WO2019194283A1 - Ophthalmic device and concave reflecting member - Google Patents

Ophthalmic device and concave reflecting member Download PDF

Info

Publication number
WO2019194283A1
WO2019194283A1 PCT/JP2019/015001 JP2019015001W WO2019194283A1 WO 2019194283 A1 WO2019194283 A1 WO 2019194283A1 JP 2019015001 W JP2019015001 W JP 2019015001W WO 2019194283 A1 WO2019194283 A1 WO 2019194283A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concave reflecting
concave
reflecting surface
optical system
Prior art date
Application number
PCT/JP2019/015001
Other languages
French (fr)
Japanese (ja)
Inventor
泰士 田邉
泰史 西
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2019194283A1 publication Critical patent/WO2019194283A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the disclosed technology relates to an ophthalmic apparatus and a concave reflecting member.
  • Patent Document 1 discloses an apparatus that scans light from a light source with a fundus and acquires a fundus image based on return light from the fundus of a subject's eye.
  • a free-form mirror having a free-form surface is used as a reflecting mirror formed so as to send light to the eye to be examined and detect return light from the fundus.
  • An ophthalmologic apparatus is an ophthalmologic apparatus that includes an imaging optical system for imaging the fundus of a subject's eye.
  • the imaging optical system includes a concave reflecting member, and the concave reflecting member includes a concave reflecting surface and its concave reflecting surface. And a non-polarizing material layer provided thereon.
  • a scanning laser ophthalmoscope is referred to as “SLO”.
  • an optical coherence tomography is referred to as “OCT”.
  • an ophthalmic system 100 includes an ophthalmologic apparatus 110, an axial length measuring apparatus 120, a management server apparatus (hereinafter referred to as “management server”) 140, and an image display apparatus (hereinafter referred to as “image viewer”). 150).
  • the ophthalmologic apparatus 110 acquires a fundus image and a tomographic image of a patient's eye to be examined.
  • the axial length measuring device 120 measures the axial length of the patient's eye.
  • the management server 140 stores a plurality of fundus images, axial lengths, and tomographic images obtained by photographing the fundus of a plurality of patients by the ophthalmologic apparatus 110 corresponding to the patient IDs.
  • the image viewer 150 displays the fundus image and the tomographic image acquired by the management server 140.
  • the ophthalmologic apparatus 110, the axial length measuring apparatus 120, the management server 140, and the image viewer 150 are connected to each other via the network 130.
  • the axial length measurement device 120 has two modes, a first mode and a second mode, for measuring the axial length, which is the length in the axial direction of the eye to be examined.
  • a first mode light from a light source (not shown) is guided to the eye to be inspected, and then interference light between the reflected light from the fundus and the cornea is received, and based on an interference signal indicating the received interference light.
  • the second mode is a mode for measuring the axial length using an ultrasonic wave (not shown).
  • the axial length measurement device 120 transmits the axial length measured in the first mode or the second mode to the management server 140.
  • the axial length may be measured in the first mode and the second mode, and in this case, the average of the axial length measured in both modes is transmitted to the management server 140 as the axial length.
  • a scanning laser opthalmoscope is referred to as “SLO”.
  • the optical coherence tomography is referred to as “OCT”.
  • the ophthalmologic apparatus 110 includes an imaging device 14 and a control device 16.
  • the imaging device 14 includes an SLO unit 18 and an OCT unit 20 and acquires a fundus image of the fundus F of the eye 12 to be examined.
  • an image acquired by the SLO unit 18 is referred to as an SLO image.
  • An image acquired by the OCT unit 20 is referred to as an OCT image.
  • the control device 16 is realized by a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read-Only memory
  • the control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D.
  • the input / display device 16E has a graphic user interface that displays an image of the eye 12 to be examined and receives various instructions from the user. Examples of the graphic user interface include a touch panel display.
  • the control device 16 includes an image processing device 17 connected to the I / O port 16D.
  • the image processing device 17 generates an image of the eye 12 to be examined based on the data obtained by the imaging device 14.
  • the control device 16 is connected to the network 130 via the communication interface 15.
  • the data processing program is stored in the ROM 16C or the RAM 16B, and is read at the time of initial setting or startup.
  • the data processing program has a shooting control function, a display control function, an image processing function, and a processing function.
  • the CPU 16A executes the data processing program having these functions, the CPU 16A functions as a photographing control unit 202, a display control unit 204, an image processing control unit 206, and a processing unit 208 as shown in FIG.
  • the control device 16 of the ophthalmologic apparatus 110 includes the input / display device 16E, but the technology of the present disclosure is not limited to this.
  • the control device 16 of the ophthalmic apparatus 110 may not include the input / display device 16E, but may include a separate input / display device that is physically independent of the ophthalmic device 110.
  • the display device includes an image processing processor unit that operates under the control of the display control unit 204 of the CPU 16A of the control device 16, and the image processing processor unit is based on an image signal instructed to be output by the display control unit 204. An SLO image or the like may be displayed.
  • the imaging device 14 operates under the control of the imaging control unit 202 of the control device 16.
  • the imaging device 14 includes an SLO unit 18, an imaging optical system 19, and an OCT unit 20.
  • the photographing optical system 19 includes a first optical scanner 22, a second optical scanner 24, a third optical scanner 29, and a wide-angle optical system 28 as an objective optical system.
  • the photographing optical system 19 includes a combining unit 26 such as a dichroic mirror that combines the light from the SLO unit 18 and the light from the OCT unit 20 and separates the light into the SLO unit 18 and the light into the OCT unit 20.
  • the first optical scanner 22 scans the light emitted from the SLO unit 18 in the Y direction (for example, the vertical direction).
  • the second optical scanner 24 similarly scans the light emitted from the OCT unit 20 in the Y direction.
  • the third optical scanner 29 arranged in the wide-angle optical system 28 as a common optical system converts the light emitted from the SLO unit 18 and the light emitted from the OCT unit 20 in the X direction (for example, the horizontal direction). To scan. Therefore, the SLO light and the OCT light can be two-dimensionally scanned by the fundus F of the eye 12 by the third optical scanner 29 in cooperation with the first optical scanner 22 and the second optical scanner 24. It is configured as follows.
  • Each optical scanner may be any optical element that can deflect the angle of the light beam. For example, a polygon mirror, a galvanometer mirror, or the like can be used.
  • the wide-angle optical system 28 realizes observation in the fundus F with a wide field of view (FOV: Field of View) 12A.
  • the FOV 12A indicates a range that can be captured by the imaging device 14.
  • the FOV 12A can be expressed as a viewing angle.
  • the viewing angle can be defined by the internal irradiation angle and the external irradiation angle.
  • the external irradiation angle is an irradiation angle of a light beam irradiated from the ophthalmologic apparatus 110 toward the center of the pupil 27 to the eye 12 to be examined.
  • the internal irradiation angle is an irradiation angle that defines the irradiation angle of the light beam applied to the fundus F with reference to the center O of the eyeball.
  • the external irradiation angle and the internal irradiation angle have a correspondence relationship. For example, when the external irradiation angle is 120 degrees, the internal irradiation angle corresponds to about 160 degrees.
  • UWFSLO fundus image obtained by photographing at an internal field angle of 160 ° or more is referred to as a UWFSLO fundus image.
  • UWF is an abbreviation for Ultra-Widefield (super wide angle).
  • the SLO system is realized by a control device 16, an SLO unit 18, and a photographing optical system 19, as shown in FIG. Since the SLO system includes the wide-angle optical system 28, fundus imaging with a wide FOV 12A is possible.
  • the SLO unit 18 includes a light source 18A, a detection element 18B, and a beam splitter 18C. The light emitted from the light source 18A passes through the beam splitter 18C and enters the photographing optical system 19.
  • the light source 18A includes an R light (red light) light source, a G light (green light) light source, a B light (blue light) light source, an IR light (infrared (near infrared light)) light source, and a white light source. And a light source that emits light or a combination of light sources that emit light, such as a mode that emits R light and G light, and a mode that emits infrared light (for example, near infrared light).
  • the light source may not include all of the above, and may be an R light (red light) light source, a G light (green light) light source, and an infrared light (IR light) light source. Are possible.
  • the light from the SLO unit 18 incident on the photographing optical system 19 is scanned in the Y direction by the first optical scanner 22.
  • the scanning light is further scanned in the X direction by the third optical scanner 29 in the wide-angle optical system 28, and is irradiated to the fundus F through the pupil 27.
  • the reflected light reflected by the fundus F enters the SLO unit 18 via the wide-angle optical system 28, the third optical scanner 29, and the first optical scanner 22.
  • the reflected light incident on the SLO unit is reflected by the beam splitter 18C and received by the detection element 18B.
  • the detection element 18B has a plurality of detection elements corresponding to the wavelength (for example, an R light receiving element corresponding to red light, a G light receiving element corresponding to green light, an IR light receiving element corresponding to near infrared light).
  • the image processing device 17 operating under the control of the image processing control unit 206 generates an SLO image based on the signal detected by the detection element 18B.
  • the OCT system is realized by a control device 16, an OCT unit 20, and an imaging optical system 19, as shown in FIG. Since the OCT system also includes the wide-angle optical system 28, fundus imaging with a wide FOV 12A is possible.
  • the OCT unit 20 includes a light source 20A, a detection element 20B, an optical coupler 20C, a reference optical system 20D, and a collimating lens 20E.
  • the light emitted from the light source 20A is branched by the optical coupler 20C.
  • One of the branched lights is converted into parallel light by the collimator lens 20E as measurement light and then incident on the photographing optical system 19.
  • the measurement light is two-dimensionally scanned in the X and Y directions on the fundus F of the eye 12 to be examined by the second optical scanner 24, the third optical scanner 29, and the wide-angle optical system 28 via the pupil 27.
