WO2019194133A1 - 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体 - Google Patents

絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体 Download PDF

Info

Publication number
WO2019194133A1
WO2019194133A1 PCT/JP2019/014483 JP2019014483W WO2019194133A1 WO 2019194133 A1 WO2019194133 A1 WO 2019194133A1 JP 2019014483 W JP2019014483 W JP 2019014483W WO 2019194133 A1 WO2019194133 A1 WO 2019194133A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductive
insulating
functional group
conductive particles
Prior art date
Application number
PCT/JP2019/014483
Other languages
English (en)
French (fr)
Inventor
理 杉本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019528588A priority Critical patent/JP7312108B2/ja
Priority to CN201980023205.2A priority patent/CN111971757B/zh
Priority to KR1020207027726A priority patent/KR20200140807A/ko
Publication of WO2019194133A1 publication Critical patent/WO2019194133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive particles with insulating particles in which insulating particles are arranged on the surface of the conductive particles, and a method for producing conductive particles with insulating particles. Moreover, this invention relates to the electrically-conductive material and connection structure using the said electroconductive particle with an insulating particle.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • conductive particles in which the surface of the conductive layer is insulated may be used as the conductive particles.
  • the anisotropic conductive material is used for obtaining various connection structures.
  • Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), Examples include connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • conductive particles conductive particles with insulating particles in which insulating particles are arranged on the surface of the conductive particles may be used. Further, coated conductive particles in which an insulating layer is disposed on the surface of the conductive layer may be used.
  • Patent Document 1 listed below includes conductive particles having conductive particles having conductive particles having at least a conductive layer on the surface and insulating particles attached to the surface of the conductive particles. Sex particles are disclosed. In the conductive particles with insulating particles, the insulating particles cover the insulating particle body, and a layer that covers at least a part of the surface of the insulating particle body and is formed of a polymer compound; Have Patent Document 1 describes that the insulating particle body is an inorganic particle.
  • Patent Document 2 discloses insulating coated conductive particles having conductive particles whose surface has conductivity and insulating fine particles adhering to the surface of the conductive particles.
  • the surface of the core particle containing the polymer component derived from the crosslinkable monomer is coated with a coating layer containing the polymer component derived from the crosslinkable monomer.
  • the degree of cross-linking defined by the following formula (1) of the core particles is 7 or more.
  • the degree of crosslinking defined by the following formula (1) of the core particle is higher than the degree of crosslinking defined by the following formula (1) of the coating layer.
  • Crosslinking degree polymerizable functional group number of crosslinkable monomer ⁇ (number of moles of crosslinkable monomer / number of moles of all monomers) ⁇ 100 Formula (1)
  • the insulating particles are detached from the surface of the conductive particles when the conductive particles with insulating particles and the binder resin are mixed to produce an anisotropic conductive material.
  • inorganic particles may be used as the insulating particles.
  • the inorganic particles described in Patent Document 1 are hard and lack flexibility, it is difficult to greatly improve the adhesion to the surface of the conductive particles, and the insulating particles (inorganic particles) It may be very difficult to prevent desorption from the surface of the conductive particles.
  • the conductive particles may not be uniformly arranged between the upper and lower electrodes to be connected after application of the anisotropic conductive material. Furthermore, when there are aggregated conductive particles, short-circuiting between electrodes adjacent in the lateral direction that should not be connected is likely to occur.
  • the insulating particles may not be easily detached from the surface of the conductive particles during conductive connection.
  • insulating particles exist between the electrode of the connection target member and the conductive portion of the conductive particles, and it is difficult to sufficiently improve the conduction reliability between the upper and lower electrodes to be connected.
  • the conduction reliability between the upper and lower electrodes to be connected and the insulation reliability between the laterally adjacent electrodes that should not be connected may be low.
  • conductive particles having a conductive portion on at least a surface, and a plurality of insulating particles arranged on the surface of the conductive particles, wherein the insulating particles are insulating particles.
  • the polymerizable compound does not contain a cross-linking agent, or the cross-linking agent is 10 wt% or less in 100 wt% of the polymerizable compound. Including.
  • the first functional group and the second functional group have a property capable of reacting upon stimulation.
  • the stimulus is heating or light irradiation.
  • conductive particles having a conductive portion on at least a surface, and a plurality of insulating particles arranged on the surface of the conductive particles, wherein the insulating particles are insulating particles.
  • Conductive particles are provided.
  • the polymerizable compound does not contain a cross-linking agent, or the cross-linking agent is 10 wt% or less in 100 wt% of the polymerizable compound. Including.
  • the degree of cross-linking of the covering portion obtained by the following formula (1) is 10 or more.
  • A is the number of polymerizable functional groups of the crosslinking agent
  • B is the number of moles of the crosslinking agent
  • C is the compound having the first functional group and the compound having the second functional group.
  • D is the total number of moles of the polymerizable compound.
  • the insulating particle body is inorganic particles or organic-inorganic hybrid particles.
  • the first functional group is a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group.
  • the cyclic ether group is an epoxy group or an oxetanyl group.
  • the second functional group is an amide group, a hydroxyl group, a carboxyl group, an imide group, or an amino group.
  • the conductive particles have a particle diameter of 1 ⁇ m or more and 5 ⁇ m or less.
  • the method includes an arrangement step of arranging the insulating particles on the surface of the conductive particles using conductive particles having at least a conductive portion on the surface and a plurality of insulating particles.
  • the insulating particles have an insulating particle main body, and a covering portion that covers at least a part of the surface of the insulating particle main body and is formed of a polymerizable compound,
  • a method for producing conductive particles with insulating particles comprising a compound having one functional group and a compound having a second functional group different from the first functional group.
  • the polymerizable compound does not contain a crosslinking agent, or 10% by weight of the crosslinking agent in 100% by weight of the polymerizable compound. % Included.
  • positioning process is less than 50 degreeC
  • coated part is a said 1st functional group and a said 2nd functional. Conductive particles with insulating particles having a group are obtained.
  • a heating step of heating the conductive particles with insulating particles is provided after the arranging step, and the heating temperature of the heating step is It is 70 degreeC or more, the heating time of the said heating process is 1 hour or more, and the said coating
  • a conductive material including the conductive particles with insulating particles described above and a binder resin.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member A connection portion connecting the second connection target member, and the material of the connection portion is the above-described conductive particles with insulating particles, or the conductive particles with insulating particles and a binder resin.
  • a connection structure is provided in which the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles with insulating particles. .
  • the conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive part on the surface, and a plurality of insulating particles arranged on the surface of the conductive particles.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And have.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group.
  • the covering portion has the first functional group and the second functional group. Since the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and further, the insulation reliability can be improved. Sexually can be enhanced effectively.
  • the conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive part on the surface, and a plurality of insulating particles arranged on the surface of the conductive particles.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And have.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group.
  • the covering portion includes a structure in which the first functional group and the second functional group are reacted. Since the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and further, the insulation reliability can be improved. Sexually can be enhanced effectively.
  • the method for producing conductive particles with insulating particles according to the present invention uses the conductive particles having at least a conductive portion on the surface and a plurality of insulating particles, and the insulating particles are formed on the surface of the conductive particles.
  • positioning is provided.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And a covering portion.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group. including.
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using conductive particles with insulating particles according to the first embodiment of the present invention.
  • the conductive particles with insulating particles according to the present invention include conductive particles having a conductive portion on at least a surface thereof, and a plurality of insulating particles arranged on the surface of the conductive particles.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And have.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group.
  • the covering portion has the first functional group and the second functional group.
  • the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and further, the insulation reliability can be improved. Sexually can be enhanced effectively.
  • both of the particles before the first functional group and the second functional group react with each other and the particles after the first functional group and the second functional group react with each other. Is disclosed.
  • the covering portion has the first functional group and the second functional group, and the first functional group and the second functional group. Has not reacted.
  • the conductive particles with insulating particles are particles before the first functional group and the second functional group react with each other.
  • the degree of cross-linking of the covering portion is low and has flexibility, The adhesion between the insulating particles and the surface of the conductive particles can be improved.
  • the conductive particles with insulating particles according to the present invention include conductive particles having at least a conductive part on the surface, and a plurality of insulating particles arranged on the surface of the conductive particles.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And have.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group.
  • the covering portion includes a structure in which the first functional group and the second functional group are reacted.
  • the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively increased, and further, the insulation reliability can be improved. Sexually can be enhanced effectively.
  • the first functional group and the second functional group are reacted in the covering portion.
  • the conductive particles with insulating particles are particles after the first functional group and the second functional group have reacted.
  • the conductive particles with insulating particles are preferably obtained by reacting the first functional group with the second functional group before blending in the binder resin. In the conductive particles with insulating particles before being blended in the binder resin, it is preferable that the first functional group and the second functional group are reacted.
  • the degree of cross-linking of the covering portion can be increased, and the resistance of the insulating particles is improved. Solvent property can be improved.
  • the insulating particles are detached from the surface of the conductive particles when the conductive particles with insulating particles and the binder resin are mixed to produce an anisotropic conductive material.
  • inorganic particles may be used as the insulating particles.
  • inorganic particles are hard and lack flexibility, it is difficult to sufficiently enhance the adhesion to the surface of the conductive particles, and the insulating particles (inorganic particles) are detached from the surface of the conductive particles. It may be difficult to prevent.
  • at the time of conductive connection using an anisotropic conductive material it may be difficult to sufficiently increase the insulation reliability between laterally adjacent electrodes that should not be connected.
  • the present inventors use both conductive particles with specific insulating particles to increase the insulating properties and to improve the adhesion to the surface of the conductive particles. It was found that both can be achieved.
  • the present invention since the above-described configuration is provided, it is possible to prevent the insulating particles from being detached from the surface of the conductive particles. As a result, it is possible to effectively increase the insulation reliability between adjacent lateral electrodes that should not be connected.
  • the degree of cross-linking of the covering portion in the insulating particles can be increased, the conductive particles with insulating particles can be prevented from sticking or aggregating, and the insulating particles in the anisotropic conductive material can be prevented.
  • the dispersibility of the attached conductive particles can be increased.
  • the insulating particles are easily detached from the surface of the conductive particles during conductive connection. As a result, the conduction reliability between the upper and lower electrodes to be connected can be effectively increased.
  • the coefficient of variation (CV value) of the particle diameter of the conductive particles with insulating particles is preferably 10% or less, more preferably 5% or less.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of conductive particles with insulating particles Dn: Average value of particle diameter of conductive particles with insulating particles
  • the shape of the conductive particles with insulating particles is not particularly limited.
  • the shape of the conductive particles with insulating particles may be spherical, non-spherical, flat or the like.
  • the conductive particles with insulating particles are dispersed in a binder resin and are preferably used for obtaining a conductive material.
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • the 1 includes a conductive particle 2 and a plurality of insulating particles 3 arranged on the surface of the conductive particle 2.
  • the insulating particles 3 are made of an insulating material.
  • the conductive particles 2 have base material particles 11 and conductive portions 12 arranged on the surface of the base material particles 11.
  • the conductive portion 12 is a conductive layer.
  • the conductive part 12 covers the surface of the base particle 11.
  • the conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive portion 12.
  • the conductive particle 2 has a conductive portion 12 on the surface.
  • the conductive part may cover the entire surface of the base particle, or the conductive part may cover a part of the surface of the base particle.
  • the insulating particles are preferably disposed on the surface of the conductive portion.
