WO2019194429A1 - 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 - Google Patents

괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2019194429A1
WO2019194429A1 PCT/KR2019/002956 KR2019002956W WO2019194429A1 WO 2019194429 A1 WO2019194429 A1 WO 2019194429A1 KR 2019002956 W KR2019002956 W KR 2019002956W WO 2019194429 A1 WO2019194429 A1 WO 2019194429A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
sulfur
Prior art date
Application number
PCT/KR2019/002956
Other languages
English (en)
French (fr)
Inventor
한승훈
문정미
손권남
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190028552A external-priority patent/KR20190117372A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019194429A1 publication Critical patent/WO2019194429A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium secondary battery including a gootite as a positive electrode additive and a lithium secondary battery having an improved lifespan.
  • Secondary batteries unlike primary batteries that can only be discharged once, have become an important electronic component of portable electronic devices since the 1990s as an electrical storage device capable of continuous charging and discharging.
  • the lithium ion secondary battery was commercialized by Sony, Japan in 1992, it has led the information age as a core component of portable electronic devices such as smartphones, digital cameras, and notebook computers.
  • lithium ion secondary batteries have been widely used in applications such as vacuum cleaners, power tools for electric tools, electric bicycles and electric scooters, and electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles).
  • EVs electric vehicles
  • hybrid electric vehicles hybrid electric vehicles
  • HEV vehicles
  • PHEVs Plug-in hybrid electric vehicles
  • ESS Electric Storage Systems
  • Lithium secondary battery is basically composed of materials such as positive electrode, electrolyte, negative electrode, etc. Among them, since positive and negative electrode materials determine the capacity of battery, lithium ion secondary battery is due to material limitations of positive and negative electrodes. Limited by capacity In particular, the secondary battery to be used for applications such as electric vehicles, PHEVs, so that the use of as long as possible after a single charge, the discharge capacity of the secondary battery is very important.
  • One of the biggest constraints on the sale of electric vehicles is that the distance that can be driven after a single charge is much shorter than that of a normal gasoline engine.
  • Lithium-sulfur secondary battery goes beyond the capacity limit determined by the insertion / decalation reaction of lithium ion layered metal oxide and graphite, which is the basic principle of conventional lithium ion secondary battery, and transition metal replacement and cost reduction It is a new high-capacity, low-cost battery system that can bring about.
  • a lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) enables ultra high capacity battery systems.
  • the discharge voltage is about 2.2 V, it theoretically shows an energy density of 2,600 Wh / kg based on the amount of the positive electrode and the negative electrode active material. This value is 6 to 7 times higher than the energy theoretical energy density of 400 Wh / kg of a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
  • Lithium-sulfur secondary batteries have been attracting attention as new high-capacity, eco-friendly and low-cost lithium secondary batteries since it is known that battery performance can be dramatically improved by forming nanocomposites around 2010. Phosphorus research is done.
  • the particle size is tens of nanometers. It is necessary to reduce the size to the following and conduct surface treatment with conductive materials. To this end, various chemicals (melt impregnation to nano-scale porous carbon nanostructures or metal oxide structures) and physical methods (high energy ball milling) are reported. It is becoming.
  • lithium-sulfur secondary batteries Another major problem associated with lithium-sulfur secondary batteries is the dissolution of lithium polysulfide, an intermediate of sulfur produced during discharge, into the electrolyte.
  • sulfur (S 8 ) continuously reacts with lithium ions such that S 8 ⁇ Li 2 S 8 ⁇ (Li 2 S 6 ) ⁇ Li 2 S 4 ⁇ Li 2 S 2 ⁇ Li 2 S, etc. (Phase) is continuously changed.
  • long chains of sulfur such as Li 2 S 8 and Li 2 S 4 (lithium polysulfide) are easily dissolved in general electrolytes used in lithium ion batteries. When this reaction occurs, not only the reversible cathode capacity is greatly reduced, but also the dissolved lithium polysulfide diffuses to the cathode, causing various side reactions.
  • Lithium polysulfide in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continuously increase, thereby rapidly decreasing the charge and discharge efficiency.
  • various methods have been proposed to solve this problem, and can be classified into a method of improving the electrolyte, a method of improving the surface of the negative electrode, and a method of improving the characteristics of the positive electrode.
  • the method of improving the electrolyte is to prevent the dissolution of polysulfide into the electrolyte using new electrolytes such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition, or to control the viscosity and the like to disperse the negative electrode. This is to control the shuttle reaction as much as possible.
  • electrolyte additives such as Li x NO y and Li x SO y are added to the surface of the lithium anode by adding an electrolyte additive such as LiNO 3 .
  • electrolyte additive such as LiNO 3 .
  • a method of forming a thick functional SEI layer on the surface of the lithium metal is actively conducted to control the shuttle reaction by improving the characteristics of the SEI formed on the surface of the anode.
  • methods to improve the characteristics of the anode include forming a coating layer on the surface of the anode particles to prevent the dissolution of polysulfide or adding a porous material that can catch the dissolved polysulfide.
  • the method of adding to the method, attaching a functional group capable of adsorbing lithium polysulfide on the surface of the carbon structure, and wrapping sulfur particles using graphene or graphene oxide, etc. have been proposed.
  • the present invention in order to solve the problem of lithium polysulfide elution occurring at the positive electrode side of the lithium-sulfur battery and to suppress side reactions with the electrolyte, gothite was introduced into the positive electrode of the lithium-sulfur battery.
  • the present invention was completed by confirming that the battery performance of the lithium-sulfur battery can be improved by solving the problem.
  • an object of the present invention is to provide a positive electrode additive for a lithium secondary battery that can solve the problem caused by lithium polysulfide.
  • Another object of the present invention is to provide a lithium secondary battery having the positive electrode and improved life characteristics of the battery.
  • the present invention provides a cathode for a lithium secondary battery containing a gootite.
  • One embodiment of the present invention is 1 to 15 parts by weight based on 100 parts by weight of the base solids contained in the positive electrode for lithium secondary batteries, the base solids include an active material, a conductive material and a binder.
  • the gothite is in a rod shape.
  • One embodiment of the present invention is that the diameter of the Gotite is in the form of a rod of 10 to 50 nm.
  • One embodiment of the present invention is that the length of the gothite is in the form of a rod of 50 to 500 nm.
  • One embodiment of the present invention is that the active material is a sulfur-carbon composite.
  • the lithium secondary battery positive electrode containing the gonite; cathode; A separator interposed between the anode and the cathode; It provides a lithium secondary battery comprising a; and an electrolyte.
  • the gothite according to the present invention When the gothite according to the present invention is applied to a positive electrode of a lithium secondary battery, especially a lithium-sulfur battery, it adsorbs lithium polysulfide generated during charging and discharging of the lithium-sulfur battery to increase the reactivity of the lithium-sulfur battery positive electrode. Suppresses side reactions with the electrolyte.
  • the lithium-sulfur battery equipped with the positive electrode including the gothite does not reduce the capacity of sulfur, and thus can realize a high capacity battery and stably apply sulfur by high loading, and there is no problem such as shorting or heating of the battery. Stability is improved.
  • the lithium secondary battery including the lithium-sulfur battery has the advantage of high charging and discharging efficiency of the battery and improved life characteristics.
  • FIG 1 and 2 show a scanning electron microscope (SEM) image of the gootite according to the present invention.
  • Figure 3 shows the results of the X-ray diffraction analysis (XRD) of the gootite in accordance with the present invention.
  • Figure 4 shows a scanning electron microscope (SEM) image of the lepidocrosite according to a comparative example of the present invention.
  • FIG. 5 shows the results of X-ray diffraction analysis (XRD) of the lepidocrosite according to a comparative example of the present invention.
  • Figure 6 shows the color change results of the lithium polysulfide adsorption experiment of gothite according to the present invention.
  • FIG. 7 shows discharge capacity measurement results of a lithium-sulfur battery including a positive electrode according to an exemplary embodiment of the present invention.
