements.
  • the durability and power generation amount of a solar cell module decrease as the temperature rises, it is preferable to reduce the incidence of light having such a wavelength from the viewpoint of durability and power generation amount.
  • the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror from the viewpoint of expanding the selection range of the solar cell element while maintaining the power generation amount and durability.
  • Light having a wavelength of 1,200 nm or more and 1,400 nm or less is also light in the infrared region, and raises the temperature of the solar cell element or solar cell module.
  • the crystalline silicon solar cell element that is the most common solar cell element
  • light in the wavelength range of 400 nm to 1,150 nm contributes to power generation
  • light in the wavelength range of 300 nm to 700 nm contributes to power generation
  • light having a wavelength of 1,200 nm or more and 1,400 nm or less hardly contributes to power generation. Therefore, when the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror is 60% or more, reflection of light in the same wavelength band by the reflection mirror and incident incident on the solar cell module are suppressed to a low level. Therefore, when a solar power generation system is provided with the solar cell module using the solar cell element illustrated previously, the electric power generation amount and durability of a solar cell module are maintained.
  • a solar cell whose power generation amount is increased by light having a wavelength of 1,200 nm to 1,400 nm such as a gallium arsenide multi-junction solar cell element in which light having a wavelength of 350 nm to 1,750 nm contributes to power generation.
  • the reflection mirror since the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror is 80% or less, even in a solar power generation system including a solar cell module using such a solar cell element, reflection is also performed. A mirror effect can be obtained.
  • the specular reflectance of the reflection mirror at a wavelength of 800 nm is 15% or more and 45% or less or the above preferable range
  • the light transmittance at a wavelength of 800 nm is 20% or more and 45% or less or the above preferable range.
  • the method similar to the method of doing is mentioned.
  • the light receiving angle is 25 ° to 35 ° when incident on the light receiving surface of the reflecting mirror at an incident angle of 30 °.
  • the maximum value of the average variable reflectivity in the band from 300 nm to 1,200 nm is 15% to 35% and the incident angle is 60 °. It is preferable that the maximum value of the average variable angle reflectance in the band is 10% or more and 30% or less.
  • the average variable reflectivity is an average value of reflectivity measured at a reflection angle of 25 ° to 35 ° (or 55 ° to 65 °) in a band of 300 nm to 1,200 nm.
  • the reflectance is referred to as the maximum value of the average variable angle reflectance.
  • the specular reflection of light, diffuse reflection and transmission are generally in a trade-off relationship. Specular reflection is important when the solar altitude or solar illuminance is high, while diffuse reflection and transmission are important when the solar altitude or solar illuminance is low. From the viewpoint of power generation stability, the balance between specular reflection, diffuse reflection and transmission is important. The greater the maximum value of the average variable angle reflectance, the higher the degree of specular reflection, and the lower the light transmission and light scattering. From the above viewpoint, the maximum value of the average variable angle reflectance is an index of power generation improvement and power generation amount stability.
  • Such a mode has high sunlight transmittance and diffuse reflection at low solar altitude, leading to improved power generation at low solar altitude solar power generation system.
  • how to obtain the average variable reflectivity and the maximum value of the average variable reflectivity is as described in the section of Example [Production of reflection mirror, characteristic measurement method and evaluation method] (11).
  • the maximum value of the average variable reflectivity from the wavelength of 300 nm to 1,200 nm at the light receiving angle of 25 ° to 35 ° when incident on the light receiving surface of the reflecting mirror at an incident angle of 30 °. Is 26% or more and 35% or less, and the maximum value of the average variable reflectivity in the wavelength range from 300 nm to 1,200 nm when incident at an incident angle of 60 ° is 25% or more and 30% or less. preferable.
  • an average variable angle reflectance can be obtained by attaching a variable angle optical unit using UV-3600Plus manufactured by Shimadzu Corporation.
  • a means for setting the maximum value of the average variable angle reflectance to the above preferable range for example, a multilayer in which A layers and B layers mainly composed of a thermoplastic resin are alternately arranged in the thickness direction on a reflection mirror. The method using a film is mentioned. By setting it as such an aspect, a variable-angle reflectance can be adjusted suitably and a reflection mirror can have the said characteristic.
  • the reflecting mirror includes a film composed of two types of layers mainly composed of a thermoplastic resin, and the two types of layers (the layer having a high refractive index is the A layer, the refractive layer is formed). It is preferable that the A layer and the B layer are alternately positioned in the thickness direction, and the total number of the A layer and the B layer is 600 or more.
  • the specular reflectance at a wavelength of 800 nm of the reflecting mirror, the light transmittance at a wavelength of 800 nm, 1,800 nm, and the average light transmittance at a wavelength of 1,200 nm to 1,400 nm are within the above-mentioned range.
  • thermoplastic resin as a main component
  • the phrase “having a thermoplastic resin as a main component” means that the thermoplastic resin is contained in an amount of 90% by mass to 100% by mass when the entire layer is taken as 100% by mass.
  • the wavelength band to be reflected (main reflection wavelength: ⁇ ) is determined based on the following formula A, and can be controlled by adjusting the thickness and refractive index of each layer.
  • Formula A: ⁇ 2 ⁇ (na ⁇ da + nb ⁇ db)
  • na In-plane average refractive index of the A layer
  • nb In-plane average refractive index of the B layer da: Layer thickness (nm) of the A layer db: Layer thickness of layer B (nm)
  • main reflection wavelength
  • the A layer and the B layer are alternately positioned in the thickness direction means a state in which a laminated structure of the A layer and the B layer is repeatedly present when a cross section parallel to the thickness direction is observed.
  • a reflection mirror is a layer which does not correspond to A layer and B layer, and A layer and B layer continue in the middle of the laminated structure of A layer and B layer repeatedly. Locations may exist.
  • the reflectance can be controlled by the difference in refractive index between the A layer and the B layer and the number of layers of the A layer and the B layer. More specifically, the reflectance can be increased by increasing the refractive index difference between the A layer and the B layer and increasing the total number of layers of the A layer and the B layer.
  • the reflection mirror has high light reflection performance that can improve the power generation of the solar cell module.
  • the upper limit of the total number of layers of the A layer and the B layer is not particularly limited as long as the effects of the present invention are not impaired, but is 1,200 from the viewpoint of the effect of improving the light reflectivity accompanying the increase in the number of layers and the cost. That is, the total number of layers A and B is preferably 600 or more and 1,200 or less from the viewpoint of both improving the reflection performance of the reflection mirror and reducing the manufacturing cost.
  • thermoplastic resin A examples include crystalline polyethylene terephthalate and crystalline polyethylene. Examples thereof include crystalline polyesters such as naphthalate.
  • thermoplastic resin B examples include amorphous polyesters such as amorphous polyethylene terephthalate and amorphous polyethylene naphthalate, and fluoroelastomers. Etc.
  • crystallinity refers to a property in which an exothermic peak accompanying crystallization is observed when a polymer is heated and melted and then slowly cooled and solidified, and amorphous is a polymer. When it is heated and melted and then slowly cooled and solidified, it is a property in which no exothermic peak is observed because crystallization does not occur.
  • the composition of the A layer and the B layer satisfy the requirement that the refractive index of the A layer is larger than the refractive index of the B layer, the effects of the present invention are not impaired. Can be selected freely.
  • the means for the reflection mirror to be such that the A layer and the B layer are alternately positioned in the thickness direction and the total number of layers of the A layer and the B layer is 600 or more is not particularly limited as long as the effect of the present invention is not impaired. Although not, for example, the method described below can be mentioned.
  • thermoplastic resin A and thermoplastic resin B heated and melted in different extruders are fed into a feed block, and alternately laminated so that the total number of layers is 600 or more, and then discharged from a die onto a casting drum.
  • the non-oriented sheet is uniaxially or biaxially stretched to form a multilayer film having the structure shown in FIG. 4, and by incorporating this multilayer film into the reflection mirror, the A layer and the B layer are arranged in the thickness direction.
  • the layers may be alternately arranged and the total number of layers A and B may be 600 or more.
  • FIG. 4 is a cross-sectional view showing an example of the multilayer film used for the reflection mirror.
  • reference numeral 5 represents the multilayer film
  • reference numeral 6 represents the A layer
  • reference numeral 7 represents the B layer.
  • the classification of the test results of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 is 0 is preferred.
  • the classification of the test results of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 is smaller as the interlayer adhesion strength between the A layer and the B layer is better.
  • the reflection mirror When installing the solar power generation system of the present invention, the reflection mirror is exposed to the same natural environment as the solar cell module, and thus is subjected to stress due to temperature and humidity cycles and ultraviolet rays. Since the test results of the peel strength between the A layer and the B layer are 0, the occurrence of delamination between the A layer and the B layer can be reduced by these stresses. It can be maintained for a long time.
  • means for setting the classification of the test result of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 to 0 is particularly effective as long as the effect of the present invention is not impaired.
  • the solubility parameter of Hansen is sometimes referred to as HSP.
  • the HSP of the component is the ASP of the A layer
  • the HSP of the component most contained in the A layer is the A layer. HSP.
  • the B layer HSP The same applies to the B layer HSP.
  • HSP is an index indicating the degree to which a certain substance is soluble in another certain substance, and the solubility is represented by a three-dimensional vector.
  • This three-dimensional vector can be expressed by a dispersion term ( ⁇ d ), a polarity term ( ⁇ p ), and a hydrogen term ( ⁇ h ). It can be determined that the closer the vector is, the higher the solubility is.
  • HSP Hansen Solubility Parameters, A User's Handbook by Charles M. Based on the method described in Hansen, CRC Press Boca Raton Fl (2007), it can be calculated using solubility parameter estimation software.
  • Hansen Solubility Parameters in Practice (developed by HSPiP, Charles M. Hansen, Steven Abbott et al.) Can be used as the solubility parameter estimation software.
  • the HSPiP is equipped with a function for calculating the absolute value of the difference between two component HSPs, a database that records HSPs of various substances including resins, and the like.
  • the absolute value (R) of the difference between the HSP of the A layer and the HSP of the B layer is ( ⁇ dA , ⁇ pA , ⁇ hA ), and the HSP of the B layer is ( ⁇ dB , ⁇ pB , ⁇ ). hB ), it can be calculated by the following formula B.
  • R 2 4 ⁇ ( ⁇ dB ⁇ dA ) 2 + ( ⁇ pB ⁇ pA ) 2 + ( ⁇ pB ⁇ pA ) 2
  • the interlayer adhesion strength between the A layer and the B layer can be increased.
  • the absolute value of the difference in HSP between the A layer and the B layer becomes too small, the resin composition for obtaining each layer is mixed in the process of producing a multilayer film having the A layer and the B layer, The interface may be unclear and the specular reflectance may be reduced.
  • the absolute value of the difference in HSP between the A layer and the B layer is preferably 0.01 MPa 1/2 or more.
  • thermoplastic resin A as crystalline polyethylene terephthalate (hereinafter sometimes referred to as PET .)
  • PET crystalline polyethylene terephthalate
  • examples of using an amorphous polyester resin as the resin and the thermoplastic resin B are given.
  • the amorphous polyester resin used as the thermoplastic resin B is preferably an amorphous polyester resin containing spiroglycol units.
  • Amorphous polyester resins containing spiroglycol units have a small difference in glass transition temperature from crystalline polyethylene terephthalate. Therefore, when the thermoplastic resin B is an amorphous polyester resin containing a spiroglycol unit, overstretching and delamination during molding can be reduced.
  • the A layer is mainly composed of polyalkylene terephthalate from the viewpoint of light resistance.
  • the peeling strength between the said A layer and B layer can improve, and a highly durable solar power generation system can be obtained.
  • the layer A is more preferably composed mainly of polyethylene terephthalate.
  • the B layer preferably contains polyalkylene terephthalate as a main component, and the B layer more preferably contains polyethylene terephthalate as a main component.
  • the amorphous polyethylene terephthalate When amorphous polyethylene terephthalate is used as the amorphous polyester resin of the thermoplastic resin B, the amorphous polyethylene terephthalate has a dicarboxylic acid unit other than the terephthalic acid unit in its molecular chain unless the effects of the present invention are impaired.
  • glycol units other than ethylene glycol units can be included. Examples of such a copolymer unit include a cyclohexane dicarboxylic acid unit and a cyclohexane dimethanol unit in addition to the above-described spiroglycol unit.
  • the content thereof is not particularly limited, but is 25 mol% or less when the total dicarboxylic acid unit is 100 mol%, or 25 mol% or less when the total glycol unit is 100 mol%. It is preferable to do.
  • the haze of the reflection mirror is 4% or more and 30% from the viewpoint of reducing fluctuations in the power generation amount by increasing the power generation amount at low illuminance and low solar altitude.
  • the variation in the amount of power generation can be performed by evaluating the output improvement rate of the solar cell module described later.
  • the output improvement rate at low illuminance and low solar altitude is more preferably 2% or more and 10% or less, and more preferably 4% or more and 8% or less.
  • variation of electric power generation amount is 5 to 20%.
  • the haze of the reflecting mirror is 4% or more, the light scattering property of the mirror is improved.
  • incident light is irradiated from each direction of the whole sky.
  • a mirror having a high light scattering property it is possible to use light incident from each direction. This leads to an improvement in the output of the photovoltaic power generation system in weather conditions where the illuminance of sunlight is low, such as cloudy weather.
  • the specular reflectance and the haze value of the reflecting mirror are a trade-off, the specular reflectivity of the reflecting mirror can be obtained within the preferable range by appropriately selecting the haze of the reflecting mirror.
  • the haze of the reflection mirror is preferably 30% or less. By setting it as such an aspect, it leads to the output improvement of the photovoltaic power generation system in the weather condition with high illumination intensity of sunlight, such as at the time of fine weather.
  • the haze of the reflection mirror is more preferably 5% or more and 20% or less, and further preferably 5% or more and 10% or less.
  • the haze can be measured by using a haze meter NDH4000 (Nippon Denshoku Co., Ltd.) according to the method described in JIS K7136: 2000 by measuring the transmission haze when incident at 0 degrees.
  • FIG. 5 is a cross-sectional view showing an example of a reflection mirror that can be used in the present invention.
  • the reflecting mirror shown in FIG. 5 has a configuration in which the front substrate 8, the sealing material 9, the multilayer film 5, and the UV resistant layer 10 are positioned in this order from the light receiving surface side.
  • the front substrate 8 plays a role of imparting rigidity and impact resistance to the reflecting mirror. Further, by having the front substrate 8, the haze of the reflection mirror can be adjusted. Moreover, the haze of the reflective mirror which combined the front substrate 8, the sealing material 9, the multilayer film 5, and the UV-resistant layer 10 can be suitably adjusted with the haze of each component. Among the above components, the haze of the front substrate 8 has the most influence on the haze of the reflection mirror.
  • the haze of the front substrate is preferably 10% to 75%, and more preferably 30% to 60%.
  • a multilayer film having a haze of 1% or more and 15% or less, a multilayer film having a haze of 1% or more and 15% or less, and a sealing material as a means for adjusting the haze of the reflection mirror to 4% or more and 30% or less are preferably used from the viewpoints of availability, weight reduction of the reflection mirror, and stable acquisition of the aimed haze value.
  • tempered glass polycarbonate, polymethyl methacrylate, or the like can be used, and among these, tempered glass is preferably used from the viewpoint of rigidity and durability.
  • the sealing material 9 plays a role of adhesion between the front substrate 8 and the multilayer film 5 and protecting the multilayer film 5 from ultraviolet rays and impact.
  • ethylene vinyl acetate copolymer (EVA) transparent silicon, methyl methacrylate, and the like can be preferably used, and if necessary, an ultraviolet absorber, a light stabilizer, a crosslinking agent,
  • one or more additives such as a silane coupling agent may be contained.
  • various additives can use a well-known thing, The kind and combination can be freely selected in the range which does not impair the effect of this invention.
  • the front substrate, the sealing material, and the A layer and the B layer are alternately arranged in the thickness direction from the light receiving surface side.
  • the total number of the A layer and the B layer is 600 or more
  • the front substrate is any one of tempered glass, polycarbonate, polytetrafluoroethylene, and polymethyl methacrylate
  • the main component is any one of ethylene / vinyl acetate copolymer (EVA), transparent silicon, and polymethyl methacrylate. More preferably, the substrate is tempered glass and the sealing material is EVA.
  • the UV-resistant layer 10 plays a role of reducing deterioration of the multilayer film 5 from the back side due to scattered light from the sun or light reflected from the ground.
  • the UV resistant layer 10 preferably contains an acrylic resin and an ultraviolet absorber from the viewpoint of weather resistance.
  • the acrylic resin is not particularly limited as long as the effects of the present invention are not impaired, but an acrylic urethane resin is preferable from the viewpoint of weather resistance and adhesion with the multilayer film 5.
  • an acrylic urethane resin having a structure in which an acrylic polyol resin and an isocyanate resin are cross-linked is more preferable from the viewpoint of resin curability and heat resistance.
  • a well-known ultraviolet absorber can also be used in the range which does not impair the effect of this invention.
  • the method for forming the UV-resistant layer 10 is not particularly limited as long as the effects of the present invention are not impaired.
  • the UV-resistant layer 10 can be formed by a known coating method or the like.
  • a UV-resistant layer is provided on the opposite side of the light receiving surface of the multilayer film from the viewpoint of protection from ultraviolet rays reflected from the ground.
  • discoloration can be suppressed.
  • the reflecting mirror changes color
  • the diffuse reflectance within the range of about 500 nm to about 1,000 nm may be lowered. Therefore, having the UV-resistant layer leads to suppression of a decrease in power generation amount.
  • the UV-resistant layer can also contain a known ultraviolet absorber, and the type and combination thereof can be freely selected within a range that does not impair the effects of the present invention.
  • the solar cell module in the solar power generation system of the present invention is not particularly limited as long as the effects of the present invention are not impaired, and known ones can be used.
  • a solar cell element 11 that converts light energy of sunlight into electric energy is disposed between a front substrate 8 on the light receiving surface side and a solar cell back surface protective sheet 12. The thing of the structure which sealed between the front substrate 8 and the solar cell back surface protection sheet 12 with the sealing material 9 is mentioned.
  • the front substrate 8 and the sealing material 9 can be the same as the reflection mirror described above.
  • the solar cell element 11 include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenide.
  • Various known solar cell elements such as II-VI compound semiconductor systems and compound multi-junction systems such as gallium arsenide multi-junction can be applied, but it is preferable to use polycrystalline silicon from the viewpoint of power generation efficiency and cost. .
  • the solar cell back surface protective sheet is not particularly limited as long as the effects of the present invention are not impaired, and known ones can be used. More specifically, a fluorine film, a polyester film, a polyolefin film, and a laminate of a plurality of these films can be used. In addition, the solar cell back surface protective sheet has an aspect having a layer containing white particles in order to improve reflectance, and an aspect having an easy-adhesion layer in order to reinforce adhesion with other members. Etc.
  • the relative spectral reflectance of the reflecting mirror was measured at a pitch of 1 nm in a wavelength range of 700 nm to 900 nm using UV-3600 Plus manufactured by Shimadzu Corporation.
  • barium sulfate was used as a reference plate.
  • the relative spectral diffuse reflectance is measured within the same wavelength range, and the difference between the relative spectral reflectance and the relative spectral diffuse reflectance at the wavelength of 800 nm is taken to obtain the specular reflectance (%) at the wavelength of 800 nm.
