WO2019196113A1 - 一种控制探头的方法、检测设备及控制探头的装置 - Google Patents

一种控制探头的方法、检测设备及控制探头的装置 Download PDF

Info

Publication number
WO2019196113A1
WO2019196113A1 PCT/CN2018/083091 CN2018083091W WO2019196113A1 WO 2019196113 A1 WO2019196113 A1 WO 2019196113A1 CN 2018083091 W CN2018083091 W CN 2018083091W WO 2019196113 A1 WO2019196113 A1 WO 2019196113A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
extended state
container
type
reagent bottle
Prior art date
Application number
PCT/CN2018/083091
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2018/083091 priority Critical patent/WO2019196113A1/zh
Priority to CN201880001192.4A priority patent/CN108780033B/zh
Publication of WO2019196113A1 publication Critical patent/WO2019196113A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the present application relates to the field of control technologies, and in particular, to a method for controlling a probe, a detecting device, and a device for controlling the probe.
  • the current optical detecting device detects the object to be tested, it is generally required to irradiate the laser focus on the object to be detected, and determine the type of the object to be detected according to the scattering spectrum generated by the object to be detected.
  • the items to be tested are filled with a container, such as a sample bag for powder or solid, and a reagent bottle for liquid or powder.
  • the thickness of the sample bag and the reagent bottle are not the same, and even two different reagent bottles may vary greatly in thickness.
  • the first method is for holding in different containers such as sample bags and reagent bottles.
  • the items to be tested are respectively detected by probe caps of different lengths; the second way is to realize the relative position change of the focus by unplugging the current probe cap in the case of only one type of probe cap; the third way is to adopt one
  • a special reagent bottle holding base is used to detect the liquid or powder contained in the reagent bottle, and the laser focus can penetrate the reagent bottle to the liquid or powder by changing the depth of the laser focus on the object to be tested. .
  • the inventors have found that the method of detecting an object to be tested using an optical detecting device in the prior art is not convenient.
  • the user needs to carry another probe cap with the user.
  • a special reagent bottle holds the base
  • the user often has a detection error due to the easy to forget to carry another probe cap or a special reagent bottle to hold the base, and another probe cap or a special reagent bottle is carried to hold the base and the optical
  • the detection device is separate and easily lost, while the second method uses a probe cap, but requires manual operation to unplug the current probe cap to achieve the relative positional change of focus, which will be the internal lens of the optical detection device.
  • One technical problem to be solved by some embodiments of the present application is to provide a method for controlling a probe, a detecting device, and a device for controlling the probe to solve the above technical problem.
  • the embodiment of the present application provides a method for controlling a probe, which is applied to a detecting device, comprising: acquiring a type of a container used for an item to be detected; and adjusting an extended state of the probe according to the type of the container, wherein the extended state comprises: extending out State and short extension
  • the embodiment of the present application further provides a detecting device, which includes: a device body, a processor disposed inside the device body, and a retractable probe disposed on a sidewall of the device body, and is disposed at a connection between the probe and the device body
  • the optical system wherein the probe is communicatively coupled to the processor; the processor is configured to obtain the type of the container used for the item to be inspected, and adjust the extended state of the probe according to the type of the container, wherein the extended state includes: a long extended state and a short state Extending state.
  • the detecting device automatically adjusts the extended state of the probe according to the type of the container used for the object to be detected, thereby realizing the use of a single probe and controlling the different states of the probe to make the laser
  • the focus can accurately illuminate the object to be inspected instead of the container, thereby greatly improving the user experience and satisfying the actual needs of the user.
  • FIG. 1 is a flow chart of a method of controlling a probe in a first embodiment of the present application
  • FIG. 2 is a flow chart of a method of controlling a probe in a second embodiment of the present application
  • Figure 3 is a schematic view showing the relationship between the extension length of the intermediate extension state and the diameter of the reagent bottle in the second embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a detecting device in a third embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a detecting device in a fourth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a detecting device in a fifth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a detecting apparatus in a sixth embodiment of the present application.
  • a first embodiment of the present application relates to a method of controlling a probe, the method of controlling the probe being applied to a detecting device, which may be any electronic device capable of realizing a substance detecting function, such as an optical detecting device (spectrometer, etc.) .
  • a detecting device which may be any electronic device capable of realizing a substance detecting function, such as an optical detecting device (spectrometer, etc.) .
  • the specific process of the method for controlling the probe is as shown in FIG. 1 and includes the following steps:
  • step 101 the type of container used for the item to be inspected is obtained.
  • the container type includes a sample bag and a reagent bottle, and each container type is used to hold different types of articles to be inspected, for example, using a sample bag to hold powder or solid, and using a reagent bottle Contain liquid or powder.
  • the type of container used for the item to be inspected can be obtained in various ways.
  • the instruction by acquiring an instruction input by the user for determining the type of the container, the instruction carries the indication information of the container type, and determines the type of the container to be detected according to the indication information of the container type carried in the instruction.
  • the detection device has an interface for human-computer interaction (such as a touch display screen), and the interface has different buttons for the user to select a container type, such as button 1 indicating that the container type is a reagent bottle, and button 2 indicating that the container type is a sample bag.
  • a container type such as button 1 indicating that the container type is a reagent bottle, and button 2 indicating that the container type is a sample bag.
  • the detecting device acquires the button 1 command input by the user for determining the type of the container, determining the type of the container used for the item to be detected as the reagent bottle according to the indication information of the type of the container carried in the instruction of the button 1;
  • the device obtains the button 2 command input by the user for determining the type of the container, and determines the type of the container used for the item to be detected as the sample bag according to the indication information of the sample type carried in the button 2 command.
  • the image taken by the camera device facing the position of the item to be detected is acquired, and the image is used to obtain the type of container used for the item to be detected.
  • the image pickup device may be a single or a plurality of cameras. Among them, single or multiple cameras can have a 360° viewing angle range. The user can select a single or multiple cameras that are located at the location of the item to be inspected, and obtain an image of the item to be detected by shooting.
  • the specific number of the camera device is not specifically limited in this embodiment.
  • the image recognition technology is involved in the specific implementation. Since the use of the image recognition technology is relatively mature, the type of the container used to analyze the image and obtain the object to be detected by analysis will not be described herein. For example, the image containing the container acquired by the shooting may be matched with the image of the different type of container pre-stored in the database, and if the image containing the container matches the pre-stored reagent bottle image in the database, the item to be detected is determined.
  • the container type is a reagent bottle; if the image containing the container matches the image of the sample bag pre-stored in the database, it is determined that the type of container used for the item to be tested is a sample bag.
  • the imaging parameters such as the focal length of the imaging device can be adjusted to enable the imaging device to obtain a close-up image or a distant view image of the object to be detected by imaging, so that an image that meets the requirements can be selected for analysis according to the requirement of the recognition accuracy.
  • step 102 it is determined whether the container type is a reagent bottle, and if so, step 104 is performed, otherwise step 103 is performed.
  • the detecting device adjusts the extended state of the probe according to the type of the container.
  • the extended state includes a long extended state and a short extended state.
  • the different extended states correspond to different types of containers.
  • the type of the container corresponding to the extended state is the sample bag
  • the type of the container corresponding to the short extended state is the reagent bottle. Therefore, before adjusting the extended state of the probe, it can be determined whether the container type is a reagent bottle, and then the probe is adjusted accordingly according to the judgment result.