  • the insulating particles 3 have an insulating particle body 4 and a covering portion 5 that covers at least a part of the surface of the insulating particle body 4.
  • the covering portion 5 is formed of a polymerizable compound.
  • the covering portion 5 covers the entire surface of the insulating particle body 4. Therefore, the covering portion 5 is disposed between the conductive particles 2 and the insulating particle main body 4.
  • the covering portion only needs to cover at least a part of the surface of the insulating particle main body, and may not cover the entire surface of the insulating particle main body. It is preferable that the said coating
  • FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • conductive particles 22 includes conductive particles 22 and a plurality of insulating particles 3 arranged on the surface of the conductive particles 22.
  • the conductive particle 22 includes the base particle 11 and a conductive portion 31 disposed on the surface of the base particle 11.
  • the conductive portion 31 is a conductive layer.
  • the conductive particles 22 have a plurality of core substances 32 on the surface of the substrate particles 11.
  • the conductive portion 31 covers the base particle 11 and the core substance 32.
  • the conductive particles 22 have a plurality of protrusions 33 on the surface.
  • the surface of the conductive portion 31 is raised by the core substance 32, and a plurality of protrusions 33 are formed.
  • the conductive part may cover the entire surface of the base particle, or the conductive part may cover a part of the surface of the base particle.
  • the insulating particles are preferably disposed on the surface of the conductive portion.
  • FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • 3 includes a conductive particle 42 and a plurality of insulating particles 3 arranged on the surface of the conductive particle 42.
  • the conductive particle 42 includes the base particle 11 and a conductive part 51 disposed on the surface of the base particle 11.
  • the conductive portion 51 is a conductive layer.
  • the conductive particles 42 do not have a core substance like the conductive particles 22.
  • the conductive portion 51 has a first portion and a second portion that is thicker than the first portion.
  • the conductive particles 42 have a plurality of protrusions 52 on the surface. A portion excluding the plurality of protrusions 52 is the first portion of the conductive portion 51.
  • the plurality of protrusions 52 are the second portions where the conductive portion 51 is thick.
  • the conductive part may cover the entire surface of the base particle, or the conductive part may cover a part of the surface of the base particle.
  • the insulating particles are preferably disposed on the surface of the conductive portion.
  • the method for producing conductive particles with insulating particles according to the present invention uses the conductive particles having at least a conductive portion on the surface and a plurality of insulating particles, and the insulating particles are formed on the surface of the conductive particles.
  • positioning is provided.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And a covering portion.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group. including.
  • the obtained conductive particles with insulating particles are preferably particles before the first functional group and the second functional group react with each other.
  • the temperature of the arranging step is preferably less than 50 ° C., and the temperature of the arranging step is more preferably 40 ° C. or less.
  • the covering portion includes the first functional group and the second functional group. It is preferable to have.
  • the first functional group and the second functional group are not reacted in the conductive particles with insulating particles after the placing step. It is preferable.
  • the first functional group and the second functional group are not reacted in the conductive particles with insulating particles after the placing step. Therefore, the degree of cross-linking of the covering portion is low and has flexibility, and the adhesion between the insulating particles and the surface of the conductive particles can be enhanced.
  • the heating temperature in the heating step is preferably 70 ° C. or higher, and more preferably 90 ° C. or higher.
  • the heating time in the heating step is preferably 1 hour or longer, and more preferably 2 hours or longer in the heating step.
  • the covering portion includes the first functional group and the second functional group.
  • the first functional group and the second functional group are reacted. It is preferable.
  • the conductive particles with insulating particles after the heating step are preferably particles after the first functional group and the second functional group have reacted.
  • the first functional group and the second functional group are reacted. Therefore, the degree of crosslinking of the covering portion can be increased, and the solvent resistance of the insulating particles can be increased.
  • the heating step is provided after the arranging step, the insulation and solvent resistance are improved, and the conductive particles are adhered to the surface. Both of these can be made compatible with enhancing the performance. As a result, when the electrodes are electrically connected using the conductive particles with insulating particles, the insulation reliability between the adjacent lateral electrodes that should not be connected can be more effectively increased. .
  • the degree of cross-linking of the covering portion of the insulating particles can be increased, so that adhesion and aggregation of the conductive particles with insulating particles are prevented. And the dispersibility of the conductive particles with insulating particles in the anisotropic conductive material can be improved.
  • the above configuration is provided, so that the insulating particles are easily detached from the surface of the conductive particles during conductive connection. As a result, the conduction reliability between the upper and lower electrodes to be connected can be further improved effectively.
  • the said electroconductive particle has a base material particle and the electroconductive part arrange
  • the conductive portion may have a single layer structure or a multilayer structure of two or more layers.
  • the particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably. Is 5 ⁇ m or less.
  • the particle diameter of the conductive particles is not less than the lower limit and not more than the upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, And it becomes difficult to form the aggregated conductive particles when forming the conductive portion. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion is difficult to peel from the surface of the base particle.
  • the particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle diameter of the conductive particles may be determined by, for example, observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value of the particle diameter of each conductive particle, or measuring a laser diffraction particle size distribution. It is calculated by doing. In observation with an electron microscope or an optical microscope, the particle diameter of each conductive particle is determined as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 conductive particles is almost equal to the average particle diameter at a sphere equivalent diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each conductive particle is obtained as a particle diameter in a sphere equivalent diameter.
  • the particle diameter of the conductive particles is preferably calculated by laser diffraction particle size distribution measurement.
  • the coefficient of variation (CV value) of the particle diameter of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the variation coefficient of the particle diameter of the conductive particles is not more than the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the conductive particles may have a spherical shape, a non-spherical shape, or a flat shape.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particle may be a core-shell particle including a core and a shell disposed on the surface of the core.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the material for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamideimide, polyetheretherketone, poly Polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and the like.
  • polyolefin resins such as polyethylene, polypropy
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylate compounds such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meta Oxyl
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, and 1,4-butanediol di (meth) acrylate; triallyl (iso) Silane-containing
  • (meth) acrylate indicates acrylate and methacrylate.
  • (meth) acryl refers to acrylic and methacrylic.
  • (meth) acryloyl refers to acryloyl and methacryloyl.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • examples of inorganic substances for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • the material for the organic core includes the material for the resin particles described above.
  • the material for the inorganic shell examples include the inorganic materials listed above as the material for the base material particles.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the substrate particles are metal particles
  • examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle diameter of the substrate particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 2 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the particle diameter of the substrate particles is not less than the above lower limit and not more than the above upper limit, even when the distance between the electrodes is small and the thickness of the conductive layer is increased, small conductive particles can be obtained. Further, when forming the conductive portion on the surface of the base particle, it becomes difficult to aggregate and it becomes difficult to form the aggregated conductive particles.
  • the particle diameter of the substrate particles is particularly preferably 2 ⁇ m or more and 50 ⁇ m or less.
  • the particle diameter of the substrate particles is in the range of 2 ⁇ m or more and 50 ⁇ m or less, it is difficult to aggregate when forming the conductive portion on the surface of the substrate particles, and aggregated conductive particles are difficult to be formed.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the particle diameter of the base material particles indicates a number average particle diameter.
  • the particle diameter of the substrate particles is determined using a particle size distribution measuring device or the like.
  • the particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating an average value. In observation with an electron microscope or an optical microscope, the particle diameter of the base particle per particle is obtained as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 base particles is substantially equal to the average particle diameter at a sphere equivalent diameter. In the particle size distribution measuring apparatus, the particle diameter of the base material particle per particle is obtained as a particle diameter in a sphere equivalent diameter.
  • the particle diameter of the substrate particles is preferably calculated by a particle size distribution measuring device. In the case of measuring the particle diameter of the substrate particles in the conductive particles, for example, it can be measured as follows.
  • An embedded resin for inspecting conductive particles is prepared by adding to and dispersing in “Technobit 4000” manufactured by Kulzer so that the content of the conductive particles is 30% by weight.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the image magnification is set to 25000 times, 50 conductive particles are randomly selected, and the base particles of each conductive particle are observed. To do.
  • the particle diameter of the base particle in each conductive particle is measured, and arithmetically averaged to obtain the particle diameter of the base particle.
  • the conductive particles have at least a conductive portion on the surface.
  • the conductive part preferably contains a metal.
  • the metal which comprises the said electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together. From the viewpoint of further reducing the connection resistance between the electrodes, the metal is preferably an alloy containing tin, nickel, palladium, copper, or gold, and more preferably nickel or palladium.
  • the conductive portion and the outer surface portion of the conductive portion contain nickel.
  • the content of nickel in 100% by weight of the conductive part containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. Is 90% by weight or more.
  • the content of nickel in 100% by weight of the conductive part containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
  • hydroxyl groups are present on the surface of the conductive part due to oxidation.
  • a hydroxyl group exists on the surface of a conductive portion formed of nickel by oxidation.
  • Insulating particles can be disposed on the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
  • the conductive part may be formed of one layer.
  • the conductive part may be formed of a plurality of layers. That is, the conductive part may have a laminated structure of two or more layers.
  • the metal constituting the outermost layer is preferably gold, nickel, palladium, copper, or an alloy containing tin and silver, and is gold. More preferred.
  • the connection resistance between electrodes becomes still lower. Further, when the metal constituting the outermost layer is gold, the corrosion resistance is further enhanced.
  • the method for forming the conductive portion on the surface of the substrate particle is not particularly limited.
  • Examples of the method for forming the conductive part include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or Examples thereof include a method of coating the surface of the substrate particles with a paste containing a metal powder and a binder.
  • the method for forming the conductive part is preferably a method by electroless plating, electroplating or physical collision.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
  • the thickness of the conductive part is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive part is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently bonded at the time of connection between the electrodes. Can be deformed.
  • the thickness of the conductive part of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, the conductive portion of the outermost layer becomes uniform, corrosion resistance is sufficiently high, and connection resistance between the electrodes is sufficiently low. can do.
  • the thickness of the conductive part can be measured, for example, by observing a cross section of the conductive particles using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles preferably have a plurality of protrusions on the outer surface of the conductive part.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles.
  • the oxide film is effectively applied by the protrusions by placing conductive particles with insulating particles between the electrodes and pressing them. Can be eliminated. For this reason, an electrode and an electroconductive part contact more reliably and the connection resistance between electrodes becomes still lower.
  • the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction
  • a conductive part is formed by electroless plating, and a conductive part is formed by electroless plating on the surface of the base particle. Thereafter, a method of attaching a core substance and further forming a conductive portion by electroless plating can be used.
  • a first conductive part is formed on the surface of the base particle, and then a core substance is disposed on the first conductive part, and then the second conductive part.
  • the conductive material is formed on the base particle by electroless plating without using the core material, and then plating is deposited on the surface of the conductive portion in the form of a protrusion.
  • a method of forming a conductive portion may be used.
  • the core substance is added to the dispersion of the base particle, and the core substance is accumulated on the surface of the base particle by van der Waals force.
  • Examples thereof include a method of adhering, and a method of adding a core substance to a container containing base particles and causing the core substance to adhere to the surface of the base particles by a mechanical action such as rotation of the container.
  • the method of causing the core material to adhere to the surface of the base material particles is a method of accumulating and attaching the core material to the surface of the base material particles in the dispersion. preferable.
  • the materials constituting the core material include conductive materials and non-conductive materials.
  • the conductive material include conductive non-metals such as metals, metal oxides, and graphite, and conductive polymers.
  • the conductive polymer include polyacetylene.
