WO2019198215A1 - Laser device and laser processing device - Google Patents

Laser device and laser processing device Download PDF

Info

Publication number
WO2019198215A1
WO2019198215A1 PCT/JP2018/015449 JP2018015449W WO2019198215A1 WO 2019198215 A1 WO2019198215 A1 WO 2019198215A1 JP 2018015449 W JP2018015449 W JP 2018015449W WO 2019198215 A1 WO2019198215 A1 WO 2019198215A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
unit
module
drive power
laser module
Prior art date
Application number
PCT/JP2018/015449
Other languages
French (fr)
Japanese (ja)
Inventor
京藤 友博
平 荻田
森本 猛
秀康 町井
裕章 黒川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018549364A priority Critical patent/JPWO2019198215A1/en
Priority to PCT/JP2018/015449 priority patent/WO2019198215A1/en
Publication of WO2019198215A1 publication Critical patent/WO2019198215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present invention relates to a laser apparatus and a laser processing apparatus that can be expanded to enhance the output of laser light.
  • the required intensity of the laser output varies depending on the material of the object to be processed, the processing speed, and the like. For this reason, if it is necessary to increase the laser output by changing the material of the workpiece after the introduction of the laser device, or if it is necessary to increase the processing speed by increasing the number of processing, the laser of the laser device Expansion that enhances output is required.
  • Patent Document 1 discloses a technique for expanding an optical fiber amplifying apparatus that amplifies an optical signal by increasing the intensity of light by adding an optical amplifier in series.
  • the present invention has been made in view of the above, and it is not necessary to use an excessively high performance optical component even in a state before the expansion for enhancing the intensity of the laser beam. It is an object of the present invention to obtain a laser device capable of using an optical component.
  • a laser apparatus includes a laser module capable of oscillating laser light, a housing containing the laser module, a laser module provided in the housing, And an expansion unit capable of storing an additional laser module connected in parallel with the module.
  • the laser apparatus according to the present invention does not need to use an excessively high performance optical component even before the expansion to increase the intensity of the laser beam, and can use an optical component that matches the required performance. There is an effect that it is possible.
  • the figure which shows the structure of the laser apparatus concerning Embodiment 1 of this invention The figure which shows the connection relation of the component which the laser apparatus shown in FIG. 1 has.
  • the figure which shows an example of a detailed structure of the laser unit shown in FIG. The figure which shows the structure of the laser processing apparatus concerning Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a configuration of a laser apparatus 1 according to the first embodiment of the present invention.
  • the laser device 1 includes a housing 10, laser modules 20-1, 20-2, and 20-3, drive power supplies 30-1, 30-2, and 30-3, a coupling unit 40, a transmission fiber 41,
  • the control unit 50, the water cooling manifold 60, the first fixing portion 70, and the second fixing portion 71 are included. Further, it is possible to add a laser module 20-4 to the first fixed unit 70, and it is possible to add a drive power supply 30-4 to the second fixed unit 71.
  • the housing 10 includes laser modules 20-1, 20-2, 20-3, drive power supplies 30-1, 30-2, 30-3, a coupling unit 40, a transmission fiber 41, a control unit 50, A water cooling manifold 60, a first fixing portion 70, and a second fixing portion 71 are incorporated.
  • the laser modules 20-1, 20-2, 20-3, and 20-4 can oscillate laser light by supplying power and have a function of outputting the oscillated laser light.
  • the laser modules 20-1, 20-2, and 20-3 are arranged inside the housing 10 when the laser device 1 is shipped.
  • the laser module 20-4 is added after product shipment.
  • the laser modules 20-1, 20-2, 20-3, and 20-4 are connected in parallel.
  • a laser module 20 when it is not necessary to distinguish each of the laser modules 20-1, 20-2, 20-3, and 20-4, they are simply referred to as a laser module 20.
  • the drive power supplies 30-1, 30-2, 30-3, 30-4 are provided in one-to-one correspondence with the laser modules 20-1, 20-2, 20-3, 20-4, respectively. Power for driving the laser module 20 is supplied.
  • the drive power supplies 30-1, 30-2, and 30-3 are arranged inside the housing 10 at the product shipment stage of the laser device 1.
  • the drive power supply 30-4 is added after product shipment.
  • the drive power supply 30 when it is not necessary to distinguish each of the drive power supplies 30-1, 30-2, 30-3, and 30-4, they are simply referred to as the drive power supply 30.
  • the coupling unit 40 combines the laser beams output from each of the plurality of laser modules 20 connected in parallel into one beam.
  • the coupling unit 40 outputs the coupled laser light to the transmission fiber 41.
  • the combining unit 40 spatially combines a plurality of light paths to form one light beam, a polarization combination that superimposes two lights whose polarization directions differ from each other by 90 degrees, and a plurality of lights that have different wavelengths from each other.
  • a plurality of laser beams are coupled using a method such as wavelength coupling or fiber coupling that couples a plurality of optical fibers to one optical component.
  • the coupling unit 40 can couple a plurality of laser beams using one or more of the above-described coupling methods. For example, when four laser beams are coupled, the coupling unit 40 couples two lights using polarization coupling, obtains two coupled lights, and then couples two beams using another coupling method, for example, fiber coupling. The combined light can be further combined to obtain one light beam.
  • the coupling unit 40 includes three connection interfaces connected to the laser modules 20-1, 20-2, and 20-3 and an empty interface for expansion for connection to the additional laser module 20-4. Have.
  • the coupling method used by the coupling unit 40 is not particularly limited, and various coupling methods can be selected and used according to the required performance. For example, when it is desired to expand the wavelength band to be used, it is conceivable to combine laser beams of a plurality of wavelengths using wavelength coupling. On the other hand, since there are many cases where expensive components are required for wavelength coupling, when there is no need to expand the wavelength band, spatial coupling may be used for cost reduction.
  • the control unit 50 is connected to each of the plurality of drive power supplies 30, and can control the power supplied to the laser module 20 by controlling each of the plurality of drive power supplies 30.
  • the control unit 50 can also perform various interlock controls.
  • the control unit 50 has a plurality of connection interfaces with the drive power supply 30.
  • the control unit 50 has three connection interfaces connected to the drive power supplies 30-1, 30-2, and 30-3, and an additional empty interface for connection to the drive power supply 30-4.
  • the water cooling manifold 60 is a joint portion of a cooling pipe for cooling a heat generating portion in the laser device 1.
  • the cooling pipe connected to the water cooling manifold 60 is provided around the laser module 20, the drive power supply 30, and the like, for example.
  • the water cooling manifold 60 can switch a path through which cooling water flows through a cooling pipe provided in the laser device 1.
  • the cooling pipe is provided not only around the laser modules 20-1, 20-2, and 20-3 previously arranged in the laser apparatus 1, but also around the laser module 20-4 to be added.
  • the water cooling manifold 60 has an opening / closing part capable of individually switching the opening / closing of the cooling pipe for each laser module 20. Therefore, before installing the laser module 20-4, the open / close portion is closed so that the cooling water does not flow into the cooling pipe provided around the laser module 20-4, and the laser module 20-4 is installed. In this case, the opening / closing part may be opened so that the cooling water flows to the cooling pipe provided around the laser module 20-4. .
  • the arrangement of the cooling pipe is the same as that of the laser module 20 around the drive power supply 30.
  • the cooling pipe is provided not only around the drive power supplies 30-1, 30-2, 30-3 that are arranged in advance in the laser apparatus 1, but also around the drive power supply 30-4 to be added.