  • step 103 the extended state of the probe is adjusted to be in a long extended state.
  • adjusting the extended state of the probe according to the type of the container is specifically: obtaining a control instruction corresponding to the type of the container, and adjusting the extended state of the probe according to the control instruction.
  • the control command is used to instruct the adjustment probe to the specified extended state
  • the different container types correspond to different control commands
  • the extended state indicated by the different control commands is different.
  • a control command corresponding to the reagent bottle "adjusted to a short extended state” is stored in advance in the detecting device, indicating that the probe is adjusted to a designated short extension state, and a control command corresponding to the sample bag is "adjusted to a long extended state". ", indicating that the probe is adjusted to the specified long extension state. Therefore, when it is determined that the container type is a non-reagent bottle (such as a sample bag), a control command corresponding to the sample bag that is pre-stored by the detecting device is “adjusted to a long extended state” and is adjusted according to “adjusted to a long extended state”. The control command adjusts the probe.
  • step 104 the extended state of the probe is adjusted to be in a short extended state.
  • the principle of adjusting the extended state of the probe to a short extended state is similar to the principle of adjusting the extended state of the probe to a long extended state.
  • the control command corresponding to the reagent bottle stored in the detection device is “adjusted to a short extended state”, and the probe is adjusted according to the “adjust to short extended state” control command.
  • the user can set the initial state of the probe after the detecting device is turned on to be a long extended state or a short extended state.
  • the detecting device determines that the type of the container to be detected is a sample bag, and obtains a control instruction corresponding to the sample bag, “adjust to a long extended state”, it is determined whether the current protruding state of the probe is already a control command.
  • the required state if it is determined that the extended state of the current probe is a long extended state, the probe does not need to be moved, and if it is determined that the extended state of the current probe is not a long extended state, the control probe is extended to a long extended state. .
  • the detecting device determines that the type of the container to be detected is a reagent bottle, and obtains a control instruction corresponding to the reagent bottle, “adjust to a short extended state”, it is determined whether the current protruding state of the probe has been In order to control the state required by the command, if it is determined that the extended state of the current probe is a short extended state, the probe does not need to be moved, and if it is determined that the extended state of the current probe is not a short extended state, the control probe is contracted to a short state. Extending state.
  • the principle of contraction or elongation used in the state adjustment of the probe is the principle of mechanical expansion, which is the same as the mechanical expansion principle of the zoom lens in the prior art, and corresponds to the long extended state and the short extended state.
  • the probe change stroke and the number of drive motor revolutions are preset in the detection device and matched with the control commands in the present application.
  • the control command adjusts the probe to the specified extension by controlling the probe change stroke and the motor revolution number corresponding to different states. status.
  • the detecting device after performing step 103 or step 104, the detecting device emits laser light and irradiates the laser focus to the object to be detected through the probe.
  • the absolute position of the laser focus is fixed, and when the extension state of the probe is adjusted according to the type of the container, the top end of the probe and the surface of the container used for the object to be inspected are adhered to each other, and the adjustment of the probe allows the laser focus to be transparent.
  • the container is irradiated onto the object to be inspected, thereby achieving collection of a scattering spectrum of the article to be inspected.
  • the detecting device triggers the detection process and performs detection.
  • the method for triggering the detection process may be any one of the existing trigger modes, or may be an improvement on the existing trigger mode. How to trigger the detection process is not the focus of the present application.
  • the detection process can be triggered by receiving a user's start detection command to emit laser light and collect the scattering spectrum of the item to be inspected.
  • the detecting device calls the preprocessing algorithm to perform background subtraction, denoising, and normalization on the scattered spectrum. If the type of container used for the item to be tested is a reagent bottle, and the spectral waveform of the glass is found at the corresponding position of the spectrum, it can be deducted in advance. Then, the matching algorithm is called to compare the processed spectrum with the database spectrum to obtain the name and attribute of the item to be detected, and the detection result is presented to the user. Since spectral collection and spectral analysis are prior art, the specific content of how to collect and analyze the spectra to obtain the detection results will not be described herein.
  • the detecting device acquires an erroneous instruction for determining the type of the container due to a user operation error, and if the detection result shows the container type and the user input determination after the normal detection. If the container type instruction does not match, or if a warning message is received, the detection device will give a prompt message to facilitate the user to correct the error operation.
  • the detecting device acquires an instruction input by the user to determine the type of the container as a sample bag
  • the detection result shows that the spectrum of the glass exists in the spectrum.
  • the detection device will give a message “Whether the item in the reagent bottle is being detected”. If the user receives the OK button command for clicking on the prompt information, the probe will automatically adjust to the short extension state and prompt the user to perform the detection again; if the negative button command clicked by the user is received, the detection is ended.
  • the probe is adjusted to be in a contracted state, that is, the probe is completely contracted to the inside of the detecting device, thereby preventing damage to the probe and the structure connected to the probe due to accidental dropping. .
  • the method for controlling the probe provided by the embodiment provides the detecting device to automatically adjust the extended state of the probe according to the type of the container used for the object to be detected, thereby realizing the use of a single probe and controlling the probe.
  • Different states enable the laser focus to accurately illuminate the object to be inspected instead of the container, thereby greatly improving the user experience and satisfying the actual needs of the user.
  • the second embodiment of the present application relates to a method of controlling a probe.
  • the embodiment is further improved on the basis of the first embodiment, and the specific improvement is: after adjusting the extended state of the probe to a short extended state Further, whether the diameter of the reagent bottle is less than a preset threshold value is further determined, and the extended state of the probe is adaptively adjusted according to the judgment result, so that the laser focus is accurately irradiated onto the object to be tested.
  • the method flow of controlling the probe in this embodiment is as shown in FIG. 2 .
  • the steps 201 to 206 are included, and the steps 201 to 204 are substantially the same as the steps 101 to 104 in the first embodiment, and details are not described herein.
  • the steps 201 to 204 are substantially the same as the steps 101 to 104 in the first embodiment, and details are not described herein.
  • the technical details that are not described in detail in the present embodiment refer to the material detecting method provided in the first embodiment, and details are not described herein again.
  • step 205 is performed.
  • step 205 it is determined whether the diameter of the reagent bottle is less than a preset threshold, and if so, step 206 is performed, otherwise it ends.
  • the preset threshold is a minimum diameter of the reagent bottle specified when the laser focus can be irradiated to the object to be tested in the reagent bottle.
  • the method of obtaining the diameter of the reagent bottle includes various methods.
  • the diameter of the reagent bottle can be obtained by further analyzing the image by acquiring an image taken by the camera device at the position of the object to be detected, and analyzing the image to obtain the container type used for the object to be detected; or manually measuring the diameter of the reagent bottle;
  • the way to get the diameter of the reagent bottle of course, compared to the first way, there will be some error in the manual measurement, but as long as the error of the measurement result is within the allowable range, it will not affect the adjustment of the probe and the result of the substance detection. is acceptable.
  • step 206 the extended state of the probe is adjusted to an intermediate extended state.
  • the extended length of the intermediate extended state is greater than the extended length of the short extended state, and is smaller than the extended length of the elongated extended state.
  • extension length of the intermediate extension state can be adjusted within a certain range according to the diameter of the reagent bottle.
  • the extension length of the intermediate extension state during the specific adjustment is inversely proportional to the diameter of the reagent bottle.