  • the nonconductive material include silica, alumina, and zirconia. From the viewpoint of further improving the conduction reliability between the electrodes, the core substance is preferably a metal.
  • the metal is not particularly limited.
  • the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide.
  • the metal is preferably nickel, copper, silver or gold.
  • the metal may be the same as or different from the metal constituting the conductive part (conductive layer).
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be effectively reduced.
  • the average particle diameter of the core substance is preferably a number average particle diameter.
  • the average particle diameter of the core substance is, for example, by observing 50 arbitrary core substances with an electron microscope or an optical microscope, calculating the average value of the particle diameter of each core substance, or performing laser diffraction particle size distribution measurement. Is required. In observation with an electron microscope or an optical microscope, the particle diameter of each core substance is determined as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 core substances is substantially equal to the average particle diameter at a sphere equivalent diameter. In the laser diffraction particle size distribution measurement, the particle diameter of the core material per particle is obtained as a particle diameter in a sphere equivalent diameter.
  • the average particle diameter of the core substance is preferably calculated by laser diffraction particle size distribution measurement.
  • the conductive particles with insulating particles according to the present invention include a plurality of insulating particles arranged on the surface of the conductive particles.
  • a short circuit between adjacent electrodes can be prevented.
  • insulating particles exist between the plurality of electrodes, preventing short-circuiting between adjacent electrodes in the horizontal direction instead of between the upper and lower electrodes. it can.
  • the insulating particle between the electroconductive part of an electroconductive particle and an electrode can be easily excluded by pressurizing the electroconductive particle with an insulating particle with two electrodes in the case of the connection between electrodes.
  • the insulating particles between the conductive part of the conductive particle and the electrode can be more easily eliminated.
  • the insulating particles cover the insulating particle main body and at least a part of the surface of the insulating particle main body and are formed of a polymerizable compound. And have.
  • the insulating particle body is preferably inorganic particles or organic-inorganic hybrid particles, and more preferably inorganic particles.
  • the inorganic particles are preferably the above-described inorganic particles.
  • Examples of the material for the inorganic particles include the inorganic materials mentioned above as the material for the base material particles.
  • the material of the inorganic particles is preferably silica.
  • the organic-inorganic hybrid particles are preferably the organic-inorganic hybrid particles described above.
  • Examples of the material for the organic core include the material for the resin particles described above.
  • Examples of the material for the inorganic shell include the inorganic materials mentioned as the material for the base material particles.
  • the material of the inorganic shell is preferably silica.
  • the covering portion is formed of a polymerizable compound.
  • the covering portion is preferably a polymer of the polymerizable compound. It is preferable that the said coating
  • the polymerizable compound is not particularly limited. Examples of the polymerizable compound include the resin particle materials described above.
  • the polymerizable compound includes a compound having a first functional group and a compound having a second functional group different from the first functional group.
  • the first functional group and the second functional group are preferably reactive functional groups.
  • the compound having the first functional group and the compound having the second functional group are preferably polymerizable compounds.
  • the polymerizable compound preferably includes a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group.
  • the polymerizable component preferably includes a polymerizable compound having a first reactive functional group and a polymerizable compound having a second reactive functional group different from the first reactive functional group.
  • the polymerizable compound may contain a polymerizable compound having a homopolymer having a glass transition temperature of less than 100 ° C.
  • the polymerizable component may contain a polymerizable compound whose homopolymer has a glass transition temperature of less than 100 ° C.
  • the polymerizable compound may contain 10% by weight or more of a polymerizable compound having a glass transition temperature of less than 100 ° C. in a homopolymer in 100% by weight of the polymerizable compound.
  • the polymerizable component may contain 10% by weight or more of a polymerizable compound having a glass transition temperature of less than 100 ° C. in a homopolymer in 100% by weight of the polymerizable component.
  • the homopolymer in the polymerizable compound having a glass transition temperature of less than 100 ° C. means a homopolymer obtained by homopolymerizing the polymerizable compound.
  • the polymerizable compound (the polymerizable component) includes a polymerizable compound having a glass transition temperature of a homopolymer of less than 100 ° C.
  • the covering portion can be made more flexible, and the insulating particles and the conductive material can be made flexible. Adhesion with the surface of the particles can be further enhanced.
  • the first functional group is preferably a cyclic ether group, an isocyanate group, an aldehyde group or a nitrile group, more preferably a cyclic ether group, an isocyanate group or a nitrile group, and a cyclic ether group or a nitrile group. More preferably.
  • the cyclic ether group is preferably an epoxy group or an oxetanyl group, and more preferably an epoxy group.
  • Examples of the compound having an epoxy group include glycidyl (meth) acrylate, allyl glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth) acrylate.
  • the compound which has the said epoxy group only 1 type may be used and 2 or more types may be used together.
  • the compound having an epoxy group is preferably glycidyl (meth) acrylate or 4-hydroxybutyl (meth) acrylate glycidyl ether.
  • Examples of the compound having the cyclic ether group include (3-ethyloxetane-3-yl) methyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and cyclic trimethylolpropane formal (meth). An acrylate etc. are mentioned.
  • the compound which has the said cyclic ether group except the said epoxy group, only 1 type may be used and 2 or more types may be used together.
  • the compound having the cyclic ether group (excluding the epoxy group) is preferably (3-ethyloxetane-3-yl) methyl (meth) acrylate.
  • Examples of the compound having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (0- [1′-methylpropylideneamino] carboxyamino) ethyl (meth) acrylate, 2-[(3,5 -Dimethylpyrazolyl) carbonylamino] ethyl (meth) acrylate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, 2-propylene isocyanate, 1-phenyl-2-propylene isocyanate, 4,4-dimethylpentene- 5-isocyanate, 2,4,4-trimethylpentene-5-isocyanate, 3,3-dimethylpentene-5-isocyanate, 2-allyl-2-isocyanatomethyl-malonic acid diethyl ester, 1-phenyl-3-methyl- 3-Butene isocyania Over DOO, 4-vinyl benzene is
  • the compound having an isocyanate group is preferably 2- (meth) acryloyloxyethyl isocyanate or 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate.
  • Examples of the compound having an aldehyde group include acrolein.
  • Examples of the compound having a nitrile group include (meth) acrylonitrile.
  • the second functional group is different from the first functional group.
  • the second functional group is preferably an amide group, a hydroxyl group, a carboxyl group, an imide group or an amino group, more preferably an amide group, a carboxyl group or an amino group, and an amide group or a carboxyl group. Is more preferable.
  • the second functional group is a preferable functional group described above, when the electrodes are electrically connected using the conductive particles with insulating particles, the conduction reliability and the insulation reliability are further improved. Can be effectively increased.
  • Examples of the compound having an amide group include (meth) acrylamide, N-substituted (meth) acrylamide, and N, N-substituted (meth) acrylamide.
  • the N-substituted (meth) acrylamide is not particularly limited.
  • Examples of the N-substituted (meth) acrylamide include N-isopropyl (meth) acrylamide, N-methylol (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, and N-methoxymethyl (meth) acrylamide.
  • N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, diacetone (Meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, etc. are mentioned.
  • the N, N-substituted (meth) acrylamide is not particularly limited.
  • N, N-substituted (meth) acrylamide examples include N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and (meth) acryloylmorpholine.
  • the compound which has the said amide group only 1 type may be used and 2 or more types may be used together.
  • the compound having an amide group is preferably (meth) acrylamide, N-methoxymethyl (meth) acrylamide, or N, N-dimethyl (meth) acrylamide, and more preferably (meth) acrylamide.
  • Examples of the compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl acrylate , Vinyl alcohol, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, pentaerythritol tri (meth) Acrylate, pentaerythritol di (meth) acrylate monostearate, isocyanuric acid ethylene oxide modified di (meth) acrylate, 2-hydroxy
  • the compound having a hydroxyl group is preferably 2-hydroxyethyl (meth) acrylate or 2-hydroxybutyl (meth) acrylate.
  • Examples of the compound having a carboxyl group include unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid and cinnamic acid, unsaturated dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, fumaric acid and citraconic acid, And salts and anhydrides thereof.
  • unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid and cinnamic acid
  • unsaturated dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, fumaric acid and citraconic acid
  • salts and anhydrides thereof As for the compound which has the said carboxyl group, only 1 type may be used and 2 or more types may be used together.
  • the compound having a carboxyl group is preferably (meth) acrylic acid.
  • Examples of the compound having an imide group include imide (meth) acrylate and maleimide.
  • imide (meth) acrylate and maleimide As for the compound which has the said imide group, only 1 type may be used and 2 or more types may be used together.
  • the compound having an imide group is preferably imide (meth) acrylate.
  • Examples of the compound having an amino group include N, N-dimethylaminoethyl (meth) acrylate and N, N-dimethylaminopropyl methacrylate.
  • the compound which has the said amino group only 1 type may be used and 2 or more types may be used together.
  • the compound having an amino group is preferably N, N-dimethylaminoethyl (meth) acrylate.
  • the polymerizable compound does not contain a crosslinking agent, or contains 100% by weight or less of the crosslinking compound in 100% by weight of the polymerizable compound.
  • the polymerizable component does not contain a crosslinking agent, or contains 100% by weight or less of the crosslinking agent in 100% by weight of the polymerizable component.
  • the polymerizable compound is the polymerizable compound 100.
  • the crosslinking agent is contained in 7% by weight or less in weight%, and it is more preferable that the crosslinking agent is contained in 6% by weight or less in 100% by weight of the polymerizable compound.
  • the polymerizable component is the polymerizable component 100. It is preferable that the crosslinking agent is contained in 7% by weight or less in weight%, and it is more preferable that the crosslinking agent is contained in 6% by weight or less in 100% by weight of the polymerizable component.
  • the polymerizable compound is the polymerizable compound 100. It is preferable that the crosslinking agent is contained in 5% by weight or less in weight%, and it is more preferable that the crosslinking agent is contained in less than 5% by weight in 100% by weight of the polymerizable compound. In the case where the electrodes are electrically connected using the conductive particles with insulating particles, from the viewpoint of further effectively increasing the conduction reliability and the insulation reliability, the polymerizable component is the polymerizable component 100.
  • the crosslinking agent is contained in 5% by weight or less in a weight percent, and it is further preferable that the crosslinking agent is contained in less than 5 weight percent in 100% by weight of the polymerizable component.
  • the polymerizable compound does not contain a crosslinking agent from the viewpoint of more effectively increasing the conduction reliability and the insulation reliability. It is particularly preferred.
  • the polymerizable component does not contain a crosslinking agent from the viewpoint of more effectively increasing the conduction reliability and the insulation reliability. It is particularly preferred.
  • the degree of cross-linking of the covering portion obtained by the following formula (1) is preferably 10 or more, and more preferably 14 or more.
  • the degree of cross-linking of the covering portion is equal to or higher than the lower limit, when the electrodes are electrically connected using the conductive particles with insulating particles, the conduction reliability and the insulation reliability are further effectively improved. be able to.
  • A is the number of polymerizable functional groups of the crosslinking agent
  • B is the number of moles of the crosslinking agent
  • C is the compound having the first functional group and the compound having the second functional group.
  • D is the total number of moles of the polymerizable compound.
  • the cross-linking agent is not particularly limited.
  • the crosslinking agent is preferably a polymerizable compound having two or more ethylenically unsaturated groups in one molecule.
