WO2019196469A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2019196469A1
WO2019196469A1 PCT/CN2018/120690 CN2018120690W WO2019196469A1 WO 2019196469 A1 WO2019196469 A1 WO 2019196469A1 CN 2018120690 W CN2018120690 W CN 2018120690W WO 2019196469 A1 WO2019196469 A1 WO 2019196469A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
angle
side panel
air conditioner
central axis
Prior art date
Application number
PCT/CN2018/120690
Other languages
English (en)
French (fr)
Inventor
廖俊杰
陈英强
李树云
赵万东
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/047,060 priority Critical patent/US11573014B2/en
Priority to EP18913999.1A priority patent/EP3779297A4/en
Publication of WO2019196469A1 publication Critical patent/WO2019196469A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • the present disclosure belongs to the technical field of air conditioners, and in particular, to an air conditioner.
  • the existing U-shaped heat exchanger has a symmetrical structure in order to facilitate installation and installation.
  • the air inlets on both sides are no longer symmetrical, so that the heat exchanger inlet pattern of the original unsymmetrical inlet design is adopted.
  • the degree of matching with the actual air inlet speed (the inlet air speed is larger than the angle of the air inlet pattern of the heat exchanger) is poor, causing a large air inlet resistance, which affects the air volume and the fan energy consumption.
  • the U-shaped heat exchanger Due to the influence of the partition plate in the prior art, the U-shaped heat exchanger has a poor matching degree between the inlet air surface and the actual air inlet speed, causing a large air inlet resistance, affecting the air volume and the energy consumption of the fan. Problem, the present study therefore designs an asymmetric heat exchanger and air conditioner.
  • the present disclosure provides an air conditioner including:
  • an air outlet plane of the fan is an air outlet surface, and the fan has a central axis, and the central axis is perpendicular to the air outlet surface;
  • An asymmetric heat exchanger comprising a first side panel disposed relatively far from the partition and a second side panel disposed relatively adjacent to the partition;
  • An angle ⁇ between the partition and the air outlet surface is formed in a cross section of the heat exchanger, and an angle ⁇ is formed between the second side panel and the normal of the air outlet surface.
  • the separator forms an angle ⁇ with the normal direction of the windward surface (4), and when ⁇ a predetermined angle, ⁇ , when ⁇ >the predetermined angle, ⁇ ; And forming an angle ⁇ between the first side panel and the normal of the wind surface, ⁇ ⁇ ⁇ .
  • the invention provides an asymmetric heat exchanger, comprising:
  • a first side panel disposed relatively away from the partition plate and a second side panel disposed opposite to the partition plate, and defining an air outlet plane of the fan as an air outlet surface, and the fan has a central axis, the central axis and the outlet Vertical wind surface;
  • an angle ⁇ exists between the second side plate and the normal direction of the air outlet surface.
  • An angle ⁇ exists between the partition and the normal of the wind surface, and when ⁇ preset angle, ⁇ , when ⁇ >preset angle, ⁇ ; and the first side There is an angle ⁇ between the plate and the normal of the wind surface, and ⁇ ⁇ ⁇ .
  • the preset angle ranges from 55° to 80°.
  • the second side panel within the cross section of the heat exchanger, and the distance between the free end of the first side panel and the central axis is a first center-axis spacing Lb, the second side panel The distance between the free end and the central axis is the second central axis spacing Rb and has Rb ⁇ Lb.
  • C is the first constant term associated with the heat exchanger model.
  • the value of C ranges from 2% D to 50% D, where D is the diameter of the fan.
  • the heat exchanger further includes a central straight section connected between the first side panel and the second side panel, wherein an intermediate position of the middle straight section is at the center An intermediate position on the axis or the central straight section is between the central axis and the first side panel.
  • the middle straight section is in contact with the first side panel as a first arc segment, and the rounded corner of the first arc segment is a first rounded corner R1.
  • the straight section is in contact with the second side panel as a second arc segment, and the rounded corner of the second arc segment is a first rounded corner R2 and has R1>R2.
  • R 2 - R 1 k(1-cos ⁇ ), where k is the second constant term associated with the heat exchanger model.
  • the value of k ranges from 5% C to 70% C.
  • the middle straight section is in contact with the first side panel as a first arc segment, and the rounded corner of the first arc segment is a first rounded corner R1.
  • the intermediate position of the central straight section is between the central axis and the first side panel, and the spacing between the intermediate position and the central axis is
  • the Lb is a first central axis spacing, that is, a distance between a free end of the first side panel and the central axis
  • the Rb is a second central axis spacing, ie, a free end of the second side panel and The spacing between the central axes.
  • the angle between the straight section structure and the position where the windward surface meets is the angle ⁇ in the cross section of the heat exchanger
  • a tangent is made at a midpoint of the length of the curved section, and an angle between the tangent and the windward surface is the ⁇ angle;
  • each of the fold line edges can form an angle with the wind exit surface, and all the fold line sides and the wind exit surface are formed.
  • the angle is averaged and is the angle ⁇ .
  • the heat exchanger has a U-shaped cross section, and the fan is disposed on a concave side of the U-shaped structure.
  • the present disclosure also provides an air conditioner comprising the asymmetric heat exchanger of any of the preceding claims, further comprising a partition and a fan, the first side panel being disposed away from the partition, the second side The side panels are placed away from the partition.
  • the asymmetric heat exchanger and the air conditioner of the present disclosure when the angle ⁇ between the partition plate and the air outlet surface is ⁇ a predetermined angle, between the second side plate and the normal side of the air outlet surface
  • the angle ⁇ ⁇ the angle ⁇ between the partition and the normal of the air outlet surface, and the angle ⁇ between the partition plate and the air outlet surface is a predetermined angle, the second side panel and the wind side surface
  • the angle ⁇ between the normal faces of the wind surface enables the shape of the first side panel to be better matched with the free airflow constant velocity surface on the left side, and the shape of the second side panel and the right side are affected by the spacer arrangement.
  • the constant velocity surface of the air-restricted airflow is better matched to ensure that the air inlet angle of each part is adapted to the overall flow of the structure containing the partition, the local flow loss caused by the deflection of the airflow through the heat exchanger is reduced, and the energy consumption of the fan is reduced;
  • the heat exchanger is adjacent to the separator side and the middle shaft spacing Rb ⁇ the heat exchanger free side and the middle shaft spacing Lb, because the constant velocity profile changes in a leftward and rightward manner.
  • the heat exchanger profile should be adapted to its changes, improve the uniformity of the inlet and outlet on the left and right sides, reduce the inflow resistance, and improve the heat transfer efficiency.
