WO2019196401A1 - 基于光热快速升温的磁悬浮热天平及其测量方法 - Google Patents

基于光热快速升温的磁悬浮热天平及其测量方法 Download PDF

Info

Publication number
WO2019196401A1
WO2019196401A1 PCT/CN2018/114832 CN2018114832W WO2019196401A1 WO 2019196401 A1 WO2019196401 A1 WO 2019196401A1 CN 2018114832 W CN2018114832 W CN 2018114832W WO 2019196401 A1 WO2019196401 A1 WO 2019196401A1
Authority
WO
WIPO (PCT)
Prior art keywords
photothermal
heating
magnetic suspension
float
magnetic levitation
Prior art date
Application number
PCT/CN2018/114832
Other languages
English (en)
French (fr)
Inventor
胡松
李寒剑
向军
池寰瀛
宋功祥
刘涛
苏胜
汪一
许凯
何立模
徐俊
韩亨达
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810321659.5A external-priority patent/CN108956361B/zh
Priority claimed from CN201810320916.3A external-priority patent/CN108956360B/zh
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/759,361 priority Critical patent/US10852221B2/en
Publication of WO2019196401A1 publication Critical patent/WO2019196401A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G7/00Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups
    • G01G7/02Weighing apparatus wherein the balancing is effected by magnetic, electromagnetic, or electrostatic action, or by means not provided for in the preceding groups by electromagnetic action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/23Support or suspension of weighing platforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/14Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated
    • G01G23/16Devices for determining tare weight or for cancelling out the tare by zeroising, e.g. mechanically operated electrically or magnetically operated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Definitions