  • Examples of the cross-linking agent include cross-linkable monomers that are the materials of the resin particles described above. From the viewpoint of easily controlling the reaction of the polymerizable compound, the crosslinking agent is preferably ethylene glycol di (meth) acrylate or tetramethylolmethane tetra (meth) acrylate.
  • the covering portion includes the first functional group and the second functional group (first configuration), or the covering portion. Includes a structure (second structure) that includes a structure in which the first functional group and the second functional group are reacted.
  • the covering portion has the first functional group and the second functional group, and 1 functional group and the second functional group are not reacted.
  • the first functional group and the second functional group are not reacted with each other. Is low and has flexibility, and can improve the adhesion between the insulating particles and the surface of the conductive particles.
  • the first functional group and the second functional group have a property capable of reacting by stimulation.
  • the stimulation is preferably heating or light irradiation, and more preferably heating.
  • the property which can react means the property which can form a chemical bond.
  • the first functional group and the second functional group form a chemical bond by stimulation (heating or light irradiation).
  • the covering portion includes a structure in which the first functional group and the second functional group are reacted.
  • the first functional group and the second functional group are reacted.
  • the first functional group and the second functional group are reacted with each other.
  • the solvent resistance of the insulating particles can be improved.
  • the conductive particles with insulating particles having the second configuration can be obtained by heating or irradiating the conductive particles with insulating particles having the first configuration. It is preferred to obtain particles.
  • the conductive particles with insulating particles having the second configuration are more preferably obtained by heating the conductive particles with insulating particles having the first configuration.
  • Examples of the method for disposing the insulating particles on the surface of the conductive part include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. Since the insulating particles are difficult to be detached, a method in which the insulating particles are arranged on the surface of the conductive portion via a chemical bond is preferable.
  • the conductive particles with insulating particles according to the present invention it is preferable that a hydroxyl group or the like existing on the surface of the conductive part and the compound having the first functional group are chemically bonded, and the surface of the conductive part It is preferable that the hydroxyl group and the like existing in the compound and the compound having the second functional group are chemically bonded.
  • the hydroxyl group and the like present on the surface of the conductive part may be chemically bonded to the first functional group, and the hydroxyl group present on the surface of the conductive part. And the first functional group may not be chemically bonded.
  • a hydroxyl group or the like present on the surface of the conductive part may be chemically bonded to the second functional group, and a hydroxyl group present on the surface of the conductive part.
  • the second functional group may not be chemically bonded.
  • the outer surface of the conductive part and the outer surface of the insulating particle may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive part and the outer surface of the insulating particle may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
  • the particle diameter of the insulating particles can be appropriately selected depending on the particle diameter of the conductive particles with insulating particles and the use of the conductive particles with insulating particles.
  • the particle diameter of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 200 nm or more, particularly preferably 300 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, and further preferably 1500 nm or less. Especially preferably, it is 1000 nm or less.
  • the particle diameter of the insulating particles is equal to or greater than the lower limit, when the conductive particles with insulating particles are dispersed in a binder resin, the conductive portions in the plurality of conductive particles with insulating particles are It becomes difficult to touch.
  • the particle diameter of the insulating particles is not more than the above upper limit, it is not necessary to increase the pressure too much in order to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes. Also, there is no need to heat to high temperature.
  • the particle diameter of the insulating particles indicates a number average particle diameter.
  • the particle diameter of the insulating particles is determined using a particle size distribution measuring device or the like.
  • the particle diameter of the insulating particles is preferably obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope and calculating an average value. In observation with an electron microscope or an optical microscope, the particle diameter of each insulating particle is obtained as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 insulating particles is substantially equal to the average particle diameter at a sphere equivalent diameter.
  • the particle diameter of the insulating particles per particle is obtained as the particle diameter in a sphere equivalent diameter.
  • the particle diameter of the insulating particles is preferably calculated by a particle size distribution measuring device. When measuring the particle diameter of the insulating particles in the conductive particles with insulating particles, for example, the measurement can be performed as follows.
  • the conductive particles with insulating particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced.
  • an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) to pass through the vicinity of the center of the dispersed conductive particles with insulating particles in the embedded resin for inspection, the cross section of the conductive particles with insulating particles is cut. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles with insulating particles were randomly selected, and each conductive particle with insulating particles was selected. Observe the insulating particles. The particle diameter of the insulating particles in each conductive particle with insulating particles is measured, and arithmetically averaged to obtain the particle diameter of the insulating particles.
  • the conductive particles with insulating particles according to the present invention may be used in combination of two or more insulating particles having different particle diameters.
  • the insulating particles having a small particle diameter enter the gaps covered with the insulating particles having a large particle diameter, and the above coverage is more effectively achieved. Can be increased.
  • the insulating particles include a first insulating particle having a particle diameter of 0.1 ⁇ m or more and less than 0.25 ⁇ m, and a particle diameter of 0.25 ⁇ m. It is preferable to include the second insulating particles of 0.8 ⁇ m or less. It is preferable that the particle size distribution of the first insulating particles does not overlap with the particle size distribution of the second insulating particles.
  • the average particle diameter of the first insulating particles is preferably different from the average particle diameter of the second insulating particles.
  • the coefficient of variation (CV value) of the particle diameter of the insulating particles is preferably 20% or less.
  • the coefficient of variation of the particle diameter of the insulating particles is not more than the above upper limit, the thickness of the insulating particles of the obtained conductive particles with insulating particles becomes even more uniform, and the pressure is more uniformly applied during conductive connection. It can be applied more easily, and the connection resistance between the electrodes can be further reduced.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of insulating particles Dn: Average value of particle diameter of insulating particles
  • the shape of the insulating particles is not particularly limited.
  • the shape of the insulating particles may be spherical, non-spherical, flat or the like.
  • the conductive material according to the present invention includes the above-described conductive particles with insulating particles and a binder resin.
  • the conductive particles with insulating particles are preferably used by being dispersed in a binder resin, and are preferably used as a conductive material by being dispersed in a binder resin.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a conductive material for circuit connection. Since the conductive particles with insulating particles described above are used in the conductive material, the conductive particles with insulating particles before the conductive connection such as dispersing the conductive particles with insulating particles in a binder resin are used. Insulating particles can be prevented from being unintentionally detached from the surface, and the insulation reliability between the electrodes can be further enhanced.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component.
  • the curable component include a photocurable component and a thermosetting component. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder resin examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • vinyl resins examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, and heat stability.
  • Various additives such as an agent, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles with insulating particles in the binder resin may be any conventionally known dispersion method and is not particularly limited.
  • Examples of the method for dispersing the conductive particles with insulating particles in the binder resin include the following methods. A method in which the conductive particles with insulating particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles with insulating particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, and then the conductive particles with insulating particles are added and kneaded and dispersed by a planetary mixer or the like.
  • the viscosity ( ⁇ 25) at 25 ° C. of the conductive material is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less.
  • the viscosity of the conductive material at 25 ° C. is not less than the above lower limit and not more than the above upper limit, the insulation reliability between the electrodes can be further effectively increased, and the conduction reliability between the electrodes can be further effectively improved. Can be increased.
  • the said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.
  • the viscosity ( ⁇ 25) can be measured under conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further enhanced. Can do.
  • the content of the conductive particles with insulating particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight or less. It is preferably 60% by weight or less, more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, conduction reliability and insulation reliability between the electrodes can be further enhanced.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target members.
  • the material of the connection portion is the above-described conductive particles with insulating particles or a conductive material including the conductive particles with insulating particles and a binder resin.
  • the first electrode and the second electrode are electrically connected by the conductive portion in the conductive particles with insulating particles.
  • connection structure includes a step of arranging the conductive particles with insulating particles or the conductive material between the first connection target member and the second connection target member, and thermocompression bonding. It can be obtained through a conductive connection step. It is preferable that the insulating particles are detached from the conductive particles with insulating particles during the thermocompression bonding.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using conductive particles with insulating particles according to the first embodiment of the present invention.
  • a connection structure 81 shown in FIG. 4 includes a first connection target member 82, a second connection target member 83, and a connection portion that connects the first connection target member 82 and the second connection target member 83. 84.
  • the connecting portion 84 is formed of a conductive material including the conductive particles 1 with insulating particles.
  • the connecting portion 84 is preferably formed by curing a conductive material including a plurality of conductive particles 1 with insulating particles.
  • the conductive particles 1 with insulating particles are schematically shown for convenience of illustration. Instead of the conductive particles 1 with insulating particles, the conductive particles 21 or 41 with insulating particles may be used.
  • the first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface).
  • the second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface).
  • the 1st electrode 82a and the 2nd electrode 83a are electrically connected by the electroconductive particle 2 in the electroconductive particle 1 with one or some insulating particle. Therefore, the 1st connection object member 82 and the 2nd connection object member 83 are electrically connected by the electroconductive part in the electroconductive particle 1 with an insulating particle.
  • the manufacturing method of the connection structure is not particularly limited.
  • the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
  • the pressure for the thermocompression bonding is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, more preferably 70 MPa or less.
  • the heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the insulating particles can be easily detached from the surface of the conductive particles with insulating particles during conductive connection, and the conduction reliability between the electrodes can be improved. It can be further increased.
  • the insulating particles existing between the conductive particles, the first electrode, and the second electrode can be eliminated.
  • the insulating particles existing between the conductive particles and the first electrode and the second electrode are electrically conductive with the insulating particles. Easily desorbs from the surface of the particles.
  • some of the insulating particles may be detached from the surface of the conductive particles with insulating particles, and the surface of the conductive part may be partially exposed. The portion where the surface of the conductive portion is exposed contacts the first electrode and the second electrode, thereby electrically connecting the first electrode and the second electrode via the conductive particles. be able to.
  • the first connection target member and the second connection target member are not particularly limited.
  • electronic components such as a semiconductor chip, a semiconductor package, a LED chip, a LED package, a capacitor
  • the first connection target member and the second connection target member are preferably electronic components.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Production of conductive particles Resin particles formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene having a particle diameter of 3 ⁇ m were prepared. After dispersing 10 parts by weight of base material particles in 100 parts by weight of an alkaline solution containing 5% by weight of palladium catalyst solution using an ultrasonic disperser, the base material particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the base particles. The substrate particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a dispersion. Next, 1 g of nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing base particles to which the core substance was adhered.
  • nickel particle slurry average particle size 100 nm
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness 0.15 ⁇ m) on the surface of the base particles, and have a conductive part on the surface. Conductive particles were obtained.
  • Silica particles (particle diameter 200 nm) were produced by a sol-gel method. Using the three-one motor, 10 parts by weight of the produced silica particles were dispersed in 400 ml of a liquid in which water and ethanol were mixed at a weight ratio of 1: 9 to obtain a first dispersion. Next, 0.1 part by weight of vinyltriethoxysilane was dispersed in 100 ml of a liquid in which water and ethanol were mixed at a weight ratio of 1: 9 to obtain a second dispersion. Thereafter, the second dispersion was dropped into the first dispersion over 10 minutes to obtain a mixed solution. After the second dispersion was added dropwise, the resulting mixture was stirred for 30 minutes. Then, the mixed liquid was filtered and dried at 100 ° C. for 2 hours to obtain an insulating particle body having a vinyl group on the surface.
  • the polymerizable compound includes 18 parts by weight (180 mmol) of methyl methacrylate, 1.4 parts by weight (10 mmol) of glycidyl methacrylate which is a compound having the first functional group, and methacrylic compound having the second functional group. Contains 0.9 parts by weight (10 mmol) of amide.