  • the reagent bottle A has a diameter d1
  • the reagent bottle B has a diameter d2
  • d1 is smaller than d2.
  • the items to be tested in the reagent bottle A and the reagent bottle B are respectively detected.
  • the laser focus is caused.
  • C is irradiated into the air through two reagent bottles.
  • the probe is adjusted separately, so that the laser focus C can be irradiated onto the object to be tested, that is, the shortest distance of the probe movement is the standard, and the probe moving distance of the object to be detected in the measuring container A is S1, and the object to be detected in the container B is measured.
  • the probe moves at a distance of S2 and S1 is greater than S2. Therefore, when the extension length of the intermediate extension state is adjusted, the extension length of the intermediate extension state is inversely proportional to the diameter of the reagent bottle.
  • the specific extension length of the probe in the extended state of the probe needs to be adjusted according to the specific diameter of the reagent bottle.
  • the extended length of the probe in the extended state of the probe satisfies the difference between the focal position and the position at which the tip is extended after the probe is extended, which is about 1/2 of the diameter of the reagent bottle.
  • the method for controlling the probe provides the detecting device to automatically adjust the extended state of the probe according to the type of the container used for the object to be detected, thereby realizing the use of a single probe and controlling the probe.
  • Different states enable the laser focus to accurately illuminate the object to be inspected instead of the container, thereby greatly improving the user experience and satisfying the actual needs of the user.
  • the probe can be further adjusted according to the diameter of the reagent bottle to ensure that the laser focus is irradiated onto the object to be tested when the reagent bottle is placed close to the probe, and the probe is further optimized. The process of adjustment.
  • a third embodiment of the present application relates to a detecting device, and the specific structure is as shown in FIG.
  • the detecting device includes a device body 400, and a processor 401 disposed inside the device body is indicated by a broken line, and a retractable probe 402 disposed on a sidewall of the device body 400 is disposed on the probe 402 and connected to the device body 400.
  • the optical system 403 is where the probe 402 is communicatively coupled to the processor 401.
  • a is the position where the tip end of the probe 402 is in the extended state
  • b is the position where the tip of the probe 402 is in the short extension state
  • C is the position where the laser focus is located.
  • the optical system 403 in the present embodiment is specifically constituted by an optical element such as a lens or a filter, and since the position of the laser focus depends on the specific position of the optical system 403 and the optical path inside the probe, since the optical system 403 does not move with the expansion and contraction of the probe 402. , so the absolute position of the laser focus is fixed.
  • the device body 400 in this embodiment specifically includes a laser and a spectrometer, wherein the laser and the spectrometer are respectively communicably connected to the processor 401.
  • the laser is used to emit laser light under the control of the processor 401 and transmits the emitted laser light through the optical system 403 to the probe 402.
  • a spectrometer is used to receive the scattered light of the item to be detected returned by the optical system 403. Since the laser and the spectrometer belong to the prior art, and the application thereof is relatively mature, the connection relationship, specific structure and function of the laser and the spectrometer are not described herein.
  • the processor 401 is configured to acquire the type of the container used for the item to be detected, and adjust the extended state of the probe 402 according to the type of the container.
  • the extended state includes a long extended state and a short extended state.
  • the processor 401 is configured to acquire a control instruction corresponding to the container type, and adjust the extended state of the probe according to the control instruction.
  • the control command is used to instruct the adjustment probe to the specified extended state, the different container types correspond to different control commands, and the extended state indicated by the different control commands is different.
  • the type of the container includes a sample bag and a reagent bottle
  • the processor 401 is configured to determine whether the container type is a reagent bottle, and if so, adjust the extended state of the probe to a short extended state; otherwise, adjust the extension of the probe.
  • the state is a long extended state.
  • the processor 401 is further configured to determine whether the diameter of the reagent bottle is less than a preset threshold after adjusting the extended state of the probe to a short extended state; and adjusting the probe when determining that the diameter of the reagent bottle is less than a preset threshold
  • the extended state is in the middle extended state.
  • the extended length of the intermediate extended state is greater than the extended length of the short extended state, and is smaller than the extended length of the long extended state.
  • the extended length of the intermediate extended state is inversely proportional to the diameter of the reagent bottle.
  • the detecting device provided in this embodiment can be applied to the method for controlling the probe in the first embodiment or the second embodiment, and the related technical details mentioned in the first embodiment or the second embodiment are in this embodiment.
  • the method is still valid, in order to reduce the repetition, it will not be repeated here. Accordingly, the related technical details mentioned in the present embodiment can also be applied to the first embodiment or the second embodiment.
  • the fourth embodiment of the present application relates to a detecting device, which is substantially the same as the third embodiment, and the specific structure is as shown in FIG. Among them, the main improvement is that the detecting device in the fourth embodiment further includes an input component 404 that is communicatively coupled to the processor 401.
  • the input component 404 is configured to obtain an instruction input by the user for determining the type of the container, and transmit the instruction to the processor 401, where the instruction carries the indication information of the container type, and the input component in this embodiment may have Human-computer interaction interface (such as touch screen display).
  • the processor 401 is configured to determine, according to the indication information of the container type carried in the instruction, the type of the container used by the item to be detected.
  • the fifth embodiment of the present application relates to a detecting device, which is substantially the same as the third embodiment, and the specific structure is as shown in FIG. 6.
  • the main improvement is that the detecting apparatus in the fifth embodiment further includes an image pickup device 404' facing the position of the article to be detected, and the image pickup device 404' is communicably connected to the processor 401.
  • the image capturing device 404' is configured to capture an image of the item to be detected under the control of the processor 401, and transmit the image to the processor 401.
  • the processor 401 is configured to analyze an image to obtain a container type used for the item to be detected.
  • the image capturing apparatus 404' may be a single or a plurality of cameras. Among them, single or multiple cameras can have a 360° viewing angle range. The user can select a single or multiple cameras facing the position of the item to be detected according to the actual needs, and obtain an image of the item to be detected by shooting. In this embodiment, a single camera is taken as an example for description.
  • the sixth embodiment of the present application relates to a detecting device, which is substantially the same as the third embodiment, and the specific structure is as shown in FIG. Among them, the main improvement is that the detecting device in the sixth embodiment further includes an input member 404 and an image pickup device 404' facing the position of the article to be detected, and the input member 404 and the image pickup device 404' are respectively communicably connected to the processor 401.
  • the user can select a specific mode for obtaining the type of the container according to actual needs, which is not limited in this embodiment.
  • the input component 404 or the camera 404' respectively implements a communication connection with the processor 401, and the manner of implementing the communication connection may be a direct connection of the wires; or the processor 401 is respectively connected to the input component 404 or the camera 404 through the cloud server. 'Wireless connection for communication.
  • a person skilled in the art can select a corresponding connection manner according to actual needs, which is not limited herein.
  • a seventh embodiment of the present application is directed to a computer readable storage medium having stored therein computer instructions that enable a computer to perform the method of controlling a probe involved in any of the method embodiments of the present application.
  • a program to instruct related hardware may be implemented by a program to instruct related hardware, the program being stored in a storage medium, including a plurality of instructions for causing a device (may be A microcontroller, chip, etc. or processor executes all or part of the steps of the method described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种控制探头(402)的方法、检测设备及控制探头(4-2)的装置。控制探头(402)的方法,应用于检测设备,包括:获取待检测物品所使用的容器类型(101);根据容器类型调整探头(402)的伸出状态,其中,伸出状态包括:长伸出状态和短伸出状态。检测设备根据待检测物品所使用的容器类型,来自动调整探头(402)的伸出状态,实现了使用一种单一探头(402)并通过控制探头(402)的不同状态,使激光焦点能够准确照射到待检测物品上而不是容器上,从而大大提升了用户体验,满足了用户的实际需求。