  • the invention relates to a magnetic suspension thermobalance, in particular to a magnetic suspension thermal balance based on rapid photothermal heating and a measuring method thereof.
  • Thermogravimetric analysis is a thermal analysis technique that measures the relationship between mass and temperature of a sample to be tested at a programmed temperature to study the thermal stability and composition of the material.
  • the most important instrument used for thermogravimetric analysis is the thermobalance.
  • the traditional thermal balance adopts a mechanical structure and is mainly composed of a recording balance, a balance heating furnace, a program temperature control system and a recorder.
  • the basic principle of the record balance is: the amount of balance displacement caused by the change of sample quality is converted into electricity. This tiny amount of electricity is amplified by the amplifier and sent to the recorder for recording, because the amount of electricity is proportional to the mass change of the sample. According to this, the quality of the sample can be changed.
  • mechanical thermobalances are increasingly unable to meet complex experimental conditions such as high temperatures, high heating rates, high pressures, corrosive atmospheres in modern analytical tests.
  • the Chinese patent application No. CN200620127972.8 discloses a high-temperature thermal balance which adopts the structure of the suspension of the balance sample in the simplest vertical tubular resistance furnace, and does not consider the influence of airflow and temperature on the measurement of the thermobalance.
  • Chinese Patent Application No. CN200910243952.5 discloses a method for controlling the reaction gas turbulence of a thermobalance analyzer and a pressurized thermal balance analyzer, which is based on the former to add a spacer to prevent reaction gas turbulence, however, the device The structure is complex, and the balance and the reactants in the same chamber will affect the measurement accuracy and application range to some extent.
  • CN201010104591.9 discloses a controllable rapid temperature-raising thermobalance reaction furnace, which is rapidly heated by pushing the sample through the lifting device. The unknown temperature rise rate and the jitter during the lifting process will affect the measurement results.
  • the Chinese patent No. CN201010590839.7 discloses a controllable high heating rate thermal balance. The material is heated by a double-layer metal wire mesh through a wire mesh reaction system, and the heating rate is up to 1000 ° C / s, but the electric heating method The inevitable hysteresis of the heat flux density during the cold to hot state and the temperature regulation effect caused by the heat retention imposes very high requirements on the temperature control of the thermobalance in this heating mode.
  • Chinese Patent Application No. CN201210501784.7 discloses a microwave heating quality detecting device, which uses microwave heating to rapidly heat materials. However, the difference in microwave absorption between different materials is very large, making the heating rate difficult to control, and the thermal balance is suitable. Sexually weak.
  • thermobalance an atmospheric pressure thermobalance or a high-pressure thermobalance
  • the traditional electric furnace heating method is still adopted, and the fastest heating rate is only 50-100K/min, and the mechanical connection type balance measurement method makes the test pressure and atmosphere. All received a lot of restrictions, but also produced a large system error, affecting the measurement accuracy.
  • thermogravimetric analyzer uses a pull-down magnetic levitation system to make thermogravimetric analysis under UHV and corrosive atmospheres possible.
  • the displacement of the external stator end is converted into a traditional thermal balance measurement method.
  • the zero adjustment under different working conditions is very slow, and the disturbance in the measurement process will also generate noise much larger than the traditional mechanical connection mode.
  • the slower temperature rise rate of the conventional electric furnace heating limits the type of magnetic suspension thermogravi Analyzer application.
  • the object of the present invention is to provide a magnetic suspension thermal balance based on rapid photothermal heating and a measuring method thereof, so as to achieve high-precision measurement of material quality change under temperature control conditions.
  • the present invention provides a photothermal thermal balance based on rapid photothermal heating, including a closed container, a reaction cell, a magnetic levitation device, a laser displacement monitoring component, a photothermal heating component, and a photothermal heating component displacement device;
  • the upper end of the container is provided with a gas inlet, the lower end is provided with a detachable cover plate, and the cover plate is provided with a gas outlet, and the inside of the closed container is provided with an air flow stabilizing device and an infrared temperature measuring component, and the side wall of the closed container is arranged a displacement monitoring window and a heating beam window each made of a transparent material;
  • the airflow stabilizing device is fixed under the gas inlet, the infrared temperature measuring component is fixed under the airflow stabilizing device;
  • the monitoring component is disposed around the sealed container; the photothermal heating component is connected to the photothermal heating component displacement device and can be displaced by the latter; the laser displacement monitoring component
  • the support frame can also be integrated on the magnetic suspension float; when measuring, the magnetic suspension stator is located under the cover plate, The reaction cell is placed on the support frame and placed in a closed container together with the magnetic suspension float, the reaction cell, the magnetic suspension float and the magnetic suspension stator are on the same central axis; the infrared temperature measuring component is facing the opening of the upper part of the reaction cell; The heating light emitted by the photothermal heating assembly can be condensed into the reaction cell through the heating beam window; the monitoring laser emitted by the laser displacement monitoring component can be irradiated to the measurement position of the magnetic levitation float through the displacement monitoring window, the measurement position is according to the laser
  • the requirements of the displacement monitoring assembly are selected, preferably the bottom surface of the magnetic suspension float.
  • the device measures the displacement of the magnetic material in the magnetic field formed by the magnetic suspension stator during the heating process of the magnetic suspension float, and then calculates the mass change of the measured material according to the displacement, and simultaneously measures the real-time temperature of the test material through the infrared temperature measuring component, thereby obtaining the thermogravi Analyze the experimental data required.
  • the mass change of the measured material can also be determined by a comparison test before the experiment, that is, the standard sample is tested under the condition of the cold state mass (weighed by another analytical balance) and the flow rate is the same, and the displacement-mass variation curve is obtained. According to the curve, the mass change of the measured material is obtained.
  • the magnetic levitation thermobalance further comprises a stator lifting assembly, and an upper portion of the stator lifting assembly is fixedly connected with a lower portion of the magnetic levitation stator, and the latter can be lifted and lowered.
  • the stator lifting assembly is equipped to automatically control and record the position of the magnetic suspension stator.
  • the stator lifting assembly comprises a motor and a screw pair, and one end of the rotating action of the screw pair is fixedly connected with an output shaft of the motor, and one end of the linear motion is fixedly connected with the lower end of the magnetic suspension stator.
  • the outer side of the magnetic levitation float is provided with a balancer, the upper part of the balancer is fixedly connected with the support frame, and the upper part of the magnetic levitation float is embedded inside the balancer from bottom to top.
  • the balancer is symmetrically disposed on the balancer with at least two balance wings; the balance wing adopts a simple wing shape, and can drive the magnetic suspension float and the reaction tank to rotate slowly under the uniform airflow blowing.
  • the setting of the balancer can reduce the influence of gas disturbance on the reaction tank, and at the same time ensure uniform heating of materials in the reaction tank.
  • the number of the photothermal heating components is plural, and the array of central axes around the reaction cell is disposed outside the sealed container, and the size and the number of the heating beam windows are ensured that the photothermal heating components are normal during the measurement process.
  • the irradiation to the reaction cell shall prevail.
  • the number of the laser displacement monitoring components is plural, and the array of central axes around the reaction pool is disposed outside the sealed container, and the size and the number of the displacement monitoring windows are ensured that the laser displacement monitoring components are normal during the measurement process.
  • the measurement position of the magnetic suspension float is taken as the standard.
  • the multiple sets of laser displacement detecting components arranged by the array can feedback the position and state of the magnetic suspension float reaction cell in space in real time, and can eliminate the center of gravity deviation caused by gas or heat disturbance when the magnetic suspension float reaction cell is measured in the magnetic field.
  • the error caused by the shift thereby reducing the error of the measurement of the sample quality change, improving the accuracy and reliability of the thermal balance measurement; on the other hand, it can also feedback the state of the magnetic suspension float reaction cell in real time, thereby guiding the photothermal heating component or
  • the external intake and exhaust components are slightly adjusted or shut down for error, which further improves measurement accuracy and safety.
  • the closed container is cylindrical, and the reaction cell, the magnetic suspension float and the magnetic suspension stator are all located on their central axes when making measurements.
  • the photothermal heating component displacement device adopts a precision mechanical arm, and the precision mechanical arm can drive the photothermal heating component to realize wide-range rapid mechanical movement such as translation, rotation and twisting, and realize complex and precise heating with the power control of the heating light source. process.
  • the precise mechanical arm can be further controlled by the computer in real time to realize the automatic tracking of the position of the reaction pool, and the specific control method can be controlled by conventional servo control.
  • the photothermal heating assembly includes a heating source and an optical component that focuses the heating source.
  • a pressure monitoring component is further disposed in the sealed container. Its function is to monitor the pressure inside the device through the pressure monitoring component in real time, to meet the pressure test requirements of different pressure experimental conditions, and also to carry out safety monitoring on the system.
  • the closed container is further provided with a microscope and/or a Raman laser, the mounting position of which is convenient for the measurement. Adding additional detection devices such as microscopes and Raman lasers enables real-time image recording and detection of related characteristics.
  • the materials of the respective portions are preferably as follows:
  • the closed container is preferably made of a FRP material.
  • FRP materials have the advantages of low cost, high pressure resistance, corrosion resistance and chemical stability, and can adapt to the experimental requirements of the closed container, thereby effectively reducing the component cost.
  • Both the displacement monitoring window and the heating beam window are preferably made of high permeability quartz glass.
  • High-permeability quartz glass has excellent chemical stability and pressure resistance, and has good permeability to visible light and infrared light, and can effectively transmit the heating beam and the laser displacement of the photothermal heating assembly.
  • the monitoring laser of the monitoring component; the heating and displacement monitoring with independent window settings can also effectively avoid the influence of the heating beam on the laser displacement monitoring component.
  • the magnetic suspension float is preferably made of a permanent magnet material such as samarium cobalt magnet, iron chromium cobalt, aluminum nickel cobalt or the like.
  • the reaction cell is preferably made of a material having high photothermal absorption rate, high thermal conductivity, high temperature resistance and chemical inertness, and specifically may be silicon carbide, silicon nitride, silicon, graphite or the like.
  • the reaction cell is further preferably a black silicon carbide ceramic columnar crucible, which has the characteristics of stable properties, high temperature resistance, corrosion resistance and thermal conductivity.
  • the black color of the material itself can effectively absorb the heating beam of the photothermal heating component, thereby avoiding The difference in photothermal heating process due to differences in the color structure of the material.
  • the support frame and the balancer are preferably made of light insulation brick material.
  • the use of light insulation brick materials (such as asbestos bricks, high alumina bricks) can effectively block the heat conduction between the reaction tank and the magnetic suspension float, and can effectively isolate the beam irradiation area from the magnetic suspension float.
  • the support frame, the balancer and the surface of the magnetic suspension float are sprayed with a high temperature resistant corrosion resistant coating.
  • the high temperature and corrosion resistant coating further protects the support frame, balancer and magnetic suspension float.
  • the heating source uses a high efficiency photothermal heating source with a collecting cup, and the optical component is a lens group with an infrared antireflection coating.
  • the invention also provides a magnetic suspension thermal balance measuring method based on photothermal rapid temperature rise, which uses the aforementioned magnetic suspension thermobalance to measure the material quality change under the temperature control condition, and comprises the following steps:
  • the monitoring laser emitted by the monitoring laser is irradiated to the measurement position of the magnetic suspension float through the displacement monitoring window, measuring the real-time position of the magnetic suspension float in the closed container, and adjusting the position of the magnetic suspension stator up and down to suspend the magnetic suspension float to The measurement zero position of the laser displacement monitoring component (this position can be adjusted as needed);
  • the heating source of the photothermal heating component emits heating light, converges through the heating beam window to the reaction cell, and heats the reaction cell;