  • the mixture After completion of the reaction, the mixture is cooled, solid-liquid separation is performed twice with a centrifugal separator, excess polymerizable compound is removed by washing, and the entire surface of the insulating particle body is covered by the coating portion formed by the polymerizable compound. Covered insulating particles (particle size 300 nm) were obtained. The covering portion had an amide group derived from methacrylamide and an epoxy group derived from glycidyl methacrylate on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles with insulating particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac A conductive material (anisotropic conductive paste) was obtained by blending 30 parts by weight of type epoxy resin and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • SI-60L manufactured by Sanshin Chemical Industry Co., Ltd.
  • a transparent glass substrate having an IZO electrode pattern (first electrode, metal Vickers hardness of 100 Hv on the electrode surface) having an L / S of 10 ⁇ m / 10 ⁇ m was prepared. Further, a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of 50 Hv on the electrode surface) having L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface.
  • the obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 60 MPa is applied to form the anisotropic conductive paste layer. It hardened
  • Example 2 In the production of the conductive particles with insulating particles, after obtaining the conductive particles with insulating particles, the mixture is further heated at 90 ° C. for 2 hours to remove the amide group and the epoxy group on the surface of the covering portion. Conductive conductive particles with insulating particles (including a structure in which the coating portion reacted with an amide group and an epoxy group) were obtained. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
  • Example 3 During the production of the insulating particles, the compounding amount of methyl methacrylate was changed to 8 parts by weight (80 mmol) with respect to the polymerizable compound. Except for the above changes, conductive particles with insulating particles, a conductive material, and a connection structure were obtained in the same manner as in Example 2.
  • Example 4 In producing the insulating particles, with respect to the polymerizable compound, the amount of methyl methacrylate is changed to 24 parts by weight (240 mmol), and 1.4 parts by weight of glycidyl methacrylate, which is a compound having the first functional group. (10 mmol) was changed to 2 parts by weight (30 mmol) of methacrylonitrile, which is a compound having the first functional group. Furthermore, 2.6 parts by weight (30 mmol) of methacrylic acid, which is a compound having the second functional group, was used instead of 0.9 parts by weight (10 mmol) of methacrylamide, which is the compound having the second functional group. Except for the above changes, conductive particles with insulating particles, a conductive material, and a connection structure were obtained in the same manner as in Example 2.
  • Example 5 When producing the insulating particles, the insulating particle body was changed to 2 parts by weight. Moreover, regarding the said polymeric compound, the compounding quantity of methyl methacrylate is changed into 9.2 weight part (92 mmol), and the compounding quantity of the glycidyl methacrylate which is a compound which has a 1st functional group is 0.4 weight part ( The amount of methacrylamide, which is a compound having the second functional group, was changed to 0.3 parts by weight (3 mmol). Further, 0.4 parts by weight (2 mmol) of ethylene glycol dimethacrylate as a crosslinking agent was added. Except for the above changes, conductive particles with insulating particles, a conductive material, and a connection structure were obtained in the same manner as in Example 2.
  • Example 6 When producing insulating particles, the amount of methyl methacrylate is changed to 11.6 parts by weight (116 mmol) with respect to the polymerizable compound, and the amount of glycidyl methacrylate, which is a compound having the first functional group, is changed. Was changed to 2.8 parts by weight (20 mmol), and the amount of methacrylamide as the compound having the second functional group was changed to 1.7 parts by weight (20 mmol). Furthermore, 7 parts by weight (40 mmol) of benzyl methacrylate was added, and 1.2 parts by weight (4 mmol) of trimethylolpropane triacrylate as a crosslinking agent was added. Except for the above changes, conductive particles with insulating particles, a conductive material, and a connection structure were obtained in the same manner as in Example 2.
  • Example 7 When producing insulating particles, the amount of methyl methacrylate is changed to 11.2 parts by weight (112 mmol) with respect to the polymerizable compound, and the amount of glycidyl methacrylate, which is a compound having the first functional group, is changed. Was changed to 2.8 parts by weight (20 mmol), and the amount of methacrylamide as the compound having the second functional group was changed to 1.7 parts by weight (20 mmol). Furthermore, 7 parts by weight (40 mmol) of benzyl methacrylate was added, and 1.6 parts by weight (8 mmol) of ethylene glycol dimethacrylate as a crosslinking agent was added. Except for the above changes, conductive particles with insulating particles, a conductive material, and a connection structure were obtained in the same manner as in Example 2.
  • Adhesiveness of insulating particles was evaluated as follows. The adhesion of the insulating particles was determined according to the following criteria.
  • Evaluation method of adhesion of insulating particles Arbitrary 50 conductive particles with insulating particles were observed using a scanning electron microscope (SEM) immediately after the production. Moreover, after preparing the electroconductive particle dispersion liquid with insulating particles using the obtained electroconductive material, arbitrary 50 electroconductive particles with insulating particles were observed using SEM. From the results of these SEM observations, the number of coatings of insulating particles on the conductive particles with insulating particles immediately after production is compared with the number of coatings of insulating particles on the conductive particles with insulating particles after the dispersion is adjusted. did. In SEM observation, the total number of insulating particles observed was defined as the coating number.
  • the ratio of the coating number of the insulating particles in the conductive particles with insulating particles after the dispersion adjustment to the coating number of the insulating particles in the conductive particles with insulating particles is 50% or more and less than 70%.
  • the ratio of the number of coatings of insulating particles in the conductive particles with insulating particles after dispersion adjustment to the number of coatings of insulating particles in the conductive particles with conductive particles is less than 50%
  • Connection resistance is 1.5 ⁇ or less ⁇ : Connection resistance exceeds 1.5 ⁇ and 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ and 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇ 10 ⁇ or less ⁇ : Connection resistance exceeds 10 ⁇
  • Insulation reliability between adjacent electrodes in the horizontal direction
  • the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester.
  • the insulation reliability was evaluated according to the following criteria.
  • connection structures having a resistance value of 10 8 ⁇ or more is 20 ⁇ : The number of connection structures having a resistance value of 10 8 ⁇ or more is 18 or more and less than 20 ⁇ : The resistance value is The number of connection structures with 10 8 ⁇ or more is 15 or more and less than 18 ⁇ : The number of connection structures with a resistance value of 10 8 ⁇ or more is 10 or more and less than 15 ⁇ : The resistance value is 10 8 ⁇ or more The number of connection structures of 5 or more and less than 10 XX: The number of connection structures having a resistance value of 10 8 ⁇ or more is less than 5

Abstract

電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる絶縁性粒子付き導電性粒子を提供する。 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含み、前記被覆部が、前記第1の官能基と前記第2の官能基とを有する。

Description

絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
 本発明は、導電性粒子の表面に絶縁性粒子が配置された絶縁性粒子付き導電性粒子及び絶縁性粒子付き導電性粒子の製造方法に関する。また、本発明は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、導電性粒子として、導電層の表面に絶縁処理が施された導電性粒子が用いられることがある。
 上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
 また、上記導電性粒子として、導電性粒子の表面上に絶縁性粒子が配置された絶縁性粒子付き導電性粒子が用いられることがある。さらに、導電層の表面上に絶縁層が配置された被覆導電性粒子が用いられることもある。