  • C is the first constant term related to the model, which can further make the heat exchanger profile close to the airflow constant velocity (or isobaric) profile;
  • the middle position of the straight section of the middle part of the heat exchanger should coincide with the central axis of the fan, and the rounded corners of the left and right parts can be designed according to the same size, or can be designed according to different sizes, such as
  • the scheme is to form a heat exchanger profile structure with a left rounded corner R1 and a right rounded corner R2 (R1>R2) according to the form of the above-mentioned constant velocity profile.
  • R1>R2 right rounded corner
  • the left and right rounded relationship R 1 -R 2 k(1-cos ⁇ ) (k is the second constant term related to the model), which can further make the heat exchanger profile close to the airflow constant velocity (or isobaric) profile.
  • Figure 1 is an airflow isobaric line (or constant velocity line) of an asymmetric heat exchanger of the present disclosure
  • FIG. 2 is a cross-sectional structural view of an asymmetric heat exchanger of the present disclosure
  • FIG 3 is a bar graph of air volume comparison between a conventional symmetrical heat exchanger and an asymmetric heat exchanger of the present disclosure.
  • the present disclosure provides an air conditioner, including: a fan 5, an air outlet plane of the fan 5 is an air outlet surface 4, and the fan 50 has a central axis 50, the central axis 50, and the outflow
  • the wind surface 4 is vertical;
  • the partition 1 is for separating the compressor and the heat exchanger of the air conditioner;
  • the asymmetric heat exchanger includes a first side panel 2 disposed relatively far from the partition 1 and a second side panel 3 disposed relatively close to the partition 1;
  • the separator 1 forms an angle ⁇ with the normal direction of the windward surface 4, and when ⁇ a predetermined angle, ⁇ , when ⁇ >the predetermined angle, ⁇ ⁇ ⁇ ; and the first side panel 2 forms an angle ⁇ with the normal direction of the windward surface 4, ⁇ ⁇ ⁇ .
  • the angle ⁇ between the partition plate 1 and the air outlet surface is ⁇ a predetermined angle
  • the angle ⁇ between the second side panel 3 and the normal of the air outlet surface is ⁇ the partition plate 1 and the air outlet surface.
  • the angle ⁇ between the normal directions, the angle ⁇ between the partition plate 1 and the air outlet surface is a predetermined angle
  • the angle between the second side panel 3 and the normal of the air outlet surface ⁇ ⁇ the angle ⁇ between the partition 1 and the normal of the outlet surface
  • the angle ⁇ between the two can make the shape of the first side panel 2 better match the free airflow constant velocity surface on the left side, and the shape of the second side panel 3 and the right side are restricted due to the partition 1
  • the constant velocity surfaces are better matched to ensure that the inlet air angle of each part is adapted to the overall flow of the partition 1 to reduce the local flow loss caused by the deflection of the
  • the angle ⁇ between the partition plate 1 and the air outlet surface is ⁇ a predetermined angle
  • the angle ⁇ between the second side panel 3 and the normal of the wind surface is ⁇ the partition 1 and
  • the angle ⁇ between the normal faces of the air outlet surface can make the second side panel 3 approach the side of the partition plate 1 as much as possible when the partition plate 1 is inclined downward to the right as shown in FIG. 2, without being separated from the partition plate. If the distance between the 1 is too far and the intermediate gap is too large, the airflow cannot be effectively exchanged. (At this time, the influence of the partition 1 on the airflow is relatively small, the second side panel 3 should be turned to the right according to the similar non-separator.
  • the angle ⁇ between the two side panels 3 and the normal of the wind surface is ⁇ the angle ⁇ between the partition and the normal of the wind surface, so that the partition is as close as possible to the left as shown in the figure.
  • the two side panels 3 are away from the partition side, so as not to be too close to each other, and the intermediate gap is too small to cause airflow pressing or the like, so that the surface of the second side panel 3 is made.
  • the shape is consistent with the surrounding airflow constant velocity profile; and since the plate side is restricted by the air inlet, the corresponding constant velocity air inlet profile changes, and the right limited portion is contracted toward the fan side, and the left side is free.
  • the portion of the constant velocity surface expands toward the environment side.
  • the present disclosure relates the angle ⁇ between the first side panel 2 and the normal of the air outlet surface ⁇ the angle between the second side panel 3 and the normal of the air outlet surface ⁇ .
  • the left side limited portion heat exchanger type is contracted toward the fan side, and the left free partial heat exchanger profile is expanded toward the environment side.
  • the present disclosure enables the shape of the first side panel 2 and the airflow constant velocity surface to be more Goodly matched, the shape of the second side panel 3 is better matched with the constant velocity surface of the restricted airflow at this point, so as to ensure that the air inlet angle of each part is adapted to the overall flow of the partition, and the airflow is reduced through the heat exchanger. Local flow loss caused by folding, reducing fan energy consumption.
  • the actual air intake of the external machine with the diaphragm does not conform to the symmetrical air inlet, and the original symmetrical heat exchanger has poor adaptability to the overall constant velocity air inlet profile, so that the air inlet resistance is high.
  • the present disclosure performs drag reduction optimization for this, and the baffle side is changed according to the air inlet, and the corresponding constant velocity air inlet profile changes, the right limited portion of the constant velocity faces the fan side contraction, and the left free portion constant velocity surface is The expansion to the environmental side, the central constant velocity part has no obvious change, the U-shaped heat exchanger according to this design also needs to change according to this law to form an asymmetric U-shaped heat exchanger adapted to the partition.
  • the original symmetrical heat exchanger does not match the actual inlet air, so the shape of the heat exchanger that meets the requirements for the inlet design of the asymmetric heat exchanger is as follows:
  • the asymmetric inlet air is mainly determined by the angle ⁇ between the right side partition and the outlet surface. When ⁇ 80°, the normal angle between the adjacent side of the adapted asymmetric U-shaped heat exchanger and the outgoing surface is not greater than the partition.
  • the angle ⁇ with the normal of the wind surface when the ⁇ >80° is adapted, the angle between the adjacent side of the asymmetric U-shaped heat exchanger and the normal side of the wind surface is greater than the angle ⁇ between the partition and the normal of the wind surface.
  • the angle ⁇ between the left side of the heat exchanger and the normal of the wind surface should not be less than the angle ⁇ of the right side to ensure that the air inlet angle of each part is adapted to the overall flow of the partition, and the airflow is reduced by the heat exchanger deflection. Local flow loss.
  • the second side is the second central axis spacing Rb and has Rb ⁇ Lb.