  • the mass change of the material in the temperature control process causes the magnetic suspension float to be displaced.
  • the displacement is measured by the laser displacement monitoring component in real time.
  • the photothermal heating component displacement device adjusts the position of the photothermal heating component in real time according to the displacement.
  • the heating beam is always maintained on the reaction cell;
  • the experimentally measured displacement amount is converted into mass by a control experiment, and the control experiment comprises the following steps: 9.1) uniformly taking a plurality of mass values near the initial mass g 0 , wherein the maximum mass value is not less than the measurement The maximum mass of the material during the temperature control process, the minimum mass value is not greater than the minimum value of the measured material during the temperature control process; 9.2) for each of the mass values g t , weigh the control sample with the mass g t Control experiments were carried out in the reaction cell, and the parameters of the magnetic levitation device were kept the same as those of the test materials.
  • the gas flow rate v and the magnetic levitation stator position were the same as those of the test materials, and the photothermal heating components were not activated, recording and quality.
  • g t corresponding displacement amount x t ; 9.3
  • each mass value taken is tested to obtain a displacement amount x t and mass g t data table, which is plotted as x t -g t curve; 9.4) pair test
  • the measured displacement is found on the x t -g t curve to obtain the corresponding mass.
  • a plurality of sets of g 0 and v are taken for the control experiment; for each set of g 0 and v, the magnetic suspension float is first suspended in the position of the magnetic suspension stator to the set measurement zero position, and then maintained.
  • the magnetic suspension stator is unchanged, and the comparison data of x t and g t under g 0 and v conditions are obtained according to steps 9.1) to 9.3); the control experiment is repeated several times to establish the inclusion of g 0 , v, x t and g t A database of quantities; when experimenting with measured materials, select a set of g 0 and v as needed, and call up the corresponding data of x t and g t in the database to conveniently convert the displacement into mass.
  • the x t -g t curve is fitted to obtain a formula of g t and x t , and when the test material is tested, the measured displacement amount is substituted into the formula to obtain a corresponding quality.
  • the method further comprises the following steps: 10) recording the real-time temperature of the measured material during the temperature control process, corresponding to the real-time material quality obtained by the step 9), and plotting the measured material quality and temperature curve for heat Reanalysis.
  • the method further comprises the following steps: 11) After the measurement is completed, the sample cell is cooled, the magnetic suspension stator is moved downward, the magnetic suspension float is slowly lowered onto the cover plate, the system power is turned off, the cover is removed, and the sample cell is taken out.
  • the inside of the closed container is further provided with an airflow stabilizing device fixed under the gas inlet, and the infrared temperature measuring component is fixed at a lower center of the airflow stabilizing device.
  • the measurement position is selected according to the requirements of the laser displacement monitoring assembly, preferably the bottom surface of the magnetic suspension float.
  • the push-up magnetic suspension method can well constrain the horizontal displacement of the magnetic suspension float without the need for a stabilizer
  • Non-contact infrared temperature measurement method can accurately characterize the material temperature without affecting the reaction cell
  • the concentrating photothermal heating module can concentrate the heat in the heating zone of the reaction tank without heating other areas, effectively avoiding the influence of temperature on the magnetic properties of the magnetic levitation float, and also making the device not under high temperature and high pressure under high pressure conditions. Therefore, the experimental process is more stable and safe;
  • Direct measurement of the displacement of the magnetic levitation float corresponds to the measurement of material quality changes, reducing the systematic error caused by the existing magnetic levitation thermobalance transforming the mechanical variables into displacements and then converting them into electric quantities, thus ensuring the measurement accuracy;
  • thermogravimetric analysis can be realized for different temperatures (including high temperature), different pressures (including high pressure), different heating rates (including rapid heating), and special atmospheres (including corrosive atmosphere). And in situ reaction monitoring;
  • FIG. 1 is a schematic structural view of a magnetic suspension thermal balance based on photothermal rapid temperature rise and is cut along an axis according to Embodiment 1.
  • FIG. 2 is a schematic top plan view of the balancer of FIG. 1.
  • FIG. 3 is a schematic exploded view of the magnetic suspension float of FIG. 1.
  • FIG. 4 is a schematic top plan view of the airflow stabilizing device of FIG. 1.
  • FIG. 5 is a structural schematic view of the magnetic suspension thermal balance based on photothermal rapid temperature rise and is cut along the axis according to the embodiment 2.
  • FIG. 6 is a schematic view showing the positional relationship between the photothermal heating assembly and the magnetic suspension float in the magnetic suspension thermal balance of FIG. 5.
  • Figure 7 is a graph obtained by plotting the data in Table 1.
  • Fig. 8 is a graph obtained by plotting data in Table 2 and Table 3.
  • the magnetic suspension thermal balance based on photothermal rapid temperature rise designed in this embodiment includes a closed container 1, a reaction tank 601, a magnetic levitation device 6, a stator lifting assembly 8, a laser displacement monitoring assembly 10, and a light heat. a temperature rising component 9 and a photothermal heating component displacement device 903, wherein:
  • the hermetic container 1 is cylindrical, and has a gas inlet 2 at the center of the top end, a detachable cover plate 12 (fixed by bolts) at the lower end, and two gas outlets 11 symmetrically disposed on the cover plate 12, the closed container 1
  • the interior is provided with a pressure monitoring assembly 4, a gas flow stabilizing device 3, an infrared temperature measuring assembly 5, and a side wall provided with a displacement monitoring window 102 made of a transparent material and a heating beam window 101 made of a transparent material.
  • the airflow stabilizing device 3 is fixed below the gas inlet 2 and is a honeycomb coal-like porous structure.
  • the infrared temperature measuring unit 5 is fixed at a lower center position of the airflow stabilizing device 3, and the measuring direction is directly below.
  • the photothermal heating component displacement device 903 adopts a precision mechanical arm and can be controlled in real time by a computer.
  • the photothermal heating unit 9 is disposed on the photothermal heating unit displacement device 903, and can be subsequently displaced
  • the magnetic levitation device 6 includes a magnetic levitation float 603 and a magnetic levitation stator 7, and an upper portion of the magnetic levitation float 603 is fixedly provided with a support frame 602 for supporting the reaction cell 601.
  • the stator lifting assembly 8 includes a motor 802 and a screw pair 801. One end of the rotary motion of the screw shaft 801 is fixedly connected to the output shaft of the motor 802, and one end of the linear motion is fixedly connected to the lower end of the magnetic suspension stator 7.
  • a balancer 604 is disposed outside the magnetic levitation float 603, and at least four balance wings 605 are disposed on the outer side of the balancer 604 in a circumferential direction.
  • the upper portion of the balancer 604 is fixedly coupled to the support frame 602, and the upper portion of the magnetic suspension float 603 is embedded inside the balancer 604 from the bottom to the top.
  • the magnetic levitation stator 7 is located below the cover plate 12, and the reaction cell 601 is placed on the support frame 602 and placed in the closed container 1 together with the magnetic levitation float 603.
  • the reaction cell 601, the magnetic levitation float 603, and the magnetic levitation stator 7 are all located on the central axis (vertical direction) of the hermetic container 1 when performing measurement.
  • the airflow stabilizing device 3 disposed underneath can ensure uniformity and stability of the airflow.
  • the pressure monitoring assembly 4 is disposed at the top of the tank, and the temperature monitoring assembly is fixed to the reaction tank 601 disposed below the middle of the airflow stabilizing device 3.
  • the photothermal heating assembly 9 includes a heating source 901 and an optical assembly 902 that focuses the heating source 901.
  • the number of the photothermal heating unit 9 and the heating beam window 101 are respectively two, symmetrically disposed on both sides of the closed container 1 around the central axis of the reaction cell 601; the size and position of the beam window 101 are heated to ensure that the photothermal heating components 9 are in measurement.
  • the process can be normally irradiated to the reaction cell 601.
  • the number of the laser displacement monitoring component 10 and the displacement monitoring window 102 are respectively two, symmetrically disposed on both sides of the sealed container 1, and the laser displacement monitoring component 10 and the displacement monitoring window 102 are located below the photothermal heating component 9.
  • the displacement monitoring window 102 is sized and positioned to ensure that the laser displacement monitoring assembly 10 can normally illuminate the measurement position of the magnetic levitation float 603 during the measurement process.
  • the bottom surface of the magnetic levitation float 603 is selected as the measurement position.
  • the hermetic container 1 and the cover 12 are made of glass fiber reinforced plastic.
  • the displacement monitoring window 102 and the heating beam window 101 are both made of high-permeability quartz glass
  • the reaction cell 601 is made of black silicon carbide ceramic columnar crucible
  • the support frame 602 and the balancer 604 are all made of light thermal insulation brick material
  • the support frame 602 balance
  • the surface of the magnetic levitation float 603 is sprayed with a high temperature resistant corrosion resistant coating
  • the magnetic suspension float 603 is made of a samarium cobalt magnet
  • the heating light source 901 is a high efficiency photothermal heating light source 901 with a collecting cup
  • the optical component 902 is infrared enhanced. Translucent lens group.
  • the infrared temperature measuring component 5 is a Fluke Fluke 572-2
  • the laser displacement monitoring component 10 is a Panasonic-HG-C1100
  • the heating light source 901 is an OSRAM HLX64635.
  • Embodiment 2 is substantially the same as that of Embodiment 1, except that: 1) Embodiment 2 is further provided with a microscope 13 and a Raman laser 14 at the lower center of the airflow stabilization device 3; 2) Embodiment 2
  • the special stator lifting assembly 8 is not provided, and the position of the stator is manually adjusted by the clamp; 3) the number of the photothermal heating component 9, the heating beam window 101, the laser displacement monitoring component 10, and the displacement monitoring window 102 are all four.
  • the array is respectively surrounded by the magnetic levitation float 603.
  • the infrared temperature measuring component 5 adopts the imaima Instrument AT1350
  • laser displacement monitoring component 10 uses SICK Sigma OD VALUE
  • heating light source 901 uses USHIO JCR 15V150W.
  • This embodiment discloses a method for measuring mass change of materials under temperature control conditions by using the magnetic suspension thermobalance of Embodiment 1 or 2 (optional for two structures), and the steps are as follows:
  • the laser displacement monitoring component 10 is activated, and the emitted laser light is irradiated to the measurement position of the magnetic suspension float 603 through the displacement monitoring window 102, and the real-time position of the magnetic suspension float 603 in the closed container 1 is measured, and the magnetic suspension stator 7 is adjusted up and down.
  • the position causes the magnetic levitation float 603 to be suspended to the measurement zero position of the laser displacement monitoring assembly 10;
  • the heating light source 901 of the photothermal heating component 9 emits heating light, converges through the heating beam window 101 to the reaction cell 601, and heats the reaction cell 601;
  • the mass change of the measured material causes the magnetic suspension float 603 to be displaced, and the displacement is measured by the laser displacement monitoring component 10 in real time, and the photothermal heating component displacement device 903 adjusts the position of the photothermal heating component 9 in real time according to the displacement amount.
  • the heating beam is always maintained on the reaction cell 601;
  • reaction tank 601 After the measurement is completed, the reaction tank 601 is cooled, and the magnetic suspension stator 7 is moved downward to slowly lower the magnetic suspension float 603 onto the cover 12, the system power is turned off, the cover 12 is removed, and the reaction tank 601 is taken out.
  • This embodiment discloses a method for establishing a database by using multiple sets of controlled experiments, and the specific steps are as follows:
  • g 0i takes the points in the set ⁇ g 01 , . . . , g 0i , . . . , g 0m ⁇ and repeats steps 3) and 4);
  • V j takes the points in the set ⁇ v 1 ,...,v j ,...,v n ⁇ , repeats steps 3) to 5), thereby obtaining a database composed of v, g 0 , x t , g t .
  • the database measured in the fourth embodiment is used to convert the displacement measured by the specific experiment into mass.
  • Example 3 According to the procedure in Example 3, the process of heating the spectrally pure graphite under air atmosphere to 1000 ° C was measured, and the displacements at different times were obtained, and the corresponding masses were obtained according to the fitting formula, and are listed in the following table:
  • Table 2 and Table 3 are drawn into the same coordinate chart to obtain Fig. 8, wherein the solid line is the data fitting curve in Table 2, and the dot is the data in Table 3. As can be seen from Fig. 8, the measurement results of the present invention are in good agreement with the conventional analysis methods.
  • thermogravimetric analysis can achieve thermogravimetric analysis well, but thermogravimetric analysis should not be considered as limiting the use of the present invention.
  • the invention can also be used for other purposes, such as in situ reaction monitoring, for measuring the change in mass of a material during a temperature control process (warming or cooling).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种基于光热快速升温的磁悬浮热天平及其测量方法,热天平包括密闭容器(1)、反应池(601)、磁悬浮装置(6)、激光位移监测组件(10)、光热升温组件(9)和光热升温组件位移装置(903);方法包括如下步骤:称取测量物料到反应池(601)内;将反应池(601)随磁悬浮浮子(603)一起放到密闭容器(1)内;使磁悬浮浮子(603)悬浮在密闭容器(1)中;向密闭容器(1)内通入气体;测量磁悬浮浮子(603)实时位置,并使其悬浮至测量零点;对反应池(601)进行加热;保持加热光束在反应池(601)上;测量反应池(601)内物料温度;记录磁悬浮浮子(603)位移量,转换得到质量。通过测量磁悬浮浮子(603)位移量,再转换为质量变化,实现控温条件下物料质量变化的高精度测量。