 上記導電性粒子の一例として、下記の特許文献1には、導電層を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面に付着している絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部の領域を覆っておりかつ高分子化合物により形成されている層とを有する。また、特許文献1には、上記絶縁性粒子本体が無機粒子であることが記載されている。
 下記の特許文献2には、表面が導電性を有する導電性粒子と、上記導電性粒子の表面に付着している絶縁性微粒子とを有する絶縁被覆導電性粒子が開示されている。上記絶縁性微粒子では、架橋性単量体に由来するポリマー成分を含有するコア粒子の表面が、架橋性単量体に由来するポリマー成分を含有する被膜層で被覆されている。上記絶縁性微粒子では、上記コア粒子の下記式(1)により定義される架橋度が7以上である。上記絶縁性微粒子では、上記コア粒子の下記式(1)により定義される架橋度が、上記被膜層の下記式(1)により定義される架橋度より高い。
 架橋度=架橋性単量体の重合性官能基数×(架橋性単量体のモル数/全単量体のモル数)×100 式(1)
WO2012/002508A1 特開2010-86665号公報
 従来の絶縁性粒子付き導電性粒子では、絶縁性粒子付き導電性粒子とバインダー樹脂とを混合して異方性導電材料を作製する際に、絶縁性粒子が導電性粒子の表面から脱離することがある。また、絶縁性をより一層高めるために、絶縁性粒子として無機粒子が用いられることがある。しかしながら、特許文献1等に記載されているような無機粒子は硬く、柔軟性に欠けるため、導電性粒子の表面への密着性を大きく高めることが困難であり、絶縁性粒子(無機粒子)の導電性粒子の表面からの脱離を防ぐことが非常に困難なことがある。結果として、異方性導電材料を用いた導電接続時に、接続されてはならない横方向に隣接する電極間の絶縁信頼性を大きく高めることが困難なことがある。
 上記の課題を解決するために、例えば、特許文献2等に記載されているように、絶縁性粒子をコアシェル構造とし、コアの表面の架橋度とシェルの表面の架橋度とを調整する方法等が提案されている。しかしながら、従来の方法では、シェルの架橋度が低い場合には、絶縁性粒子付き導電性粒子同士が接触した際に、固着や凝集が少なからず発生することがある。また、凝集等が発生した絶縁性粒子付き導電性粒子とバインダー樹脂とを用いて異方性導電材料を作製すると、絶縁性粒子付き導電性粒子の分散性が低くなることがある。このような異方性導電材料を用いると、異方性導電材の塗工後に、接続されるべき上下の電極間に導電性粒子が、均一に配置されないことがある。さらに、凝集した導電性粒子があると、接続されてはならない横方向に隣接する電極間の短絡が生じやすくなる。
 また、従来の絶縁性粒子付き導電性粒子では、導電接続時に、絶縁性粒子が導電性粒子の表面から容易に脱離しないことがある。結果として、接続対象部材の電極と、導電性粒子の導電部との間に絶縁性粒子が存在することになり、接続されるべき上下の電極間の導通信頼性を十分に高めることが困難なことがある。従来の絶縁性粒子付き導電性粒子では、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性が低いことがある。
 本発明の目的は、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる絶縁性粒子付き導電性粒子及び絶縁性粒子付き導電性粒子の製造方法を提供することである。また、本発明の目的は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体を提供することである。
 本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含み、前記被覆部が、前記第1の官能基と前記第2の官能基とを有する、絶縁性粒子付き導電性粒子が提供される。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第1の官能基と前記第2の官能基とが、刺激により反応可能な性質を有する。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記刺激が、加熱又は光の照射である。
 本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含み、前記被覆部が、前記第1の官能基と前記第2の官能基とが反応した構造を含む、絶縁性粒子付き導電性粒子が提供される。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、下記式(1)により求められる前記被覆部の架橋度が、10以上である。
 架橋度=A×[(B/D)×100]+[(C/D)×100] 式(1)
 前記式(1)中、Aは架橋剤の重合性官能基数であり、Bは架橋剤のモル数であり、Cは前記第1の官能基を有する化合物及び前記第2の官能基を有する化合物の合計のモル数であり、Dは前記重合性化合物の合計のモル数である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子本体が、無機粒子又は有機無機ハイブリッド粒子である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第1の官能基が、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記環状エーテル基が、エポキシ基又はオキセタニル基である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記第2の官能基が、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の粒子径が、1μm以上5μm以下である。
 本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、複数の絶縁性粒子とを用いて、前記導電性粒子の表面上に前記絶縁性粒子を配置する配置工程を備え、前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含む、絶縁性粒子付き導電性粒子の製造方法が提供される。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法のある特定の局面では、前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法のある特定の局面では、前記配置工程の温度が50℃未満であり、前記被覆部が、前記第1の官能基と前記第2の官能基とを有する絶縁性粒子付き導電性粒子を得る。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法のある特定の局面では、前記配置工程の後に、前記絶縁性粒子付き導電性粒子を加熱する加熱工程を備え、前記加熱工程の加熱温度が70℃以上であり、前記加熱工程の加熱時間が1時間以上であり、前記被覆部が、前記第1の官能基と前記第2の官能基とが反応した構造を含む絶縁性粒子付き導電性粒子を得る。
 本発明の広い局面によれば、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部の材料が、上述した絶縁性粒子付き導電性粒子であるか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電部により電気的に接続されている、接続構造体が提供される。
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が、上記第1の官能基と上記第2の官能基とを有する。本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が、上記第1の官能基と上記第2の官能基とが反応した構造を含む。本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法は、導電部を少なくとも表面に有する導電性粒子と、複数の絶縁性粒子とを用いて、上記導電性粒子の表面上に上記絶縁性粒子を配置する配置工程を備える。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す断面図である。
 以下、本発明の詳細を説明する。
 (絶縁性粒子付き導電性粒子及び絶縁性粒子付き導電性粒子の製造方法)
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が、上記第1の官能基と上記第2の官能基とを有する。
 本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 本明細書では、上記第1の官能基と上記第2の官能基とが反応する前の粒子と、上記第1の官能基と上記第2の官能基とが反応した後の粒子との双方を開示する。
 本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が上記第1の官能基と上記第2の官能基とを有しており、上記第1の官能基と上記第2の官能基とが反応していない。この絶縁性粒子付き導電性粒子は、上記第1の官能基と上記第2の官能基とが反応する前の粒子である。本発明に係る絶縁性粒子付き導電性粒子では、上記第1の官能基と上記第2の官能基とが反応していないので、被覆部の架橋度が低く、柔軟性を有しており、絶縁性粒子と導電性粒子の表面との密着性を高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が、上記第1の官能基と上記第2の官能基とが反応した構造を含む。
 本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部において、上記第1の官能基と上記第2の官能基とが反応している。この絶縁性粒子付き導電性粒子は、上記第1の官能基と上記第2の官能基とが反応した後の粒子である。この絶縁性粒子付き導電性粒子は、バインダー樹脂中に配合される前に、上記第1の官能基と上記第2の官能基とを反応させることで得られることが好ましい。バインダー樹脂中に配合される前の絶縁性粒子付き導電性粒子において、上記第1の官能基と上記第2の官能基とが反応していることが好ましい。本発明に係る絶縁性粒子付き導電性粒子では、上記第1の官能基と上記第2の官能基とが反応しているので、被覆部の架橋度を高めることができ、絶縁性粒子の耐溶剤性を高めることができる。
 従来の絶縁性粒子付き導電性粒子では、絶縁性粒子付き導電性粒子とバインダー樹脂と混合して異方性導電材料を作製する際に、絶縁性粒子が導電性粒子の表面から脱離することがある。また、絶縁性をより一層高めるために、絶縁性粒子として無機粒子が用いられることがある。しかしながら、無機粒子は硬く、柔軟性に欠けるため、導電性粒子の表面への密着性を十分に高めることが困難であり、絶縁性粒子(無機粒子)が導電性粒子の表面から脱離することを防止することが困難なことがある。結果として、異方性導電材料を用いた導電接続時に、接続されてはならない横方向に隣接する電極間の絶縁信頼性を十分に高めることが困難なことがある。
 本発明者らは、特定の絶縁性粒子付き導電性粒子を用いることで、絶縁性粒子に関して、絶縁性を高めることと、導電性粒子の表面への密着性を高めることとの、これらの双方を両立させることができることを見出した。本発明では、上記の構成が備えられているので、絶縁性粒子が導電性粒子の表面から脱離することを防止することができる。結果として、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。
 また、本発明では、絶縁性粒子における被覆部の架橋度を高めることができるので、絶縁性粒子付き導電性粒子同士の固着や凝集を防止することができ、異方性導電材料における絶縁性粒子付き導電性粒子の分散性を高めることができる。
 また、本発明では、上記の構成が備えられているので、導電接続時に、絶縁性粒子が導電性粒子の表面から容易に脱離する。結果として、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
 本発明では、上記のような効果を得るために、特定の絶縁性粒子付き導電性粒子を用いることは大きく寄与する。
 電極間の導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記絶縁性粒子付き導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性粒子付き導電性粒子の粒子径の標準偏差
 Dn:絶縁性粒子付き導電性粒子の粒子径の平均値
 上記絶縁性粒子付き導電性粒子の形状は特に限定されない。上記絶縁性粒子付き導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。
 上記絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散され、導電材料を得るために好適に用いられる。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面上に配置された複数の絶縁性粒子3とを備える。絶縁性粒子3は、絶縁性を有する材料により形成されている。
 導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。絶縁性粒子付き導電性粒子1においては、導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 絶縁性粒子3は、絶縁性粒子本体4と、絶縁性粒子本体4の表面の少なくとも一部を覆っている被覆部5とを有する。被覆部5は、重合性化合物により形成されている。
 本実施形態において、被覆部5は、絶縁性粒子本体4の表面の全部を覆っている。従って、導電性粒子2と絶縁性粒子本体4との間に被覆部5が配置されている。上記被覆部は、上記絶縁性粒子本体の表面の少なくとも一部を覆っていればよく、上記絶縁性粒子本体の表面の全部を覆っていなくてもよい。上記被覆部は、上記導電性粒子と上記絶縁性粒子本体との間に配置されていることが好ましい。
 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、導電性粒子22の表面上に配置された複数の絶縁性粒子3とを備える。
 導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部31とを有する。絶縁性粒子付き導電性粒子21においては、導電部31は導電層である。導電性粒子22は、基材粒子11の表面上に複数の芯物質32を有する。導電部31は、基材粒子11と芯物質32とを被覆している。芯物質32を導電部31が被覆していることにより、導電性粒子22は、表面に複数の突起33を有する。導電性粒子22では、芯物質32により導電部31の表面が***されており、複数の突起33が形成されている。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図3に示す絶縁性粒子付き導電性粒子41は、導電性粒子42と、導電性粒子42の表面上に配置された複数の絶縁性粒子3とを備える。
 導電性粒子42は、基材粒子11と、基材粒子11の表面上に配置された導電部51とを有する。絶縁性粒子付き導電性粒子41においては、導電部51は導電層である。導電性粒子42は、導電性粒子22のように芯物質を有しない。導電部51は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子42は、表面に複数の突起52を有する。複数の突起52を除く部分が、導電部51の上記第1の部分である。複数の突起52は、導電部51の厚みが厚い上記第2の部分である。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 次に、本発明に係る導電性粒子の製造方法について説明する。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法は、導電部を少なくとも表面に有する導電性粒子と、複数の絶縁性粒子とを用いて、上記導電性粒子の表面上に上記絶縁性粒子を配置する配置工程を備える。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記絶縁性粒子が、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記重合性化合物が、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。得られる絶縁性粒子付き導電性粒子は、上記第1の官能基と上記第2の官能基とが反応する前の粒子であることが好ましい。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程の温度が50℃未満であることが好ましく、上記配置工程の温度が40℃以下であることがより好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程後の絶縁性粒子付き導電性粒子においては、上記被覆部が上記第1の官能基と上記第2の官能基とを有することが好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程後の絶縁性粒子付き導電性粒子においては、上記第1の官能基と上記第2の官能基とが反応していないことが好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程後の絶縁性粒子付き導電性粒子においては、上記第1の官能基と上記第2の官能基とが反応していないので、上記被覆部の架橋度が低く、柔軟性を有しており、上記絶縁性粒子と上記導電性粒子の表面との密着性を高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程の後に、上記絶縁性粒子付き導電性粒子を加熱する加熱工程を備えることが好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記加熱工程の加熱温度が70℃以上であることが好ましく、上記加熱工程の加熱温度が90℃以上であることがより好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記加熱工程の加熱時間が1時間以上であることが好ましく、上記加熱工程の加熱時間が2時間以上であることがより好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記加熱工程後の絶縁性粒子付き導電性粒子においては、上記被覆部が、上記第1の官能基と上記第2の官能基とが反応した構造を含むことが好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記加熱工程後の絶縁性粒子付き導電性粒子においては、上記第1の官能基と上記第2の官能基とが反応していることが好ましい。上記加熱工程後の絶縁性粒子付き導電性粒子は、上記第1の官能基と上記第2の官能基とが反応した後の粒子であることが好ましい。本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記加熱工程後の絶縁性粒子付き導電性粒子においては、上記第1の官能基と上記第2の官能基とが反応しているので、上記被覆部の架橋度を高めることができ、上記絶縁性粒子の耐溶剤性を高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記配置工程の後に上記加熱工程が備えられているので、絶縁性や耐溶剤性を高めることと、導電性粒子の表面への密着性を高めることとの、これらの双方を両立させることができる。結果として、絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、接続されてはならない隣接する横方向の電極間の絶縁信頼性をより一層効果的に高めることができる。
 また、本発明に係る絶縁性粒子付き導電性粒子の製造方法では、絶縁性粒子における被覆部の架橋度を高めることができるので、絶縁性粒子付き導電性粒子同士の固着や凝集を防止することができ、異方性導電材料における絶縁性粒子付き導電性粒子の分散性を高めることができる。
 また、本発明に係る絶縁性粒子付き導電性粒子の製造方法では、上記の構成が備えられているので、導電接続時に、絶縁性粒子が導電性粒子の表面から容易に脱離する。結果として、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
 以下、絶縁性粒子付き導電性粒子の他の詳細を説明する。
 導電性粒子:
 上記導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを有していることが好ましい。上記導電部は、単層構造であってもよく、2層以上の複層構造であってもよい。
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは30μm以下、さらに好ましくは10μm以下、特に好ましくは5μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。
 基材粒子:
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
 上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、例えば、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
 「(メタ)アクリレート」の用語は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」の用語は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」の用語は、アクリロイルとメタクリロイルとを示す。
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物等が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。
 上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。
 上記基材粒子の粒子径は、2μm以上50μm以下であることが特に好ましい。上記基材粒子の粒子径が、2μm以上50μm以下の範囲内であると、基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの基材粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の基材粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの基材粒子の粒子径は、球相当径での粒子径として求められる。上記基材粒子の粒子径は、粒度分布測定装置により算出することが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。
 導電部:
 本発明では、上記導電性粒子は、導電部を少なくとも表面に有する。上記導電部は、金属を含むことが好ましい。上記導電部を構成する金属は、特に限定されない。上記金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。電極間の接続抵抗をより一層低くする観点からは、上記金属としては、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。
 また、導通信頼性を効果的に高める観点からは、上記導電部及び上記導電部の外表面部分はニッケルを含むことが好ましい。ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性粒子を配置できる。
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。
 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。
 上記導電部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
 芯物質:
 上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する絶縁性粒子付き導電性粒子を用いた場合には、電極間に絶縁性粒子付き導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電部を形成した後、該第1の導電部上に芯物質を配置し、次に第2の導電部を形成する方法、並びに基材粒子の表面上に導電部(第1の導電部又は第2の導電部等)を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。
 基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、基材粒子の表面に芯物質を付着させる方法は、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質等が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記芯物質が金属であることが好ましい。
 上記金属は特に限定されない。上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記金属は、ニッケル、銅、銀又は金が好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が、上記下限以上及び上記上限以下であると、電極間の接続抵抗を効果的に低くすることができる。
 上記芯物質の平均粒子径は、数平均粒子径であることが好ましい。芯物質の平均粒子径は、例えば、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
 絶縁性粒子:
 本発明に係る絶縁性粒子付き導電性粒子は、上記導電性粒子の表面上に配置された複数の絶縁性粒子を備える。この場合には、上記絶縁性粒子付き導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の電極間に絶縁性粒子が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性粒子を容易に排除できる。さらに、導電部の外表面に複数の突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性粒子をより一層容易に排除できる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、絶縁性粒子本体と、上記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有する。
 上記絶縁性粒子本体は、無機粒子又は有機無機ハイブリッド粒子であることが好ましく、無機粒子であることがより好ましい。
 上記無機粒子は、上述した無機粒子であることが好ましい。上記無機粒子の材料としては、上述した基材粒子の材料として挙げた無機物等が挙げられる。上記無機粒子の材料は、シリカであることが好ましい。
 上記有機無機ハイブリッド粒子は、上述した有機無機ハイブリッド粒子であることが好ましい。上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。
 本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部は、重合性化合物により形成されている。上記被覆部は、上記重合性化合物の重合体であることが好ましい。上記被覆部は、複数種の重合性化合物を含む重合性成分の重合体であることが好ましい。上記重合性化合物は特に限定されない。上記重合性化合物としては、上述した樹脂粒子の材料等が挙げられる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物は、第1の官能基を有する化合物と、上記第1の官能基とは異なる第2の官能基を有する化合物とを含む。上記第1の官能基及び上記第2の官能基は、反応性官能基であることが好ましい。上記第1の官能基を有する化合物及び上記第2の官能基を有する化合物は、重合性化合物であることが好ましい。上記重合性化合物は、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含むことが好ましい。上記重合性成分は、第1の反応性官能基を有する重合性化合物と、上記第1の反応性官能基とは異なる第2の反応性官能基を有する重合性化合物とを含むことが好ましい。
 また、上記重合性化合物は、単独重合体のガラス転移温度が100℃未満である重合性化合物を含んでいてもよい。上記重合性成分は、単独重合体のガラス転移温度が100℃未満である重合性化合物を含んでいてもよい。上記重合性化合物は、該重合性化合物100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含んでいてもよい。上記重合性成分は、該重合性成分100重量%中に、単独重合体のガラス転移温度が100℃未満である重合性化合物を10重量%以上含んでいてもよい。ここで、単独重合体のガラス転移温度が100℃未満である重合性化合物における単独重合体とは、重合性化合物を単独重合させた単独重合体を意味する。上記重合性化合物(上記重合性成分)が単独重合体のガラス転移温度が100℃未満である重合性化合物を含むと、上記被覆部をより一層柔軟にすることができ、絶縁性粒子と導電性粒子の表面との密着性をより一層高めることができる。
 上記第1の官能基は、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基であることが好ましく、環状エーテル基、イソシアネート基又はニトリル基であることがより好ましく、環状エーテル基又はニトリル基であることがさらに好ましい。上記環状エーテル基は、エポキシ基又はオキセタニル基であることが好ましく、エポキシ基であることがより好ましい。上記第1の官能基が、上述した好ましい官能基である場合には、絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 上記エポキシ基を有する化合物としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、及び3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられる。上記エポキシ基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ基を有する化合物は、(メタ)アクリル酸グリシジル、又は4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルであることが好ましい。
 上記環状エーテル基(上記エポキシ基を除く)を有する化合物としては、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、及び環状トリメチロールプロパンホルマール(メタ)アクリレート等が挙げられる。上記環状エーテル基(上記エポキシ基を除く)を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記環状エーテル基(上記エポキシ基を除く)を有する化合物は、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレートであることが好ましい。
 上記イソシアネート基を有する化合物としては、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-プロピレンイソシアネート、1-フェニル-2-プロピレンイソシアネート、4,4-ジメチルペンテン-5-イソシアネート、2,4,4-トリメチルペンテン-5-イソシアネート、3,3-ジメチルペンテン-5-イソシアネート、2-アリル-2-イソシアネートメチル-マロン酸ジエチルエステル、1-フェニル-3-メチル-3-ブテンイソシアネート、4-ビニルベンゼンイソシアネート、1-イソシアネートメチル-4-ビニル-ベンゼン、及び1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート等が挙げられる。上記イソシアネート基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記イソシアネート基を有する化合物は、2-(メタ)アクリロイルオキシエチルイソシアネート、又は2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネートであることが好ましい。
 上記アルデヒド基を有する化合物としては、アクロレイン等が挙げられる。
 上記ニトリル基を有する化合物としては、(メタ)アクリロニトリル等が挙げられる。
 上記第2の官能基は、上記第1の官能基とは異なる。上記第2の官能基は、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基であることが好ましく、アミド基、カルボキシル基又はアミノ基であることがより好ましく、アミド基又はカルボキシル基であることがさらに好ましい。上記第2の官能基が、上述した好ましい官能基である場合には、絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 上記アミド基を有する化合物としては、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド、及びN,N-置換(メタ)アクリルアミド等が挙げられる。上記N-置換(メタ)アクリルアミドは特に限定されない。上記N-置換(メタ)アクリルアミドとしては、例えば、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、及びN,N-ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。上記N,N-置換(メタ)アクリルアミドは特に限定されない。上記N,N-置換(メタ)アクリルアミドとしては、例えば、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、及び(メタ)アクリロイルモルホリン等が挙げられる。上記アミド基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アミド基を有する化合物は、(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、又はN,N-ジメチル(メタ)アクリルアミドであることが好ましく、(メタ)アクリルアミドであることがより好ましい。
 上記水酸基を有する化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、(4-ヒドロキシメチルシクロへキシル)メチルアクリレート、ビニルアルコール、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリン(メタ)アクリレート、及び2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート等が挙げられる。上記水酸基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記水酸基を有する化合物は、2-ヒドロキシエチル(メタ)アクリレート、又は2-ヒドロキシブチル(メタ)アクリレートであることが好ましい。
 上記カルボキシル基を有する化合物としては、(メタ)アクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、コハク酸、フマル酸、シトラコン酸等の不飽和ジカルボン酸、及びこれらの塩や無水物等が挙げられる。上記カルボキシル基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記カルボキシル基を有する化合物は、(メタ)アクリル酸であることが好ましい。
 上記イミド基を有する化合物としては、イミド(メタ)アクリレート、及びマレイミド等が挙げられる。上記イミド基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記イミド基を有する化合物は、イミド(メタ)アクリレートであることが好ましい。
 上記アミノ基を有する化合物としては、N,N-ジメチルアミノエチル(メタ)アクリレート、及びN,N-ジメチルアミノプロピルメタクリレート等が挙げられる。上記アミノ基を有する化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アミノ基を有する化合物は、N,N-ジメチルアミノエチル(メタ)アクリレートであることが好ましい。
 本発明に係る絶縁性粒子付き導電性粒子では、上記重合性化合物は、架橋剤を含まないか、又は、上記重合性化合物100重量%中に架橋剤を10重量%以下で含むことが好ましい。上記絶縁性粒子付き導電性粒子では、上記重合性成分は、架橋剤を含まないか、又は、上記重合性成分100重量%中に架橋剤を10重量%以下で含むことが好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性化合物が、上記重合性化合物100重量%中に上記架橋剤を7重量%以下で含むことが好ましく、上記重合性化合物100重量%中に上記架橋剤を6重量%以下で含むことがより好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性成分が、上記重合性成分100重量%中に上記架橋剤を7重量%以下で含むことが好ましく、上記重合性成分100重量%中に上記架橋剤を6重量%以下で含むことがより好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性化合物が、上記重合性化合物100重量%中に上記架橋剤を5重量%以下で含むことが好ましく、上記重合性化合物100重量%中に上記架橋剤を5重量%未満で含むことがより好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性成分が、上記重合性成分100重量%中に上記架橋剤を5重量%以下で含むことがより一層好ましく、上記重合性成分100重量%中に上記架橋剤を5重量%未満で含むことがさらに好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性化合物は、架橋剤を含まないことが特に好ましい。絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記重合性成分は、架橋剤を含まないことが特に好ましい。
 本発明に係る絶縁性粒子付き導電性粒子では、下記式(1)により求められる上記被覆部の架橋度は、10以上であることが好ましく、14以上であることがより好ましい。上記被覆部の架橋度が、上記下限以上であると、絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 架橋度=A×[(B/D)×100]+[(C/D)×100] 式(1)
 上記式(1)中、Aは架橋剤の重合性官能基数であり、Bは架橋剤のモル数であり、Cは上記第1の官能基を有する化合物及び上記第2の官能基を有する化合物の合計のモル数であり、Dは上記重合性化合物の合計のモル数である。