  • the water cooling manifold 60 has an open / close section that can individually switch the open / close of the cooling pipe for each drive power supply 30. For this reason, before the drive power supply 30-4 is added, the open / close portion is closed so that the cooling water does not flow into the cooling pipe provided around the drive power supply 30-4, and the drive power supply 30-4 is turned off. When expanding, the opening / closing part may be opened so that the cooling water flows to the cooling pipe provided around the drive power source 30-4.
  • the first fixing unit 70 fixes the plurality of laser modules 20 in the housing 10.
  • the first fixing unit 70 is provided with a space for storing the additional laser module 20-4 inside the housing 10.
  • the shape of the first fixing unit 70 may be any shape as long as it can fix the additional laser module 20-4, such as a frame, a fastener, a shelf, or the like.
  • the second fixing unit 71 fixes the plurality of driving power supplies 30 in the housing 10.
  • the second fixing portion 71 is provided with a space for storing the additional drive power supply 30-4 inside the housing 10.
  • the shape of the second fixing portion 71 is only required to be able to fix the additional drive power supply 30-4, and is, for example, a frame, a fastener, a shelf or the like.
  • FIG. 2 is a diagram showing the connection relationship of the constituent elements of the laser device 1 shown in FIG.
  • the drive power supply 30 and the laser module 20 constitute a laser unit 80.
  • the laser device 1 includes a laser unit 80-1 including a driving power source 30-1 and a laser module 20-1, a laser unit 80-2 including a driving power source 30-2 and a laser module 20-2, A laser unit 80-3 including a power supply 30-3 and a laser module 20-3.
  • the laser device 1 includes an expansion unit 90 that is provided inside the housing 10 and can store an expansion drive power supply 30-4 and an expansion laser module 20-4.
  • a laser unit 80-4 (not shown) is configured.
  • one laser unit 80 includes one laser module 20 and one drive power supply 30 for driving the laser module 20.
  • the laser unit 80 can oscillate laser light independently.
  • the expansion unit 90 includes a space for storing the laser module 20-4 and the drive power source 30-4 in the housing 10, a portion of the first fixing unit 70 that fixes the laser module 20-4, a second A portion of the fixing portion 71 that fixes the drive power supply 30-4.
  • the extension unit 90 can add the laser module 20 and the drive power supply 30 in units of the laser unit 80.
  • the expansion unit 90 can store therein an expansion laser module 20-4 that is connected in parallel to the laser modules 20-1, 20-2, and 20-3 arranged in advance. Further, the extension unit 90 can store therein a drive power source 30-4 that supplies power to the extension laser module 20-4.
  • the laser beams output from the laser units 80-1, 80-2, and 80-3 are combined by the combining unit 40 and output to the transmission fiber 41.
  • the laser light output from the laser unit 80-4 configured by adding the laser module 20-4 and the drive power supply 30-4 to the expansion unit 90 is also coupled by the coupling unit 40 and output to the transmission fiber 41.
  • FIG. 3 is a diagram showing an example of a detailed configuration of the laser unit 80 shown in FIG.
  • the laser unit 80 includes a laser module 20 and a drive power supply 30 that supplies drive power to the laser module 20.
  • the laser module 20 includes a total reflection mirror 21 and a partial reflection mirror 22, which are at least two reflection mirrors for reciprocating light, and a laser medium for stimulated emission of laser light between the total reflection mirror 21 and the partial reflection mirror 22.
  • an excitation unit 23 that excites.
  • the total reflection mirror 21 and the partial reflection mirror 22 are an example of a plurality of reflection surfaces constituting a resonator, and the present embodiment is not limited to such an example.
  • You may comprise a resonator using three or more reflective surfaces.
  • a reflection surface that changes the traveling direction of light may be included on the optical path between two reflection surfaces constituting the resonator, and the reflection surface is not limited to a mirror, but is a reflection function formed by coating. It may be a surface having
  • the excitation unit 23 is a discharge unit in which power is applied to the laser gas.
  • the excitation unit 23 is a YAG rod unit that is optically excited by doping a laser medium.
  • the excitation unit 23 is a laser. It is an active layer doped with a medium and applied with electric power.
  • the laser apparatus 1 includes the additional laser module 20-4 connected in parallel with the laser modules 20-1, 20-2, and 20-3. 10 is provided with an expansion unit 90 that can be stored inside. For this reason, it is possible to expand the laser light output intensity by increasing the number of laser modules 20-4.
  • the plurality of laser modules 20 are connected in parallel, the light resistance required for the optical components constituting the laser module 20 does not change before and after the expansion for increasing the intensity of the laser light. Therefore, it is not necessary to use an excessively high performance optical component even in a state before the expansion for increasing the intensity of the laser beam, and it is possible to use an optical component that matches the required performance.
  • the laser module 20 and the drive power supply 30 can be added in units of the laser unit 80 including the laser module 20 and the drive power supply 30.
  • This laser unit 80 can oscillate laser light independently. For this reason, when performing expansion to enhance the output of the laser light, the output of the laser light can be enhanced even if other components already incorporated in the laser device 1 have deteriorated.
  • the number of laser modules 20 built in the laser apparatus 1 in advance at the shipping stage is three, and the number of laser modules 20 that can be added after shipment is one.
  • the form is not limited to such an example.
  • the number of laser modules 20 built in the laser device 1 in advance may be an arbitrary number of 1 or more.
  • a plurality of laser modules 20 may be added.
  • FIG. FIG. 4 is a diagram showing the configuration of the laser processing apparatus 100 according to the second embodiment of the present invention.
  • the laser processing device 100 includes a laser device 1, a processing head 2, a table 3, and a control device 4.
  • Laser light output from the laser device 1 is input to the machining head 2 via the transmission fiber 41.
  • the laser processing apparatus 100 irradiates the processing target W with laser light from the processing head 2 while changing the relative position between the processing head 2 and the processing target W placed on the table 3, thereby processing the processing target.
  • An apparatus for laser processing W is provided.
  • the control device 4 controls the operations of the laser device 1, the processing head 2, and the table 3 to perform laser processing on the workpiece W.
  • the control device 4 can control the position of the machining head 2 and the position of the table 3 to change the relative position between the machining head 2 and the workpiece W on the table 3.
  • the position of the table 3 may be fixed and only the position of the machining head 2 may be changed.
  • the laser processing apparatus 100 includes the laser apparatus 1 described in the first embodiment. For this reason, by adding the laser module 20-4 to the laser apparatus 1, it becomes possible to enhance the output of the laser beam used when performing laser processing. At this time, since the plurality of laser modules 20 are connected in parallel, the light resistance required for the optical components constituting the laser module 20 does not change before and after the expansion for increasing the intensity of the laser light. Therefore, it is not necessary to use an excessively high performance optical component even in a state before the expansion for increasing the intensity of the laser beam, and it is possible to use an optical component that matches the required performance.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser device (1) is characterized by being provided with laser modules (20-1, 20-2, 20-3) that can oscillate laser beams; a housing (10) in which the laser modules (20-1, 20-2, 20-3) are embedded; and an expansion unit that is provided inside the housing (10) and is capable of storing an expansion laser module (20-4) which is connected in parallel with the laser modules (20-1, 20-2, 20-3).

Description

レーザ装置およびレーザ加工装置Laser apparatus and laser processing apparatus
 本発明は、レーザ光の出力を増強する拡張を行うことが可能なレーザ装置およびレーザ加工装置に関する。 The present invention relates to a laser apparatus and a laser processing apparatus that can be expanded to enhance the output of laser light.
 レーザ装置を導入した後に、レーザ装置のレーザ出力を増強する拡張が求められることがある。例えばレーザ装置が出力するレーザ光を使用して加工対象物を加工するレーザ加工装置では、加工対象物の素材、加工スピードなどに応じて、求められるレーザ出力の強度は異なる。このため、レーザ装置を導入した後に、加工対象物の素材を変更してレーザ出力を高める必要が生じたり、加工数が増えて加工スピードを上げる必要が生じたりした場合には、レーザ装置のレーザ出力を増強する拡張が求められる。 After the introduction of the laser device, there may be a need to expand the laser output of the laser device. For example, in a laser processing apparatus that processes an object to be processed using laser light output from the laser apparatus, the required intensity of the laser output varies depending on the material of the object to be processed, the processing speed, and the like. For this reason, if it is necessary to increase the laser output by changing the material of the workpiece after the introduction of the laser device, or if it is necessary to increase the processing speed by increasing the number of processing, the laser of the laser device Expansion that enhances output is required.
 特許文献1には、光信号を増幅する光ファイバ増幅装置において、光増幅器を直列に増設することで、光の強度を増強する拡張を行う技術が開示されている。 Patent Document 1 discloses a technique for expanding an optical fiber amplifying apparatus that amplifies an optical signal by increasing the intensity of light by adding an optical amplifier in series.
特開2011-243803号公報JP 2011-243803 A
 しかしながら、上記特許文献1に開示されている技術によれば、増設する光増幅器を直列に接続するため、光増幅器よりも後段に配置される光学部品には、拡張前後で異なる強度の光が入射する。このため、拡張後の光強度に合わせて、拡張前の状態で必要な耐光強度よりも耐光強度の高い光学部品を使用する必要があり、拡張前の状態では要求される性能に対して過剰性能な光学部品を使用することになるという問題があった。また、従来ではレーザ装置のレーザ出力を調整する方法として、レーザ装置に供給する電力量を増減させる方法が一般的であり、レーザ装置に搭載するレーザモジュールの個数を増減させることでレーザ出力を調整する方法は開示されていなかった。 However, according to the technique disclosed in Patent Document 1, since additional optical amplifiers are connected in series, light of different intensities before and after the expansion is incident on the optical components arranged after the optical amplifier. To do. For this reason, it is necessary to use optical components with a light resistance higher than the light resistance required before expansion in accordance with the light intensity after expansion. There is a problem in that the use of various optical components is required. Conventionally, as a method of adjusting the laser output of the laser device, a method of increasing or decreasing the amount of power supplied to the laser device is generally used, and the laser output is adjusted by increasing or decreasing the number of laser modules mounted on the laser device. The method to do was not disclosed.
 本発明は、上記に鑑みてなされたものであって、レーザ光の強度を増強する拡張を行う前の状態においても、過剰性能な光学部品を使用する必要がなく、要求される性能に合わせた光学部品を使用することが可能なレーザ装置を得ることを目的とする。 The present invention has been made in view of the above, and it is not necessary to use an excessively high performance optical component even in a state before the expansion for enhancing the intensity of the laser beam. It is an object of the present invention to obtain a laser device capable of using an optical component.
 上述した課題を解決し、目的を達成するために、本発明にかかるレーザ装置は、レーザ光を発振可能なレーザモジュールと、レーザモジュールを内蔵する筐体と、筐体の内部に設けられ、レーザモジュールと並列に接続される増設用のレーザモジュールを格納することが可能な増設部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a laser apparatus according to the present invention includes a laser module capable of oscillating laser light, a housing containing the laser module, a laser module provided in the housing, And an expansion unit capable of storing an additional laser module connected in parallel with the module.
 本発明にかかるレーザ装置は、レーザ光の強度を増強する拡張を行う前の状態においても、過剰性能な光学部品を使用する必要がなく、要求される性能に合わせた光学部品を使用することが可能であるという効果を奏する。 The laser apparatus according to the present invention does not need to use an excessively high performance optical component even before the expansion to increase the intensity of the laser beam, and can use an optical component that matches the required performance. There is an effect that it is possible.
本発明の実施の形態1にかかるレーザ装置の構成を示す図The figure which shows the structure of the laser apparatus concerning Embodiment 1 of this invention. 図1に示すレーザ装置が有する構成要素の接続関係を示す図The figure which shows the connection relation of the component which the laser apparatus shown in FIG. 1 has. 図2に示すレーザユニットの詳細な構成の一例を示す図The figure which shows an example of a detailed structure of the laser unit shown in FIG. 本発明の実施の形態2にかかるレーザ加工装置の構成を示す図The figure which shows the structure of the laser processing apparatus concerning Embodiment 2 of this invention.
 以下に、本発明の実施の形態にかかるレーザ装置およびレーザ加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser apparatus and a laser processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるレーザ装置1の構成を示す図である。レーザ装置1は、筐体10と、レーザモジュール20-1,20-2,20-3と、駆動電源30-1,30-2,30-3と、結合部40と、伝送ファイバ41と、制御ユニット50と、水冷マニホールド60と、第1固定部70と、第2固定部71とを有する。また、第1固定部70には、レーザモジュール20-4を増設することが可能であり、第2固定部71には、駆動電源30-4を増設することが可能である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a laser apparatus 1 according to the first embodiment of the present invention. The laser device 1 includes a housing 10, laser modules 20-1, 20-2, and 20-3, drive power supplies 30-1, 30-2, and 30-3, a coupling unit 40, a transmission fiber 41, The control unit 50, the water cooling manifold 60, the first fixing portion 70, and the second fixing portion 71 are included. Further, it is possible to add a laser module 20-4 to the first fixed unit 70, and it is possible to add a drive power supply 30-4 to the second fixed unit 71.
 筐体10は、レーザモジュール20-1,20-2,20-3と、駆動電源30-1,30-2,30-3と、結合部40と、伝送ファイバ41と、制御ユニット50と、水冷マニホールド60と、第1固定部70と、第2固定部71とを内蔵している。 The housing 10 includes laser modules 20-1, 20-2, 20-3, drive power supplies 30-1, 30-2, 30-3, a coupling unit 40, a transmission fiber 41, a control unit 50, A water cooling manifold 60, a first fixing portion 70, and a second fixing portion 71 are incorporated.
 レーザモジュール20-1,20-2,20-3,20-4は、電力を供給することでレーザ光を発振可能であり、発振したレーザ光を出力する機能を有する。レーザモジュール20-1,20-2,20-3は、レーザ装置1の製品出荷段階で、筐体10の内部に配置されている。レーザモジュール20-4は、製品出荷後に増設される。レーザモジュール20-1,20-2,20-3,20-4は、並列接続される。以下、レーザモジュール20-1,20-2,20-3,20-4のそれぞれを区別する必要がない場合、単にレーザモジュール20と称する。 The laser modules 20-1, 20-2, 20-3, and 20-4 can oscillate laser light by supplying power and have a function of outputting the oscillated laser light. The laser modules 20-1, 20-2, and 20-3 are arranged inside the housing 10 when the laser device 1 is shipped. The laser module 20-4 is added after product shipment. The laser modules 20-1, 20-2, 20-3, and 20-4 are connected in parallel. Hereinafter, when it is not necessary to distinguish each of the laser modules 20-1, 20-2, 20-3, and 20-4, they are simply referred to as a laser module 20.
 駆動電源30-1,30-2,30-3,30-4は、レーザモジュール20-1,20-2,20-3,20-4のそれぞれに1対1で対応して設けられ、対応するレーザモジュール20の駆動用電力を供給する。駆動電源30-1,30-2,30-3は、レーザ装置1の製品出荷段階で、筐体10の内部に配置されている。駆動電源30-4は、製品出荷後に増設される。以下、駆動電源30-1,30-2,30-3,30-4のそれぞれを区別する必要がない場合、単に駆動電源30と称する。 The drive power supplies 30-1, 30-2, 30-3, 30-4 are provided in one-to-one correspondence with the laser modules 20-1, 20-2, 20-3, 20-4, respectively. Power for driving the laser module 20 is supplied. The drive power supplies 30-1, 30-2, and 30-3 are arranged inside the housing 10 at the product shipment stage of the laser device 1. The drive power supply 30-4 is added after product shipment. Hereinafter, when it is not necessary to distinguish each of the drive power supplies 30-1, 30-2, 30-3, and 30-4, they are simply referred to as the drive power supply 30.
 結合部40は、並列接続された複数のレーザモジュール20のそれぞれが出力するレーザ光を結合させて1本の光線にする。結合部40は、結合したレーザ光を伝送ファイバ41に出力する。結合部40が複数のレーザ光を結合する方法については、制限されない。例えば、結合部40は、複数の光の光路を接近させて1つの光線にする空間結合、互いに偏光方向が90度異なる2つの光を重畳する偏光結合、互いに波長が異なる複数の光を重畳する波長結合、複数の光ファイバを1つの光学部品に結合させるファイバ結合などの方法を用いて複数のレーザ光を結合させる。なお、結合部40は、上記の結合方法のうちの1つまたは複数を用いて、複数のレーザ光を結合させることができる。例えば、4つのレーザ光を結合する場合、結合部40は、偏光結合を用いて2つの光を結合し、2つの結合光を得た後、他の結合方法、例えばファイバ結合を用いて2つの結合光をさらに結合して1つの光線を得ることができる。なお、結合部40は、レーザモジュール20-1,20-2,20-3と接続される3つの接続インタフェースと、増設されるレーザモジュール20-4と接続するための増設用の空きインタフェースとを有している。 The coupling unit 40 combines the laser beams output from each of the plurality of laser modules 20 connected in parallel into one beam. The coupling unit 40 outputs the coupled laser light to the transmission fiber 41. There is no limitation on the method in which the combining unit 40 combines a plurality of laser beams. For example, the combining unit 40 spatially combines a plurality of light paths to form one light beam, a polarization combination that superimposes two lights whose polarization directions differ from each other by 90 degrees, and a plurality of lights that have different wavelengths from each other. A plurality of laser beams are coupled using a method such as wavelength coupling or fiber coupling that couples a plurality of optical fibers to one optical component. The coupling unit 40 can couple a plurality of laser beams using one or more of the above-described coupling methods. For example, when four laser beams are coupled, the coupling unit 40 couples two lights using polarization coupling, obtains two coupled lights, and then couples two beams using another coupling method, for example, fiber coupling. The combined light can be further combined to obtain one light beam. The coupling unit 40 includes three connection interfaces connected to the laser modules 20-1, 20-2, and 20-3 and an empty interface for expansion for connection to the additional laser module 20-4. Have.
 結合部40の使用する結合方法は、特に制限されず、求められる性能に応じて、様々な結合方法を選択して使用することが可能である。例えば使用する波長帯域を拡張したい場合には、波長結合を使用して複数の波長のレーザ光を結合することが考えられる。一方、波長結合には高価な部品が必要である場合が多いため、波長帯域を拡張する必要がない場合には、コスト低減のために空間結合が用いられてもよい。 The coupling method used by the coupling unit 40 is not particularly limited, and various coupling methods can be selected and used according to the required performance. For example, when it is desired to expand the wavelength band to be used, it is conceivable to combine laser beams of a plurality of wavelengths using wavelength coupling. On the other hand, since there are many cases where expensive components are required for wavelength coupling, when there is no need to expand the wavelength band, spatial coupling may be used for cost reduction.
 制御ユニット50は、複数の駆動電源30のそれぞれと接続されており、複数の駆動電源30のそれぞれを制御することで、レーザモジュール20に供給する電力を制御することができる。制御ユニット50は、各種のインターロック制御を行うこともできる。制御ユニット50は、駆動電源30との接続インタフェースを複数有している。制御ユニット50は、駆動電源30-1,30-2,30-3と接続される3つの接続インタフェースと、駆動電源30-4と接続するための増設用の空きインタフェースとを有している。 The control unit 50 is connected to each of the plurality of drive power supplies 30, and can control the power supplied to the laser module 20 by controlling each of the plurality of drive power supplies 30. The control unit 50 can also perform various interlock controls. The control unit 50 has a plurality of connection interfaces with the drive power supply 30. The control unit 50 has three connection interfaces connected to the drive power supplies 30-1, 30-2, and 30-3, and an additional empty interface for connection to the drive power supply 30-4.
 水冷マニホールド60は、レーザ装置1内の発熱部分を冷却するための冷却配管の継ぎ手部分である。水冷マニホールド60に接続される冷却配管は、例えば、レーザモジュール20、駆動電源30などが配置される周囲に設けられる。水冷マニホールド60は、冷却水がレーザ装置1内に設けられた冷却配管を流れる経路を切り替えることが可能である。 The water cooling manifold 60 is a joint portion of a cooling pipe for cooling a heat generating portion in the laser device 1. The cooling pipe connected to the water cooling manifold 60 is provided around the laser module 20, the drive power supply 30, and the like, for example. The water cooling manifold 60 can switch a path through which cooling water flows through a cooling pipe provided in the laser device 1.
 冷却配管は、レーザ装置1に予め配置されるレーザモジュール20-1,20-2,20-3の周囲だけでなく、増設されるレーザモジュール20-4の周囲にも設けられている。水冷マニホールド60は、レーザモジュール20毎に冷却配管の開閉を個別に切り替えることが可能な開閉部を有する。このため、レーザモジュール20-4を増設する前は、レーザモジュール20-4の周囲に設けられた冷却配管へ冷却水が流れないように開閉部を閉じた状態とし、レーザモジュール20-4を増設する際には、レーザモジュール20-4の周囲に設けられた冷却配管へ冷却水が流れるように開閉部を開放すればよい。     The cooling pipe is provided not only around the laser modules 20-1, 20-2, and 20-3 previously arranged in the laser apparatus 1, but also around the laser module 20-4 to be added. The water cooling manifold 60 has an opening / closing part capable of individually switching the opening / closing of the cooling pipe for each laser module 20. Therefore, before installing the laser module 20-4, the open / close portion is closed so that the cooling water does not flow into the cooling pipe provided around the laser module 20-4, and the laser module 20-4 is installed. In this case, the opening / closing part may be opened so that the cooling water flows to the cooling pipe provided around the laser module 20-4. .
 冷却配管の配置は、駆動電源30の周囲についてもレーザモジュール20と同様である。冷却配管は、レーザ装置1に予め配置される駆動電源30-1,30-2,30-3の周囲だけでなく、増設される駆動電源30-4の周囲にも設けられている。水冷マニホールド60は、駆動電源30毎に冷却配管の開閉を個別に切り替えることが可能な開閉部を有する。このため、駆動電源30-4を増設する前には、駆動電源30-4の周囲に設けられた冷却配管へ冷却水が流れないように開閉部を閉じた状態とし、駆動電源30-4を増設する際には、駆動電源30-4の周囲に設けられた冷却配管へ冷却水が流れるように開閉部を開放すればよい。 The arrangement of the cooling pipe is the same as that of the laser module 20 around the drive power supply 30. The cooling pipe is provided not only around the drive power supplies 30-1, 30-2, 30-3 that are arranged in advance in the laser apparatus 1, but also around the drive power supply 30-4 to be added. The water cooling manifold 60 has an open / close section that can individually switch the open / close of the cooling pipe for each drive power supply 30. For this reason, before the drive power supply 30-4 is added, the open / close portion is closed so that the cooling water does not flow into the cooling pipe provided around the drive power supply 30-4, and the drive power supply 30-4 is turned off. When expanding, the opening / closing part may be opened so that the cooling water flows to the cooling pipe provided around the drive power source 30-4.
 第1固定部70は、複数のレーザモジュール20を筐体10内に固定する。第1固定部70には、増設されるレーザモジュール20-4を筐体10の内部に格納する空間が設けられている。第1固定部70の形状は、増設されるレーザモジュール20-4を固定することができればよく、例えば、フレーム、留め具、棚などである。第2固定部71は、複数の駆動電源30を筐体10内に固定する。第2固定部71には、増設される駆動電源30-4を筐体10の内部に格納する空間が設けられている。第2固定部71の形状は、増設される駆動電源30-4を固定することができればよく、例えば、フレーム、留め具、棚などである。 The first fixing unit 70 fixes the plurality of laser modules 20 in the housing 10. The first fixing unit 70 is provided with a space for storing the additional laser module 20-4 inside the housing 10. The shape of the first fixing unit 70 may be any shape as long as it can fix the additional laser module 20-4, such as a frame, a fastener, a shelf, or the like. The second fixing unit 71 fixes the plurality of driving power supplies 30 in the housing 10. The second fixing portion 71 is provided with a space for storing the additional drive power supply 30-4 inside the housing 10. The shape of the second fixing portion 71 is only required to be able to fix the additional drive power supply 30-4, and is, for example, a frame, a fastener, a shelf or the like.
 図2は、図1に示すレーザ装置1が有する構成要素の接続関係を示す図である。駆動電源30およびレーザモジュール20は、レーザユニット80を構成している。レーザ装置1は、駆動電源30-1およびレーザモジュール20-1から構成されるレーザユニット80-1と、駆動電源30-2およびレーザモジュール20-2から構成されるレーザユニット80-2と、駆動電源30-3およびレーザモジュール20-3から構成されるレーザユニット80-3とを有する。 FIG. 2 is a diagram showing the connection relationship of the constituent elements of the laser device 1 shown in FIG. The drive power supply 30 and the laser module 20 constitute a laser unit 80. The laser device 1 includes a laser unit 80-1 including a driving power source 30-1 and a laser module 20-1, a laser unit 80-2 including a driving power source 30-2 and a laser module 20-2, A laser unit 80-3 including a power supply 30-3 and a laser module 20-3.
 また、レーザ装置1は、筐体10の内部に設けられ、増設用の駆動電源30-4および増設用のレーザモジュール20-4を格納することが可能な増設部90を有している。増設部90に駆動電源30-4およびレーザモジュール20-4が増設されると、図示しないレーザユニット80-4を構成する。以下、レーザユニット80-1,80-2,80-3,80-4のそれぞれを区別する必要がない場合、単にレーザユニット80と称する。図2に示す例では、1つのレーザユニット80は、1つのレーザモジュール20と、レーザモジュール20を駆動するための1つの駆動電源30とから構成されている。レーザユニット80は、単独でレーザ光を発振させることが可能である。 Further, the laser device 1 includes an expansion unit 90 that is provided inside the housing 10 and can store an expansion drive power supply 30-4 and an expansion laser module 20-4. When the drive power supply 30-4 and the laser module 20-4 are added to the extension unit 90, a laser unit 80-4 (not shown) is configured. Hereinafter, when it is not necessary to distinguish each of the laser units 80-1, 80-2, 80-3, and 80-4, they are simply referred to as a laser unit 80. In the example shown in FIG. 2, one laser unit 80 includes one laser module 20 and one drive power supply 30 for driving the laser module 20. The laser unit 80 can oscillate laser light independently.
 増設部90は、レーザモジュール20-4および駆動電源30-4を筐体10の内部に格納するための空間と、第1固定部70のうちレーザモジュール20-4を固定する部分と、第2固定部71のうち駆動電源30-4を固定する部分とを含む。増設部90は、レーザユニット80単位でレーザモジュール20および駆動電源30を増設可能である。増設部90は、予め配置されたレーザモジュール20-1,20-2,20-3と並列に接続される増設用のレーザモジュール20-4を内部に格納することが可能である。また増設部90は、増設用のレーザモジュール20-4に電力を供給する駆動電源30-4を内部に格納することが可能である。 The expansion unit 90 includes a space for storing the laser module 20-4 and the drive power source 30-4 in the housing 10, a portion of the first fixing unit 70 that fixes the laser module 20-4, a second A portion of the fixing portion 71 that fixes the drive power supply 30-4. The extension unit 90 can add the laser module 20 and the drive power supply 30 in units of the laser unit 80. The expansion unit 90 can store therein an expansion laser module 20-4 that is connected in parallel to the laser modules 20-1, 20-2, and 20-3 arranged in advance. Further, the extension unit 90 can store therein a drive power source 30-4 that supplies power to the extension laser module 20-4.
 レーザユニット80-1,80-2,80-3が出力するレーザ光は、結合部40において結合されて、伝送ファイバ41に出力される。また、増設部90にレーザモジュール20-4および駆動電源30-4を増設して構成されるレーザユニット80-4が出力するレーザ光も、結合部40において結合されて、伝送ファイバ41に出力される。 The laser beams output from the laser units 80-1, 80-2, and 80-3 are combined by the combining unit 40 and output to the transmission fiber 41. In addition, the laser light output from the laser unit 80-4 configured by adding the laser module 20-4 and the drive power supply 30-4 to the expansion unit 90 is also coupled by the coupling unit 40 and output to the transmission fiber 41. The
 図3は、図2に示すレーザユニット80の詳細な構成の一例を示す図である。レーザユニット80は、レーザモジュール20と、レーザモジュール20に駆動電力を供給する駆動電源30とを有する。レーザモジュール20は、光を往復させる少なくとも2枚の反射ミラーである全反射ミラー21および部分反射ミラー22と、全反射ミラー21および部分反射ミラー22の間にレーザ光を誘導放出させるためのレーザ媒質を励起する励起部23とを有する。 FIG. 3 is a diagram showing an example of a detailed configuration of the laser unit 80 shown in FIG. The laser unit 80 includes a laser module 20 and a drive power supply 30 that supplies drive power to the laser module 20. The laser module 20 includes a total reflection mirror 21 and a partial reflection mirror 22, which are at least two reflection mirrors for reciprocating light, and a laser medium for stimulated emission of laser light between the total reflection mirror 21 and the partial reflection mirror 22. And an excitation unit 23 that excites.
 全反射ミラー21および部分反射ミラー22は、共振器を構成する複数の反射面の一例であり、本実施の形態はかかる例に限定されない。3つ以上の反射面を用いて共振器を構成してもよい。例えば、共振器を構成する2つの反射面の間の光路上に、光の進む向きを変化させる反射面を含んでもよいし、反射面はミラーに限らず、コーティングすることで形成された反射機能を有する面であってもよい。励起部23は、例えば、ガスレーザの場合にはレーザガスに電力を印加した放電部であり、YAGレーザの場合にはレーザ媒質をドープし、光励起したYAGロッド部であり、半導体レーザの場合にはレーザ媒質をドープし、電力を印加した活性層である。 The total reflection mirror 21 and the partial reflection mirror 22 are an example of a plurality of reflection surfaces constituting a resonator, and the present embodiment is not limited to such an example. You may comprise a resonator using three or more reflective surfaces. For example, a reflection surface that changes the traveling direction of light may be included on the optical path between two reflection surfaces constituting the resonator, and the reflection surface is not limited to a mirror, but is a reflection function formed by coating. It may be a surface having For example, in the case of a gas laser, the excitation unit 23 is a discharge unit in which power is applied to the laser gas. In the case of a YAG laser, the excitation unit 23 is a YAG rod unit that is optically excited by doping a laser medium. In the case of a semiconductor laser, the excitation unit 23 is a laser. It is an active layer doped with a medium and applied with electric power.
 以上説明したように、本発明の実施の形態1にかかるレーザ装置1は、レーザモジュール20-1,20-2,20-3と並列に接続される増設用のレーザモジュール20-4を筐体10の内部に格納することが可能な増設部90を備えている。このため、レーザモジュール20-4を増設することで、レーザ光の出力強度を増強する拡張を行うことが可能になる。このとき、複数のレーザモジュール20は並列に接続されるため、レーザモジュール20を構成する光学部品に求められる耐光強度は、レーザ光の強度を増強する拡張を行う前後で変わらない。したがって、レーザ光の強度を増強する拡張を行う前の状態においても、過剰性能な光学部品を使用する必要がなく、要求される性能に合わせた光学部品を使用することが可能になる。 As described above, the laser apparatus 1 according to the first embodiment of the present invention includes the additional laser module 20-4 connected in parallel with the laser modules 20-1, 20-2, and 20-3. 10 is provided with an expansion unit 90 that can be stored inside. For this reason, it is possible to expand the laser light output intensity by increasing the number of laser modules 20-4. At this time, since the plurality of laser modules 20 are connected in parallel, the light resistance required for the optical components constituting the laser module 20 does not change before and after the expansion for increasing the intensity of the laser light. Therefore, it is not necessary to use an excessively high performance optical component even in a state before the expansion for increasing the intensity of the laser beam, and it is possible to use an optical component that matches the required performance.
 またレーザ装置1によれば、レーザモジュール20および駆動電源30から構成されるレーザユニット80単位で、レーザモジュール20および駆動電源30を増設することができる。このレーザユニット80は、単独でレーザ光を発振させることが可能である。このため、レーザ光の出力を増強する拡張を行う際に、既にレーザ装置1に組み込まれている他の部品が劣化している場合であっても、レーザ光の出力を増強することができる。 Further, according to the laser device 1, the laser module 20 and the drive power supply 30 can be added in units of the laser unit 80 including the laser module 20 and the drive power supply 30. This laser unit 80 can oscillate laser light independently. For this reason, when performing expansion to enhance the output of the laser light, the output of the laser light can be enhanced even if other components already incorporated in the laser device 1 have deteriorated.
 なお、上記の実施の形態では、予め出荷段階でレーザ装置1に内蔵されているレーザモジュール20の数を3つとし、出荷後に増設可能なレーザモジュール20の数を1つとしたが、本実施の形態はかかる例に限定されない。予めレーザ装置1に内蔵されるレーザモジュール20の数は、1以上の任意の数であってよい。また増設可能なレーザモジュール20の数は複数であってもよい。 In the above embodiment, the number of laser modules 20 built in the laser apparatus 1 in advance at the shipping stage is three, and the number of laser modules 20 that can be added after shipment is one. The form is not limited to such an example. The number of laser modules 20 built in the laser device 1 in advance may be an arbitrary number of 1 or more. A plurality of laser modules 20 may be added.
実施の形態2.
 図4は、本発明の実施の形態2にかかるレーザ加工装置100の構成を示す図である。レーザ加工装置100は、レーザ装置1と、加工ヘッド2と、テーブル3と、制御装置4とを有する。
Embodiment 2. FIG.
FIG. 4 is a diagram showing the configuration of the laser processing apparatus 100 according to the second embodiment of the present invention. The laser processing device 100 includes a laser device 1, a processing head 2, a table 3, and a control device 4.
 レーザ装置1は、実施の形態1で説明したものと同様であるため、ここでは詳しい説明は省略する。レーザ装置1が出力するレーザ光は、伝送ファイバ41を介して加工ヘッド2に入力される。レーザ加工装置100は、加工ヘッド2とテーブル3の上に載置させる加工対象物Wとの相対位置を変化させながら、加工ヘッド2から加工対象物Wにレーザ光を照射して、加工対象物Wをレーザ加工する装置である。 Since the laser device 1 is the same as that described in the first embodiment, detailed description thereof is omitted here. Laser light output from the laser device 1 is input to the machining head 2 via the transmission fiber 41. The laser processing apparatus 100 irradiates the processing target W with laser light from the processing head 2 while changing the relative position between the processing head 2 and the processing target W placed on the table 3, thereby processing the processing target. An apparatus for laser processing W.
 制御装置4は、レーザ装置1、加工ヘッド2およびテーブル3の動作を制御して、加工対象物Wをレーザ加工する。例えば制御装置4は、加工ヘッド2の位置およびテーブル3の位置を制御して、加工ヘッド2とテーブル3上の加工対象物Wとの相対位置を変化させることができる。なお、ここでは加工ヘッド2の位置およびテーブル3の位置の両方を制御することとしたが、テーブル3の位置を固定して、加工ヘッド2の位置のみを変化させてもよい。 The control device 4 controls the operations of the laser device 1, the processing head 2, and the table 3 to perform laser processing on the workpiece W. For example, the control device 4 can control the position of the machining head 2 and the position of the table 3 to change the relative position between the machining head 2 and the workpiece W on the table 3. Although both the position of the machining head 2 and the position of the table 3 are controlled here, the position of the table 3 may be fixed and only the position of the machining head 2 may be changed.
 以上説明したように、本発明の実施の形態2にかかるレーザ加工装置100は、実施の形態1で説明したレーザ装置1を備える。このため、レーザ装置1にレーザモジュール20-4を増設することによって、レーザ加工を行う際に使用するレーザ光の出力を増強することが可能になる。このとき、複数のレーザモジュール20は並列に接続されるため、レーザモジュール20を構成する光学部品に求められる耐光強度は、レーザ光の強度を増強する拡張を行う前後で変わらない。したがって、レーザ光の強度を増強する拡張を行う前の状態においても、過剰性能な光学部品を使用する必要がなく、要求される性能に合わせた光学部品を使用することが可能になる。 As described above, the laser processing apparatus 100 according to the second embodiment of the present invention includes the laser apparatus 1 described in the first embodiment. For this reason, by adding the laser module 20-4 to the laser apparatus 1, it becomes possible to enhance the output of the laser beam used when performing laser processing. At this time, since the plurality of laser modules 20 are connected in parallel, the light resistance required for the optical components constituting the laser module 20 does not change before and after the expansion for increasing the intensity of the laser light. Therefore, it is not necessary to use an excessively high performance optical component even in a state before the expansion for increasing the intensity of the laser beam, and it is possible to use an optical component that matches the required performance.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 レーザ装置、2 加工ヘッド、3 テーブル、4 制御装置、10 筐体、20,20-1,20-2,20-3,20-4 レーザモジュール、21 全反射ミラー、22 部分反射ミラー、23 励起部、30,30-1,30-2,30-3,30-4 駆動電源、40 結合部、41 伝送ファイバ、50 制御ユニット、60 水冷マニホールド、70 第1固定部、71 第2固定部、80,80-1,80-2,80-3,80-4 レーザユニット、90 増設部、100 レーザ加工装置、W 加工対象物。 1 laser device, 2 machining head, 3 table, 4 control device, 10 housing, 20, 20-1, 20-2, 20-3, 20-4 laser module, 21 total reflection mirror, 22 partial reflection mirror, 23 Excitation section, 30, 30-1, 30-2, 30-3, 30-4 drive power supply, 40 coupling section, 41 transmission fiber, 50 control unit, 60 water cooling manifold, 70 first fixing section, 71 second fixing section , 80, 80-1, 80-2, 80-3, 80-4 laser unit, 90 extension, 100 laser processing device, W processing object.

Claims (10)

  1.  レーザ光を発振可能なレーザモジュールと、
     前記レーザモジュールを内蔵する筐体と、
     該筐体の内部に設けられ、前記レーザモジュールと並列に接続される増設用のレーザモジュールを格納することが可能な増設部と、
     を備えることを特徴とするレーザ装置。
    A laser module capable of oscillating laser light;
    A housing containing the laser module;
    An expansion unit provided inside the housing and capable of storing an additional laser module connected in parallel with the laser module;
    A laser device comprising:
  2.  複数の前記レーザモジュールのそれぞれが発振させた複数のレーザ光を結合させる結合部、
     をさらに備え、
     前記結合部は、前記増設部に増設される前記レーザモジュールと接続可能な増設用のインタフェースを有することを特徴とする請求項1に記載のレーザ装置。
    A coupling section for coupling a plurality of laser beams oscillated by each of the plurality of laser modules;
    Further comprising
    The laser device according to claim 1, wherein the coupling unit includes an expansion interface connectable to the laser module added to the extension unit.
  3.  前記レーザモジュールは、2枚以上の反射ミラーと、前記反射ミラーの間にレーザ光を誘導放出するためのレーザ媒質を励起する励起部とを含むことを特徴とする請求項1または2に記載のレーザ装置。 3. The laser module according to claim 1, wherein the laser module includes two or more reflection mirrors and an excitation unit that excites a laser medium for stimulated emission of laser light between the reflection mirrors. Laser device.
  4.  前記増設部は、増設用のレーザモジュールを前記筐体内に固定する第1固定部を含むことを特徴とする請求項1から3のいずれか1項に記載のレーザ装置。 The laser device according to any one of claims 1 to 3, wherein the extension unit includes a first fixing unit that fixes an extension laser module in the housing.
  5.  前記レーザモジュールに電力を供給する駆動電源、
     をさらに備え、
     前記増設部は、増設用の駆動電源を内部に格納することが可能であることを特徴とする請求項1に記載のレーザ装置。
    A drive power supply for supplying power to the laser module;
    Further comprising
    The laser device according to claim 1, wherein the extension unit is capable of storing a drive power supply for extension therein.
  6.  前記レーザモジュールおよび前記駆動電源から構成されるレーザユニット単位で、前記レーザモジュールおよび前記駆動電源を前記増設部に増設可能であることを特徴とする請求項5に記載のレーザ装置。 6. The laser device according to claim 5, wherein the laser module and the drive power source can be added to the extension unit in units of laser units including the laser module and the drive power source.
  7.  前記レーザユニットは、単独でレーザ光を発振させることが可能であることを特徴とする請求項6に記載のレーザ装置。 The laser device according to claim 6, wherein the laser unit can oscillate laser light independently.
  8.  前記増設部は、前記増設用の駆動電源を前記筐体内に固定する第2固定部を有することを特徴とする請求項5から7のいずれか1項に記載のレーザ装置。 The laser device according to any one of claims 5 to 7, wherein the extension unit includes a second fixing unit that fixes the extension drive power source in the housing.
  9.  前記増設用のレーザモジュールを含む複数の前記レーザモジュールのそれぞれを冷却するための冷却水が流れる冷却配管と、
     前記冷却配管の継ぎ手部分であり、レーザモジュール毎に冷却配管の開閉を切り替えることが可能な開閉部を有する水冷マニホールドと、
     をさらに備えることを特徴とする請求項1に記載のレーザ装置。
    A cooling pipe through which cooling water for cooling each of the plurality of laser modules including the additional laser module flows;
    A water cooling manifold having an opening / closing part that is a joint part of the cooling pipe and capable of switching between opening and closing of the cooling pipe for each laser module;
    The laser apparatus according to claim 1, further comprising:
  10.  請求項1から7のいずれか1項に記載のレーザ装置と、
     前記レーザ装置が出力するレーザ光を加工対象物に向けて出射する加工ヘッドと、
     前記加工ヘッドと前記加工対象物との相対位置を変化させる制御装置と、
     を備えることを特徴とするレーザ加工装置。
    A laser device according to any one of claims 1 to 7;
    A machining head for emitting laser light output by the laser device toward a workpiece;
    A control device for changing a relative position between the processing head and the processing object;
    A laser processing apparatus comprising:
PCT/JP2018/015449 2018-04-12 2018-04-12 Laser device and laser processing device WO2019198215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018549364A JPWO2019198215A1 (en) 2018-04-12 2018-04-12 Laser device and laser processing device
PCT/JP2018/015449 WO2019198215A1 (en) 2018-04-12 2018-04-12 Laser device and laser processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015449 WO2019198215A1 (en) 2018-04-12 2018-04-12 Laser device and laser processing device

Publications (1)

Publication Number Publication Date
WO2019198215A1 true WO2019198215A1 (en) 2019-10-17

Family

ID=68163996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015449 WO2019198215A1 (en) 2018-04-12 2018-04-12 Laser device and laser processing device

Country Status (2)

Country Link
JP (1) JPWO2019198215A1 (en)
WO (1) WO2019198215A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190566A (en) * 2006-01-17 2007-08-02 Miyachi Technos Corp Fiber laser beam machining apparatus
WO2012036664A1 (en) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Industrial high power fiber laser system with optical monitoring assembly
WO2014065360A1 (en) * 2012-10-26 2014-05-01 コマツ産機株式会社 Fiber laser processing machine, fiber connection method, and fiber laser oscillator
JP2016081993A (en) * 2014-10-14 2016-05-16 株式会社アマダホールディングス Laser resonator, laser processing apparatus and dehumidification method of laser resonator
JP6261810B1 (en) * 2016-10-25 2018-01-17 三菱電機株式会社 Laser processing machine and arithmetic device for laser processing machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324869A (en) * 2004-05-12 2005-11-24 Mitsubishi Electric Corp Hydraulic power device of hydraulic elevator
JP4940094B2 (en) * 2007-10-22 2012-05-30 三洋電機株式会社 Electronic equipment cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190566A (en) * 2006-01-17 2007-08-02 Miyachi Technos Corp Fiber laser beam machining apparatus
WO2012036664A1 (en) * 2010-09-13 2012-03-22 Ipg Photonics Corporation Industrial high power fiber laser system with optical monitoring assembly
WO2014065360A1 (en) * 2012-10-26 2014-05-01 コマツ産機株式会社 Fiber laser processing machine, fiber connection method, and fiber laser oscillator
JP2016081993A (en) * 2014-10-14 2016-05-16 株式会社アマダホールディングス Laser resonator, laser processing apparatus and dehumidification method of laser resonator
JP6261810B1 (en) * 2016-10-25 2018-01-17 三菱電機株式会社 Laser processing machine and arithmetic device for laser processing machine

Also Published As

Publication number Publication date
JPWO2019198215A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US8947771B2 (en) Optical amplifying device
CN101443969B (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
JP6311720B2 (en) LASER DEVICE, EXPOSURE DEVICE AND INSPECTION DEVICE EQUIPPED WITH THE LASER DEVICE
JP2007190560A (en) Laser beam machining apparatus
KR100973036B1 (en) High peak power laser cavity and assembly of several such cavities
CN115210973B (en) Wavelength conversion laser device and wavelength conversion laser processing machine
JPWO2007138884A1 (en) Laser pulse generating apparatus and method, and laser processing apparatus and method
WO2013084608A1 (en) Co2 laser device and co2 laser processing device
EP3229329B1 (en) Laser source, particularly for industrial processes
WO2019198215A1 (en) Laser device and laser processing device
US7974320B2 (en) Method for having laser light source in standby status
CA2961008C (en) Laser source, particularly for industrial processes
JP2005347338A (en) Laser beam machining device
JP2017069323A (en) Laser amplifier system
JP7422355B2 (en) laser oscillator
JP2010093201A (en) Temperature control unit
JP2019181534A (en) Laser oscillator and laser processing device using the same
KR102673150B1 (en) A thermal damage reduction device of an extreme ultraviolet generating device using high-order harmonic generation
JPH11238929A (en) Yag laser oscillating method and device thereof
JP2017124423A (en) Laser processing system
TW202404420A (en) EUV radiation generation following laser beam rotation
JP2018142658A5 (en) Light source device, light source utilization device, multi-wavelength light generation method, optical element, and optical amplifier
JPH1070343A (en) Solid laser and processing of work utilizing the same
JPH02180087A (en) Pulse oscillation dye laser system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549364

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914756

Country of ref document: EP

Kind code of ref document: A1