Description

基于光热快速升温的磁悬浮热天平及其测量方法 技术领域
本发明涉及一种磁悬浮热天平,特别是指一种基于光热快速升温的磁悬浮热天平及其测量方法。
背景技术
热重分析是指程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。热重分析所用的仪器最主要的就是热天平。
传统的热天平采用机械式结构,主要由记录天平、天平加热炉、程序控温***和记录仪构成。其中,记录天平的基本原理是:将由于样品质量变化所引起的天平位移量转化成电量,这个微小的电量经放大器放大后,送入记录仪记录,由于电量的大小正比于样品的质量变化量,据此可得到样品的质量变化。然而,这种机械式的热天平越来越无法满足现代分析测试中高温、高升温速率、高压、腐蚀性气氛等复杂的实验条件。
申请号为CN200620127972.8的中国专利公开了一种高温热天平,其采用最简单的立式管式电阻炉中悬吊连接天平样品的结构,对于气流、温度对热天平测量的影响均未考虑。申请号为CN200910243952.5的中国专利公开了一种控制热天平分析仪反应气窜流的方法及加压热天平分析仪,是在前者的基础上增加隔离件以防止反应气窜流,然而设备结构复杂,天平与反应物同腔室,一定程度上会影响测量精度和应用范围。申请号为CN201010104591.9的中国专利公开了一种可控快速升温热天平反应炉,通过升降装置推入样品实现快速升温,实际升温速率的未知与升降过程中的抖动都会对测量结果造成影响。申请号为CN201010590839.7的中国专利公开了一种可控高升温速率热天平,通过线网反应***利用双层金属线网对物料进行加热,升温速率最高达1000℃/s,然而电热加热方式必然存在的冷态至热态过程中热流密度的变化及热量滞留导致的温度调节效果的滞后性对此种升温方式下热天平的温度控制提出了非常高的要求。申请号为CN201210501784.7的中国专利公开了一种微波加热质量检测装置,采用微波加热的方式对物料进行快速加热,然而不同物料对微波的吸收差异非常大,使得加热速率难以控制,热天平适用性较弱。
现有的商业产品中,无论是常压热天平还是高压热天平依然采用传统的电炉加热方式,最快升温速率仅为50~100K/min,机械连接式的天平测量方式使得测试的压力和气氛都收到了很大的限制,同时也产生了较大的***误差,影响测量精度。
德国Rubotherm公司的磁悬浮式热重分析仪采用下拉式磁悬浮***,使得特高压和腐蚀性气氛下的热重分析成为可能,然而依旧采用的是外接定子端位移量转化成电量传统热天平的测量方式,不同工况下的调零非常缓慢,测量过程中的扰动也会产生远大于传统机械连接方式的噪声,与此同时,传统电炉加热的升温方式较慢的升温速度限制了此类型磁悬浮热重分析仪的应用。
发明内容
本发明的目的在于提供一种基于光热快速升温的磁悬浮热天平及其测量方法,以实现控温条件下物料质量变化的高精度测量。
为实现上述目的,本发明所设计的基于光热快速升温的磁悬浮热天平,包括密闭容器、反应池、磁悬浮装置、激光位移监测组件、光热升温组件和光热升温组件位移装置;所述密闭容器的上端设置有气体进口,下端设置有可拆卸的盖板,盖板上设置有气体出口,所述密闭容器的内部设置有气流稳定装置和红外测温组件,所述密闭容器的侧壁设置有均由透明材料制成的位移监测窗口和加热光束窗口;所述气流稳定装置固定在气体进口下方,所述红外测温组件固定在气流稳定装置的下方;所述光热升温组件与激光位移监测组件设置于密闭容器周围;所述光热升温组件与光热升温组件位移装置相连,可通过后者进行位移;所述激光位移监测组件设置于密闭容器外部;所述磁悬浮装置包括磁悬浮浮子和磁悬浮定子;所述磁悬浮浮子的上部固定设置有用于支撑反应池的支撑架,支撑架同时可隔离反应池热量,避免高温对磁悬浮定子磁性能的影响,支撑架也可以集成在磁悬浮浮子上;进行测量时,所述磁悬浮定子位于盖板下方,所述反应池放置在支撑架上并与磁悬浮浮子一起置于密闭容器内,所述反应池、磁悬浮浮子和磁悬浮定子在同一条中心轴线上;所述红外测温组件正对反应池上部的开口;所述光热升温组件发出的加热光线能够穿过加热光束窗口汇聚到反应池上;所述激光位移监测组件发出的监测激光能够穿过位移监测窗口照射到磁悬浮浮子的测量位置,所述测量位置根据激光位移监测组件的要求进行选择,优选为磁悬浮浮子的底面。
工作原理:该装置通过测量磁悬浮浮子受热过程中在磁悬浮定子形成的磁场中的位移,再根据位移计算出测量物料的质量变化,同时通过红外测温组件测量测试物料的实时温度,从而获得热重分析所需的实验数据。测量物料的质量变化也可在实验前通过对比试验确定,即采用标准样品在冷态质量(由另一台分析天平称量)、流速相同的条件下进行试验,获得位移-质量变化曲线,在根据该曲线得出测量物料的质量变化。
优选地,该磁悬浮热天平还包括定子升降组件,所述定子升降组件的上部与所述磁悬浮定子的下部固定相连,可对后者进行升降操作。配套设置定子升降组件,可实现磁悬浮定子位置的自动控制和记录。
优选地,所述定子升降组件包括电机和丝杆副,所述丝杆副做旋转运动的一端与电机的输出轴固定相连,做直线运动的一端与磁悬浮定子的下端固定相连。
优选地,所述磁悬浮浮子的外侧设置有平衡器,所述平衡器的上部与支撑架固定相连,所述磁悬浮浮子上部从下往上嵌入平衡器内部。所述平衡器上中心对称地设置有至少两个平衡翼;所述平衡翼采用简单翼形,可以在均匀气流吹动下带动所述磁悬浮浮子和反应池缓慢转动。所述平衡器的设置能够降低气体扰动对所述反应池的影响,同时也能保证反应池中物料受热均匀。
优选地,所述光热升温组件的数量为多个,环绕反应池中心轴线阵列设置在密闭容器外侧,所述加热光束窗口的尺寸和数量以保证各光热升温组件在测量过程中均能正常照射到反应池为准。
优选地,所述激光位移监测组件的数量为多个,环绕反应池中心轴线阵列设置在密闭容器外侧,所述位移监测窗口的尺寸和数量以保证各激光位移监测组件在测量过程中均能正常照射到磁悬浮浮子的测量位置为准。采用阵列设置的多套激光位移检测组件,能够实时反馈所述磁悬浮浮子反应池在空间中的位置和状态,一方面能够消除磁悬浮浮子反应池在磁场中位置测量时由于气体或者热量扰动导致重心偏移而带来的误差,从而减小***对样品质量变化测量的误差,提高热天平测量的精度和可靠度;另一方面也能够实时反馈磁悬浮浮子反应池的状态,进而指导光热升温组件或外部的进气、出气组件进行轻微调整或停机报错,从而进一步提高测量精度和安全性。
优选地,所述密闭容器为圆筒形,所述反应池、磁悬浮浮子和磁悬浮定子在进行测量时均位于其中心轴线上。
优选地,所述光热升温组件位移装置采用精密机械臂,精密机械臂能够带动光热升温组件实现平移、旋转和扭动等大范围快速机械运动,配合加热光源的功率控制实现复杂精确的加热过程。根据激光位移监测组件反馈的反应池位移信息,可进一步通过计算机实时控制精密机械臂,实现自动追踪反应池的位置,具体的控制方法采用常规的伺服控制即可。
优选地,所述光热升温组件包括加热光源和对加热光源进行聚焦的光学组件。
优选地,所述密闭容器内还设置有压力监测组件。其作用是,通过压力监测组件实时监测装置内压力,满足不同的压力实验条件压力测试需求,同时也对***进行安全监控。
优选地,所述密闭容器内还设置有显微镜和/或拉曼激光器,其安装位置以便于测量为准。加装显微镜、拉曼激光器等附加检测装置,可实现实时图像的记录和相关特性的检测。
本发明中,各部分的材料优选如下:
所述密闭容器优选采用玻璃钢材料制成。玻璃钢材料具有廉价、耐高压、耐腐蚀和化学稳定的优点,能够适应所述密闭容器的实验需求,从而有效地降低组件成本。
所述位移监测窗口和加热光束窗口均优选采用高透石英玻璃制成。高透石英玻璃有着非常好的化学稳定和耐压性能的同时,对可见光和红外光都有比较好的透过性,能够有效地透过所述光热升温组件的加热光束和所述激光位移监测组件的监测激光;加热和位移监测采用独立窗口的设置也能有效避免加热光束对激光位移监测组件的影响。
所述磁悬浮浮子优选采用永磁材料制成,如钐钴磁铁、铁铬钴、铝镍钴等。
所述反应池优选采用光热吸收率高、导热性强、耐高温、化学惰性的材料制成,具体可以是碳化硅、氮化硅、硅、石墨等。所述反应池进一步优选为黑色碳化硅陶瓷柱形坩埚,其具有性状稳定、耐高温、耐腐蚀和导热性强等特点,材料本身的黑色也能够有效吸收光热升温组件的加热光束,从而避免因物料颜色结构等性状的不同导致的光热加热过程的差异。
所述支撑架、平衡器均优选采用轻型保温砖材料制作。采用轻型保温砖材料(如石棉砖、高铝砖)能有效阻隔所述反应池与所述磁悬浮浮子之间的热传导,也能够有效地将光束照射区和磁悬浮浮子隔离开来。
优选地,所述支撑架、平衡器和磁悬浮浮子表面均喷涂有耐高温耐腐蚀涂层。耐高温耐腐蚀的涂层能够对支撑架、平衡器和磁悬浮浮子进行进一步保护。
优选地,所述加热光源采用带聚光杯的高效光热加热光源,所述光学组件为带红外增透镀膜的透镜组。