  • the heat exchanger is adjacent to the separator side and the middle shaft spacing Rb ⁇ the free side of the heat exchanger and the middle shaft spacing Lb. Since the constant velocity profile changes in the manner of expanding left and right, the heat exchanger profile should adapt to its change and improve. The air inlet uniformity on the left and right sides reduces the inflow resistance and improves the heat exchange efficiency.
  • C is the first constant term associated with the heat exchanger model, and the value of C ranges from 2% D to 50% D. In still other embodiments, it is 5% D to 15% D, where D is the diameter of the fan.
  • the influence of the partition on the intake airflow of the fan and the heat exchanger is small.
  • the difference between Rb and Lb is also reduced to accommodate the change of the airflow constant velocity profile (or isostatic profile); the spacer is tilted to the left, ⁇ is increased, 1-cos ⁇ is increased, and the spacer pair
  • the influence of the intake airflow of the fan and the heat exchanger is large.
  • the difference between Rb and Lb should also be increased to adapt to the change of the airflow constant velocity profile (or isostatic profile);
  • the asymmetric heat exchanger profile can be adjusted due to the influence of the separator to maximize the consistency with the airflow constant velocity profile, thereby reducing the resistance and improving the heat exchange efficiency.
  • the value range of C is selected to be 2% D to 50% D, and in some embodiments, 5% D to 15% D, the size of the first constant term is limited according to the diameter of the fan, and Lb, The relationship between Rb, ⁇ and the diameter of the fan makes it possible to further produce a constant velocity profile or an isobaric profile of the heat exchanger that matches the size of the fan.
  • the heat exchanger further includes a central straight section 6 connected between the first side panel 2 and the second side panel 3, the middle of the middle straight section 6
  • An intermediate position on the central axis 50 or the central straight section 6 is located between the central axis 50 and the first side panel 2.
  • the middle position of the straight section of the middle part of the heat exchanger shall coincide with the central axis of the fan or may not coincide with the central axis of the fan, but when it does not coincide with the central axis of the fan, the intermediate position of the straight section of the middle part should be set to the left, that is, at the center.
  • the heat exchanger profile can be kept as far as possible from the partition, thereby reducing the influence of the arrangement of the partition on the airflow distribution,
  • the heat exchanger profile matches the contour of the airflow to reduce windage and reduce fan energy consumption.
  • the middle straight section 6 is in contact with the first side panel 2 at a first arc segment 7, and the rounded corner of the first arc segment 7 is a first rounded corner R1.
  • the position where the middle straight section 6 and the second side panel 3 meet is a second arc segment 8, and the rounded corner of the second arc segment 8 is a first rounded corner R2, and has R1>R2 .
  • the size of the rounded corners of the left and right parts can be designed according to the same size, or can be designed according to different sizes. For example, according to the unequal size design, in some embodiments, the solution is formed according to the form of the left and right sides of the constant velocity profile.
  • R1 large, right rounded corner R2 small (R1> R2) heat exchanger profile line structure, in order to improve the heat exchanger profile line and constant velocity profile matching, improve roundness part of the air inlet uniformity, reduce inflow resistance, Improve heat transfer efficiency.
  • the left and right rounded relationship R 1 -R 2 k(1-cos ⁇ ) (k is a specific constant term associated with the model), such an arrangement can further make the heat exchanger profile close to the airflow constant velocity (or Isobaric) profile.
  • R 2 -R 1 k(1-cos ⁇ ), where k is a second constant term associated with the heat exchanger model, and when the first constant term C is further included, The value ranges from 5% C to 70% C, and in some embodiments, 8% C to 30% C.
  • the relationship between the first rounded corner R1, the second rounded corner R2 and the partition angle ⁇ can be established, that is, the difference between the second rounded corner R2 and the first rounded corner R1 is 1 -cos ⁇ is in a direct relationship, for example, the partition is inclined to the right, ⁇ is decreased, and 1-cos ⁇ is decreased.
  • the influence of the partition on the intake airflow of the fan and the heat exchanger is small, and R1 and R2 should be used at this time.
  • the difference between the two is also reduced to make the left and right side plates close to each other as symmetrical as possible to adapt to the change of the airflow constant velocity surface (or isobaric profile); the partition is inclined to the left, ⁇ increases, 1-cos ⁇ Increase, at this time, the partition has a great influence on the intake air flow of the fan and the heat exchanger.
  • the difference between R2 and R1 should also be increased to make the first side plate 2 free end as much as possible.
  • the free end of the second side panel 3 is retracted inward (to the left) to accommodate changes in the airflow constant velocity profile (or isostatic profile);
  • the effect of the asymmetric heat exchanger profile is adjusted to the maximum extent consistent with the airflow constant velocity profile to reduce drag and improve heat transfer efficiency.
  • the value range of k is selected to be 5% C to 70% C. In some embodiments, 8% C to 30% C, the size of the second constant term is limited according to the diameter of the fan, and R1 and R2 can be made. A relationship is formed between ⁇ and the diameter of the fan, and the second constant term is associated with the first constant term so that the size of the fan can be further generated simultaneously by the two rounded corners and the two intermediate shaft spacings.
  • the constant velocity profile or the isostatic profile of the heat exchanger is selected to be 5% C to 70% C. In some embodiments, 8% C to 30% C, the size of the second constant term is limited according to the diameter of the fan, and R1 and R2 can be made. A relationship is formed
  • the middle straight section 6 is in contact with the first side panel 2 at a first arc segment 7, and the rounded corner of the first arc segment 7 is a first rounded corner R1.
  • the second rounded corner R2 of the heat exchanger adjacent to the partition side the first rounded corner R1 of the heat exchanger away from the partition side, that is, the rounded corners of the two sides are formed to improve the uniformity of the air inlet on the left and right sides, reduce the inflow resistance, and improve Heat exchange efficiency.
  • the intermediate position of the central straight section 6 is between the central axis and the first side panel 2, and the spacing between the intermediate position and the central axis 50 is
  • the Lb is a first central axis spacing, that is, a distance between the free end of the first side panel 2 and the central axis 50
  • the Rb is a second central axis spacing, that is, the second side panel 3 The spacing between the free end and the central axis 50.
  • the angle ⁇ formed at the free end of the side panel 2 is also equal to the angle ⁇ formed at the free end of the second side panel 3, and the heat exchanger is shifted to the left as a whole, thereby minimizing the spacer pair heat exchanger
  • the influence of the airflow at the intake end reduces the wind resistance and improves the heat exchange efficiency.
  • the angle between the straight section structure and the position of the windward surface 4 in the cross section of the heat exchanger is the angle ⁇ ;
  • each of the fold line edges can form an angle with the wind exit surface 4, and all the fold line sides and the wind exit surface 4
  • the angle formed between the averages is the angle ⁇ .