  • the specular reflectance at a wavelength of 700 nm was obtained in the same manner by taking the difference between the relative spectral reflectance and the relative spectral diffuse reflectance at a wavelength of 700 nm.
  • the spectral transmittance of the reflection mirror was measured at a pitch of 1 nm in the wavelength range of 700 nm to 1,800 nm using UV-3600 Plus manufactured by Shimadzu Corporation. From the obtained data, values at a wavelength of 700 nm, a wavelength of 800 nm, and 1,800 nm were extracted and used as light transmittance (%) at a wavelength of 700 nm, a wavelength of 800 nm, and 1,800 nm, respectively. In addition, an arithmetic average of measured values in the range of 1,200 nm to 1,400 nm was obtained, and this was used as an average light transmittance (%) at a wavelength of 1,200 nm to 1,400 nm.
  • the center of the tape was placed on the grid in a direction parallel to each set of cuts, and the tape was flattened with fingers at a length of 25 mm over the grid. After that, the end of the tape was grasped at an angle close to 60 ° and peeled off within 1.0 seconds. The number of lattices peeled off to the lattice pattern was counted, and the average value of the number of lattices peeled off at three lattice patterns was taken as a test result. The test results were classified according to a 6-level evaluation of 0 to 5 according to JIS K 5600-5-6: 1999. 0 means that the adhesion between the A layer and the B layer is the strongest.
  • the layer structure of the multilayer film was determined by observing a sample cut out using a microtome using a transmission electron microscope (TEM). Using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), a cross-sectional photograph of the film was taken under the condition of an acceleration voltage of 75 kV, and the layer structure was measured.
  • TEM transmission electron microscope
  • Refractive index of the A layer and the B layer (only when the reflecting member film is a multilayer film)
  • the measurement was performed according to the method A described in JIS K7142: 2008.
  • the average refractive index in two orthogonal directions on the film surface was used as each refractive index.
  • HSP Hansen solubility parameter
  • “6: Insoluble” means a case where a resin raw material that is not dissolved even when the amount of the solvent reaches 99 g is observed.
  • the HSP of the A layer is ( ⁇ dA , ⁇ pA , ⁇ hA ), and the B layer was expressed as ( ⁇ dB , ⁇ pB , ⁇ hB ).
  • R 2 4 ⁇ ( ⁇ dB ⁇ dA ) 2 + ( ⁇ pB ⁇ pA ) 2 + ( ⁇ pB ⁇ pA ) 2 (10) Haze
  • the haze of the front substrate or the reflecting mirror was measured by using a haze meter NDH4000 (Nippon Denshoku Co., Ltd.) according to the method described in JIS K7136: 2000.
  • the largest value is the maximum value of the average variable reflectivity at an incident angle of 30 degrees (or an incident angle of 60 degrees).
  • the incident angle is an angle formed by the incident light and the light receiving surface of the mirror, and the closer the incident angle is to 90 degrees, the irradiation at an angle close to perpendicular to the light receiving surface of the mirror.
  • the incident angle of 30 degrees was measured assuming a low solar altitude, and the incident angle of 60 degrees was measured assuming a higher solar altitude.
  • a barium sulfate plate was used as the reference plate.
  • Thermoplastic resin (Thermoplastic resin A) Crystalline polyethylene terephthalate (F20S manufactured by Toray Industries, Inc .: Crystal melting temperature: 255 ° C., crystal melting heat: 41 mJ / mg, crystallization temperature: 155 ° C.).
  • thermoplastic resin B4 Polymethyl methacrylate (purchased from Plaskolite, Columbias, Ohio, trade name: CP-80).
  • thermoplastic resins B1 and B2 First, 60.9 parts by mass of dimethyl terephthalate, 19.8 parts by mass of dimethyl 1,4-cyclohexanedicarboxylate having a cis / trans ratio of 72/28, 49.7 parts by mass of ethylene glycol, and 28 of spiroglycol 0.1 parts by mass, 0.04 parts by mass of manganese acetate tetrahydrate, and 0.02 parts by mass of antimony trioxide were weighed and mixed. Subsequently, after the obtained mixture was dissolved at 150 ° C. and stirred, methanol was distilled while slowly raising the temperature of the reaction contents to 235 ° C. while stirring.
  • thermoplastic resin B1 chip After completion of the polymerization, the outlet at the lower part of the polymerization apparatus was opened, and the contents of the polymerization apparatus were discharged into a water tank, which was cooled in the water tank and then cut with a cutter to obtain a thermoplastic resin B1 chip.
  • the thermoplastic resin B2 has a raw material composition of 66.7 parts by weight of dimethyl terephthalate, 13.9 parts by weight of dimethyl 1,4-cyclohexanedicarboxylate having a cis / trans ratio of 72/28, and 53.6 ethylene glycol.
  • Films 6-8) Film 6 A multilayer film “ESR” manufactured by 3M Co., Ltd. was used.
  • Film 7 Al vapor-deposited PET film “Metal Me” (registered trademark) S (# 25) manufactured by Toray Film Processing Co., Ltd. was used (thickness 25 ⁇ m).
  • Film 8 White PET film “Lumirror” (registered trademark) E20 (# 50) manufactured by Toray Industries, Inc. was used (thickness: 50 ⁇ m).
  • the method for adjusting the main agent and the paint and the method for forming the UV-resistant layer using the paint prepared using the following main agent and having the UV-resistant layer formed on one surface of the film 1 are as follows.
  • the film 9 used the surface on the opposite side to the surface in which the UV-resistant layer was formed as a light-receiving surface.
  • DIC CLEAR BS solid content concentration: 40% by mass
  • DIC CLEAR BS solid content concentration: 40% by mass
  • DIC CLEAR BS solid content concentration: 40% by mass
  • silica 0.8 parts by mass of ethyl acetate
  • DIC Co., Ltd. urethane curing agent G-18N (solid content concentration: 100% by mass), which is an isocyanate resin as a curing agent, is added to DIC Co., Ltd.
  • Film 1 was produced by the following procedure. First, the thermoplastic resin A and the thermoplastic resin B1 were supplied to separate vented twin-screw extruders and melted at 275 ° C. After that, the molten resin is discharged while adjusting the discharge amount with a gear pump, and foreign matters and the like are removed by separate filters. Then, the two are joined together by a feed block having 903 slits, and thermoplastic resin A (A layer ) And thermoplastic resin B1 (B layer) were alternately laminated so that the total number of layers was 903 and the outermost layers on both sides were A layers. At this time, the temperature of each resin is controlled within a range of 270.0 ° C.
  • the total thickness ratio of the A layer and the B layer was adjusted to 1: 1 depending on the shape of the slit and the discharge amount.
  • a laminate comprising a total of 903 layers thus obtained was formed into a sheet shape, and then rapidly cooled and solidified on a casting drum whose surface temperature was controlled to 25 ° C. by electrostatic application to obtain a cast film.
  • the obtained cast film is heated by a group of rolls set at 75 ° C., and then stretched 3.3 times in the film conveyance direction (longitudinal direction) while being rapidly heated with a radiation heater from both sides of the film in a stretching section of 100 mm. After that, it was once cooled to obtain a uniaxially stretched film. Next, the uniaxially stretched film was guided to a tenter, preheated with hot air of 100 ° C., and stretched 3.5 times in the width direction (lateral direction) of the film perpendicular to the transport direction at a temperature of 110 ° C.
  • the stretched film was directly heat-treated in a tenter with hot air of 230 ° C., then subjected to a relaxation treatment of 5% in the width direction at the same temperature, cooled to room temperature, and wound up with a winder.
  • Films 2 to 5 were produced in the same manner except that feed blocks having different types of resin and different numbers of slits were used.
  • Example 1 A solar cell cover glass having a thickness of 3 mm as a front substrate, EVA (F806 made by Hangzhou FIRST Co., Ltd.) as a sealing material, and (Film 1) as a multilayer film for a reflecting member are laminated in this order.
  • EVA F806 made by Hangzhou FIRST Co., Ltd.
  • (Film 1) as a multilayer film for a reflecting member are laminated in this order.
  • (1) Production of a reflecting mirror A reflecting mirror having a light receiving surface size of 1,475 mm ⁇ 971 mm was produced by the method described in the section.
  • the solar cell cover glass an embossed glass manufactured by Osaka Glass Industry Co., Ltd. was used.
  • two polycrystalline silicon solar cell modules (light receiving surface size: 1,475 mm ⁇ 971 mm) manufactured by Fujipream Co., Ltd.
  • solar cell module in the examples
  • the maximum output was measured according to the reference state. After confirming that the output of the two solar cell modules is almost equal, one of them is facing south on the exposure test site (Otsu City, Shiga Prefecture) at the Toray Industries Inc. Seta Factory, and against the ground (horizontal plane). It was installed to make a 25 ° angle. Furthermore, another solar cell module was similarly installed in a place 1.5 m away from the installed solar cell module to the east. Next, a reflection mirror was installed in front of one of the solar cell modules so as to face north and form an angle of 30 ° with the ground. Table 2 shows the evaluation results such as the specular reflectance of the reflecting mirror and the output improvement rate of the solar cell module.
  • Example 2 (Examples 2 to 5, Comparative Examples 1 to 4) Evaluation was carried out in the same manner as in Example 1 except that the reflecting member film constituting the reflecting mirror was as shown in Table 2. The evaluation results are shown in Table 2.
  • Example 5 Evaluation was carried out in the same manner as in Example 1 except that only the reflection mirror was made of glass. The evaluation results are shown in Table 2.
  • Example 6 Evaluation was carried out in the same manner as in Example 1 except that the solar cell cover glass with a thickness of 3 mm was replaced with a highly transparent glass with a thickness of 3 mm. The evaluation results are shown in Table 2.
  • the refractive index difference of film 6 is unknown. Since the films 7 and 8 in the comparative examples 3 and 4 do not have a laminated structure in which the A layer and the B layer are repeated, and the comparative example 5 does not have a film, the comparative examples 3 to 5 The measurement of the refractive index difference and the crosscut test were not performed.
  • a photovoltaic power generation system excellent in power generation efficiency and power generation stability can be obtained.
  • the solar power generation system of the present invention can be suitably used particularly for outdoor use, and can be more suitably used for an open rack.
  • Solar cell module 2 Reflection mirror 3: Solar cell module mount 4: Reflection mirror mount 5: Multilayer film 6: A layer 7: B layer 8: Front substrate 9: Sealing material 10: UV resistant layer 11: Solar cell element 12: solar cell back surface protection sheet

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention addresses the problem of providing a photovoltaic power generation system excellent in power generation efficiency and stable amount of power generation. The photovoltaic power generation system is characterized by being equipped with a reflection mirror provided at a position from which reflection is applied to a solar cell module and the light receiving surface of the solar cell module, wherein: a mirror surface reflectance when the wavelength of the reflection mirror is 800nm is 15% to 45%, inclusive; and a light beam transmittance when the wavelength of the reflection mirror is 800nm is 20% to 45%, inclusive.

Description

反射ミラーを備えた太陽光発電システムSolar power generation system with a reflective mirror
 本発明は、反射ミラーを備えた太陽光発電システムに関する。 The present invention relates to a photovoltaic power generation system provided with a reflection mirror.
 近年、石油や石炭等の化石燃料の代替エネルギーとして、原子力発電、水力発電、風力発電、及び太陽光発電などの種々の方法が注目されている。その中でも太陽光エネルギーを電気エネルギーに直接変換する太陽光発電は、クリーンなエネルギー源として期待されている。 In recent years, various methods such as nuclear power generation, hydroelectric power generation, wind power generation, and solar power generation have attracted attention as alternative energy for fossil fuels such as oil and coal. Among them, solar power generation that directly converts solar energy into electric energy is expected as a clean energy source.
 太陽光発電は一般に、太陽光が入射する受光面側から、透明なフロント基板/透明な封止材/太陽電池素子/封止材/太陽電池裏面保護シートがこの順に積層された構造を有する太陽電池モジュールによって行われる。太陽電池モジュールの受光面に照射された太陽光は、透明なフロント基板と透明な封止材を通じて太陽電池素子に到達し、太陽電池素子で電気エネルギーへと変換される。こうして得られた電気エネルギーは、太陽電池素子に接続されたリード線を通じて外部に取り出された後、各種電気機器に供給される。 Photovoltaic power generation generally has a structure in which a transparent front substrate / transparent encapsulant / solar cell element / encapsulant / solar cell back surface protective sheet is laminated in this order from the light-receiving surface side where sunlight enters. Performed by the battery module. Sunlight irradiated on the light receiving surface of the solar cell module reaches the solar cell element through the transparent front substrate and the transparent sealing material, and is converted into electric energy by the solar cell element. The electric energy obtained in this way is taken out through the lead wire connected to the solar cell element, and then supplied to various electric devices.
 太陽電池モジュールの発電量は、通常、太陽電池素子へ到達した太陽光の照度に比例する。そして、メガソーラーに代表される太陽光発電所においては、この太陽電池モジュール10枚程度を直列接続し、パワーコンディショナーで最適な電流値、電圧値で動作させることで、太陽光発電システムとして稼動させる態様が一般的である。 The amount of power generated by the solar cell module is usually proportional to the illuminance of sunlight that reaches the solar cell element. And in a photovoltaic power plant represented by mega solar, about 10 solar cell modules are connected in series, and are operated as a photovoltaic power generation system by operating at an optimal current value and voltage value with a power conditioner. Embodiments are common.
 また、太陽電池モジュールの発電量は、地表に到達する日射強度のみならず太陽高度による影響も受けるため、太陽電池モジュールの設置角度によっても変動することが知られている。そのため、太陽光発電システムの発電量向上には、設置環境の緯度や経度に応じて太陽電池モジュールの設置角度を調節し、太陽電池素子に入射する光量を増やすことも重要となる。 Also, it is known that the amount of power generated by the solar cell module varies depending on the installation angle of the solar cell module because it is affected not only by the solar radiation intensity reaching the ground surface but also by the solar altitude. Therefore, in order to improve the power generation amount of the photovoltaic power generation system, it is important to adjust the installation angle of the solar cell module according to the latitude and longitude of the installation environment and increase the amount of light incident on the solar cell element.
 近年では太陽光発電システムの年間積算発電量向上を目的として、太陽高度に応じて太陽電池モジュールの角度を変化させる追尾システムが開発されている(特許文献1)。また、太陽光を反射して太陽電池モジュールへ集光させる目的で、反射ミラーを使用した太陽光発電システムも知られている(特許文献2)。 In recent years, a tracking system that changes the angle of the solar cell module according to the solar altitude has been developed for the purpose of improving the annual integrated power generation amount of the solar power generation system (Patent Document 1). A solar power generation system using a reflection mirror is also known for the purpose of reflecting sunlight and condensing the solar cell module (Patent Document 2).
特開2016-62931号公報JP 2016-62931 A 特開2006-40931号公報JP 2006-40931 A
 しかしながら、特許文献1の追尾システムでは太陽電池モジュールの単位面積当たりの発電量が大きくならないため発電効率が不十分であり、出力向上に対するコストが見合わないことも多い。また、天気状況、時間及び季節によって、太陽光発電により得られる発電量は不安定となることがあり、発電システムに負荷をかけることがある。特許文献2に記載の太陽光発電システムにおいては、使用する反射ミラーの光線透過率が低いため、太陽高度が低い時に反射ミラーにより太陽光が遮蔽され、反射ミラーの後方から照射する光が利用できず、一時的に出力が低下するため、発電効率が不十分となることがある。また、曇天などの天気状況で、太陽光が空の各方向から入射するため、鏡面反射率のみが高く、光拡散性が低いミラーは発電効率が不十分となることがある。 However, in the tracking system of Patent Document 1, the amount of power generation per unit area of the solar cell module does not increase, so the power generation efficiency is insufficient, and the cost for improving the output is often not commensurate. Also, depending on the weather conditions, time, and season, the amount of power generated by solar power generation may become unstable and may place a load on the power generation system. In the solar power generation system described in Patent Document 2, since the light transmittance of the reflection mirror used is low, sunlight is shielded by the reflection mirror when the solar altitude is low, and light irradiated from the back of the reflection mirror can be used. However, since the output temporarily decreases, the power generation efficiency may be insufficient. Also, in weather conditions such as cloudy weather, sunlight enters from each direction of the sky, so a mirror with high mirror reflectivity only and low light diffusivity may have insufficient power generation efficiency.
 そこで本発明は、係る従来技術に鑑みて、発電効率及び発電量の安定性に優れた太陽光発電システムを提供することをその課題とする。 Therefore, in view of the related art, an object of the present invention is to provide a solar power generation system excellent in power generation efficiency and power generation stability.
 上記課題を達成するため、本発明は以下の構成からなる。
(1) 太陽電池モジュール及び太陽電池モジュールの受光面へ反射光を照射する位置に設けられた反射ミラーを備え、前記反射ミラーの波長800nmにおける鏡面反射率が15%以上45%以下であり、かつ、前記反射ミラーの波長800nmにおける光線透過率が20%以上45%以下であることを特徴とする、太陽光発電システム。
(2) 前記反射ミラーの波長1,800nmにおける光線透過率が80%以上であり、かつ前記反射ミラーの波長1,200nm以上1,400nm以下における平均光線透過率が60%以上80%以下であることを特徴とする、(1)に記載の太陽光発電システム。
(3) 前記反射ミラーは熱可塑性樹脂を主成分とする2種類の層で構成されるフィルムを具備し、 前記2種類の層(屈折率の大きい層をA層、屈折率の小さい層をB層とする)のうち、前記A層と前記B層とが厚み方向に交互に位置し、前記A層と前記B層の合計層数が600以上であり、かつ、JIS K 5600-5-6:1999により測定した前記A層と前記B層との間の剥離強度の試験結果の分類が0であることを特徴とする、(1)又は(2)に記載の太陽光発電システム。
(4) 前記反射ミラーの受光面に対して、入射角30°で入射させた場合の、受光角25°から35°までにおける波長300nmから1,200nm帯域での平均変角反射率の最大値が15%以上35%以下であり、かつ入射角60°で入射した場合の、受光角55°から65°までにおける波長300nmから1,200nmまでの帯域での平均変角反射率の最大値が10%以上30%以下であることを特徴とする、(1)~(3)のいずれかに記載の太陽光発電システム。
(5) 前記反射ミラーの波長700nmにおける鏡面反射率が15%以上45%以下であり、かつ、前記反射ミラーの波長700nmにおける光線透過率が20%以上45%以下であることを特徴とする、(1)~(4)のいずれかに記載の太陽光発電システム。
(6)前記A層を構成する熱可塑性樹脂がポリアルキレンテレフタレートを主成分とする、(3)~(5)のいずれかに記載の太陽光発電システム。
(7) 前記反射ミラーのヘイズが4%以上30%以下であることを特徴とする、(1)~(6)のいずれかに記載の太陽光発電システム。
(8) 前記反射ミラーは、受光面側から、フロント基板、封止材、及び前記A層と前記B層とが厚み方向に交互に位置し、前記A層と前記B層の合計層数が600以上である多層フィルムをこの順に有し、前記フロント基板が、強化ガラス、ポリカーボネート及びポリメタクリル酸メチルのいずれかを構成成分とし、かつ前記封止材がエチレン・酢酸ビニル共重合体(EVA)、透明シリコン、及びポリメタクリル酸メチルのいずれかを主成分とすることを特徴とする、(3)~(7)のいずれかに記載の太陽光反射システム。
(9) 前記フロント基板のヘイズが10%以上75%以下であることを特徴とする、(8)に記載の太陽光発電システム。
(10) 前記多層フィルムの受光面とは反対側の面に、耐UV層を有することを特徴とする、(8)又は(9)のいずれかに記載の太陽光発電システム。
In order to achieve the above object, the present invention has the following configuration.