本发明同时提供了一种基于光热快速升温的磁悬浮热天平测量方法,采用前述的磁悬浮热天平对控温条件下物料质量变化进行测量,并且包括如下步骤:
1)称取质量为g 0的测量物料到反应池内;
2)拆下盖板,将反应池放置在磁悬浮浮子的支撑架上,再将磁悬浮浮子放置在盖板中心,将盖板安装到密闭容器上,调整磁悬浮定子的位置使其位于安装后盖板的中心正下方;
3)启动磁悬浮装置,待磁场稳定后,向上移动磁悬浮定子,使磁悬浮浮子悬浮在密闭容器中;
4)向密闭容器内持续通入维持反应气氛所需的气体,气体从气体进口进入,并从气体出口排出,气体流速控制在实验所需的流速v;
5)启动激光位移监测组件,其所发出的监测激光穿过位移监测窗口照射到磁悬浮浮子的测量位置,对磁悬浮浮子在密闭容器内的实时位置进行测量,上下调节磁悬浮定子位置使磁悬浮浮子悬浮至激光位移监测组件的测量零点位置(该位置可以根据需要进行调整);
6)启动光热升温组件,光热升温组件的加热光源发出加热光线,穿过加热光束窗口汇聚到反应池上,对反应池进行加热;
7)控温过程(包括升温和降温)中物料的质量变化使磁悬浮浮子产生位移,位移量由激光位移监测组件进行实时测量,光热升温组件位移装置根据位移量实时调整光热升温组件位置使加热光束始终保持在反应池上;
8)通过红外测温组件对反应池内测量物料的实时温度进行测量,根据测量得到的实时温度,调整加热光源的加热功率,实现测量物料的精确温控;
9)记录控温过程中磁悬浮浮子相对于测量零点的位移量,根据位移量转换得到对应的质量。
在本发明所设计的磁悬浮热天平中,质量(或其变化量)与位移量存在一定的函数 关系,其函数式为:g t=f(△,v,g 0,x t),其中,Δ为与磁悬浮装置有关的系数,当磁悬浮***调试完成后,可以认为Δ为定值,因此可将上述函数简化为:g t=f(v,g 0,x t);g t为实验开始t时刻时的测量物料质量;g 0为未开始加热时的测量物料质量,本发明中称为冷态质量或初始质量;v为实验中控制的气体流速;x t为t时刻测量物料相对于测量零点的位移;由于单次实验中v、g 0为定值,故g t仅与x t有关,具体函数关系可以根据磁场分布进行理论计算,也可以通过测量已知温度-质量曲线的标准物质来校准。
优选地,步骤9)中,通过对照实验将实验测得的位移量转换成质量,对照实验包括如下步骤:9.1)在初始质量g 0附近均匀取多个质量值,其中最大质量值不小于测量物料在控温过程中质量的最大值,最小质量值不大于测量物料在控温过程中质量的最小值;9.2)对其中的每一个质量值g t,称取质量为g t的对照样品加入反应池中进行对照实验,保持磁悬浮装置的各项参数与测试物料所进行的实验相同,调整气体流速v与磁悬浮定子位置与测试物料所进行的实验相同,不启动光热升温组件,记录与质量g t对应的位移量x t;9.3)按前述步骤对所取的每一个质量值进行实验,得到位移量x t与质量g t数据表,绘制成x t-g t曲线;9.4)对测试物料进行实验时,将测量得到的位移量在x t-g t曲线上找点,即可得到对应的质量。
优选地,根据实验需要的数值范围,取多组g 0和v进行对照实验;对于每一组g 0和v,首先在调节磁悬浮定子位置使磁悬浮浮子悬浮至设定的测量零点位置,再保持磁悬浮定子不变,按照步骤9.1)~9.3)得到在g 0和v条件下,x t与g t的对照数据;重复多次进行对照实验,建立包含g 0、v、x t与g t四个量的数据库;在对测量物料进行实验时,根据需要选择一组g 0、v,在数据库中调出对应的x t与g t的对照数据,即可方便地将位移量转换成质量。
优选地,步骤9.4)中,对x t-g t曲线进行拟合,得到g t与x t的公式,在对测试物料进行实验时,将测量得到的位移量代入公式中即可得到对应的质量。
优选地,该方法还包括如下步骤:10)控温过程中对测量物料的实时温度进行记录,与步骤9)换算得到的实时物料质量进行对应,绘制出测量物料质量与温度曲线,以进行热重分析。
优选地,该方法还包括如下步骤:11)测量完毕后,待样品池冷却,向下移动磁悬浮定子使磁悬浮浮子缓慢下降至盖板上,关闭***电源,拆开盖板,取出样品池。
优选地,所述密闭容器的内部还设置有气流稳定装置,所述气流稳定装置固定在气体进口的下方,所述红外测温组件固定在气流稳定装置的下部中心处。
优选地,所述测量位置根据激光位移监测组件的要求进行选择,优选为磁悬浮浮子的底面。
与现有技术相比,本发明的有益效果在于:
1)采用上推式的磁悬浮式方式能够很好地约束磁悬浮浮子水平方向上的偏移,无需配套稳定器;
2)采用非接触式的红外温度测量方式能够准确表征物料温度,同时不影响反应池;
3)采用聚光式的光热升温组件能够将热量集中在反应池受热区而不对其它区域进行加热,有效避免温度对磁悬浮浮子磁性的影响,也使得装置在高压条件下无需全部处于高温高压状态,因此实验过程更加稳定安全;
4)采用直接测量磁悬浮浮子位移量对应测量物料质量变化,减少了现有磁悬浮热天平将力学变量转变为位移再转化成电量所带来的***误差,保障了测量精度;
5)配合气体组分、压力控制以及检测手段,可以实现不同温度(包括高温)、不同压力(包括高压)、不同升温速率(包括快速升温)以及特殊气氛(包括腐蚀性气氛)的热重分析以及原位反应监测;
6)无需传统热天平为保持质量测量组件稳定而必须的保护气,减少了***复杂性;
7)详尽的对照试验一方面满足了质量测量的需求,另一方面也作为判断是否实验异常的参比实验过程,进一步增强了***的安全性。
附图说明
图1为实施例1所设计的基于光热快速升温的磁悬浮热天平沿轴线剖开的结构示意图。
图2为图1中平衡器的俯视结构示意图。
图3为图1中磁悬浮浮子的分解结构示意图。
图4为图1中气流稳定装置的俯视结构示意图。
图5为实施例2所设计的基于光热快速升温的磁悬浮热天平沿轴线剖开的结构示意图。
图6为图5中磁悬浮热天平内光热升温组件与磁悬浮浮子的位置关系示意图。
图7为表1中数据绘制得到的曲线图。
图8为表2、表3中数据绘制得到的曲线图。
其中:密闭容器1,加热光束窗口101,位移监测窗口102,气体进口2,气流稳定装置3,压力监测组件4,红外测温组件5,磁悬浮装置6,反应池601,支撑架602,磁悬浮浮子603,平衡器604,平衡翼605,磁悬浮定子7,升降组件8,丝杆副801,电机802,光热升温组件9,加热光源901,光学组件902,光热升温组件位移装置903,激光位移监测组件10,气体出口11,盖板12,显微镜13,拉曼激光器14。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
实施例1
如图1~4所示,本实施例所设计的基于光热快速升温的磁悬浮热天平,包括密闭容器1、反应池601、磁悬浮装置6、定子升降组件8、激光位移监测组件10、光热升温组件9和光热升温组件位移装置903,其中:
密闭容器1为圆筒形,其顶端中心处设置有气体进口2,下端设置有可拆卸的盖板12(通过螺栓固定),盖板12上对称地设置有两个气体出口11,密闭容器1的内部设置有压力监测组件4、气流稳定装置3、红外测温组件5,侧壁设置有由透明材料制成的位移监测窗口102和由透明材料制成的加热光束窗口101。气流稳定装置3固定在气体进口2下方,为蜂窝煤状多孔结构。红外测温组件5固定在气流稳定装置3的下方中心位置,测量方向为正下方。光热升温组件位移装置903采用精密机械臂,可通过计算机实时控制。光热升温组件9设置在光热升温组件位移装置903上,可随后者进行位移。
磁悬浮装置6包括磁悬浮浮子603和磁悬浮定子7,磁悬浮浮子603的上部固定设置有用于支撑反应池601的支撑架602。定子升降组件8包括电机802和丝杆副801,丝杆副801做旋转运动的一端与电机802的输出轴固定相连,做直线运动的一端与磁悬浮定子7的下端固定相连。磁悬浮浮子603的外侧设置有平衡器604,平衡器604的外侧周向阵列地设置有至少4个平衡翼605。平衡器604的上部与支撑架602固定相连, 磁悬浮浮子603上部从下往上嵌入平衡器604内部。
磁悬浮定子7位于盖板12下方,反应池601放置在支撑架602上并与磁悬浮浮子603一起置于密闭容器1内。反应池601、磁悬浮浮子603和磁悬浮定子7在进行测量时均位于密闭容器1的中心轴线(竖直方向)上。配合设置在其下方的气流稳定装置3可保证气流的均匀和稳定。压力监测组件4设置于罐体顶部,温度监测组件固联在气流稳定装置3中部下方正对反应池601设置。
光热升温组件9包括加热光源901和对加热光源901进行聚焦的光学组件902。光热升温组件9、加热光束窗口101的数量分别为2个,环绕反应池601中心轴线对称设置在密闭容器1两侧;加热光束窗口101的尺寸和位置以保证各光热升温组件9在测量过程中均能正常照射到反应池601为准。
激光位移监测组件10、位移监测窗口102的数量分别为2个,对称设置在密闭容器1两侧,激光位移监测组件10、位移监测窗口102位于光热升温组件9以下。位移监测窗口102的尺寸和位置以保证各激光位移监测组件10在测量过程中均能正常照射到磁悬浮浮子603的测量位置为准,本实施例中选择磁悬浮浮子603的底面作为测量位置。
密闭容器1、盖板12采用玻璃钢材料制成。位移监测窗口102和加热光束窗口101均采用高透石英玻璃制成,反应池601采用黑色碳化硅陶瓷柱形坩埚,支撑架602、平衡器604均采用轻型保温砖材料制作,支撑架602、平衡器604和磁悬浮浮子603表面均喷涂有耐高温耐腐蚀涂层,磁悬浮浮子603采用钐钴磁铁制成,加热光源901采用带聚光杯的高效光热加热光源901,光学组件902为带红外增透镀膜的透镜组。
本实施例中,红外测温组件5采用福禄克fluke 572-2,激光位移监测组件10采用松下-HG-C1100,加热光源901采用欧司朗HLX64635。
实施例2
如图5所示,实施例2与实施例1的结构大体相同,区别仅在于:1)实施例2在气流稳定装置3下部中心处还设置有显微镜13和拉曼激光器14;2)实施例2未设置专门的定子升降组件8,定子的位置通过夹具由人工进行调整;3)光热升温组件9、加热光束窗口101、激光位移监测组件10、位移监测窗口102的数量均为4个,分别阵列 环绕在磁悬浮浮子603的周围,图6给出了从上部往下看时,光热升温组件9与磁悬浮浮子603的位置关系;4)本实施例中,红外测温组件5采用希玛仪表AT1350,激光位移监测组件10采用SICK西克OD VALUE,加热光源901采用USHIO JCR 15V150W。
实施例3
本实施例公开了采用实施例1或2中磁悬浮热天平(两种结构任选)进行控温条件下物料质量变化测量的方法,其步骤如下:
1)称取质量为g 0的测量物料到反应池601内;
2)拆下盖板12,将反应池601放置在磁悬浮浮子603的支撑架602上,再将磁悬浮浮子603放置在盖板12中心,将盖板12安装到密闭容器1上,调整磁悬浮定子7的位置使其位于安装后盖板12的中心正下方;
3)启动磁悬浮装置6,待磁场稳定后,向上移动磁悬浮定子7,使磁悬浮浮子603悬浮在密闭容器1中;
4)向密闭容器1内持续通入维持反应气氛所需的气体,气体从气体进口2进入,并从气体出口11排出,气体流速控制在实验所需的流速v;
5)启动激光位移监测组件10,其所发出的监测激光穿过位移监测窗口102照射到磁悬浮浮子603的测量位置,对磁悬浮浮子603在密闭容器1内的实时位置进行测量,上下调节磁悬浮定子7位置使磁悬浮浮子603悬浮至激光位移监测组件10的测量零点位置;
6)启动光热升温组件9,光热升温组件9的加热光源901发出加热光线,穿过加热光束窗口101汇聚到反应池601上,对反应池601进行加热;
7)控温过程中,测量物料的质量变化使磁悬浮浮子603产生位移,位移量由激光位移监测组件10进行实时测量,光热升温组件位移装置903根据位移量实时调整光热升温组件9位置使加热光束始终保持在反应池601上;
8)通过红外测温组件5对反应池601内测量物料的实时温度进行测量,根据测量得到的实时温度,调整加热光源901的加热功率,实现测量物料的精确温控;
9)记录控温过程中磁悬浮浮子603相对于测量零点的位移量,根据位移量转换得到对应的质量。本实施例通过对照实验将位移量转换成质量,其步骤简述如下:
9.1)在初始质量g 0附近均匀取多个质量值,其中最大质量值不小于测量物料在控温过程中质量的最大值,最小质量值不大于测量物料在控温过程中质量的最小值;
9.2)对其中的每一个质量值g t,称取质量为g t的对照样品加入反应池601中进行对照实验,保持磁悬浮装置6的各项参数与测试物料所进行的实验相同,调整气体流速v与磁悬浮定子7位置与测试物料所进行的实验相同,不启动光热升温组件9,记录与质量g t对应的位移量x t
9.3)按前述步骤对所取的每一个质量值进行实验,得到位移量x t与质量g t数据表,绘制成x t-g t曲线,拟合得到g t与x t的公式;
9.4)对测试物料进行实验时,将测量得到的位移量在x t-g t曲线上找点或者根据拟合得到的公式进行计算,可得到对应的质量;
以上对照实验的步骤描述较为简略,具体操作可参考步骤1)~5);
10)控温过程中对测量物料的实时温度进行记录,与步骤9)换算得到的实时物料质量进行对应,绘制出测量物料质量与温度曲线,以进行热重分析;
11)测量完毕后,待反应池601冷却,向下移动磁悬浮定子7使磁悬浮浮子603缓慢下降至盖板12上,关闭***电源,拆开盖板12,取出反应池601。
实施例4
本实施例公开了采用多组对照实验建立数据库的方法,具体步骤如下:
1)根据实验需要确定热天平质量范围,在该范围内,等距选取初始质量g 0,从最小值到最大值依次记为g 01,…,g 0i,…,g 0m,i为整数,且1<i<m;
2)根据实验需要确定气体流速范围,在该范围内,等距选取标定流速v,从最小值到最大值依次记为v 1,…,v j,…,v n,j为整数,且1<j<n;
3)取一组v j,g 0i,用另一台分析天平称取质量为g 0i的测量物料到反应池内,再将反应池置于热天平内,通过调节磁悬浮定子的位置使磁悬浮浮子悬浮,调节气体流速到v j,再通过调节磁悬浮定子的位置使磁悬浮浮子定位到测量零点位置,停气,取出反应池;
4)等距增加或减少标定质量dg(取值越小,精度越高),使得测量物料质量g ik=g 0i+k·dg,k为非零整数,若取正数代表增加标定质量,若取负数代表减小标定质 量;用分析天平称取质量为g ik的测量物料到反应池内,再将反应池置于热天平内,磁悬浮定子调整到与步骤3)相同的位置,调节气体流速到与步骤3)相同的流速v j,稳定后记录此时的位移量为x ik,停气,取出反应池;取不同的i值,可得到g 0=g 0i时,g t与x t的对应数据表;
5)g 0i取遍集合{g 01,…,g 0i,…,g 0m}内的点,重复步骤3)、4);
6)V j取遍集合{v 1,…,v j,…,v n}内的点,重复步骤3)~5),由此得到由v、g 0,x t,g t构成的数据库。
下表给出了数据库中气体流速为0.01m/min、初始质量为3.6mg时的数据表:
表1 x t、g t数据表
Figure PCTCN2018114832-appb-000001
限于篇幅,数据库中其他气体流速和初始质量的数据表未能一一列出,表1仅列举了实施例5所需数据。
实施例5
本实施例采用实施例4建立的数据库将具体实验测得的位移量换算成质量。
选取流速v=0.01m/min,g0=3.6mg,在数据库中调出对应的x t与g t的对照数据表(见 表1),以表中平均位置x t为纵坐标,质量g t为横坐标,绘制曲线,详见图7,拟合得到x t=-9.7555g t 2+56.809g t-65.838,方差R 2=0.9992。
按实施例3中步骤对光谱纯石墨在的空气气氛下加热到1000℃的过程进行测量,得到不同时刻的位移量,按拟合公式换算得到对应的质量,列于下表中:
表2 光谱纯石墨块位置随加热时间的数据
时间(s) 位置(μm) 质量(mg) 时间(s) 位置(μm) 质量(mg)
0 12.3 3.60 65 13.8 3.47
5 12.3 3.59 70 14.0 3.46
10 12.3 3.60 75 14.2 3.44
15 12.3 3.60 80 14.3 3.43
20 12.2 3.60 85 14.5 3.41
25 12.3 3.60 90 14.6 3.39
30 12.3 3.59 95 14.8 3.38
35 12.6 3.57 100 14.9 3.36
40 12.8 3.56 105 15.0 3.35
45 13.0 3.54 110 15.2 3.33
50 13.2 3.53 115 15.4 3.30
55 13.3 3.51 120 15.4 3.30
60 13.6 3.49 125 15.6 3.28
在相同的流速、初始质量、升温曲线条件下,通过常规热天平测量石墨在加热过程中质量变化随时间的关系,结果列于下表3中。
表3 石墨失重常规热天平实验数据
时间(s) 质量(mg) 时间(s) 质量(mg) 时间(s) 质量(mg)
0(30) 3.6 30(60) 3.492 60(90) 3.3971
15(45) 3.5489 45(75) 3.4529 75(105) 3.3569
将表2、表3绘制到同一个坐标图中,得到图8,其中实线为表2中数据拟合曲线,圆点为表3中数据。从图8可知,本发明测量结果与传统分析方法符合性较好。
需要说明的是,本发明可以很好地实现热重分析,但热重分析不应视为对本发明用途的限定。本发明也可以实现其他需要测量物料在控温过程(升温或降温)中质量变化情况的用途,例如原位反应监测。

Claims (17)

  1. 一种基于光热快速升温的磁悬浮热天平,其特征在于:
    包括密闭容器(1)、反应池(601)、磁悬浮装置(6)、激光位移监测组件(10)、光热升温组件(9)和光热升温组件位移装置(903);
    所述密闭容器(1)的上端设置有气体进口(2),下端设置有可拆卸的盖板(12),所述盖板(12)上设置有气体出口(11),所述密闭容器(1)的内部设置有气流稳定装置(3)和红外测温组件(5),所述密闭容器(1)的侧壁设置有均由透明材料制成的位移监测窗口(102)和加热光束窗口(101);所述气流稳定装置(3)固定在气体进口(2)的下方,所述红外测温组件(5)固定在气流稳定装置(3)的下方;
    所述光热升温组件(9)、激光位移监测组件(10)设置于密闭容器(1)周围;所述光热升温组件(9)与光热升温组件位移装置(903)相连,可通过光热升温组件位移装置(903)进行位移;
    所述磁悬浮装置(6)包括磁悬浮浮子(603)和磁悬浮定子(7);所述磁悬浮浮子(603)的上部固定设置有用于支撑反应池(601)的支撑架(602);
    进行测量时,所述磁悬浮定子(7)位于盖板(12)下方,所述反应池(601)放置在支撑架(602)上并与磁悬浮浮子(603)一起置于密闭容器(1)内,所述反应池(601)、磁悬浮浮子(603)和磁悬浮定子(7)在同一条中心轴线上;所述红外测温组件(5)正对反应池(601)上部的开口;所述光热升温组件(9)发出的加热光线能够穿过加热光束窗口(101)汇聚到反应池(601)上;所述激光位移监测组件(10)发出的监测激光能够穿过位移监测窗口(102)照射到磁悬浮浮子(603)的测量位置。
  2. 根据权利要求1所述的基于光热快速升温的磁悬浮热天平,其特征在于:该磁悬浮热天平还包括对所述磁悬浮定子(7)进行升降操作的定子升降组件(8),所述定子升降组件(8)的上部与所述磁悬浮定子(7)的下部固定相连。
  3. 根据权利要求2所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述定子升降组件(8)包括电机(802)和丝杆副(801),所述丝杆副(801)做旋转运动的一端与电机(802)的输出轴固定相连,做直线运动的一端与磁悬浮定子(7)的下端固定相连。
  4. 根据权利要求1所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述 磁悬浮浮子(603)的外侧设置有平衡器(604),所述平衡器(604)的上部与支撑架(602)固定相连,所述磁悬浮浮子(603)上部从下往上嵌入平衡器(604)内部;所述平衡器(604)上中心对称地设置有至少两个平衡翼(605)。
  5. 根据权利要求4所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述反应池(601)采用黑色碳化硅陶瓷柱形坩埚,所述支撑架(602)、平衡器(604)均采用轻型保温砖材料制成。
  6. 根据权利要求1~5中任一项所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述光热升温组件(9)的数量为多个,环绕反应池(601)中心轴线阵列设置在密闭容器(1)外侧,所述加热光束窗口(101)的尺寸和数量以保证各光热升温组件(9)在测量过程中均能正常照射到反应池(601)为准。
  7. 根据权利要求1~5中任一项所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述激光位移监测组件(10)的数量为多个,环绕反应池(601)中心轴线阵列设置在密闭容器(1)外侧,所述位移监测窗口(102)的尺寸和数量以保证各激光位移监测组件(10)在测量过程中均能正常照射到磁悬浮浮子(603)的测量位置为准。
  8. 根据权利要求1~5中任一项所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述密闭容器(1)为圆筒形,所述反应池(601)、磁悬浮浮子(603)和磁悬浮定子(7)在进行测量时均位于其中心轴线上。
  9. 根据权利要求1~5中任一项所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述光热升温组件位移装置(903)采用精密机械臂。
  10. 根据权利要求1~5中任一项所述的基于光热快速升温的磁悬浮热天平,其特征在于:所述密闭容器(1)内还设置有压力监测组件(4)、显微镜(13)和拉曼激光器(14)中的一种或多种。
  11. 一种基于光热快速升温的磁悬浮热天平测量方法,其特征在于:该方法采用如权利要求1所述的磁悬浮热天平对控温条件下测量物料质量变化进行测量,并且包括如下步骤:
    1)称取质量为g 0的测量物料到反应池(601)内;
    2)拆下盖板(12),将反应池(601)放置在磁悬浮浮子(603)的支撑架(602)上,再将磁悬浮浮子(603)放置在盖板(12)中心,将盖板(12)安装到密闭容器(1) 上,调整磁悬浮定子(7)的位置使其位于安装后盖板(12)的中心正下方;
    3)启动磁悬浮装置(6),待磁场稳定后,向上移动磁悬浮定子(7),使磁悬浮浮子(603)悬浮在密闭容器(1)中;
    4)向密闭容器(1)内持续通入维持反应气氛所需的气体,气体从气体进口(2)进入,并从气体出口(11)排出,气体流速控制在实验所需的流速v;
    5)启动激光位移监测组件(10),其所发出的监测激光穿过位移监测窗口(102)照射到磁悬浮浮子(603)的测量位置,对磁悬浮浮子(603)在密闭容器(1)内的实时位置进行测量,上下调节磁悬浮定子(7)位置使磁悬浮浮子(603)悬浮至激光位移监测组件(10)的测量零点位置;
    6)启动光热升温组件(9),光热升温组件(9)的加热光源(901)发出加热光线,穿过加热光束窗口(101)汇聚到反应池(601)上,对反应池(601)进行加热;
    7)控温过程中物料的质量变化使磁悬浮浮子(603)产生位移,位移量由激光位移监测组件(10)进行实时测量,光热升温组件位移装置(903)根据位移量实时调整光热升温组件(9)位置使加热光束始终保持在反应池(601)上;
    8)通过红外测温组件(5)对反应池(601)内测量物料的实时温度进行测量,根据测量得到的实时温度,调整加热光源(901)的加热功率,实现测量物料的精确温控;
    9)记录控温过程中磁悬浮浮子(603)相对于测量零点的位移量,根据位移量转换得到对应的质量。
  12. 根据权利要求11所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:步骤9)中,通过对照实验将实验测得的位移量转换成质量,对照实验包括如下步骤:
    9.1)在初始质量g 0附近均匀取多个质量值,其中最大质量值不小于测量物料在控温过程中质量的最大值,最小质量值不大于测量物料在控温过程中质量的最小值;
    9.2)对其中的每一个质量值g t,称取质量为g t的对照样品加入反应池(601)中进行对照实验,保持磁悬浮装置(6)的各项参数与测试物料所进行的实验相同,调整气体流速v与磁悬浮定子(7)位置与测试物料所进行的实验相同,不启动光热升温组件(9),记录与质量g t对应的位移量x t
    9.3)按前述步骤对所取的每一个质量值进行实验,得到位移量x t与质量g t数据表, 绘制成x t-g t曲线;
    9.4)对测试物料进行实验时,将测量得到的位移量在x t-g t曲线上找点,即可得到对应的质量。
  13. 根据权利要求12所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:步骤9.4)中,对x t-g t曲线进行拟合,得到g t与x t的公式,在对测试物料进行实验时,将测量得到的位移量代入公式中即可得到对应的质量。
  14. 根据权利要求12所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:根据实验需要的数值范围,取多组g 0和v进行对照实验;对于每一组g 0和v,首先在调节磁悬浮定子(7)位置使磁悬浮浮子(603)悬浮至设定的测量零点位置,再保持磁悬浮定子(7)不变,按照步骤9.1)~9.3)得到在g 0和v条件下,x t与g t的对照数据;重复多次进行对照实验,建立包含g 0、v、x t与g t四个量的数据库;在对测量物料进行实验时,根据需要选择一组g 0、v,在数据库中调出对应的x t与g t的对照数据,即可方便地将位移量转换成质量。
  15. 根据权利要求11~14中任一项所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:该方法还包括如下步骤:10)控温过程中对测量物料的实时温度进行记录,与步骤9)换算得到的实时物料质量进行对应,绘制出测量物料质量与温度曲线,以进行热重分析。
  16. 根据权利要求11~14中任一项所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:该方法还包括如下步骤:11)测量完毕后,待反应池(601)冷却,向下移动磁悬浮定子(7)使磁悬浮浮子(603)缓慢下降至盖板(12)上,关闭***电源,拆开盖板(12),取出反应池(601)。
  17. 根据权利要求15所述的基于光热快速升温的磁悬浮热天平测量方法,其特征在于:该方法还包括如下步骤:11)测量完毕后,待反应池(601)冷却,向下移动磁悬浮定子(7)使磁悬浮浮子(603)缓慢下降至盖板(12)上,关闭***电源,拆开盖板(12),取出反应池(601)。
PCT/CN2018/114832 2018-04-11 2018-11-09 基于光热快速升温的磁悬浮热天平及其测量方法 WO2019196401A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/759,361 US10852221B2 (en) 2018-04-11 2018-11-09 Magnetic suspension thermobalance based on quick photothermal heating and measurement method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810320916.3 2018-04-11
CN201810321659.5A CN108956361B (zh) 2018-04-11 2018-04-11 基于光热快速升温的磁悬浮热天平测量方法
CN201810320916.3A CN108956360B (zh) 2018-04-11 2018-04-11 基于光热快速升温的磁悬浮热天平
CN201810321659.5 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019196401A1 true WO2019196401A1 (zh) 2019-10-17

Family

ID=68163975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114832 WO2019196401A1 (zh) 2018-04-11 2018-11-09 基于光热快速升温的磁悬浮热天平及其测量方法

Country Status (2)

Country Link
US (1) US10852221B2 (zh)
WO (1) WO2019196401A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670777A (zh) * 2021-08-26 2021-11-19 中国石油大学(华东) 一种渗吸实验方法
CN113916749A (zh) * 2021-10-28 2022-01-11 中国石油大学(华东) 测定岩心有效孔隙度的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867445B (zh) * 2021-09-26 2022-11-15 华中科技大学 一种基于聚光加热的快速升温***及热重分析法
CN115356232A (zh) * 2022-08-23 2022-11-18 哈尔滨工业大学 原位精准测试钛合金及复合材料氧化门槛温度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240696A (ja) * 2002-02-18 2003-08-27 Mitsubishi Chemicals Corp 吸着材の吸着量測定装置及び吸着材の吸着量測定方法
CN101082517A (zh) * 2007-06-27 2007-12-05 上海中晨数字技术设备有限公司 一种特殊环境下物质重量的计量方法
CN101149285A (zh) * 2007-06-27 2008-03-26 上海中晨数字技术设备有限公司 一种磁悬浮计量装置及其应用
CN103439226A (zh) * 2013-09-03 2013-12-11 中国地质大学(北京) 磁悬浮测定煤页岩中吸附性气体扩散系数的装置及方法
DE102013015342A1 (de) * 2013-09-17 2015-04-09 Jürgen Keller Dynamisch-gravimetrisches Verfahren zur Bestimmung der Menge von Gasen oder Dämpfen,die in dichten oder porösen Feststoffen gelöst sind.
CN205879342U (zh) * 2016-07-13 2017-01-11 上海天美天平仪器有限公司 一种磁悬浮天平
CN106999900A (zh) * 2014-06-23 2017-08-01 沙特***石油公司 通过沸石的受控结构塌陷进行的超小孔铝硅酸盐的合成

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469455A (en) * 1966-04-12 1969-09-30 Chyo Balance Corp Apparatus for measuring changes in the weight of a sample
US4817745A (en) * 1987-12-21 1989-04-04 Beshoory Joseph E Thermogravimetric balance
DE3807212A1 (de) * 1988-03-02 1989-09-14 Theodor Prof Dr Ing Gast Magnetische kupplung zur uebertragung der gewichtskraft aus einem hochdruck-reaktionsraum auf eine registrierende waage
CN2490570Y (zh) * 2001-04-20 2002-05-08 王嘉福 水平式动态热重分析仪
US7416328B2 (en) * 2004-12-28 2008-08-26 Waters Investments Limited System and method for a thermogravimetric analyzer having improved dynamic weight baseline
US20140230577A1 (en) * 2013-02-21 2014-08-21 The University Of Akron Real-time measurement system for monitoring and/or controlling properties of a composition transitioning from liquid state to solid state

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240696A (ja) * 2002-02-18 2003-08-27 Mitsubishi Chemicals Corp 吸着材の吸着量測定装置及び吸着材の吸着量測定方法
CN101082517A (zh) * 2007-06-27 2007-12-05 上海中晨数字技术设备有限公司 一种特殊环境下物质重量的计量方法
CN101149285A (zh) * 2007-06-27 2008-03-26 上海中晨数字技术设备有限公司 一种磁悬浮计量装置及其应用
CN103439226A (zh) * 2013-09-03 2013-12-11 中国地质大学(北京) 磁悬浮测定煤页岩中吸附性气体扩散系数的装置及方法
DE102013015342A1 (de) * 2013-09-17 2015-04-09 Jürgen Keller Dynamisch-gravimetrisches Verfahren zur Bestimmung der Menge von Gasen oder Dämpfen,die in dichten oder porösen Feststoffen gelöst sind.
CN106999900A (zh) * 2014-06-23 2017-08-01 沙特***石油公司 通过沸石的受控结构塌陷进行的超小孔铝硅酸盐的合成
CN205879342U (zh) * 2016-07-13 2017-01-11 上海天美天平仪器有限公司 一种磁悬浮天平

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670777A (zh) * 2021-08-26 2021-11-19 中国石油大学(华东) 一种渗吸实验方法
CN113670777B (zh) * 2021-08-26 2023-08-15 中国石油大学(华东) 一种模拟地层温压条件的页岩渗吸实验方法
CN113916749A (zh) * 2021-10-28 2022-01-11 中国石油大学(华东) 测定岩心有效孔隙度的方法

Also Published As

Publication number Publication date
US10852221B2 (en) 2020-12-01
US20200292432A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019196401A1 (zh) 基于光热快速升温的磁悬浮热天平及其测量方法
CN108956360B (zh) 基于光热快速升温的磁悬浮热天平
CN106268568B (zh) 一种高温熔融材料的静电悬浮装置
KR20140136482A (ko) 화학 증착 챔버 내부의 베이스 가열 제어 장치 및 방법
CN104316430B (zh) 一种单模腔微波热重分析***
WO2018149208A1 (zh) 一种快速升温热重分析仪
CN108956361B (zh) 基于光热快速升温的磁悬浮热天平测量方法
CN104502367A (zh) 一种可进行热化学气相沉积的原位测试平台
CN105891050B (zh) 一种可变磁场高温熔体振荡粘度仪及其快速测量方法
CN113448365A (zh) 交叉辐射对流的高精度控温装置
CN102176796A (zh) 一种用于高温材料的非接触式加热的方法和装置
CN108519402B (zh) 激光法测量超薄玻璃再热线收缩率的装置和方法
CN112858381A (zh) 高速飞行器发动机用隔热材料的隔热性能试验装置及试验方法
CN114964349B (zh) 一种腔室压力测量装置、测量方法及半导体制造设备
JP2016180132A (ja) ダイヤモンド薄膜の製造方法、熱フィラメントcvd装置及びメカニカルシール
WO2019076141A1 (zh) 真空镀膜设备
CN209027283U (zh) 一种用于纳米材料生长的管式炉
CN113292042A (zh) 一种超宽光谱吸收体、制备方法及其在光谱仪中的应用
CN101251948B (zh) 一种用于检测温度型报警器的检测***及检测方法
CN219978134U (zh) 适用于crds设备的衰荡光腔温度控制***
KR100440865B1 (ko) 가열관과 다공성 시료기를 이용한 열중량 분석기
CN209307270U (zh) 一种ptfe粉料激光照射接枝的装置
RU2702695C1 (ru) Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации
CN216227516U (zh) 真空加热装置及真空加热***
CN217052366U (zh) 真空镀膜设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914613

Country of ref document: EP

Kind code of ref document: A1