  • the measurement light reflected by the fundus F is incident on the OCT unit 20 via the wide-angle optical system 28, the third optical scanner 29, and the second optical scanner 24.
  • the other light branched by the optical coupler 20C enters the reference optical system 20D as reference light.
  • the measurement light reflected from the fundus F and the reference light are interfered by the optical coupler 20F to generate interference light.
  • the interference light is received by the detection element 20B. It operates under the control of the image processing control unit 206.
  • the image processing device 17 generates an OCT image based on the signal detected by the detection element 20B.
  • SS-OCT Session-Source OCT
  • SD-OCT Spectral-Domain OCT
  • a wide-angle optical system 28 as a common optical system includes an elliptical mirror (slit mirror) 30, an elliptical mirror 32, and a third optical scanner 29 disposed between the two.
  • Both the elliptical mirror (slit mirror) 30 and the elliptical mirror 32 have so-called spheroidal reflecting surfaces 30A and 32A.
  • the spheroidal surface is a surface formed by rotating around an axis connecting two focal points inherent to the ellipse, and both are shown as part of the ellipse in FIG.
  • the elliptical mirror 30 reflects only the scanning light in the Y direction so as to reflect the X direction.
  • the width at may be small.
  • the elliptical mirror 30 has an elongated shape extending in the Y direction and is called a slit mirror.
  • the elliptical mirror 30 may be referred to as a slit mirror 30.
  • the combining unit 26 such as a dichroic mirror, the slit mirror 30, and the elliptical mirror 32 are shown as side sectional views, but their positions are not accurate because they are for the purpose of showing the order of arrangement.
  • the reflective surface 30A of the slit mirror 30 has a first focal point P1 and a second focal point P2.
  • the first optical scanner 22 and the second optical scanner 24 are respectively arranged to coincide with the first focal point P1 via a combining unit 26 such as a dichroic mirror.
  • a third optical scanner 29 is disposed at the second focal point P2.
  • the reflecting surface 32A of the elliptical mirror 32 also has two focal points P3 and P4, one of which coincides with the focal point P2 of the reflecting surface of the slit mirror, and the other focal point P4 has a position of the eye l2 to be examined.
  • the center of the pupil is positioned.
  • the first optical scanner 22, the second optical scanner 24, and the third optical scanner 29 are each configured to have a conjugate positional relationship with the center of the pupil of the eye 12 to be examined.
  • the imaging optical system 19 in which the two elliptical mirrors 30 and 32 and the three optical scanners 22, 24 and 29 are combined, the fundus can be scanned with a light beam having an extremely wide external irradiation angle in both SLO and OCT. It has become.
  • the ophthalmologic apparatus 110 provided with an elliptical mirror can perform fundus observation with a very wide field of view as a UWF with an extremely wide external illumination angle.
  • Concave mirrors such as elliptical mirrors generally form a transparent protective film such as a resin on the metal film in order to suppress peeling of the formed metal film, for example, when the reflecting surface is formed by vapor deposition with a metal film. Is.
  • the polarization state may change due to reflection.
  • the polarization state of the signal light reflected by the reflecting surface of the elliptical mirror and the polarization state of the return light of the signal light change.
  • the resin that is the material of the protective film has birefringence
  • the protective film has light properties such as birefringence. This is probably because the polarization state is changed.
  • the amount of change in the polarization state varies depending on the reflection position of the elliptical mirror due to the stress generated when the protective film is formed, for example, pasting, and the thickness of the protective film. This is presumably because the optical path length in the protective film differs and the phase shift differs because the incident angle of light on the protective film differs depending on the incident position.
  • incident light is irradiated onto the elliptical mirror at various scanning angles by a scanning device, and reflected light from the fundus is reflected by the elliptical mirror. Reflects at various positions.
  • the light reflected by the elliptical mirror has various polarization states that differ depending on the reflection position and reflection angle.
  • the image quality is deteriorated when an OCT image is acquired.
  • the polarization state of the reference light is kept constant, the polarization directions of the signal light and the reference light are different, and the contrast of the interference light is lowered.
  • the contrast of the interference light changes, the contrast fluctuates in the entire B-Scan image, and unevenness occurs in the OCT image.
  • the elliptical mirror 32 includes a base material 32C on which a reflective surface 32A is formed, and a protective layer 32D is formed on the reflective surface 32A.
  • Non-polarizing resin for example, ultra-low birefringence resin
  • the protective layer 32D examples include resins having suppressed birefringence such as Iupizeta EP series resin manufactured by Mitsubishi Gas Chemical and OKP manufactured by Osaka Gas Chemical.
  • An example of the reflecting surface 32A is a metal reflecting surface, and examples of the metal reflecting surface include a surface reflecting mirror deposited with aluminum, gold, silver, or the like.
  • the elliptical mirror 32 is an example of a concave reflecting member according to the technique of the present disclosure.
  • the non-polarizing resin is an example of a non-polarizing material according to the technique of the present disclosure.
  • the protective layer 32D By forming the protective layer 32D with a non-polarizing resin (for example, an ultra-low birefringent resin), the birefringence in the protective layer 32D is suppressed, and the change in the polarization state when light is transmitted is suppressed.
  • a non-polarizing resin for example, an ultra-low birefringent resin
  • the birefringence in the protective layer 32D is suppressed, changes in the polarization state due to the reflection position and reflection angle in the elliptical mirror 32 are also suppressed. Therefore, the change in polarization state caused by the difference in scanning angle is suppressed by the birefringence of the protective layer 32D. Therefore, the optical performance of the elliptical mirror 32 itself can be improved.
  • the rotation direction of the circularly polarized light changes on the reflecting surface 32A.
  • signal light in a polarization state by clockwise circularly polarized light hereinafter referred to as right circularly polarized light
  • a path of measurement light and return light of the measurement light hereinafter, referred to as “measurement light” in the photographing optical system 19 is described.
  • the direction of circularly polarized light sequentially changes.
  • the polarization state of the OCT measurement light becomes counterclockwise circularly polarized light (hereinafter referred to as left circularly polarized light) reflected by the second optical scanner 24, and is slit.
  • Reflected by the mirror 30 becomes clockwise circularly polarized light (hereinafter referred to as right circularly polarized light)
  • reflected by the third optical scanner 29 becomes left circularly polarized light
  • reflected by the elliptical mirror 32 becomes right circularly polarized light.
  • the fundus reflection of the eye 12 becomes left circularly polarized light
  • the elliptical mirror 32 reflects right circularly polarized light
  • the third optical scanner 29 reflects left circularly polarized light
  • the slit mirror 30 reflects right circularly polarized light.
  • a polarization adjusting unit for example, a polarization conversion element by changing a wavelength plate such as a half-wave plate is inserted in the incident side of the optical coupler 20F, for example, a reference optical path, and the reference light is changed to a left circularly polarized light state. It is necessary to make the polarization state of the light coincide with the polarization state of the measurement light. As a result, good interference between the reference light and the measurement light can be maintained, and a clearer and higher contrast image can be generated.
  • the optical performance of the elliptical mirror 32 itself can be improved by forming the protective layer 32D with a non-polarizing resin (for example, an ultra-low birefringent resin), and image quality degradation can be reduced.
  • a non-polarizing resin for example, an ultra-low birefringent resin
  • image quality degradation can be reduced.
  • a suppressed OCT image and an OCT image in which a decrease in contrast is suppressed can be obtained.
  • the polarization state is only set by a polarization adjusting unit such as a half-wave plate, for example.
  • a polarization adjusting unit such as a half-wave plate
  • the reflecting member it is possible to reflect the scanning light having an external irradiation angle of 100 ° or more toward the eye to be examined and to receive the reflected light from the eye to be examined at the angle of 100 ° or more. It is possible to realize the above super-wide-angle optical system. Even in an ultra-wide-angle optical system exceeding 140 °, changes in the polarization state can be suppressed, and an excellent fundus cross-sectional image can be formed by so-called UWF.
  • the protective layer 32D is formed of a non-polarizing resin (for example, an ultra-low birefringent resin).
  • the protective layer is formed of a glass material instead of the protective layer 32D. .
  • the elliptical mirror 32 includes a base material 32C on which a reflective surface 32A that is a metal reflective surface is formed, and a protective layer 32E is formed on the reflective surface 32A.
  • the protective layer 32E is formed of a glass material having the same outer surface as the surface shape of the reflecting surface 32A. That is, in the elliptical mirror 32, a protective layer 32E formed of a glass material is attached to the reflecting surface 32A of the base material 32C.
  • An example of the glass material is optical glass such as quartz glass.
  • Optical glass like the non-polarizing resin, can suppress birefringence and can suppress a change in polarization state when light is transmitted. Therefore, due to the suppressed birefringence of the protective layer 32E, the change in the polarization state caused by the difference in scanning angle is suppressed, and the optical performance of the elliptical mirror 32 itself can be improved.
  • the elliptical mirror 32 as the concave reflecting member is a reflecting member provided with a metal reflecting surface on a base material. And the reflective surface was provided in the concave surface of the base material, the concave reflective surface was formed, and the said signal light which injects into the said concave reflective surface of the said reflective base material was reflected by the said concave reflective surface.
  • the material of the substrate could be an opaque material such as metal or an opaque glass.
  • the concave reflection member is a reflection member in which a metal reflection surface is formed on a base material made of a transparent glass material, and the reflection surface is provided on the convex surface of the base material.
  • An internal reflection surface is formed on the concave surface inside the material.
  • FIG. 7 An example of the third embodiment is shown in FIG. As shown in FIG. 7, in the elliptical mirror 32 as a concave reflecting member, a metal reflecting surface 32F as a reflecting layer is formed on an outer surface 32B of a base material 32E made of a transparent glass material.