  • FIG. 8 shows the life characteristics measurement results of a lithium-sulfur battery including a positive electrode according to an embodiment of the present invention.
  • composite refers to a substance in which two or more materials are combined to form physically and chemically different phases and express more effective functions.
  • the present invention supplements the shortcomings of the conventional lithium-sulfur battery positive electrode, and provides a lithium secondary battery positive electrode which is improved in the problem of continuous degradation of the electrode due to the dissolution and shuttle phenomenon of lithium polysulfide (polysulfide) and reduction of discharge capacity.
  • the positive electrode for a lithium secondary battery provided by the present invention includes an active material, a conductive material, and a binder, and is characterized in that Gothite ( ⁇ -FeOOH) is applied (included) as a positive electrode additive.
  • the gothite is included in the positive electrode of the lithium secondary battery, especially lithium-sulfur battery in the present invention, by adsorbing lithium polysulfide, the lithium polysulfide is transferred to the negative electrode to reduce the life of the lithium-sulfur battery By reducing and suppressing the reduced reactivity due to lithium polysulfide, it is possible to increase the discharge capacity of the lithium-sulfur battery including the positive electrode, and furthermore, to improve the life of the battery.
  • the gothite contained in the positive electrode for a lithium secondary battery according to the present invention may preferably be prepared by reacting Fe (NO 3 ) 3 ⁇ 9H 2 O with N 2 H 4 ⁇ H 2 O. Since the reaction proceeds using hydrazine, the reaction solution maintains a high pH. First, after Fe (OH) 3 is generated, goatite is ⁇ -FeOOH is produced.
  • Goatite may be prepared by reacting 0.1 to 0.3M of N 2 H 4 .H 2 O solution with 0.04 to 0.08M of Fe (NO 3 ) 3 .9H 2 O.
  • the reaction can be prepared by mixing Fe (NO 3 ) 3 ⁇ 9H 2 O and N 2 H 4 ⁇ H 2 O aqueous solution within 10 to 120 seconds.
  • Fe (OH) 3 may be rapidly formed at a high pH to generate particles having a large particle size.
  • phases of the first reacted material and the later reacted material may be produced. As the phases may be different, appropriate control over the reaction rates in this range is required for the production of crystalline pure gothite.
  • the reaction may proceed for 24 hours at 80 ° C. for 2 hours.
  • the reaction can be reacted by stirring the Fe (NO 3 ) 3 ⁇ 9H 2 O aqueous solution and N 2 H 4 ⁇ H 2 O aqueous solution at 300 to 500rpm. Thereafter, the resulting gothite is filtered through a filter paper to allow sufficient air to flow therein, followed by drying at 80 ° C. for 6 to 12 hours to prepare gothite.
  • the gothite produced by the reaction may be crystalline.
  • FIGS 1 and 2 show scanning electron microscope (SEM) images of gothite ( ⁇ -FeOOH) prepared by the above method.
  • SEM scanning electron microscope
  • Goatite of the 'rod shape' (rod shape) prepared according to the manufacturing method according to the present invention may have a diameter of 10 to 50 nm, and a length of 50 to 500 nm.
  • Figure 3 shows the X-ray diffraction analysis (XRD) data results of the gootite prepared by the above production method.
  • XRD X-ray diffraction analysis
  • the effective (significant or effective) peak refers to a peak that is repeatedly detected in substantially the same pattern in XRD data without being greatly influenced by the analysis conditions or the performer of the analysis. It means a peak having a height, intensity, intensity, etc., which may be 1.5 times or more, preferably 2 times or more, more preferably 2.5 times or more, relative to a background level (backgound level).
  • the present invention provides a positive electrode for a lithium secondary battery containing gootite.
  • the positive electrode of the lithium secondary battery may be a base solid content including an active material, a conductive material and a binder on the current collector, it may be preferable to use aluminum, nickel and the like excellent in the current collector.
  • the gothite may be included in the positive electrode for a lithium secondary battery as an amount of 1 to 15 parts by weight based on 100 parts by weight of the base solids including the active material, the conductive material, and the binder, and preferably 1 to 10 parts by weight. It may be included as. If it is less than the lower limit of the numerical range, the adsorption effect of the polysulfide may be insignificant, and if the upper limit is exceeded, the capacity of the electrode may be reduced and may not meet the purpose of increasing the energy density.
  • the gootite may be used gothite prepared by the production method proposed in the present invention.
  • the gothite may be crystalline, may have a diameter of 10 to 50 nm, and may have a length of 50 to 500 nm. If the diameter and length are less than the above range, the specific surface area of the particles may increase, making it difficult to manufacture an electrode slurry of the lithium secondary battery, and if the range exceeds the above range, the activity of the gothite may decrease.
  • S 8 elemental sulfur
  • the positive electrode for a lithium secondary battery according to the present invention may preferably include an active material of a sulfur-carbon composite, and since the sulfur material alone is not electrically conductive, it may be used in combination with a conductive material.
  • the addition of goctite according to the invention does not affect the maintenance of this sulfur-carbon composite structure.
  • the carbon of the sulfur-carbon composite according to the present invention may have any porous structure or high specific surface area as long as it is commonly used in the art.
  • the porous carbon material includes graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And it may be one or more selected from the group consisting of activated carbon, but is not limited thereto, and the form is spherical, rod-shaped, needle-shaped, plate-shaped, tubular or bulk type, as long as it is commonly used in lithium secondary batteries, especially lithium-sulfur batteries It can be used without limitation.
  • the active material is preferably 50 to 95 parts by weight of 100 parts by weight of the base solids, and more preferably 70 parts by weight. If the active material is included below the range, it may be difficult to sufficiently exhibit the reaction of the electrode, and even if the active material is included above the range, the amount of the other conductive material and the binder is relatively insufficient and thus it is difficult to exert sufficient electrode reaction. It is desirable to determine the appropriate content within the above range.
  • the conductive material electrically connects the electrolyte and the positive electrode active material, and acts as a path for electrons to move from the current collector to the sulfur, causing chemical changes in the battery. If it does not have a porosity and conductivity, it will not specifically limit.
  • Graphite-based materials such as, for example, KS6; Carbon blacks such as Super-P, carbon black, denka black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Carbon derivatives such as fullerene; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • the conductive material is preferably 1 to 10 parts by weight of 100 parts by weight of the base solids, preferably 5 parts by weight. If the content of the conductive material included in the electrode is less than the above range, the unreacted portion of sulfur in the electrode increases, eventually causing a decrease in capacity. If the content exceeds the above range, the high efficiency discharge characteristics and the charge and discharge cycle life are adversely affected. It is desirable to determine the appropriate content within the above range because it will have a.
  • the binder is a material that is included in order to adhere the slurry composition of the base solids, which form the positive electrode, to the current collector.
  • All binders known in the art can be used, unless otherwise specified, preferably poly (vinyl) acetate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide , Polyvinyl ether, poly (methyl methacrylate), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, copolymer of polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), poly Tetrafluoroethylene polyvinyl chloride, polytetrafluoroethylene, polyacrylonitrile, polyvinylpyridine, polystyrene, carboxymethyl cellulose, siloxane-based such as polydimethylsiloxane, styrene
  • the binder may be composed of 1 to 10 parts by weight of 100 parts by weight of the base composition included in the electrode, preferably about 5 parts by weight. If the content of the binder resin is less than the above range, the physical properties of the positive electrode may be deteriorated, so that the positive electrode active material and the conductive material may be dropped. If the content of the binder resin is greater than the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced, thereby reducing battery capacity. Therefore, it is preferable to determine the appropriate content within the above-mentioned range.
  • the positive electrode including the gothite and the base solids may be manufactured according to a conventional method.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in a positive electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the positive electrode to prepare a positive electrode.
  • the gothite is dispersed in a solvent, and the obtained solution is mixed with an active material, a conductive material, and a binder to obtain a slurry composition for forming a positive electrode.
  • the slurry composition is coated on a current collector and then dried to complete a positive electrode.