Description

一种控制探头的方法、检测设备及控制探头的装置 技术领域
本申请涉及控制技术领域,特别涉及一种控制探头的方法、检测设备及控制探头的装置。
背景技术
目前的光学检测设备在对待测物品进行检测时,一般需要将激光焦点照射在待检测物品上,并根据待检测物品产生的散射光谱判定待检测物品的种类。一般情况下,待检测物品都会采用容器来盛放,如用样品袋盛放粉末或固体,用试剂瓶盛放液体或粉末。然而样品袋和试剂瓶的厚度并不相同,即使是两种不同的试剂瓶也可能厚度相差很大。在使用同一套光学检测设备对物质进行检测时,为了将激光焦点准确照射到待测物品上,通常采用三种方式:第一种方式是针对盛放在不同容器如样品袋和试剂瓶中的待检测物品分别采用不同长度的探头帽进行检测;第二种方式是在只有一种探头帽的情况下,通过拔掉当前探头帽的方式实现焦点的相对位置变化;第三种方式是采用一个专门的试剂瓶盛放底座用于对盛放在试剂瓶中的液体或粉末进行检测,通过改变激光焦点照射在待测物品上的深度,使激光焦点能够穿透试剂瓶照射到液体或粉末上。
技术问题
发明人在实现本申请的过程中发现,现有技术中的使用光学检测设备对待测物品进行检测的方式并不方便,针对第一种方式和第三种方式,用户需要随身携带另一个探头帽或专门的试剂瓶盛放底座,用户往往会由于容易忘记携带另一个探头帽或专门的试剂瓶盛放底座而造成检测出错,并且另外携带的一个探头帽或专门的试剂瓶盛放底座与光学检测设备是分离的,很容易丢失,而第二种方式虽然使用的是一种探头帽,但需要人工操作来拔掉当前探头帽实现焦点的相对位置变化,这样就会对光学检测设备内部透镜造成污染和损伤。可见,目前光学检测设备中所使用的探头帽在对待测物品进行检测时,可能无法满足用户的实际需求。
技术解决方案
本申请部分实施例所要解决的一个技术问题在于提供一种控制探头的方法、检测设备及控制探头的装置,以解决上述技术问题
本申请实施例提供了一种控制探头的方法,应用于检测设备,包括:获取待检测物品所使用的容器类型;根据容器类型调整探头的伸出状态,其中,伸出状态包括:长伸出状态和短伸出状态
本申请实施例还提供了一种检测设备,该检测设备包括:设备主体,设置在设备主体内部的处理器、设置在设备主体侧壁上的可伸缩的探头,设置在探头与设备主体连接处的光学***,其中,探头与处理器通信连接;处理器用于获取待检测物品所使用的容器类型,并根据容器类型调整探头的伸出状态,其中,伸出状态包括:长伸出状态和短伸出状态。
有益效果
本申请实施例相对于现有技术而言,检测设备根据待检测物品所使用的容器类型,来自动调整探头的伸出状态,实现了使用一种单一探头并通过控制探头的不同状态,使激光焦点能够准确照射到待检测物品上而不是容器上,从而大大提升了用户体验,满足了用户的实际需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请第一实施例中控制探头方法的流程图;
图2是本申请第二实施例中控制探头方法的流程图;
图3是本申请第二实施例中调整中间伸出状态的伸出长度与试剂瓶直径的关系示意图;
图4是本申请第三实施例中检测设备的结构示意图;
图5是本申请第四实施例中检测设备的结构示意图;
图6是本申请第五实施例中检测设备的结构示意图;
图7是本申请第六实施例中检测设备的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请的第一实施例涉及一种控制探头的方法,该控制探头的方法应用于检测设备,该检测设备可以是任意一种能够实现物质检测功能的电子设备,如光学检测设备(光谱仪等)。该控制探头的方法的具体流程如图1所示,包括以下步骤:
在步骤101中,获取待检测物品所使用的容器类型。
具体的说,在本实施例中,容器类型包括样品袋和试剂瓶,并且每种容器类型分别用于盛放不同类型的待检测物品,例如,使用样品袋盛放粉末或固体,使用试剂瓶盛放液体或粉末。
其中,可以采取多种方式获取待检测物品所使用的容器类型,以下对获取容器类型的方式进行具体说明:
第一种具体实现中,通过获取用户输入的用于确定容器类型的指令,指令中携带有容器类型的指示信息,根据指令中携带的容器类型的指示信息确定待检测物品所使用的容器类型。
例如,检测设备上具有人机交互的界面(如触摸显示屏),界面上具有供用户进行容器类型选择的不同按键,如按键1指示容器类型为试剂瓶,按键2指示容器类型为样品袋。在对待检测物品进行测试时,用户可以通过触摸按键的方式,选择界面上与待检测物品所使用的容器类型所对应的按键。如果检测设备获取到用户输入的用于确定容器类型的按键1指令,则根据按键1指令中携带的容器类型为试剂瓶的指示信息,确定待检测物品所使用的容器类型为试剂瓶;如果检测设备获取到用户输入的用于确定容器类型的按键2指令,则根据按键2指令中携带的容器类型为样品袋的指示信息,确定待检测物品所使用的容器类型为样品袋。
第二种具体实现中,通过获取朝向待检测物品所在位置的摄像装置拍摄的图像,并分析图像获得待检测物品所使用的容器类型。本实施方式为了拍摄图像的精确性,摄像装置可以为单个或者多个摄像头。其中,单个或者多个摄像头可以具备360°视角范围。用户可以根据实际需要选择朝向待检测物品所在位置的单个或者多个摄像头,并通过拍摄获取待检测物品的图像,本实施例中对摄像装置的具体个数并不做具体限定。在获取到摄像装置拍摄的图像后,对图像进行分析获得待检测物品所使用的容器类型。
该具体实现中涉及到了图像识别技术,由于图像识别技术的使用已经较为成熟,因而关于具体如何对图像进行分析,并通过分析获得待检测物品所使用的容器类型此处不再赘述。例如,可以将通过拍摄获取到的包含容器的图像与数据库中预存的不同类型容器的图像进行匹配,如果包含容器的图像与数据库中预存的试剂瓶图像匹配成功,则确定待检测物品所使用的容器类型为试剂瓶;如果包含容器的图像与数据库中预存的样品袋的图像匹配成功,则确定待检测物品所使用的容器类型为样品袋。
需要说明的是,可以通过调整摄像装置的焦距等拍摄参数,使摄像装置能够通过拍摄获得待检测物品的近景图像或者远景图像,从而能够根据识别精度的需求选取符合要求的图像进行分析。
在步骤102中,判断容器类型是否为试剂瓶,若是,则执行步骤104,否则执行步骤103。
具体的说,因为检测设备会根据容器类型调整探头的伸出状态。其中,伸出状态包括长伸出状态和短伸出状态。不同的伸出状态对应着不同的容器类型,本实施方式中长伸出状态对应的容器类型为样品袋,短伸出状态对应的容器类型为试剂瓶。所以在对探头的伸出状态进行调整之前,可以先判断容器类型是否为试剂瓶,然后根据判断的结果来对探头进行相应的调整。
在步骤103中,调整探头的伸出状态为长伸出状态。
具体的说,根据容器类型调整探头的伸出状态具体为:获取容器类型对应的控制指令,并根据控制指令调整探头的伸出状态。
其中,控制指令用于指示调整探头到指定的伸出状态,不同的容器类型对应不同的控制指令,且不同的控制指令所指示调整的伸出状态不同。
例如,在检测设备内预先存储与试剂瓶对应的控制指令“调整为短伸出状态”,表示调整探头到指定的短伸出状态,以及与样品袋对应的控制指令“调整为长伸出状态”,表示调整探头到指定的长伸出状态。因此,在确定容器类型为非试剂瓶(如样品袋)时,可以获取检测设备预先存储的与样品袋对应的控制指令“调整为长伸出状态”,并根据“调整为长伸出状态”控制指令对探头进行调整。
在步骤104中,调整探头的伸出状态为短伸出状态。
具体的说,调整探头的伸出状态为短伸出状态的原理,与调整探头的伸出状态为长伸出状态的原理相似。在确定容器类型为试剂瓶时,可以获取检测设备预先存储的与试剂瓶对应的控制指令“调整为短伸出状态”,并根据“调整为短伸出状态”控制指令对探头进行调整。
需要说明的是,在实际应用中,用户可以设置检测设备开机后探头的初始状态为长伸出状态或短伸出状态。当检测设备确定待检测物品所使用的容器类型为样品袋,并获取到与样品袋对应的控制指令“调整为长伸出状态”,此时会判断当前探头的伸出状态是否已经为控制指令所要求的状态,如果确定当前探头的伸出状态为长伸出状态,则探头不需要进行移动,如果确定当前探头的伸出状态不是长伸出状态,则控制探头伸长到长伸出状态。同理,当检测设备确定待检测物品所使用的容器类型为试剂瓶,并获取到与试剂瓶对应的控制指令“调整为短伸出状态”,此时会判断当前探头的伸出状态是否已经为控制指令所要求的的状态,如果确定当前探头的伸出状态为短伸出状态,则探头不需要进行移动,如果确定当前探头的伸出状态不是短伸出状态,则控制探头收缩到短伸出状态。
需要说明的是,探头在进行状态调整时所采用的收缩或伸长原理为机械伸缩原理,这与现有技术中变焦镜头的机械伸缩原理相同,长伸出状态和短伸出状态所对应的探头变化行程和驱动电机转数提前预置在检测设备内,并与本申请中的控制指令相匹配,控制指令通过控制不同状态所对应的探头变化行程和电机转数调整探头到指定的伸出状态。
需要说明的是,在本实施例中,在执行完步骤103或步骤104,检测设备会发射激光并通过探头将激光焦点照射到待检测物品上。激光焦点的绝对位置是固定的,并且在根据容器类型调整探头的伸出状态时,探头的顶端与待检测物品所使用的容器表面是相互贴合的,通过对探头的调整使得激光焦点可以透过容器照射到待检测物品上,从而实现对待检测物品的散射光谱的收集。
需要说明的是,在根据容器类型调整探头的伸出状态后,检测设备会触发检测过程并进行检测。其中,触发检测过程的方法可以是现有的触发方式中的任意一种,也可以是对现有的触发方式的改进,对于如何触发检测过程并不是本申请所关注的重点。
以下通过举例的方式对触发方式进行说明,但这并不表示触发方式只能采用以下方式。
例如,可以通过接收用户的开始检测指令触发检测过程,从而发射激光并收集待检测物品的散射光谱。
需要说明的是,检测结束后,检测设备调用预处理算法对散射光谱进行背景扣除、去噪和归一化等操作。如果待检测物品所使用的容器类型为试剂瓶,并且在光谱对应位置发现了玻璃的光谱波形,则可以预先扣除。之后调用匹配算法将处理后的光谱与数据库光谱对比得到待检测物品的名称和属性,将检测结果呈现给用户。由于光谱收集和光谱分析为现有技术,因而关于如何对光谱进行收集并分析获得检测结果的具体内容此处不再赘述。
需要说明的是,当在获取待检测物品所使用的容器类型时,由于用户操作失误,检测设备获取到错误的确定容器类型的指令,在正常检测后如果检测结果显示容器类型与用户输入的确定容器类型的指令不符,或者收到警示信息,则检测设备会给出提示信息,以方便用户对错误操作进行校正。
例如,当待检测物品所使用的容器类型为试剂瓶,但检测设备获取到用户输入的确定容器类型为样品袋的指令,在对待检测物品进行光谱分析时,检测结果显示光谱中存在玻璃的光谱(待检测物品不是玻璃时),或者收到“无法识别”的警示信息,检测设备会给出提示信息“是否正在检测试剂瓶中的物品”。如果接收到用户针对该提示信息点击的确定按键指令,则探头会自动调整到短伸出状态,并提示用户重新进行检测;如果接收到用户点击的否定按键指令,则结束检测。
需要说明的是,在检测结束后或者检测设备关机的情况下,会调整探头为收缩态,即探头完全收缩到检测设备内部,这样可以防止由于意外跌落而对探头和与探头相连的结构造成损伤。
与现有技术相比,本实施方式提供的控制探头的方法,检测设备根据待检测物品所使用的容器类型,来自动调整探头的伸出状态,实现了使用一种单一探头并通过控制探头的不同状态,使激光焦点能够准确照射到待检测物品上而不是容器上,从而大大提升了用户体验,满足了用户的实际需求。
本申请的第二实施例涉及一种控制探头的方法,本实施例在第一实施例的基础上做了进一步改进,具体改进之处为:在调整探头的伸出状态为短伸出状态之后,进一步判断试剂瓶的直径是否小于预设阈值,根据判断结果对探头的伸出状态进行适应性调整,以使激光焦点准确照射到待测物品上。本实施例中的控制探头的方法流程如图2所示。
具体的说,在本实施例中,包括步骤201至步骤206,其中步骤201至步骤204与第一实施方式中的步骤101至步骤104大致相同,此处不再赘述,下面主要介绍不同之处,未在本实施方式中详尽描述的技术细节,可参见第一实施例所提供的物质检测方法,此处不再赘述。
在步骤201至步骤204之后,执行步骤205。
在步骤205中,判断试剂瓶的直径是否小于预设阈值,若是,则执行步骤206,否则结束。
具体的说,为了避免由于试剂瓶的直径过小,造成激光焦点穿过试剂瓶而照射到空气中,需要将试剂瓶的直径与存储的预设阈值进行比较,判断试剂瓶的直径是否小于预设阈值,其中,预设阈值为激光焦点能够照射到试剂瓶中待测物品时,所规定的试剂瓶最小直径。