  • the base material 32E itself made of a glass material is formed on the reflecting surface 32A and functions as a protective layer for the reflecting surface and also functions as a non-polarizing material layer.
  • the concave inner surface reflecting surface is formed by forming the metal reflecting surface 32F on the outer surface 32B as the convex surface of the base material 32E formed of the transparent glass material.
  • the glass material itself constituting the transparent substrate is a non-polarizing material, so that birefringence when transmitting light can be suppressed, and the structure of the elliptical mirror 32 can be simplified only by the glass material.
  • the metal reflecting surface 32F functions as an inner surface reflecting surface of the base material 32E made of a transparent glass material.
  • a protective film for preventing deterioration of the reflecting surface itself is preferably provided outside the reflecting surface.
  • the ophthalmologic system 100 including the ophthalmologic apparatus 110, the axial length measuring apparatus 120, the management server 140, and the image viewer 150 has been described as an example, but the technology of the present disclosure is not limited thereto.
  • the ocular axial length measuring device 120 may be omitted, and the ophthalmic apparatus 110 may further have the function of the axial axial length measuring device 120.
  • the ophthalmologic apparatus 110 may further have at least one function of the management server 140 and the image viewer 150. Thereby, at least one of the management server 140 and the image viewer 150 corresponding to the function of the ophthalmic apparatus 110 can be omitted.
  • the management server 140 may be omitted, and the image viewer 150 may execute the function of the management server 140.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The present invention improves performance of an imaging optical system for capturing a tomographic image of a retina while causing signal light to scan. By forming a non-polarizing-material layer on a reflecting surface (32A) of a concave reflecting member in an imaging optical system, variation of the polarization state between incident light and reflected light is suppressed.

Description

眼科装置及び凹面反射部材Ophthalmic device and concave reflecting member
 開示の技術は、眼科装置及び凹面反射部材に関する。 The disclosed technology relates to an ophthalmic apparatus and a concave reflecting member.
 特許文献1には、光源からの光を眼底にて走査し、被検眼の眼底からの戻り光に基づいて眼底像を取得する装置が開示されている。この装置では、被検眼へ光を送り眼底からの戻り光を検出するように形成された反射鏡として自由形状面を備えた自由形状ミラーが用いられている。 Patent Document 1 discloses an apparatus that scans light from a light source with a fundus and acquires a fundus image based on return light from the fundus of a subject's eye. In this apparatus, a free-form mirror having a free-form surface is used as a reflecting mirror formed so as to send light to the eye to be examined and detect return light from the fundus.
米国特許第8066374号公報(特表2010-512877号公報)US Patent No. 8066374 (Japanese Patent Publication No. 2010-512877)
 開示の技術に係る眼科装置は、被検眼の眼底を撮影するための撮影光学系を備えた眼科装置において、撮影光学系は、凹面反射部材を含み、この凹面反射部材は、凹面反射面とその上に設けられた非偏光材料層とを有している。 An ophthalmologic apparatus according to the disclosed technology is an ophthalmologic apparatus that includes an imaging optical system for imaging the fundus of a subject's eye. The imaging optical system includes a concave reflecting member, and the concave reflecting member includes a concave reflecting surface and its concave reflecting surface. And a non-polarizing material layer provided thereon.
眼科システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of an ophthalmic system. 眼科装置の全体構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the whole structure of an ophthalmologic apparatus. 眼科装置の機能の一例を示すブロック図である。It is a block diagram which shows an example of the function of an ophthalmologic apparatus. 眼科装置に含まれる撮影光学系の概略的な構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a schematic structure of the imaging optical system contained in an ophthalmologic apparatus. 楕円鏡の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of an elliptical mirror. 楕円鏡の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of an elliptical mirror. 楕円鏡の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of an elliptical mirror.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下では、説明の便宜上、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope)を「SLO」と称する。また、以下では、説明の便宜上、光干渉断層計(Optical Coherence Tomography)を「OCT」と称する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, for convenience of explanation, a scanning laser ophthalmoscope is referred to as “SLO”. Hereinafter, for convenience of explanation, an optical coherence tomography (Optical Coherence Tomography) is referred to as “OCT”.
 [第1の実施形態]
 図1を参照して、眼科システム100の構成を説明する。図1に示すように、眼科システム100は、眼科装置110と、眼軸長測定装置120と、管理サーバ装置(以下、「管理サーバ」という)140と、画像表示装置(以下、「画像ビューワ」という)150と、を備えている。眼科装置110は、患者の被検眼の眼底画像と断層画像とを取得する。眼軸長測定装置120は、患者の被検眼の眼軸長を測定する。管理サーバ140は、眼科装置110によって複数の患者の眼底が撮影されることにより得られた複数の眼底画像、眼軸長、及び断層画像を、患者のIDに対応して記憶する。画像ビューワ150は、管理サーバ140により取得した眼底画像及び断層画像を表示する。
[First Embodiment]
The configuration of the ophthalmic system 100 will be described with reference to FIG. As shown in FIG. 1, an ophthalmic system 100 includes an ophthalmologic apparatus 110, an axial length measuring apparatus 120, a management server apparatus (hereinafter referred to as “management server”) 140, and an image display apparatus (hereinafter referred to as “image viewer”). 150). The ophthalmologic apparatus 110 acquires a fundus image and a tomographic image of a patient's eye to be examined. The axial length measuring device 120 measures the axial length of the patient's eye. The management server 140 stores a plurality of fundus images, axial lengths, and tomographic images obtained by photographing the fundus of a plurality of patients by the ophthalmologic apparatus 110 corresponding to the patient IDs. The image viewer 150 displays the fundus image and the tomographic image acquired by the management server 140.
 眼科装置110、眼軸長測定装置120、管理サーバ140、画像ビューワ150は、ネットワーク130を介して、相互に接続されている。 The ophthalmologic apparatus 110, the axial length measuring apparatus 120, the management server 140, and the image viewer 150 are connected to each other via the network 130.
 眼軸長測定装置120は、被検眼の眼軸方向の長さである眼軸長を測定する第1のモードと第2のモードとの2つのモードを有する。第1のモードは、図示しない光源からの光を被検眼に導光した後、眼底からの反射光と角膜からの反射光との干渉光を受光し、受光した干渉光を示す干渉信号に基づいて眼軸長を測定する。第2のモードは、図示しない超音波を用いて眼軸長を測定するモードである。 The axial length measurement device 120 has two modes, a first mode and a second mode, for measuring the axial length, which is the length in the axial direction of the eye to be examined. In the first mode, light from a light source (not shown) is guided to the eye to be inspected, and then interference light between the reflected light from the fundus and the cornea is received, and based on an interference signal indicating the received interference light. To measure the axial length. The second mode is a mode for measuring the axial length using an ultrasonic wave (not shown).
 眼軸長測定装置120は、第1のモード又は第2のモードにより測定された眼軸長を管理サーバ140に送信する。第1のモード及び第2のモードにより眼軸長を測定してもよく、この場合には、双方のモードで測定された眼軸長の平均を眼軸長として管理サーバ140に送信する。 The axial length measurement device 120 transmits the axial length measured in the first mode or the second mode to the management server 140. The axial length may be measured in the first mode and the second mode, and in this case, the average of the axial length measured in both modes is transmitted to the management server 140 as the axial length.
 次に、図2を参照して、眼科装置110の構成を説明する。
 説明の便宜上、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope)を「SLO」と称する。また、光干渉断層計(Optical Coherence Tomography)を「OCT」と称する。
Next, the configuration of the ophthalmologic apparatus 110 will be described with reference to FIG.
For convenience of explanation, a scanning laser opthalmoscope is referred to as “SLO”. Moreover, the optical coherence tomography (Optical Coherence Tomography) is referred to as “OCT”.
 眼科装置110は、撮影装置14及び制御装置16を含む。撮影装置14は、SLOユニット18及びOCTユニット20を備えており、被検眼12の眼底Fの眼底画像を取得する。以下、SLOユニット18により取得された画像をSLO画像と称する。また、OCTユニット20により取得された画像をOCT画像と称する。 The ophthalmologic apparatus 110 includes an imaging device 14 and a control device 16. The imaging device 14 includes an SLO unit 18 and an OCT unit 20 and acquires a fundus image of the fundus F of the eye 12 to be examined. Hereinafter, an image acquired by the SLO unit 18 is referred to as an SLO image. An image acquired by the OCT unit 20 is referred to as an OCT image.
 制御装置16は、CPU(Central Processing Unit)16A、RAM(Random Access Memory)16B、ROM(Read-Only memory)16C、及び入出力(I/O)ポート16Dを備えたコンピュータによって実現される。 The control device 16 is realized by a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D.
 制御装置16は、I/Oポート16Dを介してCPU16Aに接続された入力/表示装置16Eを備えている。入力/表示装置16Eは、被検眼12の画像を表示したり、ユーザから各種指示を受け付けたりするグラフィックユーザインターフェースを有する。グラフィックユーザインターフェースとしては、タッチパネル・ディスプレイが挙げられる。
 また、制御装置16は、I/Oポート16Dに接続された画像処理装置17を備えている。画像処理装置17は、撮影装置14によって得られたデータに基づき被検眼12の画像を生成する。なお、制御装置16は、通信インターフェース15を介してネットワーク130に接続される。
The control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D. The input / display device 16E has a graphic user interface that displays an image of the eye 12 to be examined and receives various instructions from the user. Examples of the graphic user interface include a touch panel display.
In addition, the control device 16 includes an image processing device 17 connected to the I / O port 16D. The image processing device 17 generates an image of the eye 12 to be examined based on the data obtained by the imaging device 14. The control device 16 is connected to the network 130 via the communication interface 15.