  • it can be manufactured by compression molding the current collector in order to improve the electrode density.
  • the method of coating the slurry for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating It can be prepared by coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, and the like.
  • a positive electrode active material, a binder, and a conductive material may be uniformly dispersed, as well as those which can be easily dispersed to gothite.
  • water is most preferable as an aqueous solvent, and in this case, the water may be secondary distilled water (DW) or tertiary distilled water (DIW).
  • DIW tertiary distilled water
  • the present invention is not limited thereto, and if necessary, lower alcohols that can be easily mixed with water may be used.
  • the lower alcohols include methanol, ethanol, propanol, isopropanol, butanol, and the like. Preferably, they may be used in combination with water.
  • the present invention provides a lithium secondary battery comprising a separator and an electrolyte interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode for a lithium secondary battery including the goctite.
  • the negative electrode, the separator and the electrolyte may be composed of conventional materials that can be used in the lithium secondary battery.
  • the negative electrode is a material capable of reversibly intercalating or deintercalating lithium ions (Li + ) as an active material, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal Or lithium alloys.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy may be, for example, an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn.
  • the negative electrode may optionally further include a binder together with the negative electrode active material.
  • the binder serves to paste the negative electrode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and buffer effect on the expansion and contraction of the active material.
  • the binder is the same as described above.
  • the negative electrode may further include a current collector for supporting a negative electrode active layer including a negative electrode active material and a binder.
  • the current collector may be specifically selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive agent, or a conductive polymer may be used.
  • the negative electrode may be a thin film of lithium metal.
  • the separator is a material that allows the transport of lithium ions between the positive electrode and the negative electrode while separating or insulated from each other, if used as a separator in a conventional lithium secondary battery can be used without particular limitation, in particular, the ion of the electrolyte It is desirable to have a low resistance to migration and excellent electrolyte-moisture capability.
  • the separator material may be a porous, non-conductive or insulating material, for example, an independent member such as a film, or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, etc. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not necessarily limited thereto.
  • a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, etc. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene tere
  • the electrolyte is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and an electrolyte, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte.
  • the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4, LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, chloroborane lithium, lower aliphatic It may be at least one from the group consisting of lithium carbonate, lithium phenyl borate, imide.
  • a non-aqueous organic solvent for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4, LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3
  • the concentration of the lithium salt is preferably 0.2-2 M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art. It may be 0.6 to 2M, more preferably 0.7 to 1.7M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be lowered. If the concentration of the lithium salt is less than the above range, the viscosity of the electrolyte may be increased, thereby reducing the mobility of lithium ions (Li + ), and thus within the above range. It is desirable to select the appropriate concentration.
  • the non-aqueous organic solvent is a material capable of dissolving lithium salts, preferably 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, dioxolane (Dioxolane, DOL ), 1,4-dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate , Dipropyl carbonate, butyl ethyl carbonate, ethyl propanoate (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), Diglyme, tetraglyme, hexamethyl phosphoric triamide, gamma butyrolactone (GB
  • organic solid electrolyte preferably, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, poly etchation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, ionic Polymers containing dissociation groups and the like can be used.
  • the inorganic solid electrolyte of the present invention is preferably Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 Nitrides, halides, sulfates, and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium secondary battery may be those commonly used in the art, such as a lithium-sulfur battery and a lithium metal battery, and may exemplarily represent a lithium-sulfur battery that best meets the spirit of the present invention.
  • the shape of the lithium secondary battery is not particularly limited, and may be, for example, jelly-roll type, stack type, stack-fold type (ex: stack-Z-fold type), or lamination-stack type, among them, stack-fold type. This may be desirable.
  • the electrode assembly After manufacturing an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, the electrode assembly may be placed in a battery case, and then the electrolyte may be injected into the upper part of the case and sealed assembled with a cap plate and a gasket to manufacture a lithium secondary battery.
  • the lithium secondary battery may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, and the like, and may be classified into a bulk type and a thin film type according to its size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery according to the present invention which is configured as described above, lithium-sulfur battery, including the gothite to adsorb lithium polysulfide generated during charge and discharge of the lithium-sulfur battery to increase the reactivity of the battery positive electrode Ultimately, it has the effect of increasing the discharge capacity and life of the battery.
  • the gothite prepared from Preparation Example 1 was added to 10 parts by weight of the total weight (100 parts by weight) and dispersed in a base solid (active material, conductive material, and binder) into which gothite was added to water as a solvent. .
  • a total of 100 parts by weight of the base solids that is, 90 parts by weight of sulfur-carbon composite (S / C 7: 3) as the active material, 5 parts by weight of denca black as the conductive material, and styrene butadiene rubber / 5 parts by weight of carboxymethyl cellulose (SBR / CMC 7: 3) was added and mixed to prepare a positive electrode slurry composition.
  • the prepared positive electrode slurry composition was coated on a current collector (Al Foil) and dried at 50 ° C. for 12 hours to prepare a positive electrode.
  • the loading amount was 3.5mAh / cm 2
  • the porosity of the electrode was 60%.
  • a lithium-sulfur battery in the form of a coin cell including a negative electrode, a separator and an electrolyte was prepared as follows. Specifically, the anode was punched out using a 14 phi circular electrode, and the polyethylene (PE) separator was punched out with 16 phi as a 19 phi and 150 um lithium metal as a cathode.
  • PE polyethylene
  • a coin-cell lithium-sulfur battery was prepared in the same manner as in Example 1, except that no gothite was added to the positive electrode.
  • a coin-coated lithium-sulfur battery was prepared in the same manner as in Example 1, except that 10 parts by weight of the lepidocrocite prepared from Preparation Example 2 was added to 100 parts by weight of the base solid instead of the gootite. It was.
  • SEM analysis (S-4800 FE-SEM of Hitachi, Ltd.) was respectively performed on the goitite prepared from Preparation Example 1 and the lepidocrosite prepared from Preparation Example 2.
  • 1 and 2 are SEM images of the gothite prepared in Preparation Example 1
  • FIG. 4 is an SEM image of the repidocrosite prepared in Preparation Example 2.
  • FIG. 5 is a graph showing an XRD analysis result for the lepidocrocite prepared in Preparation Example 2.
  • Example 7 Using the lithium-sulfur batteries prepared in Example 1, Comparative Examples 1 and 2, the discharge capacity according to the type and type of the positive electrode additive was measured and shown in FIG. 7. At this time, the measurement current was 0.1C and the voltage range was 1.8-2.5V.
  • the lithium-sulfur battery of Example 1 in which the gothite was contained in the positive electrode had an initial discharge capacity as compared with the lithium-sulfur battery of Comparative Example 1 in which the gothite was not contained in the positive electrode, as shown in FIG. 7. It can be seen that about 100 mAh / g is higher. In addition, it was confirmed that the initial discharge capacity of the battery was also higher than that of Comparative Example 1 in the case of Comparative Example 2 in which repidocrosite was applied instead of gootite. Accordingly, it was found that both gothite and lepidocrocite are effective for increasing the initial discharge capacity of lithium-sulfur batteries.
  • Comparative Examples 1 and 2 was measured in the life cycle characteristics of the battery shown in Figure 8 shown. In the voltage range of 1.8 to 2.5V, 0.1C discharge / 0.1C charge 3 Cycle, 0.2C discharge / 0.2C charge 3 Cycle, 0.5C discharge / 0.3C charge was repeated repeatedly.
  • the battery according to Comparative Example 2 degenerated at about 120 cycles, while the battery according to Example 1 did not degenerate even at 160 cycles or more. As a result, it can be seen that the lithium-sulfur battery including gotite in the positive electrode has excellent life characteristics according to cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 첨가제로 괴타이트(goethite)를 포함하는 리튬 이차전지의 양극 및 이를 포함하는 리튬 이차전지에 관한 것이다. 괴타이트를 적용한 양극을 포함하는 리튬 이차전지, 그 중에서도 리튬-황 전지의 경우, 상기 괴타이트가 전지의 충방전 과정에서 생성되는 리튬 폴리설파이드(LiPS)를 흡착하여, 전지의 충방전 효율을 증가시키고 수명 특성을 향상시키는 효과가 있다.