需要说明的是,在本实施例中,获取试剂瓶直径的方法包括多种方式。可以通过获取朝向待检测物品所在位置的摄像装置拍摄的图像,并分析图像获得待检测物品所使用的容器类型为试剂瓶后,通过进一步对图像进行分析获取到试剂瓶的直径;或者通过人工测量的方式获取试剂瓶的直径,当然,相对于第一种方式来说人工测量会有一些误差,但只要测量结果的误差在允许范围内,不会对探头的调整和物质检测结果造成影响,都是可以接受的。
在步骤206中,调整探头的伸出状态为中间伸出状态。
具体的说,在确定试剂瓶的直径小于预设阈值时,表明当前的激光焦点穿过了试剂瓶照射到空气中,处于短伸出状态的探头依然无法满足对试剂瓶中待测物品的检测,此时需要进一步将探头的伸出状态调整为中间伸出状态。其中,中间伸出状态的伸出长度是大于短伸出状态的伸出长度,小于长伸出状态的伸出长度的。
需要说明的是,中间伸出状态的伸出长度可以根据试剂瓶的直径在一定范围内进行调整。具体调整时中间伸出状态的伸出长度与试剂瓶的直径大小成反比。
下面以举例的方式具体说明调整中间伸出状态的伸出长度与试剂瓶直径的关系。如图3所示,试剂瓶A的直径为d1,试剂瓶B的直径为d2,并且d1小于d2。分别对试剂瓶A和试剂瓶B中的待测物品进行检测,在探头分别处于相同位置的短伸出状态的情况下,由于两个试剂瓶的直径都小于规定的预设阈值,造成激光焦点C穿过两个试剂瓶照射到空气中。此时分别对探头进行调整,以激光焦点C刚刚能够照射到待测物品上即探头移动最短距离为标准,测量容器A中待检测物品的探头移动距离为S1,测量容器B中待检测物品的探头移动距离为S2,并且S1大于S2。因此在对中间伸出状态的伸出长度进行调整时,中间伸出状态的伸出长度与试剂瓶的直径大小是成反比的。
在实际应用中,对于探头中间伸出状态具体的伸出长度,需要根据试剂瓶具体的直径大小进行相应的调整。例如,探头中间伸出状态的伸出长度满足:焦点位置与探头伸出后顶端所在的位置的距离差大约为试剂瓶直径的1/2。
与现有技术相比,本实施方式提供的控制探头的方法,检测设备根据待检测物品所使用的容器类型,来自动调整探头的伸出状态,实现了使用一种单一探头并通过控制探头的不同状态,使激光焦点能够准确照射到待检测物品上而不是容器上,从而大大提升了用户体验,满足了用户的实际需求。并且在探头为短伸出状态的情况下,可以根据试剂瓶的直径进一步调整探头为中间伸出状态,以保证试剂瓶紧贴探头放置时激光焦点恰好照射到待测物品上,进一步优化了探头调整的过程。
本申请的第三实施例涉及一种检测设备,具体结构如图4所示。
如图4所示,检测设备包括设备主体400,设置在设备主体内部的处理器401以虚线标出,设置在设备主体400侧壁上的可伸缩探头402,设置在探头402与设备主体400连接处的光学***403,其中,探头402与处理器401通信连接。
其中,如图4所示,a为长伸出状态探头402顶端所在的位置,b为短伸出状态探头402顶端所在的位置,C为激光焦点所在的位置。本实施方式中的光学***403具体由透镜、滤光片等光学元件构成,由于激光焦点的位置取决于光学***403的具***置以及探头内部的光路,因为光学***403不随探头402的伸缩而移动,所以激光焦点的绝对位置是固定的。
需要说明的是,本实施方式中的设备主体400具体包括激光器以及光谱仪,其中,激光器与光谱仪分别与处理器401通信连接。激光器用于在处理器401的控制下发出激光,并将发出的激光通过光学***403传输到探头402。光谱仪用于接收通过光学***403返回的待检测物品的散射光。由于激光器与光谱仪属于现有技术,并且其应用已经较为成熟,因此关于其与其他部件的连接关系、具体结构及功能此处不再赘述。
其中,处理器401用于获取待检测物品所使用的容器类型,并根据容器类型调整探头402的伸出状态。其中,伸出状态包括:长伸出状态和短伸出状态。
需要说明的是,处理器401,用于获取容器类型对应的控制指令,并根据控制指令调整探头的伸出状态。其中,控制指令用于指示调整探头到指定的伸出状态,不同的容器类型对应不同的控制指令,且不同的控制指令所指示调整的伸出状态不同。
具体的说,容器的类型包括样品袋和试剂瓶,处理器401,用于判断容器类型是否为试剂瓶,若是,则调整探头的伸出状态为短伸出状态,否则,调整探头的伸出状态为长伸出状态。
具体的说,处理器401,还用于在调整探头的伸出状态为短伸出状态之后,判断试剂瓶的直径是否小于预设阈值;当确定试剂瓶的直径小于预设阈值时,调整探头的伸出状态为中间伸出状态。其中,中间伸出状态的伸出长度大于短伸出状态的伸出长度,小于长伸出状态的伸出长度。并且中间伸出状态的伸出长度与试剂瓶的直径大小成反比。
不难发现,本实施例所提供的检测设备可以应用于第一实施例或者第二实施例中的控制探头的方法,第一实施例或者第二实施例中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式或者第二实施方式中。
本申请的第四实施例涉及一种检测设备,该实施例与第三实施例大致相同,具体结构如图5所示。其中,主要改进之处在于:第四实施例中的检测设备还包括输入部件404,输入部件404与处理器401通信连接。
其中,输入部件404用于获取用户输入的用于确定容器类型的指令,并将指令传输给处理器401,其中,指令中携带有容器类型的指示信息,本实施例中的输入部件可以为具有人机交互的界面(如触摸显示屏)。
其中,处理器401用于根据指令中携带的容器类型的指示信息确定待检测物品所使用的容器类型。
本申请的第五实施例涉及一种检测设备,该实施例与第三实施例大致相同,具体结构如图6所示。其中,主要改进之处在于:第五实施例中的检测设备还包括朝向待检测物品所在位置的摄像装置404’,摄像装置404’与处理器401通信连接。
其中,摄像装置404’用于在处理器401的控制下拍摄获得待检测物品的图像,并将图像传输给处理器401。
其中,处理器401用于分析图像获得待检测物品所使用的容器类型。
需要说明的是,本实施例为了拍摄图像的精确性,摄像装置404’可以为单个或者多个摄像头。其中,单个或者多个摄像头可以具备360°视角范围。用户可以根据实际需要选择朝向待检测物品所在位置的单个或者多个摄像头,并通过拍摄获取待检测物品的图像,本实施例中以单个摄像头为例进行说明。
本申请的第六实施例涉及一种检测设备,该实施例与第三实施例大致相同,具体结构如图7所示。其中,主要改进之处在于:第六实施例中的检测设备还包括输入部件404与朝向待检测物品所在位置的摄像装置404’,输入部件404与摄像装置404’分别与处理器401通信连接。
其中,在本实施例中,用户可以根据实际需要自行选择获取容器类型的具体方式,本实施例对此不作限定。
需要说明的是,输入部件404或摄像装置404’ 分别与处理器401实现通信连接,其实现通信连接的方式可以是导线直接连接;或者处理器401通过云端服务器分别与输入部件404或摄像装置404’无线连接,从而实现通信。本领域技术人员可以根据实际需要选择相应的连接方式,此处不做限定。
本申请的第七实施例涉及一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,该计算机指令使计算机能够执行本申请任意方法实施例中涉及的控制探头的方法。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种控制探头的方法,应用于检测设备,所述控制探头的方法包括:
    获取待检测物品所使用的容器类型;
    根据所述容器类型调整探头的伸出状态,其中,所述伸出状态包括:长伸出状态和短伸出状态。
  2. 如权利要求1所述的控制探头的方法,其中,所述获取待检测物品所使用的容器类型,包括:
    获取朝向待检测物品所在位置的摄像装置拍摄的图像,并分析所述图像获得所述待检测物品所使用的容器类型。
  3. 如权利要求1所述的控制探头的方法,其中,所述获取待检测物品所使用的容器类型,包括:
    获取用户输入的用于确定所述容器类型的指令,所述指令中携带有容器类型的指示信息;
    根据所述指令中携带的容器类型的指示信息确定所述待检测物品所使用的容器类型。
  4. 如权利要求1至3任一项所述的控制探头的方法,其中,所述根据所述容器类型调整探头的伸出状态,包括:
    获取所述容器类型对应的控制指令,其中,所述控制指令用于指示调整所述探头到指定的伸出状态,不同的容器类型对应不同的控制指令,且不同的所述控制指令所指示调整的伸出状态不同;
    根据所述控制指令调整所述探头的伸出状态。
  5. 如权利要求4所述的控制探头的方法,其中,所述容器类型包括样品袋和试剂瓶;
    所述根据所述容器类型调整探头的伸出状态,具体包括:
    判断所述容器类型是否为所述试剂瓶,若是,则调整所述探头的伸出状态为所述短伸出状态,否则,调整所述探头的伸出状态为所述长伸出状态。
  6. 如权利要求5所述的控制探头的方法,其中,在所述调整所述探头的伸出状态为所述短伸出状态之后,所述控制探头的方法还包括:
    判断所述试剂瓶的直径是否小于预设阈值;
    当确定所述试剂瓶的直径小于所述预设阈值时,调整所述探头的伸出状态为中间伸出状态,其中,所述中间伸出状态的伸出长度大于所述短伸出状态的伸出长度,小于所述长伸出状态的伸出长度。
  7. 如权利要求6所述的控制探头的方法,其中,所述中间伸出状态的伸出长度与所述试剂瓶的直径大小成反比。
  8. 一种检测设备,包括:设备主体,设置在所述设备主体内部的处理器,设置在所述设备主体侧壁上的可伸缩的探头,设置在所述探头与所述设备主体连接处的光学***,其中,所述探头与所述处理器通信连接;
    所述处理器用于获取待检测物品所使用的容器类型,并根据所述容器类型调整所述探头的伸出状态,其中,所述伸出状态包括:长伸出状态和短伸出状态。
  9. 如权利要求8所述的检测设备,其中,所述检测设备还包括朝向待检测物品所在位置的摄像装置,所述摄像装置与所述处理器通信连接;
    所述摄像装置用于在所述处理器的控制下拍摄获得待检测物品的图像,并将所述图像传输给所述处理器;
    所述处理器用于分析所述图像获得所述待检测物品所使用的容器类型。
  10. 如权利要求8所述的检测设备,其中,所述检测设备还包括输入部件,所述输入部件与所述处理器通信连接;
    所述输入部件用于获取用户输入的用于确定所述容器类型的指令,并将所述指令传输给所述处理器,其中,所述指令中携带有容器类型的指示信息;
    所述处理器用于根据所述指令中携带的容器类型的指示信息确定所述待检测物品所使用的容器类型。
  11. 如权利要求8至10任一项所述的检测设备,其中,所述处理器用于:
    获取所述容器类型对应的控制指令,其中,所述控制指令用于指示调整所述探头到指定的伸出状态,不同的容器类型对应不同的控制指令,且不同的所述控制指令所指示调整的伸出状态不同;
    根据所述控制指令调整所述探头的伸出状态。
  12. 如权利要求11所述的检测设备,其中,所述容器的类型包括样品袋和试剂瓶;
    所述处理器用于判断所述容器类型是否为所述试剂瓶,若是,则调整所述探头的伸出状态为所述短伸出状态,否则,调整所述探头的伸出状态为所述长伸出状态。
  13. 如权利要求12所述的检测设备,其中,所述处理器还用于:
    在所述调整所述探头的伸出状态为所述短伸出状态之后,判断所述试剂瓶的直径是否小于预设阈值;
    当确定所述试剂瓶的直径小于所述预设阈值时,调整所述探头的伸出状态为中间伸出状态,其中,所述中间伸出状态的伸出长度大于所述短伸出状态的伸出长度,小于所述长伸出状态的伸出长度。
  14. 如权利要求13所述的检测设备,其中,所述中间伸出状态的伸出长度与所述试剂瓶的直径大小成反比。
PCT/CN2018/083091 2018-04-13 2018-04-13 一种控制探头的方法、检测设备及控制探头的装置 WO2019196113A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/083091 WO2019196113A1 (zh) 2018-04-13 2018-04-13 一种控制探头的方法、检测设备及控制探头的装置
CN201880001192.4A CN108780033B (zh) 2018-04-13 2018-04-13 一种控制探头的方法、检测设备及控制探头的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083091 WO2019196113A1 (zh) 2018-04-13 2018-04-13 一种控制探头的方法、检测设备及控制探头的装置