 次に、図3を参照して、制御装置16のCPU16Aがデータ処理プログラムを実行することで実現される各種機能について説明する。データ処理プログラムは、ROM16CまたはRAM16Bに記憶されており、初期設定時あるいは起動時に読み出される。 Next, various functions realized by the CPU 16A of the control device 16 executing the data processing program will be described with reference to FIG. The data processing program is stored in the ROM 16C or the RAM 16B, and is read at the time of initial setting or startup.
 データ処理プログラムは、撮影制御機能、表示制御機能、画像処理機能、及び処理機能を備えている。CPU16Aがこの各機能を有するデータ処理プログラムを実行することで、CPU16Aは、図3に示すように、撮影制御部202、表示制御部204、画像処理制御部206、及び処理部208として機能する。 The data processing program has a shooting control function, a display control function, an image processing function, and a processing function. When the CPU 16A executes the data processing program having these functions, the CPU 16A functions as a photographing control unit 202, a display control unit 204, an image processing control unit 206, and a processing unit 208 as shown in FIG.
 また、図2では、眼科装置110の制御装置16が入力/表示装置16Eを備えているが、本開示の技術はこれに限定されない。例えば、眼科装置110の制御装置16は入力/表示装置16Eを備えず、眼科装置110とは物理的に独立した別個の入力/表示装置を備えるようにしてもよい。この場合、当該表示装置は、制御装置16のCPU16Aの表示制御部204の制御下で動作する画像処理プロセッサユニットを備え、画像処理プロセッサユニットが、表示制御部204が出力指示した画像信号に基づいて、SLO画像等を表示するようにしてもよい。 In FIG. 2, the control device 16 of the ophthalmologic apparatus 110 includes the input / display device 16E, but the technology of the present disclosure is not limited to this. For example, the control device 16 of the ophthalmic apparatus 110 may not include the input / display device 16E, but may include a separate input / display device that is physically independent of the ophthalmic device 110. In this case, the display device includes an image processing processor unit that operates under the control of the display control unit 204 of the CPU 16A of the control device 16, and the image processing processor unit is based on an image signal instructed to be output by the display control unit 204. An SLO image or the like may be displayed.
 撮影装置14は、制御装置16の撮影制御部202の制御下で作動する。撮影装置14は、SLOユニット18、撮影光学系19、及びOCTユニット20を含む。撮影光学系19は、第1光学スキャナ22、第2光学スキャナ24、第3光学スキャナ29及び対物光学系としての広角光学系28を含む。また、撮影光学系19はSLOユニット18からの光とOCTユニット20からの光を合成及びSLOユニット18への光とOCTユニット20への光とに分離するダイクロイックミラーなどの合成部26を含む。 The imaging device 14 operates under the control of the imaging control unit 202 of the control device 16. The imaging device 14 includes an SLO unit 18, an imaging optical system 19, and an OCT unit 20. The photographing optical system 19 includes a first optical scanner 22, a second optical scanner 24, a third optical scanner 29, and a wide-angle optical system 28 as an objective optical system. The photographing optical system 19 includes a combining unit 26 such as a dichroic mirror that combines the light from the SLO unit 18 and the light from the OCT unit 20 and separates the light into the SLO unit 18 and the light into the OCT unit 20.
 第1光学スキャナ22は、SLOユニット18から射出された光をY方向(例えば鉛直方向)に走査する。第2光学スキャナ24は、OCTユニット20から射出された光を同じくY方向に走査する。共通光学系としての広角光学系28の中に配置された第3光学スキャナ29は、SLOユニット18から射出された光と、OCTユニット20から射出された光とをそれぞれX方向(例えば水平方向)に走査する。従って、第3光学スキャナ29により、第1光学スキャナ22及び第2光学スキャナ24との協働により、SLO用の光とOCT用の光とをそれぞれ、被検眼12の眼底Fで二次元走査できるように構成されている。なお、各光学スキャナは、光束の角度を偏向できる光学素子であればよく、例えば、ポリゴンミラーや、ガルバノミラー等を用いることができる。 The first optical scanner 22 scans the light emitted from the SLO unit 18 in the Y direction (for example, the vertical direction). The second optical scanner 24 similarly scans the light emitted from the OCT unit 20 in the Y direction. The third optical scanner 29 arranged in the wide-angle optical system 28 as a common optical system converts the light emitted from the SLO unit 18 and the light emitted from the OCT unit 20 in the X direction (for example, the horizontal direction). To scan. Therefore, the SLO light and the OCT light can be two-dimensionally scanned by the fundus F of the eye 12 by the third optical scanner 29 in cooperation with the first optical scanner 22 and the second optical scanner 24. It is configured as follows. Each optical scanner may be any optical element that can deflect the angle of the light beam. For example, a polygon mirror, a galvanometer mirror, or the like can be used.
 広角光学系28によって、眼底Fにおいて広い視野(FOV:Field of View)12Aでの観察が実現される。FOV12Aは、撮影装置14によって撮影可能な範囲を示している。FOV12Aは、視野角として表現され得る。視野角は、本実施形態において、内部照射角と外部照射角とで規定され得る。外部照射角とは、眼科装置110から被検眼12への瞳孔27の中心に向けて照射される光束の照射角である。また、内部照射角とは、眼底Fへ照射される光束の照射角を、眼球中心Oを基準として規定した照射角である。外部照射角と内部照射角とは、対応関係にある。例えば、外部照射角が120度の場合、内部照射角は約160度に相当する。 The wide-angle optical system 28 realizes observation in the fundus F with a wide field of view (FOV: Field of View) 12A. The FOV 12A indicates a range that can be captured by the imaging device 14. The FOV 12A can be expressed as a viewing angle. In this embodiment, the viewing angle can be defined by the internal irradiation angle and the external irradiation angle. The external irradiation angle is an irradiation angle of a light beam irradiated from the ophthalmologic apparatus 110 toward the center of the pupil 27 to the eye 12 to be examined. The internal irradiation angle is an irradiation angle that defines the irradiation angle of the light beam applied to the fundus F with reference to the center O of the eyeball. The external irradiation angle and the internal irradiation angle have a correspondence relationship. For example, when the external irradiation angle is 120 degrees, the internal irradiation angle corresponds to about 160 degrees.
 ここで、内部照射角で160度以上の撮影画角で撮影されて得られたSLO眼底画像をUWFSLO眼底画像と称する。なお、UWFとは、Ultra-Widefield(超広角)の略称を指す。 Here, the SLO fundus image obtained by photographing at an internal field angle of 160 ° or more is referred to as a UWFSLO fundus image. Note that UWF is an abbreviation for Ultra-Widefield (super wide angle).
 SLOシステムは、図2に示すように、制御装置16、SLOユニット18、及び撮影光学系19によって実現される。SLOシステムは、広角光学系28を備えるため、広いFOV12Aでの眼底撮影を可能とする。SLOユニット18は、光源18A、検出素子18B、及びビームスプリッタ18Cを含む。光源18Aから射出された光は、ビームスプリッタ18Cを透過して撮影光学系19へ入射する。 The SLO system is realized by a control device 16, an SLO unit 18, and a photographing optical system 19, as shown in FIG. Since the SLO system includes the wide-angle optical system 28, fundus imaging with a wide FOV 12A is possible. The SLO unit 18 includes a light source 18A, a detection element 18B, and a beam splitter 18C. The light emitted from the light source 18A passes through the beam splitter 18C and enters the photographing optical system 19.
 光源18Aは、R光(赤色光)の光源、G光(緑色光)の光源、B光(青色光)の光源、IR光(赤外線(近赤外光))の光源、白色光の光源を備え、R光及びG光を発するモードと、赤外線(例えば、近赤外線)を発するモードなど、発光させる光源あるいは発光させる光源の組合せを切り替え可能に構成されている。光源は、上記のすべてを備えていなくてもよく、R光(赤色光)の光源、G光(緑色光)の光源、赤外線(IR光)の3つの光源であってもよく、様々な光源の組合せが可能である。 The light source 18A includes an R light (red light) light source, a G light (green light) light source, a B light (blue light) light source, an IR light (infrared (near infrared light)) light source, and a white light source. And a light source that emits light or a combination of light sources that emit light, such as a mode that emits R light and G light, and a mode that emits infrared light (for example, near infrared light). The light source may not include all of the above, and may be an R light (red light) light source, a G light (green light) light source, and an infrared light (IR light) light source. Are possible.
 図2に示すように、撮影光学系19に入射されたSLOユニット18からの光は、第1光学スキャナ22によってY方向に走査される。走査光はさらに広角光学系28中の第3光学スキャナ29によるX方向での走査を受け、瞳孔27を経由して、眼底Fに照射される。眼底Fにより反射された反射光は、広角光学系28と第3光学スキャナ29および第1光学スキャナ22を経由してSLOユニット18へ入射される。SLOユニットに入射された反射光は、ビームスプリッタ18Cで反射されて、検出素子18Bで受光される。 As shown in FIG. 2, the light from the SLO unit 18 incident on the photographing optical system 19 is scanned in the Y direction by the first optical scanner 22. The scanning light is further scanned in the X direction by the third optical scanner 29 in the wide-angle optical system 28, and is irradiated to the fundus F through the pupil 27. The reflected light reflected by the fundus F enters the SLO unit 18 via the wide-angle optical system 28, the third optical scanner 29, and the first optical scanner 22. The reflected light incident on the SLO unit is reflected by the beam splitter 18C and received by the detection element 18B.
 検出素子18Bは波長に応じた複数の検出素子(例えば、赤色光に対応したR受光素子、緑色光に対応したG受光素子、近赤外光に対応したIR受光素子など)を有する。 The detection element 18B has a plurality of detection elements corresponding to the wavelength (for example, an R light receiving element corresponding to red light, a G light receiving element corresponding to green light, an IR light receiving element corresponding to near infrared light).