Description

괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
본 출원은 2018년 4월 6일자 한국 특허 출원 제10-2018-0040389호 및 2019년 3월 13일자 한국 특허 출원 제10-2019-0028552호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 괴타이트를 양극 첨가제로 포함한 리튬 이차전지용 양극 및 이를 구비하여 수명이 개선된 리튬 이차전지에 관한 것이다.
이차전지는 1회 방전만 가능한 일차전지와 달리 지속적인 충전 및 방전이 가능한 전기저장기구로서 1990년대 이후 휴대용 전자기기의 중요 전자부품으로 자리를 잡았다. 특히, 리튬 이온 이차전지는 1992년 일본 소니(Sony)사에 의해 상용화된 이후, 스마트폰, 디지털 카메라, 노트북 컴퓨터 등과 같은 휴대용 전자기기의 핵심부품으로 정보화 시대를 이끌어 왔다.
근래에 리튬 이온 이차전지는 그 활용 영역을 더욱 넓혀가면서 청소기, 전동공구의 전원과 전기자전거, 전기스쿠터와 같은 분야에 사용될 중형전지에서, 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in hybrid electric vehicle; PHEV), 각종 로봇 및 대형 전력저장장치(Electric Storage System; ESS)와 같은 분야에 사용되는 대용량 전지에 이르기까지 빠른 속도로 수요를 늘려가고 있다.
그러나, 현재까지 나와 있는 이차전지 중 가장 우수한 특성을 가진 리튬 이차전지도 전기자동차, PHEV와 같은 수송기구에 활발히 사용되기에는 몇 가지 문제점이 있으며, 그 중 가장 큰 문제점은 용량의 한계이다.
리튬 이차전지는 기본적으로 양극, 전해질, 음극 등과 같은 소재들로 구성되며, 그 중에서 양극 및 음극 소재가 전지의 용량(capacity)을 결정하기 때문에 리튬 이온 이차전지는 양극과 음극의 물질적인 한계로 인해 용량의 제약을 받는다. 특히, 전기자동차, PHEV와 같은 용도에 사용될 이차전지는 한 번 충전 후 최대한 오래 사용할 수 있어야 하므로, 이차전지의 방전 용량이 매우 중요시 된다. 전기자동차의 판매에 가장 큰 제약점으로 지적되는 것은 1회 충전 후 주행할 수 있는 거리가 일반 가솔린엔진의 자동차보다 매우 짧다는 점이다.
이와 같은 리튬 이차전지의 용량 한계는 많은 노력에도 불구하고 리튬 이차전지의 구조 및 재료적인 제약으로 인해 완전한 해결이 어렵다. 따라서, 리튬 이차전지의 용량 문제를 근본적으로 해결하기 위해서는 기존의 이차전지 개념을 뛰어 넘는 신개념의 이차전지 개발이 요구된다.
리튬-황 이차전지는 기존의 리튬 이온 이차전지의 기본원리인 리튬 이온의 층상구조의 금속산화물 및 흑연으로의 삽입/탈리(intercalation) 반응에 의해 결정되는 용량 한계를 뛰어넘고 전이금속 대체 및 비용 절감 등을 가져올 수 있는 새로운 고용량, 저가 전지 시스템이다.
리튬-황 이차전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8 + 16Li+ + 16e- → 8Li2S)으로부터 나오는 이론 용량이 1,675 mAh/g에 이르고 음극은 리튬 금속(이론용량: 3,860 mAh/g)을 사용하여 전지 시스템의 초고용량화가 가능하다. 또한 방전전압은 약 2.2 V이므로 이론적으로 양극, 음극 활물질의 양을 기준으로 2,600 Wh/kg의 에너지 밀도를 나타낸다. 이는 층상구조의 금속 산화물 및 흑연을 사용하는 상용 리튬 이차전지(LiCoO2/graphite)의 에너지 이론적 에너지 밀도인 400 Wh/kg보다도 6배 내지 7배 가량이 높은 수치이다.
리튬-황 이차전지는 2010년경 나노 복합체 형성을 통해 전지성능이 획기적으로 개선될 수 있다는 것이 알려진 이후, 새로운 고용량, 친환경성, 저가의 리튬 이차전지로 주목받고 있으며, 현재 차세대 전지 시스템으로 세계적으로 집중적인 연구가 이루어지고 있다.
현재까지 밝혀진 리튬-황 이차전지의 주요한 문제점 중에 하나는 황의 전기전도도가 5.0 x 10-14 S/cm가량으로 부도체에 가까워 전극에서 전기화학반응이 용이하지 않고, 매우 큰 과전압으로 인해 실제 방전용량 및 전압이 이론에 훨씬 미치지 못한다는 점이다. 초기 연구자들은 황과 카본의 기계적인 볼밀링이나 카본을 이용한 표면 코팅과 같은 방법으로 성능을 개선해보고자 하였으나 큰 실효가 없었다.
전기전도도에 의해 전기화학반응이 제한되는 문제를 효과적으로 해결하기 위해서는 다른 양극 활물질 중의 하나인 LiFePO4의 예와 같이(전기전도도: 10-9 내지 10-10 S/cm) 입자의 크기를 수십 나노미터 이하의 크기로 줄이고 전도성 물질로 표면처리를 할 필요가 있는데, 이를 위하여 여러 가지 화학적(나노 크기의 다공성 탄소 나노 구조체 혹은 금속산화물 구조체로의 melt impregnation), 물리적 방법(high energy ball milling) 등이 보고되고 있다.
다른 한 가지 리튬-황 이차전지와 관련된 주요 문제점은 방전도중 생성되는 황의 중간생성체인 리튬 폴리설파이드(lithium polysulfide)의 전해질로의 용해이다. 방전이 진행됨에 따라 황(S8)은 리튬 이온과 연속적으로 반응하여 S8 → Li2S8 → (Li2S6) → Li2S4 → Li2S2 → Li2S 등으로 그 상(phase)이 연속적으로 변하게 되는데 그 중 황이 길게 늘어선 체인형태인 Li2S8, Li2S4(리튬 폴리설파이드) 등은 리튬 이온전지에서 쓰이는 일반적인 전해질에서 쉽게 용해되는 성질이 있다. 이러한 반응이 발생하면 가역 양극용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드가 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다.
리튬 폴리설파이드는 특히 충전과정 중 셔틀반응(shuttle reaction)을 일으키는데 이로 인하여 충전용량이 계속 증가하게 되어 충방전 효율이 급격히 저하된다. 최근 이러한 문제를 해결하기 위하여 다양한 방법이 제시되었는데 크게 전해질을 개선하는 방법, 음극의 표면을 개선하는 방법, 양극의 특성을 개선하는 방법 등으로 나눌 수 있다.
전해질을 개선하는 방법은 신규 조성의 기능성 액체전해질, 고분자 전해질, 이온성 액체(ionic liquid) 등 새로운 전해질을 사용하여 폴리설파이드의 전해질로의 용해를 억제하거나 점도 등의 조절을 통하여 음극으로의 분산 속도를 제어하여 셔틀반응을 최대한 억제하는 방법이다.
음극표면에 형성되는 SEI의 특성을 개선하여 셔틀반응을 제어하는 연구가 활발히 이루어지고 있는데 대표적으로 LiNO3과 같은 전해질 첨가제를 투입하여 리튬 음극의 표면에 LixNOy, LixSOy 등의 산화막을 형성하여 개선하는 방법, 리튬 금속의 표면에 두꺼운 기능형 SEI 층을 형성하는 방법 등이 있다.