(1) A solar cell module and a reflective mirror provided at a position where reflected light is applied to a light receiving surface of the solar cell module, the specular reflectance at a wavelength of 800 nm of the reflective mirror being 15% or more and 45% or less, The solar power generation system characterized in that the reflection mirror has a light transmittance of 20% to 45% at a wavelength of 800 nm.
(2) The light transmittance at a wavelength of 1,800 nm of the reflection mirror is 80% or more, and the average light transmittance at a wavelength of 1,200 nm to 1,400 nm of the reflection mirror is 60% to 80%. The solar power generation system as described in (1) characterized by the above-mentioned.
(3) The reflection mirror includes a film composed of two types of layers mainly composed of a thermoplastic resin, and the two types of layers (a layer having a high refractive index is a layer A and a layer having a low refractive index is a layer B). The A layer and the B layer are alternately positioned in the thickness direction, the total number of the A layer and the B layer is 600 or more, and JIS K 5600-5-6 : The photovoltaic power generation system according to (1) or (2), wherein the classification of the test result of the peel strength between the A layer and the B layer measured by 1999 is 0.
(4) The maximum value of the average variable reflectivity in the wavelength range of 300 nm to 1,200 nm in the light receiving angle range of 25 ° to 35 ° when incident on the light receiving surface of the reflecting mirror at an incident angle of 30 °. Is 15% or more and 35% or less, and the maximum value of the average variable reflectivity in the band from the wavelength of 300 nm to 1,200 nm at the light receiving angle of 55 ° to 65 ° when the incident angle is 60 °. The photovoltaic power generation system according to any one of (1) to (3), wherein the photovoltaic power generation system is 10% or more and 30% or less.
(5) The specular reflectance of the reflection mirror at a wavelength of 700 nm is 15% or more and 45% or less, and the light transmittance of the reflection mirror at a wavelength of 700 nm is 20% or more and 45% or less. (1) to the solar power generation system according to any one of (4).
(6) The photovoltaic power generation system according to any one of (3) to (5), wherein the thermoplastic resin constituting the A layer is mainly composed of polyalkylene terephthalate.
(7) The solar power generation system according to any one of (1) to (6), wherein the reflection mirror has a haze of 4% to 30%.
(8) From the light-receiving surface side, the reflection mirror has a front substrate, a sealing material, and the A layer and the B layer alternately positioned in the thickness direction, and the total number of the A layer and the B layer is It has a multilayer film of 600 or more in this order, the front substrate contains any one of tempered glass, polycarbonate and polymethyl methacrylate, and the sealing material is an ethylene / vinyl acetate copolymer (EVA) The solar light reflection system according to any one of (3) to (7), wherein any one of, transparent silicon, and polymethyl methacrylate is a main component.
(9) The solar power generation system according to (8), wherein the front substrate has a haze of 10% to 75%.
(10) The photovoltaic power generation system according to any one of (8) and (9), wherein a UV-resistant layer is provided on a surface opposite to the light receiving surface of the multilayer film.
 本発明により、発電効率及び発電量の安定性に優れた太陽光発電システムを提供することができる。 According to the present invention, it is possible to provide a photovoltaic power generation system excellent in power generation efficiency and power generation stability.
本発明の一実施態様に係る太陽光発電システムの側面図。The side view of the solar energy power generation system concerning one embodiment of the present invention. 本発明の一実施態様に係る太陽光発電システムの上面図。The top view of the photovoltaic power generation system concerning one embodiment of the present invention. 本発明の一実施態様に係る太陽光発電システムの上面図。The top view of the photovoltaic power generation system concerning one embodiment of the present invention. 反射ミラーに用いる多層フィルムの一例を示す断面図。Sectional drawing which shows an example of the multilayer film used for a reflective mirror. 本発明において用いることができる反射ミラーの一例を示す断面図。Sectional drawing which shows an example of the reflective mirror which can be used in this invention. 本発明において用いることができる太陽電池モジュールの一例を示す断面図。Sectional drawing which shows an example of the solar cell module which can be used in this invention.
 以下、本発明の太陽光発電システムについて、詳細に説明する。 Hereinafter, the photovoltaic power generation system of the present invention will be described in detail.
 <太陽光発電システム>
 本発明の太陽光発電システムは、太陽電池モジュール及び太陽電池モジュールの受光面へ反射光を照射する位置に設けられた反射ミラーを備えることが重要である。このような態様とすることにより、反射ミラーにより反射された太陽光が太陽電池モジュールに照射されるため、太陽電池素子に到達する太陽光が多くなる。そのため、反射ミラーのない太陽光発電システムに比べて発電量が向上する。
<Solar power generation system>
It is important for the solar power generation system of the present invention to include a solar cell module and a reflection mirror provided at a position where the reflected light is applied to the light receiving surface of the solar cell module. By setting it as such an aspect, since the sunlight reflected by the reflective mirror is irradiated to a solar cell module, the sunlight which reaches | attains a solar cell element increases. Therefore, the amount of power generation is improved compared to a solar power generation system without a reflection mirror.
 反射ミラーの配置は、本発明の効果を損なわない限り特に制限されないが、太陽電池素子に到達する光量を増やす観点から、例えば図1に示すように、反射ミラーが太陽電池モジュールの受光面の前方に位置し、かつ反射ミラーの受光面と太陽電池モジュールの受光面が向き合っていることが好ましい。このような態様とすることにより、反射ミラーにより反射された太陽光の多くが太陽電池モジュールの受光面に入射することとなり、太陽電池モジュールの出力が向上する。ここで受光面とは、地表と反対側に位置する面をいい、通常はこの受光面に太陽光が照射される。 The arrangement of the reflection mirror is not particularly limited as long as the effect of the present invention is not impaired. From the viewpoint of increasing the amount of light reaching the solar cell element, for example, as shown in FIG. 1, the reflection mirror is positioned in front of the light receiving surface of the solar cell module. It is preferable that the light receiving surface of the reflecting mirror and the light receiving surface of the solar cell module face each other. By setting it as such an aspect, most sunlight reflected by the reflective mirror will inject into the light-receiving surface of a solar cell module, and the output of a solar cell module will improve. Here, the light receiving surface refers to a surface located on the opposite side of the ground surface, and usually sunlight is irradiated onto the light receiving surface.
 本発明の太陽光発電システムを南回帰線より北に位置する地域に設置する場合は、太陽電池モジュールの受光面を南側に向けて設置することが好ましい。このような態様とすることにより、太陽が太陽電池モジュールに対して南側に位置する時間が長くなるため、より多くの直射光を太陽電池素子に入射させることができる。一方、同様の観点から、南回帰線より南に位置する地域においては、太陽電池モジュールの受光面を北側に向けて設置することが好ましい。なお、ここで南側とは、真南の方角のみではなく、真南の方角から西又は東に45°以下傾いた方角も含むものとし、北側についても同様に解釈するものとする。 When installing the solar power generation system of the present invention in an area located north of the south return line, it is preferable to install the solar cell module with the light receiving surface facing the south side. By setting it as such an aspect, since the time which the sun is located in the south side with respect to a solar cell module becomes long, more direct light can be entered into a solar cell element. On the other hand, from the same viewpoint, it is preferable to install the light receiving surface of the solar cell module toward the north side in an area located south of the south regression line. Here, the south side includes not only the direction of true south but also the direction inclined 45 ° or less west or east from the direction of true south, and the north side is interpreted in the same manner.
 本発明の太陽光発電システムは、季節や設置する地点の緯度にもよるが、太陽電池素子に到達する太陽光を増やす観点から、水平面と反射ミラーの受光面とのなす角の大きさが5°以上50°以下であることが好ましい。水平面と反射ミラーの受光面とのなす角の大きさが5°以上の場合、反射ミラーによる反射光は空ではなく太陽電池モジュールの方向に向かうため、太陽電池モジュールに入射する反射光の量が多くなる。一方、水平面と反射ミラーの受光面とのなす角の大きさが50°以下の場合、太陽光が反射ミラーで遮られにくくなり、太陽電池モジュールに直接入射する光の量の低下が抑えられる。 The solar power generation system of the present invention has an angle of 5 between the horizontal plane and the light receiving surface of the reflection mirror from the viewpoint of increasing the sunlight reaching the solar cell element, depending on the season and the latitude of the installation point. It is preferable that the angle is from 50 ° to 50 °. When the angle between the horizontal plane and the light receiving surface of the reflecting mirror is 5 ° or more, the reflected light from the reflecting mirror is directed not to the sky but to the solar cell module, so the amount of reflected light incident on the solar cell module is Become more. On the other hand, when the angle formed by the horizontal plane and the light receiving surface of the reflection mirror is 50 ° or less, sunlight is not easily blocked by the reflection mirror, and a decrease in the amount of light directly incident on the solar cell module can be suppressed.
 本発明の太陽光発電システムにおける太陽電池モジュールと反射ミラーの好ましい位置関係について、一実施態様を示して説明する。図1は、本発明の一実施態様に係る太陽光発電システムの側面図を、図2、3は、本発明の一実施態様に係る太陽光発電システムの上面図をそれぞれ示す。なお、本一実施態様は具体例として提示するものであり、本発明はこれに限定されない。 The preferred positional relationship between the solar cell module and the reflecting mirror in the photovoltaic power generation system of the present invention will be described with reference to one embodiment. FIG. 1 is a side view of a photovoltaic power generation system according to an embodiment of the present invention, and FIGS. 2 and 3 are top views of the photovoltaic power generation system according to an embodiment of the present invention. In addition, this one embodiment is shown as a specific example, and this invention is not limited to this.
 図1~3に示す太陽光発電システムにおいて、太陽電池モジュール1は、受光面が南側向き、かつ受光面と水平面とのなす角の大きさが25°となるように、太陽電池モジュール用架台3により固定されている。そして、反射ミラー2は、太陽電池モジュール1の受光面の前方に、受光面が北側向き、かつ受光面と水平面とのなす角の大きさが25°となるように反射ミラー用架台4により固定されている。なお、以下、太陽電池モジュール用架台3と反射ミラー用架台4を総称して、架台ということがある。 In the solar power generation system shown in FIGS. 1 to 3, the solar cell module 1 includes a solar cell module mount 3 so that the light receiving surface faces the south side and the angle between the light receiving surface and the horizontal plane is 25 °. It is fixed by. The reflection mirror 2 is fixed by the reflection mirror mount 4 in front of the light receiving surface of the solar cell module 1 so that the light receiving surface faces the north side and the angle between the light receiving surface and the horizontal surface is 25 °. Has been. Hereinafter, the solar cell module mount 3 and the reflection mirror mount 4 may be collectively referred to as a mount.
 このとき、反射ミラーの下端高さを太陽電池モジュールの下端高さと揃えると、反射ミラー2による反射光が太陽電池モジュール1の裏面やフレーム(図示しない)等によって遮蔽されず、効率的に太陽電池モジュール1の受光面に到達するため好ましい。図1~3においては、太陽電池モジュールと反射ミラーがその長辺方向において平行な位置関係で描かれているが、必ずしも平行である必要はなく、設置する場所の地形等に応じて適宜その位置関係を調整することができる。 At this time, if the lower end height of the reflection mirror is aligned with the lower end height of the solar cell module, the reflected light from the reflection mirror 2 is not shielded by the back surface of the solar cell module 1, the frame (not shown), etc. This is preferable because it reaches the light receiving surface of the module 1. 1 to 3, the solar cell module and the reflecting mirror are drawn in a parallel positional relationship in the long side direction, but they are not necessarily parallel, and the positions thereof are appropriately determined according to the terrain of the place where the solar cell module is installed. The relationship can be adjusted.
 図1~3において、太陽電池モジュール1と反射ミラー2はいずれも凹凸のない直方体として描かれているが、本発明の効果を損なわない限り、その表面に凹凸を有していても、その表面が曲面であってもよい。また、太陽電池モジュール1の受光面と反射ミラー2の受光面の面積については、本発明の効果を損なわない限り特に制限されず、設置スペース等を考慮して適宜調節することができる。例えば、図2に示すように両者の面積が等しくても、図3に示すように両者の面積が異なってもよい(図3の例は、太陽電池モジュール1の受光面よりも反射ミラー2の受光面の面積が大きい例である。)。図2に示すように両者の面積が等しい場合、両者に共通する部材を複数サイズ用意する必要がなくなり、製造工程の簡略化やコスト削減が可能となる利点がある。 1 to 3, the solar cell module 1 and the reflecting mirror 2 are both drawn as a rectangular parallelepiped having no irregularities. However, as long as the effect of the present invention is not impaired, the surface of the solar cell module 1 and the reflecting mirror 2 can be obtained even if the surface has irregularities. May be a curved surface. Further, the areas of the light receiving surface of the solar cell module 1 and the light receiving surface of the reflection mirror 2 are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately adjusted in consideration of installation space and the like. For example, the area of both may be equal as shown in FIG. 2 or the area of both may be different as shown in FIG. 3 (the example of FIG. This is an example in which the area of the light receiving surface is large.) When both areas are equal as shown in FIG. 2, there is no need to prepare a plurality of sizes of members common to both, and there is an advantage that the manufacturing process can be simplified and the cost can be reduced.
 さらに、反射ミラーは、その剛性を向上させて強風等の自然環境への耐性を高める観点から、端部にフレーム(図示しない)を有することも好ましい。フレームは剛性向上の観点から鉄、アルミニウム、真鍮、銀、及び銅などの金属製であることが好ましく、剛性とコストのバランスからアルミニウム製であることが好ましい。 Furthermore, it is also preferable that the reflecting mirror has a frame (not shown) at the end from the viewpoint of improving its rigidity and enhancing resistance to natural environments such as strong winds. The frame is preferably made of a metal such as iron, aluminum, brass, silver, or copper from the viewpoint of improving rigidity, and is preferably made of aluminum from the balance of rigidity and cost.
 架台3や4は、太陽電池モジュール1や反射ミラー2の受光面が向く方角や水平面に対する角度を調節できる機構(以下、総称して角度調節機構ということがある。)を有することが好ましい。反射ミラーによる出力向上効果は、季節による太陽高度の変動等の影響を受ける。そのため、架台3や4が角度調節機構を有することにより、季節の変化に合わせて太陽電池モジュール1や反射ミラー2の設置条件を最適化することが容易となり、その結果、季節が変動しても高い出力向上効果を得ることが容易となる。 The mounts 3 and 4 preferably have a mechanism that can adjust the direction in which the light receiving surfaces of the solar cell module 1 and the reflection mirror 2 face and the angle with respect to the horizontal plane (hereinafter, sometimes collectively referred to as an angle adjusting mechanism). The output improvement effect by the reflection mirror is affected by the change in solar altitude due to the season. For this reason, the pedestals 3 and 4 have an angle adjustment mechanism, so that it is easy to optimize the installation conditions of the solar cell module 1 and the reflection mirror 2 in accordance with the change of the season. It becomes easy to obtain a high output improvement effect.
 より具体的には、太陽高度が高い夏季に、反射ミラー2で反射された太陽光を太陽電池モジュール1の受光面へ効率的に入射させるためには、水平面と反射ミラー2の受光面とのなす角の大きさを、上記好ましい範囲内で大きくすることが好ましい。太陽高度が高い場合に水平面と反射ミラー2の受光面とのなす角の大きさが小さいと、反射ミラー2による反射光が太陽電池モジュール1の受光面から外れた方向に行きやすいためである。一方、太陽高度が低い冬季においては、上記観点より、水平面と反射ミラー2の受光面とのなす角の大きさを、夏季に比べて小さくすることが好ましい。 More specifically, in order to make sunlight reflected by the reflection mirror 2 efficiently incident on the light receiving surface of the solar cell module 1 in summer when the solar altitude is high, the horizontal plane and the light receiving surface of the reflection mirror 2 It is preferable to increase the size of the angle formed within the above preferable range. This is because, when the solar altitude is high, if the angle between the horizontal plane and the light receiving surface of the reflecting mirror 2 is small, the reflected light from the reflecting mirror 2 tends to go away from the light receiving surface of the solar cell module 1. On the other hand, in winter when the solar altitude is low, it is preferable that the angle between the horizontal plane and the light receiving surface of the reflecting mirror 2 is smaller than that in summer from the above viewpoint.
 <反射ミラー>
 本発明の太陽光発電システムでは、太陽高度が高い状態では主に受光面側に太陽光が照射されるが、太陽高度が低くなると受光面と反対側にも太陽光が照射される。そのため、太陽高度が高い状態において発電量を向上させるためには、太陽光発電に寄与する波長帯域の光線の太陽電池モジュールへの入射量をできるだけ増やすために、発電量向上に寄与する波長帯域における反射ミラーの鏡面反射率が高いことが好ましい。一方、太陽高度が低い状態において発電量を維持するためには、鏡面反射によって同帯域の光線の太陽電池モジュールへの入射量をできるだけ増やすと共に、反射ミラー後方からの太陽光を透過させてモジュールに到達させることも必要となる。そのため、反射ミラーには、同帯域における鏡面反射率が高いことだけでなく、同帯域における光線透過率が高いことも求められるが、一般的に鏡面反射率と光線透過率とはトレードオフの関係にある。また、太陽高度は時間や季節によって変動することも考慮すれば、太陽光発電システムの発電量を最大化するには、発電量の向上に寄与する光線の鏡面反射率と光線透過率のバランスが重要となる。
<Reflection mirror>
In the solar power generation system of the present invention, sunlight is mainly irradiated on the light receiving surface side when the solar altitude is high. However, when the solar altitude is low, sunlight is also irradiated on the side opposite to the light receiving surface. Therefore, in order to improve the power generation amount in a state where the solar altitude is high, in order to increase the incident amount to the solar cell module of the light in the wavelength band contributing to solar power generation as much as possible, in the wavelength band contributing to the power generation improvement It is preferable that the reflection mirror has a high specular reflectance. On the other hand, in order to maintain the power generation amount at a low solar altitude, the amount of incident light of the same band to the solar cell module is increased as much as possible by specular reflection, and the sunlight from the back of the reflection mirror is transmitted to the module. It is also necessary to make it reach. Therefore, the reflection mirror is required to have not only high specular reflectance in the same band but also high light transmittance in the same band, but generally the specular reflectance and light transmittance are in a trade-off relationship. It is in. Considering that the solar altitude fluctuates depending on the time and season, in order to maximize the power generation amount of the solar power generation system, the balance between the specular reflectance and light transmittance of the light beam that contributes to the improvement of the power generation amount is required. It becomes important.