 画像処理制御部206の制御下で動作する画像処理装置17は、検出素子18Bで検出された信号に基づいてSLO画像を生成する。 The image processing device 17 operating under the control of the image processing control unit 206 generates an SLO image based on the signal detected by the detection element 18B.
 OCTシステムは、図2に示すように、制御装置16、OCTユニット20、及び撮影光学系19によって実現される。OCTシステムにおいても、広角光学系28を備えるため、広いFOV12Aでの眼底撮影を可能とする。OCTユニット20は、光源20A、検出素子20B、光カプラ20C、参照光学系20D、及びコリメートレンズ20Eを含む。 The OCT system is realized by a control device 16, an OCT unit 20, and an imaging optical system 19, as shown in FIG. Since the OCT system also includes the wide-angle optical system 28, fundus imaging with a wide FOV 12A is possible. The OCT unit 20 includes a light source 20A, a detection element 20B, an optical coupler 20C, a reference optical system 20D, and a collimating lens 20E.
 光源20Aから射出された光は、光カプラ20Cで分岐される。分岐された一方の光は、測定光として、コリメートレンズ20Eで平行光にされた後、撮影光学系19に入射される。測定光は、第2光学スキャナ24及び第3光学スキャナ29並びに広角光学系28により、瞳孔27を経由して、被検眼12の眼底F上でX方向およびY方向に二次元走査される。眼底Fにより反射された測定光は、広角光学系28、第3光学スキャナ29および第2光学スキャナ24を経由してOCTユニット20へ入射される。光源20Aから射出された光のうち光カプラ20Cで分岐された他方の光は、参照光として、参照光学系20Dへ入射される。眼底Fで反射された測定光と、参照光とは、光カプラ20Fで干渉されて干渉光を生成する。干渉光は検出素子20Bで受光される。画像処理制御部206の制御下で動作する。画像処理装置17は、検出素子20Bで検出された信号に基づいてOCT画像を生成する。 The light emitted from the light source 20A is branched by the optical coupler 20C. One of the branched lights is converted into parallel light by the collimator lens 20E as measurement light and then incident on the photographing optical system 19. The measurement light is two-dimensionally scanned in the X and Y directions on the fundus F of the eye 12 to be examined by the second optical scanner 24, the third optical scanner 29, and the wide-angle optical system 28 via the pupil 27. The measurement light reflected by the fundus F is incident on the OCT unit 20 via the wide-angle optical system 28, the third optical scanner 29, and the second optical scanner 24. Of the light emitted from the light source 20A, the other light branched by the optical coupler 20C enters the reference optical system 20D as reference light. The measurement light reflected from the fundus F and the reference light are interfered by the optical coupler 20F to generate interference light. The interference light is received by the detection element 20B. It operates under the control of the image processing control unit 206. The image processing device 17 generates an OCT image based on the signal detected by the detection element 20B.
 なお、本実施形態では、光源20Aが射出するレーザ光の波長を高速に変化させるタイプのSS-OCT(Swept-Source OCT)を例示するが、SD-OCT(Spectral-Domain OCT)であってもよい。 In the present embodiment, SS-OCT (Swept-Source OCT) that changes the wavelength of the laser light emitted from the light source 20A at high speed is exemplified, but even with SD-OCT (Spectral-Domain OCT). Good.
 次に、図4を参照して、眼科装置110に含まれる撮影光学系19の詳細構成を説明する。 Next, a detailed configuration of the photographing optical system 19 included in the ophthalmologic apparatus 110 will be described with reference to FIG.
 図4に示すように、共通光学系としての広角光学系28は、楕円鏡(スリットミラー)30、楕円鏡32と、両者の間に配置された第3光学スキャナ29を含む。楕円鏡(スリットミラー)30も楕円鏡32も共に所謂回転楕円面の反射面30A、32Aを有している。回転楕円面は、楕円に固有の2つの焦点を結ぶ軸を中心に回転して形成される面であり、図3では共に楕円の一部として示されている。上述の通り、第1光学スキャナ22と第2光学スキャナ24はそれぞれの光線をY方向(図の紙面内)で走査するため、楕円鏡30はY方向の走査光のみを反射するためにX方向での幅は小さくてよい。このため、楕円鏡30はY方向に延びた細長い形状であり、スリットミラーと呼んでいる。以降では、楕円鏡30をスリットミラー30と称する場合がある。一方、楕円鏡32では第3光学スキャナ29によりX方向(図の紙面に垂直な面内)の走査が追加されるため、楕円鏡32のX方向の幅は第3光学スキャナ29のX方向での走査光を受容するのに必要な幅を有している。図4では、ダイクロイックミラーなどの合成部26、スリットミラー30、および楕円鏡32は側面断面図として表されているが、相互間の位置は配置の順序を示す目的であるため正確ではない。 As shown in FIG. 4, a wide-angle optical system 28 as a common optical system includes an elliptical mirror (slit mirror) 30, an elliptical mirror 32, and a third optical scanner 29 disposed between the two. Both the elliptical mirror (slit mirror) 30 and the elliptical mirror 32 have so-called spheroidal reflecting surfaces 30A and 32A. The spheroidal surface is a surface formed by rotating around an axis connecting two focal points inherent to the ellipse, and both are shown as part of the ellipse in FIG. As described above, since the first optical scanner 22 and the second optical scanner 24 scan the respective light beams in the Y direction (in the drawing sheet), the elliptical mirror 30 reflects only the scanning light in the Y direction so as to reflect the X direction. The width at may be small. For this reason, the elliptical mirror 30 has an elongated shape extending in the Y direction and is called a slit mirror. Hereinafter, the elliptical mirror 30 may be referred to as a slit mirror 30. On the other hand, in the elliptical mirror 32, scanning in the X direction (in a plane perpendicular to the paper surface of the drawing) is added by the third optical scanner 29, so the width of the elliptical mirror 32 in the X direction is the X direction of the third optical scanner 29. It has a width necessary for receiving the scanning light. In FIG. 4, the combining unit 26 such as a dichroic mirror, the slit mirror 30, and the elliptical mirror 32 are shown as side sectional views, but their positions are not accurate because they are for the purpose of showing the order of arrangement.
 スリットミラー30の反射面30Aは、第1焦点P1および第2焦点P2を有する。第1光学スキャナ22及び第2光学スキャナ24はダイクロイックミラーなどの合成部26を介してそれぞれ第1焦点P1に一致して配置されている。また、第2焦点P2には、第3光学スキャナ29が配置されている。そして、楕円鏡32の反射面32Aも2つの焦点P3,P4を有し、その一方P3はスリットミラーの反射面の焦点P2に一致しており、他方の焦点P4の位置には被検眼l2の瞳孔中心が位置するように構成されている。従って、第1光学スキャナ22、第2光学スキャナ24、および第3光学スキャナ29は、それぞれ被検眼12の瞳孔の中心部と共役な位置関係になるように構成されている。このような2つの楕円鏡30と32並びに3つの光学スキャナ22,24,29の組み合わせた撮影光学系19により、SLOにおいてもOCTにおいても極めて広い外部照射角の光線によって眼底を走査することが可能となっている。 The reflective surface 30A of the slit mirror 30 has a first focal point P1 and a second focal point P2. The first optical scanner 22 and the second optical scanner 24 are respectively arranged to coincide with the first focal point P1 via a combining unit 26 such as a dichroic mirror. A third optical scanner 29 is disposed at the second focal point P2. The reflecting surface 32A of the elliptical mirror 32 also has two focal points P3 and P4, one of which coincides with the focal point P2 of the reflecting surface of the slit mirror, and the other focal point P4 has a position of the eye l2 to be examined. The center of the pupil is positioned. Accordingly, the first optical scanner 22, the second optical scanner 24, and the third optical scanner 29 are each configured to have a conjugate positional relationship with the center of the pupil of the eye 12 to be examined. By using the imaging optical system 19 in which the two elliptical mirrors 30 and 32 and the three optical scanners 22, 24 and 29 are combined, the fundus can be scanned with a light beam having an extremely wide external irradiation angle in both SLO and OCT. It has become.
 なお、広角光学系28を達成するためには上述のとおり楕円鏡を用いることが大変有効である。楕円鏡は必ずしも2枚設ける必要はなく、1枚の構成とすることも可能である。例として、国際公開公報 WO2016/103484やWO2016/103489に開示されている構成を用いてもよい。 In order to achieve the wide-angle optical system 28, it is very effective to use an elliptical mirror as described above. It is not always necessary to provide two elliptical mirrors, and one elliptical mirror can be used. As an example, you may use the structure currently disclosed by international publication gazette WO2016 / 103484 and WO2016 / 1034889.
 上述のように、楕円鏡を備えた眼科装置110は、極めて広角の外部照射角によりUWFとしての極めて広い視野での眼底観察を行うことができる。楕円鏡などの凹面鏡は、例えば、反射面を金属膜による蒸着で形成した場合、形成された金属膜の剥離を抑制するため、樹脂などの透明な保護膜を金属膜上に形成することが一般的である。 As described above, the ophthalmologic apparatus 110 provided with an elliptical mirror can perform fundus observation with a very wide field of view as a UWF with an extremely wide external illumination angle. Concave mirrors such as elliptical mirrors generally form a transparent protective film such as a resin on the metal film in order to suppress peeling of the formed metal film, for example, when the reflecting surface is formed by vapor deposition with a metal film. Is.