마지막으로 양극의 특성을 개선하는 방법은 폴리설파이드의 용해를 막을 수 있도록 양극입자 표면에 코팅층을 형성하거나 용해된 폴리설파이드를 잡을 수 있는 다공성 물질을 첨가하는 방법 등이 있는데 대표적으로 전도성 고분자로 황 입자가 들어있는 양극 구조체의 표면을 코팅하는 방법, 리튬 이온이 전도되는 금속산화물로 양극 구조체의 표면을 코팅하는 방법, 리튬 폴리설파이드를 다량 흡수할 수 있는 비표면적이 넓고 기공이 큰 다공성 금속산화물을 양극에 첨가하는 방법, 탄소 구조체의 표면에 리튬 폴리설파이드를 흡착할 수 있는 작용기(functional group)를 부착하는 방법, graphene 혹은 graphene oxide 등을 이용하여 황 입자를 감싸는 방법 등이 제시되었다.
이와 같은 노력이 진행되고는 있으나, 이러한 방법이 다소 복잡할 뿐만 아니라 활물질인 황을 넣을 수 있는 양이 제한된다는 문제가 있다. 따라서 이러한 문제들을 복합적으로 해결하고 리튬-황 전지의 성능을 개선하기 위한 새로운 기술의 개발이 필요한 실정이다.
이에 본 발명에서는 리튬-황 전지의 양극 측에서 발생하는 리튬 폴리설파이드 용출의 문제를 해소하고 전해액과의 부반응을 억제하기 위해, 리튬-황 전지의 양극에 괴타이트(goethite)를 도입한 결과, 상기 문제를 해결하여 리튬-황 전지의 전지 성능을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 리튬 폴리설파이드에 의한 문제를 해소할 수 있는 리튬 이차전지용 양극 첨가제를 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 양극을 구비하여 전지의 수명 특성이 향상된 리튬 이차전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은, 괴타이트를 포함하는 리튬 이차전지용 양극을 제공한다.
본 발명의 일 구체예는 상기 괴타이트의 함량이 상기 리튬 이차전지용 양극에 포함되는 베이스 고형분 100 중량부에 대하여 1 내지 15 중량부이고, 상기 베이스 고형분은 활물질, 도전재 및 바인더를 포함하는 것이다.
본 발명의 일 구체예는 상기 괴타이트가 로드 형태(rod shape)인 것이다.
본 발명의 일 구체예는 상기 괴타이트의 직경이 10 내지 50 nm의 로드 형태인 것이다.
본 발명의 일 구체예는 상기 괴타이트의 길이가 50 내지 500 nm의 로드 형태인 것이다.
본 발명의 일 구체예는 상기 활물질이 황-탄소 복합체인 것이다.
또한 본 발명은, 상기 괴타이트를 포함하는 리튬 이차전지용 양극; 음극; 상기 양극과 음극의 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 괴타이트를 리튬 이차전지, 그 중에서도 리튬-황 전지의 양극에 적용하면, 리튬-황 전지의 충, 방전 시 발생하는 리튬 폴리설파이드를 흡착하여 리튬-황 전지 양극의 반응성을 증가시키고 전해액과의 부반응을 억제한다.
상기 괴타이트를 포함하는 양극이 구비된 리튬-황 전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고 황을 고로딩으로 안정적으로 적용 가능할 뿐만 아니라 전지의 쇼트, 발열 등의 문제가 없어 전지 안정성이 향상된다. 더불어, 이러한 리튬-황 전지를 포함하는 리튬 이차전지는 전지의 충, 방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.
도 1 및 2는 본 발명에 따른 괴타이트의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 3은 본 발명에 따른 괴타이트의 X-선 회절분석(XRD)결과를 나타낸 것이다.
도 4는 본 발명의 비교예에 따른 레피도크로사이트의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 5는 본 발명의 비교예에 따른 레피도크로사이트의 X-선 회절분석(XRD)결과를 나타낸 것이다.
도 6은 본 발명에 따른 괴타이트의 리튬 폴리설파이드 흡착 실험의 색변화 결과를 나타낸 것이다.
도 7은 본 발명의 실시예에 따른 양극을 포함하는 리튬-황 전지의 방전용량 측정 결과를 나타낸다.
도 8은 본 발명의 실시예에 따른 양극을 포함하는 리튬-황 전지의 수명특성 측정 결과를 나타낸다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되고 있는 용어 "복합체(composite)"란 두 가지 이상의 재료가 조합되어 물리적, 화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
본 발명은 종래 리튬-황 전지용 양극의 단점을 보완하여, 리튬 폴리설파이드(polysulfide) 용해 및 셔틀 현상에 의한 전극의 지속적 반응성 저하 문제 및 방전 용량 감소 문제 등이 개선된 리튬 이차전지용 양극을 제공한다.
구체적으로, 본 발명에서 제공하는 리튬 이차전지용 양극은 활물질, 도전재 및 바인더를 포함하면서, 양극 첨가제로써 괴타이트(Goethite, α-FeOOH)가 적용된(포함된) 것을 특징으로 한다.
특히, 상기 괴타이트는 본 발명에서 리튬 이차전지, 그 중에서도 리튬-황 전지의 양극에 포함되어, 리튬 폴리설파이드를 흡착함으로써, 리튬 폴리설파이드가 음극으로 전달되어 리튬-황 전지의 수명을 감소시키는 것을 줄일 수 있고, 리튬 폴리설파이드로 인해 감소된 반응성을 억제함으로써, 상기 양극이 포함된 리튬-황 전지, 더 나아가 리튬 이차전지의 방전용량 증가와 전지의 수명을 향상시킬 수 있다.
괴타이트의 제조방법
본 발명에 따른 리튬 이차전지용 양극에 포함되는 괴타이트는 바람직하게 Fe(NO3)9H2O와 N2HH2O를 반응시켜 제조할 수 있다. 상기 반응은 히드라진(hydrazine)을 이용하여 반응이 진행되기 때문에 반응 용액이 높은 pH를 유지하게 되고, 먼저 Fe(OH)3가 생성된 이후에 α-FeOOH인 괴타이트가 생성된다.
일 구현예로, 0.1 내지 0.3M의 N2HH2O 용액에 0.04 내지 0.08M의 Fe(NO3)9H2O을 반응시켜 괴타이트를 제조할 수 있다. 상기 반응은 Fe(NO3)9H2O와 N2HH2O 수용액을 10내지 120초 이내에 혼합하여 제조될 수 있다. 만일 상기 반응 속도보다 더 빠른 유량으로 혼합 시 높은 pH에서 Fe(OH)3 생성이 빠르게 되어 큰 입경의 입자가 생성될 수 있으며, 더 느린 유량으로 혼합 시 처음 반응한 물질과 나중에 반응한 물질의 상(phase)이 다를 수 있으므로, 결정성의 순수한 괴타이트 제조를 위해서 상기 범위의 반응 속도에서 적절히 조절하여야 한다.
상기 반응은 상온에서 진행할 경우 24시간, 80℃에서 2시간 동안 반응이 진행되는 것일 수 있다. 반응은 상기 Fe(NO3)9H2O 수용액과 N2HH2O 수용액은 300 내지 500rpm으로 교반하여 반응시킬 수 있다. 이후 제조된 괴타이트를 여과지를 통해 여과한 후 충분한 공기가 유입되도록하여 80 ℃에서 6 내지 12시간동안 건조시켜 괴타이트를 제조할 수 있다.
상기 반응에 의해 제조된 괴타이트는 결정성일 수 있다.
도 1 및 2는 상기 제조방법에 의해 제조된 괴타이트(α-FeOOH)의 주사전자현미경(SEM) 이미지를 나타낸 것이다. 도 1 및 2에서는 본 발명에 따른 제조방법에 따라 제조된 '로드 형태(rod shape)'의 괴타이트가 제조되었음을 확인할 수 있다. 상기의 제조방법으로 제조된 괴타이트는 그 직경이 10 내지 50 nm일 수 있으며, 길이가 50 내지 500 nm일 수 있다.