 上記観点から、本発明の太陽光発電システムにおいては、反射ミラーの波長800nmにおける鏡面反射率が15%以上45%以下であり、かつ、波長800nmにおける光線透過率が20%以上45%以下であることが重要である。同様の観点から、反射ミラーの波長800nmにおける鏡面反射率は20%以上45%以下が好ましく、25%以上45%以下がより好ましい。また、波長800nmにおける光線透過率は20%以上40%以下が好ましく、20%以上35%以下がより好ましい。 From the above viewpoint, in the photovoltaic power generation system of the present invention, the specular reflectance of the reflection mirror at a wavelength of 800 nm is 15% or more and 45% or less, and the light transmittance at a wavelength of 800 nm is 20% or more and 45% or less. This is very important. From the same viewpoint, the specular reflectance at a wavelength of 800 nm of the reflecting mirror is preferably 20% to 45%, more preferably 25% to 45%. The light transmittance at a wavelength of 800 nm is preferably 20% to 40%, more preferably 20% to 35%.
 さらに、例えばアモルファスシリコン太陽電池素子の発電への寄与が波長800nmより一般的に高いとされる波長700nmの光を、反射ミラーの後方から照射される場合にも有効に利用する観点から、反射ミラーの波長700nmにおける鏡面反射率が15%以上45%以下であり、かつ、波長700nmにおける光線透過率が20%以上45%以下であることが好ましい。同様の観点から、反射ミラーの波長700nmにおける鏡面反射率は20%以上45%以下がより好ましく、30%以上45%以下がさらに好ましい。また、波長700nmにおける光線透過率は25%以上45%以下がより好ましく、30%以上40%以下がさらに好ましい。 Furthermore, for example, from the viewpoint of effectively using light having a wavelength of 700 nm, which is generally considered to have a higher contribution to power generation by an amorphous silicon solar cell element than a wavelength of 800 nm, from the back of the reflection mirror, the reflection mirror The specular reflectance at a wavelength of 700 nm is preferably 15% or more and 45% or less, and the light transmittance at a wavelength of 700 nm is preferably 20% or more and 45% or less. From the same viewpoint, the specular reflectance of the reflecting mirror at a wavelength of 700 nm is more preferably 20% or more and 45% or less, and further preferably 30% or more and 45% or less. The light transmittance at a wavelength of 700 nm is more preferably 25% or more and 45% or less, and further preferably 30% or more and 40% or less.
 同様の観点から、反射ミラーの波長400nmから700nmにおける鏡面反射率の平均値が20%以上45%以下であり、かつ波長400nmから700nmにおける光線透過率の平均値が20%以上45%以下であることが好ましい。さらにこの波長帯域における鏡面反射率の平均値が25%以上45%以下であり、かつこの波長帯域における光線透過率の平均値が25%以上45%以下であることがより好ましく、この波長帯域における鏡面反射率の平均値が30%以上40%以下であり、かつこの波長帯域における光線透過率の平均値が30%以上40%以下であることがさらにより好ましい。 From the same point of view, the average value of the specular reflectance of the reflection mirror at a wavelength of 400 nm to 700 nm is 20% or more and 45% or less, and the average value of the light transmittance at a wavelength of 400 nm to 700 nm is 20% or more and 45% or less. It is preferable. Further, it is more preferable that the average value of the specular reflectance in this wavelength band is 25% or more and 45% or less, and the average value of the light transmittance in this wavelength band is 25% or more and 45% or less. More preferably, the average value of the specular reflectance is 30% or more and 40% or less, and the average value of the light transmittance in this wavelength band is 30% or more and 40% or less.
 反射ミラーの波長800nmにおける鏡面反射率を15%以上45%以下若しくは上記の好ましい範囲とし、かつ波長800nmにおける光線透過率を20%以上45%以下若しくは上記の好ましい範囲とする方法、及び反射ミラーの波長700nmにおける鏡面反射率が20%以上45%以下若しくは上記の好ましい範囲とし、かつ波長700nmにおける光線透過率を20%以上45%以下若しくは上記の好ましい範囲とする方法は、本発明の効果を損なわない限り特に制限されないが、例えば、屈折率の異なる2つの層が交互に繰り返し位置する構成を有する反射ミラーを使用する方法が挙げられる(その詳細については後述する。)。 A method of setting the specular reflectance of the reflection mirror at a wavelength of 800 nm to 15% to 45% or the above preferable range, and the light transmittance at a wavelength of 800 nm to 20% to 45% or the above preferable range, and a reflection mirror A method in which the specular reflectance at a wavelength of 700 nm is 20% or more and 45% or less or the above preferable range, and the light transmittance at a wavelength of 700 nm is 20% or more and 45% or less or the above preferable range is impaired. Although there is no particular limitation as long as there is no particular limitation, for example, a method of using a reflection mirror having a configuration in which two layers having different refractive indexes are alternately and repeatedly positioned will be described (details will be described later).
 また、本発明の太陽光発電システムにおいては、発電効率と耐久性の面から、反射ミラーの波長1,800nmにおける光線透過率が80%以上であることが好ましい。このような態様とすることにより、発電に寄与せず太陽電池モジュールの性能や耐久性を悪化させる波長帯域の光の影響を低く抑えることができる。より具体的には、波長1,800nmの光は赤外領域の光であり、ほぼ全ての太陽電池素子の発電に寄与しないにもかかわらず、太陽電池素子や太陽電池モジュールの温度を上昇させる。一般に、太陽電池モジュールは温度が上昇すると耐久性や発電量が低下するため、耐久性や発電量の観点からは、このような波長の光の入射を少なくするのが好ましい。 In the photovoltaic power generation system of the present invention, it is preferable that the light transmittance at a wavelength of 1,800 nm of the reflection mirror is 80% or more from the viewpoint of power generation efficiency and durability. By setting it as such an aspect, the influence of the light of the wavelength band which does not contribute to electric power generation and deteriorates the performance and durability of a solar cell module can be suppressed low. More specifically, light having a wavelength of 1,800 nm is light in the infrared region, and raises the temperature of the solar cell element or solar cell module even though it does not contribute to power generation of almost all solar cell elements. In general, since the durability and power generation amount of a solar cell module decrease as the temperature rises, it is preferable to reduce the incidence of light having such a wavelength from the viewpoint of durability and power generation amount.
 また、本発明の太陽光発電システムにおいては、発電量と耐久性を保ちつつ、太陽電池素子の選択の幅を広げる観点から、反射ミラーの波長1,200nm以上1,400nm以下における平均光線透過率が60%以上80%以下であることが好ましい。波長1,200nm以上1,400nm以下の光も赤外領域の光であり、太陽電池素子や太陽電池モジュールの温度を上昇させる。そして、最も一般的な太陽電池素子である結晶シリコン太陽電池素子では波長400nm以上1,150nm以下の範囲の光が、アモルファスシリコン太陽電池素子では波長300nm以上700nm以下の波長の光がそれぞれ発電に寄与し、波長1,200nm以上1,400nm以下の波長の光は殆ど発電に寄与しない。そのため、反射ミラーの波長1,200nm以上1,400nm以下における平均光線透過率が60%以上であることにより、反射ミラーによる同波長帯域の光の反射やそれに伴う太陽電池モジュールへの入射が低く抑えられるため、太陽光発電システムが先に例示した太陽電池素子を用いた太陽電池モジュールを備える場合、太陽電池モジュールの発電量と耐久性が保たれる。 In the photovoltaic power generation system of the present invention, the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror from the viewpoint of expanding the selection range of the solar cell element while maintaining the power generation amount and durability. Is preferably 60% or more and 80% or less. Light having a wavelength of 1,200 nm or more and 1,400 nm or less is also light in the infrared region, and raises the temperature of the solar cell element or solar cell module. In the crystalline silicon solar cell element that is the most common solar cell element, light in the wavelength range of 400 nm to 1,150 nm contributes to power generation, and in the amorphous silicon solar cell element, light in the wavelength range of 300 nm to 700 nm contributes to power generation. However, light having a wavelength of 1,200 nm or more and 1,400 nm or less hardly contributes to power generation. Therefore, when the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror is 60% or more, reflection of light in the same wavelength band by the reflection mirror and incident incident on the solar cell module are suppressed to a low level. Therefore, when a solar power generation system is provided with the solar cell module using the solar cell element illustrated previously, the electric power generation amount and durability of a solar cell module are maintained.
 しかしながら一方で、波長350nm以上1,750nm以下の光が発電に寄与するガリウムヒ素マルチ接合太陽電池素子のように、波長1,200nm以上1,400nm以下の波長の光によって発電量が増加する太陽電池素子も存在する。そのため、反射ミラーの波長1,200nm以上1,400nm以下における平均光線透過率が80%以下であることにより、このような太陽電池素子を用いた太陽電池モジュールを備える太陽光発電システムにおいても、反射ミラーの効果を得ることができる。 However, on the other hand, a solar cell whose power generation amount is increased by light having a wavelength of 1,200 nm to 1,400 nm, such as a gallium arsenide multi-junction solar cell element in which light having a wavelength of 350 nm to 1,750 nm contributes to power generation. There are also elements. Therefore, since the average light transmittance at a wavelength of 1,200 nm or more and 1,400 nm or less of the reflection mirror is 80% or less, even in a solar power generation system including a solar cell module using such a solar cell element, reflection is also performed. A mirror effect can be obtained.
 反射ミラーの波長1,800nmにおける光線透過率を80%以上とし、1,200nm以上1,400nm以下における平均光線透過率を60%以上80%以下とする方法は、本発明の効果を損なわない限り特に制限されないが、例えば、反射ミラーの波長800nmにおける鏡面反射率を15%以上45%以下若しくは上記の好ましい範囲とし、かつ波長800nmにおける光線透過率を20%以上45%以下若しくは上記の好ましい範囲とする方法と同様の方法が挙げられる。 The method of setting the light transmittance at a wavelength of 1,800 nm of the reflecting mirror to be 80% or more and setting the average light transmittance at 1,200 nm to 1,400 nm to 60% to 80%, as long as the effect of the present invention is not impaired. Although not particularly limited, for example, the specular reflectance of the reflection mirror at a wavelength of 800 nm is 15% or more and 45% or less or the above preferable range, and the light transmittance at a wavelength of 800 nm is 20% or more and 45% or less or the above preferable range. The method similar to the method of doing is mentioned.
 本発明の太陽光発電システムにおいては、太陽高度が低い場合の発電向上の観点から、前記反射ミラーの受光面に対して、入射角30°で入射させた場合の、受光角25°から35°までにおける波長300nmから1,200nmまでの帯域での平均変角反射率の最大値が15%以上35%以下であり、かつ入射角60°で入射させた場合の、波長300nmから1,200nmまでの帯域での平均変角反射率の最大値が10%以上30%以下であることが好ましい。平均変角反射率は、300nm~1,200nmの帯域における反射角度25°~35°(または55°~65°)それぞれで測定された反射率の平均値であり、その平均値のうち最大の反射率を、平均変角反射率の最大値という。光の鏡面反射と拡散反射及び透過の三者は一般的にトレードオフの関係にある。太陽高度または太陽光照度が高いときには鏡面反射が重要であり、一方、太陽高度または太陽光照度が低いときには拡散反射及び透過が重要になる。発電量安定性の観点から、鏡面反射と拡散反射及び透過のバランスが重要である。平均変角反射率の最大値が大きいほど、鏡面反射の度合いが高くなり、光透過性と光散乱が低くなる。前記観点から、平均変角反射率の最大値は発電向上及び発電量安定性の指標となる。 In the solar power generation system of the present invention, from the viewpoint of power generation improvement when the solar altitude is low, the light receiving angle is 25 ° to 35 ° when incident on the light receiving surface of the reflecting mirror at an incident angle of 30 °. From 300 nm to 1,200 nm when the maximum value of the average variable reflectivity in the band from 300 nm to 1,200 nm is 15% to 35% and the incident angle is 60 °. It is preferable that the maximum value of the average variable angle reflectance in the band is 10% or more and 30% or less. The average variable reflectivity is an average value of reflectivity measured at a reflection angle of 25 ° to 35 ° (or 55 ° to 65 °) in a band of 300 nm to 1,200 nm. The reflectance is referred to as the maximum value of the average variable angle reflectance. The specular reflection of light, diffuse reflection and transmission are generally in a trade-off relationship. Specular reflection is important when the solar altitude or solar illuminance is high, while diffuse reflection and transmission are important when the solar altitude or solar illuminance is low. From the viewpoint of power generation stability, the balance between specular reflection, diffuse reflection and transmission is important. The greater the maximum value of the average variable angle reflectance, the higher the degree of specular reflection, and the lower the light transmission and light scattering. From the above viewpoint, the maximum value of the average variable angle reflectance is an index of power generation improvement and power generation amount stability.
 このような態様であることにより、低太陽高度時の太陽光の透過率及び拡散反射が高く、低太陽高度時太陽光発電システム発電向上につながる。なお、平均変角反射率、平均変角反射率の最大値の求め方は実施例の項〔反射ミラーの作製、特性の測定方法及び評価方法〕(11)の項に記載のとおりである。 Such a mode has high sunlight transmittance and diffuse reflection at low solar altitude, leading to improved power generation at low solar altitude solar power generation system. In addition, how to obtain the average variable reflectivity and the maximum value of the average variable reflectivity is as described in the section of Example [Production of reflection mirror, characteristic measurement method and evaluation method] (11).
 同様の観点から、反射ミラーの受光面に対して、入射角30°で入射させた場合の、受光角25°から35°までにおける波長300nmから1,200nmまでの平均変角反射率の最大値が26%以上35%以下であり、かつ入射角60°で入射させた場合の、波長300nmから1,200nmまでにおける平均変角反射率の最大値が25%以上30%以下であることがより好ましい。 From the same viewpoint, the maximum value of the average variable reflectivity from the wavelength of 300 nm to 1,200 nm at the light receiving angle of 25 ° to 35 ° when incident on the light receiving surface of the reflecting mirror at an incident angle of 30 °. Is 26% or more and 35% or less, and the maximum value of the average variable reflectivity in the wavelength range from 300 nm to 1,200 nm when incident at an incident angle of 60 ° is 25% or more and 30% or less. preferable.
 なお、平均変角反射率は株式会社島津製作所製UV-3600Plusを用いて、可変角用光学ユニットを取り付けて測定することで得ることができる。また、平均変角反射率の最大値を上記の好ましい範囲とする手段としては、例えば、反射ミラーに、熱可塑性樹脂を主成分とするA層とB層とが厚み方向に交互に位置した多層フィルムを用いる方法が挙げられる。このような態様とすることにより、変角反射率が適宜に調節でき、反射ミラーに前記特性を持たせることができる。 In addition, an average variable angle reflectance can be obtained by attaching a variable angle optical unit using UV-3600Plus manufactured by Shimadzu Corporation. Further, as a means for setting the maximum value of the average variable angle reflectance to the above preferable range, for example, a multilayer in which A layers and B layers mainly composed of a thermoplastic resin are alternately arranged in the thickness direction on a reflection mirror. The method using a film is mentioned. By setting it as such an aspect, a variable-angle reflectance can be adjusted suitably and a reflection mirror can have the said characteristic.
 本発明の太陽光発電システムにおいては、反射ミラーは熱可塑性樹脂を主成分とする2種類の層で構成されるフィルムを具備し、前記2種類の層(屈折率の大きい層をA層、屈折率の小さい層をB層とする)のうち、A層とB層とが厚み方向に交互に位置し、前記A層と前記B層の合計層数が600以上であることが好ましい。このような態様とすることにより、反射ミラーの波長800nmにおける鏡面反射率、波長800nm、1,800nmにおける光線透過率、及び波長1,200nm以上1,400nm以下における平均光線透過率を前述の範囲に容易に制御することができる。その結果、太陽光発電システムの発電量や耐久性が向上する。なお、熱可塑性樹脂を主成分とするとは、層全体を100質量%としたときに、熱可塑性樹脂を90質量%以上100質量%以下含むことをいう。 In the photovoltaic power generation system of the present invention, the reflecting mirror includes a film composed of two types of layers mainly composed of a thermoplastic resin, and the two types of layers (the layer having a high refractive index is the A layer, the refractive layer is formed). It is preferable that the A layer and the B layer are alternately positioned in the thickness direction, and the total number of the A layer and the B layer is 600 or more. By setting it as such an aspect, the specular reflectance at a wavelength of 800 nm of the reflecting mirror, the light transmittance at a wavelength of 800 nm, 1,800 nm, and the average light transmittance at a wavelength of 1,200 nm to 1,400 nm are within the above-mentioned range. It can be controlled easily. As a result, the power generation amount and durability of the solar power generation system are improved. Note that the phrase “having a thermoplastic resin as a main component” means that the thermoplastic resin is contained in an amount of 90% by mass to 100% by mass when the entire layer is taken as 100% by mass.
 A層とB層とが厚み方向に交互に繰り返し存在することにより、特定の波長帯域において、反射ミラーの鏡面反射率を向上させることができる。反射させる波長帯域(主反射波長:λ)は下記式Aに基づいて定まり、各層の厚みと屈折率を調節することにより制御することができる。
式A:λ=2×(na×da+nb×db)
na:A層の面内平均屈折率
nb:B層の面内平均屈折率
da:A層の層厚み(nm)
db:B層の層厚み(nm)
λ:主反射波長(nm)。
When the A layer and the B layer are alternately and repeatedly present in the thickness direction, the specular reflectance of the reflecting mirror can be improved in a specific wavelength band. The wavelength band to be reflected (main reflection wavelength: λ) is determined based on the following formula A, and can be controlled by adjusting the thickness and refractive index of each layer.
Formula A: λ = 2 × (na × da + nb × db)
na: In-plane average refractive index of the A layer nb: In-plane average refractive index of the B layer da: Layer thickness (nm) of the A layer
db: Layer thickness of layer B (nm)
λ: main reflection wavelength (nm).
 「A層とB層が厚み方向に交互に位置する」とは、厚み方向と平行な断面を観察したときに、A層とB層の積層構成が繰り返し存在する状態をいう。なお、反射ミラーは、本発明の効果を損なわない範囲で、A層とB層の積層構成が繰り返し存在する途中に、A層及びB層に該当しない層や、A層やB層が連続する箇所が存在してもよい。 “The A layer and the B layer are alternately positioned in the thickness direction” means a state in which a laminated structure of the A layer and the B layer is repeatedly present when a cross section parallel to the thickness direction is observed. In addition, in the range which does not impair the effect of this invention, a reflection mirror is a layer which does not correspond to A layer and B layer, and A layer and B layer continue in the middle of the laminated structure of A layer and B layer repeatedly. Locations may exist.
 反射率についてはA層とB層の屈折率差と、A層とB層の層数にて制御することができる。より具体的には、A層とB層の屈折率差を大きくすること、A層とB層の合計層数を多くすることにより、反射率を高めることができる。 The reflectance can be controlled by the difference in refractive index between the A layer and the B layer and the number of layers of the A layer and the B layer. More specifically, the reflectance can be increased by increasing the refractive index difference between the A layer and the B layer and increasing the total number of layers of the A layer and the B layer.
 A層とB層の合計層数を600以上とすることにより、反射ミラーは、太陽電池モジュールの発電を向上させることができる程度の高い光線反射性能を備えるものとなる。A層とB層の合計層数の上限は、本発明の効果を損なわない限り特に制限されないが、層数の増加に伴う光線反射率の向上効果とコストの面から1,200となる。すなわち、反射ミラーの反射性能向上と製造コスト軽減を両立する観点から、A層とB層の合計層数は600以上1,200以下であることが好ましい。 When the total number of layers of the A layer and the B layer is 600 or more, the reflection mirror has high light reflection performance that can improve the power generation of the solar cell module. The upper limit of the total number of layers of the A layer and the B layer is not particularly limited as long as the effects of the present invention are not impaired, but is 1,200 from the viewpoint of the effect of improving the light reflectivity accompanying the increase in the number of layers and the cost. That is, the total number of layers A and B is preferably 600 or more and 1,200 or less from the viewpoint of both improving the reflection performance of the reflection mirror and reducing the manufacturing cost.
 本発明の太陽光発電システムの反射ミラーのA層の主成分として用いることができる熱可塑性樹脂(以下、熱可塑性樹脂Aということがある。)としては、例えば、結晶性ポリエチレンテレフタレート、結晶性ポリエチレンナフタレート等の結晶性ポリエステルが挙げられる。B層の主成分として用いることができる熱可塑性樹脂(以下、熱可塑性樹脂Bということがある。)としては、非晶性ポリエチレンテレフタレート、非晶性ポリエチレンナフタレート等の非晶性ポリエステル、フルオロエラストマー等が挙げられる。ここで結晶性とは、ポリマーを昇温して融解させた後に徐冷して固化させた際に、結晶化に伴う発熱ピークが観察される特性のことをいい、非晶性とは、ポリマーを昇温して融解させた後に徐冷して固化させた際に、結晶化が生じないため発熱ピークが観察されない特性のことをいう。熱可塑性樹脂Aと熱可塑性樹脂Bの組み合わせ、A層及びB層の組成は、A層の屈折率がB層の屈折率よりも大きいとの要件を満たす限り、本発明の効果を損なわない範囲で自由に選定することができる。 Examples of the thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin A) that can be used as the main component of the A layer of the reflection mirror of the photovoltaic power generation system of the present invention include crystalline polyethylene terephthalate and crystalline polyethylene. Examples thereof include crystalline polyesters such as naphthalate. Examples of the thermoplastic resin that can be used as the main component of the B layer (hereinafter sometimes referred to as thermoplastic resin B) include amorphous polyesters such as amorphous polyethylene terephthalate and amorphous polyethylene naphthalate, and fluoroelastomers. Etc. Here, crystallinity refers to a property in which an exothermic peak accompanying crystallization is observed when a polymer is heated and melted and then slowly cooled and solidified, and amorphous is a polymer. When it is heated and melted and then slowly cooled and solidified, it is a property in which no exothermic peak is observed because crystallization does not occur. As long as the combination of the thermoplastic resin A and the thermoplastic resin B, the composition of the A layer and the B layer satisfy the requirement that the refractive index of the A layer is larger than the refractive index of the B layer, the effects of the present invention are not impaired. Can be selected freely.
 反射ミラーを、A層とB層とが厚み方向に交互に位置し、かつA層とB層の合計層数が600以上であるものとする手段は、本発明の効果を損なわない限り特に制限されないが、例えば、以下に述べる方法が挙げられる。 The means for the reflection mirror to be such that the A layer and the B layer are alternately positioned in the thickness direction and the total number of layers of the A layer and the B layer is 600 or more is not particularly limited as long as the effect of the present invention is not impaired. Although not, for example, the method described below can be mentioned.
 先ず、異なる押出機で加熱溶融した熱可塑性樹脂A及び熱可塑性樹脂Bをフィードブロックに送り込み、合計層数が600層以上となるように交互に積層させた後、ダイからキャスティングドラム上に吐出させて冷却固化して無配向シートを得る。その後、この無配向シートを一軸又は二軸延伸して図4に示す構造を有する多層フィルムとし、この多層フィルムを反射ミラーに組み入れることで、反射ミラーを、A層とB層とが厚み方向に交互に位置し、かつA層とB層の合計層数が600以上であるものとすることができる。図4は、反射ミラーに用いる多層フィルムの一例を示す断面図であり、図4における符号5は多層フィルムを、符号6はA層を、符号7はB層をそれぞれ表す。このとき、フィードブロックを用いることにより、各層の厚みをスリットの形状(長さ、幅)で調整できるため、任意の層厚みを達成することも容易となる。 First, thermoplastic resin A and thermoplastic resin B heated and melted in different extruders are fed into a feed block, and alternately laminated so that the total number of layers is 600 or more, and then discharged from a die onto a casting drum. To cool and solidify to obtain a non-oriented sheet. Thereafter, the non-oriented sheet is uniaxially or biaxially stretched to form a multilayer film having the structure shown in FIG. 4, and by incorporating this multilayer film into the reflection mirror, the A layer and the B layer are arranged in the thickness direction. The layers may be alternately arranged and the total number of layers A and B may be 600 or more. FIG. 4 is a cross-sectional view showing an example of the multilayer film used for the reflection mirror. In FIG. 4, reference numeral 5 represents the multilayer film, reference numeral 6 represents the A layer, and reference numeral 7 represents the B layer. At this time, since the thickness of each layer can be adjusted by the shape (length, width) of the slit by using the feed block, it is easy to achieve any layer thickness.
 また、反射ミラーにおいてA層とB層とが厚み方向に交互に位置する場合、JIS K 5600-5-6:1999により測定したA層とB層との間の剥離強度の試験結果の分類が0であることが好ましい。JIS K 5600-5-6:1999により測定したA層とB層との間の剥離強度の試験結果の分類は、A層とB層の層間密着強度に優れているほど値が小さくなる。 In addition, when the A layer and the B layer are alternately positioned in the thickness direction in the reflection mirror, the classification of the test results of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 is 0 is preferred. The classification of the test results of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 is smaller as the interlayer adhesion strength between the A layer and the B layer is better.
 本発明の太陽光発電システムを設置する場合、反射ミラーは太陽電池モジュールと同じ自然環境に曝されるため、温湿度サイクルや紫外線によるストレスを受ける。A層とB層との間の剥離強度の試験結果の分類が0であることで、これらのストレスにより、A層とB層と層間剥離の発生を軽減でき、その結果、反射ミラーの性能を長期にわたり維持することができる。 When installing the solar power generation system of the present invention, the reflection mirror is exposed to the same natural environment as the solar cell module, and thus is subjected to stress due to temperature and humidity cycles and ultraviolet rays. Since the test results of the peel strength between the A layer and the B layer are 0, the occurrence of delamination between the A layer and the B layer can be reduced by these stresses. It can be maintained for a long time.
 反射ミラーにおいて、JIS K 5600-5-6:1999により測定したA層とB層との間の剥離強度の試験結果の分類を0とするための手段は、本発明の効果を損なわない限り特に限定されないが、例えば、A層のハンセンの溶解度パラメータとB層のハンセンの溶解度パラメータの差の絶対値が3.0MPa1/2以下となるように、A層及びB層の組成を調節する方法が挙げられる。以下、ハンセンの溶解度パラメータをHSPということがある。なお、A層が単一成分で構成される場合、当該成分のHSPをA層のHSPとし、A層が複数成分で構成される場合、A層中に最も多く含まれる成分のHSPをA層のHSPとする。B層のHSPについても同様に解釈する。 In the reflection mirror, means for setting the classification of the test result of the peel strength between the A layer and the B layer measured according to JIS K 5600-5-6: 1999 to 0 is particularly effective as long as the effect of the present invention is not impaired. Without limitation, for example, a method of adjusting the composition of the A layer and the B layer so that the absolute value of the difference between the Hansen solubility parameter of the A layer and the Hansen solubility parameter of the B layer is 3.0 MPa 1/2 or less. Is mentioned. Hereinafter, the solubility parameter of Hansen is sometimes referred to as HSP. When the A layer is composed of a single component, the HSP of the component is the ASP of the A layer, and when the A layer is composed of a plurality of components, the HSP of the component most contained in the A layer is the A layer. HSP. The same applies to the B layer HSP.
 HSPは、ある物質が他のある物質に溶ける程度を示す指標であり、溶解性を3次元のベクトルで表す。この3次元ベクトルは、分散項(δ)、極性項(δ)、水素項(δ)で表すことができる。そしてベクトルが近似しているほど、溶解性が高いと判断することができる。 HSP is an index indicating the degree to which a certain substance is soluble in another certain substance, and the solubility is represented by a three-dimensional vector. This three-dimensional vector can be expressed by a dispersion term (δ d ), a polarity term (δ p ), and a hydrogen term (δ h ). It can be determined that the closer the vector is, the higher the solubility is.
 HSPは、Hansen Solubility Parameters,A User‘s Handbook by Charles M.Hansen,CRC Press Boca Raton Fl(2007)に記載の方法に基づき、溶解度パラメータ推算ソフトウエアを用いて算出することができる。溶解度パラメータ推算ソフトウエアとしては、例えばHansen Solubility Parameters in Practice(HSPiP、チャールズ M ハンセン氏、スティーブン アボット氏らが開発)を用いることができる。HSPiPには、2成分のHSPの差の絶対値を計算する機能、及び樹脂を含む様々な物質のHSPを収録したデータベース等が搭載されている。 HSP is Hansen Solubility Parameters, A User's Handbook by Charles M. Based on the method described in Hansen, CRC Press Boca Raton Fl (2007), it can be calculated using solubility parameter estimation software. For example, Hansen Solubility Parameters in Practice (developed by HSPiP, Charles M. Hansen, Steven Abbott et al.) Can be used as the solubility parameter estimation software. The HSPiP is equipped with a function for calculating the absolute value of the difference between two component HSPs, a database that records HSPs of various substances including resins, and the like.
 以下、A層のHSPとB層のHSPの差の絶対値を求める方法について具体的に説明する。先ず、A層及びB層を構成する樹脂(複数成分からなる場合は、最も含有量の多い樹脂)1gに、15種の溶媒(水、アセトン、2-ブタノン、シクロペンタノン、イソプロピルアルコール、エタノール、1-オクタノール、トルエン、ヘキサン、酢酸、酢酸ブチル、アニリン、メタンアミド、2-アミノエタノール、および2-ブトキシエタノール)を、それぞれ少量ずつ、樹脂原料が完全に溶解するか、溶媒量が99gに達するまで添加し、このときの飽和溶液濃度より各溶媒に対する溶解度を6段階(6:不溶、5:質量パーセント濃度5%未満、4:質量パーセント濃度5%以上10%未満、3:質量パーセント濃度10%以上30%未満、2:質量パーセント濃度30%以上50%未満、1:質量パーセント濃度50%以上)で表したデータを得る。ここで「6:不溶」とは、溶媒量が99gに達しても溶解していない樹脂原料が観察された場合をいう。次いで、得られたデータをHSPiPに入力し、A層のHSPとB層のHSPの差の絶対値を求める。なお、A層のHSPとB層のHSPの差の絶対値(R)は、A層のHSPを(δdA,δpA,δhA)、B層のHSPを(δdB,δpB,δhB)と表したとき、下記式Bにより算出することができる。
式B:R=4×(δdB-δdA+(δpB-δpA+(δpB-δpA
 A層とB層のHSPの差の絶対値を3.0MPa1/2以下とすることにより、A層とB層の層間密着強度を強くすることができる。その一方で、A層とB層のHSPの差の絶対値が小さくなりすぎると、A層とB層を有する多層フィルムを製造する過程で各層を得るための樹脂組成物が混ざり合い、層間の界面が不明瞭となって鏡面反射率が小さくなることがある。層間の界面を明瞭にして鏡面反射率の低下を回避する点からは、A層とB層のHSPの差の絶対値は0.01MPa1/2以上であることが好ましい。
Hereinafter, a method for obtaining an absolute value of a difference between the HSP of the A layer and the HSP of the B layer will be specifically described. First, 15 g of solvents (water, acetone, 2-butanone, cyclopentanone, isopropyl alcohol, ethanol) are added to 1 g of the resin constituting the A layer and the B layer (the resin having the highest content in the case of a plurality of components). , 1-octanol, toluene, hexane, acetic acid, butyl acetate, aniline, methanamide, 2-aminoethanol, and 2-butoxyethanol), the resin raw material completely dissolves or the amount of solvent reaches 99 g. 6 levels of solubility in each solvent (6: insoluble, 5: mass percent concentration less than 5%, 4: mass percent concentration of 5% or more and less than 10%, 3: mass percent concentration of 10). % To less than 30%, 2: mass percent concentration of 30% to less than 50%, 1: mass percent concentration of 50% or more) Obtain the data. Here, “6: insoluble” refers to the case where a resin raw material that is not dissolved even when the solvent amount reaches 99 g is observed. Next, the obtained data is input to the HSPiP, and the absolute value of the difference between the HSP of the A layer and the HSP of the B layer is obtained. The absolute value (R) of the difference between the HSP of the A layer and the HSP of the B layer is (δ dA , δ pA , δ hA ), and the HSP of the B layer is (δ dB , δ pB , δ). hB ), it can be calculated by the following formula B.
Formula B: R 2 = 4 × (δ dB −δ dA ) 2 + (δ pB −δ pA ) 2 + (δ pB −δ pA ) 2
By setting the absolute value of the difference in HSP between the A layer and the B layer to 3.0 MPa 1/2 or less, the interlayer adhesion strength between the A layer and the B layer can be increased. On the other hand, if the absolute value of the difference in HSP between the A layer and the B layer becomes too small, the resin composition for obtaining each layer is mixed in the process of producing a multilayer film having the A layer and the B layer, The interface may be unclear and the specular reflectance may be reduced. From the viewpoint of clarifying the interface between layers and avoiding a decrease in specular reflectance, the absolute value of the difference in HSP between the A layer and the B layer is preferably 0.01 MPa 1/2 or more.
 A層とB層のHSPの差の絶対値が0.01MPa1/2以上3.0MPa1/2以下となる例としては、熱可塑性樹脂Aとして結晶性ポリエチレンテレフタレート(以下、PETということがある。)樹脂、熱可塑性樹脂Bとして非晶性ポリエステル樹脂を使用する例が挙げられる。熱可塑性樹脂Bとして用いる非晶性ポリエステル樹脂は、スピログリコール単位を含む非晶性ポリエステル樹脂であることが好ましい。スピログリコール単位を含む非晶性ポリエステル樹脂は、結晶性ポリエチレンテレフタレートとのガラス転移温度の差が小さい。そのため、熱可塑性樹脂Bがスピログリコール単位を含む非晶性ポリエステル樹脂であることにより、成形時の過延伸や層間剥離を軽減できる。 As an example of the absolute value of the difference between the HSP A layer and the B layer is 0.01 MPa 1/2 or 3.0 MPa 1/2 or less, the thermoplastic resin A as crystalline polyethylene terephthalate (hereinafter sometimes referred to as PET .) Examples of using an amorphous polyester resin as the resin and the thermoplastic resin B are given. The amorphous polyester resin used as the thermoplastic resin B is preferably an amorphous polyester resin containing spiroglycol units. Amorphous polyester resins containing spiroglycol units have a small difference in glass transition temperature from crystalline polyethylene terephthalate. Therefore, when the thermoplastic resin B is an amorphous polyester resin containing a spiroglycol unit, overstretching and delamination during molding can be reduced.
 また、本発明の太陽光発電システムにおいては、耐光性の面から、前記A層がポリアルキレンテレフタレートを主成分とすることが好ましい。このような態様とすることにより、前記A層とB層との間の剥離強度が向上することができ、耐久性の高い太陽光発電システムを得ることができる。また、紫外線吸収が少ないため、耐光性の高い太陽光発電システムを得ることができる。同様の観点から、前記A層がポリエチレンテレフタレートを主成分とすることがより好ましい。また、同様の観点から、前記B層がポリアルキレンテレフタレートを主成分とすることが好ましく、前記B層がポリエチレンテレフタレートを主成分とすることがより好ましい。 In the photovoltaic power generation system of the present invention, it is preferable that the A layer is mainly composed of polyalkylene terephthalate from the viewpoint of light resistance. By setting it as such an aspect, the peeling strength between the said A layer and B layer can improve, and a highly durable solar power generation system can be obtained. Moreover, since there is little ultraviolet absorption, a solar power generation system with high light resistance can be obtained. From the same viewpoint, the layer A is more preferably composed mainly of polyethylene terephthalate. From the same viewpoint, the B layer preferably contains polyalkylene terephthalate as a main component, and the B layer more preferably contains polyethylene terephthalate as a main component.
 熱可塑性樹脂Bの非晶性ポリエステル樹脂として非晶性ポリエチレンテレフタレートを用いる場合、本発明の効果を損なわない限り、非晶性ポリエチレンテレフタレートは、その分子鎖中にテレフタル酸単位以外のジカルボン酸単位や、エチレングリコール単位以外のグリコール単位を含むこともできる。このような共重合単位としては、前述したスピログリコール単位の他に、例えばシクロヘキサンジカルボン酸単位やシクロヘキサンジメタノール単位等が挙げられる。また、その含有量についても特に制限はないが、全ジカルボン酸単位を100モル%としたときに25モル%以下とすること、若しくは全グリコール単位を100モル%としたときに25モル%以下とすることが好ましい。 When amorphous polyethylene terephthalate is used as the amorphous polyester resin of the thermoplastic resin B, the amorphous polyethylene terephthalate has a dicarboxylic acid unit other than the terephthalic acid unit in its molecular chain unless the effects of the present invention are impaired. In addition, glycol units other than ethylene glycol units can be included. Examples of such a copolymer unit include a cyclohexane dicarboxylic acid unit and a cyclohexane dimethanol unit in addition to the above-described spiroglycol unit. Further, the content thereof is not particularly limited, but is 25 mol% or less when the total dicarboxylic acid unit is 100 mol%, or 25 mol% or less when the total glycol unit is 100 mol%. It is preferable to do.
 また、本発明の太陽光発電システムにおいては、低照度時及び低太陽高度時における発電量を増加させることにより、発電量の変動を小さくする観点から、前記反射ミラーのヘイズが4%以上30%以下であることが好ましい。発電量の変動等は、後述する太陽電池モジュールの出力向上率を評価することで行うことができる。低照度時及び低太陽高度時における出力向上率は、2%以上10%以下であることがより好ましく、4%以上8%以下であることがより好ましい。また、発電量の変動(出力向上率の差)は、5%以上20%以下であることが好ましい。 In the solar power generation system of the present invention, the haze of the reflection mirror is 4% or more and 30% from the viewpoint of reducing fluctuations in the power generation amount by increasing the power generation amount at low illuminance and low solar altitude. The following is preferable. The variation in the amount of power generation can be performed by evaluating the output improvement rate of the solar cell module described later. The output improvement rate at low illuminance and low solar altitude is more preferably 2% or more and 10% or less, and more preferably 4% or more and 8% or less. Moreover, it is preferable that the fluctuation | variation of electric power generation amount (difference of an output improvement rate) is 5 to 20%.
 前記反射ミラーのヘイズが4%以上であることにより、ミラーによる光の散乱性が向上する。曇天など太陽光の照度が低い天気状況では、全天の各方向から入射光が照射する。光の散乱性が高いミラーを使用することで、各方向から入射する光を利用することが可能となる。これによって、曇天など太陽光の照度が低い天気状況での太陽光発電システムの出力向上に繋がる。 When the haze of the reflecting mirror is 4% or more, the light scattering property of the mirror is improved. In a weather situation where the illuminance of sunlight is low, such as cloudy, incident light is irradiated from each direction of the whole sky. By using a mirror having a high light scattering property, it is possible to use light incident from each direction. This leads to an improvement in the output of the photovoltaic power generation system in weather conditions where the illuminance of sunlight is low, such as cloudy weather.