  • the heat exchanger has a U-shaped cross section, and the fan 5 is disposed on a concave side of the U-shaped structure. In this way, by means of suction or blowing, several sections of the heat exchanger can exchange heat with the gas flow, thereby improving heat exchange efficiency.
  • the present disclosure also provides an air conditioner comprising the asymmetric heat exchanger 10 according to any of the preceding claims, further comprising a partition 1 and a fan 5, the first side panel 2 being disposed away from the partition 1, The second side panel 3 is disposed away from the partition 1 .
  • the asymmetric heat exchanger 10 is located on the windward side of the fan 5 .
  • the original symmetrical heat exchanger does not match the actual inlet air, so the shape of the heat exchanger that meets the requirements for the inlet design of the asymmetric heat exchanger is as follows:
  • the asymmetric inlet air is mainly determined by the angle ⁇ between the right side partition and the outlet surface. When ⁇ 80°, the normal angle between the adjacent side of the adapted asymmetric U-shaped heat exchanger and the outgoing surface is not greater than the partition.
  • the angle ⁇ with the normal of the wind surface when the ⁇ >80° is adapted, the angle between the adjacent side of the asymmetric U-shaped heat exchanger and the normal side of the wind surface is greater than the angle ⁇ between the partition and the normal of the wind surface.
  • the angle ⁇ between the left side of the heat exchanger and the normal of the wind surface should not be less than the angle ⁇ of the right side to ensure that the air inlet angle of each part is adapted to the overall flow of the partition, and the airflow is reduced by the heat exchanger deflection. Local flow loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种空调器,包括:风机(5),风机(5)的出风平面为出风面(4),且风机(50)具有中心轴线(50)、中心轴线(50)与出风面(4)垂直;隔板(1),用于将空调器的压缩机和换热器(10)隔开;非对称式换热器(10),包括相对远离隔板(1)设置的第一侧边板(2)和相对靠近隔板(1)设置的第二侧边板(3);以及在换热器(10)的横截面内,隔板(1)与出风面(4)之间存在夹角α,第二侧边板(3)与出风面(4)法向之间形成夹角β,隔板(1)与出风面(4)法向之间形成夹角γ,且当α≤一个预设角度时,β≤γ,当α>预设角度时,β≥γ;并且第一侧边板(2)与出风面(4)法向之间形成夹角θ,θ≥β。该空调器使得第一侧边板(2)的形状与左侧的自由气流等速面更好地匹配,第二侧边板(3)的形状与右侧由于隔板(1)设置而受限气流的等速面更好地匹配,以保证各部分进风角度适应于含隔板(1)的结构进行整体流动,减小气流经过换热器(10)偏折引起的局部流动损失、降低风机能耗。

Description

空调器
相关申请
本申请是以申请号为201810324701.9,申请日为2018年4月12日,发明名称为“一种非对称式换热器和空调器”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开属于空调技术领域,具体涉及一种空调器。
背景技术
现有U型换热器为了制作安装方便,其形状为对称式结构。但在实际外机中,由于进风壁面限制、隔板影响一侧的进风面积与方向,因而两侧进风不再相对称,使原未对称进风设计的换热器进风型面与实际进风速度匹配度(进风速度与换热器进风型面夹角大)较差,引起进风阻力大,影响出风量与风机能耗。
由于现有技术中的U型换热器由于隔板的影响而导致换热器进风型面与实际进风速度匹配度较差,引起进风阻力大,影响出风量与风机能耗等技术问题,因此本公开研究设计出一种非对称式换热器和空调器。
发明内容
为了改善现有技术中的U型换热器由于隔板的影响而导致换热器进风型面与实际进风速度匹配度较差,引起进风阻力大,影响出风量与风机能耗的缺陷。
本公开提供一种空调器,包括:
风机,所述风机的出风平面为出风面,且所述风机具有中心轴线、所述中心轴线与所述出风面垂直;
隔板,用于将所述空调器的压缩机和换热器隔开;
非对称式换热器,包括相对远离所述隔板设置的第一侧边板和相对靠近所述隔板设置的第二侧边板;以及
在所述换热器的横截面内,所述隔板与所述出风面之间存在夹角α,所述第二侧边板与所述出风面法向之间形成夹角β,所述隔板与所述出风面(4)法向之间形成夹角γ,且 当α≤一个预设角度时,β≤γ,当α>所述预设角度时,β≥γ;并且所述第一侧边板与所述出风面法向之间形成夹角θ,θ≥β。
本发明提供一种非对称式换热器,包括:
相对远离隔板设置的第一侧边板和相对靠近隔板设置的第二侧边板,且定义风机的出风平面为出风面,且风机具有中心轴线、所述中心轴线与所述出风面垂直;