 ところが、反射面に透明の保護膜を形成した場合、反射により偏光状態が変化する場合がある。具体的には、楕円鏡を用いてOCT画像を得る場合、楕円鏡の反射面で反射された信号光の偏光状態及び信号光の戻り光の偏光状態が変化する。これは、保護膜の材料である樹脂が複屈折性を有し、信号光及び信号光の戻り光が透明の保護膜を透過する際に、保護膜が有する複屈折性等の光の性質によって偏光状態が変化されるためと考えられる。 However, when a transparent protective film is formed on the reflection surface, the polarization state may change due to reflection. Specifically, when an OCT image is obtained using an elliptical mirror, the polarization state of the signal light reflected by the reflecting surface of the elliptical mirror and the polarization state of the return light of the signal light change. This is because the resin that is the material of the protective film has birefringence, and when the signal light and the return light of the signal light pass through the transparent protective film, the protective film has light properties such as birefringence. This is probably because the polarization state is changed.
 また、保護膜を形成、例えば張り付ける際に生じる応力及び保護膜の厚みの相違等により、偏光状態の変化量は、楕円鏡での反射位置により変化する。これは保護膜への光の入射角度が入射位置によって異なることで保護膜内での光路長が異なり、位相のずれ方が相違するためと考えられる。具体的には、楕円鏡を用いてOCT画像を得る場合、走査装置により様々な走査角度で入射光を楕円鏡に照射して、眼底からの反射光を楕円鏡で反射させる場合、楕円鏡の様々な位置で反射する。 Also, the amount of change in the polarization state varies depending on the reflection position of the elliptical mirror due to the stress generated when the protective film is formed, for example, pasting, and the thickness of the protective film. This is presumably because the optical path length in the protective film differs and the phase shift differs because the incident angle of light on the protective film differs depending on the incident position. Specifically, when an OCT image is obtained using an elliptical mirror, incident light is irradiated onto the elliptical mirror at various scanning angles by a scanning device, and reflected light from the fundus is reflected by the elliptical mirror. Reflects at various positions.
 よって、楕円鏡で反射した光は、反射位置や反射角により相違する様々な偏光状態を有することになる。楕円鏡で反射した光が相違する偏光状態を有することは、OCT画像を取得する場合に、画質の劣化を招くことになる。具体的には、参照光の偏光状態を一定に維持した場合、信号光の光路と参照光の光路の偏光方向が異なり、干渉光のコントラストが低下する。また、楕円鏡上の反射位置によって偏光状態が変化するので、干渉光のコントラストが変わり、B-Scan画像全体でコントラストが変動し、OCT画像にムラが発生する。 Therefore, the light reflected by the elliptical mirror has various polarization states that differ depending on the reflection position and reflection angle. When the light reflected by the elliptical mirror has a different polarization state, the image quality is deteriorated when an OCT image is acquired. Specifically, when the polarization state of the reference light is kept constant, the polarization directions of the signal light and the reference light are different, and the contrast of the interference light is lowered. Further, since the polarization state changes depending on the reflection position on the elliptical mirror, the contrast of the interference light changes, the contrast fluctuates in the entire B-Scan image, and unevenness occurs in the OCT image.
 そこで、本開示の技術では、入射光と反射光での偏光状態の変化が小さい反射鏡を用いて、OCTの場合の干渉光のコントラスト低下を抑制し、また走査位置によってB-Scan画像全体でコントラストのムラを抑制した眼科装置を提供する。 Therefore, in the technique of the present disclosure, a reduction in the contrast of interference light in the case of OCT is suppressed by using a reflecting mirror with a small change in polarization state between incident light and reflected light, and the entire B-Scan image is changed depending on the scanning position. An ophthalmologic apparatus in which unevenness in contrast is suppressed is provided.
 次に、図5を参照して、入射光及び反射光各々の偏光状態の変化を抑制した凹面反射部材としての楕円鏡32の構成の一例を説明する。
 図5に示すように、楕円鏡32は、反射面32Aが形成された基材32Cを備え、反射面32Aには保護層32Dが形成される。保護層32Dには無偏光樹脂(例えば、超低複屈折樹脂)が用いられる。無偏光樹脂(超低複屈折樹脂)の一例には、三菱ガス化学製のユピゼータEPシリーズの樹脂、及び大阪ガスケミカル製のOKPなど複屈折を抑えた樹脂が挙げられる。また、反射面32Aの一例には、金属反射面であり、金属反射面の例として、アルミ、金、銀などを蒸着した表面反射ミラーが挙げられる。
 楕円鏡32は、本開示の技術の凹面反射部材の一例である。また、無偏光樹脂は、本開示の技術の非偏光材料の一例である。
Next, with reference to FIG. 5, an example of the configuration of the elliptical mirror 32 as a concave reflecting member that suppresses changes in the polarization state of each of incident light and reflected light will be described.
As shown in FIG. 5, the elliptical mirror 32 includes a base material 32C on which a reflective surface 32A is formed, and a protective layer 32D is formed on the reflective surface 32A. Non-polarizing resin (for example, ultra-low birefringence resin) is used for the protective layer 32D. Examples of the non-polarizing resin (ultra-low birefringence resin) include resins having suppressed birefringence such as Iupizeta EP series resin manufactured by Mitsubishi Gas Chemical and OKP manufactured by Osaka Gas Chemical. An example of the reflecting surface 32A is a metal reflecting surface, and examples of the metal reflecting surface include a surface reflecting mirror deposited with aluminum, gold, silver, or the like.
The elliptical mirror 32 is an example of a concave reflecting member according to the technique of the present disclosure. The non-polarizing resin is an example of a non-polarizing material according to the technique of the present disclosure.
 保護層32Dを無偏光樹脂(例えば、超低複屈折樹脂)によって形成することで、保護層32Dにおける複屈折性が抑制され、光を透過する際における偏光状態の変化が抑制される。また、保護層32Dにおける複屈折性が抑制されることで、楕円鏡32における反射位置及び反射角度による偏光状態の変化も抑制される。よって、保護層32Dが有する複屈折性により、走査角度の相違により生じる偏光状態の変化が抑制される。従って、楕円鏡32自体の光学性能を向上することができる。 By forming the protective layer 32D with a non-polarizing resin (for example, an ultra-low birefringent resin), the birefringence in the protective layer 32D is suppressed, and the change in the polarization state when light is transmitted is suppressed. In addition, since the birefringence in the protective layer 32D is suppressed, changes in the polarization state due to the reflection position and reflection angle in the elliptical mirror 32 are also suppressed. Therefore, the change in polarization state caused by the difference in scanning angle is suppressed by the birefringence of the protective layer 32D. Therefore, the optical performance of the elliptical mirror 32 itself can be improved.
 ところで、反射面32Aを金属ミラーによって形成した場合、反射面32Aにおいて円偏光の回転方向が変化する。例えば、光源20Aから右回りの円偏光(以下、右円偏光という。)による偏光状態の信号光が射出された場合、撮影光学系19における、測定光及び測定光の戻り光の経路(以下、測定経路という。)における偏光状態は、順次円偏光の向きが変化する。具体的に、図4に例示した撮影光学系19においては、OCT用測定光の偏光状態は、第2光学スキャナ24の反射で左回りの円偏光(以下左円偏光という。)になり、スリットミラー30における反射で右回りの円偏光(以下右円偏光という。)になり、第3光学スキャナ29の反射で左円偏光になり、楕円鏡32の反射で右円偏光になる。そして、被検眼12の眼底反射で左円偏光になり、楕円鏡32の反射で右円偏光になり、第3光学スキャナ29の反射で左円偏光になり、スリットミラー30の反射で右円偏光になり、第2光学スキャナ24の反射で左円偏光となる。一方、OCT用参照光学系の参照光では右回りの円偏光による偏光状態を維持すると仮定すると、測定光路を伝播した信号光の戻り光と、参照光路を伝播した参照光とは、逆向きの円偏光となり、干渉作用が抑制される。このため、光カプラ20Fの入射側、例えば参照光路中に偏光調整部、例えば1/2波長板などの波長板変による偏光変換素子を挿入して参照光を左円偏光の偏光状態にし、参照光の偏光状態と測定光の偏光状態とを一致させることが必要となる。これによって、参照光と測定光との良好な干渉を維持し、より鮮明な高コントラストの画像を生成することができる。 Incidentally, when the reflecting surface 32A is formed of a metal mirror, the rotation direction of the circularly polarized light changes on the reflecting surface 32A. For example, when signal light in a polarization state by clockwise circularly polarized light (hereinafter referred to as right circularly polarized light) is emitted from the light source 20A, a path of measurement light and return light of the measurement light (hereinafter, referred to as “measurement light”) in the photographing optical system 19 is described. In the polarization state in the measurement path), the direction of circularly polarized light sequentially changes. Specifically, in the imaging optical system 19 illustrated in FIG. 4, the polarization state of the OCT measurement light becomes counterclockwise circularly polarized light (hereinafter referred to as left circularly polarized light) reflected by the second optical scanner 24, and is slit. Reflected by the mirror 30 becomes clockwise circularly polarized light (hereinafter referred to as right circularly polarized light), reflected by the third optical scanner 29 becomes left circularly polarized light, and reflected by the elliptical mirror 32 becomes right circularly polarized light. Then, the fundus reflection of the eye 12 becomes left circularly polarized light, the elliptical mirror 32 reflects right circularly polarized light, the third optical scanner 29 reflects left circularly polarized light, and the slit mirror 30 reflects right circularly polarized light. And becomes the left circularly polarized light by the reflection of the second optical scanner 24. On the other hand, assuming that the reference light of the OCT reference optical system maintains the polarization state of clockwise circular polarization, the return light of the signal light propagated through the measurement optical path and the reference light propagated through the reference optical path are in opposite directions. It becomes circularly polarized light and the interference action is suppressed. For this reason, a polarization adjusting unit, for example, a polarization conversion element by changing a wavelength plate such as a half-wave plate is inserted in the incident side of the optical coupler 20F, for example, a reference optical path, and the reference light is changed to a left circularly polarized light state. It is necessary to make the polarization state of the light coincide with the polarization state of the measurement light. As a result, good interference between the reference light and the measurement light can be maintained, and a clearer and higher contrast image can be generated.
