WO2019196245A1 - 需求响应数字物理混合仿真方法、***及存储介质 - Google Patents

需求响应数字物理混合仿真方法、***及存储介质 Download PDF

Info

Publication number
WO2019196245A1
WO2019196245A1 PCT/CN2018/096603 CN2018096603W WO2019196245A1 WO 2019196245 A1 WO2019196245 A1 WO 2019196245A1 CN 2018096603 W CN2018096603 W CN 2018096603W WO 2019196245 A1 WO2019196245 A1 WO 2019196245A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand response
simulation
demand
response
requirement
Prior art date
Application number
PCT/CN2018/096603
Other languages
English (en)
French (fr)
Inventor
陈宋宋
李德智
闫华光
田世明
覃剑
郭炳庆
石坤
宫飞翔
龚桃荣
钟鸣
董明宇
韩凝晖
卜凡鹏
潘明明
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2019196245A1 publication Critical patent/WO2019196245A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the present invention relates to, but is not limited to, the field of power technology, and in particular, to a demand response digital physical hybrid simulation method, system and storage medium.
  • DR Demand Response
  • DR Demand Response
  • the research on the automatic demand response simulation technology of power system is based on different optimization objectives such as the lowest user consumption and the highest user comfort, and the design of multiple demand response control strategies and verification by simple software simulation, or simply A certain type of demand response resources such as heating ventilation and air conditioning HVAC or electric vehicles to do research and control potential and strategy; not connected with actual user electrical equipment to verify the specific demand response implementation effect, nor can simulate power
  • the automatic demand response service implementation process in the demand response system and the corresponding power flow changes in the power supply area where the user is located in the process.
  • the embodiment of the present invention is expected to provide a demand response digital physical hybrid simulation method and system, which can realize automatic demand response.
  • Business and power supply system simulation and based on semi-physical simulation technology, using the actual equipment or physical simulation equipment to participate in the response process of the demand response business simulation, the feasibility of the relevant programs, plans, strategies, etc. in the simulation system is further check.
  • Embodiments of the present invention provide a demand response digital physical hybrid simulation method, including:
  • the response effect of the simulation requirement is evaluated based on the simulation derivation result.
  • the simulation requirements include: creating a new type and modifying an existing type.
  • the simulation requirement is a new type
  • the control is configured based on the simulation requirement to construct a simulation demand response system, including:
  • a preset communication class control, a participating role class control, and a demand response resource device control are added according to the simulation requirement to construct a communication network layer;
  • the communications network layer and controls in the electrical network layer are configured in accordance with the simulation requirements.
  • the simulation requirement is to modify an existing type
  • the control is configured based on the simulation requirement
  • the simulation requirement response system includes:
  • the communication network layer is updated according to the simulation requirement
  • the updated communication network layer and the controls in the electrical network layer are configured according to the simulation requirements.
  • the simulation is performed based on the simulation requirement and the built simulation demand response system, including at least one of the following:
  • the simulation deduction, the simulation response demand based on the demand response aggregator and the simulated demand response system are simulated and deduced, and the simulation requirements and facilities based on the power user are performed.
  • the simulated demand response system is constructed to simulate the deduction and the simulation requirements based on the power user and the simulated demand response system, and the semi-physical simulation deduction is performed by combining the demand response resource device or the physical simulation device.
  • the power user-based simulation requirement and the built simulation demand response system are combined with the demand response resource device or the physical simulation device to perform a semi-physical simulation deduction, including:
  • the power user demand response terminal acquires a demand response event
  • the power user demand response terminal transmits the demand response event to a demand response resource device or a physical simulation device connected to the simulated demand response system by using the simulated demand response system;
  • the power user demand response terminal performs a demand response based on the demand response resource device or the physical simulation device, and obtains a simulation derivation result according to the demand response event;
  • the demand response event is determined by a simulation requirement of the power demand response service provider or the demand response aggregator of the power user demand response terminal based on the jurisdiction of the power user demand response terminal.
  • the power user demand response terminal sends the demand response event information to the demand response resource device or the physical simulation device connected to the simulated demand response system by using the simulated demand response system, including:
  • the power user demand response terminal transmits the demand response event information from a semi-physical interface in the communication network layer to a demand response resource connected to the semi-physical interface through a communication network layer of the simulated demand response system Equipment or physical simulation equipment;
  • the semi-physical interface belongs to a communication class control in the communication network layer.
  • the power user demand response terminal performs a demand response based on the resource device or the physical simulation device of the demand response, including:
  • the resource device or physical simulation device that responds to the demand automatically participates in the demand response;
  • the resource device or the physical simulation device participates in the demand response based on the response command of the power user demand response terminal.
  • the method before the power user demand response terminal performs the demand response based on the resource device or the physical simulation device of the demand response, the method further includes:
  • the power user demand response terminal sends a solution for executing the demand response event information to the upper-level demand response service provider or the demand response aggregator through the communication network layer of the simulated demand response system to obtain the superior demand response service.
  • the superior demand response service provider or the demand response aggregator is set in the communication network layer according to the participating role class control.
  • the effect of the demand response of the simulation requirement is evaluated based on the simulation deduction result, including:
  • the demand response service provider, the demand response aggregator and the power user demand response terminal respectively evaluate the feasibility of the demand response plan, the demand response plan and the demand response strategy for the demand response effect.
  • the demand response service provider performs a demand response plan, a demand response plan, and a demand response strategy feasibility assessment for the demand response effect, including:
  • the demand response plan, the demand response plan, and the demand response strategy are feasible when the demand response service provider obtains a benefit by conserving power or dissipating the renewable energy amount, which is greater than the economic benefit that should be honored to the user who responds to the demand response.
  • the demand response aggregator evaluates the feasibility of the demand response plan, the demand response plan, and the demand response strategy for the demand response aggregator, including:
  • the total demand response of the user of the demand response aggregator responds to the baseline load, the actual load during the execution of the demand response, and the economic benefits obtained from the superior demand response service provider and should be honored to the participating demand response user. Economic interest;
  • the demand response aggregator When the demand response aggregator obtains an economic benefit from the superior demand response service provider that is greater than the economic benefit that should be fulfilled to the participating demand response user, it is feasible to judge the demand response plan, the demand response plan, and the demand response strategy.
  • the feasibility response plan, the demand response plan, and the demand response strategy are evaluated for the demand response effect of the power user demand response terminal, including:
  • determining the demand response plan, the demand response plan, and the demand response strategy are feasible.
  • the embodiment of the invention further provides a demand response digital physical hybrid simulation system, comprising a basic function module and an advanced function module;
  • the basic function module is configured to select a control that meets a simulation requirement from a preset control, and configure the control based on the simulation requirement to construct a simulation demand response system;
  • the advanced function module is configured to perform simulation derivation based on the simulation requirement and the constructed demand response system, and evaluate the demand response effect based on the simulation deduction result.
  • the basic function module includes a search test unit and a new test unit
  • the search test unit is configured to find a current simulation demand response system according to the simulation requirement
  • the new test unit is configured to newly create a demand response system when there is no simulation demand response system that is compatible with the simulation requirements.
  • the advanced function module includes a plan implementation unit and an effect calculation unit;
  • the plan implementation unit is configured to perform a simulation derivation based on the simulation requirement and the constructed demand response system
  • the effect calculation unit is configured to evaluate the effect of the demand response based on the simulation derivation result, and verify the feasibility of the demand response plan, the demand response plan, and the demand response strategy based on the evaluation result.
  • the embodiment of the invention further provides a demand response digital physical hybrid simulation system, comprising:
  • a memory configured to store a program of demand response digital physical hybrid simulation
  • the processor is configured to run the program, wherein the program is executed to execute the demand response digital physical hybrid simulation method of the embodiment of the present invention.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, wherein the program runs to execute the demand response digital physical hybrid simulation method of the embodiment of the present invention.
  • the embodiment of the present invention constructs a simulation demand response system, performs a demand response simulation derivation and evaluates the deduction result, and can realize the simulation of the automatic demand response service and the simulation of the power supply system.
  • the embodiment of the present invention is based on the hardware-in-the-loop simulation technology, and the feasibility of the relevant scheme, plan, strategy, etc. in the simulation system can be further verified by the actual device or physical simulation device in the response process of participating in the demand response service simulation implementation process.
  • the embodiments of the present invention can provide services such as demand response service providers, demand response aggregators, and power user demand response terminals, such as demand response service simulation organization implementation, simulation participation, implementation effect simulation evaluation, etc., and support demand response implementing agencies. Carry out demand response business simulation deduction, personnel training and other work.
  • the embodiment of the present invention can provide a systematic simulation test tool for universities and scientific research institutions engaged in demand response scientific research work.
  • FIG. 1 is a schematic flowchart of a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an electrical layer in a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a communication network layer in a demand response digital physical hybrid simulation method according to the present invention.
  • FIG. 4 is a schematic diagram of an initialization process in a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a simulation process of a demand response service provider in a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a demand response aggregator simulation derivation process in a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a simulation process of a power user demand response terminal in a demand response digital physical hybrid simulation method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a simulation process of a power user demand response terminal in a hardware-in-the-loop simulation of a demand response digital physical hybrid simulation method according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a demand response digital physical hybrid simulation system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a demand response digital physical hybrid simulation system according to an embodiment of the present invention.
  • Embodiments of the present invention provide a demand response digital physical hybrid simulation method, system, and storage medium, which can implement demand response service and power supply system simulation, and based on the hardware-in-the-loop simulation technology, can participate in demand response by using actual equipment or physical simulation equipment.
  • the response effect in the business simulation implementation process is verified by the feasibility of related schemes, plans, strategies, etc. in the simulation system.
  • the power supply system simulation is designed to complete the change of the distribution network power flow after the demand response service is implemented under the demand response service, especially in the peak-sharing and renewable resource consumption scenarios, and the power absorption and release of the demand response resource equipment. Analysis task of the situation;
  • the automatic demand response business simulation aims to complete the tasks of designing simulation processes for different participating roles, constructing automatic demand response tests, simulating demand response business implementation according to actual operational processes of power demand response services, and evaluating demand response effects.
  • Embodiments of the present invention provide a digital dynamic hybrid simulation method for demand response, as shown in FIG. 1 , including:
  • Step 1 Select a control that meets the simulation requirements from the preset controls, and configure the control based on the simulation requirements to build a simulation demand response system;
  • Step 2 Perform simulation based on the simulation requirements and the constructed simulation demand response system
  • Step 3 Evaluate the response effect of the simulation requirements based on the simulation derivation results.
  • Step 1 is the simulation initialization
  • step 2 is the simulation deduction
  • step 3 is the demand response effect.
  • Simulation initialization Mainly to do the preparation work of demand response business simulation, also called simulation simulation state.
  • the user of the simulation system that is, the demand response participant, builds a demand response system suitable for his own simulation needs by calling different types of preset controls, including the construction of the communication network layer, the construction of the electrical network layer, and the evaluation index.
  • Selection and setting wherein the communication network layer mainly includes a communication type control, a participation role type control, and a demand response resource device control; the electrical network layer mainly includes a line control, a transformer control, a circuit breaker control, a bus control, and a demand response resource device. Controls, etc.
  • the electrical layer is shown in Figure 2. It includes the power supply side and the demand side.
  • the power supply side is connected to the external power supply through a transformer, and includes a circuit breaker.
  • the demand side is connected to each power user demand response terminal (ie, each demand response resource device), such as an industrial user. Terminals, commercial user terminals, and/or resident user terminals, including: distributed power supplies, energy storage devices, water pumps, fans, air conditioning units, lighting loads, electric water heaters, refrigerators, and other loads.
  • the demand response network layer is shown in Figure 3 and consists of multiple levels.
  • the top layer is the demand response DR service system.
  • the DR service system connects to one or more DR aggregation systems of the second layer.