Publications (1)

Publication Number Publication Date
WO2019196113A1 true WO2019196113A1 (zh) 2019-10-17

Family

ID=64029075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083091 WO2019196113A1 (zh) 2018-04-13 2018-04-13 一种控制探头的方法、检测设备及控制探头的装置

Country Status (2)

Country Link
CN (1) CN108780033B (zh)
WO (1) WO2019196113A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780033B (zh) * 2018-04-13 2021-05-28 深圳达闼科技控股有限公司 一种控制探头的方法、检测设备及控制探头的装置
CN109342370B (zh) * 2018-11-21 2021-06-22 深圳达闼科技控股有限公司 一种检测方法、相关装置及存储介质
CN109580494B (zh) * 2018-11-21 2021-09-28 深圳达闼科技控股有限公司 一种检测方法、相关装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902272A2 (de) * 1997-09-12 1999-03-17 Bodenseewerk Perkin-Elmer Gmbh Atomabsorptionsspektrometer
CN2653496Y (zh) * 2003-10-30 2004-11-03 庞全 微生物图像定量观察与分析装置
CN201653551U (zh) * 2010-01-14 2010-11-24 杭州远方光电信息有限公司 一种荧光材料激发测量装置
CN106016181A (zh) * 2016-06-08 2016-10-12 广东工业大学 一种用于机器视觉***的自动化调节光源装置
CN106053348A (zh) * 2016-08-16 2016-10-26 苏州恒铭达电子科技有限公司 一种隐藏式可调节膜检测机构
CN206330878U (zh) * 2016-10-03 2017-07-14 石河子大学 光纤探针***深度调节和清洗装置
CN108780033A (zh) * 2018-04-13 2018-11-09 深圳达闼科技控股有限公司 一种控制探头的方法、检测设备及控制探头的装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2208271Y (zh) * 1994-07-21 1995-09-20 中国科学院化学研究所 扫描探针显微镜立式探头
DE19826138B4 (de) * 1998-04-17 2007-06-28 NU TECH Gesellschaft für Lasertechnik Materialprüfung und Meßtechnik mbH Verfahren zur Herstellung eines Werkstücks mit einer verschleißbeständigen Oberfläche
CN2925398Y (zh) * 2006-05-22 2007-07-25 上海交大南洋医疗器械有限公司 体外冲击波碎石机b超探头定位调节机构
CN202291842U (zh) * 2011-09-28 2012-07-04 江苏大学 一种激光焦点位置快速找正装置
CN203643318U (zh) * 2013-12-27 2014-06-11 同方威视技术股份有限公司 光学探头
CN107271466B (zh) * 2017-08-04 2020-09-08 武汉三联特种技术股份有限公司 一种无损检测***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902272A2 (de) * 1997-09-12 1999-03-17 Bodenseewerk Perkin-Elmer Gmbh Atomabsorptionsspektrometer
CN2653496Y (zh) * 2003-10-30 2004-11-03 庞全 微生物图像定量观察与分析装置
CN201653551U (zh) * 2010-01-14 2010-11-24 杭州远方光电信息有限公司 一种荧光材料激发测量装置
CN106016181A (zh) * 2016-06-08 2016-10-12 广东工业大学 一种用于机器视觉***的自动化调节光源装置
CN106053348A (zh) * 2016-08-16 2016-10-26 苏州恒铭达电子科技有限公司 一种隐藏式可调节膜检测机构
CN206330878U (zh) * 2016-10-03 2017-07-14 石河子大学 光纤探针***深度调节和清洗装置
CN108780033A (zh) * 2018-04-13 2018-11-09 深圳达闼科技控股有限公司 一种控制探头的方法、检测设备及控制探头的装置

Also Published As

Publication number Publication date
CN108780033B (zh) 2021-05-28
CN108780033A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN110383038B (zh) 用于对空气样本进行自动分析的***和方法
CN108780050B (zh) 检测镜头的方法及装置、电子设备和计算机可读存储介质
TWI267623B (en) Component monitoring method
WO2019196113A1 (zh) 一种控制探头的方法、检测设备及控制探头的装置
EP3459007B1 (en) Systems, apparatus, and related methods for evaluating biological sample integrity
CN107076732A (zh) 用于管检查和液位检测的方法及***
EP2600308A3 (en) Information processing apparatus, information processing method, program and computer-readable storage medium
CN108780048A (zh) 一种确定检测设备的方法、检测装置及可读存储介质
CN113538427B (zh) 产品缺陷识别方法、装置、设备及可读存储介质
JP5110656B2 (ja) 接触角測定システム及び接触角測定方法
CN104134440B (zh) 用于便携式终端的语音检测方法和语音检测装置
WO2018232752A1 (zh) 一种物质检测方法、装置及设备
JP2010151566A (ja) 粒子画像解析方法及び装置
US20210172725A1 (en) Method and apparatus for determining a vertical position of a horizontally extending interface between a first component and a second component
CN108106610B (zh) 一种载物台垂直度检测方法、***及其控制装置
WO2019140579A1 (zh) 对待检测物质进行拉曼检测的方法和终端
TW201317587A (zh) 尺寸檢測裝置及方法
JP2014512546A5 (zh)
US20150116486A1 (en) Terminal device, image measuring system and method of inspection of workpiece
CN111563870A (zh) 图像处理方法和设备、检测方法和装置、存储介质
CN105373788A (zh) 光偏折检测模块及使用其检测及误差校正的方法
US20180045937A1 (en) Automated 3-d measurement
WO2020103695A1 (zh) 一种检测方法、相关装置及存储介质
KR101914777B1 (ko) 생선의 선도를 검사하는 방법 및 이를 위한 장치
TWI431242B (zh) Spring measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914687

Country of ref document: EP

Kind code of ref document: A1