在换热器的横截面内,且所述隔板与所述出风面之间存在夹角α,所述第二侧边板与所述出风面法向之间存在夹角β,所述隔板与所述出风面法向之间存在夹角γ,且当α≤预设角度时,β≤γ,当α>预设角度时,β≥γ;并且所述第一侧边板与所述出风面法向之间存在夹角θ,且有θ≥β。
一些实施例中,所述预设角度的取值范围在55°-80°之间。
一些实施例中,在换热器的横截面内,且所述第一侧边板的自由端与所述中心轴线之间的间距为第一中轴间距Lb,所述第二侧边板的自由端与所述中心轴线之间的间距为第二中轴间距Rb,且有Rb<Lb。
一些实施例中,并且有(Rb-Lb)=C(1-cosα),C为与换热器机型相关的第一常数项。
一些实施例中,所述C的取值范围为2%D~50%D,其中D为风机的直径。
一些实施例中,所述换热器还包括连接在所述第一侧边板和所述第二侧边板之间的中部平直段,所述中部平直段的中间位置位于所述中心轴线上、或者所述中部平直段的中间位置位于所述中心轴线和所述第一侧边板之间。
一些实施例中,所述中部平直段与所述第一侧边板相接位置为第一圆弧段,所述第一圆弧段的圆角为第一圆角R1,所述中部平直段与所述第二侧边板相接位置为第二圆弧段,所述第二圆弧段的圆角为第一圆角R2,且有R1>R2。
一些实施例中,并且有R 2-R 1=k(1-cosα),其中k为与换热器机型相关的第二常数项。
一些实施例中,当还包括第一常数项C时,所述k的取值范围为5%C~70%C。
一些实施例中,所述中部平直段与所述第一侧边板相接位置为第一圆弧段,所述第一圆弧段的圆角为第一圆角R1,所述中部平直段与所述第二侧边板相接位置为第二圆弧段,所述第二圆弧段的圆角为第一圆角R2,且有R1=R2。
一些实施例中,所述中部平直段的中间位置位于所述中心轴线和所述第一侧边板之间,且所述中间位置与所述中心轴线之间的间距为
Figure PCTCN2018120690-appb-000001
其中所述Lb为第一中轴间距、 即第一侧边板的自由端与所述中心轴线之间的间距,所述Rb为第二中轴间距、即第二侧边板的自由端与所述中心轴线之间的间距。
一些实施例中,所述隔板为直段结构时,在换热器的横截面内,所述直段结构与所述出风面相接位置的夹角为所述α角;
所述隔板为曲段结构时,在换热器的横截面内,在所述曲段的长度中点位置处做切线、该切线与所述出风面之间的夹角为所述α角;
所述隔板为弯折段结构时,在换热器的横截面内,每一条折线边均能与所述出风面之间形成夹角、将所有折线边与出风面之间形成的夹角取平均值,便为所述α角。
一些实施例中,所述换热器的横截面为U型结构,所述风机设置于所述U型结构的凹面一侧。
本公开还提供一种空调器,其包括前任一项所述的非对称式换热器,还包括隔板和风机,所述第一侧边板远离所述隔板设置、所述第二侧边板远离所述隔板设置。
本公开的非对称式换热器和空调器,通过将隔板与所述出风面之间存在的夹角α≤预设角度时、第二侧边板与出风面法向之间的夹角β≤隔板与出风面法向之间的夹角γ,将隔板与所述出风面之间存在的夹角α>预设角度时、第二侧边板与出风面法向之间的夹角β≥隔板与出风面法向之间的夹角γ,以及第一侧边板与出风面法向之间的夹角θ≥第二侧边板与出风面法向之间的夹角β,能够使得第一侧边板的形状与左侧的自由气流等速面更好地匹配,第二侧边板的形状与右侧由于隔板设置而受限气流的等速面更好地匹配,以保证各部分进风角度适应于含隔板的结构进行整体流动,减小气流经过换热器偏折引起的局部流动损失、降低风机能耗;
本公开的非对称式换热器和空调器,换热器邻近隔板侧与中轴间距Rb<换热器自由侧与中轴间距Lb,由于等速型面以左扩右收的方式变化,则换热器型面应适应其变化,改善左右侧进风均匀性,降低入流阻力,提高换热效率,一些实施例中,以(Rb-Lb)=C(1-cosα)为规律变化,C为与机型相关的第一常数项,能够进一步使得换热器型面贴近气流等速(或等压)型面;
本公开的非对称式换热器和空调器,换热器中部平直段的中间位置应与风机中心轴线重合,左右部圆角大小可按等大小设计,也可按不等大小设计,如按不等大小设计,一些实施例中,方案为依据上述等速型面左大右小的形式,形成左圆角R1大、右圆角R2小(R1>R2)的换热器型线结构,以此提高换热器型线与等速型面匹配度,改善圆角部分进 风均匀性,降低入流阻力,提高换热效率,一些实施例中,左右圆角关系R 1-R 2=k(1-cosα)(k为机型相关的第二常数项),能够进一步使得换热器型面贴近气流等速(或等压)型面。
附图说明
图1是本公开的非对称式换热器的气流流动等压线(或等速线);
图2是本公开的非对称式换热器的横截面结构图;
图3是现有的对称式换热器与本公开的非对称式换热器的风量对比柱状图。
图中附图标记表示为:
1、隔板;2、第一侧边板;3、第二侧边板;4、出风面;5、风机;50、中心轴线;6、中部平直段;7、第一圆弧段;8、第二圆弧段;10、换热器。
具体实施方式
如图1-3所示,本公开提供一种空调器,包括:风机5,风机5的出风平面为出风面4,且风机50具有中心轴线50、所述中心轴线50与所述出风面4垂直;隔板1,用于将所述空调器的压缩机和换热器隔开;非对称式换热器,包括相对远离所述隔板1设置的第一侧边板2和相对靠近所述隔板1设置的第二侧边板3;以及
在所述换热器的横截面内,所述隔板1与所述出风面4之间存在夹角α,所述第二侧边板3与所述出风面4法向之间形成夹角β,所述隔板1与所述出风面4法向之间形成夹角γ,且当α≤一个预设角度时,β≤γ,当α>所述预设角度时,β≥γ;并且所述第一侧边板2与所述出风面4法向之间形成夹角θ,θ≥β。
通过将隔板1与所述出风面之间存在的夹角α≤预设角度时、第二侧边板3与出风面法向之间的夹角β≤隔板1与出风面法向之间的夹角γ,将隔板1与所述出风面之间存在的夹角α>预设角度时、第二侧边板3与出风面法向之间的夹角β≥隔板1与出风面法向之间的夹角γ,以及第一侧边板2与出风面法向之间的夹角θ≥第二侧边板3与出风面法向之间的夹角β,能够使得第一侧边板2的形状与左侧的自由气流等速面更好地匹配,第二侧边板3的形状与右侧由于隔板1设置而受限气流的等速面更好地匹配,以保证各部分进风角度适应于隔板1的结构进行整体流动,减小气流经过换热器偏折引起的局部流动损失、降低风机能耗。
具体地,通过将隔板1与所述出风面之间存在的夹角α≤预设角度时、第二侧边板3与出风面法向之间的夹角β≤隔板1与出风面法向之间的夹角γ,能够使得如图2所示隔板 1朝右下倾斜时、尽可能将第二侧边板3向隔板1侧靠近,而不至于与隔板1之间相隔过远而导致中间间隙过大带来气流无法被有效换热(此时隔板1对气流影响相对较小、则应将第二侧边板3按照类似无隔板情况向右扩),这样使得第二侧边板3的表面形状与该周围的气流等速型面保持一致;通过将隔板与所述出风面之间存在的夹角α>预设角度时、第二侧边板3与出风面法向之间的夹角β≥隔板与出风面法向之间的夹角γ,能够使得如图所示隔板朝左靠近时、尽可能将第二侧边板3向隔板侧远离,而不至于与隔板之间相隔过近而导致中间间隙过小带来气流挤压等损失,这样使得第二侧边板3的表面形状与该周围的气流等速型面保持一致;并且由于板侧由于进风受限,其对应等速进风型面发生变化,右侧受限部分等速面向风机侧收缩,而左侧自由部分等速面则向环境侧扩张,本公开将第一侧边板2与出风面法向之间的夹角θ≥第二侧边板3与出风面法向之间的夹角β,使得右侧受限部分换热器型面向风机侧收缩,而左侧自由部分换热器型面则向环境侧扩张,本公开能够使得第一侧边板2的形状与气流等速面更好地匹配,第二侧边板3的形状与该处受限气流的等速面更好地匹配,以保证各部分进风角度适应于含隔板整体流动,减小气流经过换热器偏折引起的局部流动损失、降低风机能耗。
含隔板外机实际进风并不符合对称进风,原对称型换热器与整体等速进风型面适配性差,使进风阻力高。本公开针对此进行减阻优化,隔板侧由于进风受限,其对应等速进风型面发生变化,右侧受限部分等速面向风机侧收缩,而左侧自由部分等速面则向环境侧扩张,中部等速部分无明显变化,依据此设计的U形换热器也需依此规律变化,形成适应含隔板的非对称U形换热器。
一些实施例中,依据换热器机型的不同,可以选择所述预设角度的取值范围在55°-80°之间。这是本公开的预设角度的数值范围,一些实施例中,为80°,根据大量的实验研究表明,在隔板与出风面之间的夹角α=80°时,隔板与第二侧边板3相对于出风面的法向对称、此时进风气流的等速型面与第一侧边板2基本相贴合,而当α<80°的话、则等速型面向右偏移,则需要将第一侧边板2向右偏移,α>80°时、等速型面向左偏移,则需要将第一侧边板2向左偏移,以满足第一侧边板2的形状与气流等速型面相匹配,而减小风阻、降低风机能耗。
为应对实际外机中所出现的进风非对称情况,原对称型换热器与实际进风不相匹配,因而采用满足如下非对称换热器进风设计要求的换热器形状:右侧的不对称进风主要由右侧隔板与出风面夹角α决定,当α≤80°,适应的非对称U形换热器邻近边与出风面法向夹角β不大于隔板与出风面法向的夹角γ,当α>80°适应的非对称U形换热器邻近边与出 风面法向夹角β必大于隔板与出风面法向的夹角γ,换热器左侧边与出风面法向的夹角θ应不小于右侧β角,以保证各部分进风角度适应于含隔板整体流动,减小气流经过换热器偏折引起的局部流动损失。
一些实施例中,在换热器的横截面内,且所述第一侧边板2的自由端与所述中心轴线50之间的间距为第一中轴间距Lb,所述第二侧边板3的自由端与所述中心轴线50之间的间距为第二中轴间距Rb,且有Rb<Lb。换热器邻近隔板侧与中轴间距Rb<换热器自由侧与中轴间距Lb,由于等速型面以左扩右收的方式变化,则换热器型面应适应其变化,改善左右侧进风均匀性,降低入流阻力,提高换热效率。
一些实施例中,并且有(Rb-Lb)=C(1-cosα),C为与换热器机型相关的第一常数项,所述C的取值范围为2%D~50%D,进一步一些实施例中,为5%D~15%D,其中D为风机的直径。通过建立这样的公式能够使得第一中轴间距Lb、第二中轴间距Rb与隔板夹角α之间建立其相互关系,即第一中轴间距Lb和第二中轴间距Rb之间的差值与1-cosα成直接关系,例如隔板向右倾斜、α减小,1-cosα减小,此时隔板对风机和换热器的进气气流的影响较小,此时应将Rb与Lb之间的差值也减小,以适应气流等速型面(或等压型面)的变化;隔板向左倾斜、α增大,1-cosα增大,此时隔板对风机和换热器的进气气流的影响较大,此时应将Rb与Lb之间的差值也增大,以适应气流等速型面(或等压型面)的变化;通过上述关系能够使得因为隔板的影响而调整非对称换热器型面、以最大程度地与气流等速型面相一致,从而降低阻力,提高换热效率。将C的取值范围选择为2%D~50%D,进一步一些实施例中,为5%D~15%D,根据风机直径的不同而限制该第一常数项的大小,能够使得Lb、Rb、α与风机直径之间产生关系,使得能够进一步产生出与风机尺寸大小相匹配的换热器等速型面或等压型面。
一些实施例中,所述换热器还包括连接在所述第一侧边板2和所述第二侧边板3之间的中部平直段6,所述中部平直段6的中间位置位于所述中心轴线50上、或者所述中部平直段6的中间位置位于所述中心轴线50和所述第一侧边板2之间。换热器中部平直段的中间位置应与风机中心轴线重合、或者不与风机中心轴线重合,但是不与风机中心轴线重合时应尽量使得中部平直段的中间位置靠左设置、即位于中心轴线50和所述第一侧边板2之间,这是因为这样能够使得换热器型面尽可能地远离隔板,从而减小隔板的设置而带来的对气流分布的影响,使得换热器型面与气流等速型面相匹配,减小风阻、降低风机能耗。
一些实施例中,所述中部平直段6与所述第一侧边板2相接位置为第一圆弧段7,所 述第一圆弧段7的圆角为第一圆角R1,所述中部平直段6与所述第二侧边板3相接位置为第二圆弧段8,所述第二圆弧段8的圆角为第一圆角R2,且有R1>R2。左右部圆角大小可按等大小设计,也可按不等大小设计,如按不等大小设计,一些实施例中,方案为依据上述等速型面左大右小的形式,形成左圆角R1大、右圆角R2小(R1>R2)的换热器型线结构,以此提高换热器型线与等速型面匹配度,改善圆角部分进风均匀性,降低入流阻力,提高换热效率。一些实施例中,左右圆角关系R 1-R 2=k(1-cosα)(k为机型相关的特定常数项),这样的设置能够进一步使得换热器型面贴近气流等速(或等压)型面。
一些实施例中,并且有R 2-R 1=k(1-cosα),其中k为与换热器机型相关的第二常数项,当还包括第一常数项C时,所述k的取值范围为5%C~70%C,一些实施例中,8%C~30%C。通过建立这样的公式能够使得第一圆角R1、第二圆角R2与隔板夹角α之间建立其相互关系,即第二圆角R2和第一圆角R1之间的差值与1-cosα成直接关系,例如隔板向右倾斜、α减小,1-cosα减小,此时隔板对风机和换热器的进气气流的影响较小,此时应将R1与R2之间的差值也减小,以尽可能使得左右两侧边板接近对称,以适应气流等速型面(或等压型面)的变化;隔板向左倾斜、α增大,1-cosα增大,此时隔板对风机和换热器的进气气流的影响较大,此时应将R2与R1之间的差值也增大,以尽可能使得第一侧边板2自由端朝外(左)伸出、第二侧边板3自由端朝内缩回(朝左),以适应气流等速型面(或等压型面)的变化;通过上述关系能够使得因为隔板的影响而调整非对称换热器型面、以最大程度地与气流等速型面相一致,从而降低阻力,提高换热效率。将k的取值范围选择为5%C~70%C,一些实施例中,8%C~30%C,根据风机直径的不同而限制该第二常数项的大小,能够使得R1、R2、α与风机直径之间产生关系,并且使得该第二常数项与第一常数项形成相互关联,使得能够通过两个圆角和两个中轴间距同时地进一步地产生出与风机尺寸大小相匹配的换热器等速型面或等压型面。
一些实施例中,所述中部平直段6与所述第一侧边板2相接位置为第一圆弧段7,所述第一圆弧段7的圆角为第一圆角R1,所述中部平直段6与所述第二侧边板3相接位置为第二圆弧段8,所述第二圆弧段8的圆角为第一圆角R2,且有R1=R2。换热器邻近隔板侧的第二圆角R2=换热器远离隔板侧的第一圆角R1,即形成两侧等大小圆角,改善左右侧进风均匀性,降低入流阻力,提高换热效率。
一些实施例中,所述中部平直段6的中间位置位于所述中心轴线和所述第一侧边板2之间,且所述中间位置与所述中心轴线50之间的间距为
Figure PCTCN2018120690-appb-000002
其中所述Lb为第一中 轴间距、即第一侧边板2的自由端与所述中心轴线50之间的间距,所述Rb为第二中轴间距、即第二侧边板3的自由端与所述中心轴线50之间的间距。这是本公开等大小圆角时换热器的可选设置形式,即将中部平直段、第一侧边板2和第二侧边板3整体向左平移,此时由于圆角相等、第一侧边板2自由端处形成的角度θ也与第二侧边板3自由端处形成的角度β相等,此时将换热器整体往左平移,能够尽可能减少隔板对换热器进气端气流的影响,减小风阻,提高换热效率。
一些实施例中,所述隔板1为直段结构时,在换热器的横截面内,所述直段结构与所述出风面4相接位置的夹角为所述α角;
所述隔板1为曲段结构时,在换热器的横截面内,在所述曲段的长度中点位置处做切线、该切线与所述出风面4之间的夹角为所述α角;
所述隔板1为弯折段结构时,在换热器的横截面内,每一条折线边均能与所述出风面4之间形成夹角、将所有折线边与出风面4之间形成的夹角取平均值,便为所述α角。
这是本公开的隔板的几种不同结构形式,即分别为直段结构、曲段结构和弯折段结构,并且明确了每种结构形式下的α角的形成方式,使得α角能够被方便地确定出。
一些实施例中,所述换热器的横截面为U型结构,所述风机5设置于所述U型结构的凹面一侧。这样能够通过吸风或吹风而使得换热器的几段部分均能够进行与气流之间的换热,提高换热效率。
本公开还提供一种空调器,其包括前任一项所述的非对称式换热器10,还包括隔板1和风机5,所述第一侧边板2远离所述隔板1设置、所述第二侧边板3远离所述隔板1设置,一些实施例中,所述非对称式换热器10位于所述风机5的迎风侧。
为应对实际外机中所出现的进风非对称情况,原对称型换热器与实际进风不相匹配,因而采用满足如下非对称换热器进风设计要求的换热器形状:右侧的不对称进风主要由右侧隔板与出风面夹角α决定,当α≤80°,适应的非对称U形换热器邻近边与出风面法向夹角β不大于隔板与出风面法向的夹角γ,当α>80°适应的非对称U形换热器邻近边与出风面法向夹角β必大于隔板与出风面法向的夹角γ,换热器左侧边与出风面法向的夹角θ应不小于右侧β角,以保证各部分进风角度适应于含隔板整体流动,减小气流经过换热器偏折引起的局部流动损失。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上所述仅是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱 离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (13)

  1. 一种空调器,包括:
    风机(5),所述风机(5)的出风平面为出风面(4),且所述风机(50)具有中心轴线(50)、所述中心轴线(50)与所述出风面(4)垂直;
    隔板,用于将所述空调器的压缩机和换热器隔开;
    非对称式换热器,包括相对远离所述隔板(1)设置的第一侧边板(2)和相对靠近所述隔板(1)设置的第二侧边板(3);以及
    在所述换热器的横截面内,所述隔板(1)与所述出风面(4)之间存在夹角α,所述第二侧边板(3)与所述出风面(4)法向之间形成夹角β,所述隔板(1)与所述出风面(4)法向之间形成夹角γ,且当α≤一个预设角度时,β≤γ,当α>所述预设角度时,β≥γ;并且所述第一侧边板(2)与所述出风面(4)法向之间形成夹角θ,θ≥β。
  2. 根据权利要求1所述的空调器,其中所述预设角度的取值范围在55°-80°之间。
  3. 根据权利要求1或2所述的空调器,其中在换热器的横截面内,且所述第一侧边板(2)的自由端与所述中心轴线(50)之间的间距为第一中轴间距Lb,所述第二侧边板(3)的自由端与所述中心轴线(50)之间的间距为第二中轴间距Rb,且有Rb<Lb。
  4. 根据权利要求3所述的空调器,其中(Rb-Lb)=C(1-cosα),C为与换热器机型相关的第一常数项。
  5. 根据权利要求4所述的空调器,其中所述C的取值范围为2%D~50%D,其中D为风机的直径。
  6. 根据权利要求1-5中任一项所述的空调器,其中所述换热器还包括连接在所述第一侧边板(2)和所述第二侧边板(3)之间的中部平直段(6),所述中部平直段(6)的中间位置位于所述中心轴线(50)上、或者所述中部平直段(6)的中间位置位于所述中心轴线(50)和所述第一侧边板(2)之间。
  7. 根据权利要求6所述的空调器,其中所述中部平直段(6)与所述第一侧边板(2)相接位置为第一圆弧段(7),所述第一圆弧段(7)的圆角为第一圆角R1,所述中部平直段(6)与所述第二侧边板(3)相接位置为第二圆弧段(8),所述第二圆弧段(8)的圆角为第一圆角R2,且有R1>R2。
  8. 根据权利要求7所述的空调器,其中R 2-R 1=k(1-cosα),其中k为与换热器机型相关的第二常数项。
  9. 根据权利要求8所述的空调器,其中所述k的取值范围为5%C~70%C。
  10. 根据权利要求6所述的空调器,其中所述中部平直段(6)与所述第一侧边板(2)相接位置为第一圆弧段(7),所述第一圆弧段(7)的圆角为第一圆角R1,所述中部平直段(6)与所述第二侧边板(3)相接位置为第二圆弧段(8),所述第二圆弧段(8)的圆角为第一圆角R2,且有R1=R2。
  11. 根据权利要求10所述的空调器,其中所述中部平直段(6)的中间位置位于所述中心轴线和所述第一侧边板(2)之间,且所述中间位置与所述中心轴线(50)之间的间距为
    Figure PCTCN2018120690-appb-100001
    其中所述Lb为第一中轴间距、即第一侧边板(2)的自由端与所述中心轴线(50)之间的间距,所述Rb为第二中轴间距、即第二侧边板(3)的自由端与所述中心轴线(50)之间的间距。
  12. 根据权利要求1-11中任一项所述的空调器,其中所述隔板(1)为直段结构时,在换热器的横截面内,所述直段结构与所述出风面(4)相接位置的夹角为α;
    所述隔板(1)为曲段结构时,在换热器的横截面内,在所述曲段的长度中点位置处做切线、该切线与所述出风面(4)之间的夹角为α;以及
    所述隔板(1)为弯折段结构时,在换热器的横截面内,每一条折线边均能与所述出风面(4)之间形成的夹角的平均值为α。
  13. 根据权利要求1-12中任一项所述的空调器,其中所述换热器的横截面为U型结构,所述风机(5)设置于所述U型结构的凹面一侧。
PCT/CN2018/120690 2018-04-12 2018-12-12 空调器 WO2019196469A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/047,060 US11573014B2 (en) 2018-04-12 2018-12-12 Air conditioner
EP18913999.1A EP3779297A4 (en) 2018-04-12 2018-12-12 AIR CONDITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810324701.9 2018-04-12
CN201810324701.9A CN108507235B (zh) 2018-04-12 2018-04-12 一种非对称式换热器和空调器

Publications (1)

Publication Number Publication Date
WO2019196469A1 true WO2019196469A1 (zh) 2019-10-17

Family

ID=63381906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120690 WO2019196469A1 (zh) 2018-04-12 2018-12-12 空调器

Country Status (4)

Country Link
US (1) US11573014B2 (zh)
EP (1) EP3779297A4 (zh)
CN (1) CN108507235B (zh)
WO (1) WO2019196469A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325505A (ja) * 1998-03-17 1999-11-26 Hitachi Ltd 一体型空気調和機
CN105004024A (zh) * 2015-08-10 2015-10-28 珠海格力电器股份有限公司 空调器
CN105042724A (zh) * 2015-08-31 2015-11-11 珠海格力电器股份有限公司 空调室外机
CN105066280A (zh) * 2015-08-31 2015-11-18 珠海格力电器股份有限公司 空调室外机
CN204902043U (zh) * 2015-08-31 2015-12-23 珠海格力电器股份有限公司 空调室外机
CN205261984U (zh) * 2015-11-19 2016-05-25 珠海格力电器股份有限公司 一种非对称式换热器及空调

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1231069B (it) * 1989-09-25 1991-11-12 Delchi Carrier Spa Unita' di condizionamento.
JPH071104B2 (ja) 1989-10-13 1995-01-11 松下電器産業株式会社 空気調和機の室外ユニット
JP2003343878A (ja) 2002-05-24 2003-12-03 Hitachi Home & Life Solutions Inc 空気調和機
JP2013050234A (ja) 2011-08-30 2013-03-14 Panasonic Corp ヒートポンプ装置の室外ユニット
CN102607157A (zh) * 2012-04-18 2012-07-25 广东志高空调有限公司 一种空调器的室外换热器
CN103256834A (zh) * 2013-02-22 2013-08-21 广东美的电器股份有限公司 椭圆管翅片式换热器及顶出风空调室外机
CN105980807B (zh) * 2013-12-04 2019-02-22 开利公司 非对称式蒸发器
CN104197429B (zh) 2014-09-17 2017-01-18 珠海格力电器股份有限公司 空调室外机
EP3424614A1 (de) 2017-07-03 2019-01-09 Primetals Technologies Austria GmbH Einbau eines faseroptischen temperatursensors in eine kokille und kokille mit mehreren faseroptischen temperatursensoren
CN107477679A (zh) * 2017-08-25 2017-12-15 珠海凌达压缩机有限公司 一种空调室内机和空调器
CN208154880U (zh) * 2018-04-12 2018-11-27 珠海格力电器股份有限公司 一种非对称式换热器和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325505A (ja) * 1998-03-17 1999-11-26 Hitachi Ltd 一体型空気調和機
CN105004024A (zh) * 2015-08-10 2015-10-28 珠海格力电器股份有限公司 空调器
CN105042724A (zh) * 2015-08-31 2015-11-11 珠海格力电器股份有限公司 空调室外机
CN105066280A (zh) * 2015-08-31 2015-11-18 珠海格力电器股份有限公司 空调室外机
CN204902043U (zh) * 2015-08-31 2015-12-23 珠海格力电器股份有限公司 空调室外机
CN205261984U (zh) * 2015-11-19 2016-05-25 珠海格力电器股份有限公司 一种非对称式换热器及空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779297A4 *

Also Published As

Publication number Publication date
US11573014B2 (en) 2023-02-07
EP3779297A4 (en) 2021-05-26
CN108507235A (zh) 2018-09-07
EP3779297A1 (en) 2021-02-17
CN108507235B (zh) 2023-06-30
US20210199314A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US9995504B2 (en) Air conditioner having air outlet louver with varying curvature
US9829004B2 (en) Turbo fan and air conditioner
US20150056910A1 (en) Indoor unit for air-conditioning apparatus
CN103388890A (zh) 电加热装置及空调器
US20190041085A1 (en) Air conditioner
WO2016041289A1 (zh) 空调室外机
WO2019196469A1 (zh) 空调器
CN204534883U (zh) 一种空调室外机及空调
WO2024051608A1 (zh) 离心压缩机的吸气管
CN106152462A (zh) 正负离子发生器和空调器
US11988400B2 (en) Air-outlet duct structure, air-outlet panel and patio type air conditioner indoor unit
JP2012073024A (ja) 空気調和機の室内機
CN202630322U (zh) 电加热装置及空调器
CN208154880U (zh) 一种非对称式换热器和空调器
CN211317039U (zh) 一种换热器的翅片、换热器及空调
JP2005337571A (ja) 高所設置型空気調和機
CN209341396U (zh) 用于壁挂式空调室内机的换热器以及壁挂式空调室内机
WO2019127855A1 (zh) 换热组件和换热设备
JP4911972B2 (ja) 空気調和機の室内機
WO2020062721A1 (zh) 一种翅片及具有其的热交换器
CN209726354U (zh) 空调器
WO2019109891A1 (zh) 空调器
CN107490066B (zh) 室内机和空调***
WO2021077649A1 (zh) 换热器翅片、换热器、室内机和空调器
JP6301091B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018913999

Country of ref document: EP

Effective date: 20201029