 また、反射ミラーの鏡面反射率とヘイズ値がトレードオフであるため、反射ミラーのヘイズを適宜に選択することで、前記反射ミラーの鏡面反射性が前記好ましい範囲を得ることができる。この観点から、前記反射ミラーのヘイズは30%以下であることが好ましい。このような態様とすることにより、晴天時など、太陽光の照度が高い天気状況での太陽光発電システムの出力向上に繋がる。同様の観点から前記反射ミラーのヘイズが5%以上20%以下であることがより好ましく、5%以上10%以下であることがさらに好ましい。 Further, since the specular reflectance and the haze value of the reflecting mirror are a trade-off, the specular reflectivity of the reflecting mirror can be obtained within the preferable range by appropriately selecting the haze of the reflecting mirror. From this viewpoint, the haze of the reflection mirror is preferably 30% or less. By setting it as such an aspect, it leads to the output improvement of the photovoltaic power generation system in the weather condition with high illumination intensity of sunlight, such as at the time of fine weather. From the same viewpoint, the haze of the reflection mirror is more preferably 5% or more and 20% or less, and further preferably 5% or more and 10% or less.
 前記ヘイズはヘイズメーターNDH4000(日本電色)を用いて、JIS K7136:2000に記載の方法に準拠して0度入射時の透過へイズにより測定することができる。 The haze can be measured by using a haze meter NDH4000 (Nippon Denshoku Co., Ltd.) according to the method described in JIS K7136: 2000 by measuring the transmission haze when incident at 0 degrees.
 以下、反射ミラーの層構成の一例について図5を参照しながら説明する。図5は本発明において用いることができる反射ミラーの一例を示す断面図である。図5に示す反射ミラーは受光面側から順に、フロント基板8、封止材9、多層フィルム5、及び耐UV層10が位置する構成を有する。 Hereinafter, an example of the layer configuration of the reflection mirror will be described with reference to FIG. FIG. 5 is a cross-sectional view showing an example of a reflection mirror that can be used in the present invention. The reflecting mirror shown in FIG. 5 has a configuration in which the front substrate 8, the sealing material 9, the multilayer film 5, and the UV resistant layer 10 are positioned in this order from the light receiving surface side.
 反射ミラーに長期の設置に耐えうる強度をもたせるために、反射ミラーの受光面にフロント基板を有する構造とすることが好ましい。フロント基板8は、反射ミラーに剛性や耐衝撃性を付与する役割を果たす。また、フロント基板8を有することで反射ミラーのヘイズを調整することができる。また、フロント基板8、封止材9、多層フィルム5、及び耐UV層10を組み合わせた反射ミラーのヘイズは各成分のヘイズによって適宜調節することができる。上記各成分の中、フロント基板8のヘイズが最も反射ミラーのヘイズに影響がある。 It is preferable to have a structure having a front substrate on the light receiving surface of the reflecting mirror in order to give the reflecting mirror strength enough to withstand long-term installation. The front substrate 8 plays a role of imparting rigidity and impact resistance to the reflecting mirror. Further, by having the front substrate 8, the haze of the reflection mirror can be adjusted. Moreover, the haze of the reflective mirror which combined the front substrate 8, the sealing material 9, the multilayer film 5, and the UV-resistant layer 10 can be suitably adjusted with the haze of each component. Among the above components, the haze of the front substrate 8 has the most influence on the haze of the reflection mirror.
 上記反射ミラーのヘイズの好ましい範囲とする観点から、フロント基板のヘイズは10%以上75%以下が好ましく、30%以上60%以下がより好ましい。前記反射ミラーのヘイズを4%以上30%以下とするための手段として、ヘイズが10%以上75%以下の前記フロント基板を用い、ヘイズが1%以上15%以下の多層フィルムと、封止材を用いて一体化させることが入手容易性や反射ミラーの軽量化、狙ったヘイズ値を安定的に得る観点から好ましい。 From the viewpoint of setting the haze of the reflecting mirror in a preferable range, the haze of the front substrate is preferably 10% to 75%, and more preferably 30% to 60%. A multilayer film having a haze of 1% or more and 15% or less, a multilayer film having a haze of 1% or more and 15% or less, and a sealing material as a means for adjusting the haze of the reflection mirror to 4% or more and 30% or less Are preferably used from the viewpoints of availability, weight reduction of the reflection mirror, and stable acquisition of the aimed haze value.
 フロント基板8としては、強化ガラス、ポリカーボネート、及びポリメタクリル酸メチル等を用いることができ、中でも剛性や耐久性の観点から強化ガラスを用いることが好ましい。 As the front substrate 8, tempered glass, polycarbonate, polymethyl methacrylate, or the like can be used, and among these, tempered glass is preferably used from the viewpoint of rigidity and durability.
 封止材9は、フロント基板8と多層フィルム5との密着、及び多層フィルム5を紫外線や衝撃から保護する役割を担う。封止材9には、例えば、エチレン酢酸ビニル共重合体(EVA)、透明シリコン、メタクリル酸メチル等を好ましく用いることができ、さらに必要に応じて、紫外線吸収剤、光安定剤、架橋剤、及びシランカップリング剤等の添加剤を1種類以上含有させてもよい。なお、各種添加剤は公知のものを用いることができ、本発明の効果を損なわない範囲でその種類や組み合わせを自由に選択できる。 The sealing material 9 plays a role of adhesion between the front substrate 8 and the multilayer film 5 and protecting the multilayer film 5 from ultraviolet rays and impact. For the sealing material 9, for example, ethylene vinyl acetate copolymer (EVA), transparent silicon, methyl methacrylate, and the like can be preferably used, and if necessary, an ultraviolet absorber, a light stabilizer, a crosslinking agent, In addition, one or more additives such as a silane coupling agent may be contained. In addition, various additives can use a well-known thing, The kind and combination can be freely selected in the range which does not impair the effect of this invention.
 また、本発明の太陽光発電システムにおいては、反射ミラーを紫外線及び衝撃から保護する観点から、受光面側から、フロント基板、封止材、及び前記A層と前記B層とが厚み方向に交互に位置し、前記A層と前記B層の合計層数が600以上である多層フィルムをこの順に有し、前記フロント基板が、強化ガラス、ポリカーボネート、ポリテトラフルオロエチレン、及びポリメタクリル酸メチルのいずれかを構成成分とし、かつ前記封止材がエチレン・酢酸ビニル共重合体(EVA)、透明シリコン、及びポリメタクリル酸メチルのいずれかを主成分とすることが好ましく、同様の観点から、前記フロント基板が強化ガラス、封止材がEVAであることがより好ましい。 In the photovoltaic power generation system of the present invention, from the viewpoint of protecting the reflection mirror from ultraviolet rays and impact, the front substrate, the sealing material, and the A layer and the B layer are alternately arranged in the thickness direction from the light receiving surface side. In which, in this order, the total number of the A layer and the B layer is 600 or more, and the front substrate is any one of tempered glass, polycarbonate, polytetrafluoroethylene, and polymethyl methacrylate It is preferable that the main component is any one of ethylene / vinyl acetate copolymer (EVA), transparent silicon, and polymethyl methacrylate. More preferably, the substrate is tempered glass and the sealing material is EVA.
 耐UV層10は、太陽の散乱光や地面から反射した光によって、多層フィルム5が背面側から劣化するのを軽減する役割を担う。多層フィルム5が背面側から劣化すると、クラックの発生、オリゴマーの析出などにより、反射ミラーの性能が低下することがある。耐UV層10は、耐候性当の観点から、アクリル系樹脂と紫外線吸収剤を含有することが好ましい。アクリル系樹脂は本発明の効果を損なわない限り特に限定されないが、耐候性、多層フィルム5との密着性の観点から、アクリルウレタン系樹脂であることが好ましい。中でも、アクリルポリオール系樹脂とイソシアネート樹脂が架橋された構造を有するアクリルウレタン系樹脂が、樹脂の硬化性や耐熱性の観点からより好ましい。また、本発明の効果を損なわない範囲で、公知の紫外線吸収剤を使用することもできる。耐UV層10の形成方法は、本発明の効果を損なわない限り特に制限されず、例えば、公知のコーティング法等により形成することができる。 The UV-resistant layer 10 plays a role of reducing deterioration of the multilayer film 5 from the back side due to scattered light from the sun or light reflected from the ground. When the multilayer film 5 deteriorates from the back side, the performance of the reflection mirror may be deteriorated due to generation of cracks, precipitation of oligomers, and the like. The UV resistant layer 10 preferably contains an acrylic resin and an ultraviolet absorber from the viewpoint of weather resistance. The acrylic resin is not particularly limited as long as the effects of the present invention are not impaired, but an acrylic urethane resin is preferable from the viewpoint of weather resistance and adhesion with the multilayer film 5. Among these, an acrylic urethane resin having a structure in which an acrylic polyol resin and an isocyanate resin are cross-linked is more preferable from the viewpoint of resin curability and heat resistance. Moreover, a well-known ultraviolet absorber can also be used in the range which does not impair the effect of this invention. The method for forming the UV-resistant layer 10 is not particularly limited as long as the effects of the present invention are not impaired. For example, the UV-resistant layer 10 can be formed by a known coating method or the like.
 また、本発明の太陽光発電システムにおいては、地面から反射された紫外線から保護する観点から、前記多層フィルムの受光面の反対側に、耐UV層を有することが好ましい。このような態様とすることにより、変色が抑えられることができる。反射ミラーが変色することで、約500nm~約1,000nmの範囲内の拡散反射率が低下することがあるため、耐UV層を有することで、発電量の低下を抑制することにつながる。耐UV層は、公知の紫外線吸収剤を含むことも可能であり、本発明の効果を損なわない範囲でその種類や組み合わせを自由に選択できる。 Moreover, in the photovoltaic power generation system of the present invention, it is preferable that a UV-resistant layer is provided on the opposite side of the light receiving surface of the multilayer film from the viewpoint of protection from ultraviolet rays reflected from the ground. By setting it as such an aspect, discoloration can be suppressed. When the reflecting mirror changes color, the diffuse reflectance within the range of about 500 nm to about 1,000 nm may be lowered. Therefore, having the UV-resistant layer leads to suppression of a decrease in power generation amount. The UV-resistant layer can also contain a known ultraviolet absorber, and the type and combination thereof can be freely selected within a range that does not impair the effects of the present invention.
 <太陽電池モジュール>
 本発明の太陽光発電システムにおける太陽電池モジュールは、本発明の効果を損なわない限り特に制限されず、公知ものを使用することができる。その具体例としては、図6に示すように、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子11を、受光面側のフロント基板8と太陽電池裏面保護シート12との間に配置し、フロント基板8と太陽電池裏面保護シート12との間を封止材9で封止した構成のものが挙げられる。
<Solar cell module>
The solar cell module in the solar power generation system of the present invention is not particularly limited as long as the effects of the present invention are not impaired, and known ones can be used. As a specific example, as shown in FIG. 6, a solar cell element 11 that converts light energy of sunlight into electric energy is disposed between a front substrate 8 on the light receiving surface side and a solar cell back surface protective sheet 12. The thing of the structure which sealed between the front substrate 8 and the solar cell back surface protection sheet 12 with the sealing material 9 is mentioned.
 フロント基板8や封止材9は、前述した反射ミラーと同様のものを使用できる。太陽電池素子11としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系、ガリウム砒素多接合などの化合物多接合系など、各種公知の太陽電池素子を適用することができるが、発電効率やコストの面から、多結晶シリコンを用いることが好ましい。 The front substrate 8 and the sealing material 9 can be the same as the reflection mirror described above. Examples of the solar cell element 11 include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenide. Various known solar cell elements such as II-VI compound semiconductor systems and compound multi-junction systems such as gallium arsenide multi-junction can be applied, but it is preferable to use polycrystalline silicon from the viewpoint of power generation efficiency and cost. .
 太陽電池裏面保護シートとしては、本発明の効果を損なわない限り特に制限されず、公知のものを使用することができる。より具体的には、フッ素フィルム、ポリエステルフィルム、ポリオレフィンフィルム、及びこれらを複数枚貼り合わせたものを使用することができる。また、太陽電池裏面保護シートは、反射率向上のために白色粒子を含有する層を有する態様とすることや、他の部材との密着性を強化するために易接着層を有する態様とすること等ができる。 The solar cell back surface protective sheet is not particularly limited as long as the effects of the present invention are not impaired, and known ones can be used. More specifically, a fluorine film, a polyester film, a polyolefin film, and a laminate of a plurality of these films can be used. In addition, the solar cell back surface protective sheet has an aspect having a layer containing white particles in order to improve reflectance, and an aspect having an easy-adhesion layer in order to reinforce adhesion with other members. Etc.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 〔反射ミラーの作製、特性の測定方法及び評価方法〕
 反射ミラーの作製、実施例中に示す測定や評価は次に示すような条件で行った。
[Production of reflection mirror, characteristic measurement method and evaluation method]
The production of the reflection mirror and the measurement and evaluation shown in the examples were performed under the following conditions.
 (1)反射ミラーの作製
 反射ミラーを構成する各部材(後述)を、受光面から順番に積層し、この積層体を熱板温度145℃の真空ラミネータに投入し、4分間脱気した後、1kgf/cmの圧力で11分間プレスした。その後、ラミネート時にはみ出した熱可塑性樹脂を除去し、シリコンシーラントを用いてアルミフレームと一体化させた。
(1) Production of reflection mirror Each member (described later) constituting the reflection mirror is laminated in order from the light receiving surface, and this laminate is put into a vacuum laminator having a hot plate temperature of 145 ° C. and deaerated for 4 minutes. Pressing was performed at a pressure of 1 kgf / cm 2 for 11 minutes. Thereafter, the thermoplastic resin protruding during lamination was removed and integrated with the aluminum frame using a silicon sealant.
 (2)反射ミラーの鏡面反射率
 株式会社島津製作所製UV-3600Plusを用いて波長700nm~900nmの範囲において、1nmピッチで反射ミラーの相対分光反射率を測定した。分光反射率を測定する際に、基準板として硫酸バリウムを使用した。相対分光反射率を測定した後、同じ波長範囲内で相対分光拡散反射率を測定し、波長800nmにおける相対分光反射率と相対分光拡散反射率の差を取ることで波長800nmにおける鏡面反射率(%)を求めた。波長700nmにおける鏡面反射率は、波長700nmにおける相対分光反射率と相対分光拡散反射率の差をとり同様に求めた。
(2) Specular Reflectance of Reflecting Mirror The relative spectral reflectance of the reflecting mirror was measured at a pitch of 1 nm in a wavelength range of 700 nm to 900 nm using UV-3600 Plus manufactured by Shimadzu Corporation. When measuring the spectral reflectance, barium sulfate was used as a reference plate. After measuring the relative spectral reflectance, the relative spectral diffuse reflectance is measured within the same wavelength range, and the difference between the relative spectral reflectance and the relative spectral diffuse reflectance at the wavelength of 800 nm is taken to obtain the specular reflectance (%) at the wavelength of 800 nm. ) The specular reflectance at a wavelength of 700 nm was obtained in the same manner by taking the difference between the relative spectral reflectance and the relative spectral diffuse reflectance at a wavelength of 700 nm.
 (3)反射ミラーの光線透過率
 株式会社島津製作所製UV-3600Plusを用いて波長700nm~1,800nmの範囲において、1nmピッチで反射ミラーの分光透過率を測定した。得られたデータより、波長700nm、波長800nm、1,800nmにおける値を抽出し、それぞれ波長700nm、波長800nm、1,800nmにおける光線透過率(%)とした。また、1,200nm~1,400nmの範囲における測定値の相加平均を求め、これを波長1,200nm~1,400nmにおける平均光線透過率(%)とした。
(3) Light transmittance of reflection mirror The spectral transmittance of the reflection mirror was measured at a pitch of 1 nm in the wavelength range of 700 nm to 1,800 nm using UV-3600 Plus manufactured by Shimadzu Corporation. From the obtained data, values at a wavelength of 700 nm, a wavelength of 800 nm, and 1,800 nm were extracted and used as light transmittance (%) at a wavelength of 700 nm, a wavelength of 800 nm, and 1,800 nm, respectively. In addition, an arithmetic average of measured values in the range of 1,200 nm to 1,400 nm was obtained, and this was used as an average light transmittance (%) at a wavelength of 1,200 nm to 1,400 nm.
 (4)太陽電池モジュールの出力向上率
 英弘精機製I-Vチェッカー MP-11を2個使用して、反射ミラーを設置した太陽光発電システムと反射ミラーを設置しない太陽光発電システムそれぞれの発電量を同時に評価した。こうして得られた、反射ミラーを設置した場合の最大出力の値と、反射ミラーを設置しない場合の最大出力の値との差を取り、この差について、反射ミラーを設置しない場合の最大出力に対する割合(%)を算出することによって、反射ミラーを設置することによる出力向上率とした。太陽高度が60°前後(58°~65°)の場合と太陽高度が26°前後(21°~30°)の場合について測定した。
(4) Output improvement rate of solar cell module Electricity generation amount of solar power generation system with two reflecting mirrors and two solar power generation systems without reflecting mirrors, using two EiV Seiko IV checkers MP-11 Were evaluated simultaneously. Take the difference between the maximum output value when the reflection mirror is installed and the maximum output value when the reflection mirror is not installed, and the ratio of this difference to the maximum output when no reflection mirror is installed. By calculating (%), it was set as the output improvement rate by installing a reflecting mirror. Measurements were made for a solar altitude of around 60 ° (58 ° to 65 °) and a solar altitude of around 26 ° (21 ° to 30 °).
 (5)反射ミラーの光遮蔽試験(反射ミラーで太陽光が遮られる状況下における太陽電池モジュールの出力評価)
 JIS C 8914:2005に準拠して190mm×190mmの単セル結晶シリコンモジュール(セルサイズ156mm×156mm)の出力を測定した後、単セル結晶シリコンモジュールの受光面側にミラーを密着させてモジュールの受光面全てを覆う形とし、再度出力測定を実施した。ミラーを密着させたときの出力とミラーを密着させない場合の出力の比を算出した。このとき、ミラーを密着させない場合に対し、密着させた場合の出力が20%以上であれば合格とした。
(5) Light Shielding Test of Reflection Mirror (Evaluation of output of solar cell module under the condition where sunlight is blocked by the reflection mirror)
After measuring the output of a 190 mm × 190 mm single cell crystal silicon module (cell size 156 mm × 156 mm) in accordance with JIS C 8914: 2005, a mirror is brought into close contact with the light receiving surface of the single cell crystal silicon module to receive the module. The shape was covered all over and the output was measured again. The ratio of the output when the mirror was in close contact with the output when the mirror was not in close contact was calculated. At this time, when the output was 20% or more compared to the case where the mirror was not in close contact, the test was accepted.