도 3은 상기의 제조방법에 의해 제조된 괴타이트의 X-선 회절 분석(XRD) 데이터 결과를 나타낸다. 도 3의 X-선 회절 분석 결과, 2θ = 21.223 °, 33.241 °, 34.700 °, 36.055 °, 36.649 °, 39.984 °, 41.186 °, 53.237 °, 59.023 °에서 유효 피크가 검출된 것을 통해 결정성의 괴타이트가 합성된 것을 확인할 수 있다.
X-선 회절 분석(XRD)에서 유효(significant or effective) 피크란, XRD 데이터에서 분석 조건이나 분석 수행자에 크게 영향을 받지 않고 실질적으로 동일한 패턴으로 반복 검출되는 피크를 의미하며, 이를 다르게 표현하면, 백그라운드 수준(backgound level) 대비 1.5배 이상일 수 있고, 바람직하게는 2배 이상, 더욱 바람직하게는 2.5배 이상의 높이, 세기, 강도 등을 갖는 피크를 의미한다.
리튬 이차전지용 양극
본 발명은, 괴타이트를 포함하는 리튬 이차전지용 양극을 제공한다.
이때, 리튬 이차전지의 양극은 전류 집전체 상에 활물질, 도전재 및 바인더를 포함한 베이스 고형분이 위치한 것일 수 있고, 상기 집전체로는 도전성이 우수한 알루미늄, 니켈 등을 사용하는 것이 바람직할 수 있다.
일 구현예로, 상기 괴타이트는 활물질, 도전재 및 바인더를 포함하는 베이스 고형분 100 중량부에 대하여 1 내지 15 중량부의 함량으로서 리튬 이차전지용 양극에 포함될 수 있고, 바람직하게는 1 내지 10 중량부의 함량으로 포함될 수 있다. 상기 수치 범위의 하한값 미만인 경우에는 폴리설파이드의 흡착 효과가 미미할 수 있고, 상한값을 초과하는 경우에는 전극의 용량이 줄어들며 에너지 밀도를 높이고자 하는 목적에 부합하지 않을 우려가 있다.
상기 괴타이트는 본 발명에서 제시하는 제조방법에 의해 제조된 괴타이트를 사용할 수 있다. 따라서 상기 괴타이트는 결정성일 수 있고, 직경이 10 내지 50 nm 일 수 있으며, 길이는 50 내지 500 nm 일 수 있다. 만일 직경 및 길이가 상기 범위 미만일 경우 입자의 비표면적이 커져 리튬 이차전지의 전극 슬러리 제조가 어려울 수 있고, 상기 범위를 초과하는 경우 괴타이트의 활성이 저하될 수 있다.
한편, 본 발명의 양극을 구성하는 베이스 고형분 중 활물질로는 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있으며, 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 복합체((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다.
본 발명에 따른 리튬 이차전지용 양극은 바람직하기로 황-탄소 복합체의 활물질을 포함할 수 있으며, 황 물질은 단독으로는 전기 전도성이 없기 때문에 도전재와 복합하여 사용할 수 있다. 본 발명에 따른 괴타이트의 첨가는 이러한 황-탄소 복합체 구조 유지에 영향을 주지 않는다.
본 발명에 따른 황-탄소 복합체의 탄소는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않으며, 그 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로서, 리튬 이차전지, 그 중에서도 리튬-황 전지에 통상적으로 사용되는 것이라면 제한 없이 사용될 수 있다.
상기 활물질은 바람직하기로 베이스 고형분 100 중량부 중 50 ~ 95 중량부를 구성하도록 하고, 보다 바람직하기로는 70 중량부 내외로 할 수 있다. 만약, 상기 활물질이 상기 범위 미만으로 포함되면 전극의 반응을 충분히 발휘하기 어려울 수 있고, 상기 범위 초과로 포함되어도 기타 도전재 및 바인더의 포함량이 상대적으로 부족하여 충분한 전극 반응을 발휘하기 어렵기 때문에, 상기 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
본 발명의 양극을 구성하는 베이스 고형분 중 상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 전자가 집전체(Current collector)로부터 황까지 이동하는 경로의 역할을 하는 물질로서, 전지에 화학적 변화를 유발하지 않으면서 다공성 및 도전성을 갖는 것이라면 특별히 한정되지 않는다. 예컨대, KS6과 같은 흑연계 물질; 슈퍼 P(Super-P), 카본 블랙, 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙과 같은 카본 블랙; 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재는 바람직하기로 베이스 고형분 100 중량부 중 1 ~ 10 중량부를 구성하도록 하고, 바람직하기로는 5 중량부 내외로 할 수 있다. 만약, 전극에 포함되는 도전재의 함량이 상기 범위 미만이면 전극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량감소를 일으키게 되며, 상기 범위 초과이면 고효율 방전 특성과 충, 방전 사이클 수명에 악영향을 미치게 되므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
베이스 고형분으로서 상기 바인더는 양극을 형성하는 베이스 고형분의 슬러리 조성물을 집전체에 잘 부착하기 위하여 포함하는 물질로서, 용매에 잘 용해되고 양극 활물질과 도전재와의 도전 네트워크를 잘 구성할 수 있는 물질을 사용한다. 특별한 제한이 없는 한 당해 업계에서 공지된 모든 바인더들을 사용할 수 있으며, 바람직하기로 폴리(비닐)아세테이트, 폴리비닐 알코올, 폴리에틸렌 옥사이드, 폴리비닐 피롤리돈, 알킬레이티드 폴리에틸렌 옥사이드, 가교결합된 폴리에틸렌 옥사이드, 폴리비닐 에테르, 폴리(메틸 메타크릴레이트), 폴리비닐리덴 플루오라이드(PVdF), 폴리헥사플루오로프로필렌, 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸 아크릴레이트), 폴리테트라플루오로에틸렌폴리비닐클로라이드, 폴리테트라플루오로에틸렌, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 카르복시메틸 셀룰로오즈, 폴리디메틸실록세인과 같은 실록세인계, 스티렌-부타디엔 고무, 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더, 폴리에틸렌 글리콜 디아크릴레이트와 같은 에틸렌글리콜계 및 이들의 유도체, 이들의 블랜드, 이들의 공중합체 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 바인더는 전극에 포함되는 베이스 조성물 100 중량부 중 1 ~ 10 중량부를 구성하도록 하고, 바람직하기로는 5 중량부 내외로 할 수 있다. 만약, 바인더 수지의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
상술한 바와 같이 괴타이트 및 베이스 고형분을 포함하는 양극은 통상의 방법에 따라 제조될 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
이를테면, 상기 양극 슬러리 제조 시 먼저 괴타이트를 용매에 분산한 후 얻어진 용액을 활물질, 도전재 및 바인더와 믹싱하여 양극 형성을 위한 슬러리 조성물을 얻는다. 이후 이러한 슬러리 조성물을 집전체 상에 코팅한 후 건조하여 양극을 완성한다. 이때, 필요에 따라 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 상기 슬러리를 코팅하는 방법으로 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등을 수행하여 제조할 수 있다.
이때 상기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있는 것은 물론, 괴타이트까지 용이하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 2차 증류한 DW(Distilled Water), 3차 증류한 DIW(Deionzied Water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올, 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
리튬 이차전지
한편, 본 발명은, 상기 괴타이트를 포함하는 리튬 이차전지용 양극, 음극, 상기 양극과 음극의 사이에 개재된 분리막 및 전해질을 포함하는 리튬 이차전지를 제공한다.
이때 상기 음극, 분리막 및 전해질은 리튬 이차전지에 사용될 수 있는 통상의 물질들로 구성될 수 있다.
구체적으로, 상기 음극은 활물질로서 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 이를테면 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 또한, 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 이를테면, 산화주석, 티타늄 나이트레이트 또는 실리콘일 수 있다. 또한, 상기 리튬 합금은 예를 들어, 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군으로부터 선택되는 금속의 합금일 수 있다.
또, 상기 음극은 음극 활물질과 함께 선택적으로 바인더를 더 포함할 수 있다. 상기 바인더는 음극 활물질의 페이스트화, 활물질간 상호 접착, 활물질과 전류 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 앞서 설명한 바와 동일하다.