  • the user energy management system, the automatic demand response terminal, and the interface are located at the third layer of the demand response network layer, and are respectively connected to the DR aggregation system; wherein the interface in the demand response network layer is a semi-physical interface.
  • the user energy management system manages the underlying demand response resource device on a user-by-user basis, and the automatic demand response terminal directly manages the underlying demand response resource device.
  • Demand response resource equipment includes: central air conditioners, electric boilers, batteries, gas generators, refrigerators, electric water heaters and washing machines.
  • the simulation initialization process can be performed by establishing a new simulation demand response system and opening the existing simulation demand response system, the simulation initialization process, and the contents of each link, as shown in FIG. 4 .
  • Step 1-1a New simulation demand response system
  • Step 1-2a adding a communication control
  • Step 1-3a Add a participating role control
  • Step 1-4a Add a demand response resource device control
  • Step 1-5a generating a communication network layer
  • Step 1-6a adding an electrical network layer control corresponding to the communication network layer
  • Step 1-7a generating an electrical network layer
  • Step 1-8 Simulate the requirements response system parameter configuration
  • Steps 1-9 Save the simulation demand response system test.
  • Step 1-1b Open an existing simulation demand response system
  • Step 1-2b increase or decrease the communication control
  • Step 1-3b increase or decrease the participation role control
  • Step 1-4b increasing or decreasing the demand response resource device control
  • Step 1-5b update the communication network layer
  • Step 1-6b increasing or decreasing the electrical network layer control corresponding to the communication network layer
  • Step 1-7b update the electrical network layer
  • Step 1-8 Simulate the requirements response system parameter configuration
  • Step 1-9 Simulate the demand response system simulation test.
  • the simulation demand response system parameter configuration link is mainly for the simulation related demand response business scenario, demand response project, demand response plan, demand response event, user energy behavior, demand response resource device participation demand response strategy and demand response resource. Seven types of information, such as device attribute parameters, configure the parameters of the control.
  • the configuration process is divided into a manual configuration process and an automatic configuration process.
  • the manual configuration process is only for one demand response service provider, 3-5 demand response aggregators, 2-3 industrial users, 2-3 business users, and 2-3 resident users in each trial. The role is done through automatic configuration.
  • Step 1-8-1 Demand response business scenario configuration: use the demand response business scenario model provided by the system to construct a scenario that supports the demand response business, such as the power grid peaking demand and the renewable energy consumption demand issued by the grid enterprise marketing department. Wait.
  • Step 1-8-2 Demand Response Project Configuration: The demand response project is established by two types of roles: demand response service provider and demand response aggregator, and is distributed to the power user demand response terminal participating in the demand response.
  • demand response service providers Using the demand response project model provided by the system, the only demand response service providers in the simulation test are constructed to meet the demand response projects of their interests, including electricity price-based projects and incentive-based projects.
  • demand response aggregators There can be multiple demand response aggregators in a simulation test. For each demand response aggregator's interest appeal, each demand response aggregator can choose whether to follow the needs of the superior demand response service provider.
  • Responsive project for the demand response aggregator that is not used, the system can provide a demand response project model for the establishment of demand response projects that meet their own interests, including electricity-based projects and incentive-based projects.
  • Step 1-8-3 Requirements Response Plan Configuration: (1) For the demand response service provider: For the specific demand response business scenario, the demand response service provider establishes a demand response plan based on the demand response plan model provided by the system, and initiates, The demand response plan will be sent to the subordinate demand response aggregators according to the execution process, as well as the individual power users directly under the jurisdiction. (2) For demand response aggregators: demand response aggregators according to the demand response plan received from the superior demand response service providers, combined with their own demand response projects, based on the demand response plan model provided by the system to further develop the needs to meet their own interests. The response plan is sent to each power user under its jurisdiction.
  • Step 1-8-4 Requirements Response Event Configuration: According to the requirements response project requirements or specific requirements response plan execution requirements, the demand response service providers are oriented to the demand response aggregators, the demand response service providers, and the demand response aggregators are directed to the powers under their jurisdiction. The user needs to respond to the terminal and issue relevant information in the form of a demand response event, such as electricity price information and incentive information.
  • the system provides a demand response event model, which supports the demand response service provider and the demand response aggregator to generate a demand response event in a specific demand response project or a demand response plan, and is distributed to lower level users.
  • Step 1-8-5 User energy behavior configuration: The user's energy behavior directly affects the response capability of the demand response resource device in the process of participating in the demand response process.
  • the system provides the user energy behavior model, and the user uses the energy behavior model to the user.
  • the impact of the energy behavior on the responsiveness of the user's demand response resource device is quantified in terms of time dimension.
  • Step 1-8-6 Demand response resource device participation demand response policy configuration: The system provides a demand response strategy model, and combines different demand response resource device control modes to support the demand response resource device to automatically respond according to the superior demand response event requirement.
  • Step 1-8-7 Requirements response resource device attribute parameter configuration: The system provides a demand response information model of a typical demand side device, and configures attribute information and response parameters of the demand response resource device.
  • the simulation demand response system simulates the demand response service implementation according to the set demand response service trigger condition and the parameters configured in the previous step, according to the actual operation process of the power demand response service.
  • information is transmitted between various controls within the communication network, and the power flow calculation and analysis are performed within the electrical network along with the demand response service simulation implementation process.
  • the simulation deduction process is designed for demand response service provider users, demand response aggregator users and power users.
  • power users include industrial users, business users and individual users.
  • Step 2-1-1 The DR service provider terminal waits for the demand response implementation requirement
  • Step 2-1-2 The DR service provider terminal analyzes the currently available demand response resources according to the demand response resource library under the jurisdiction;
  • Step 2-1-3 The DR service provider terminal formulates a demand response plan that meets its own interests according to the existing demand response project type;
  • Step 2-1-4 The DR service provider terminal sends the DR plan information to the demand response aggregator user terminal and the directly connected power user demand response terminal in the form of a demand response event;
  • Step 2-1-5 Waiting for the feedback of the demand response aggregator user terminal, waiting for the direct connection power user demand response terminal feedback;
  • Step 2-1-6 According to the received demand response, the aggregator user feedback information and the power user feedback information, and the current response capacity is counted;
  • Step 2-1-7 Determine whether the planned implementation time has been reached. If yes, go to step 2-1-8, otherwise go to step 2-1-9:
  • Step 2-1-8 The DR service provider terminal confirms the participation DR user list, and sends the confirmation information to the participating DR user terminal to end the deduction process;
  • Step 2-1-9 Determine whether the response amount meets the grid demand, and if yes, go to step 2-1-8, otherwise go to step 2-1-10;
  • Step 2-1-10 Send relevant plan information to the unresponsive demand response aggregator terminal and the power user demand response terminal and return to step 2-1-5.
  • Step 2-2-1 The DR aggregator terminal waits for the DR plan of the superior demand response service provider
  • Step 2-2-2 The DR aggregator terminal analyzes the currently available demand response resources according to the demand response resource library under the jurisdiction;
  • Step 2-2-3 The DR aggregator terminal formulates a demand response plan that satisfies its own interests according to the existing demand response project type;
  • Step 2-2-4 The DR aggregator terminal sends relevant plan information to the directly connected power user demand response terminal in the form of a demand response event;
  • Step 2-2-5 Waiting for the direct connection power user demand response terminal feedback
  • Step 2-2-6 According to the received power user demand response terminal feedback information, the current response capacity is counted;
  • Step 2-2-7 Determine whether the feedback deadline specified by the superior DR service provider has been reached, and if yes, go to step 2-2-8, otherwise go to step 2-2-9;
  • Step 2-2-8 feedback the response capacity of the upper DR service provider, and proceed to step 2-2-11;
  • Step 2-2-9 Determine whether the response amount meets the requirements of the DR program of the superior DR service provider, and if yes, go to step 2-2-8, otherwise go to step 2-2-10;
  • Step 2-2-10 Send relevant plan information to the unreported power user demand response terminal and return to step 2-2-5.
  • Step 2-2-11 Waiting for the confirmation information of the upper DR service provider terminal
  • Step 2-2-12 According to the requirements of the superior DR service provider, organize the implementation of the demand response and end the deduction process.
  • Step 2-3-1 The power user demand response terminal accepts the demand response event
  • Step 2-3-2 Determine whether all the DR resource devices under the jurisdiction automatically participate in the response, and if yes, go to step 2-3-3; otherwise, go to step 2-3-4;
  • Step 2-3-3 automatically execute the demand response plan and inform the user to participate in the plan, and end the deduction process;
  • Step 2-3-4 Determine whether the participating DR resource device supports automatic DR. If yes, go to Step 2-3-5, otherwise go to Step 2-3-7.
  • Step 2-3-5 Generate a scheme for automatically participating in the DR
  • Step 2-3-6 Pushing a scheme of the DR resource device under its jurisdiction to participate in the DR to the power user demand response terminal;
  • Step 2-3-7 The power user demand response terminal determines whether the DR resource device participates in the DR, and if yes, proceeds to step 2-3-8, otherwise the deduction process ends;
  • Step 2-3-8 The power user demand response terminal selects the DR resource equipment participating in the DR according to its own energy demand and feeds back to the upper DR service provider or the DR aggregator to end the deduction process.
  • Demand response effect evaluation The system uses the demand response effect evaluation model provided by the simulation test platform for the three types of roles involved in the demand response, and calculates the three types of roles related to the demand response service provider user, the demand response aggregator user, and the power user. Demand response effect. The following is a detailed description of the requirements response effect evaluation provided by the system for these three types of roles:
  • the demand response effectiveness evaluation process includes:
  • Step 3-1-1 The advanced function module calculates the participation effect of the user of the demand response service provider and the user's demand response resource in each demand response plan according to the deduction result, including: the number of user participation, the number of responding users, and the response.
  • Step 3-1-2 Calculate the total demand response baseline load of the user under the jurisdiction of the demand response service provider, and the actual load during the execution of the demand response. Calculate the difference between the baseline load and the actual load through the organization to implement the demand response. Realizing the saving of electricity or the consumption of renewable energy;
  • Step 3-1-3 Combine the demand response project of the demand response service provider to calculate the economic benefits that should be honored to the participating demand response users.
  • Step 3-1-4 Determine the demand response plan, demand response plan, and demand response when the demand response service provider obtains a benefit that is greater than the economic benefit that should be redeemed to the user who responds to the demand response by conserving power or consuming renewable energy.
  • the strategy is feasible.
  • the demand response effectiveness assessment process includes:
  • Step 3-2-1 The advanced function module calculates the participation effect of the user in the demand response aggregator and the user's demand response resource device in each demand response plan according to the deduction result, including: the number of user participation, the number of responding users, and Responding to the demand response resource device capacity, wherein the user of the demand response aggregator includes a power user;
  • Step 3-2-2 Calculate the total demand response baseline load of the user under the jurisdiction of the demand response aggregator, and the actual load during the execution of the demand response. Calculate the difference between the baseline load and the actual load through the organization to implement the demand response. Realizing the saving of electricity or the consumption of renewable energy;
  • Step 3-2-3 Combine the demand response project of the demand response aggregator to calculate the economic benefits that should be honored to the participating demand response users;
  • Step 3-3-4 Calculate the economic benefits obtained from the superior demand response service provider
  • Step 3-3-5 When the demand response aggregator obtains the economic benefit from the superior demand response service provider is greater than the economic benefit that should be fulfilled to the participating demand response user, it is feasible to judge the demand response plan, the demand response plan, and the demand response strategy.
  • the demand response effectiveness assessment process includes:
  • Step 3-3-1 The advanced function module calculates the actual load and the baseline load in the demand response process of the power user demand response terminal according to the derivation result, and calculates the difference between the baseline load and the actual load through the organization to implement the demand response. Saving electricity or consuming renewable energy;
  • Step 3-3-2 Calculate the economic benefits that can be obtained by participating in the demand response
  • Step 3-3-3 Calculate the cost of participating in the demand response
  • Step 3-3-4 When the economic benefit of the power user demand response terminal participating in the demand response is greater than the cost of participating in the demand response, it is feasible to judge the demand response plan, the demand response plan, and the demand response strategy.
  • the power user demand response terminal includes industrial users, commercial users and resident users.
  • the semi-physical simulation is similar to the software simulation. There are three main working states, including simulation initialization state, simulation deduction state, and demand response effect evaluation state.
  • the overall operation process of the simulation system is shown in Figure 5; and the semi-physical simulation workflow and software simulation work. The difference between the processes is that in the software simulation workflow, all the data information is exchanged through the virtual communication network, and in the semi-physical simulation workflow, the demand response event or the specific regulation information of the demand response resource device needs to be transmitted to the outside world.
  • the real demand responds to resource equipment or physical simulation equipment, and reflects the corresponding demand response resource equipment controls in the communication network and electrical network of the simulation test platform (in a more significant and conspicuous manner).