 以上説明したように本開示の技術では、保護層32Dを無偏光樹脂(例えば、超低複屈折樹脂)によって形成することで、楕円鏡32自体の光学性能を向上することができ、画質劣化を抑制したOCT画像、及びコントラストの低下を抑制したOCT画像を得ることができる。また、走査角度に応じた偏光状態のフィードバック制御及びクローズドループ制御のような複雑な偏光状態を補正する手段を設けることなく、例えば1/2波長板などの偏光調整部によって偏光状態を設定するのみで、画質劣化を抑制したOCT画像、及びコントラストの低下を抑制したOCT画像を得ることができる。 As described above, in the technology of the present disclosure, the optical performance of the elliptical mirror 32 itself can be improved by forming the protective layer 32D with a non-polarizing resin (for example, an ultra-low birefringent resin), and image quality degradation can be reduced. A suppressed OCT image and an OCT image in which a decrease in contrast is suppressed can be obtained. Also, without providing a means for correcting a complicated polarization state such as feedback control of the polarization state according to the scanning angle and closed loop control, the polarization state is only set by a polarization adjusting unit such as a half-wave plate, for example. Thus, an OCT image in which image quality deterioration is suppressed and an OCT image in which contrast reduction is suppressed can be obtained.
 そして、このような反射部材の構成によって、被検眼に向けて外部照射角100°以上の走査光を反射すると共に前記被検眼からのこの角度以上での反射光を受容することができ、100°以上の超広角光学系を実現することが可能である。そして、140°を超える超広角の光学系としても偏光状態の変化を抑制でき、所謂UWFでの優れた眼底の断面像を形成することが可能となる。 And, by such a configuration of the reflecting member, it is possible to reflect the scanning light having an external irradiation angle of 100 ° or more toward the eye to be examined and to receive the reflected light from the eye to be examined at the angle of 100 ° or more. It is possible to realize the above super-wide-angle optical system. Even in an ultra-wide-angle optical system exceeding 140 °, changes in the polarization state can be suppressed, and an excellent fundus cross-sectional image can be formed by so-called UWF.
 [第2の実施形態]
 次に、第2の実施形態を説明する。なお、第2の実施形態は、第1の実施形態と類似の構成の凹面反射部材であるため、同一部分には同一符号を付して詳細な説明を省略する。
 第1の実施形態では、保護層32Dを無偏光樹脂(例えば、超低複屈折樹脂)によって形成したが、第2の実施形態では、保護層32Dに代えて、硝子材料で保護層を形成する。
[Second Embodiment]
Next, a second embodiment will be described. In addition, since 2nd Embodiment is a concave surface reflection member of the structure similar to 1st Embodiment, it attaches | subjects the same code | symbol to the same part, and abbreviate | omits detailed description.
In the first embodiment, the protective layer 32D is formed of a non-polarizing resin (for example, an ultra-low birefringent resin). However, in the second embodiment, the protective layer is formed of a glass material instead of the protective layer 32D. .
 次に、図6を参照して、楕円鏡32に硝子材料で保護層を形成する構成の一例を説明する。
 図6に示すように、楕円鏡32は、金属反射面である反射面32Aが形成された基材32Cを備え、反射面32Aには保護層32Eが形成される。保護層32Eは、反射面32Aの面形状と同じ外面を有する硝子材料で形成される。すなわち、楕円鏡32は、基材32Cの反射面32Aに、硝子材料で形成された保護層32Eが取り付けられる。硝子材料の一例には、石英ガラス等の光学ガラスが挙げられる。
Next, an example of a configuration in which a protective layer is formed of a glass material on the elliptical mirror 32 will be described with reference to FIG.
As shown in FIG. 6, the elliptical mirror 32 includes a base material 32C on which a reflective surface 32A that is a metal reflective surface is formed, and a protective layer 32E is formed on the reflective surface 32A. The protective layer 32E is formed of a glass material having the same outer surface as the surface shape of the reflecting surface 32A. That is, in the elliptical mirror 32, a protective layer 32E formed of a glass material is attached to the reflecting surface 32A of the base material 32C. An example of the glass material is optical glass such as quartz glass.
 光学ガラスは、無偏光樹脂と同様に、複屈折性を抑制でき、また光を透過する際における偏光状態の変化を抑制できる。よって、保護層32Eが有する抑制された複屈折性により、走査角度の相違により生じる偏光状態の変化が抑制され、楕円鏡32自体の光学性能を向上することができる。 Optical glass, like the non-polarizing resin, can suppress birefringence and can suppress a change in polarization state when light is transmitted. Therefore, due to the suppressed birefringence of the protective layer 32E, the change in the polarization state caused by the difference in scanning angle is suppressed, and the optical performance of the elliptical mirror 32 itself can be improved.
 [第3の実施形態]
 次に、第3の実施形態を説明する。なお、第3の実施形態は、第1の実施形態及び第2の実施形態と同様の構成のため、同一部分には同一符号を付して詳細な説明を省略する。
 上述の第1実施態様及び第2実施態様では、凹面反射部材としての楕円鏡32は、基材上に金属反射面を設けた反射部材であった。そして、基材の凹面に反射面が設けられて凹面反射面を形成し、前記反射基材の前記凹面反射面に入射する前記信号光を前記凹面反射面で反射するように構成されていた。このため、基材の材料は金属など不透明材料体でも不透明な硝子でも可能であった。これに対し、第3実施形態では、凹面反射部材は透明な硝子材料からなる基材上に金属反射面を形成した反射部材であり、基材の凸面に前記反射面が設けられており、基材内部の凹面での内面反射面が形成されている。
[Third Embodiment]
Next, a third embodiment will be described. Since the third embodiment has the same configuration as the first embodiment and the second embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
In the first and second embodiments described above, the elliptical mirror 32 as the concave reflecting member is a reflecting member provided with a metal reflecting surface on a base material. And the reflective surface was provided in the concave surface of the base material, the concave reflective surface was formed, and the said signal light which injects into the said concave reflective surface of the said reflective base material was reflected by the said concave reflective surface. For this reason, the material of the substrate could be an opaque material such as metal or an opaque glass. On the other hand, in the third embodiment, the concave reflection member is a reflection member in which a metal reflection surface is formed on a base material made of a transparent glass material, and the reflection surface is provided on the convex surface of the base material. An internal reflection surface is formed on the concave surface inside the material.
 第3実施態様の一例を図7に示す。図7に示すように、凹面反射部材としての楕円鏡32は、透明な硝子材料で形成された基材32Eの外側面32Bに、反射層としての金属反射面32Fが形成される。硝子材料で形成された基材32E自体は、反射面32A上に形成されて反射面の保護層として機能すると共に非偏光材料層として機能する。 An example of the third embodiment is shown in FIG. As shown in FIG. 7, in the elliptical mirror 32 as a concave reflecting member, a metal reflecting surface 32F as a reflecting layer is formed on an outer surface 32B of a base material 32E made of a transparent glass material. The base material 32E itself made of a glass material is formed on the reflecting surface 32A and functions as a protective layer for the reflecting surface and also functions as a non-polarizing material layer.
 このように、透明硝子材料で形成された基材32Eの凸面としての外側面32Bに、金属反射面32Fを形成することで、凹面の内面反射面を構成している。この構成では透明基材を構成する硝子材料自体が、非偏光材料であるため光を透過する際の複屈折性を抑制でき、かつ楕円鏡32の構造を硝子材料のみで単純化することができる。この構成においては、金属反射面32Fは透明硝子材料の基材32Eの内面反射面として機能する。この反射面の外側には、反射面自体の劣化防止のための保護膜を設けることが好ましいことは言うまでもない。 Thus, the concave inner surface reflecting surface is formed by forming the metal reflecting surface 32F on the outer surface 32B as the convex surface of the base material 32E formed of the transparent glass material. In this configuration, the glass material itself constituting the transparent substrate is a non-polarizing material, so that birefringence when transmitting light can be suppressed, and the structure of the elliptical mirror 32 can be simplified only by the glass material. . In this configuration, the metal reflecting surface 32F functions as an inner surface reflecting surface of the base material 32E made of a transparent glass material. Needless to say, a protective film for preventing deterioration of the reflecting surface itself is preferably provided outside the reflecting surface.
 [第1の変形例]
 上記では、OCT画像(UWFOCT画像)を用いる例を説明したが、SLOによる眼底画像でもよいし、画角が比較的小さい(例えば、内部照射角で100°以下)の眼科装置あるいは眼底カメラなど、さまざまな眼科装置にも適用できる。
[First Modification]
In the above, an example using an OCT image (UWFOCT image) has been described. However, a fundus image obtained by SLO may be used, or an ophthalmic apparatus or a fundus camera having a relatively small angle of view (for example, an internal irradiation angle of 100 ° or less). It can be applied to various ophthalmic devices.
 [第2の変形例]
 上記実施形態では、眼科装置110、眼軸長測定装置120、管理サーバ140、及び画像ビューワ150を備えた眼科システム100を例として説明したが、本開示の技術はこれに限定されない。例えば、第1の例として、眼軸長測定装置120を省略し、眼科装置110が、眼軸長測定装置120の機能を更に有してもよい。
 また、第2の例として、眼科装置110が、管理サーバ140及び画像ビューワ150の少なくとも一方の機能を更に有してもよい。これにより、眼科装置110が備える機能に対応する管理サーバ140及び画像ビューワ150の少なくとも一方の装置を省略することができる。
 更に、管理サーバ140を省略し、画像ビューワ150が管理サーバ140の機能を実行するようにしてもよい。
[Second Modification]
In the above embodiment, the ophthalmologic system 100 including the ophthalmologic apparatus 110, the axial length measuring apparatus 120, the management server 140, and the image viewer 150 has been described as an example, but the technology of the present disclosure is not limited thereto. For example, as a first example, the ocular axial length measuring device 120 may be omitted, and the ophthalmic apparatus 110 may further have the function of the axial axial length measuring device 120.