또한, 상기 음극은 음극 활물질 및 바인더를 포함하는 음극 활성층의 지지를 위한 전류 집전체를 더 포함할 수 있다. 상기 전류 집전체는 구체적으로 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전제로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
또한, 상기 음극은 리튬 금속의 박막일 수도 있다.
상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 이들 사이에 리튬 이온의 수송을 가능하게 하는 물질을 사용하되, 통상적인 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 낮은 저항을 가지면서 전해질 함습 능력이 우수한 것이 바람직하다.
보다 바람직하기로 상기 분리막 물질로는 다공성이고 비전도성 또는 절연성인 물질을 사용할 수 있으며, 이를테면 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층을 사용할 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나 반드시 이에 한정되는 것은 아니다.
상기 전해질은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 전해액으로는 비수계 유기 용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드로 이루어진 군으로부터 하나 이상일 수 있다.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 ~ 2M, 바람직하기로 0.6 ~ 2M, 보다 바람직하기로 0.7 ~ 1.7M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 상기 범위 초과이면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.
상기 비수계 유기 용매는 리튬염을 잘 용해시킬 수 있는 물질로서, 바람직하기로 1,2-디메톡시에탄, 1,2-디에톡시에탄, 1,2-디부톡시에탄, 디옥솔란(Dioxolane, DOL), 1,4-디옥산, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트, 디프로필카보네이트, 부틸에틸카보네이트, 에틸프로파노에이트(EP), 톨루엔, 자일렌, 디메틸에테르(dimethyl ether, DME), 디에틸에테르, 트리에틸렌글리콜모노메틸에테르(Triethylene glycol monomethyl ether, TEGME), 디글라임, 테트라글라임, 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), 감마부티로락톤(GBL), 아세토니트릴, 프로피오니트릴, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 아세트산에스테르, 부티르산에스테르 및 프로피온산에스테르, 디메틸포름아마이드, 설포란(SL), 메틸설포란, 디메틸아세트아마이드, 디메틸설폭사이드, 디메틸설페이트, 에틸렌글리콜 디아세테이트, 디메틸설파이트, 또는 에틸렌글리콜설파이트 등의 비양자성 유기 용매가 사용될 수 있으며, 이들 중 하나 또는 둘 이상의 혼합 용매 형태로 사용될 수 있다.
상기 유기 고체 전해질로는 바람직하기로, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
본 발명의 무기 고체 전해질로는 바람직하기로, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬 이차전지로는 리튬-황 전지 및 리튬 메탈 전지 등 당업계에서 통용되는 것들일 수 있고, 그 중 본 발명의 취지에 가장 부합하는 리튬-황 전지를 대표적으로 예시할 수 있다.
상기 리튬 이차전지의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(ex: 스택-Z-폴딩형) 또는 라미네이션-스택형일 수 있으며, 이들 중 스택-폴딩형이 바람직할 수 있다.
이러한 양극, 분리막 및 음극이 순차 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉 조립하여 리튬 이차전지를 제조할 수 있다.
상기 리튬 이차전지는 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라서는 벌크 타입과 박막 타입으로 나뉠 수 있다. 이들 전지의 구조와 제법은 당 분야에 널리 알려져 있는 바, 구체적인 설명은 생략하도록 한다.
상술한 바와 같이 구성되는 본 발명에 따른 리튬 이차전지, 그 중 리튬-황 전지는, 괴타이트를 포함함으로써 리튬-황 전지의 충방전 시 생성되는 리튬 폴리설파이드를 흡착하여 전지 양극의 반응성이 증가하고, 궁극적으로는 전지의 방전용량과 수명을 증가시키는 효과를 가진다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하의 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
[제조예 1] 괴타이트의 제조
0.3M의 N2HH2O (Aldrich社 제품, 순도 98%이상)에 0.5M의 Fe(NO3)9H2O (Aldrich社 제품, 순도 98%이상)을 50초 동안 혼합하였다. 이때, 80 ℃에서 400rpm으로 2시간동안 교반하였다. 이후 이를 여과지를 통해 여과한 이후, 충분한 공기가 유입되도록 하여 80℃에서 8시간동안 건조시켜 괴타이트(α-FeOOH)를 제조하였다.
[제조예 2] 레피도크로사이트의 제조
0.3M의 NaBH4 (TCL社 제품, 순도 >95%)에 0.5M의 Fe(NO3)9H2O (Aldrich社 제품, 순도 98%이상)을 50초 동안 혼합하였다. 이때, 25℃ 상온에서 400rpm으로 40분간 교반하였으며, 반응이 진행되는 동안 수소기체가 발생하는 것을 확인하였다. 이후 이를 여과지를 통해 여과한 이후, 충분한 공기가 유입되도록 하여 80℃에서 8시간동안 건조시켜 레피도크로사이트(γ-FeOOH)를 제조하였다.
[실시예 1] 괴타이트가 첨가된 양극을 포함한 리튬 이차전지(리튬-황 전지)의 제조
먼저, 용매로서 물에 괴타이트를 투입할 베이스 고형분(활물질, 도전재 및 바인더)에, 상기 제조예 1로부터 제조된 괴타이트를 총 중량(100 중량부) 대비 10 중량부의 함량으로 투입하여 분산시켰다. 이후, 얻어진 용액에 대하여, 베이스 고형분 총 100 중량부, 즉 활물질로 황-탄소 복합체(S/C 7:3)를 90 중량부, 도전재로 덴카블랙을 5 중량부, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량부를 투입하고 믹싱하여, 양극 슬러리 조성물을 제조하였다.
이어서, 상기 제조된 양극 슬러리 조성물을 집전체(Al Foil) 상에 코팅하고 50℃ 에서 12시간 동안 건조하여 양극을 제조하였다. 이때 로딩양은 3.5mAh/cm2이고, 전극의 공극률(porosity)은 60%로 하였다.
이후 상술한 바에 따라 제조된 양극 이외에, 음극, 분리막 및 전해액을 포함한 코인셀 형태의 리튬-황 전지를 하기와 같이 제조하였다. 구체적으로, 상기 양극은 14phi 원형 전극으로 타발하여 사용하였으며, 폴리에틸렌(PE) 분리막은 19phi, 150um 리튬 금속은 음극으로서 16phi로 타발하여 사용하였다.
[비교예 1] 괴타이트가 첨가되지 않은 양극을 포함한 리튬 이차전지(리튬-황 전지)의 제조
양극에 괴타이트를 투입하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 코인셀 형태의 리튬-황 전지를 제조하였다.
[비교예 2] 레피도크로사이트가 첨가된 양극을 포함한 리튬 이차전지(리튬-황 전지)의 제조
괴타이트 대신 상기 제조예 2로부터 제조된 레피도크로사이트를 베이스 고형분 100 중량부 대비 10 중량부 투입한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 코인셀 형태의 리튬-황 전지를 제조하였다.
[실험예 1] SEM (Scanning Electron Microscope) 분석
상기 제조예 1로부터 제조된 괴타이트와 제조예 2로부터 제조된 레피도크로사이트에 대하여 SEM 분석(Hitachi社의 S-4800 FE-SEM)을 각각 실시하였다. 도 1 및 2는 상기 제조예 1에서 제조된 괴타이트의 SEM 이미지이고, 도 4는 상기 제조예 2에서 제조된 레피도크로사이트의 SEM 이미지이다.
상기 제조예 1로부터 제조된 괴타이트를 50k의 배율(도 1에 해당)과 250k의 배율(도 2에 해당)로서 SEM 분석을 실시한 결과, 도 1 및 2에 도시된 바와 같은'로드 형태(rod shape)'의 괴타이트를 확인할 수 있었고,
상기 제조예 2로부터 제조된 레피도크로사이트를 50k의 배율로서 SEM 분석을 실시한 결과, 도 4에 도시된 바와 같은'판상형'의 레피도크로사이트를 확인할 수 있었다.
[실험예 2] XRD (X-ray Diffraction) 분석
상기 제조예 1로부터 제조된 괴타이트와 상기 제조예 2로부터 제조된 레피도크로사이트에 대하여 XRD 분석(Bruker社의 D4 Endeavor)을 각각 실시하였다. 도 3은 상기 제조예 1에서 제조된 괴타이트에 대한 XRD 분석결과이고, 도 5는 상기 제조예 2에서 제조된 레피도크로사이트에 대한 XRD 분석결과를 나타낸 그래프이다.
상기 제조예 1 및 2로부터 각각 제조된 괴타이트와 레피도크로사이트에 대하여 XRD 분석을 진행한 결과, 도 3 및 5에 도시된 바와 같은 XRD 피크가 각각 도출되었으며, 이를 통하여, 순수한 상의 결정성 괴타이트와 레피도크로사이트가 제조된 것을 확인할 수 있었다.
[실험예 3] 괴타이트의 리튬 폴리설파이드 흡착능력 평가
상기 제조예 1에서 제조된 괴타이트의 리튬 폴리설파이드 흡착 능력을 색도의 변화를 통해 육안으로 관찰한 결과, 도 6에 도시된 바와 같이, 괴타이트와 반응한 리튬 폴리설파이드의 붉은색이 옅어짐을 통하여, 괴타이트의 리튬 폴리설파이드 흡착 능력이 우수함을 확인할 수 있었다.
[실험예 4] 리튬 이차전지(리튬-황 전지)의 방전용량 평가
상기 실시예 1, 비교예 1 및 2에서 제조된 리튬-황 전지를 이용하여 양극 첨가제의 여부 및 종류에 따른 방전 용량을 측정하여 도 7에 나타내었다. 이때, 측정 전류는 0.1C, 전압 범위 1.8 ~ 2.5V로 하였다.
그 결과, 양극 내에 괴타이트가 함유된 실시예 1의 리튬-황 전지는, 도 7에 도시된 바와 같이, 양극 내에 괴타이트가 함유되지 않은 비교예 1의 리튬-황 전지에 비하여 초기 방전 용량이 약 100 mAh/g 정도 더 높은 것을 확인할 수 있었다. 그밖에, 괴타이트 대신 레피도크로사이트를 적용한 비교예 2의 경우에도, 전지의 초기 방전 용량이 비교예 1에 비해서는 높은 것을 확인할 수 있었다. 따라서, 괴타이트 및 레피도크로사이트 모두 리튬-황 전지의 초기 방전 용량 증가에 효과가 있다는 것을 알 수 있었다.
[실험예 5] 리튬 이차전지(리튬-황 전지)의 수명특성 평가
상기 실시예 1, 비교예 1 및 2에서 제조된 리튬-황 전지를 이용하여 전지의 사이클에 따른 수명 특성을 측정하여 도 8에 나타내었다. 측정은 전압 범위 1.8 ~ 2.5V에서, 0.1C 방전/0.1C 충전 3 Cycle, 0.2C 방전/0.2C 충전 3 Cycle, 이후 0.5C 방전/0.3C 충전을 반복하여 실시하였다.
비교예 1에 따른 전지의 경우 100 사이클 부근에서 퇴화하였고, 비교예 2에 따른 전지는 120 사이클 부근에서 퇴화한 반면, 실시예 1에 따른 전지는 160 사이클 이상에서도 퇴화하지 않음을 확인할 수 있었다. 결과적으로, 양극에 괴타이트를 포함하는 리튬-황 전지의 경우 사이클에 따른 수명 특성이 우수함을 알 수 있었다.

Claims (8)

  1. 괴타이트를 포함하는 리튬 이차전지용 양극.
  2. 청구항 1에 있어서, 상기 괴타이트의 함량은 상기 양극에 포함되는 베이스 고형분 100 중량부에 대하여 1 내지 15 중량부이고,
    상기 베이스 고형분은 활물질, 도전재 및 바인더를 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극.
  3. 청구항 1에 있어서, 상기 괴타이트는 로드 형태(rod shape)인 것을 특징으로 하는, 리튬 이차전지용 양극.
  4. 청구항 3에 있어서, 상기 괴타이트는 직경이 10 내지 50 nm의 로드 형태인 것을 특징으로 하는, 리튬 이차전지용 양극.
  5. 청구항 3에 있어서, 상기 괴타이트는 길이가 50 내지 500 nm의 로드 형태인 것을 특징으로 하는, 리튬 이차전지용 양극.
  6. 청구항 2에 있어서, 상기 활물질은 황-탄소 복합체인 것을 특징으로 하는, 리튬 이차전지용 양극.
  7. 청구항 1 내지 6 중 어느 한 항에 따른 리튬 이차전지용 양극; 음극; 상기 양극과 음극의 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지.
  8. 청구항 7에 있어서, 상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는, 리튬 이차전지.
PCT/KR2019/002956 2018-04-06 2019-03-14 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 WO2019194429A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180040389 2018-04-06
KR10-2018-0040389 2018-04-06
KR1020190028552A KR20190117372A (ko) 2018-04-06 2019-03-13 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR10-2019-0028552 2019-03-13

Publications (1)

Publication Number Publication Date
WO2019194429A1 true WO2019194429A1 (ko) 2019-10-10

Family

ID=68101011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002956 WO2019194429A1 (ko) 2018-04-06 2019-03-14 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2019194429A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107763A (ja) * 2004-09-30 2006-04-20 Gs Yuasa Corporation:Kk オキシ水酸化鉄の製造方法およびそれを含む電極を備えた非水電解質電気化学セル
KR20140097797A (ko) * 2013-01-30 2014-08-07 광주과학기술원 금속-환원 박테리아를 이용한 생합성 침철석 나노와이어의 제조방법 및 이의 용도
KR20170032190A (ko) * 2015-09-14 2017-03-22 주식회사 엘지화학 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지
CN106745323A (zh) * 2016-12-09 2017-05-31 太原理工大学 一种铁硫化合物及其复合材料的制备方法
WO2017109014A1 (en) * 2015-12-22 2017-06-29 Rhodia Operations Positive active material for rechargeable lithium-sulfur battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107763A (ja) * 2004-09-30 2006-04-20 Gs Yuasa Corporation:Kk オキシ水酸化鉄の製造方法およびそれを含む電極を備えた非水電解質電気化学セル
KR20140097797A (ko) * 2013-01-30 2014-08-07 광주과학기술원 금속-환원 박테리아를 이용한 생합성 침철석 나노와이어의 제조방법 및 이의 용도
KR20170032190A (ko) * 2015-09-14 2017-03-22 주식회사 엘지화학 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지
WO2017109014A1 (en) * 2015-12-22 2017-06-29 Rhodia Operations Positive active material for rechargeable lithium-sulfur battery
CN106745323A (zh) * 2016-12-09 2017-05-31 太原理工大学 一种铁硫化合物及其复合材料的制备方法

Similar Documents

Publication Publication Date Title
US11735718B2 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising the same
KR102268185B1 (ko) 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극
KR20200100961A (ko) 나노클레이를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR102229456B1 (ko) 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2020060199A1 (ko) 황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020013482A1 (ko) 옥시수산화질산철의 제조방법, 이로부터 제조된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
US11349113B2 (en) Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
KR102183665B1 (ko) 인화철(FeP)을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019194429A1 (ko) 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020166870A1 (ko) 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
US11942633B2 (en) Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
US20240136501A1 (en) Method for preparing carbon nanostructure comprising molybdenum disulfide, lithium secondary battery cathode comprising carbon nanostructure comprising molybdenum disulfide, prepared thereby, and lithium secondary battery comprising same
KR20190117372A (ko) 괴타이트를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20200063501A (ko) 알루미늄이 도핑된 아연 산화물을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20190052223A (ko) 마그헤마이트를 포함하는 리튬-황 전지용 양극 및 이를 구비한 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782105

Country of ref document: EP

Kind code of ref document: A1