  • the simulation derivation process of the mid-power user demand response terminal of the semi-physical simulation is different from the simulation deduction process in the software simulation.
  • the main simulation derivation process is shown in Figure 8, and the process is as follows:
  • Step 2-4-1 Accept the demand response event
  • Step 2-4-2 determining whether all the DR resource devices under the jurisdiction automatically participate in the response, and if yes, proceed to step 2-4-3, otherwise, proceed to step 2-4-4;
  • Step 2-4-3 Generate an automatic demand response plan and inform the user to participate in the plan, and proceed to steps 2-4-9;
  • Step 2-4-4 Determine whether the participating DR resource device supports automatic DR, and if yes, go to Step 2-4-5, otherwise go to 2-4-7;
  • Step 2-4-5 Generate a scheme for automatically participating in the DR
  • Step 2-4-6 Pushing a scheme of the DR resource device under its jurisdiction to participate in the DR to the power user demand response terminal;
  • Step 2-4-7 The power user demand response terminal determines whether the DR resource device participates in the DR, and if yes, proceeds to step 2-4-8, otherwise the deduction process ends;
  • Step 2-4-8 The power user demand response terminal selects the DR resource device participating in the DR according to its own energy requirement;
  • Step 2-4-9 Send the demand response plan through the semi-physical interface.
  • the demand response solution that is, the demand response event information or the specific regulation information, is sent to the real demand response resource device or the physical simulation device of the external participating DR through the semi-physical interface;
  • Step 2-4-10 Feedback the demand response scheme through the semi-physical interface.
  • the real demand response resource device or the physical simulation device of the outside world sends the feedback information of the demand response scheme to the power user demand response terminal through the semi-physical interface;
  • Step 2-4-11 feedback to the upper DR service provider or DR aggregator
  • Step 2-4-12 Wait for the upper-level DR service provider or DR aggregator to confirm the feedback information
  • Step 2-4-13 Perform the demand response according to the DR plan, and end the deduction process.
  • the embodiment of the invention further provides a semi-physical simulation method, comprising:
  • the semi-physical simulation is similar to the software simulation. There are three main steps, including simulation initialization, simulation derivation and demand response effect evaluation.
  • the overall process of the simulation method is shown in Figure 1.
  • the difference between the semi-physical simulation workflow and the software simulation workflow is: In the software simulation workflow, all data information is exchanged through the virtual communication network, and in the hardware-in-the-loop simulation workflow, the demand response event information of the demand response resource device or the specific regulation information needs to be transmitted to the outside world. Resource equipment or physical simulation equipment, and corresponding demand response resource equipment controls are embodied in the communication network and electrical network of the simulation test platform.
  • the simulation derivation process of the mid-power user demand response terminal of the hardware-in-the-loop simulation is different from the simulation deduction process in the software simulation.
  • the main work flow is shown in Figure 8, and the process is as follows:
  • Step 2-4-1 The power user demand response terminal accepts the demand response event
  • Step 2-4-2 The power user demand response terminal determines whether all the DR resource devices under the jurisdiction automatically participate in the response, and if yes, proceeds to step 2-4-3, otherwise, proceeds to step 2-4-4;
  • Step 2-4-3 Generate an automatic demand response plan and inform the user to participate in the plan, and proceed to steps 2-4-9;
  • Step 2-4-4 Determine whether the participating DR resource device supports automatic DR, and if yes, go to Step 2-4-5, otherwise go to 2-4-7;
  • Step 2-4-5 Generate a scheme for automatically participating in the DR
  • Step 2-4-6 Pushing a scheme of the DR resource device under its jurisdiction to participate in the DR to the power user demand response terminal;
  • Step 2-4-7 The power user demand response terminal determines whether the DR resource device participates in the DR, and if yes, proceeds to step 2-4-8, otherwise the deduction process ends;
  • Step 2-4-8 The power user demand response terminal selects the DR resource device participating in the DR according to its own energy requirement;
  • Step 2-4-9 sending the demand response solution, that is, the demand response event information or the specific regulation information, to the real demand response resource device or the physical simulation device of the external DR participating through the semi-physical interface;
  • Step 2-4-10 The real demand response resource device or the physical simulation device of the outside world sends the feedback information of the demand response scheme to the power user demand response terminal through the semi-physical interface;
  • Step 2-4-11 feedback to the upper DR service provider or DR aggregator
  • Step 2-4-12 Wait for the upper-level DR service provider or DR aggregator to confirm the feedback information
  • Step 2-4-13 Perform the demand response according to the DR plan, and end the deduction process.
  • An embodiment of the present invention further provides a demand response digital physical hybrid simulation system, and a schematic structural diagram thereof is shown in FIG. 9 , including: a basic function module and an advanced function module that communicates with the basic function module;
  • the basic function module is configured to select a control that meets the simulation requirement from the preset control, and configure the control based on the simulation requirement, and build a simulation demand response system;
  • the advanced function module is configured to perform simulation derivation based on the simulation requirement and the constructed demand response system, and evaluate the demand response effect based on the simulation deduction result.
  • the basic function module is configured to support the construction of the simulation scenario in the simulation example, the operation of the demand response service, the electrical layer of the demand response implementation effect calculation, and the demand response network layer, and manage the actual device or physical simulation device of the access simulation system. ;
  • the advanced function module provides the functions of the whole process simulation simulation of the demand response business implementation for different demand response participants and evaluates the demand response effect;
  • the demand response participants include demand response service providers, demand response aggregators, and power users
  • the power users include industrial users, commercial users, and/or resident users.
  • the embodiment of the invention further provides a demand response digital physical hybrid simulation system, and a schematic structural diagram thereof is shown in FIG.
  • the simulation system mainly includes basic function modules and advanced function modules.
  • the basic function module is configured to establish a physical model of the physical device and the participating role related to the demand response, and establish a virtual mapping network corresponding to the actual demand response network; the advanced function module mainly completes the requirement on the basis of the virtual mapping network.
  • the two functional modules cooperate with each other to support different users to complete the automatic demand response simulation, realize the automatic demand response service and the power supply system simulation, and based on the hardware-in-the-loop simulation technology, the actual equipment or physical simulation equipment can be used to participate in the demand response business simulation.
  • the basic function module is configured to establish an electrical layer and a demand response network layer for supporting the construction of the simulation scenario in the simulation instance, the operation of the demand response service, and the calculation of the demand response implementation effect, to support the construction of the simulation scenario in different simulation examples. , demand response business operation, demand response implementation effect calculation.
  • the basic function module includes a new test unit, a search test unit, a digital model management unit, a physical device management unit, an interface management unit, and an entry test unit.
  • a new test unit is configured to construct an electrical layer and a demand response network layer for the new simulation demand response system; building a network layer includes creating and supplementing a resource device model, a communication class model, a role class model, and an interface class model.
  • the necessary equipment can be selected from different models to complete the construction of the network topology diagram.
  • the construction of the electrical layer is to create and manage the power supply and distribution system graphical model and data model, and provide the data model and the graphical display of the results for the system operation simulation. , completes the operation of dragging and dropping elements, automatic generation of primitive connection, device pattern copying, pasting, deleting operation, primitive layout, device attribute setting, device attribute display, and graphic model export, and is used to display power related attributes.
  • Find the test unit configure it to look up existing tests, and display specific information, including test name, creation date, creator, number of runs, and simulation area.
  • a digital model management unit configured to manage information of a digital model, add, modify, and delete attributes of the digital model, and support the demand response participant to define a new digital model that meets the requirements according to its own situation; wherein the digital model includes communication Model, resource equipment model, demand response role model, demand response project model, user behavior model, demand response planning model, demand response response event model, and demand response strategy model.
  • the physical device management unit is configured to display the actual demand response resource device of all the demand responding participants, and the detailed information of the device can be displayed when a certain device is selected.
  • An interface management unit configured to manage a semi-physical interface and a data import interface.
  • the data import interface can automatically import some external data to the simulation platform to save manpower; interact with the actual physical device or the actual physical simulation device through the semi-physical interface, on the one hand, the simulation platform can collect the data of the physical device, and the other
  • the aspect can issue a control command to the above physics, and implement the model correction of the simulation software and the verification of the actual implementation effect of the DR in the simulation platform through the above functions.
  • the digital model management unit, the physical device management unit, and the interface management unit support the implementation of the new simulation demand response system function, and provide a model for constructing an electrical layer and a demand response network.
  • the configuration is to select the corresponding type of management interface to enter the test with the demand response participant, to enter the advanced function module, and realize the full process simulation of the demand response service implementation.
  • the advanced function module has designed different functional units for demand response service providers, aggregator users and power users, among which power users include industrial, commercial and residential users.
  • Demand response service provider-aggregator subscriber unit configured to provide demand response service provider and/or demand response aggregator with full-process simulation of demand response service implementation;
  • industrial-commercial-resident subscriber unit configured for industrial users , commercial users and/or resident users provide the full-process simulation of demand response business implementation.
  • the demand response service provider-aggregator subscriber unit includes: a first user management subunit, a first resource management subunit, a project management subunit, a plan management subunit, a plan implementation subunit, and an effect calculation subunit.
  • the first user management sub-unit is configured to display the first user basic information and the demand response capability, that is, the first user's subscription user, the participating user, the response capability, and the historical response times, and configured to search the basic information of the subscription user,
  • the modification and deletion are further configured to add a new first user to simulate the demand response user registration process; wherein the first user includes a demand response service provider and a demand response aggregator; wherein the demand response service provider's subscription user includes a demand response service
  • the contracted demand responds to aggregators, industrial users, commercial users, and resident users.
  • the contracted users of demand response aggregators include industrial users, commercial users, and resident users contracted with demand response aggregators.
  • the first resource management sub-unit is configured to display detailed information of the demand response resource device in the first user management scope, and may find the information of the demand response resource device that is to be understood by searching, and add and modify the information of the demand response resource device. And delete, providing simulation capabilities for the organization process of demand response resources.
  • the project management sub-unit is configured to display the information of the demand response item, and can find the desired item by searching, and display the detailed information of the corresponding item below the item, and can newly create, modify, and delete the item attribute, and provide Simulation capabilities for demand response project management processes.
  • the plan management sub-unit is configured to operate on the demand response plan, query existing plans, display all plan lists, and create new plans and implement them to provide simulation functions for the demand response plan management process.
  • the plan implementation sub-unit is configured to display the information of the first user corresponding to the historical plan and the historical plan and the network diagram completed by the first user during the new test, and show the dynamic implementation process of the specific demand response event, that is, the DR event can be displayed.
  • the flow of information flow during the execution process and the process of planning release and response provide simulation capabilities for the implementation process of the demand response plan.
  • the effect calculation sub-unit is configured to calculate the power saving calculation and the consumption of the power consumption by the difference between the baseline load and the actual load curve of the contracted user participating in the demand response for all the contracted users in the first user jurisdiction, and display the corresponding data analysis.
  • Diagram providing a static representation of the effect of demand response.
  • the industrial-commercial-resident user unit includes: a second user management sub-unit, a second resource management sub-unit, a response management sub-unit, an information query sub-unit, and a response effect management sub-unit.
  • the second user management sub-unit is configured to display the information of the second user, the power consumption status of each power device, and the historical response situation, wherein the second user includes an industrial user, a commercial user, and a resident user.
  • the second resource management sub-unit is configured to display parameters and attributes of the demand response resource device of the second user, and perform new creation, modification, and deletion on parameters and attributes of the resource response device of the second user, and add as needed / Delete demand response resource device.
  • the response management sub-unit is configured to query the demand response item of the second user participation, and display the information of the project and the demand response resource device of the participating project.
  • the information query subunit is configured to display the detailed second user's personal information and power usage, and query the second user's physical requirement response resource device basic information.
  • the response effect management sub-unit is configured to calculate a response effect of the second user and perform corresponding data analysis.
  • the embodiment of the invention further provides a demand response digital physical hybrid simulation system, comprising:
  • a memory configured to store a program of demand response digital physical hybrid simulation
  • the processor is configured to run the program, wherein the program is executed to execute the demand response digital physical hybrid simulation method of the embodiment of the present invention.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种需求响应数字物理混合仿真方法、***及存储介质,包括:从预先设定的控件中选择满足仿真需求的控件,并基于仿真需求对所述控件进行配置,搭建仿真需求响应***;基于仿真需求和搭建的仿真需求响应***进行仿真推演;基于仿真推演结果对仿真需求的响应效果进行评估。