As a second example, the ophthalmologic apparatus 110 may further have at least one function of the management server 140 and the image viewer 150. Thereby, at least one of the management server 140 and the image viewer 150 corresponding to the function of the ophthalmic apparatus 110 can be omitted.
Further, the management server 140 may be omitted, and the image viewer 150 may execute the function of the management server 140.
 [その他の変形例]
 上記実施形態で説明した楕円鏡32の構造はあくまでも一例である。従って、主旨を逸脱しない範囲内において構造を変更したり、新たな構造を追加したりしてもよいことは言うまでもない。
[Other variations]
The structure of the elliptical mirror 32 described in the above embodiment is merely an example. Therefore, it goes without saying that the structure may be changed or a new structure may be added without departing from the spirit of the invention.
100 眼科システム
12 被検眼
19 撮影光学系
28 広角光学系
30、32 楕円鏡
32A 反射面
32C 基材
32D 保護層
DESCRIPTION OF SYMBOLS 100 Ophthalmology system 12 Eye to be examined 19 Imaging optical system 28 Wide angle optical system 30, 32 Elliptical mirror 32A Reflecting surface 32C Base material 32D Protective layer

Claims (12)

  1. 被検眼の眼底を撮影するための撮影光学系を備えた眼科装置において、
     前記撮影光学系は、凹面反射部材を含み、
    前記凹面反射部材は、凹面反射面と前記凹面反射面上に設けられた非偏光材料層と
    を有することを特徴とする眼科装置。
    In an ophthalmologic apparatus equipped with an imaging optical system for imaging the fundus of the eye to be examined,
    The photographing optical system includes a concave reflecting member,
    The ophthalmic apparatus, wherein the concave reflecting member includes a concave reflecting surface and a non-polarizing material layer provided on the concave reflecting surface.
  2.  前記凹面反射面は、回転楕円面反射面であることを特徴とする請求項1に記載の眼科装置。 The ophthalmologic apparatus according to claim 1, wherein the concave reflecting surface is a spheroid reflecting surface.
  3.  前記非偏光材料層は、無偏光樹脂である請求項1または請求項2に記載の眼科装置。 The ophthalmic apparatus according to claim 1, wherein the non-polarizing material layer is a non-polarizing resin.
  4.  前記非偏光材料層は、硝子材料である請求項1または請求項2に記載の眼科装置。 3. The ophthalmologic apparatus according to claim 1, wherein the non-polarizing material layer is a glass material.
  5.  前記凹面反射面は、基材の凹面に設けられた反射面であることを特徴とする請求項1から請求項4の何れか1項に記載の眼科装置。 The ophthalmologic apparatus according to any one of claims 1 to 4, wherein the concave reflection surface is a reflection surface provided on a concave surface of a base material.
  6.  前記凹面反射面は、前記硝子材料からなる透明基材の凸面に設けられた内面反射面であることを特徴とする請求項4に記載の眼科装置。 5. The ophthalmologic apparatus according to claim 4, wherein the concave reflection surface is an internal reflection surface provided on a convex surface of a transparent substrate made of the glass material.
  7.  被検眼の眼底を撮影する眼科装置の撮影光学系に設けられる凹面反射部材であって、
     凹面反射面と、前記凹面反射面上に形成された非偏光材料層とを備えることを特徴とする凹面反射部材。
    A concave reflecting member provided in an imaging optical system of an ophthalmic apparatus for imaging the fundus of the eye to be examined,
    A concave reflecting member comprising a concave reflecting surface and a non-polarizing material layer formed on the concave reflecting surface.
  8.  前記凹面反射面は、回転楕円面反射面であることを特徴とする請求項7に記載の凹面反射部材。 The concave reflecting member according to claim 7, wherein the concave reflecting surface is a spheroidal reflecting surface.
  9.  前記非偏光材料層は、無偏光樹脂で形成される請求項7または請求項8に記載の凹面反射部材。 The concave reflecting member according to claim 7 or 8, wherein the non-polarizing material layer is formed of a non-polarizing resin.
  10.  前記非偏光材料層は、硝子材料で形成される請求項7または請求項8に記載の凹面反射部材。 The concave reflecting member according to claim 7 or 8, wherein the non-polarizing material layer is formed of a glass material.
  11.  前記凹面反射面は、基材の凹面に設けられた反射面であることを特徴とする請求項7から請求項10の何れか1項に記載の凹面反射部材。 The concave reflecting member according to any one of claims 7 to 10, wherein the concave reflecting surface is a reflecting surface provided on a concave surface of a base material.
  12.  前記凹面反射面は、透明硝子基材の凸面に設けられた内面反射面であることを特徴とする請求項7から請求項10の何れか1項に記載の凹面反射部材。 The concave reflecting member according to any one of claims 7 to 10, wherein the concave reflecting surface is an inner reflecting surface provided on a convex surface of a transparent glass substrate.
PCT/JP2019/015001 2018-04-04 2019-04-04 Ophthalmic device and concave reflecting member WO2019194283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072563 2018-04-04
JP2018072563 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019194283A1 true WO2019194283A1 (en) 2019-10-10

Family

ID=68100402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015001 WO2019194283A1 (en) 2018-04-04 2019-04-04 Ophthalmic device and concave reflecting member

Country Status (1)

Country Link
WO (1) WO2019194283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020103425A (en) * 2018-12-26 2020-07-09 株式会社トプコン Ophthalmologic apparatus and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943408A (en) * 1995-08-03 1997-02-14 Canon Inc Non-polarizing reflection mirror
JPH10332913A (en) * 1997-05-27 1998-12-18 Asahi Optical Co Ltd Multilayered film coated mirror
JPH11160013A (en) * 1997-12-02 1999-06-18 Ricoh Co Ltd Shearing interferometer
JP2007510143A (en) * 2003-10-27 2007-04-19 ザ・ジェネラル・ホスピタル・コーポレイション Method and apparatus for performing optical imaging using frequency domain interferometry
JP2008070349A (en) * 2006-08-15 2008-03-27 Fujifilm Corp Optical tomographic imaging apparatus
JP2015534482A (en) * 2012-10-01 2015-12-03 オプトス ピーエルシー Improvements in scanning laser ophthalmoscope or improvements in scanning laser ophthalmoscope
JP2016126326A (en) * 2014-12-26 2016-07-11 富士フイルム株式会社 Reflective material, optical member, display and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943408A (en) * 1995-08-03 1997-02-14 Canon Inc Non-polarizing reflection mirror
JPH10332913A (en) * 1997-05-27 1998-12-18 Asahi Optical Co Ltd Multilayered film coated mirror
JPH11160013A (en) * 1997-12-02 1999-06-18 Ricoh Co Ltd Shearing interferometer
JP2007510143A (en) * 2003-10-27 2007-04-19 ザ・ジェネラル・ホスピタル・コーポレイション Method and apparatus for performing optical imaging using frequency domain interferometry
JP2008070349A (en) * 2006-08-15 2008-03-27 Fujifilm Corp Optical tomographic imaging apparatus
JP2015534482A (en) * 2012-10-01 2015-12-03 オプトス ピーエルシー Improvements in scanning laser ophthalmoscope or improvements in scanning laser ophthalmoscope
JP2016126326A (en) * 2014-12-26 2016-07-11 富士フイルム株式会社 Reflective material, optical member, display and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020103425A (en) * 2018-12-26 2020-07-09 株式会社トプコン Ophthalmologic apparatus and control method thereof
JP7231405B2 (en) 2018-12-26 2023-03-01 株式会社トプコン Ophthalmic device and its control method

Similar Documents

Publication Publication Date Title
US9924862B2 (en) Ophthalmoscope
US20130107277A1 (en) Optical tomographic imaging apparatus and imaging method therefor
US20120133888A1 (en) scanning ophthalmoscopes
US8979266B2 (en) Devices and methods for polarization-sensitive optical coherence tomography and adaptive optics
US9955866B2 (en) Optical tomographic imaging apparatus
US20150042950A1 (en) Ophthalmologic apparatus
EP3150109B1 (en) Fundus imaging device
JP2020517375A (en) Multi-scale scanning imaging system and multi-scale scanning imaging method
US20230277055A1 (en) Fundus observation apparatus
JP6701659B2 (en) Fundus imaging device
WO2019194283A1 (en) Ophthalmic device and concave reflecting member
JP2017086311A (en) Optical tomographic imaging apparatus and optical tomographic imaging method
JP2020515368A (en) Home Monitoring Optical Coherence Tomography System
JP2017064407A (en) Ocular fundus photographing apparatus
JP2014213156A (en) Optical tomographic imaging device
US9427149B2 (en) Optical tomographic imaging apparatus
JP6456444B2 (en) Fundus photographing device
JP2017000800A (en) Optical tomographic imaging device
JP2017127459A (en) Fundus imaging apparatus
WO2022215755A1 (en) Ophthalmic device, method for controlling ophthalmic device, and program
WO2023157494A1 (en) Ophthalmological device
JP2013248537A (en) Apparatus for optical tomography
JP2015039580A (en) Optical tomographic imaging device
JP7255646B2 (en) ophthalmic equipment
WO2021066047A1 (en) Ophthalmological device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP