WO2019196888A1 - 物理上行信道的时隙确定方法及装置 - Google Patents

物理上行信道的时隙确定方法及装置 Download PDF

Info

Publication number
WO2019196888A1
WO2019196888A1 PCT/CN2019/082161 CN2019082161W WO2019196888A1 WO 2019196888 A1 WO2019196888 A1 WO 2019196888A1 CN 2019082161 W CN2019082161 W CN 2019082161W WO 2019196888 A1 WO2019196888 A1 WO 2019196888A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical uplink
pucch
time
slot
channel
Prior art date
Application number
PCT/CN2019/082161
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019196888A1 publication Critical patent/WO2019196888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and apparatus for determining a time slot of a physical uplink channel.
  • PUCCH physical uplink control channels
  • Orthogonal Frequency Division Multiplexing (OFDM) symbols (described below using symbols) of PUCCH format 0 are 1 to 2, and are used to carry a hybrid automatic repeat request of 1 to 2 bits.
  • the PUCCH format 1 is used to carry 1 to 2 bits of HARQ-ACK information, and the number of OFDM symbols included is greater than or equal to 4, and supports multiplexing between different UEs.
  • the PUCCH format 2 is used to transmit Uplink Control Information (UCI) information greater than 2 bits (this UCI may be in a HARQ-ACK, a Scheduling Request (SR), or a Channel State Information (CSI)). One or more), the number of symbols is 1 to 2, and multiplexing between different UEs is not supported.
  • UCI Uplink Control Information
  • SR Scheduling Request
  • CSI Channel State Information
  • the PUCCH format 3 is used to transmit UCI information greater than 2 bits, and the number of symbols is greater than or equal to four, and does not support multiplexing between different UEs.
  • the PUCCH format 4 is used to transmit UCI information greater than 2 bits, and the number of symbols is greater than or equal to four, and supports multiplexing between different UEs.
  • the PUCCH may be divided into different PUCCH types according to the symbol range of the PUCCH.
  • the number of symbols in the format 0 and the format 2 is 1-2, belonging to the same PUCCH type, and may also be called a short format; formats 1, 3, and 4 The number of symbols is greater than or equal to 4, belonging to the same PUCCH type, and can also be called long format.
  • the UE can only select one SR for transmission. That is, if there are multiple SR requests in multiple SRs, the UE can only send one of the SRs to the base station. So how does the UE send the HARQ-ACK and the selected SR to the base station? How does the base station know which SR request is fed back by the UE?
  • Embodiments of the present disclosure provide a method and apparatus for determining a time slot of a physical uplink channel to overcome the shortcomings of a scheme for determining a time slot for transmitting a physical uplink channel.
  • a method for determining a time slot of a physical uplink channel including: receiving, by a second communication node, configuration information of a first communication node, wherein the configuration information is used to indicate the second communication
  • the node repeatedly transmits the physical uplink channel across the m time slot slots; the second communication node determines the m slots according to one of the following manners: determining whether the physical uplink channel time domain overlap occurs in the slot according to the configuration information ; determining based on the configuration information.
  • a method of transmitting a physical uplink channel comprising: a second communication node receiving second configuration information of a first communication node, wherein the second configuration information is used to indicate The second communication node repeatedly transmits the physical uplink control channel across the W slots, wherein in the one or more slots of the W slots, the repeatedly transmitted physical uplink channel is respectively associated with the Q scheduling requests SR
  • the physical uplink channel has a time domain overlap; the second communication node transmits X bits according to one of the following manners in the one or more slots in which the time domain overlaps, wherein the X bits are used to the first
  • the communication node indicates which of the Q SRs has an SR request: transmitting the X bit in the physical uplink control channel, and puncturing information in the physical uplink control channel, in the punching position Transmitting the X bits; transmitting the X bits in the physical uplink control channel, and matching the X bit rate in information in the physical uplink control channel; Specifically transmitting in the
  • a method for transmitting a physical uplink channel including: determining, by a second communication node, a time domain overlap of a physical uplink control channel PUCCH to be transmitted and a physical uplink shared channel PUSCH; Transmitting, by the second communication node, the uplink control information UCI carried in the PUCCH or the PUCCH on a time-domain overlapping symbol in the PUSCH; or the second communication node is in the PUCCH or the PUCCH
  • the carried uplink control information UCI is transmitted on the symbols in which the time domain overlaps, and the PUSCH in the symbols in the time domain overlap is punctured.
  • a slot determining apparatus for a physical uplink channel including: a first receiving module, configured to receive configuration information of a first communications node, where the configuration information is used to indicate The second communication node repeatedly transmits the physical uplink channel across the m time slot slots; the first determining module is configured to determine the m slots according to one of the following manners: according to the configuration information, whether physical uplink occurs in the slot The channel time domain overlap is determined; the determination is performed according to the configuration information.
  • an apparatus for transmitting a physical uplink channel comprising: a second receiving module, configured to receive second configuration information of a first communication node, wherein the second configuration information is used by Instructing the second communications node to repeatedly transmit a physical uplink control channel across W slots, wherein in the one or more slots of the W slots, the repeatedly transmitted physical uplink channel is respectively associated with Q scheduling
  • the physical uplink channel of the requesting SR has a time domain overlap
  • the first transmission module is configured to transmit X bits according to one of the following manners in the one or more slots in which the time domain overlaps, wherein the X bits are used to Determining, by the first communication node, which SR of the Q SRs has an SR request: transmitting the X bits in the physical uplink control channel, and puncturing information in the physical uplink control channel, where Transmitting the X bits in a puncturing position; transmitting the X bits in the physical uplink control channel, and matching the X bit rate in information in
  • an apparatus for transmitting a physical uplink channel including: a second determining module, configured to determine that a physical uplink control channel PUCCH to be transmitted and a physical uplink shared channel PUSCH occur in a time domain overlap; a second transmission module, configured to transmit the uplink control information UCI carried in the PUCCH or the PUCCH on a symbol in which the time domain overlap occurs in the PUSCH; or, set to be in the PUCCH or the PUCCH
  • the carried uplink control information UCI is transmitted on the symbols in which the time domain overlaps, and the PUSCH in the symbols in the time domain overlap is punctured.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to perform the steps of any one of the method embodiments described above at runtime.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform any of the above The steps in the method embodiments.
  • FIG. 1 is a flowchart of a method for determining a time slot of a physical uplink channel according to an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of a time slot determining apparatus of a physical uplink channel according to a preferred embodiment of the present disclosure.
  • the second communication node may be a terminal, and the first communication node may be a base station side device, but is not limited thereto.
  • a mobile communication network including but not limited to a 5G mobile communication network
  • the network architecture of the network may include a network side device (for example, a base station) and a terminal.
  • a network side device for example, a base station
  • an information transmission method that can be run on the network architecture is provided. It should be noted that the operating environment of the foregoing information transmission method provided in the embodiment of the present application is not limited to the foregoing network architecture.
  • FIG. 1 is a flowchart of a method for determining a time slot of a physical uplink channel according to an embodiment of the present disclosure. As shown in FIG. 1, the process includes : Step S102 and Step S104.
  • step S102 the second communication node receives the configuration information of the first communication node.
  • the configuration information is used to indicate that the second communication node repeatedly transmits the physical uplink channel across m slots.
  • step S104 the second communication node determines the m slots according to one of the following manners: determining whether the physical uplink channel time domain overlap occurs in the slot according to the configuration information; determining according to the configuration information.
  • the physical uplink channel may include a physical uplink control channel and a physical uplink shared channel.
  • the physical uplink control channel may be determined according to the configuration information and whether the physical uplink channel time domain overlap occurs in the time slot.
  • the physical uplink shared channel can be determined according to the configuration information.
  • the second communication node receives the configuration information of the first communication node, where the configuration information is used to indicate that the second communication node repeatedly transmits the physical uplink channel across the m time slots; the second communication node is configured according to the configuration information. And determining whether the physical uplink channel time domain overlap occurs in the time slot to determine the m time slots; or determining according to the configuration information.
  • the execution body of the foregoing steps may be a base station, a terminal, or the like, but is not limited thereto.
  • step S102 and step S104 are interchangeable, that is, step S104 may be performed first, and then S102 is performed.
  • the configuration information when the physical uplink channel is a physical uplink control channel (PUCCH), the configuration information includes at least one of the following: a start slot of the PUCCH; and a start orthogonal frequency division of the PUCCH in the start slot.
  • the OFDM symbol position is multiplexed; the number of OFDM symbols in the PUCCH in the start time slot; the value of m of the PUCCH;
  • the configuration information when the physical uplink channel is the physical uplink shared channel PUSCH, includes at least one of the following: PUSCH The starting time slot; the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol position of the PUSCH in the starting time slot; the number of OFDM symbols in the PUSCH in the starting time slot; the value of m of the PUSCH.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the information that is not included adopts a value agreed in the communication system: a starting time slot of the physical uplink channel; and the physical uplink channel in the starting time slot.
  • the starting Orthogonal Frequency Division Multiplexing (OFDM) OFDM symbol position; the physical uplink channel in the starting time slot is the number of OFDM symbols; the value of m of the physical uplink channel.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the second communication node determines the manner of the m time slots, including: the start time slot of the PUCCH is determined by the configuration information; and the subsequent m-1 times The slot needs to satisfy the condition that the same starting OFDM symbol position in the slot as the PUCCH in the start slot can be used; the number of consecutive OFDM symbols in the slot that allow the PUCCH to be used is greater than or equal to the start The number of consecutive OFDM symbols used by the PUCCH in the slot; when the PUCCH is transmitted in the slot, there is no time domain overlap between all or part of the physical uplink channels transmitted in the slot. It should be added that the subsequent m-1 time slots selected by the second communication node are generally not consecutive m-1 time slots.
  • the m time slots are determined, including: the start time slot of the PUSCH is determined by the configuration information; and the subsequent m-1 time slots need to satisfy at least the following conditions:
  • the Physical Resource Block (PRB) can be used.
  • determining the m time slots includes:
  • the m-1 time slots are consecutive after the start time slot, and the start time slots are a total of the m time slots.
  • a method for transmitting a physical uplink channel including the following steps 1 and 2.
  • the second communication node receives the second configuration information of the first communication node, where the second configuration information is used to indicate that the second communication node repeatedly transmits the physical uplink control channel across the W time slots, where In one or more of the W time slots, the repeatedly transmitted physical uplink channel overlaps with the physical uplink channel occurrence time domain of the Q scheduling request SRs.
  • step 2 the second communication node transmits X bits according to one of the following manners in the one or more time slots in which the time domain overlaps, wherein the X bits are used to indicate the Q bits to the first communication node.
  • the W and the Q are integers greater than or equal to 1, and the values of the Qs are different in different time slots in which the time domain overlaps.
  • Q SRs can be understood as Q channels, or Q PUCCHs.
  • the X bits are transmitted in the physical uplink control channel, and the encoded information of the X bits may be transmitted in the physical uplink control channel.
  • the X-bit rate matching is transmitted in the information in the physical uplink control channel, and the X-bit encoded information rate may be matched to the UCI bit in the physical uplink control channel. The encoded information is transmitted.
  • the defect that the first communication node cannot know which SR request is fed back by the second communication node in the related art is overcome, and the case where multiple SR requests are indicated to the first communication node is realized.
  • the method further comprises at least one of the following:
  • the number of bits of the X bit is or
  • the Q max is the maximum number of SRs that the second communication node can be configured at the same time in the communication system, and the Q is the number of SRs configured by the communication system to the second communication node; or the Q is sometimes in the W time slots.
  • the bit value of the X bit is the SR number of the SR request to be transmitted by the second communication node, or when the Q SRs are all without the SR request, the bit value of the X bit is 0, wherein the SR number is The number of the SR indexes of the Q SRs in ascending or descending order;
  • the reserved resource is determined according to the number of X bits corresponding to the Q max or Q value.
  • the X bits are only sent in the OFDM symbol in which the time domain overlap occurs, or in the symbol of the Demodulation Reference Signal (DMRS) symbol of the physical uplink control channel; or, only in time
  • the puncturing, rate matching, or reserved resources are performed in the OFDM symbols of the domain overlap, or only in the symbols of the decoded reference signal DMRS symbols of the physical uplink control channel.
  • DMRS Demodulation Reference Signal
  • the above-mentioned time domain overlapping OFDM symbols are symbols in time slots in which time domain overlap occurs. Transmitted in the symbol of the DMRS symbol of the decoding reference signal of the physical uplink control channel, it can be described that the DMRS from the physical uplink control channel is transmitted in the nearest symbol.
  • the symbols in the above embodiments may each be an OFDM symbol.
  • the method further comprises: transmitting the DMRS of the physical uplink control channel in a OFDM symbol that is closest to the OFDM symbol in which the time domain overlap occurs or in a single-sided OFDM symbol.
  • the method further includes: transmitting the X bit in the physical uplink control channel in a time slot in which the time slots do not overlap in the W time slots, and matching the X bit rate in the time slot.
  • the information in the physical uplink control channel is transmitted; wherein, in the time slot in which the time domain overlap does not occur, the value of the X bit does not represent the SR number of the SR request, and the value of each bit of the X bit is 1 or 0, the number of bits of X bits is or
  • the method further includes: in the W time slots, starting from a first time slot in which the time domain overlap occurs, and in a subsequent time slot, the X bit is in the physical uplink control channel In transit. It should be added that the subsequent time slots here may be the time slots in all subsequent W time slots.
  • a method of transmitting a physical uplink channel comprising the following steps 1 and 2.
  • step 1 the second communication node determines that the physical uplink control channel PUCCH to be transmitted and the physical uplink shared channel PUSCH occur in time domain overlap.
  • step 2 the second communication node transmits the uplink control information UCI carried in the PUCCH or the PUCCH on a symbol in which the time domain overlaps in the PUSCH;
  • the second communication node transmits the PUCCH or the uplink control information UCI carried in the PUCCH on the symbol in which the time domain overlap occurs, and the PUSCH in the symbol in which the time domain overlap occurs is punctured.
  • the above UCI may include one or more of HARQ-ACK, SR, and channel state information CSI.
  • the PUSCH may not be transmitted when the time domain overlap position occurs.
  • the above technical solution overcomes the defect in the related art that how to transmit the physical uplink channel scheme when the PUCCH and the PUSCH overlap in the time domain.
  • UCI information is transmitted in both time domain overlapping positions.
  • the second communications node transmits the uplink control information UCI carried by the PUCCH on the time-domain overlapping symbol in the PUSCH, including: the second communications node determines a reference for decoding the UCI information.
  • the signal RS; the reference signal RS and the UCI are both transmitted on a symbol in which the time domain overlaps in the PUSCH.
  • the DMRS of the PUSCH or the DMRS of the PUCCH is transmitted in the OFDM symbol closest to the OFDM symbol overlapping the time domain or in the OFDM symbol.
  • the second communication node transmits the PUCCH or the UCI according to one of the following manners in one or more time slots in which the time domain overlap occurs:
  • the UCI or the PUCCH is transmitted in the physical uplink shared channel, and resources are reserved in the physical uplink shared channel, and the encoded information of the UCI is transmitted in the reserved resource.
  • the physical uplink control channel PUCCH format 0 is used to carry 1 to 2 bits of HARQ-ACK, and the HARQ-ACK is ACK or NACK through the configured cyclic sequence CS; if there is a scheduling request transmission at the same time, it is also required to be configured. Corresponding CS is indicated.
  • Table 1 is a 1-bit HARQ-ACK and CS allocation table according to the related art
  • Table 2 is a 2-bit HARQ-ACK and CS allocation table according to the related art
  • Table 3 is a CS allocation table that is transmitted by the 1-bit HARQ-ACK and the SR according to the related art
  • Table 4 is a CS allocation table that is transmitted by the 2-bit HARQ-ACK and the SR according to the related art.
  • a base sequence contains 12 CSs.
  • the time-frequency resource of the SR is used, and the CS allocated to the SR is used, and the HARQ-ACK is modulated onto the CS of the SR; if there is no SR request, when the HARQ-ACK uses the HARQ-ACK
  • the frequency resource, and the CS uses the CS allocated to the HARQ-ACK, and the HARQ-ACK is modulated onto the CS of the SR. It is summarized as: “Yes” and “None” of the SR are expressed by using the time-frequency resources, and the CS is bound to the time-frequency resource, and the HARQ-ACK is modulated to the transmitted CS.
  • PUCCH format 0 and PUCCH format 1 are allowed for the PUCCH of the SR, wherein the PUCCH format 1 allows transmission across time slots in accordance with the protocol of the related art.
  • a physical uplink control channel PUCCH format 0 or format 1 of a UE carrying HARQ-ACK overlaps with a PUCCH time domain of multiple bearer scheduling requests SR, and wherein the PUCCH of the HARQ-ACK or the PUCCH of the SR is a cross
  • the PUCCH carrying the HARQ-ACK is format 1 spanning 2 slots
  • the multiple PUCCHs carrying the SR are also format 1 spanned 2 slots, and the time domain overlaps or partially overlaps.
  • the UE can only select one SR for transmission. That is, if there are multiple SR requests in multiple SRs, the UE can only send one of the SRs to the base station. So how does the UE send the HARQ-ACK and the selected SR to the base station? How does the base station know which SR request is fed back by the UE?
  • the present disclosure relates to transmission of HARQ-ACK and SR in an uplink control channel when a physical uplink control channel overlaps with a channel time domain of a plurality of scheduling request SRs.
  • the PUCCH format 1, 3 or 4 of one UE that carries HARQ-ACK is across multiple slot patterns, and overlaps with the PUCCH time domain of multiple SRs of the UE.
  • the PUCCH of multiple SRs may also span multiple time slots, or may not span multiple time slots.
  • the time domain overlap may be that their OFDM symbols are completely overlapping or partially overlapping.
  • the base station and the UE agree to transmit the HARQ-ACK and the SR in the following manner.
  • the PUCCH of the UE carrying the HARQ-ACK is selected in the subsequent time slot (except the first time slot), if there is a PUCCH of the SR of the UE in the time slot, and If the time slot overlap occurs when the PUCCH carrying the HARQ-ACK and the SR occurs after the time slot is selected, the UE does not select the time slot as the time slot of the PUCCH carrying the HARQ-ACK.
  • the PUCCH of the UE that carries the HARQ-ACK is selected, and the PUCCH of the SR of the UE is not selected when the subsequent slot is selected (except for the first slot).
  • the UE is configured with a PUCCH that repeats across m (m is greater than 1) time slots, and the UE according to the configured start time slot of the PUCCH, the start symbol position in the start time slot, the number of persistent symbols, and the number of time slots required to be repeated. m, recombining whether multiple uplink physical channel time domain overlaps occur to determine that subsequent time slots are selected to transmit the PUCCH.
  • the rule convention includes: when the UE is provided with the slot type configuration information, the UE selects the subsequent m-1 time slots from the start time slot (or selects m time slots from the start time slot, including There are enough uplink OFDM symbols used by the PUCCH in the initial slot, if there is more than or equal to the number of symbols used by the PUCCH in the starting slot, and the second optional addition condition is the same as the PUCCH in the starting slot.
  • the start symbol, and if the PUCCH is carried in the time slot does not cause time domain overlap of multiple uplink physical channels (including PUCCH, PUSCH, etc. carrying different UCI information) of the UE.
  • the UE If the UE is configured to repeat the PUCCH across m slots when the configuration information of the slot type is not provided, the UE considers that the subsequent m-1 slots from the start slot configured by the base station are PUCCH repetitions.
  • the slot is described as a time slot in which the UE considers that the starting time slot configured by the base station starts to be consecutively m times slots are PUCCH repetitions. In this case, the base station needs to ensure that the subsequent time slot satisfies the condition that the time slot is selected when the configuration information of the time slot type is provided for the UE.
  • the PUCCH of the UE is configured to be repeated across 4 time slots, and the base station configures the first time slot of the PUCCH and the starting OFDM symbol (the symbol in the text refers to the OFDM symbol) and the number of symbols in the PUCCH time domain in the time slot.
  • the PUCCH start PRB is configured. If the PUCCH frequency hopping, the corresponding start PRB is configured for each frequency hopping.
  • the UE selects a subsequent time slot, if there is an OFDM symbol that can be used by the PUCCH in the slot, and the PUCCH can use the same symbol as the starting OFDM symbol and the number of symbols of the PUCCH in the first slot, and When the PUCCH and the PUCCH time domain of the SR of the UE overlap, the UE selects the time slot as a PUCCH subsequent time slot.
  • the PUCCH of the SR herein may also be a PUCCH or a PUSCH of other purposes of the UE, such as a PUCCH that transmits CSI, or a PUSCH of the UE.
  • the limitation is mainly to prevent the UE from appearing multiple uplink physical channels in one time slot, and the uplink physical channels have time domain overlap. This will cause the PUCCH of the UE to be unable to be combined and decoded between multiple time slots, or cause the UE to simultaneously Transmitting multiple uplink physical channels will result in a significant increase in UE implementation costs.
  • the UE transmits one uplink physical channel to reduce UE implementation cost.
  • the UE If the UE is not provided with the configuration information of the slot type, the UE considers that the subsequent slot and the first slot of the PUCCH are consecutive. In this case, the base station does not configure the configuration information about the slot type of the UE.
  • the base station configures the PUCCH of the time slot for the UE, the base station guarantees that starting from the first time slot, the subsequent consecutive required number of time slots are satisfied. The condition for transmitting the PUCCH in the first slot. Therefore, in this case, when the UE considers the PUCCH to be a time slot, after the first time slot of the PUCCH, the subsequent time slots have a continuous required number of times and satisfy the transmission PUCCH requirement (and the PUCCH is transmitted in the first time slot). Same as the time slot. That is to say, the UE is provided with the slot type configuration information, and is processed according to the above judgment condition.
  • the above method can also be used as the case where the PUSCH is repeatedly transmitted through a plurality of slots, and the principle is similar. It is only necessary to perform peer-to-peer replacement for the PUCCH described above. I won't go into details here.
  • the PUSCH of the UE is configured to be repeated across n (n is greater than 1) time slots, and the base station configures the first slot position of the PUSCH and the starting symbols and symbols used by the PUSCH in the slot (also configured PUB of PRSCH).
  • the UE selects a subsequent time slot, if there is an OFDM symbol that can be used by the PUSCH in the slot, and the symbol that can be used by the PUSCH can be the same as the start symbol and the number of symbols of the PUSCH in the first slot, and
  • the PUSCH and other uplink physical channels of the UE overlap in time domain (this is an optional condition for selecting a subsequent time slot for the PUSCH)
  • the UE selects the time slot as a subsequent time slot of the PUSCH. .
  • the limitation of the last condition for the PUSCH cancellation is mainly because the PUSCH can still be combined with the PUSCH in other time slots even after the rate matching or puncturing, but the performance is slightly reduced, so the last condition is optional. .
  • the UE For the PUSCH of the UE, if the UE is not provided with slot type configuration information if it is transmitted across time slots, the UE starts from the first time slot by default, and the subsequent consecutive n-1 time slots are all satisfied time slots. That is to say, the UE is provided with the slot type configuration information, and is processed according to the above judgment condition.
  • a UE When a UE is configured to repeatedly transmit PUCCH format 3 or 4 across multiple time slots (here may generally refer to a physical channel that needs to be repeatedly transmitted across time slots), and appears in one or more time slots of the transmitted PUCCH, with the UE
  • PUCCH time domain overlaps of one or more SRs (Note: here the PUCCH of the SR may be a PUCCH of one slot, or may be a PUCCH that is repeated across slots, and the time domain overlap may be in one or more time slots.
  • the time domain overlap may also be that a PUCCH across time slots overlaps multiple SRs in multiple time slots respectively, in this case, how should the PUCCH across multiple time slots be transmitted and carry SR information And does not reduce the performance of PUCCH?
  • the PUCCH is repeatedly transmitted across multiple time slots mainly for improving uplink coverage, that is, UCI for PUCCH transmission in multiple time slots is used for combined decoding to improve performance.
  • the value of the X-bit bit is determined according to the SR number of the SR request to be transmitted by the UE, or the value is 0.
  • the data obtained by concatenating the X bits at the end of the UCI bit is encoded using a polar code and transmitted.
  • the above manner is preferentially considered to be applied in the start time slot of the PUCCH, and there is an overlap with one or more SR time domains.
  • the above manner is preferentially considered to be applied in the start slot of the PUCCH, and overlap with one or more SR time domains occurs, and the start symbols of the two are the same.
  • the above manner is preferentially considered to be applied in the start slot of the PUCCH, and overlap with one or more SR time domains occurs, and the start symbol of the SR is earlier than the start symbol of the PUCCH.
  • X bits are transmitted by puncturing or rate matching the PUCCH channel or by reserving resources in the PUCCH channel.
  • the number of bits of the X bit is or
  • the Qmax is the maximum number of SRs that the UE can be configured at the same time in the communication system; the Q is the number of SRs configured by the communication system for the UE (as denoted as Q1); or the Q is the W Among the time slots in which the time domain overlaps, the number of SRs with the most time domain overlap (denoted as Q2); or the Q is the time slot in which the time zones overlap in the W time slots, and the time domain overlaps.
  • the number of SRs (where Q may be different in different time slots, denoted as Q3).
  • the bit value of the X bit is the SR number of the SR request to be transmitted by the UE, or when the Q SRs are all without the SR request, the bit of the X bit is 0, wherein the SR number is
  • the SR indexes of the Q SRs are numbered in ascending or descending order; the reserved resources are determined according to the X-bit number corresponding to the Qmax or Q value.
  • An example is the different value description of Q: for example, the system allows a maximum of 8 SRs to be configured for the UE, that is, Qmax is 8, and a time slot or all W time slots overlapping with the time domain in the W time slots are applied.
  • one SR in the first time slot overlaps with the PUCCH format 3/4 time domain, and there is no SR and PUCCH format 3/4 in the second and fourth time slots.
  • the bit value of the X bit is the SR number of the SR request to be transmitted by the UE, or when the Q SRs are all without the SR request, the bit of the X bit is 0, wherein the SR number is The SR indexes of the Q SRs are numbered in ascending or descending order.
  • the time slot for transmitting the X bit may be the first time slot in the W time slots that overlaps in the time domain and the subsequent time slots (the time slots in the subsequent time slots that are not overlapped in the time domain are included or not included) are transmitted.
  • X bits, the remaining time slots (if any) do not transmit Xbit.
  • all of the W time slots transmit X bits regardless of whether the time domain overlap described above is in the time slot.
  • a part of the PUCCH resource is reserved for transmitting X bits, and the reserved resources are reserved according to the number of REs required for X bit transmission.
  • the HARQ-ACK bit information in the 6.2.7 section at this time is equivalent to the X bit pass rate matched data of the present application, and the data (Data) in the UL-SCH in the section 6.2.7, etc.
  • the UCI information carried in the PUCCH in this application is priced.
  • the PUCCH time domain overlap of the SRs (here, the time slots in the W slots that overlap in the time domain are called time-slot overlapping time slots, and the time slots in the W time slots where the time domain overlap does not appear as the non-time domain.
  • the overlapping time slots the number of SRs that may overlap in each time slot overlapped in the time domain is different.
  • the UE can only select one SR transmission with the SR request, and use the value of the X bits to represent the value.
  • the definition and value of X are as described above;
  • the information to be transmitted Y1 corresponding to the X bits is obtained, for example, modulated according to the rules of UCI encoding in the associated PUCCH.
  • the corresponding information Y2 to be transmitted is obtained.
  • the Y1 and Y2 are rate matched, and finally the transmission information Y is obtained.
  • the merge decoding needs to satisfy a plurality of conditions, for example, the mother code encoding matrix used for the mother code at the time of encoding is the same, the number of bits that are expected to be transmitted.
  • the information in the W time slots is finally equalized in each time slot, in the W time slots, regardless of whether the time domain occurs in the time slot.
  • Overlapping, information Y is transmitted in each time slot. That is, the PUCCH format 3/4 is rate matched using X bits in each slot.
  • the number of information to be transmitted in the PUCCH format 3/4 is equal, so the coded mother code matrix used is the same, so that PUCCH format 3/4 in the W time slots can be combined.
  • the UE initiates the above mode transmission.
  • the UE is in all the time slots according to the first time slot.
  • the determined X (number of bits and bit value) rate matches the PUCCH format 3/4 and is then transmitted in each time slot. Except for the first time slot, the remaining W-1 time slots discard the SR. In this way, the combined decoding of the PUCCH format 3/4 in the W slots can be guaranteed, and the X bits can also be guaranteed to be combined and decoded.
  • the UE is in all the time slots according to the first time slot.
  • the determined X (bit number and bit value) bits are concatenated at the end of the UCI of the PUCCH format 3/4, and then jointly coded and transmitted in each slot, except for the first slot, the remaining W-1
  • the SR is discarded in the time slot. In this way, the combined decoding of the PUCCH format 3/4 in the W slots can be guaranteed, and the X bits can also be guaranteed to be combined and decoded.
  • the UE transmits the UCI information (including one or more of the HARQ-ACK, the SR, and the CSI) carried in the PUCCH through the PUSCH channel. , discard the PUCCH channel.
  • UCI information including one or more of the HARQ-ACK, the SR, and the CSI
  • eMBB Mobile Broadband
  • the UCI is transmitted through the PUSCH, and the mapping position of the UCI in the PUSCH is strictly defined (refer to 3GPP TS 38.212).
  • the HARQ-ACK is mapped from the DMRS symbol of the PUSCH, and the DMRS symbol is mapped.
  • the DMRS is in the third symbol of the PUSCH, the PUCCH has 2 symbols, and overlaps with the first 2 symbols of the PUSCH.
  • the HARQ-ACK carried by the PUCCH will be mapped to the fourth.
  • the time domain location of the PUCCH is changed. If the PUCCH carries the Ultra Reliability and Low Latency Communication (URLLC) service information, the time domain location change may cause the service. The transfer failed.
  • URLLC Ultra Reliability and Low Latency Communication
  • the symbols occupied by the PUSCH of the UE are: symbols 2 to 13 (number starting from 0), assuming that symbol 3 is a DMRS symbol; symbols occupied by PUCCH are: symbols 11 to 13. Obviously, the time domain overlaps the symbols 11 to 13. It is assumed here that the PUCCH carries URLLC service information, such as HARQ-ACK. URLLC is a very demanding service for delays, meaning that the time domain location sent cannot be easily modified. So how do you deal with PUCCH transmission in this case?
  • the PUCCH may be a PUCCH that is repeated across slots
  • the PUSCH may also be a PUSCH that is repeated across slots.
  • the methods of processing below are all common. The processing methods include the following three methods:
  • the UE transmits the UCI carried by the PUCCH through the PUSCH channel, and uses only the PUCCH and PUSCH time domain overlapping symbols in the PUSCH to perform UCI mapping and transmission.
  • the PUCCH is discarded.
  • UCI is mapped in the first two symbols of the PUSCH instead of starting from the fourth symbol of the PUSCH.
  • the UCI is mapped in all of the symbols 11 to 13, instead of starting from the symbol 4. This ensures that the time domain position of the PUCCH does not change.
  • This method is especially applicable to the case where the PUCCH and the PUSCH start symbols are the same, because the PUSCH and the PUCCH can be simultaneously informed of the information to be transmitted.
  • UCI mapping symbols in the PUSCH may be far from the DMRS, and the decoding performance of the UCI may be degraded (for example, in Example 2).
  • the following approach is used.
  • the UE transmits the UCI carried by the PUCCH through the PUSCH channel, and uses only the PUCCH and PUSCH time domain overlapping symbols in the PUSCH to perform UCI mapping and transmission.
  • the PUCCH is discarded.
  • the UCI decoding RS information is interspersed in the UCI information, and then the UCI information interspersed with the decoding RS is mapped as new UCI information to the symbols in which the PUCCH and the PUSCH time domain overlap. In this way, UCI can be decoded using interspersed decoded RSs to overcome the above problems.
  • the decoded RS bit or the decoded RS modulation symbol is inserted at the agreed position of the UCI information bit or the UCI information modulation symbol to form a new series of UCI information or a series of UCI information modulation symbols, and then mapped to the PUCCH and PUSCH overlap. Send on the symbol.
  • the UE puncturing the PUSCH in the symbols in which the PUCCH and the PUSCH overlap, that is, the PUSCH is not transmitted in the overlapping symbols, and the PUCCH is transmitted in the overlapping symbols.
  • the PUCCH may use the frequency domain resource of the PUSCH in the overlapping symbol, or may use the frequency domain resource of the PUCCH itself.
  • the PUCCH channel is transmitted.
  • the first two symbols of the PUSCH are destroyed, and the PUCCH is transmitted in the first two symbols.
  • the symbols 11 to 13 of the PUSCH are punctured, and the PUCCH is transmitted in the symbols 11 to 13.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present disclosure which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
  • a time slot determining device for a physical uplink channel is further provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 2 is a structural diagram of a time slot determining apparatus for a physical uplink channel, including: a first receiving module 22 and a first determining module 24, according to a preferred embodiment of the present disclosure.
  • the first receiving module 22 is configured to receive configuration information of the first communications node, where the configuration information is used to indicate that the second communications node repeatedly transmits the physical uplink channel across the m time slots.
  • the first determining module 24 is connected to the first receiving module 22, and is configured to determine the m time slots according to one of the following manners: determining, according to the configuration information, whether a physical uplink channel time domain overlap occurs in the time slot; Configuration information is determined.
  • the physical uplink channel may include a physical uplink control channel and a physical uplink shared channel.
  • the physical uplink control channel may be determined according to the configuration information and whether the physical uplink channel time domain overlap occurs in the time slot.
  • the physical uplink shared channel can be determined according to the configuration information.
  • the second communication node receives the configuration information of the first communication node, where the configuration information is used to indicate that the second communication node repeatedly transmits the physical uplink channel across the m time slots; the second communication node is configured according to the configuration information. And determining whether the physical uplink channel time domain overlap occurs in the time slot to determine the m time slots; or determining according to the configuration information.
  • the configuration information when the physical uplink channel is a physical uplink control channel (PUCCH), the configuration information includes at least one of the following: a start slot of the PUCCH; and a start orthogonal frequency division of the PUCCH in the start slot.
  • the OFDM symbol position is multiplexed; the number of OFDM symbols in the PUCCH in the start time slot; the value of m of the PUCCH;
  • the configuration information when the physical uplink channel is the physical uplink shared channel PUSCH, includes at least one of the following: PUSCH The starting time slot; the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol position of the PUSCH in the starting time slot; the number of OFDM symbols in the PUSCH in the starting time slot; the value of m of the PUSCH.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the information that is not included adopts a value agreed in the communication system: a starting time slot of the physical uplink channel; and the physical uplink channel in the starting time slot.
  • the starting Orthogonal Frequency Division Multiplexing (OFDM) OFDM symbol position; the physical uplink channel in the starting time slot is the number of OFDM symbols; the value of m of the physical uplink channel.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the second communication node determines the manner of the m time slots, including: the start time slot of the PUCCH is determined by the configuration information; and the subsequent m-1 times The slot needs to satisfy the condition that the same starting OFDM symbol position in the slot as the PUCCH in the start slot can be used; the number of consecutive OFDM symbols in the slot that allow the PUCCH to be used is greater than or equal to the start The number of consecutive OFDM symbols used by the PUCCH in the slot; when the PUCCH is transmitted in the slot, there is no time domain overlap between all or part of the physical uplink channels transmitted in the slot. It should be added that the subsequent m-1 time slots selected by the second communication node are generally not consecutive m-1 time slots.
  • the m time slots are determined, including: the start time slot of the PUSCH is determined by the configuration information; and the subsequent m-1 time slots need to satisfy at least the following conditions:
  • determining the m time slots includes:
  • the m-1 time slots are consecutive after the start time slot, and the start time slots are a total of the m time slots.
  • an apparatus for transmitting a physical uplink channel comprising: a second receiving module and a first transmission module.
  • the second receiving module is configured to receive the second configuration information of the first communications node, where the second configuration information is used to indicate that the second communications node repeatedly transmits the physical uplink control channel across the W timeslots, where In one or more time slots of the time slots, the physical uplink channel of the repeated transmissions overlaps with the time domain of the physical uplink channels of the Q scheduling request SRs respectively;
  • a first transmission module configured to transmit X bits according to one of the following manners in the one or more time slots in which the time domain overlaps, wherein the X bits are used to indicate to the first communication node which of the Q SRs SR has SR request:
  • the W and the Q are integers greater than or equal to 1, and the values of the Qs are different in different time slots in which the time domain overlaps.
  • Q SRs can be understood as Q channels, or Q PUCCHs.
  • the X bits are transmitted in the physical uplink control channel, and the encoded information of the X bits may be transmitted in the physical uplink control channel.
  • the X-bit rate matching is transmitted in the information in the physical uplink control channel, and the X-bit encoded information rate may be matched to the UCI bit in the physical uplink control channel. The encoded information is transmitted.
  • the apparatus further comprises at least one of the following:
  • the number of bits of the X bit is or
  • the Qmax is the maximum number of SRs that the second communication node can be configured at the same time in the communication system, and the Q is the number of SRs configured by the communication system to the second communication node; or the Q is the time domain of the W time slots.
  • the bit value of the X bit is the SR number of the SR request to be transmitted by the second communication node, or when the Q SRs are all without the SR request, the bit value of the X bit is 0, wherein the SR number is The number of the SR indexes of the Q SRs in ascending or descending order;
  • the reserved resource is determined according to the number of X bits corresponding to the Q max or Q value.
  • the X bits are only transmitted in OFDM symbols in which time domain overlap occurs, or in symbols adjacent to the decoded reference signal DMRS symbols of the physical uplink control channel; or, only in time domain overlapping OFDM symbols
  • the puncturing, rate matching, or reserved resources are only performed in the symbols of the decoded reference signal DMRS symbols that are immediately adjacent to the physical uplink control channel. It should be added that the above-mentioned time domain overlapping OFDM symbols are symbols in time slots in which time domain overlap occurs. Transmitted in the symbol of the DMRS symbol of the decoding reference signal of the physical uplink control channel, it can be described that the DMRS from the physical uplink control channel is transmitted in the nearest symbol.
  • the symbols in the above embodiments may each be an OFDM symbol.
  • the apparatus further comprises: transmitting the DMRS of the physical uplink control channel in two or one side OFDM symbols closest to the OFDM symbol in which the time domain overlap occurs.
  • the apparatus further includes: in a time slot in which the time slots overlap in the W time slots, transmitting the X bit in the physical uplink control channel, and matching the X bit rate in the time slot.
  • the information in the physical uplink control channel is transmitted; wherein, in the time slot in which the time domain overlap does not occur, the value of the X bit does not represent the SR number of the SR request, and the value of each bit of the X bit is 1 or 0, the number of bits of X bits is or
  • the apparatus further includes: in the W time slots, starting from a first time slot in which the time domain overlap occurs, and in a subsequent time slot, the X bit is in the physical uplink control channel In transit. It should be added that the subsequent time slots here may be the time slots in all subsequent W time slots.
  • an apparatus for transmitting a physical uplink channel comprising: a second determining module and a second transmitting module.
  • the second determining module is configured to determine that the physical uplink control channel PUCCH to be transmitted and the physical uplink shared channel PUSCH occur in time domain overlap.
  • the second transmission module is configured to transmit the uplink control information UCI carried in the PUCCH or the PUCCH on a symbol in which the time domain overlaps in the PUSCH;
  • the second communication node transmits the PUCCH or the uplink control information UCI carried in the PUCCH on the symbol in which the time domain overlap occurs, and the PUSCH in the symbol in which the time domain overlap occurs is punctured.
  • the above UCI may include one or more of HARQ-ACK, SR, and channel state information CSI.
  • the PUSCH may not be transmitted when the time domain overlap position occurs.
  • the above technical solution overcomes the defect in the related art that how to transmit the physical uplink channel scheme when the PUCCH and the PUSCH overlap in the time domain.
  • UCI information is transmitted in both time domain overlapping positions.
  • the second communications node transmits the uplink control information UCI carried by the PUCCH on the time-domain overlapping symbol in the PUSCH, including: the second communications node determines a reference for decoding the UCI information.
  • the signal RS; the reference signal RS and the UCI are both transmitted on a symbol in which the time domain overlaps in the PUSCH.
  • the DMRS of the PUSCH or the DMRS of the PUCCH is transmitted in the OFDM symbol closest to the OFDM symbol overlapping the time domain or in the OFDM symbol.
  • the second communication node transmits the PUCCH or the UCI according to one of the following manners in one or more time slots in which the time domain overlap occurs:
  • the UCI or the PUCCH is transmitted in the physical uplink shared channel, and resources are reserved in the physical uplink shared channel, and the encoded information of the UCI is transmitted in the reserved resource.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to perform the steps of any one of the method embodiments described above at runtime.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform any of the above The steps in the method embodiments.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种物理上行信道的时隙确定方法及装置,其中,该方法包括:第二通信节点接收第一通信节点的配置信息,其中,该配置信息用于指示该第二通信节点跨m个时隙slot重复传输物理上行信道;该第二通信节点通过以下方式之一确定该m个slot:依据该配置信息,和slot中是否发生物理上行信道时域重叠进行确定;依据该配置信息进行确定。

Description

物理上行信道的时隙确定方法及装置
本申请要求在2018年04月11日提交中国专利局、申请号为201810321437.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种物理上行信道的时隙确定方法及装置。
背景技术
在新一代无线通信(New Rat,NR)***中,目前有5种物理上行控制信道(Physical Uplink Control Channel,PUCCH),分别记为PUCCH格式0~4。
PUCCH格式0的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号(下文的使用符号进行描述)为1~2个,用于承载1~2比特(bit)的混合自动重传请求-确认(Hybrid Automatic Repeat request-ACKnowledge,HARQ-ACK),且支持不同终端(User Equipment,UE)之间复用。
PUCCH格式1用于承载1~2bit的HARQ-ACK信息,包含的OFDM符号数大于等于4个,且支持不同UE之间复用。
PUCCH格式2用于传输大于2bit的上行控制信息(Uplink Control Information,UCI)信息(这个UCI可以是HARQ-ACK、调度请求(Scheduling Request,SR)、信道状态信息(Channel State Information,CSI)中的一个或多个),符号数为1~2个,且不支持不同UE之间复用。
PUCCH格式3用于传输大于2bit的UCI信息,符号数为大于等于4个,且不支持不同UE之间复用。
PUCCH格式4用于传输大于2bit的UCI信息,符号数为大于等于4个,且支持不同UE之间复用。
这里也可以按照PUCCH的符号数范围将它们划分为不同的PUCCH类型,例如格式0和格式2的符号数为1~2个,属于同一PUCCH类型,也可称短格式;格式1,3和4的符号数为大于等于4个,属于同一PUCCH类型,也可称长格式。
相关技术中,UE只能选择一个SR进行发送。即如果多个SR中有多个SR请求时,UE只能发送其中一个SR给基站。那么UE如何将HARQ-ACK和选择 的SR发送给基站呢?基站又怎么知道UE反馈了哪个SR请求呢?
针对相关技术中缺乏确定传输物理上行信道的时隙(slot)的方案的情况,目前还没有有效的解决方案。
发明内容
本公开实施例提供了一种物理上行信道的时隙确定方法及装置,以克服缺乏确定传输物理上行信道的时隙的方案的缺陷。
根据本公开的一个实施例,提供了一种物理上行信道的时隙确定方法,包括:第二通信节点接收第一通信节点的配置信息,其中,所述配置信息用于指示所述第二通信节点跨m个时隙slot重复传输物理上行信道;所述第二通信节点通过以下方式之一确定所述m个slot:依据所述配置信息,和slot中是否发生物理上行信道时域重叠进行确定;依据所述配置信息进行确定。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的方法,包括:第二通信节点接收第一通信节点的第二配置信息,其中,所述第二配置信息用于指示所述第二通信节点跨W个slot重复传输物理上行控制信道,其中,在所述W个slot中的一个或多个slot中,所述重复传输的物理上行信道,分别与Q个调度请求SR的物理上行信道出现时域重叠;所述第二通信节点在有时域重叠的所述一个或多个slot中,依据以下方式之一传输X比特,其中,所述X比特用于向所述第一通信节点指示所述Q个SR中哪个SR有SR请求:将所述X比特在所述物理上行控制信道中传输,且将所述物理上行控制信道中的信息进行打孔,在打孔位置中传输所述X比特;将所述X比特在所述物理上行控制信道中传输,且将所述X比特速率匹配在所述物理上行控制信道中的信息中进行传输;将所述X比特在所述物理上行控制信道中传输,且在所述物理上行控制信道的预留资源中传输所述X比特;其中,所述W,Q为大于等于1的整数,所述Q在不同的发生时域重叠的slot中取值允许不同。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的方法,包括:第二通信节点确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠;所述第二通信节点将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在所述PUSCH中发生时域重叠的符号上传输;或者,所述第二通信节点将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
根据本公开的另一个实施例,还提供了一种物理上行信道的时隙确定装置,包括:第一接收模块,设置为接收第一通信节点的配置信息,其中,所述配置信息用于指示所述第二通信节点跨m个时隙slot重复传输物理上行信道;第一确定模块,设置为通过以下方式之一确定所述m个slot:依据所述配置信息,和slot中是否发生物理上行信道时域重叠进行确定;依据所述配置信息进行确定。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的装置,包括:第二接收模块,设置为接收第一通信节点的第二配置信息,其中,所述第二配置信息用于指示所述第二通信节点跨W个slot重复传输物理上行控制信道,其中,在所述W个slot中的一个或多个slot中,所述重复传输的物理上行信道,分别与Q个调度请求SR的物理上行信道出现时域重叠;第一传输模块,设置为在有时域重叠的所述一个或多个slot中,依据以下方式之一传输X比特,其中,所述X比特用于向所述第一通信节点指示所述Q个SR中哪个SR有SR请求:将所述X比特在所述物理上行控制信道中传输,且将所述物理上行控制信道中的信息进行打孔,在打孔位置中传输所述X比特;将所述X比特在所述物理上行控制信道中传输,且将所述X比特速率匹配在所述物理上行控制信道中的信息中进行传输;将所述X比特在所述物理上行控制信道中传输,且在所述物理上行控制信道的预留资源中传输所述X比特;其中,所述W,Q为大于等于1的整数,所述Q在不同的发生时域重叠的slot中取值允许不同。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的装置,包括:第二确定模块,设置为确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠;第二传输模块,设置为将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在所述PUSCH中发生时域重叠的符号上传输;或者,设置为将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图概述
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的物理上行信道的时隙确定方法的流程图;
图2是根据本公开优选实施例的一种物理上行信道的时隙确定装置结构图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
需要说明的是,第二通信节点可以是终端,第一通信节点可以是基站侧设备,但是,不限于此。
实施例一
本申请实施例中提供了一种移动通信网络(包括但不限于5G移动通信网络),该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的信息传输方法,需要说明的是,本申请实施例中提供的上述信息传输方法的运行环境并不限于上述网络架构。
在本实施例中提供了一种运行于物理上行信道的时隙确定方法,图1是根据本公开实施例的物理上行信道的时隙确定方法的流程图,如图1所示,该流程包括:步骤S102和步骤S104。
在步骤S102中,第二通信节点接收第一通信节点的配置信息。
其中,该配置信息用于指示该第二通信节点跨m个时隙(slot)重复传输物理上行信道。
在步骤S104中,该第二通信节点通过以下方式之一确定该m个slot:依据该配置信息,和slot中是否发生物理上行信道时域重叠进行确定;依据该配置信息进行确定。
需要补充的是,上述物理上行信道可以包括物理上行控制信道,物理上行共享信道。物理上行控制信道可以依据配置信息,和时隙中是否发生物理上行信道时域重叠进行确定。物理上行共享信道可以依据配置信息进行确定。
通过上述步骤,第二通信节点接收第一通信节点的配置信息,其中,该配置信息用于指示该第二通信节点跨m个时隙重复传输物理上行信道;该第二通信节点依据该配置信息,和时隙中是否发生物理上行信道时域重叠进行确定该m个时隙;或者,依据该配置信息进行确定。采用上述方案,解决了相关技术中缺乏确定传输物理上行信道的时隙的方案的问题,实现了依据预设规则在多个时隙中进行选择,使用选择出的时隙传输物理上行信道。
在一实施例中,上述步骤的执行主体可以为基站、终端等,但不限于此。
在一实施例中,步骤S102和步骤S104的执行顺序是可以互换的,即可以先执行步骤S104,然后再执行S102。
在一实施例中,在该物理上行信道为物理上行控制信道PUCCH时,该配置信息中包括以下至少之一:PUCCH的起始时隙;起始时隙中该PUCCH的起始正交频分复用OFDM符号位置;起始时隙中该PUCCH持续OFDM符号数量;该PUCCH的m的取值;在该物理上行信道为物理上行共享信道PUSCH时,该配置信息中包括以下至少之一:PUSCH的起始时隙;起始时隙中该PUSCH的起始正交频分复用OFDM符号位置;起始时隙中该PUSCH持续OFDM符号数量;该PUSCH的m的取值。
在一实施例中,在该配置信息中未包括以下信息至少之一时,未被包括的信息采用通信***中约定的值:物理上行信道的起始时隙;起始时隙中该物理上行信道的起始正交频分复用OFDM符号位置;起始时隙中该物理上行信道持续OFDM符号数量;该物理上行信道的m的取值。
在一实施例中,当该物理上行信道为PUCCH时,该第二通信节点确定该m个时隙的方式,包括:该PUCCH的起始时隙通过该配置信息确定;后续m-1个时隙需要满足下述条件:时隙中有与该PUCCH在起始时隙中相同的起始OFDM符号位置能被使用;时隙中有允许该PUCCH使用的持续的OFDM符号数大于等于该起始时隙中该PUCCH使用的持续的OFDM符号数;时隙中传输该PUCCH时,该时隙中传输的全部或部分物理上行信道之间不存在时域重叠。需要补充的是,第二通信节点选择出的后续m-1个时隙一般情况下不是连续的m-1个时隙。
在一实施例中,当该物理上行信道为PUSCH时,确定该m个时隙,包括:该PUSCH的起始时隙通过该配置信息确定;后续m-1个时隙需要满足下述条件至少之一:时隙中有与该PUSCH在起始时隙中相同的起始OFDM符号位置能 被使用;时隙中允许该PUSCH使用的持续的OFDM符号数大于等于该起始时隙中该PUSCH使用的持续的OFDM符号数;时隙中传输该PUSCH时,该时隙中传输的全部或部分物理上行信道之间不存在时域重叠;时隙中有与该PUSCH在起始时隙中相同的物理资源块(Physical Resource Block,PRB)能被使用。
在一实施例中,在该第二通信节点未被提供时隙类型指示信息时,确定该m个时隙中,包括:
依据该配置信息确定该物理上行信道的起始时隙;
确定该起始时隙之后连续m-1个时隙,和该起始时隙共为该m个时隙。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的方法,包括以下步骤一和步骤二。
在步骤一中,第二通信节点接收第一通信节点的第二配置信息,其中,该第二配置信息用于指示该第二通信节点跨W个时隙重复传输物理上行控制信道,其中,在该W个时隙中的一个或多个时隙中,该重复传输的物理上行信道,分别与Q个调度请求SR的物理上行信道出现时域重叠。
在步骤二中,该第二通信节点在有时域重叠的该一个或多个时隙中,依据以下方式之一传输X比特,其中,该X比特用于向该第一通信节点指示该Q个SR中哪个SR有SR请求:
将该X比特在该物理上行控制信道中传输,且将该物理上行控制信道中的信息进行打孔,在打孔位置中传输该X比特;