 (6)剥離強度の試験(クロスカット試験:反射部材用フィルムが多層フィルムの場合のみ)
 JIS K 5600-5-6:1999に準拠した方法で、後述するフィルムに対しクロスカット試験を実施した。まずフィルムを5cm角の正方形試験板にサンプリングした。その後試験板の表面に1mm間隔で、試験板の表面まで貫通するように、6回カットした。更に格子パターンが形成できるように、前記切り込みに対して90°回転させ、前記切り込みに重ねて等しい数だけ平行な切込みを行った。前記格子パターンを前記試験板の表面に三つの異なる箇所で作った。また、JIS K 5600-5-6:1999に準拠したテープを約75mmの長さの小片にカットした。テープの中心を各カットの一組に平行な方向で格子の上に置き,格子の部分にかかった箇所25mmの長さで,指でテープを平らになるようにした。その後60°に近い角度でテープの端をつかみ、1.0秒以内で引きはがした。前記格子パターンに剥がした格子の数を数え、3箇所の格子パターンの剥がした格子の数の平均値を試験結果とした。試験結果はJIS K 5600-5-6:1999に準拠して、0~5の6段階評価で分類した。0が最もA層とB層との間の密着性が強いことを意味する。
(6) Peel strength test (cross-cut test: only when the reflective member film is a multilayer film)
A cross-cut test was performed on the film described later in accordance with JIS K 5600-5-6: 1999. First, the film was sampled on a 5 cm square test plate. Thereafter, the test plate was cut six times so as to penetrate the surface of the test plate at 1 mm intervals. Further, in order to form a lattice pattern, it was rotated by 90 ° with respect to the cuts, and an equal number of parallel cuts were made overlapping the cuts. The grid pattern was made at three different locations on the surface of the test plate. Further, a tape conforming to JIS K 5600-5-6: 1999 was cut into small pieces having a length of about 75 mm. The center of the tape was placed on the grid in a direction parallel to each set of cuts, and the tape was flattened with fingers at a length of 25 mm over the grid. After that, the end of the tape was grasped at an angle close to 60 ° and peeled off within 1.0 seconds. The number of lattices peeled off to the lattice pattern was counted, and the average value of the number of lattices peeled off at three lattice patterns was taken as a test result. The test results were classified according to a 6-level evaluation of 0 to 5 according to JIS K 5600-5-6: 1999. 0 means that the adhesion between the A layer and the B layer is the strongest.
 (7)積層数(反射部材用フィルムが多層フィルムの場合のみ)
 多層フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)を用いて観察することにより求めた。透過型電子顕微鏡H-7100FA型(株式会社日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面写真を撮影し、層構成を測定した。
(7) Number of layers (only when the reflective member film is a multilayer film)
The layer structure of the multilayer film was determined by observing a sample cut out using a microtome using a transmission electron microscope (TEM). Using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), a cross-sectional photograph of the film was taken under the condition of an acceleration voltage of 75 kV, and the layer structure was measured.
 (8)A層及びB層の屈折率(反射部材用フィルムが多層フィルムの場合のみ)
 熱可塑性樹脂Aのみからなるフィルム、及び熱可塑性樹脂Bのみからなるフィルムを用いて、JIS K7142:2008に記載のA法に準拠して測定した。得られた屈折率のうち、フィルム面上の直交する2方向の平均屈折率をもって、それぞれの屈折率とした。
(8) Refractive index of the A layer and the B layer (only when the reflecting member film is a multilayer film)
Using a film consisting only of the thermoplastic resin A and a film consisting only of the thermoplastic resin B, the measurement was performed according to the method A described in JIS K7142: 2008. Among the obtained refractive indexes, the average refractive index in two orthogonal directions on the film surface was used as each refractive index.
 (9)ハンセンの溶解度パラメータ(HSP)、A層のHSPとB層のHSPの差の絶対値
 A層及びB層を構成する樹脂1gに、15種の溶媒(水、アセトン、2-ブタノン、シクロペンタノン、イソプロピルアルコール、エタノール、1-オクタノール、トルエン、ヘキサン、酢酸、酢酸ブチル、アニリン、メタンアミド、2-アミノエタノール、および2-ブトキシエタノール)を、それぞれ少量ずつ、樹脂原料が完全に溶解するか、又は溶媒量が99gに達するまで添加した。このときの飽和溶液濃度より各溶媒への溶解度を6段階(6:不溶、5:質量パーセント濃度5%未満、4:質量パーセント濃度5%以上10%未満、3:質量パーセント濃度10%以上30%未満、2:質量パーセント濃度30%以上50%未満、1:質量パーセント濃度50%以上)で表したデータを得た。その後、得られたデータを、Hansen Solubility Parameter in Practice(HSPiP)ver.3.1.17(チャールズ M ハンセン氏、スティーブン アボット氏らが開発)に入力し、以下の式Bにより、A層のHSPとB層のHSPの差の絶対値(R)を求めた。なお、「6:不溶」とは、溶媒量が99gに達しても溶解していない樹脂原料が観察された場合をいい、A層のHSPを(δdA,δpA,δhA)、B層のHSPを(δdB,δpB,δhB)として表した。
式B:R=4×(δdB-δdA+(δpB-δpA+(δpB-δpA
(10)ヘイズ
 フロント基板または反射ミラーのヘイズはヘイズメーターNDH4000(日本電色)を用いて、JIS K7136:2000に記載の方法に準拠して0度入射時の透過へイズ測定した。
(9) Hansen solubility parameter (HSP), absolute value of difference between HSP of layer A and HSP of layer B 15 grams of solvent (water, acetone, 2-butanone, Cyclopentanone, isopropyl alcohol, ethanol, 1-octanol, toluene, hexane, acetic acid, butyl acetate, aniline, methanamide, 2-aminoethanol, and 2-butoxyethanol) are each dissolved in small amounts to completely dissolve the resin raw material. Or was added until the amount of solvent reached 99 g. Six levels of solubility in each solvent are determined from the saturated solution concentration at this time (6: insoluble, 5: mass percent concentration less than 5%, 4: mass percent concentration of 5% or more and less than 10%, 3: mass percent concentration of 10% or more and 30%. %, 2: mass percent concentration of 30% to less than 50%, 1: mass percent concentration of 50% or more). Thereafter, the obtained data was transferred to Hansen Solubility Parameter in Practice (HSPIP) ver. 3.1.17 (developed by Charles M. Hansen, Steven Abbott et al.) And the absolute value (R) of the difference between the HSP of the A layer and the HSP of the B layer was obtained by the following equation B. “6: Insoluble” means a case where a resin raw material that is not dissolved even when the amount of the solvent reaches 99 g is observed. The HSP of the A layer is (δ dA , δ pA , δ hA ), and the B layer Was expressed as (δ dB , δ pB , δ hB ).
Formula B: R 2 = 4 × (δ dB −δ dA ) 2 + (δ pB −δ pA ) 2 + (δ pB −δ pA ) 2
(10) Haze The haze of the front substrate or the reflecting mirror was measured by using a haze meter NDH4000 (Nippon Denshoku Co., Ltd.) according to the method described in JIS K7136: 2000.
 (11)平均変角反射率の最大値
 株式会社島津製作所製UV-3600Plusに可変角用光学ユニットを取り付け評価を行う反射ミラーをセットし、入射光の入射角を30°(または60°)に固定し、波長300nm~1,200nmの範囲において1nmピッチで、反射角度25°~35°(または55°~65°)の範囲(反射角度は1°刻み)における反射率を測定した。その後、300nm~1,200nmでの反射角度25°~35°(または55°~65°)それぞれにおける反射率の平均値を計算し、その角度における平均変角反射率とした。反射角度25°~35°(または55°~65°)の平均変角反射率のうち、最も大きな値を入射角30度(または入射角60度)での平均変角反射率の最大値とした。ここで入射角は、入射光とミラーの受光面で成した角度であり、入射角が90度に近いほどミラーの受光面に垂直に近い角度での照射を意味する。入射角30度は太陽高度の低い場合を想定し、入射角60度はより高い太陽高度を想定して測定した。なお、基準板として硫酸バリウム板を使用した。
(11) Maximum value of average variable reflectivity Reflective mirror for evaluation with variable angle optical unit attached to UV-3600Plus manufactured by Shimadzu Corporation and setting incident angle of incident light to 30 ° (or 60 °) The reflectance was measured in the range of reflection angles of 25 ° to 35 ° (or 55 ° to 65 °) (reflection angles in increments of 1 °) with a 1 nm pitch in the wavelength range of 300 nm to 1,200 nm. Thereafter, the average value of the reflectance at each of the reflection angles of 25 ° to 35 ° (or 55 ° to 65 °) at 300 nm to 1,200 nm was calculated, and the average variable reflectivity at that angle was obtained. Of the average variable reflectivity at a reflection angle of 25 ° to 35 ° (or 55 ° to 65 °), the largest value is the maximum value of the average variable reflectivity at an incident angle of 30 degrees (or an incident angle of 60 degrees). did. Here, the incident angle is an angle formed by the incident light and the light receiving surface of the mirror, and the closer the incident angle is to 90 degrees, the irradiation at an angle close to perpendicular to the light receiving surface of the mirror. The incident angle of 30 degrees was measured assuming a low solar altitude, and the incident angle of 60 degrees was measured assuming a higher solar altitude. A barium sulfate plate was used as the reference plate.
 (12)太陽電池モジュールの出力向上率の差
 前記(4)で測定した2つの出力向上率(太陽高度が60°前後の場合と26°前後の場合)の差をとり、出力向上率の差とした。
(12) Difference in output improvement rate of solar cell module The difference between the two output improvement rates measured in (4) above (when the solar altitude is around 60 ° and around 26 °) It was.
 〔熱可塑性樹脂〕
 (熱可塑性樹脂A)
 結晶性ポリエチレンテレフタレート(東レ株式会社製F20S 結晶融解温度:255℃、結晶融解熱量:41mJ/mg、結晶化温度:155℃)。
〔Thermoplastic resin〕
(Thermoplastic resin A)
Crystalline polyethylene terephthalate (F20S manufactured by Toray Industries, Inc .: Crystal melting temperature: 255 ° C., crystal melting heat: 41 mJ / mg, crystallization temperature: 155 ° C.).
 (熱可塑性樹脂B1)
 非晶性共重合ポリエステル(ジカルボン酸単位:テレフタル酸単位/シクロヘキサンジカルボン酸単位=76.0mol%/24.0mol%、ジオール単位:エチレングリコール単位/スピログリコール単位=79.0mol%/21.0mol%)。
(Thermoplastic resin B1)
Amorphous copolymer polyester (dicarboxylic acid unit: terephthalic acid unit / cyclohexanedicarboxylic acid unit = 76.0 mol% / 24.0 mol%, diol unit: ethylene glycol unit / spiroglycol unit = 79.0 mol% / 21.0 mol% ).
 (熱可塑性樹脂B2)
 非晶性共重合ポリエステル(ジカルボン酸単位:テレフタル酸単位/シクロヘキサンジカルボン酸単位=83.2mol%/16.8mol%、ジオール単位:エチレングリコール単位/スピログリコール単位=85.3mol%/14.7mol%)。
(Thermoplastic resin B2)
Amorphous copolymer polyester (dicarboxylic acid unit: terephthalic acid unit / cyclohexanedicarboxylic acid unit = 83.2 mol% / 16.8 mol%, diol unit: ethylene glycol unit / spiroglycol unit = 85.3 mol% / 14.7 mol% ).
 (熱可塑性樹脂B3)
 非晶性共重合ポリエステル(イーストマン製PETG6763 ジカルボン酸単位:テレフタル酸単位=100.0mol%、ジオール単位:エチレングリコール単位/シクロヘキサンジメタノール単位=70.0mol%/30.0mol%)。
(Thermoplastic resin B3)
Amorphous copolymer polyester (PETG6763 manufactured by Eastman: dicarboxylic acid unit: terephthalic acid unit = 100.0 mol%, diol unit: ethylene glycol unit / cyclohexanedimethanol unit = 70.0 mol% / 30.0 mol%).
 (熱可塑性樹脂B4)
 ポリメチルメタクリレート(Plaskolite,Columbus,Ohioより購入。商品名:CP-80)。
(Thermoplastic resin B4)
Polymethyl methacrylate (purchased from Plaskolite, Columbias, Ohio, trade name: CP-80).
 (熱可塑性樹脂B1、B2の製造)
 先ず、テレフタル酸ジメチルを60.9質量部、シス/トランス比率が72/28である1,4-シクロヘキサンジカルボン酸ジメチルを19.8質量部、エチレングリコールを49.7質量部、スピログリコールを28.1質量部、酢酸マンガン四水塩を0.04質量部、三酸化アンチモンを0.02質量部それぞれ計量して混合した。次いで、得られた混合物を150℃で溶解させて撹拌した後、撹拌しながら反応内容物の温度を235℃までゆっくり昇温しながらメタノールを留出させた。所定量のメタノールが留出した後、0.02質量部のトリメチルリン酸を含むエチレングリコール溶液を添加し、10分間撹拌してエステル交換反応を終了した。その後、得られたエステル交換反応物を重合装置に移行し、撹拌しながら減圧および昇温してエチレングリコールを留出させながら重合を行った(90分間かけて、常圧から133Pa以下に減圧し、並行して235℃から285℃まで昇温した。)。重合終了後、重合装置下部の排出口を開けて重合装置内容物を水槽へ吐出し、これを水槽で冷却した後カッターにてカッティングし、熱可塑性樹脂B1のチップとした。なお、熱可塑性樹脂B2は、原料の組成をテレフタル酸ジメチル66.7質量部、シス/トランス比率が72/28である1,4-シクロヘキサンジカルボン酸ジメチル13.9質量部、エチレングリコール53.6質量部、スピログリコール19.7質量部とした以外は熱可塑性樹脂B1と同様に製造した。
(Manufacture of thermoplastic resins B1 and B2)
First, 60.9 parts by mass of dimethyl terephthalate, 19.8 parts by mass of dimethyl 1,4-cyclohexanedicarboxylate having a cis / trans ratio of 72/28, 49.7 parts by mass of ethylene glycol, and 28 of spiroglycol 0.1 parts by mass, 0.04 parts by mass of manganese acetate tetrahydrate, and 0.02 parts by mass of antimony trioxide were weighed and mixed. Subsequently, after the obtained mixture was dissolved at 150 ° C. and stirred, methanol was distilled while slowly raising the temperature of the reaction contents to 235 ° C. while stirring. After distillation of a predetermined amount of methanol, an ethylene glycol solution containing 0.02 parts by mass of trimethyl phosphoric acid was added and stirred for 10 minutes to complete the transesterification reaction. Thereafter, the obtained transesterification reaction product was transferred to a polymerization apparatus, and polymerization was carried out while distilling ethylene glycol by stirring and reducing the pressure while stirring (the pressure was reduced from normal pressure to 133 Pa or less over 90 minutes). In parallel, the temperature was raised from 235 ° C. to 285 ° C.). After completion of the polymerization, the outlet at the lower part of the polymerization apparatus was opened, and the contents of the polymerization apparatus were discharged into a water tank, which was cooled in the water tank and then cut with a cutter to obtain a thermoplastic resin B1 chip. The thermoplastic resin B2 has a raw material composition of 66.7 parts by weight of dimethyl terephthalate, 13.9 parts by weight of dimethyl 1,4-cyclohexanedicarboxylate having a cis / trans ratio of 72/28, and 53.6 ethylene glycol. Manufactured in the same manner as the thermoplastic resin B1 except that the amount was 1 part by mass and 19.7 parts by mass of spiroglycol.
 〔反射部材用フィルム〕
 (フィルム1~5)
 表1に示す多層フィルムを使用した。なお、表1における各層の組成は、各層を構成する全成分を100質量%として算出した。
[Reflective member film]
(Films 1-5)
The multilayer film shown in Table 1 was used. In addition, the composition of each layer in Table 1 was calculated assuming that all components constituting each layer were 100% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (フィルム6~8)
 フィルム6:スリーエム株式会社製多層フィルム“ESR”を使用した。フィルム7:東レフィルム加工株式会社製Al蒸着PETフィルム“メタルミー”(登録商標)S(#25)を使用した(厚み25μm)。フィルム8:東レ株式会社製白色PETフィルム“ルミラー”(登録商標)E20(#50)を使用した(厚み50μm)。
(Films 6-8)
Film 6: A multilayer film “ESR” manufactured by 3M Co., Ltd. was used. Film 7: Al vapor-deposited PET film “Metal Me” (registered trademark) S (# 25) manufactured by Toray Film Processing Co., Ltd. was used (thickness 25 μm). Film 8: White PET film “Lumirror” (registered trademark) E20 (# 50) manufactured by Toray Industries, Inc. was used (thickness: 50 μm).
 (フィルム9)
 以下の主剤を用いて調整した塗料により、フィルム1の一方の面に耐UV層を形成したものを使用した、主剤及び塗料の調整方法、耐UV層の形成方法は以下の通りである。なお、フィルム9は、耐UV層を形成した面の反対側の面を受光面として用いた。
主剤の調整:DIC(株)製の、アクリルポリオール系樹脂と紫外線吸収剤を含むコーティング剤であるUC CLEAR BS(固形分濃度:40質量%)239.8質量部にシリカ0.5質量部および酢酸エチル0.8質量部を一括混合し、ビーズミル機を用いて分散し、固形分濃度が40質量%である耐UV層層形成用塗料の主剤を得た。
塗料の調整:上記主剤に硬化剤としてイソシアネート樹脂である、DIC(株)製ウレタン硬化剤G-18N(固形分濃度:100質量%)を、樹脂層形成用塗料の主剤中のDIC(株)製UC CLEAR BS(固形分濃度:40質量%)との質量比が100/1.5になるように予め計算して配合し、さらに固形分濃度30質量%(樹脂固形分濃度)の塗料となるように予め算出した希釈剤(酢酸エチル)を量りとり、15分間攪拌することにより固形分濃度30質量%(樹脂固形分濃度)の塗料を得た。
耐UV層の形成:フィルム1の一方の面に、コロナ処理を施し、さらにワイヤーバーを用いて上記塗料を塗布し、120℃で60秒間乾燥し、乾燥後塗布厚みが6.5μmとなるように耐UV層を形成した。これを40℃で3日間エージングすることで、フィルム9を得た。
(Film 9)
The method for adjusting the main agent and the paint and the method for forming the UV-resistant layer using the paint prepared using the following main agent and having the UV-resistant layer formed on one surface of the film 1 are as follows. In addition, the film 9 used the surface on the opposite side to the surface in which the UV-resistant layer was formed as a light-receiving surface.
Preparation of main agent: DIC CLEAR BS (solid content concentration: 40% by mass) 239.8 parts by mass, which is a coating agent containing an acrylic polyol resin and an ultraviolet absorber, manufactured by DIC Corporation, and 0.5 parts by mass of silica 0.8 parts by mass of ethyl acetate was mixed at once and dispersed using a bead mill, to obtain a main component of a UV-resistant layer-forming coating material having a solid content concentration of 40% by mass.
Preparation of paint: DIC Co., Ltd. urethane curing agent G-18N (solid content concentration: 100% by mass), which is an isocyanate resin as a curing agent, is added to DIC Co., Ltd. Preliminarily calculated and blended so that the mass ratio with UC CLEAR BS (solid content concentration: 40% by mass) is 100 / 1.5, and a paint with a solid content concentration of 30% by mass (resin solid content concentration) A coating agent having a solid content concentration of 30% by mass (resin solid content concentration) was obtained by measuring the diluent (ethyl acetate) calculated in advance and stirring for 15 minutes.
Formation of UV-resistant layer: One surface of film 1 is subjected to corona treatment, and further the above-mentioned paint is applied using a wire bar and dried at 120 ° C. for 60 seconds. After drying, the coating thickness is 6.5 μm. A UV-resistant layer was formed. This was aged at 40 ° C. for 3 days to obtain a film 9.
 (フィルム1~5の製造方法)
 フィルム1は以下の手順で製造した。先ず、熱可塑性樹脂A及び熱可塑性樹脂B1を別々のベント付二軸押出機に供給し、275℃で溶融した。その後、ギヤポンプで吐出量を調節しながら溶融した各樹脂を吐出させて別々のフィルターにより異物等を除去した後、903個のスリットを有するフィードブロックで両者を合流させ、熱可塑性樹脂A(A層)と熱可塑性樹脂B1(B層)を、合計層数が903、両側の最外層がA層となるように交互に積層させた。このとき、各々の樹脂温度は、フィードブロックのスリット状流路入口直前で270.0℃±0.1℃の範囲に制御し、各層の厚みはフィードブロック内の各層の流路に設けた微細スリットの形状と吐出量により、A層とB層の合計厚み比が1:1になるように調整した。このようにして得られた計903層からなる積層体をシート状に成形した後、静電印加にて表面温度が25℃に制御されたキャスティングドラム上で急冷固化してキャストフィルムを得た。得られたキャストフィルムを75℃に設定したロール群で加熱した後、延伸区間100mmの間で、フィルム両面からラジエーションヒーターで急速加熱しながら、フィルムの搬送方向(縦方向)に3.3倍延伸し、その後一旦冷却して一軸延伸フィルムを得た。次いで、該一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、110℃の温度で搬送方向と垂直なフィルムの幅方向(横方向)に3.5倍延伸した。延伸したフィルムは、そのままテンター内で230℃の熱風で熱処理を行い、続いて同温度で幅方向に5%の弛緩処理を施し、室温まで除冷後、ワインダーで巻き取った。フィルム2~5についても樹脂の種類やスリット数の異なるフィードブロックを使用した以外は同様に製造した。
(Method for producing films 1 to 5)
Film 1 was produced by the following procedure. First, the thermoplastic resin A and the thermoplastic resin B1 were supplied to separate vented twin-screw extruders and melted at 275 ° C. After that, the molten resin is discharged while adjusting the discharge amount with a gear pump, and foreign matters and the like are removed by separate filters. Then, the two are joined together by a feed block having 903 slits, and thermoplastic resin A (A layer ) And thermoplastic resin B1 (B layer) were alternately laminated so that the total number of layers was 903 and the outermost layers on both sides were A layers. At this time, the temperature of each resin is controlled within a range of 270.0 ° C. ± 0.1 ° C. just before the entrance of the slit-like flow path of the feed block, and the thickness of each layer is a fine value provided in the flow path of each layer in the feed block. The total thickness ratio of the A layer and the B layer was adjusted to 1: 1 depending on the shape of the slit and the discharge amount. A laminate comprising a total of 903 layers thus obtained was formed into a sheet shape, and then rapidly cooled and solidified on a casting drum whose surface temperature was controlled to 25 ° C. by electrostatic application to obtain a cast film. The obtained cast film is heated by a group of rolls set at 75 ° C., and then stretched 3.3 times in the film conveyance direction (longitudinal direction) while being rapidly heated with a radiation heater from both sides of the film in a stretching section of 100 mm. After that, it was once cooled to obtain a uniaxially stretched film. Next, the uniaxially stretched film was guided to a tenter, preheated with hot air of 100 ° C., and stretched 3.5 times in the width direction (lateral direction) of the film perpendicular to the transport direction at a temperature of 110 ° C. The stretched film was directly heat-treated in a tenter with hot air of 230 ° C., then subjected to a relaxation treatment of 5% in the width direction at the same temperature, cooled to room temperature, and wound up with a winder. Films 2 to 5 were produced in the same manner except that feed blocks having different types of resin and different numbers of slits were used.
 (実施例1)
 フロント基板として厚み3mmの太陽電池カバーガラス、封止材としてEVA(杭州FIRST有限公司製 F806)、反射部材用の多層フィルムとして(フィルム1)をこの順に積層し、(1)反射ミラーの作製の項に記載の方法により、受光面サイズが1,475mm×971mmの反射ミラーを作製した。ここで太陽電池カバーガラスは大阪硝子工業株式会社製のエンボスつきガラスを使用した。次に、2枚のフジプレアム株式会社製多結晶シリコン太陽電池モジュール(受光面サイズ:1,475mm×971mm)(以下、実施例において、単に太陽電池モジュールということがある。)について、JIS C8914:2005の基準状態に準じて最大出力の測定を実施した。2枚の太陽電池モジュールの出力がほぼ同等であることを確認した後、その1枚を東レ株式会社瀬田工場内の曝露試験場(滋賀県大津市)で南向きに、地面(水平面)に対して25°の角をなすように設置した。さらに、設置した太陽電池モジュールから東に1.5m離れた場所に、もう1枚の太陽電池モジュールを同様に設置した。次に、一方の太陽電池モジュールの前方に、北向き、かつ地面に対して30°の角をなすように反射ミラーを設置した。反射ミラーの鏡面反射率、太陽電池モジュールの出力向上率等の評価結果を表2に示す。
Example 1
A solar cell cover glass having a thickness of 3 mm as a front substrate, EVA (F806 made by Hangzhou FIRST Co., Ltd.) as a sealing material, and (Film 1) as a multilayer film for a reflecting member are laminated in this order. (1) Production of a reflecting mirror A reflecting mirror having a light receiving surface size of 1,475 mm × 971 mm was produced by the method described in the section. Here, as the solar cell cover glass, an embossed glass manufactured by Osaka Glass Industry Co., Ltd. was used. Next, two polycrystalline silicon solar cell modules (light receiving surface size: 1,475 mm × 971 mm) manufactured by Fujipream Co., Ltd. (hereinafter, simply referred to as solar cell module in the examples) are JIS C8914: 2005. The maximum output was measured according to the reference state. After confirming that the output of the two solar cell modules is almost equal, one of them is facing south on the exposure test site (Otsu City, Shiga Prefecture) at the Toray Industries Inc. Seta Factory, and against the ground (horizontal plane). It was installed to make a 25 ° angle. Furthermore, another solar cell module was similarly installed in a place 1.5 m away from the installed solar cell module to the east. Next, a reflection mirror was installed in front of one of the solar cell modules so as to face north and form an angle of 30 ° with the ground. Table 2 shows the evaluation results such as the specular reflectance of the reflecting mirror and the output improvement rate of the solar cell module.
 (実施例2~5、比較例1~4)
 反射ミラーを構成する反射部材用フィルムを表2のとおりとした以外は実施例1と同様に評価を実施した。評価結果を表2に示す。
(Examples 2 to 5, Comparative Examples 1 to 4)
Evaluation was carried out in the same manner as in Example 1 except that the reflecting member film constituting the reflecting mirror was as shown in Table 2. The evaluation results are shown in Table 2.
 (比較例5)
 反射ミラーをガラスのみとした以外は実施例1と同様に評価を実施した。評価結果を表2に示す。
(Comparative Example 5)
Evaluation was carried out in the same manner as in Example 1 except that only the reflection mirror was made of glass. The evaluation results are shown in Table 2.
 (比較例6)
 反射ミラーを厚み3mmの太陽電池カバーガラスを厚み3mmの高透過ガラスとした以外は実施例1と同様に評価を実施した。評価結果を表2に示す。
(Comparative Example 6)
Evaluation was carried out in the same manner as in Example 1 except that the solar cell cover glass with a thickness of 3 mm was replaced with a highly transparent glass with a thickness of 3 mm. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 フィルム6の屈折率差は不明。比較例3及び4におけるフィルム7、8はA層とB層を繰り返した積層構成を有しておらず、比較例5は反射ミラーがフィルムを有していないため、比較例3~5においては屈折率差の測定及びクロスカット試験は実施しなかった。 The refractive index difference of film 6 is unknown. Since the films 7 and 8 in the comparative examples 3 and 4 do not have a laminated structure in which the A layer and the B layer are repeated, and the comparative example 5 does not have a film, the comparative examples 3 to 5 The measurement of the refractive index difference and the crosscut test were not performed.
 本発明により、発電効率及び発電量の安定性に優れた太陽光発電システムを得ることができる。本発明の太陽光発電システムは、特に屋外用途で好適に用いることができ、オープンラックでより好適に用いることができる。 According to the present invention, a photovoltaic power generation system excellent in power generation efficiency and power generation stability can be obtained. The solar power generation system of the present invention can be suitably used particularly for outdoor use, and can be more suitably used for an open rack.
1:太陽電池モジュール
2:反射ミラー
3:太陽電池モジュール用架台
4:反射ミラー用架台
5:多層フィルム
6:A層
7:B層
8:フロント基板
9:封止材
10:耐UV層
11:太陽電池素子
12:太陽電池裏面保護シート
1: Solar cell module 2: Reflection mirror 3: Solar cell module mount 4: Reflection mirror mount 5: Multilayer film 6: A layer 7: B layer 8: Front substrate 9: Sealing material 10: UV resistant layer 11: Solar cell element 12: solar cell back surface protection sheet

Claims (10)

  1.  太陽電池モジュール及び太陽電池モジュールの受光面へ反射光を照射する位置に設けられた反射ミラーを備え、前記反射ミラーの波長800nmにおける鏡面反射率が15%以上45%以下であり、かつ、前記反射ミラーの波長800nmにおける光線透過率が20%以上45%以下であることを特徴とする、太陽光発電システム。 A solar cell module and a reflecting mirror provided at a position for irradiating reflected light to the light receiving surface of the solar cell module, the specular reflectance of the reflecting mirror at a wavelength of 800 nm being 15% or more and 45% or less, and the reflection A solar power generation system, wherein the light transmittance at a wavelength of 800 nm of the mirror is 20% or more and 45% or less.
  2.  前記反射ミラーの波長1,800nmにおける光線透過率が80%以上であり、かつ前記反射ミラーの波長1,200nm以上1,400nm以下における平均光線透過率が60%以上80%以下であることを特徴とする、請求項1に記載の太陽光発電システム。 The light transmittance at a wavelength of 1,800 nm of the reflection mirror is 80% or more, and the average light transmittance at a wavelength of 1,200 nm to 1,400 nm of the reflection mirror is from 60% to 80%. The solar power generation system according to claim 1.
  3.  前記反射ミラーは熱可塑性樹脂を主成分とする2種類の層で構成されるフィルムを具備し、前記2種類の層(屈折率の大きい層をA層、屈折率の小さい層をB層とする)のうち、前記A層と前記B層とが厚み方向に交互に位置し、前記A層と前記B層の合計層数が600以上であり、かつ、JIS K 5600-5-6:1999により測定した前記A層と前記B層との間の剥離強度の試験結果の分類が0であることを特徴とする、請求項1又は2に記載の太陽光発電システム。 The reflection mirror includes a film composed of two types of layers mainly composed of a thermoplastic resin, and the two types of layers (a layer having a high refractive index is a layer A and a layer having a low refractive index is a layer B). ), The A layer and the B layer are alternately positioned in the thickness direction, the total number of the A layer and the B layer is 600 or more, and according to JIS K 5600-5-6: 1999 The photovoltaic power generation system according to claim 1 or 2, wherein a classification of a test result of a peel strength between the measured A layer and the B layer is 0.
  4.  前記反射ミラーの受光面に対して、入射角30°で入射させた場合の、受光角25°から35°までにおける波長300nmから1,200nmまでの帯域での平均変角反射率の最大値が15%以上35%以下であり、かつ入射角60°で入射させた場合の、受光角55°から65°までにおける波長300nmから1,200nmまでの帯域での平均変角反射率の最大値が10%以上30%以下であることを特徴とする、請求項1~3のいずれかに記載の太陽光発電システム。 When the incident angle is 30 ° with respect to the light receiving surface of the reflecting mirror, the maximum value of the average variable reflectivity in the band from the wavelength of 300 nm to 1,200 nm at the light receiving angle of 25 ° to 35 ° is When the incidence angle is 15% or more and 35% or less and the incidence angle is 60 °, the maximum value of the average variable reflectivity in the band from the wavelength of 300 nm to 1,200 nm at the light reception angle of 55 ° to 65 ° is The photovoltaic power generation system according to any one of claims 1 to 3, wherein the photovoltaic power generation system is 10% or more and 30% or less.
  5.  前記反射ミラーの波長700nmにおける鏡面反射率が15%以上45%以下であり、かつ、前記反射ミラーの波長700nmにおける光線透過率が20%以上45%以下であることを特徴とする、請求項1~4のいずれかに記載の太陽光発電システム。 The specular reflectance at a wavelength of 700 nm of the reflecting mirror is 15% or more and 45% or less, and the light transmittance at a wavelength of 700 nm of the reflecting mirror is 20% or more and 45% or less. The photovoltaic power generation system according to any one of 1 to 4.
  6. 前記A層を構成する熱可塑性樹脂がポリアルキレンテレフタレートを主成分とする、請求項3~5のいずれかに記載の太陽光発電システム。 The photovoltaic power generation system according to any one of claims 3 to 5, wherein the thermoplastic resin constituting the A layer is mainly composed of polyalkylene terephthalate.
  7.  前記反射ミラーのヘイズが4%以上30%以下であることを特徴とする、請求項1~6のいずれかに記載の太陽光発電システム。 The solar power generation system according to any one of claims 1 to 6, wherein the reflection mirror has a haze of 4% to 30%.
  8.  前記反射ミラーは、受光面側から、フロント基板、封止材、及び前記A層と前記B層とが厚み方向に交互に位置し前記A層と前記B層の合計層数が600以上である多層フィルムをこの順に有し、前記フロント基板が、強化ガラス、ポリカーボネート及びポリメタクリル酸メチルのいずれかを構成成分とし、かつ前記封止材がエチレン・酢酸ビニル共重合体(EVA)、透明シリコン、及びポリメタクリル酸メチルのいずれかを主成分とすることを特徴とする、請求項3~7のいずれかに記載の太陽光反射システム。 In the reflection mirror, from the light receiving surface side, the front substrate, the sealing material, and the A layer and the B layer are alternately positioned in the thickness direction, and the total number of the A layer and the B layer is 600 or more. It has a multilayer film in this order, the front substrate comprises any one of tempered glass, polycarbonate and polymethyl methacrylate, and the sealing material is ethylene / vinyl acetate copolymer (EVA), transparent silicon, The solar light reflection system according to any one of claims 3 to 7, wherein the main component is any one of polymethyl methacrylate and polymethyl methacrylate.
  9.  前記フロント基板のヘイズが10%以上75%以下であることを特徴とする、請求項8に記載の太陽光発電システム。 The solar power generation system according to claim 8, wherein a haze of the front substrate is 10% or more and 75% or less.
  10.  前記多層フィルムの受光面とは反対側の面に、耐UV層を有することを特徴とする、請求項8又は9に記載の太陽光発電システム。 10. The solar power generation system according to claim 8 or 9, wherein a UV-resistant layer is provided on a surface opposite to the light receiving surface of the multilayer film.
PCT/JP2019/013738 2018-04-12 2019-03-28 Photovoltaic power generation system equipped with reflection mirror WO2019198536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517439A JPWO2019198536A1 (en) 2018-04-12 2019-03-28 Photovoltaic system with reflective mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076572 2018-04-12
JP2018-076572 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019198536A1 true WO2019198536A1 (en) 2019-10-17

Family

ID=68162882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013738 WO2019198536A1 (en) 2018-04-12 2019-03-28 Photovoltaic power generation system equipped with reflection mirror

Country Status (3)

Country Link
JP (1) JPWO2019198536A1 (en)
TW (1) TW201946288A (en)
WO (1) WO2019198536A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508380A (en) * 1995-06-26 1999-07-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Transparent multilayer device
JP2002314112A (en) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd Photovoltaic power generating system
JP2005522865A (en) * 2002-04-11 2005-07-28 アルカテル Concentrating solar cells protected from heating
JP2008518471A (en) * 2004-10-27 2008-05-29 ユニベルシテ・ド・リエージュ Solar concentrator
KR20110035800A (en) * 2009-09-30 2011-04-06 엘지이노텍 주식회사 Solar cell module
JP2011521289A (en) * 2008-05-14 2011-07-21 スリーエム イノベイティブ プロパティズ カンパニー Sunlight collecting mirror
JP2012212148A (en) * 1999-11-22 2012-11-01 Three M Innovative Properties Co Multilayer optical body
JP2014228179A (en) * 2013-05-21 2014-12-08 株式会社リコー Sunlight cogeneration device, sunlight cogeneration system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508380A (en) * 1995-06-26 1999-07-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー Transparent multilayer device
JP2012212148A (en) * 1999-11-22 2012-11-01 Three M Innovative Properties Co Multilayer optical body
JP2002314112A (en) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd Photovoltaic power generating system
JP2005522865A (en) * 2002-04-11 2005-07-28 アルカテル Concentrating solar cells protected from heating
JP2008518471A (en) * 2004-10-27 2008-05-29 ユニベルシテ・ド・リエージュ Solar concentrator
JP2011521289A (en) * 2008-05-14 2011-07-21 スリーエム イノベイティブ プロパティズ カンパニー Sunlight collecting mirror
KR20110035800A (en) * 2009-09-30 2011-04-06 엘지이노텍 주식회사 Solar cell module
JP2014228179A (en) * 2013-05-21 2014-12-08 株式会社リコー Sunlight cogeneration device, sunlight cogeneration system

Also Published As

Publication number Publication date
TW201946288A (en) 2019-12-01
JPWO2019198536A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US8445097B2 (en) Multi-layer fluoropolymeric film and articles incorporating such films
US20090283144A1 (en) Solar concentrating mirror
US10295712B2 (en) Backsheets for photovoltaic modules using infrared reflective pigments
US20090211631A1 (en) Photoluminescent backing sheet for photovoltaic modules
EP1930955A2 (en) Process and device to produce a solar panel with enhanced light capture
WO2009140493A1 (en) Solar concentrating mirror
TW201251069A (en) Photovoltaic module
KR101798256B1 (en) Polyester film with uv-stability and high light transmittance
KR20080053469A (en) Encapsulation film for photovoltaic module and photovoltaic module
EP2707764A2 (en) Architectural article with photovoltaic cell and visible light-transmitting reflector
US20140366943A1 (en) Transparent polymer materials for encapsulation of optical devices and photovoltaic module that uses this polymer
KR20140046009A (en) Laminated sheet and method for producing same
US8362353B2 (en) Photovoltaic module with multi-layer fluoropolymeric film
Arihara et al. Reliability and long term durability of bifacial photovoltaic modules using transparent backsheet
WO2019198536A1 (en) Photovoltaic power generation system equipped with reflection mirror
Hebrink Durable polymeric films for increasing the performance of concentrators
WO2018034117A1 (en) Laminate, solar cell rear surface protection sheet using same, and solar cell module
CN115274900A (en) Quantum dot photovoltaic backboard and double-sided photovoltaic assembly
CN115274901A (en) Up-conversion photovoltaic backboard and double-sided photovoltaic module
WO2017032377A1 (en) A method for manufacturing a solar cell panel and a solar cell panel manufactured using such a method
JP2019103208A (en) Reflection mirror excellent in dust-resistant performance and photovoltaic power generation system having the same
JP6596812B2 (en) Insulation sheet for solar cell
JP2013004948A (en) Solar cell module
JP2017183485A (en) Solar cell module sheet
JP2019022319A (en) Photovoltaic power generation system with reflection mirror

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784461

Country of ref document: EP

Kind code of ref document: A1