Description

需求响应数字物理混合仿真方法、***及存储介质
相关申请的交叉引用
本申请基于申请号为201810304698.4、申请日为2018年04月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及但不限于电力技术领域,尤其涉及一种需求响应数字物理混合仿真方法、***及存储介质。
背景技术
需求响应(Demand Response,DR)指用户对价格或者激励信号做出响应,并改变正常电力消费模式,从而实现用电优化和***资源的综合优化配置,是电力需求侧管理的重要技术手段。其发展对需求侧资源优化配置、消纳新能源、实现削峰填谷具有极大的促进作用。但由于当前存在需求响应机制无法满足多元化市场需求、需求响应资源类型单一、需求响应计划缺少验证优化手段以及缺乏开展需求响应相关业务技术培训手段等问题,因此目前亟需开展自动需求仿真相关技术的研究、研发自动需求响应仿真***。通过仿真手段可对需求响应计划实施效果进行评析、验证多元化需求响应调控策略以及开展需求响应业务人员的培训工作,从而有助于促进需求响应行业的发展、扩大需求响应市场、扩展新型电力市场业务以及优化整合需求侧资源、消纳可再生能源,提高电网有序稳定运行能力。
相关技术中,电力***自动需求响应仿真技术的研究多为基于不同的优化目标如用户消费最低、用户舒适度最高等设计多种需求响应控制策略以及通过单纯的软件仿真进行验证,或者单纯地针对某一类需求响应资源 如供热通风与空气调节HVAC或电动汽车做调控潜力与策略的研究;并没有与实际的用户用电设备相连接来验证具体的需求响应实施效果,也不能够模拟电力需求响应***中自动需求响应业务实施过程以及过程中用户所处的供电区域内相应的电力潮流变化等情况。
发明内容
为克服相关技术中缺乏用于验证实际用户用电设备参与需求响应后实际使用效果的仿真***的不足,本发明实施例期望提出一种需求响应数字物理混合仿真方法和***,能够实现自动需求响应业务以及供用电***仿真,同时基于半实物仿真技术,利用实际设备或物理仿真设备在参与需求响应业务模拟实施过程中的响应效果,对仿真***中相关方案、计划、策略等的可行性进一步校验。
本发明实施例提供一种需求响应数字物理混合仿真方法,包括:
从预先设定的控件中选择满足仿真需求的控件,并基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***;
基于所述仿真需求和所述搭建的仿真需求响应***进行仿真推演;
基于仿真推演结果对所述仿真需求的响应效果进行评估。
上述方案中,所述仿真需求包括:新建类型和修改已有类型。
上述方案中,所述仿真需求为新建类型,所述基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***,包括:
新建仿真需求响应***;
在新建的仿真需求***中按照仿真需求添加预先设定的通信类控件、参与角色类控件和需求响应资源设备控件,以构建通信网络图层;
对应所述通信网络图层,添加预先设定的线路控件、变压器控件、断路器控件、母线控件和需求响应资源设备控件,以构建电气网络图层;
根据所述仿真需求,对所述通信网络图层和电气网络图层中的控件进 行配置。
上述方案中,所述仿真需求为修改已有类型,所述基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***包括:
在已有的仿真需求响应***中,基于预先设定的通信类控件、参与角色类控件和需求响应资源设备类控件,根据仿真需求进行修改,更新通信网络图层;
在所述更新了通信网络图层的已有的仿真实验需求响应***中,基于预先设定的线路类控件、变压器类控件、断路器类控件、母线类控件和需求响应资源设备类控件,对相应的电气网络图层进行更新;
根据所述仿真需求,对更新后的所述通信网络图层和电气网络图层中的控件进行配置。
上述方案中,所述基于所述仿真需求和所述搭建的仿真需求响应***进行仿真推演,包括以下至少之一:
基于需求响应服务商的仿真需求和所述搭建的仿真需求响应***进行仿真推演、基于需求响应聚合商的仿真需求和所述搭建的仿真需求响应***进行仿真推演、基于电力用户的仿真需求和所述搭建的仿真需求响应***进行仿真推演以及基于电力用户的仿真需求和所述搭建的仿真需求响应***并结合需求响应资源设备或物理仿真设备进行半实物仿真推演。
上述方案中,所述基于电力用户的仿真需求和所述搭建的仿真需求响应***并结合需求响应资源设备或物理仿真设备进行半实物仿真推演,包括:
电力用户需求响应终端获取需求响应事件;
所述电力用户需求响应终端通过所述仿真需求响应***将所述需求响应事件发送到连接至所述仿真需求响应***的需求响应资源设备或物理仿真设备;
根据所述需求响应事件,所述电力用户需求响应终端基于所述需求响应资源设备或物理仿真设备进行需求响应,获取仿真推演结果;
其中,所述需求响应事件由所述电力用户需求响应终端的上级需求响应服务商或需求响应聚合商基于管辖的电力用户需求响应终端的仿真需求制定。
上述方案中,所述电力用户需求响应终端通过所述仿真需求响应***将所述需求响应事件信息发送到连接至所述仿真需求响应***的需求响应资源设备或物理仿真设备,包括:
所述电力用户需求响应终端通过所述仿真需求响应***的通信网络图层,从通信网络图层中的半实物接口将所述需求响应事件信息发送到连接至所述半实物接口的需求响应资源设备或物理仿真设备;
其中,所述半实物接口属于所述通信网络图层中的通信类控件。
上述方案中,所述电力用户需求响应终端基于所述需求响应的资源设备或物理仿真设备进行需求响应,包括:
需求响应的资源设备或物理仿真设备自动参与需求响应;
或者,基于电力用户需求响应终端的响应指令,资源设备或物理仿真设备参与需求响应。
上述方案中,所述电力用户需求响应终端基于所述需求响应的资源设备或物理仿真设备进行需求响应之前,还包括:
所述电力用户需求响应终端将执行所述需求响应事件信息的方案通过所述仿真需求响应***的通信网络图层发送给上级需求响应服务商或需求响应聚合商,以获取所述上级需求响应服务商或需求响应聚合商的确认信息;
其中,所述上级需求响应服务商或需求响应聚合商在所述通信网络图层中根据所述参与角色类控件设置。
上述方案中,所述基于仿真推演结果对所述仿真需求的需求响应效果进行评估,包括:
基于仿真推演结果,分别针对需求响应服务商、需求响应聚合商和电力用户需求响应终端对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估。
上述方案中,基于仿真推演结果,针对需求响应服务商对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
根据仿真推演结果,计算所述需求响应服务商管辖的用户的总的需求响应基线负荷、在需求响应执行过程中的实际负荷,以及应该向参与需求响应的用户兑现的经济利益;
通过基线负荷与实际负荷的差值计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
当所述需求响应服务商通过节约电力或消纳可再生能源电量获取的收益大于应该向参与需求响应的用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
上述方案中,基于仿真推演结果,针对需求响应聚合商对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
根据仿真推演结果所述需求响应聚合商管辖的用户的总的需求响应基线负荷、在需求响应执行过程中的实际负荷,以及从上级需求响应服务商获得的经济利益和应该向参与需求响应用户兑现的经济利益;
通过所述基线负荷与实际负荷的差值计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
当所述需求响应聚合商从上级需求响应服务商获得的经济利益大于应 该向参与需求响应用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
上述方案中,基于仿真推演结果,针对电力用户需求响应终端对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
根据仿真推演结果计算所述电力用户需求响应终端参与需求响应的成本和获得的经济效益;
当所述电力用户需求响应终端参与需求响应获得的经济效益大于参与需求响应的成本时,判断需求响应方案、需求响应计划和需求响应策略可行。
本发明实施例还提供一种需求响应数字物理混合仿真***,包括基础功能模块和高级功能模块;
所述基础功能模块,配置为从预先设定的控件中选择满足仿真需求的控件,并基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***;
所述高级功能模块,配置为基于所述仿真需求和所述搭建的需求响应***进行仿真推演,并基于仿真推演结果对需求响应效果进行评估。
上述方案中,所述基础功能模块包括查找试验单元和新建试验单元;
所述查找试验单元,配置为根据仿真需求查找当前的仿真需求响应***;
所述新建试验单元,配置为当不存在与仿真需求相适应的仿真需求响应***时,新建需求响应***。
上述方案中,所述高级功能模块包括计划实施单元和效果计算单元;
所述计划实施单元,配置为基于所述仿真需求和所述搭建的需求响应***进行仿真推演;
所述效果计算单元,配置为基于仿真推演结果对需求响应效果进行评 估,基于评估结果校验需求响应方案、需求响应计划和需求响应策略的可行性。
本发明实施例还提供了一种需求响应数字物理混合仿真***,包括:
存储器,配置为保存需求响应数字物理混合仿真的程序;
处理器,配置为运行所述程序,其中,所述程序运行时执行本发明实施例的需求响应数字物理混合仿真方法。
本发明实施例还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行本发明实施例的需求响应数字物理混合仿真方法。
应用本发明实施例,具有以下有益技术效果:
1)本发明实施例通过搭建仿真需求响应***,进行需求响应仿真推演并对推演结果进行评估,可实现自动需求响应业务的仿真以及供用电***仿真。
2)本发明实施例基于半实物仿真技术,可用实际设备或物理仿真设备在参与需求响应业务模拟实施过程中的响应效果,对仿真***中相关方案、计划、策略等的可行性进一步校验。
3)本发明实施例可为需求响应服务商、需求响应聚合商和电力用户需求响应终端等不同参与角色提供需求响应业务模拟组织实施、模拟参与、实施效果模拟评估等服务,支撑需求响应实施机构开展需求响应业务仿真推演、人员实训等工作。
4)本发明实施例可为从事需求响应科研工作的高校、科研机构等提供一款***性的仿真试验工具。
附图说明
图1为本发明实施例提供的需求响应数字物理混合仿真方法流程示意图;
图2为本发明实施例提供的需求响应数字物理混合仿真方法中电气图层示意图;
图3为本发明提供的一种需求响应数字物理混合仿真方法中通信网络图层示意图;
图4为本发明实施例提供的需求响应数字物理混合仿真方法中初始化流程示意图;
图5为本发明实施例提供的需求响应数字物理混合仿真方法中需求响应服务商仿真推演流程示意图;
图6为本发明实施例提供的需求响应数字物理混合仿真方法中需求响应聚合商仿真推演流程示意图;
图7为本发明实施例提供的需求响应数字物理混合仿真方法中电力用户需求响应终端仿真推演流程示意图;
图8为本发明实施例提供的需求响应数字物理混合仿真方法的半实物仿真中电力用户需求响应终端仿真推演流程示意图;
图9为本发明实施例提供的需求响应数字物理混合仿真***结构示意图;
图10为本发明实施例提供的需求响应数字物理混合仿真***详细结构示意图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种需求响应数字物理混合仿真方法、***及存储介质,可实现需求响应业务以及供用电***仿真,同时基于半实物仿真技术,可用实际设备或物理仿真设备在参与需求响应业务模拟实施过程中的响应效果,对仿真***中相关方案、计划、策略等的可行性进行校验。
供用电***仿真旨在完成在需求响应业务下,特别是调峰、可再生资源消纳场景下对需求响应业务实施后配电网潮流的变化情况、需求响应资源设备的功率吸收和放出等情况的分析任务;
自动需求响应业务仿真旨在完成针对不同参与角色设计仿真流程、构建自动需求响应试验、按照电力需求响应业务的实际运行流程模拟需求响应业务实施以及对需求响应效果进行评估等任务。
本发明实施例提供一种需求响应数字物理混合仿真方法,如图1所示,包括:
步骤1:从预先设定的控件中选择满足仿真需求的控件,并基于仿真需求对所述控件进行配置,搭建仿真需求响应***;
步骤2:基于仿真需求和搭建的仿真需求响应***进行仿真推演;
步骤3:基于仿真推演结果对仿真需求的响应效果进行评估。
步骤1即仿真初始化,步骤2即仿真推演,步骤3即需求响应效果。
下面将针对仿真初始化、仿真推演和需求响应效果评估的流程进行说明。
仿真初始化:主要做需求响应业务仿真的准备工作,也称作仿真想定编辑状态。该状态中,仿真***的用户即需求响应参与者通过调用不同类型的预设控件,搭建适合自身仿真需求的需求响应***,包括通信网络图层的构建、电气网络图层的构建和评估指标的选择与设置,其中通信网络图层主要包括通信类控件、参与角色类控件和需求响应资源设备控件等;电气网络图层主要包括线路控件、变压器控件、断路器控件、母线控件和需求响应资源设备控件等。
电气图层如图2所示,包括供电侧和需求侧,供电侧通过变压器连接外部电源,还包括断路器;需求侧连接各电力用户需求响应终端(即各需求响应资源设备),如工业用户终端、商业用户终端和/或居民用户终端,包 括:分布式电源、储能设备、水泵、风机、空调机组、照明负荷、电热水器、电冰箱和其他负荷等。
需求响应网络图层如图3所示,包括多个层级。顶层为需求响应DR服务***。DR服务***连接第二层的一个或多个DR聚合***。用户能量管理***、自动需求响应终端和接口位于需求响应网络图层的第三层,分别连接至DR聚合***;其中需求响应网络图层中的接口即为半实物接口。用户能量管理***以用户为单位管理底层的需求响应资源设备,自动需求响应终端直接管理底层的需求响应资源设备。需求响应资源设备包括:中央空调、电热锅炉、蓄电池、燃气发电机、电冰箱、电热水器和洗衣机等设备。
可通过建立新的仿真需求响应***和打开已有的仿真需求响应***两种类型进行仿真初始化工作,仿真初始化流程,以及各个环节内容,如图4所示。
通过建立新的仿真需求响应***进行仿真初始化的流程如下所述:
步骤1-1a:新建仿真需求响应***;
步骤1-2a:添加通信控件;
步骤1-3a:添加参与角色控件;
步骤1-4a:添加需求响应资源设备控件;
步骤1-5a:生成通信网络图层;
步骤1-6a:添加与通信网络图层对应的电气网络图层控件;
步骤1-7a:生成电气网络图层;
步骤1-8:仿真需求响应***参数配置;
步骤1-9:保存仿真需求响应***试验。
通过打开已有仿真试验进行仿真初始化的流程如下所述:
步骤1-1b:打开已有仿真需求响应***;
步骤1-2b:增减通信控件;
步骤1-3b:增减参与角色控件;
步骤1-4b:增减需求响应资源设备控件;
步骤1-5b:更新通信网络图层;
步骤1-6b:增减与通信网络图层对应的电气网络图层控件;
步骤1-7b:更新电气网络图层;
步骤1-8:仿真需求响应***参数配置;
步骤1-9:仿真需求响应***仿真试验。
其中,仿真需求响应***参数配置环节,主要针对与仿真相关的需求响应业务场景、需求响应项目、需求响应计划、需求响应事件、用户用能行为、需求响应资源设备参与需求响应策略和需求响应资源设备属性参数等七类信息对控件的参数进行配置。配置过程分为手工配置过程与自动配置过程。手工配置过程只针对每次试验中的1个需求响应服务商、3-5个需求响应聚合商、2-3个工业用户、2-3个商业用户和2-3个居民用户,对其他参与角色,通过自动配置完成。
下面将主要介绍手动配置过程的配置流程:
步骤1-8-1:需求响应业务场景配置:利用***提供的需求响应业务场景模型,构建支撑需求响应业务发生的场景,如电网企业营销部门发出的电网削峰需求、可再生能源消纳需求等。
步骤1-8-2:需求响应项目配置:需求响应项目由需求响应服务商、需求响应聚合商两类角色建立,面向参与需求响应的电力用户需求响应终端进行发布。(1)对于需求响应服务商:利用***提供的需求响应项目模型,为仿真试验中唯一的需求响应服务商构建满足其利益诉求的需求响应项目,包括基于电价的项目、基于激励的项目两类;(2)对于需求响应聚合商:一次仿真试验中可以有多个需求响应聚合商,针对不同需求响应聚合 商的利益诉求,由各个需求响应聚合商自行选择是否沿用上级需求响应服务商的需求响应项目;针对选择不沿用的需求响应聚合商,***能够为其提供需求响应项目模型,供其建立满足自身利益诉求的需求响应项目,包括基于电价的项目、基于激励的项目两类。
步骤1-8-3:需求响应计划配置:(1)对于需求响应服务商:针对特定的需求响应业务场景,由需求响应服务商基于***提供的需求响应计划模型,建立需求响应计划并发起,该需求响应计划将按照执行流程发送至下级各个需求响应聚合商,以及直接所辖的各个电力用户。(2)对于需求响应聚合商:需求响应聚合商根据接收的来自上级需求响应服务商的需求响应计划,结合自身的需求响应项目,基于***提供的需求响应计划模型进一步制定满足自身利益诉求的需求响应计划,发送至所辖的各个电力用户。
步骤1-8-4:需求响应事件配置:根据需求响应项目要求或特定需求响应计划执行要求,需求响应服务商面向需求响应聚合商,需求响应服务商、需求响应聚合商面向他们所辖的电力用户需求响应终端,以需求响应事件的形式发布相关信息,如电价信息、激励信息等。本***提供需求响应事件模型,支撑需求响应服务商、需求响应聚合商在特定需求响应项目或需求响应计划中生成需求响应事件,面向下级用户进行发布。
步骤1-8-5:用户用能行为配置:用户用能行为直接影响需求响应资源设备在参与需求响应过程中的响应能力,本***提供用户用能行为模型,通过用户用能行为模型对用户用能行为对用户所辖需求响应资源设备响应能力的影响按时间维度进行量化。
步骤1-8-6:需求响应资源设备参与需求响应策略配置:本***提供需求响应策略模型,结合不同需求响应资源设备的调控模式,支撑需求响应资源设备按照上级需求响应事件要求进行自动响应。
步骤1-8-7:需求响应资源设备属性参数配置:本***提供典型需求侧 设备的需求响应信息模型,对需求响应资源设备的属性信息、响应参数进行配置。
仿真推演:仿真需求响应***根据设定好的需求响应业务触发条件以及前一个步骤中配置好的参数,按照电力需求响应业务的实际运行流程模拟需求响应业务实施。在需求响应业务模拟实施过程中,通信网络内部各个控件间进行信息传递,电气网络内部也随着需求响应业务模拟实施过程进行相应的潮流计算与分析。
由于不同角色的关注重点不同,不同仿真试验所辖的用户范围也不同,所以针对需求响应服务商用户、需求响应聚合商用户和电力用户,分别设计了仿真推演流程。其中,电力用户包括工业用户、商业用户和个人用户。
(1)对于需求响应服务商用户,其主要仿真推演流程如图5所示,流程如下所述:
步骤2-1-1:DR服务商终端等待需求响应实施需求;
步骤2-1-2:DR服务商终端根据所辖需求响应资源库分析当前可用需求响应资源;
步骤2-1-3:DR服务商终端根据已有的需求响应项目类型,制定满足自身利益需求的需求响应计划;
步骤2-1-4:DR服务商终端以需求响应事件形式,向所辖需求响应聚合商用户终端、直连的电力用户需求响应终端发送DR计划信息;
步骤2-1-5:等待需求响应聚合商用户终端反馈,等待直连电力用户需求响应终端反馈;
步骤2-1-6:根据接收的需求响应聚合商用户反馈信息、电力用户反馈信息,统计当前响应容量;
步骤2-1-7:判断是否已到达计划实施时间,若是则转入步骤2-1-8,否则转入步骤2-1-9:
步骤2-1-8:DR服务商终端确认参与DR用户名单,并发送确认信息至参与DR用户终端,结束推演过程;
步骤2-1-9:判断响应量是否满足电网需求,若是则转入步骤2-1-8,否则转入步骤2-1-10;
步骤2-1-10:向未响应的需求响应聚合商终端以及电力用户需求响应终端发送相关计划信息并返回步骤2-1-5。
(2)对于需求响应聚合商用户,其主要仿真推演流程如图6所示,流程如下所述:
步骤2-2-1:DR聚合商终端等待上级需求响应服务商的DR计划;
步骤2-2-2:DR聚合商终端根据所辖需求响应资源库分析当前可用需求响应资源;
步骤2-2-3:DR聚合商终端根据已有的需求响应项目类型制定满足自身利益需求的需求响应计划;
步骤2-2-4:DR聚合商终端以需求响应事件形式向所辖直连电力用户需求响应终端发送相关计划信息;
步骤2-2-5:等待直连电力用户需求响应终端反馈;
步骤2-2-6:根据接收的电力用户需求响应终端的反馈信息,统计当前响应容量;
步骤2-2-7:判断是否已到上级DR服务商规定的反馈截止时间,若是,转入步骤2-2-8,否则转入步骤2-2-9;
步骤2-2-8:向上级DR服务商反馈响应容量,转入步骤2-2-11;
步骤2-2-9:判断响应量是否满足上级DR服务商DR计划要求,若是,转入步骤2-2-8,否则转入步骤2-2-10;
步骤2-2-10:向未反馈的电力用户需求响应终端发送相关计划信息并返回步骤2-2-5。
步骤2-2-11:等待上级DR服务商终端的确认信息;
步骤2-2-12:按上级DR服务商要求,组织实施需求响应,结束推演过程。
(3)对于电力用户,即工业用户、商业用户和/或居民用户,其主要仿真推演流程如图7所示,流程如下所述:
步骤2-3-1:电力用户需求响应终端接受需求响应事件;
步骤2-3-2:判断所辖DR资源设备是否全部自动参与响应,若是,转入步骤2-3-3;否则,转入步骤2-3-4;
步骤2-3-3:自动执行需求响应方案并告知用户参与方案,结束推演过程;
步骤2-3-4:判断参与DR资源设备是否支持自动DR,若是,转入步骤2-3-5,否则转入步骤2-3-7;
步骤2-3-5:生成自动参与DR的方案;
步骤2-3-6:向所属电力用户需求响应终端推送其所辖DR资源设备参与DR的方案;
步骤2-3-7:电力用户需求响应终端决定DR资源设备是否参与DR,若是则转入步骤2-3-8,否则结束推演过程;
步骤2-3-8:电力用户需求响应终端根据自身用能需求选择参与DR的DR资源设备并向上级DR服务商或DR聚合商反馈,结束推演过程。
需求响应效果评估:本***针对参与需求响应的三类角色,利用仿真试验平台提供的需求响应效果评估模型,计算与需求响应服务商用户、需求响应聚合商用户、电力用户这三类角色相关的需求响应效果。下面将详细说明本***为这三类角色提供的需求响应效果评价内容:
针对需求响应服务商,需求响应效果评估流程包括:
步骤3-1-1:高级功能模块根据推演结果计算需求响应服务商管辖的用 户及用户所属需求响应资源在每一次需求响应计划中的参与效果,包括:用户参与数量、响应达标用户数量和响应达标的需求响应资源设备容量,其中需求响应服务商管辖的用户包括需求响应聚合商和电力用户;
步骤3-1-2:计算需求响应服务商管辖的用户的总的需求响应基线负荷,以及在需求响应执行过程中的实际负荷,通过基线负荷与实际负荷的差值计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
步骤3-1-3:结合需求响应服务商的需求响应项目,计算应该向参与需求响应用户兑现的经济利益。
步骤3-1-4:当需求响应服务商通过节约电力或消纳可再生能源电量获取的收益大于应该向参与需求响应的用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
针对需求响应聚合商,需求响应效果评估流程包括:
步骤3-2-1:高级功能模块根据推演结果计算需求响应聚合商管辖的用户及用户所属需求响应资源设备在每一次需求响应计划中的参与效果,包括:用户参与数量、响应达标用户数量和响应达标的需求响应资源设备容量,其中需求响应聚合商管辖的用户包括电力用户;
步骤3-2-2:计算需求响应聚合商管辖的用户的总的需求响应基线负荷,以及在需求响应执行过程中的实际负荷,通过基线负荷与实际负荷的差值计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
步骤3-2-3:结合需求响应聚合商的需求响应项目,计算应该向参与需求响应用户兑现的经济利益;
步骤3-3-4:计算从上级需求响应服务商获得的经济利益;
步骤3-3-5:当需求响应聚合商从上级需求响应服务商获得的经济利益大于应该向参与需求响应用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
针对电力用户,需求响应效果评估流程包括:
步骤3-3-1:高级功能模块根据推演结果计算电力用户需求响应终端每次参与需求响应过程中的实际负荷与基线负荷,通过基线负荷与实际负荷的差值计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
步骤3-3-2:计算参与需求响应可获得的经济效益;
步骤3-3-3:计算参与需求响应的成本;
步骤3-3-4:当电力用户需求响应终端参与需求响应获得的经济效益大于参与需求响应的成本时,判断需求响应方案、需求响应计划和需求响应策略可行。
其中,电力用户需求响应终端包括工业用户、商业用户和居民用户。
本发明实施例提供的半实物仿真的实现如下:
半实物仿真与软件仿真类似主要有三大工作状态,包括仿真初始化状态、仿真推演状态、需求响应效果评估状态,仿真***的整体运行流程如图5所示;而半实物仿真工作流程与软件仿真工作流程的区别为,软件仿真工作流程中,所有的数据信息均通过虚拟通信网络进行交互,而半实物仿真工作流程中,到达需求响应资源设备的需求响应事件或具体的调控信息等需要传递给外界的真实需求响应资源设备或物理仿真设备,并在仿真试验平台的通信网络、电气网络中(以更显著、醒目的方式)体现对应的需求响应资源设备控件。综上所述,半实物仿真的中电力用户需求响应终端的仿真推演流程与软件仿真中的仿真推演流程不同,其主要仿真推演流程如图8所示,流程如下所述:
步骤2-4-1:接受需求响应事件;
步骤2-4-2:判断所辖DR资源设备是否全部自动参与响应,若是,则 转入步骤2-4-3,否则,转入步骤2-4-4;
步骤2-4-3:生成自动需求响应方案并告知用户参与方案,转入步骤2-4-9;
步骤2-4-4:则判断参与DR资源设备是否支持自动DR,若是,转入步骤2-4-5,否则转入2-4-7;
步骤2-4-5:生成自动参与DR的方案;
步骤2-4-6:向所属电力用户需求响应终端推送其所辖DR资源设备参与DR的方案;
步骤2-4-7:电力用户需求响应终端决定DR资源设备是否参与DR,若是,转入步骤2-4-8,否则结束推演过程;
步骤2-4-8:电力用户需求响应终端根据自身用能需求选择参与DR的DR资源设备;
步骤2-4-9:通过半实物接口发送需求响应方案。
这里,通过半实物接口将需求响应方案即需求响应事件信息或具体的调控信息等发送给相应参与DR的外界的真实需求响应资源设备或物理仿真设备;
步骤2-4-10:通过半实物接口反馈需求响应方案。
外界的真实需求响应资源设备或物理仿真设备通过半实物接口将需求响应方案反馈信息发送给电力用户需求响应终端;
步骤2-4-11:向上级DR服务商或DR聚合商反馈;
步骤2-4-12:等待上级DR服务商或DR聚合商确认反馈信息;
步骤2-4-13:按DR计划执行需求响应,结束推演过程。
本发明实施例还提供一种半实物仿真方法,包括:
半实物仿真与软件仿真类似主要有三大步骤,包括仿真初始化、仿真推演和需求响应效果评估,仿真方法的整体流程如图1所示;而半实物仿 真工作流程与软件仿真工作流程的区别为,软件仿真工作流程中,所有的数据信息均通过虚拟通信网络进行交互,而半实物仿真工作流程中,到达需求响应资源设备的需求响应事件信息或具体的调控信息等需要传递给外界的真实需求响应资源设备或物理仿真设备,并在仿真试验平台的通信网络和电气网络中体现对应的需求响应资源设备控件。综上所述,半实物仿真的中电力用户需求响应终端的仿真推演流程与软件仿真中的仿真推演流程不同,其主要工作流程如图8所示,流程如下所述:
步骤2-4-1:电力用户需求响应终端接受需求响应事件;
步骤2-4-2:电力用户需求响应终端判断所辖DR资源设备是否全部自动参与响应,若是,则转入步骤2-4-3,否则,转入步骤2-4-4;
步骤2-4-3:生成自动需求响应方案并告知用户参与方案,转入步骤2-4-9;
步骤2-4-4:则判断参与DR资源设备是否支持自动DR,若是,转入步骤2-4-5,否则转入2-4-7;
步骤2-4-5:生成自动参与DR的方案;
步骤2-4-6:向所属电力用户需求响应终端推送其所辖DR资源设备参与DR的方案;
步骤2-4-7:电力用户需求响应终端决定DR资源设备是否参与DR,若是,转入步骤2-4-8,否则结束推演过程;
步骤2-4-8:电力用户需求响应终端根据自身用能需求选择参与DR的DR资源设备;
步骤2-4-9:通过半实物接口将需求响应方案即需求响应事件信息或具体的调控信息等发送给相应参与DR的外界的真实需求响应资源设备或物理仿真设备;
步骤2-4-10:外界的真实需求响应资源设备或物理仿真设备通过半实 物接口将需求响应方案反馈信息发送给电力用户需求响应终端;
步骤2-4-11:向上级DR服务商或DR聚合商反馈;
步骤2-4-12:等待上级DR服务商或DR聚合商确认反馈信息;
步骤2-4-13:按DR计划执行需求响应,结束推演过程。
本发明实施例还提供一种需求响应数字物理混合仿真***,其结构示意图如图9所示,包括:基础功能模块和与基础功能模块通信的高级功能模块;
基础功能模块,配置为从预先设定的控件中选择满足仿真需求的控件,并基于仿真需求对控件进行配置,搭建仿真需求响应***;
高级功能模块,配置为基于仿真需求和搭建的需求响应***进行仿真推演,并基于仿真推演结果对需求响应效果进行评估。
基础功能模块,配置为支撑仿真实例中仿真场景的搭建、需求响应业务的运行和需求响应实施效果计算的电气图层以及需求响应网络图层,并管理接入仿真***的实际设备或物理仿真设备;
高级功能模块针对不同的需求响应参与者提供需求响应业务实施的全流程仿真模拟的功能并对需求响应效果进行评估;
其中,需求响应参与者包括需求响应服务商、需求响应聚合商和电力用户,电力用户包括工业用户、商业用户和/或居民用户。
本发明实施例还提供一种需求响应数字物理混合仿真***,其结构示意图如图10所示。
该仿真***主要包括基础功能模块和高级功能模块。基础功能模块,配置为建立实际存在的与需求响应相关的物理设备及参与角色的模型,并建立与实际需求响应网络相对应的虚拟映射网络;高级功能模块主要在虚拟映射网络基础上完成对需求响应业务实施的全流程的仿真模拟并对对需求响应效果进行评估。两功能模块相互配合使用以支撑不同用户完成自动 需求响应的模拟仿真,实现自动需求响应业务以及供用电***仿真,同时基于半实物仿真技术,可用实际设备或物理仿真设备在参与需求响应业务模拟实施过程中的响应效果,对仿真***中相关方案、计划和策略等的可行性校验。
基础功能模块,配置为建立用于支撑仿真实例中仿真场景的搭建、需求响应业务的运行和需求响应实施效果计算的电气图层以及需求响应网络图层,以支撑不同仿真实例中仿真场景的搭建、需求响应业务的运行、需求响应实施效果计算。
基础功能模块包括新建试验单元、查找试验单元、数字模型管理单元、物理设备管理单元、接口管理单元和进入试验单元。
其中,新建试验单元,配置为构建新仿真需求响应***所用的电气图层以及需求响应网络图层;构建网络图层包括创建和增补资源设备模型、通信类模型、角色类模型以及接口类模型,可从不同模型中选择所需设备,完成网络拓扑图的构建;构建电气图层就是创建及管理供配电***图形模型和数据模型,为***运行仿真提供数据模型和结果图形化展示的接线图,完成图元拖拽创建、图元连接自动生成拓扑、设备图模复制、粘贴、删除操作、图元布局、设备属性设置、设备属性展示和图模导出等操作,并用于显示电力相关属性。
查找试验单元,配置为对已有的试验进行查找,并将具体的信息显示出来,包括试验名称、创建日期、创建人、运行次数和模拟地区等。
数字模型管理单元,配置为管理数字模型的信息,对数字模型的属性进行添加、修改和删除,并支持需求响应参与者根据自身的情况定义符合要求的新的数字模型;其中,数字模型包括通信模型、资源设备模型、需求响应角色模型、需求响应项目模型、用户行为模型、需求响应计划模型、需求响应响应事件模型和需求响应策略模型。
物理设备管理单元,配置为显示所有需求响应参与者的实际需求响应资源设备的情况,选择某一设备时可以显示出该设备的详细信息。
接口管理单元,配置为管理半实物接口和数据导入接口。其中通过数据导入接口可自动地向仿真平台导入一些外部数据,以节省人力;通过半实物接口与实际物理设备或实际物理仿真设备交互信息,一方面仿真平台可采集上述物理设备的数据,另一方面可以下达控制指令至上述物理,通过上述功能实现对仿真软件进行模型校正与对仿真平台中DR实际实施效果的验证。
数字模型管理单元、物理设备管理单元和接口管理单元支撑新建仿真需求响应***功能的实现,为其提供构建电气图层以及需求响应网络的模型。
进入试验单元,配置为选择进入与需求响应参与者相应类型的管理界面进入试验,以进入高级功能模块,实现对需求响应业务实施的全流程仿真模拟。
高级功能模块针对需求响应服务商、聚合商用户和电力用户分别设计了不同的功能单元,其中电力用户包括工业、商业和居民用户。需求响应服务商-聚合商用户单元,配置为为需求响应服务商和/或需求响应聚合商提供需求响应业务实施的全流程仿真模拟的功能;工业-商业-居民用户单元,配置为为工业用户、商业用户和/或居民用户提供需求响应业务实施的全流程仿真模拟的功能。
需求响应服务商-聚合商用户单元包括:第一用户管理子单元、第一资源管理子单元、项目管理子单元、计划管理子单元、计划实施子单元和效果计算子单元。
第一用户管理子单元,配置为显示第一用户基本信息和需求响应能力,即第一用户的签约用户、参与用户、响应能力和历史响应次数,并配置为 对签约用户的基本信息进行查找、修改和删除,还配置为增添新的第一用户以模拟需求响应用户注册过程;其中第一用户包括需求响应服务商和需求响应聚合商;其中,需求响应服务商的签约用户包括与需求响应服务商签约的需求响应聚合商、工业用户、商业用户和居民用户,需求响应聚合商的签约用户包括与需求响应聚合商签约的工业用户、商业用户和居民用户。
第一资源管理子单元,配置为显示第一用户管理范围内需求响应资源设备的详细信息,可通过查找找到想了解的需求响应资源设备的信息,并对需求响应资源设备的信息进行添加、修改和删除,提供对需求响应资源组织流程的模拟仿真功能。
项目管理子单元,配置为显示需求响应项目的信息,可通过查找找出想要的项目,并在其下方显示出相应项目的详细信息,可对项目属性进行新建、修改和删除等操作,提供对需求响应项目管理流程的模拟仿真功能。
计划管理子单元,配置为对需求响应计划进行操作,可对已有计划进行查询,并显示出所有计划列表,同时也可以新建计划并实施,提供对需求响应计划管理流程的模拟仿真功能。
计划实施子单元,配置为显示历史计划及历史计划对应的第一用户的信息和第一用户新建试验时完成的网络图,展示具体需求响应事件的动态实施过程,也就是说可以显示出DR事件执行过程中的信息流的流动和计划下达与应答的过程,提供对需求响应计划实施流程的模拟仿真功能。
效果计算子单元,配置为针对第一用户辖区内所有签约用户,通过基线负荷与签约用户参与需求响应的实际负荷曲线的差值完成节约电力计算和消纳电量的计算,并显示相应的数据分析图,提供对需求响应效果的静态展示。
工业-商业-居民用户单元包括:第二用户管理子单元、第二资源管理子 单元、响应管理子单元、信息查询子单元和响应效果管理子单元。
第二用户管理子单元,配置为显示第二用户的信息、各用电设备用电情况及历史响应情况,其中,第二用户包括工业用户、商业用户和居民用户。
第二资源管理子单元,配置为显示第二用户所有的需求响应资源设备的参数及属性,并对第二用户所有的需求响应资源设备的参数及属性执行新建、修改和删除,并且根据需要添加/删除需求响应资源设备。
响应管理子单元,配置为对第二用户参与的需求响应项目进行查询,并将项目的信息及参与项目的需求响应资源设备显示出来。
信息查询子单元,配置为显示详细的第二用户的个人信息及用电情况,并查询第二用户的物理需求响应资源设备的基本信息。
响应效果管理子单元,配置为对第二用户的响应效果进行计算并进行相应的数据分析。
本发明实施例还提供了一种需求响应数字物理混合仿真***,包括:
存储器,配置为保存需求响应数字物理混合仿真的程序;
处理器,配置为运行所述程序,其中,所述程序运行时执行本发明实施例的需求响应数字物理混合仿真方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流 程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用于说明本申请的技术方案而非对其保护范围的限制,尽管参照上述实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:本领域技术人员阅读本申请后依然可对申请的具体实施方式进行种种变更、修改或者等同替换,但这些变更、修改或者等同替换,均在申请待批的权利要求保护范围之内。

Claims (18)

  1. 一种需求响应数字物理混合仿真方法,包括:
    从预先设定的控件中选择满足仿真需求的控件,并基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***;
    基于所述仿真需求和所述搭建的仿真需求响应***进行仿真推演;
    基于仿真推演结果对所述仿真需求的响应效果进行评估。
  2. 如权利要求1所述的方法,其中,所述仿真需求包括:新建类型和修改已有类型。
  3. 如权利要求2所述的方法,其中,所述仿真需求为新建类型,所述基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***,包括:
    新建仿真需求响应***;
    在所述仿真需求***中按照仿真需求添加预先设定的通信类控件、参与角色类控件和需求响应资源设备控件,以构建通信网络图层;
    对应所述通信网络图层,添加预先设定的线路控件、变压器控件、断路器控件、母线控件和需求响应资源设备控件,以构建电气网络图层;
    根据所述仿真需求,对所述通信网络图层和电气网络图层中的控件进行配置。
  4. 如权利要求2所述的方法,其中,所述仿真需求为修改已有类型,所述基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***包括:
    在已有的仿真需求响应***中,基于预先设定的通信类控件、参与角色类控件和需求响应资源设备控件,根据仿真需求进行修改,更新通信网络图层;
    基于预先设定的线路控件、变压器控件、断路器控件、母线控件和需求响应资源设备控件,更新相应的电气网络图层;
    根据所述仿真需求,对更新后的所述通信网络图层和电气网络图层中 的控件进行配置。
  5. 如权利要求1所述的方法,其中,所述基于所述仿真需求和所述搭建的仿真需求响应***进行仿真推演,包括以下至少之一:
    基于需求响应服务商的仿真需求和所述搭建的仿真需求响应***进行仿真推演;
    基于需求响应聚合商的仿真需求和所述搭建的仿真需求响应***进行仿真推演;
    基于电力用户需求响应终端的仿真需求和所述搭建的仿真需求响应***进行仿真推演;
    基于电力用户需求响应终端的仿真需求和所述搭建的仿真需求响应***并结合需求响应资源设备或物理仿真设备进行半实物仿真推演。
  6. 如权利要求5所述的方法,其中,所述基于电力用户需求响应终端的仿真需求和所述搭建的仿真需求响应***并结合需求响应资源设备或物理仿真设备进行半实物仿真推演,包括:
    获取需求响应事件;
    通过所述仿真需求响应***,将所述需求响应事件发送到连接至所述仿真需求响应***的需求响应资源设备或物理仿真设备;
    根据所述需求响应事件,基于所述需求响应的资源设备或物理仿真设备进行需求响应,获取仿真推演结果;
    其中,所述需求响应事件由电力用户需求响应终端的上级需求响应服务商或需求响应聚合商基于管辖的电力用户需求响应终端的仿真需求制定。
  7. 如权利要求6所述的方法,其中,所述通过所述仿真需求响应***,将所述需求响应事件发送到连接至所述仿真需求响应***的需求响应资源设备或物理仿真设备,包括:
    通过所述仿真需求响应***的通信网络图层,从通信网络图层中的半实物接口将所述需求响应事件发送到连接至所述半实物接口的需求响应资源设备或物理仿真设备;
    其中,所述半实物接口属于所述通信网络图层中的通信类控件。
  8. 如权利要求6所述的方法,其中,所述基于所述需求响应的资源设备或物理仿真设备进行需求响应,包括:
    需求响应的资源设备或物理仿真设备自动参与需求响应;
    或者,基于响应指令,资源设备或物理仿真设备参与需求响应。
  9. 如权利要求6所述的方法,其中,所述基于所述需求响应的资源设备或物理仿真设备进行需求响应之前,还包括:
    将执行所述需求响应事件的信息,通过所述仿真需求响应***的通信网络图层发送给上级需求响应服务商或需求响应聚合商,以获取所述上级需求响应服务商或需求响应聚合商的确认信息;
    其中,所述上级需求响应服务商或需求响应聚合商在所述通信网络图层中根据参与角色类控件设置。
  10. 如权利要求1所述的方法,其中,所述基于仿真推演结果对所述仿真需求的响应效果进行评估,包括:
    基于仿真推演结果,分别针对需求响应服务商、需求响应聚合商和电力用户需求响应终端对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估。
  11. 如权利要求10所述的方法,其中,基于仿真推演结果,针对需求响应服务商对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
    根据仿真推演结果,计算所述需求响应服务商管辖的用户的总的需求响应基线负荷、在需求响应执行过程中的实际负荷,以及应该向参与需求 响应的用户兑现的经济利益;
    通过基线负荷与实际负荷的差值,计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
    当所述需求响应服务商通过节约电力或消纳可再生能源电量获取的收益大于应该向参与需求响应的用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
  12. 如权利要求10所述的方法,其中,基于仿真推演结果,针对需求响应聚合商对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
    根据仿真推演结果,计算所述需求响应聚合商管辖的用户的总的需求响应基线负荷、在需求响应执行过程中的实际负荷,以及从上级需求响应服务商获得的经济利益和应该向参与需求响应用户兑现的经济利益;
    通过所述基线负荷与实际负荷的差值,计算通过组织实施需求响应所实现的节约电力或消纳可再生能源电量;
    当所述需求响应聚合商从上级需求响应服务商获得的经济利益大于应该向参与需求响应用户兑现的经济利益时,判断需求响应方案、需求响应计划和需求响应策略可行。
  13. 如权利要求10所述的方法,其中,基于仿真推演结果,针对电力用户需求响应终端对需求响应效果进行需求响应方案、需求响应计划和需求响应策略的可行性的评估,包括:
    根据仿真推演结果,计算所述电力用户需求响应终端参与需求响应的成本和获得的经济效益;
    当所述电力用户需求响应终端参与需求响应获得的经济效益大于参与需求响应的成本时,判断需求响应方案、需求响应计划和需求响应策略可行。
  14. 一种需求响应数字物理混合仿真***,包括基础功能模块和高级功能模块;
    所述基础功能模块,配置为从预先设定的控件中选择满足仿真需求的控件,并基于所述仿真需求对所述控件进行配置,搭建仿真需求响应***;
    所述高级功能模块,配置为基于所述仿真需求和所述搭建的需求响应***进行仿真推演,并基于仿真推演结果对所述仿真需求的响应效果进行评估。
  15. 如权利要求14所述的***,其中,所述基础功能模块包括:查找试验单元和新建试验单元;
    所述查找试验单元,配置为根据仿真需求查找当前的仿真需求响应***,获得查找结果;
    所述新建试验单元,配置为当所述查找结果表征不存在与仿真需求相适应的仿真需求响应***时,新建需求响应***。
  16. 如权利要求14所述的***,其中,所述高级功能模块包括:计划实施单元和效果计算单元;
    所述计划实施单元。配置为基于所述仿真需求和所述搭建的需求响应***进行仿真推演;
    所述效果计算单元,配置为基于仿真推演结果对需求响应效果进行评估,基于评估结果校验需求响应方案、需求响应计划和需求响应策略的可行性。
  17. 一种需求响应数字物理混合仿真***,包括:
    存储器,配置为保存需求响应数字物理混合仿真的程序;
    处理器,配置为运行所述程序,其中,所述程序运行时执行权利要求1至13中任一项所述的需求响应数字物理混合仿真方法。
  18. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序 运行时执行权利要求1至13中任一项所述的需求响应数字物理混合仿真方法。
PCT/CN2018/096603 2018-04-08 2018-07-23 需求响应数字物理混合仿真方法、***及存储介质 WO2019196245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810304698.4A CN108549256B (zh) 2018-04-08 2018-04-08 一种需求响应数字物理混合仿真方法和***
CN201810304698.4 2018-04-08

Publications (1)

Publication Number Publication Date
WO2019196245A1 true WO2019196245A1 (zh) 2019-10-17

Family

ID=63514010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096603 WO2019196245A1 (zh) 2018-04-08 2018-07-23 需求响应数字物理混合仿真方法、***及存储介质

Country Status (2)

Country Link
CN (1) CN108549256B (zh)
WO (1) WO2019196245A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111242412A (zh) * 2019-12-27 2020-06-05 国网山西省电力公司大同供电公司 一种基于需求响应的热控负荷集群协同管控方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413890B (zh) * 2020-04-01 2023-07-11 国网四川省电力公司技能培训中心 基于数字物理混合仿真的智能变电站一次平台仿真方法
CN111668836B (zh) * 2020-06-23 2021-08-31 华中科技大学 一种源-网-荷-储海量设备的聚合与分层调控方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130046668A1 (en) * 2011-08-18 2013-02-21 Siemens Corporation Aggregator-based electric microgrid for residential applications incorporating renewable energy sources
CN104124704A (zh) * 2014-07-07 2014-10-29 四川中电启明星信息技术有限公司 分布式电源与微网接入主电网的管理方法
CN104505864A (zh) * 2014-12-12 2015-04-08 国家电网公司 用于消纳分布式发电的需求响应控制策略仿真***和方法
CN106779468A (zh) * 2017-01-03 2017-05-31 国网江苏省电力公司电力科学研究院 一种用户用电需求响应动态建模与响应不确定性评估方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106055755B (zh) * 2016-05-24 2019-09-17 上海市南变配电站服务有限公司 一种配电网与输电网的协同实时数字仿真方法
CN107546848A (zh) * 2016-06-26 2018-01-05 国网天津市电力公司 一种通过自动需求响应***实现的运行流程
CN206099344U (zh) * 2016-09-29 2017-04-12 南方电网科学研究院有限责任公司 用户负荷聚合的需求响应***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130046668A1 (en) * 2011-08-18 2013-02-21 Siemens Corporation Aggregator-based electric microgrid for residential applications incorporating renewable energy sources
CN104124704A (zh) * 2014-07-07 2014-10-29 四川中电启明星信息技术有限公司 分布式电源与微网接入主电网的管理方法
CN104505864A (zh) * 2014-12-12 2015-04-08 国家电网公司 用于消纳分布式发电的需求响应控制策略仿真***和方法
CN106779468A (zh) * 2017-01-03 2017-05-31 国网江苏省电力公司电力科学研究院 一种用户用电需求响应动态建模与响应不确定性评估方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111242412A (zh) * 2019-12-27 2020-06-05 国网山西省电力公司大同供电公司 一种基于需求响应的热控负荷集群协同管控方法
CN111242412B (zh) * 2019-12-27 2023-06-20 国网山西省电力公司大同供电公司 一种基于需求响应的热控负荷集群协同管控方法

Also Published As

Publication number Publication date
CN108549256B (zh) 2021-09-03
CN108549256A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
Hasankhani et al. Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market
Li et al. Transactive energy systems: The market-based coordination of distributed energy resources
Roldán-Blay et al. Improving the benefits of demand response participation in facilities with distributed energy resources
Salehi et al. Scenario-based Co-Optimization of neighboring multi carrier smart buildings under demand response exchange
CN102707622B (zh) 用于优化的图形语言和使用
WO2019196245A1 (zh) 需求响应数字物理混合仿真方法、***及存储介质
CN107895971A (zh) 基于随机规划和模型预测控制的区域能源互联网调度方法
CN107679776A (zh) 一种能源调度方法及分布式能源***、分布式能源网络***
Aujla et al. SDN-based energy management scheme for sustainability of data centers: An analysis on renewable energy sources and electric vehicles participation
Hansen et al. Evaluating transactive controls of integrated transmission and distribution systems using the framework for network co-simulation
CN112260322B (zh) 源网荷储仿真平台、方法及***
CN108564233A (zh) 一种电力调度的方法及装置
Mukherjee et al. Framework for large-scale implementation of wholesale-retail transactive control mechanism
CN103905227B (zh) 一种服务器能耗控制方法及***
Cortés et al. A discrete particle swarm optimisation algorithm to operate distributed energy generation networks efficiently
Sharma et al. Metrics-based assessment of sustainability in demand response
Li et al. Optimization of dynamic dispatch for multiarea integrated energy system based on hierarchical learning method
CN113487188A (zh) 考虑电气联合价格引导机制的综合能源***优化调度方法
Hong et al. A demand side management with appliance controllability analysis in smart home
CN115936228A (zh) 计及配网架构的大学城综合能源***运行优化方法及装置
CN116167740A (zh) 一种抽水蓄能电站智慧检修的数字孪生模型构建方法
Zhang et al. A Two‐Stage Optimization Model of Capacity Allocation and Regulation Operation for Virtual Power Plant
Zucker et al. Smart grids strategy for salzburg, austria
Zhang et al. New urban power grid flexible load dispatching architecture and key technologies
Zou et al. Evaluating the impacts of flexible ramping products on the market equilibrium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914366

Country of ref document: EP

Kind code of ref document: A1