将该X比特在该物理上行控制信道中传输,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输;
将该X比特在该物理上行控制信道中传输,且在该物理上行控制信道的预留资源中传输该X比特;
其中,该W,Q为大于等于1的整数,Q在不同的发生时域重叠的时隙中取值允许不同。
需要补充的是,Q个SR可以理解为Q个通道,或Q个PUCCH。本申请文件中的,将X比特在物理上行控制信道中传输,可以是,将X比特的编码后的信息在物理上行控制信道中传输。本申请文件中的,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输,可以是,将X比特的编码后的信息速率匹配到该物理上行控制信道中的UCI比特的编码后的信息中进行传输。
通过上述技术方案,克服了相关技术中第一通信节点无法知晓第二通信节 点反馈了哪个SR请求的缺陷,实现了向第一通信节点指示多个SR请求的情况。
在一实施例中,该方法还包括以下至少之一:
该X比特的比特数为
Figure PCTCN2019082161-appb-000001
Figure PCTCN2019082161-appb-000002
其中,该Q max为通信***中该第二通信节点能被同时配置的最大SR数量,该Q为该通信***给第二通信节点配置的SR数量;或该Q为该W个时隙中有时域重叠的时隙中,具有最多时域重叠的SR数量;或该Q为该W个时隙中有时域重叠的时隙中,时域重叠的SR数量(需要补充的是,此处可以对应后续方法B中的Q1,Q2,和Q3理解);
该X比特的比特取值为第二通信节点要传输的有SR请求的SR编号,或者该Q个SR均为无SR请求时,该X比特的比特取值均为0,其中,SR编号为该Q个SR的SR索引按照升序或降序排列后的编号;
该预留资源是按照Q max或Q值对应的该X比特数确定的。
在一实施例中,该X比特仅在发生时域重叠的OFDM符号中,或者在紧邻该物理上行控制信道的解码参考信号(Demodulation Reference Signal,DMRS)符号的符号中发送;或者,仅在时域重叠的OFDM符号中,或仅在紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中执行该打孔、速率匹配或预留资源。需要补充的是,上述时域重叠的OFDM符号是发生时域重叠的时隙中的符号。紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中发送,可以描述为,离该物理上行控制信道的DMRS符合最近的符号中发送。以及,仅在紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中执行该打孔、速率匹配或预留资源,可以描述为,仅在距离物理上行控制信道的DMRS符号最近的符号中执行打孔、速率匹配或预留资源。上述实施例中的符号,均可以是OFDM符号。
在一实施例中,该方法还包括:在离发生时域重叠的OFDM符号最近的两侧或单侧的OFDM符号中,发送该物理上行控制信道的DMRS。
在一实施例中,该方法还包括:在该W个时隙中不发生时域重叠的时隙中,将该X比特在该物理上行控制信道中传输,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输;其中,在不发生时域重叠的时隙中,该X比特的比特取值不代表有SR请求的SR编号,约定X比特每个比特取值均为1或0,X比特的比特数为
Figure PCTCN2019082161-appb-000003
Figure PCTCN2019082161-appb-000004
在一实施例中,该方法还包括:在该W个时隙中,从第一个出现该时域重 叠的时隙开始,以及后续的时隙中,将该X比特在该物理上行控制信道中传输。需要补充的是,此处的后续的时隙可以是,后续的所有W个时隙中的时隙。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的方法,该方法包括以下步骤一和步骤二。
在步骤一中,第二通信节点确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠。
在步骤二中,该第二通信节点将该PUCCH或该PUCCH中承载的上行控制信息UCI,在该PUSCH中发生时域重叠的符号上传输;
或者,该第二通信节点将该PUCCH或该PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
需要补充的是,上述UCI可以包括HARQ-ACK,SR,信道状态信息CSI的一者或多者。发生时域重叠位置可以不传输PUSCH。
采用上述技术方案,克服了相关技术中缺乏在PUCCH和PUSCH存在时域重叠时,如何传输物理上行信道方案的缺陷。实现了UCI信息在二者时域重叠位置上传输。
在一实施例中,该第二通信节点将该PUCCH承载的上行控制信息UCI,在该PUSCH中发生时域重叠的符号上传输,包括:该第二通信节点确定用于解码该UCI信息的参考信号RS;将该参考信号RS和该UCI,均在该PUSCH中发生时域重叠的符号上传输。
在一实施例中,在离该时域重叠的OFDM符号最近的两侧或单侧的OFDM符号中,发送PUSCH的DMRS或PUCCH的DMRS。
在一实施例中,该第二通信节点在发生时域重叠的一个或多个时隙中,依据以下方式之一传输该PUCCH或该UCI:
将该UCI或该PUCCH在该物理上行共享信道中传输,且将该物理上行共享信道中的信息进行打孔,在打孔位置中传输该UCI的编码后信息;
将该UCI或该PUCCH在该物理上行共享信道中传输,且将该UCI的编码后信息速率匹配在该物理上行共享信道中的信息中进行传输;
将该UCI或该PUCCH在该物理上行共享信道中传输,且在该物理上行共享信道中预留资源,在预留资源中传输该UCI的编码后信息。
下面结合本公开示例性实施例进行详细说明。
在NR***中,物理上行控制信道PUCCH格式0用于承载1~2bit的HARQ-ACK,并通过配置的循环序列CS表示HARQ-ACK是ACK或NACK;如果同时有调度请求传输,那么也是需要配置对应的CS来表示。
相关技术中的PUCCH格式0的HARQ-ACK的传输,以及PUCCH格式0的HARQ-ACK和SR请求同时传输的做法:
如果有SR和HARQ-ACK同传,则使用HARQ-ACK的时频资源,且通过约定序列表达HARQ-ACK和SR。例如表1是根据相关技术中1bit HARQ-ACK和CS分配表,表2是根据相关技术中的2bit HARQ-ACK和CS分配表。表3是根据相关技术中1bit HARQ-ACK与SR同传的CS分配表,表4是根据相关技术中2bit HARQ-ACK与SR同传的CS分配表。其中,一个基序列包含12个CS。
表1
HARQ-ACK值 0 1
循环序列CS m CS=0 m CS=6
表2
HARQ-ACK值 {0,0} {0,1} {1,1} {1,0}
CS m CS=0 m CS=3 m CS=6 m CS=9
表3
HARQ-ACK值 0 1
CS m CS=3 m CS=9
表4
HARQ-ACK值 {0,0} {0,1} {1,1} {1,0}
CS m CS=1 m CS=4 m CS=7 m CS=10
相关技术中PUCCH格式1的HARQ-ACK的传输,以及PUCCH格式1的HARQ-ACK和有SR请求的同时传输的做法:
如果有SR+HARQ-ACK同传,则使用SR的时频资源,且使用分配给SR 的CS,HARQ-ACK调制到SR的CS上;如果没有SR请求,HARQ-ACK使用HARQ-ACK的时频资源,且CS使用分配给HARQ-ACK的CS,HARQ-ACK调制到SR的CS上。总结为:通过使用的时频资源来表达SR的“有”和“无”,且CS与时频资源绑定,HARQ-ACK调制到传输的CS。
相关技术中,对于SR的PUCCH允许使用PUCCH格式0和PUCCH格式1,其中PUCCH格式1按照相关技术的协议规定允许跨时隙传输。那么,当一个UE的一个承载HARQ-ACK的物理上行控制信道PUCCH格式0或格式1与多个承载调度请求SR的PUCCH时域重叠时且其中所述HARQ-ACK的PUCCH或SR的PUCCH是跨时隙的,例如,承载HARQ-ACK的PUCCH是格式1跨2个时隙,承载SR的多个PUCCH也是格式1跨2个时隙,且时域重叠或部分重叠。相关技术中,UE只能选择一个SR进行发送。即如果多个SR中有多个SR请求时,UE只能发送其中一个SR给基站。那么UE如何将HARQ-ACK和选择的SR发送给基站呢?基站又怎么知道UE反馈了哪个SR请求呢?
针对上述问题,本公开涉及一种物理上行控制信道与多个调度请求SR的信道时域重叠时,上行控制信道中的HARQ-ACK和SR的传输。
应用实施例1
一个UE的承载HARQ-ACK的PUCCH格式1,3或4是跨多个时隙模式的,和该UE的多个SR的PUCCH时域重叠。多个SR的PUCCH也可能是跨多个时隙,也可以能不是跨多个时隙的。时域重叠可以是它们的OFDM符号完全重叠或部分重叠。基站和UE约定采用下面方式传输HARQ-ACK和SR。
基站和UE约定:
在相关选择后续时隙的条件中,再增加:UE承载HARQ-ACK的PUCCH在选择后续时隙(除第一个时隙外)时,如果该时隙中有该UE的SR的PUCCH,且如果选择了该时隙后,会出现承载HARQ-ACK和SR的PUCCH出现时域重叠时,UE不选择该时隙作为承载HARQ-ACK的PUCCH的时隙。
或者描述为:在相关选择后续时隙的条件中,再增加:UE承载HARQ-ACK的PUCCH在选择后续时隙(除第一个时隙外)时,选择UE的SR的PUCCH和该PUCCH不会出现时域重叠的时隙。
例如可以描述为:
UE被配置了跨m个(m大于1)时隙重复的PUCCH,UE根据配置的PUCCH的起始时隙、起始时隙中的起始符号位置、持续符号数量和要求重复的时隙数 量m,再结合是否会发生多个上行物理信道时域重叠,来确定后续那些时隙被选择发送该PUCCH。
规则约定包括:UE在被提供了时隙类型的配置信息时,UE从起始时隙开始选择后续的m-1个时隙(或者说从起始时隙开始选择m个时隙,包括起始时隙在内)中有足够PUCCH使用的上行OFDM符号,如有大于或等于起始时隙中PUCCH使用的符号数,其次可选的增加条件是且有与起始时隙中PUCCH相同的起始符号,且该时隙中如果承载PUCCH时,不会引起UE的多个上行物理信道(包括承载不同UCI信息的PUCCH、PUSCH等)时域重叠。
如果UE在未被提供时隙类型的配置信息时,UE被配置跨m个时隙重复PUCCH时,UE认为从基站配置的起始时隙开始后续的m-1个时隙为PUCCH重复的时隙,或者描述为UE认为基站配置的起始时隙开始共连续m个时隙为PUCCH重复的时隙。这种情况下,基站需要保证后续的时隙满足上述为UE提供了时隙类型的配置信息时选择时隙的条件。
例如,UE的PUCCH被配置跨4个时隙重复,且基站配置了PUCCH的第一个时隙以及在该时隙中PUCCH时域的起始OFDM符号(文中符号均指OFDM符号)和符号数,配置了PUCCH起始PRB,如果PUCCH跳频,则为每个跳频配置对应的起始PRB。然后UE在选择后续时隙时,如果发现时隙中有PUCCH可以使用的OFDM符号,且PUCCH能够使用的符号能与第一个时隙中的PUCCH的起始OFDM符号以及符号数相同,且不会导致PUCCH和该UE的SR的PUCCH时域重叠时,UE选择该时隙作为PUCCH后续时隙。
当然,这里的SR的PUCCH也可以是该UE的其他目的的PUCCH或PUSCH,例如传输CSI的PUCCH,或者是UE的PUSCH。这样的限制主要为了避免UE在一个时隙中出现多个上行物理信道,且这些上行物理信道存在时域重叠,这样将导致UE的PUCCH在多个时隙之间不能合并解码,或者导致UE同时传输多个上行物理信道将导致UE实现成本显著增加。因为按照相关技术,对于一个UE当多个上行物理信道出现时域重叠(例如按照OFDM符号时域重叠,包括完全重叠和部分重叠),UE将传输一个上行物理信道,以降低UE实现成本。
如果UE未被提供时隙类型的配置信息,那么UE认为PUCCH后续的时隙和第一个时隙是连续的。这种情况下,基站不配置UE关于时隙类型的配置信息,基站为UE配置了跨时隙的PUCCH时,基站保证从第一个时隙开始,后续的连 续的要求数量的时隙是满足第一个时隙中发送PUCCH的条件。所以,这种情况下,UE认为PUCCH跨时隙时,PUCCH的第一个时隙之后,后续的时隙会有连续的要求数量的且满足传输PUCCH要求(和第一个时隙中传输PUCCH一样)的时隙。也就是说UE被提供了时隙类型配置信息,按照上述的判断条件进行处理。
上述的方式也能被使用为PUSCH通过多个时隙重复发送的情况,原理是类似的。只需要对于上述的PUCCH进行对等替换即可。这里不再赘述。例如,UE的PUSCH被配置跨n个(n大于1)时隙重复,且基站配置了PUSCH的第一个时隙位置以及在该时隙中PUSCH使用的起始符号和符号数(也配置了PUSCH的PRB)。然后UE在选择后续时隙时,如果发现时隙中有PUSCH可以使用的OFDM符号,且PUSCH能够使用的符号能与第一个时隙中的PUSCH的起始符号以及符号数相同,且不会导致PUSCH和该UE的其他的上行物理信道(例如PUCCH或另一个PUSCH等)时域重叠(这一条对于PUSCH选择后续时隙作为可选的条件)时,UE选择该时隙作为PUSCH后续时隙。对于PUSCH取消最后一个条件的限制,主要是因为PUSCH即使被速率匹配或打孔后,PUSCH仍然能够和其他时隙中的PUSCH合并解码,但是性能会略有降低,所以最后一个条件作为可选项的。对于UE的PUSCH,如果跨时隙传输,UE未被提供时隙类型的配置信息时,UE默认从第一个时隙开始,后续连续n-1的时隙都是满足要求的时隙。也就是说UE被提供了时隙类型配置信息,按照上述的判断条件进行处理。
应用实施例2
相关技术中,对于在一个时隙中传输的PUCCH格式2,3和4,当与K(K大于0)个SR的PUCCH时域重叠时,将在PUCCH承载的UCI末尾增加X比特,
Figure PCTCN2019082161-appb-000005
X描述第几个SR发送了SR请求。如果K个SR均为无SR请求,那么X bit取值为均为0。
本文通过分析相关技术,发现下面的问题。
当一个UE被配置跨多个时隙重复传输PUCCH格式3或4(这里可以泛指需要跨时隙重复传输的物理信道),且在传输PUCCH的一个或多个时隙中出现了,与UE的一个或多个SR的PUCCH时域重叠时(注意:这里SR的PUCCH可以是一个时隙的PUCCH,也可以是跨时隙重复的PUCCH,时域重叠可以是在一个或多个时隙中时域重叠,也可以是一个跨时隙的PUCCH在多个时隙中和 多个SR分别时域重叠),在这种情况下,跨多个时隙的PUCCH应该如何传输,且携带SR信息,且不降低PUCCH的性能呢?PUCCH跨多个时隙重复传输主要是为了提升上行覆盖,即利用多个时隙中的PUCCH传输的UCI进行合并解码提升性能。
针对上述问题,提出以下方法A和方法B。
方法A
对于UE,跨W(W大于0)个时隙重复传输的PUCCH格式3,4在一个或多个时隙中与Q(大于0且小于等于Qmax)个SR的PUCCH出现时域重叠,UE总是在所述W个时隙中传输的PUCCH承载UCI末尾均增加X比特,X比特的比特数为
Figure PCTCN2019082161-appb-000006
Figure PCTCN2019082161-appb-000007
Qmax为***中一个UE能被同时配置的最大SR数量,这样,X将是一个固定值。X比特的比特取值根据UE要传输的有SR请求的SR编号进行确定,或者取值均为0。然后,对于UCI比特末尾串接X比特得到的数据使用polar码进行编码,并发送。
上述方式优先被考虑应用于在PUCCH的起始时隙中,就出现了和一个或多个SR时域重叠。或,上述方式优先被考虑应用于在PUCCH的起始时隙中,就出现了和一个或多个SR时域重叠,且两者起始符号相同。或,上述方式优先被考虑应用于在PUCCH的起始时隙中,就出现了和一个或多个SR时域重叠,且SR的起始符号早于PUCCH的起始符号。
方法B
对于UE,跨W(W大于0)个时隙重复传输的PUCCH格式3,4在一个或多个时隙中与Q(大于0且小于等于Qmax)个SR的PUCCH出现时域重叠,UE在时域重叠的时隙中,采用对PUCCH信道进行打孔或速率匹配,或在PUCCH信道预留资源的方式来传输X比特。所述X比特的比特数为
Figure PCTCN2019082161-appb-000008
Figure PCTCN2019082161-appb-000009
其中,所述Qmax为通信***中所述UE能被同时配置的最大SR数量;所述Q为所述通信***给UE配置的SR数量(如记为Q1);或所述Q为所述W个时隙中有时域重叠的时隙中,具有最多时域重叠的SR数量(记为Q2);或所述Q为所述W个时隙中有时域重叠的时隙中,时域重叠的SR数量(这里在不同的时隙中Q可能取值不同,记为Q3)。所述X比特的比特取值为UE要传输的有SR请求的SR编号,或者所述Q个SR均为无SR请求时,所述X比特的比特取值均为0,其中,SR编号为所述Q个SR的SR索引按照升序或降序排列后的编号;所述预留资源是按照Qmax或Q值对应的所述X比特数确 定的。一个例子为Q的不同取值说明:例,***为UE最大允许配置8个SR,即Qmax为8,应用与所述W个时隙中有时域重叠的时隙或所有W个时隙。***为UE总共配置了4个SR,那么即UE此时共有4个SR,即Q1=4,应用与所述W个时隙中有时域重叠的时隙或所有W个时隙。但是在W个(如W=4)时隙中,第一个时隙中有1个SR与PUCCH格式3/4时域重叠,第二、四个时隙中没有SR与PUCCH格式3/4时域重叠,第三个时隙中有2个SR与PUCCH格式3/4时域重叠(此时配置了4个SR但是重叠的SR个数是小于等于4),那么,4个时隙中,时域重叠SR数量最多的时隙为第三个时隙,重叠SR为2个,即Q2=2,应用与所述W个时隙中有时域重叠的时隙或所有W个时隙。此时第一个时隙中Q3=1,第二、四个时隙没有时域重叠的SR,Q3为无取值或0,第三个时隙中Q3=2。
所述X比特的比特取值为UE要传输的有SR请求的SR编号,或者所述Q个SR均为无SR请求时,所述X比特的比特取值均为0,其中,SR编号为所述Q个SR的SR索引按照升序或降序排列后的编号。
传输X bit的时隙可以是所述W个时隙中第一个出现时域重叠的时隙以及后续的时隙(后续时隙中没有时域重叠的时隙被包括或不被包括)传输X比特,其余时隙(如果有)不传输Xbit。或者所有W个时隙均传输X bit,不管时隙中是否有上述的时域重叠。
例如,在PUCCH映射的时频资源中,预留一部分PUCCH的资源用来传输X比特,预留的资源按照X bit传输时需要的RE数量进行预留。显然,这里需要先按照X bit传输时采用调制方式,码率,层数等计算,然后按照协议TS 38.212的6.2.7节进行X bit与UCI的复用处理。注意,此时所述6.2.7节中的HARQ-ACK比特信息等价于本申请的X bit通过速率匹配后的数据,所述6.2.7节中的UL-SCH中的数据(Data)等价于本申请中承载在PUCCH中的UCI信息。
例如,对于一个跨W个时隙重复的PUCCH格式3/4,在所述W个时隙中,一个或多个时隙中分别出现了所述PUCCH格式3/4与该UE的一个或多个SR的PUCCH时域重叠(这里将W个时隙中出现时域重叠的时隙称为时域重叠的时隙,将W个时隙中未出现时域重叠的时隙称为非时域重叠的时隙),每个时域重叠的时隙中可能重叠的SR的个数不同。但是每个时域重叠的时隙中,如果存在有SR请求时,UE只能选择一个有SR请求的SR传输,使用X个比特的 比特取值表示,X的定义和取值见前文;
X个比特进行编码调制后,得到X比特对应的待传输信息Y1,例如按照相关PUCCH中的UCI编码的规则进行调制编码。
PUCCH格式3/4中的UCI进行编码调制后,得到对应的待传输信息Y2。
将Y1和Y2进行速率匹配,最终得到传输信息Y。
这里为了保证W个时隙中传输的PUCCH格式3/4进行合并译码(合并译码需要满足多个条件,例如编码时母码使用的母码编码矩阵要相同,这个和期望传输的比特数有关,为了保证母码编码矩阵相同,本文使得W个时隙中,每个时隙中最终传输的信息相等),在所述W个时隙中,不管该时隙中是否发生上述的时域重叠,每个时隙中均传输信息Y。即,每个时隙中都使用X个比特对PUCCH格式3/4进行速率匹配了。这样,每个时隙中,PUCCH格式3/4期望传输的信息数都是相等的,所以使用的编码母码矩阵相同,所以可以保证所述W个时隙中PUCCH格式3/4可以合并。也有一个的例子,当上述的时域重叠在所述W个时隙中第一个时隙中有时域重叠时,那么UE启动上述方式传输。
也有一个特殊的例子,当上述的时域重叠发生时,且在所述W个时隙中,第一个时隙中有时域重叠,那么UE就所有时隙中按照第一个时隙中的确定的X(比特数和比特取值)速率匹配PUCCH格式3/4,然后在每个时隙中都传输,除了第一个时隙外,其余W-1个时隙都丢弃SR。这种方式也能保证W个时隙中PUCCH格式3/4的合并译码,且X比特也能被保证合并译码。
也有一个特殊的例子,当上述的时域重叠发生时,且在所述W个时隙中,第一个时隙中有时域重叠,那么UE就所有时隙中按照第一个时隙中的确定的X(比特数和比特取值)比特串接在PUCCH格式3/4的UCI末尾,然后联合编码,在每个时隙中都传输,除了第一个时隙外,其余W-1个时隙都丢弃SR。这种方式也能保证W个时隙中PUCCH格式3/4的合并译码,且X比特也能被保证合并译码。
应用实施例3
解决问题:对于一个UE,一个PUCCH和PUSCH时域重叠时,UE该怎么传输PUCCH信道中的信息,尤其是PUCCH中承载的是对于时延敏感业务的信息时。
在相关技术中,如果PUCCH和PUSCH完全重叠,或PUCCH和PUSCH的起始符号相同,UE将承载在PUCCH的UCI信息(包括HARQ-ACK、SR、 CSI的一个或多个)通过PUSCH信道进行传输,丢弃PUCCH信道。但是这种做法被使用为增强移动宽带(Enhance Mobile Broadband,eMBB),即时延要求不苛刻的业务。此时,UCI通过PUSCH传输,UCI在PUSCH中的映射位置被进行了严格的定义(可以查阅3GPP TS 38.212),在这个定义中,HARQ-ACK被映射从PUSCH的DMRS符号之后开始映射,DMRS符号位于PUSCH的可能非第一个OFDM。也就是说承载HARQ-ACK的PUCCH信道的符号位置在UCI映射到PUSCH时会发生变化。
例子1,DMRS在PUSCH的第3个符号中,PUCCH有2个符号,和PUSCH的前2个符号时域重叠,此时按照相关技术,该PUCCH承载的HARQ-ACK将被映射到第4个及其之后符号中,这样PUCCH的时域位置被改变了,如果PUCCH承载的是低时延高可靠通信(Ultra Reliability and Low Latency Communication,URLLC)业务信息,那么这个时域位置改动将可能导致业务传输失败。
还有例子2,实际中也存在:UE的PUSCH占用的符号是:符号2~符号13(编号从0开始),假设符号3为DMRS符号;PUCCH占用的符号是:符号11~符号13。显然,时域重叠符号11~符号13。这里假设PUCCH承载的是URLLC业务信息,例如HARQ-ACK。URLLC是对于时延要求非常苛刻的业务,意味着发送的时域位置不能被轻易修改。那么这种情况下怎么处理PUCCH传输呢?
下面的PUCCH和PUSCH时域重叠中,PUCCH可以是跨时隙重复的PUCCH,PUSCH也可以是跨时隙重复的PUSCH。下面处理的方式都是通用的。处理方法包括以下三种:
方法1
对于一个UE,PUCCH和PUSCH时域重叠时,UE将PUCCH承载的UCI通过PUSCH信道进行传输,且在PUSCH中仅使用PUCCH和PUSCH时域重叠的符号来进行UCI的映射和发送。PUCCH被丢弃。
例如,在上述的例子1中,UCI就映射在PUSCH的前2个符号中,而不是从PUSCH的第4个符号开始映射。在例子2中,UCI被映射都符号11~符号13中,而不是从符号4开始映射。这样以保证PUCCH的时域位置不变。
这种方式尤其适用于PUCCH和PUSCH起始符号相同的情况,因为在进行PUSCH和PUCCH能被同时获知待传输的信息。
方法2
在方法1中,UCI在PUSCH中映射符号可能距离DMRS很远,此时UCI的解码性能会下降(例如在例子2中)。为了克服这个缺点,采用下面的方式。
对于一个UE,PUCCH和PUSCH时域重叠时,UE将PUCCH承载的UCI通过PUSCH信道进行传输,且在PUSCH中仅使用PUCCH和PUSCH时域重叠的符号来进行UCI的映射和发送。PUCCH被丢弃。在UCI信息中穿插用于UCI解码RS信息,然后将穿插了解码RS的UCI信息作为新的UCI信息映射到PUCCH与PUSCH时域重叠的符号中。这样,UCI能够使用穿插的解码RS进行解码,从而克服上述问题。
其本质就是,在UCI信息比特或UCI信息调制符号的约定位置处***解码RS比特或解码RS调制符号,形成新的一系列UCI信息或一系列UCI信息调制符号,然后再映射到PUCCH和PUSCH重叠符号上发送。
方法3
对于一个UE,PUCCH和PUSCH时域重叠时,UE将PUCCH和PUSCH重叠的符号中的PUSCH打孔,即重叠符号中不传输PUSCH,在重叠的符号中传输所述PUCCH。此时,PUCCH可以使用重叠符号中PUSCH的频域资源,也可以使用PUCCH自身的频域资源。此时PUCCH信道被传输了。
例如,在上述的例子1中,PUSCH的前2个符号会被打掉,PUCCH会在前2个符号中传输。在例子2中,PUSCH的符号11~符号13被打孔,PUCCH会在符号11~符号13中传输。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例二
在本实施例中还提供了一种物理上行信道的时隙确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可 能并被构想的。
图2是根据本公开优选实施例的一种物理上行信道的时隙确定装置结构图,包括:第一接收模块22和第一确定模块24。
第一接收模块22,设置为接收第一通信节点的配置信息,其中,该配置信息用于指示该第二通信节点跨m个时隙重复传输物理上行信道。
第一确定模块24,连接至第一接收模块22,设置为通过以下方式之一确定该m个时隙:依据该配置信息,和时隙中是否发生物理上行信道时域重叠进行确定;依据该配置信息进行确定。
需要补充的是,上述物理上行信道可以包括物理上行控制信道,物理上行共享信道。物理上行控制信道可以依据配置信息,和时隙中是否发生物理上行信道时域重叠进行确定。物理上行共享信道可以依据配置信息进行确定。
通过上述步骤,第二通信节点接收第一通信节点的配置信息,其中,该配置信息用于指示该第二通信节点跨m个时隙重复传输物理上行信道;该第二通信节点依据该配置信息,和时隙中是否发生物理上行信道时域重叠进行确定该m个时隙;或者,依据该配置信息进行确定。采用上述方案,克服了相关技术中缺乏确定传输物理上行信道的时隙的方案的缺陷,实现了依据预设规则在多个时隙中进行选择,使用选择出的时隙传输物理上行信道。
在一实施例中,在该物理上行信道为物理上行控制信道PUCCH时,该配置信息中包括以下至少之一:PUCCH的起始时隙;起始时隙中该PUCCH的起始正交频分复用OFDM符号位置;起始时隙中该PUCCH持续OFDM符号数量;该PUCCH的m的取值;在该物理上行信道为物理上行共享信道PUSCH时,该配置信息中包括以下至少之一:PUSCH的起始时隙;起始时隙中该PUSCH的起始正交频分复用OFDM符号位置;起始时隙中该PUSCH持续OFDM符号数量;该PUSCH的m的取值。
在一实施例中,在该配置信息中未包括以下信息至少之一时,未被包括的信息采用通信***中约定的值:物理上行信道的起始时隙;起始时隙中该物理上行信道的起始正交频分复用OFDM符号位置;起始时隙中该物理上行信道持续OFDM符号数量;该物理上行信道的m的取值。
在一实施例中,当该物理上行信道为PUCCH时,该第二通信节点确定该m个时隙的方式,包括:该PUCCH的起始时隙通过该配置信息确定;后续m-1个时隙需要满足下述条件:时隙中有与该PUCCH在起始时隙中相同的起始 OFDM符号位置能被使用;时隙中有允许该PUCCH使用的持续的OFDM符号数大于等于该起始时隙中该PUCCH使用的持续的OFDM符号数;时隙中传输该PUCCH时,该时隙中传输的全部或部分物理上行信道之间不存在时域重叠。需要补充的是,第二通信节点选择出的后续m-1个时隙一般情况下不是连续的m-1个时隙。
在一实施例中,当该物理上行信道为PUSCH时,确定该m个时隙,包括:该PUSCH的起始时隙通过该配置信息确定;后续m-1个时隙需要满足下述条件至少之一:时隙中有与该PUSCH在起始时隙中相同的起始OFDM符号位置能被使用;时隙中允许该PUSCH使用的持续的OFDM符号数大于等于,该起始时隙中该PUSCH使用的持续的OFDM符号数;时隙中传输该PUSCH时,该时隙中传输的全部或部分物理上行信道之间不存在时域重叠;时隙中有与该PUSCH在起始时隙中相同的物理资源块PRB能被使用。
在一实施例中,在该第二通信节点未被提供时隙类型指示信息时,确定该m个时隙中,包括:
依据该配置信息确定该物理上行信道的起始时隙;
确定该起始时隙之后连续m-1个时隙,和该起始时隙共为该m个时隙。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的装置,包括:第二接收模块和第一传输模块。
第二接收模块,设置为接收第一通信节点的第二配置信息,其中,该第二配置信息用于指示该第二通信节点跨W个时隙重复传输物理上行控制信道,其中,在该W个时隙中的一个或多个时隙中,该重复传输的物理上行信道,分别与Q个调度请求SR的物理上行信道出现时域重叠;
第一传输模块,设置为在有时域重叠的该一个或多个时隙中,依据以下方式之一传输X比特,其中,该X比特用于向该第一通信节点指示该Q个SR中哪个SR有SR请求:
将该X比特在该物理上行控制信道中传输,且将该物理上行控制信道中的信息进行打孔,在打孔位置中传输该X比特;
将该X比特在该物理上行控制信道中传输,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输;
将该X比特在该物理上行控制信道中传输,且在该物理上行控制信道的预留资源中传输该X比特;
其中,该W,Q为大于等于1的整数,Q在不同的发生时域重叠的时隙中取值允许不同。
需要补充的是,Q个SR可以理解为Q个通道,或Q个PUCCH。本申请文件中的,将X比特在物理上行控制信道中传输,可以是,将X比特的编码后的信息在物理上行控制信道中传输。本申请文件中的,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输,可以是,将X比特的编码后的信息速率匹配到该物理上行控制信道中的UCI比特的编码后的信息中进行传输。
通过上述技术方案,解决了相关技术中第一通信节点无法知晓第二通信节点反馈了哪个SR请求的问题,实现了向第一通信节点指示多个SR请求的情况。
在一实施例中,该装置还包括以下至少之一:
该X比特的比特数为
Figure PCTCN2019082161-appb-000010
Figure PCTCN2019082161-appb-000011
其中,该Qmax为通信***中该第二通信节点能被同时配置的最大SR数量,该Q为该通信***给第二通信节点配置的SR数量;或该Q为该W个时隙中有时域重叠的时隙中,具有最多时域重叠的SR数量;或该Q为该W个时隙中有时域重叠的时隙中,时域重叠的SR数量(需要补充的是,此处可以对应后续装置B中的Q1,Q2,和Q3理解);
该X比特的比特取值为第二通信节点要传输的有SR请求的SR编号,或者该Q个SR均为无SR请求时,该X比特的比特取值均为0,其中,SR编号为该Q个SR的SR索引按照升序或降序排列后的编号;
该预留资源是按照Q max或Q值对应的该X比特数确定的。
在一实施例中,该X比特仅在发生时域重叠的OFDM符号中,或者在紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中发送;或者,仅在时域重叠的OFDM符号中,或仅在紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中执行该打孔、速率匹配或预留资源。需要补充的是,上述时域重叠的OFDM符号是发生时域重叠的时隙中的符号。紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中发送,可以描述为,离该物理上行控制信道的DMRS符合最近的符号中发送。以及,仅在紧邻该物理上行控制信道的解码参考信号DMRS符号的符号中执行该打孔、速率匹配或预留资源,可以描述为,仅在距离物理上行控制信道的DMRS符号最近的符号中执行打孔、速率匹配或预留资源。上述实施例中的符号,均可以是OFDM符号。
在一实施例中,该装置还包括:在离发生时域重叠的OFDM符号最近的两 侧或单侧的OFDM符号中,发送该物理上行控制信道的DMRS。
在一实施例中,该装置还包括:在该W个时隙中不发生时域重叠的时隙中,将该X比特在该物理上行控制信道中传输,且将该X比特速率匹配在该物理上行控制信道中的信息中进行传输;其中,在不发生时域重叠的时隙中,该X比特的比特取值不代表有SR请求的SR编号,约定X比特每个比特取值均为1或0,X比特的比特数为
Figure PCTCN2019082161-appb-000012
Figure PCTCN2019082161-appb-000013
在一实施例中,该装置还包括:在该W个时隙中,从第一个出现该时域重叠的时隙开始,以及后续的时隙中,将该X比特在该物理上行控制信道中传输。需要补充的是,此处的后续的时隙可以是,后续的所有W个时隙中的时隙。
根据本公开的另一个实施例,还提供了一种传输物理上行信道的装置,包括:第二确定模块和第二传输模块。
第二确定模块,设置为确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠。
第二传输模块,设置为将该PUCCH或该PUCCH中承载的上行控制信息UCI,在该PUSCH中发生时域重叠的符号上传输;
或者,该第二通信节点将该PUCCH或该PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
需要补充的是,上述UCI可以包括HARQ-ACK,SR,信道状态信息CSI的一者或多者。发生时域重叠位置可以不传输PUSCH。
采用上述技术方案,克服了相关技术中缺乏在PUCCH和PUSCH存在时域重叠时,如何传输物理上行信道方案的缺陷。实现了UCI信息在二者时域重叠位置上传输。
在一实施例中,该第二通信节点将该PUCCH承载的上行控制信息UCI,在该PUSCH中发生时域重叠的符号上传输,包括:该第二通信节点确定用于解码该UCI信息的参考信号RS;将该参考信号RS和该UCI,均在该PUSCH中发生时域重叠的符号上传输。
在一实施例中,在离该时域重叠的OFDM符号最近的两侧或单侧的OFDM符号中,发送PUSCH的DMRS或PUCCH的DMRS。
在一实施例中,该第二通信节点在发生时域重叠的一个或多个时隙中,依据以下方式之一传输该PUCCH或该UCI:
将该UCI或该PUCCH在该物理上行共享信道中传输,且将该物理上行共享信道中的信息进行打孔,在打孔位置中传输该UCI的编码后信息;
将该UCI或该PUCCH在该物理上行共享信道中传输,且将该UCI的编码后信息速率匹配在该物理上行共享信道中的信息中进行传输;
将该UCI或该PUCCH在该物理上行共享信道中传输,且在该物理上行共享信道中预留资源,在预留资源中传输该UCI的编码后信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例三
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
实施例四
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。

Claims (21)

  1. 一种物理上行信道的时隙确定方法,包括:
    第二通信节点接收第一通信节点的配置信息,其中,所述配置信息用于指示所述第二通信节点跨m个时隙重复传输物理上行信道;
    所述第二通信节点通过以下方式之一确定所述m个时隙t:
    依据所述配置信息,和时隙中是否发生物理上行信道时域重叠进行确定;
    依据所述配置信息进行确定。
  2. 根据权利要求1所述的方法,其中,
    在所述物理上行信道为物理上行控制信道PUCCH的情况下,所述配置信息中包括以下至少之一:PUCCH的起始时隙;起始时隙中所述PUCCH的起始正交频分复用OFDM符号位置;起始时隙中所述PUCCH持续OFDM符号数量;所述PUCCH的m的取值;
    在所述物理上行信道为物理上行共享信道PUSCH时,所述配置信息中包括以下至少之一:PUSCH的起始时隙;起始时隙中所述PUSCH的起始正交频分复用OFDM符号位置;起始时隙中所述PUSCH持续OFDM符号数量;所述PUSCH的m的取值。
  3. 根据权利要求1所述的方法,其中,
    在所述配置信息中未包括以下信息至少之一的情况下,未被包括的信息采用通信***中约定的值:物理上行信道的起始时隙;起始时隙中所述物理上行信道的起始正交频分复用OFDM符号位置;起始时隙中所述物理上行信道持续OFDM符号数量;所述物理上行信道的m的取值。
  4. 根据权利要求1所述的方法,其中,在所述物理上行信道为PUCCH的情况下,所述第二通信节点确定所述m个时隙的方式,包括:
    所述PUCCH的起始时隙通过所述配置信息确定;
    后续m-1个时隙需要满足下述条件:
    时隙中有与所述PUCCH在起始时隙中相同的起始OFDM符号位置能被使用;
    时隙中有允许所述PUCCH使用的持续的OFDM符号数大于等于所述起始时隙中所述PUCCH使用的持续的OFDM符号数;
    在时隙中传输所述PUCCH的情况下,所述时隙中传输的全部或部分物理上行信道之间不存在时域重叠。
  5. 根据权利要求1所述的方法,其中,在所述物理上行信道为PUSCH的 情况下,确定所述m个时隙,包括:
    所述PUSCH的起始时隙通过所述配置信息确定;
    后续m-1个时隙需要满足下述条件至少之一:
    时隙中有与所述PUSCH在起始时隙中相同的起始OFDM符号位置能被使用;
    时隙中允许所述PUSCH使用的持续的OFDM符号数大于等于,所述起始时隙中所述PUSCH使用的持续的OFDM符号数;
    在时隙中传输所述PUSCH的情况下,所述时隙中传输的全部或部分物理上行信道之间不存在时域重叠;
    时隙中有与所述PUSCH在起始时隙中相同的物理资源块PRB能被使用。
  6. 根据权利要求1所述的方法,其中,在所述第二通信节点未被提供时隙类型指示信息的情况下,确定所述m个时隙中,包括:
    依据所述配置信息确定所述物理上行信道的起始时隙;
    确定所述起始时隙之后连续m-1个时隙,和所述起始时隙共为所述m个时隙。
  7. 一种传输物理上行信道的方法,包括:
    第二通信节点接收第一通信节点的配置信息,其中,所述配置信息用于指示所述第二通信节点跨W个时隙重复传输物理上行控制信道,其中,在所述W个时隙中的至少一个时隙中,所述重复传输的物理上行信道,分别与Q个调度请求SR的物理上行信道出现时域重叠;
    所述第二通信节点在有时域重叠的所述至少一个时隙中,依据以下方式之一传输X比特,其中,所述X比特用于向所述第一通信节点指示所述Q个SR中哪个SR有SR请求:
    将所述X比特在所述物理上行控制信道中传输,且将所述物理上行控制信道中的信息进行打孔,在打孔位置中传输所述X比特;
    将所述X比特在所述物理上行控制信道中传输,且将所述X比特速率匹配在所述物理上行控制信道中的信息中进行传输;
    将所述X比特在所述物理上行控制信道中传输,且在所述物理上行控制信道的预留资源中传输所述X比特;
    其中,所述W,Q为大于等于1的整数,所述Q在不同的发生时域重叠的时隙中取值允许不同。
  8. 根据权利要求7所述的方法,还包括以下至少之一:
    所述X比特的比特数为
    Figure PCTCN2019082161-appb-100001
    Figure PCTCN2019082161-appb-100002
    其中,所述Q max为通信***中所述第二通信节点能被同时配置的最大SR数量;所述Q为所述通信***给第二通信节点配置的SR数量;或所述Q为所述W个时隙中有时域重叠的时隙中,具有最多时域重叠的SR数量;或所述Q为所述W个时隙中有时域重叠的时隙中,时域重叠的SR数量;
    所述X比特的比特取值为第二通信节点要传输的有SR请求的SR编号,或者所述Q个SR均为无SR请求时,所述X比特的比特取值均为0,其中,SR编号为所述Q个SR的SR索引按照升序或降序排列后的编号;
    所述预留资源是按照Q max或Q值对应的所述X比特数确定的。
  9. 根据权利要求7所述的方法,其中,
    所述X比特仅在发生时域重叠的OFDM符号中,或者在紧邻所述物理上行控制信道的解码参考信号DMRS符号的符号中发送;
    或者,仅在时域重叠的OFDM符号中,或仅在紧邻所述物理上行控制信道的解码参考信号DMRS符号的符号中执行所述打孔、速率匹配或预留资源。
  10. 根据权利要求7所述的方法,还包括:
    在离发生时域重叠的OFDM符号最近的两侧或单侧的OFDM符号中,发送所述物理上行控制信道的DMRS。
  11. 根据权利要求7所述的方法,还包括:
    在所述W个时隙中不发生时域重叠的时隙中,将所述X比特在所述物理上行控制信道中传输,且将所述X比特速率匹配在所述物理上行控制信道中的信息中进行传输;
    其中,在不发生时域重叠的时隙中,所述X比特的比特取值不代表有SR请求的SR编号,约定X比特每个比特取值均为1或0,X比特的比特数为
    Figure PCTCN2019082161-appb-100003
    Figure PCTCN2019082161-appb-100004
  12. 根据权利要求7所述的方法,还包括:
    在所述W个时隙中,从第一个出现所述时域重叠的时隙开始,以及后续的时隙中,将所述X比特在所述物理上行控制信道中传输。
  13. 一种传输物理上行信道的方法,包括:
    第二通信节点确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠;
    所述第二通信节点将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在所述PUSCH中发生时域重叠的符号上传输;
    或者,所述第二通信节点将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
  14. 根据权利要求13所述的方法,其中,所述第二通信节点将所述PUCCH承载的上行控制信息UCI,在所述PUSCH中发生时域重叠的符号上传输,包括:
    所述第二通信节点确定用于解码所述UCI信息的参考信号RS;
    将所述参考信号RS和所述UCI,均在所述PUSCH中发生时域重叠的符号上传输。
  15. 根据权利要求13所述的方法,其中,
    在离所述时域重叠的OFDM符号最近的两侧或单侧的OFDM符号中,发送PUSCH的解码参考信号DMRS或PUCCH的DMRS。
  16. 根据权利要求13所述的方法,其中,所述第二通信节点在发生时域重叠的至少一个时隙中,依据以下方式之一传输所述PUCCH或所述UCI:
    将所述UCI或所述PUCCH在所述物理上行共享信道中传输,且将所述物理上行共享信道中的信息进行打孔,在打孔位置中传输所述UCI的编码后信息;
    将所述UCI或所述PUCCH在所述物理上行共享信道中传输,且将所述UCI的编码后信息速率匹配在所述物理上行共享信道中的信息中进行传输;
    将所述UCI或所述PUCCH在所述物理上行共享信道中传输,且在所述物理上行共享信道中预留资源,在预留资源中传输所述UCI的编码后信息。
  17. 一种物理上行信道的时隙确定装置,包括:
    第一接收模块,设置为接收第一通信节点的配置信息,其中,所述配置信息用于指示第二通信节点跨m个时隙时隙重复传输物理上行信道;
    第一确定模块,设置为通过以下方式之一确定所述m个时隙:
    依据所述配置信息,和时隙中是否发生物理上行信道时域重叠进行确定;
    依据所述配置信息进行确定。
  18. 一种传输物理上行信道的装置,包括:
    第二接收模块,设置为接收第一通信节点的配置信息,其中,所述配置信息用于指示第二通信节点跨W个时隙重复传输物理上行控制信道,其中,在所述W个时隙中的至少一个时隙中,所述重复传输的物理上行信道,分别与Q个 调度请求SR的物理上行信道出现时域重叠;
    第一传输模块,设置为在有时域重叠的所述至少一个时隙中,依据以下方式之一传输X比特,其中,所述X比特用于向所述第一通信节点指示所述Q个SR中哪个SR有SR请求:
    将所述X比特在所述物理上行控制信道中传输,且将所述物理上行控制信道中的信息进行打孔,在打孔位置中传输所述X比特;
    将所述X比特在所述物理上行控制信道中传输,且将所述X比特速率匹配在所述物理上行控制信道中的信息中进行传输;
    将所述X比特在所述物理上行控制信道中传输,且在所述物理上行控制信道的预留资源中传输所述X比特;
    其中,所述W,Q为大于等于1的整数,所述Q在不同的发生时域重叠的时隙中取值允许不同。
  19. 一种传输物理上行信道的装置,包括:
    第二确定模块,设置为确定待传输的物理上行控制信道PUCCH和物理上行共享信道PUSCH发生时域重叠;
    第二传输模块,设置为将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在所述PUSCH中发生时域重叠的符号上传输;
    或者,设置为将所述PUCCH或所述PUCCH中承载的上行控制信息UCI,在发生时域重叠的符号上传输,且发生时域重叠的符号中的PUSCH被打孔。
  20. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至16任一项中所述的方法。
  21. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至16任一项中所述的方法。
PCT/CN2019/082161 2018-04-11 2019-04-11 物理上行信道的时隙确定方法及装置 WO2019196888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810321437.3A CN110365456B (zh) 2018-04-11 2018-04-11 物理上行信道的时隙确定方法及装置
CN201810321437.3 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196888A1 true WO2019196888A1 (zh) 2019-10-17

Family

ID=68163036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082161 WO2019196888A1 (zh) 2018-04-11 2019-04-11 物理上行信道的时隙确定方法及装置

Country Status (2)

Country Link
CN (1) CN110365456B (zh)
WO (1) WO2019196888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163502A (zh) * 2020-01-22 2021-07-23 维沃移动通信有限公司 一种通信处理方法及相关设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518458A (zh) * 2020-04-09 2021-10-19 北京三星通信技术研究有限公司 上行数据和控制信息的传输方法及其设备
CN113541895B (zh) * 2020-04-16 2022-11-29 北京紫光展锐通信技术有限公司 一种数据传输方法及相关装置
CN116097603A (zh) * 2020-09-30 2023-05-09 Oppo广东移动通信有限公司 频域位置确定方法、装置、设备及存储介质
EP4226537A1 (en) * 2020-10-09 2023-08-16 Qualcomm Incorporated Starting bit determination for pusch repetition with transport block size scaling
CN115189850A (zh) * 2021-04-06 2022-10-14 北京紫光展锐通信技术有限公司 上行控制信息复用方法及相关装置
CN116941275A (zh) * 2021-12-29 2023-10-24 中兴通讯股份有限公司 用于覆盖增强的复用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160270110A1 (en) * 2015-03-09 2016-09-15 Ofinno Technologies, Llc Scheduling Request in a Wireless Device and Wireless Network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480189B1 (ko) * 2007-03-29 2015-01-13 엘지전자 주식회사 무선통신 시스템에서 사운딩 기준신호 전송 방법
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
US9820273B2 (en) * 2010-03-02 2017-11-14 Xiaoxia Zhang Uplink coordinated multipoint communications in a wireless network
US9112662B2 (en) * 2013-01-17 2015-08-18 Samsung Electronics Co., Ltd. Overhead reduction for transmission of acknowledgment signals
US9980257B2 (en) * 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
CN107295651B (zh) * 2016-03-31 2023-05-23 中兴通讯股份有限公司 物理上行共享信道的发送方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160270110A1 (en) * 2015-03-09 2016-09-15 Ofinno Technologies, Llc Scheduling Request in a Wireless Device and Wireless Network

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Handling of PUCCH transmission with partial overlap", 3GPP TSG RAN WG1 MEETING #92 R1-1802690, 17 February 2018 (2018-02-17), XP051398123 *
HUAWEI: "Summary for A1 7.1.3.2.2. PUCCH structure in long-duration", 3GPP TSG RAN WG1 MEETING #92 R1-1803527, 5 March 2018 (2018-03-05), XP051398825 *
INTEL CORPORATION: "PUSCH-PUCCH and PUCCH-PUCCH collision handling", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804729, 7 April 2018 (2018-04-07), XP051414093 *
OPPO: "Remaining details on UCI multiplexing", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804007, 6 April 2018 (2018-04-06), XP051413096 *
ZTE: "Issues related to Long PUCCH", 3GPP TSG RAN WG1 MEETING #92B R1-1805262, 15 April 2018 (2018-04-15), XP051427504 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163502A (zh) * 2020-01-22 2021-07-23 维沃移动通信有限公司 一种通信处理方法及相关设备
CN113163502B (zh) * 2020-01-22 2023-04-25 维沃移动通信有限公司 一种通信处理方法及相关设备

Also Published As

Publication number Publication date
CN110365456A (zh) 2019-10-22
CN110365456B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2019196888A1 (zh) 物理上行信道的时隙确定方法及装置
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
US10057889B2 (en) Resource assignment method and device
JP5666704B2 (ja) 複数のコンポーネントキャリアのための物理アップリンク制御チャネルリソース割り振り
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
RU2734860C1 (ru) Индикация сигналов в сетях беспроводной связи
US10038526B2 (en) Wireless device, a network node and methods therein for transmitting control information in a D2D communication
CN117914457A (zh) 用于多发送和接收点传输的下行链路资源分配的方法和装置
US20240032037A1 (en) Information transmission method, terminal device, and network device
JP6501903B2 (ja) ネットワークノードユーザデバイス及びその方法
WO2017118229A1 (zh) 一种资源调度方法、装置及***
WO2017050078A1 (zh) 上行控制信息的发送、获取方法及装置
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
WO2011096720A9 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2010133043A1 (zh) 多子帧调度方法、***及终端、基站
US11665704B2 (en) Method and apparatus for control and data channel transmission and reception in wireless communication system
TWI607636B (zh) 用於通訊之方法及設備、相關電腦程式、以及基地台或使用者設備
CN104303446A (zh) 用于载波聚合(ca)的混合自动重传请求(harq)映射
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2017024554A1 (zh) 上行控制信息发送接收方法、装置及***
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
CN110073690A (zh) 传输方法和装置
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
US20230057836A1 (en) Apparatus and method for transmitting or receiving signal in wireless communication system
EP3499773A1 (en) Method and apparatus for transmitting uplink channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19786226

Country of ref document: EP

Kind code of ref document: A1