 上記架橋剤は特に限定されない。上記架橋剤は、1分子中に2つ以上のエチレン性不飽和基を有する重合性化合物であることが好ましい。上記架橋剤としては、上述した樹脂粒子の材料である架橋性の単量体等が挙げられる。上記重合性化合物の反応を容易に制御する観点からは、上記架橋剤は、エチレングリコールジ(メタ)アクリレート又はテトラメチロールメタンテトラ(メタ)アクリレートであることが好ましい。
 本発明に係る絶縁性粒子付き導電性粒子では、上記被覆部が上記第1の官能基と上記第2の官能基とを有するという構成(第1の構成)を備えるか、又は、上記被覆部が上記第1の官能基と上記第2の官能基とが反応した構造を含むという構成(第2の構成)を備える。
 本発明に係る絶縁性粒子付き導電性粒子が上記第1の構成を備える場合には、上記被覆部が、上記第1の官能基と上記第2の官能基とを有しており、上記第1の官能基と上記第2の官能基とが反応していない。本発明に係る絶縁性粒子付き導電性粒子が上記第1の構成を備える場合には、上記第1の官能基と上記第2の官能基とが反応していないので、上記被覆部の架橋度が低く、柔軟性を有しており、絶縁性粒子と導電性粒子の表面との密着性を高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子が上記第1の構成を備える場合には、上記第1の官能基と上記第2の官能基とは、刺激により反応可能な性質を有することが好ましい。上記刺激は、加熱又は光の照射であることが好ましく、加熱であることがより好ましい。なお、反応可能な性質とは、化学結合を形成することができる性質を意味する。本発明に係る絶縁性粒子付き導電性粒子では、刺激(加熱又は光の照射)により、上記第1の官能基と上記第2の官能基とが化学結合を形成することが好ましい。
 本発明に係る絶縁性粒子付き導電性粒子が上記第2の構成を備える場合には、上記被覆部が、上記第1の官能基と上記第2の官能基とが反応した構造を含んでおり、上記第1の官能基と上記第2の官能基とが反応している。本発明に係る絶縁性粒子付き導電性粒子が上記第2の構成を備える場合には、上記第1の官能基と上記第2の官能基とが反応しているので、上記被覆部の架橋度を高めることができ、絶縁性粒子の耐溶剤性を高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記第1の構成を備える絶縁性粒子付き導電性粒子を加熱又は光を照射することにより、上記第2の構成を備える絶縁性粒子付き導電性粒子を得ることが好ましい。上記第2の構成を備える絶縁性粒子付き導電性粒子は、上記第1の構成を備える絶縁性粒子付き導電性粒子を、加熱することにより得られることがより好ましい。上記絶縁性粒子付き導電性粒子が、上記の好ましい態様を満足することで、絶縁性粒子に関して、導電性粒子の表面への密着性と絶縁性や耐溶剤性との双方を両立させることができる。さらに、導電接続時に、絶縁性粒子が導電性粒子の表面から容易に脱離することができる。結果として、絶縁性粒子付き導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 上記導電部の表面上に上記絶縁性粒子を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。絶縁性粒子が脱離し難いことから、上記導電部の表面に、化学結合を介して上記絶縁性粒子を配置する方法が好ましい。本発明に係る絶縁性粒子付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第1の官能基を有する化合物とが化学結合していることが好ましく、上記導電部の表面に存在する水酸基等と、上記第2の官能基を有する化合物とが化学結合していることが好ましい。本発明に係る絶縁性粒子付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第1の官能基とが化学結合していてもよく、上記導電部の表面に存在する水酸基等と、上記第1の官能基とが化学結合していなくてもよい。本発明に係る絶縁性粒子付き導電性粒子では、上記導電部の表面に存在する水酸基等と、上記第2の官能基とが化学結合していてもよく、上記導電部の表面に存在する水酸基等と、上記第2の官能基とが化学結合していなくてもよい。
 上記導電部の外表面、及び上記絶縁性粒子の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁性粒子の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の外表面の官能基と化学結合していても構わない。
 上記絶縁性粒子の粒子径は、上記絶縁性粒子付き導電性粒子の粒子径及び上記絶縁性粒子付き導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは200nm以上、特に好ましくは300nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。上記絶縁性粒子の粒子径が、上記下限以上であると、上記絶縁性粒子付き導電性粒子がバインダー樹脂中に分散されたときに、複数の上記絶縁性粒子付き導電性粒子における導電部同士が接触し難くなる。上記絶縁性粒子の粒子径が、上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
 上記絶縁性粒子の粒子径は、数平均粒子径を示す。上記絶縁性粒子の粒子径は粒度分布測定装置等を用いて求められる。上記絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの絶縁性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の絶縁性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの絶縁性粒子の粒子径は、球相当径での粒子径として求められる。上記絶縁性粒子の粒子径は、粒度分布測定装置により算出することが好ましい。上記絶縁性粒子付き導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 絶縁性粒子付き導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した絶縁性粒子付き導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、絶縁性粒子付き導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の絶縁性粒子付き導電性粒子を無作為に選択し、各絶縁性粒子付き導電性粒子の絶縁性粒子を観察する。各絶縁性粒子付き導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。
 本発明に係る絶縁性粒子付き導電性粒子は、粒子径の異なる2種以上の絶縁性粒子を併用してもよい。粒子径の異なる2種以上の絶縁性粒子を併用することにより、粒子径の大きい絶縁性粒子により被覆された隙間に、粒子径の小さい絶縁性粒子が入り込み、上記被覆率をより一層効果的に高めることができる。粒子径の異なる2種以上の絶縁性粒子を併用する場合には、上記絶縁性粒子は、粒子径が0.1μm以上0.25μm未満の第1の絶縁性粒子と、粒子径が0.25μm以上0.8μm以下の第2の絶縁性粒子とを含むことが好ましい。上記第1の絶縁性粒子の粒度分布は、上記第2の絶縁性粒子の粒度分布と重複する部分がないことが好ましい。上記第1の絶縁性粒子の平均粒子径と上記第2の絶縁性粒子の平均粒子径とは、異なることが好ましい。
 上記絶縁性粒子の粒子径の変動係数(CV値)は、20%以下であることが好ましい。上記絶縁性粒子の粒子径の変動係数が、上記上限以下であると、得られる絶縁性粒子付き導電性粒子の絶縁性粒子の厚みがより一層均一となり、導電接続の際に均一に圧力をより一層容易に付与することができ、電極間の接続抵抗をより一層低くすることができる。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性粒子の粒子径の標準偏差
 Dn:絶縁性粒子の粒子径の平均値
 上記絶縁性粒子の形状は特に限定されない。上記絶縁性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。
 (導電材料)
 本発明に係る導電材料は、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。上記絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。上記導電材料では、上述した絶縁性粒子付き導電性粒子が用いられているので、上記絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる等の導電接続前に絶縁性粒子付き導電性粒子の表面から絶縁性粒子が意図せずに脱離することを防止でき、電極間の絶縁信頼性をより一層高めることができる。
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。
 上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記絶縁性粒子付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記絶縁性粒子付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性をより一層高めることができる。
 上記導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記絶縁性粒子付き導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材を接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した絶縁性粒子付き導電性粒子であるか、又は上記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記絶縁性粒子付き導電性粒子における上記導電部により電気的に接続されている。
 上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記絶縁性粒子付き導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより、導電接続する工程とを経て、得ることができる。上記熱圧着時に、上記絶縁性粒子が上記絶縁性粒子付き導電性粒子から脱離することが好ましい。
 図4は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す断面図である。
 図4に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82及び第2の接続対象部材83を接続している接続部84とを備える。接続部84は、絶縁性粒子付き導電性粒子1を含む導電材料により形成されている。接続部84は、絶縁性粒子付き導電性粒子1を複数含む導電材料を硬化させることにより形成されていることが好ましい。なお、図4では、絶縁性粒子付き導電性粒子1は、図示の便宜上、略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21又は41を用いてもよい。
 第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の絶縁性粒子付き導電性粒子1における導電性粒子2により電気的に接続されている。従って、第1接続対象部材82及び第2の接続対象部材83が絶縁性粒子付き導電性粒子1における導電部により電気的に接続されている。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記熱圧着の圧力は好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記熱圧着の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記熱圧着の圧力及び温度が、上記下限以上及び上記上限以下であると、導電接続時に絶縁性粒子付き導電性粒子の表面から絶縁性粒子が容易に脱離でき、電極間の導通信頼性をより一層高めることができる。
 上記積層体を加熱及び加圧する際に、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子を排除することができる。例えば、上記加熱及び加圧の際には、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子が、上記絶縁性粒子付き導電性粒子の表面から容易に脱離する。なお、上記加熱及び加圧の際には、上記絶縁性粒子付き導電性粒子の表面から一部の上記絶縁性粒子が脱離して、上記導電部の表面が部分的に露出することがある。上記導電部の表面が露出した部分が、上記第1電極及び上記第2の電極に接触することにより、上記導電性粒子を介して第1の電極と第2の電極とを電気的に接続することができる。
 上記第1接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)導電性粒子の作製
 粒子径が3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面にニッケル-ボロン導電層(厚み0.15μm)が形成され、導電部を表面に有する導電性粒子を得た。
 (2)絶縁性粒子本体の作製
 ゾルゲル法により、シリカ粒子(粒子径200nm)を作製した。作製したシリカ粒子10重量部を、水とエタノールとが重量比1:9で混合された液400mlにスリーワンモーターを用いて分散させて、第1の分散液を得た。次に、ビニルトリエトキシシラン0.1重量部を、水とエタノールとが重量比1:9で混合された液100mlに分散させて、第2の分散液を得た。その後、上記第2の分散液を上記第1の分散液に10分かけて滴下し、混合液を得た。上記第2の分散液を滴下後、得られた混合液を30分攪拌した。その後、混合液をろ過し、100℃で2時間乾燥することで、ビニル基を表面に有する絶縁性粒子本体を得た。
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記の重合性化合物を含む組成物を入れた後、超音波照射機を用いて十分に乳化させた。その後、200rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、蒸留水200mL、得られた絶縁性粒子本体1重量部、2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}0.1部(0.3mmol)、及び乳化剤であるポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)0.1重量部と、重合性化合物とを含む。上記重合性化合物は、メタクリル酸メチル18重量部(180mmol)、第1の官能基を有する化合物であるメタクリル酸グリシジル1.4重量部(10mmol)、及び第2の官能基を有する化合物であるメタクリルアミド0.9重量部(10mmol)を含む。反応終了後、冷却し、遠心分離機で固液分離を2回行い、余分な重合性化合物を洗浄により除去し、重合性化合物により形成された被覆部によって、絶縁性粒子本体の表面の全体が覆われた絶縁性粒子(粒子径300nm)を得た。上記被覆部は、メタクリルアミドに由来するアミド基、及びメタクリル酸グリシジルに由来するエポキシ基を表面に有していた。
 (4)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
 (5)導電材料(異方性導電ペースト)の作製
 得られた絶縁性粒子付き導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
 (6)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、60MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
 (実施例2)
 絶縁性粒子付き導電性粒子の作製の際に、絶縁性粒子付き導電性粒子を得た後、さらに、90℃及び2時間の条件で加熱し、被覆部の表面のアミド基とエポキシ基とを反応させた絶縁性粒子付き導電性粒子(被覆部がアミド基とエポキシ基とが反応した構造を含む)を得た。得られた絶縁性粒子付き導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料、接続構造体を得た。
 (実施例3)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を8重量部(80mmol)に変更した。上記の変更以外は、実施例2と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (実施例4)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を24重量部(240mmol)に変更し、第1の官能基を有する化合物であるメタクリル酸グリシジル1.4重量部(10mmol)を、第1の官能基を有する化合物であるメタクリロニトリル2重量部(30mmol)に変更した。さらに、第2の官能基を有する化合物であるメタクリルアミド0.9重量部(10mmol)の代わりに、第2の官能基を有する化合物であるメタクリル酸2.6重量部(30mmol)を用いた。上記の変更以外は、実施例2と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (実施例5)
 絶縁性粒子の作製の際に、上記絶縁性粒子本体を2重量部に変更した。また、上記重合性化合物に関して、メタクリル酸メチルの配合量を9.2重量部(92mmol)に変更し、第1の官能基を有する化合物であるメタクリル酸グリシジルの配合量を0.4重量部(3mmol)に変更し、第2の官能基を有する化合物であるメタクリルアミドの配合量を0.3重量部(3mmol)に変更した。さらに、架橋剤であるエチレングリコールジメタクリレートを0.4重量部(2mmol)追加した。上記の変更以外は、実施例2と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (実施例6)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を11.6重量部(116mmol)に変更し、第1の官能基を有する化合物であるメタクリル酸グリシジルの配合量を2.8重量部(20mmol)に変更し、第2の官能基を有する化合物であるメタクリルアミドの配合量を1.7重量部(20mmol)に変更した。さらに、ベンジルメタクリレート7重量部(40mmol)を追加し、架橋剤であるトリメチロールプロパントリアクリレートを1.2重量部(4mmol)追加した。上記の変更以外は、実施例2と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (実施例7)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を11.2重量部(112mmol)に変更し、第1の官能基を有する化合物であるメタクリル酸グリシジルの配合量を2.8重量部(20mmol)に変更し、第2の官能基を有する化合物であるメタクリルアミドの配合量を1.7重量部(20mmol)に変更した。さらに、ベンジルメタクリレート7重量部(40mmol)を追加し、架橋剤であるエチレングリコールジメタクリレートを1.6重量部(8mmol)追加した。上記の変更以外は、実施例2と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (比較例1)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を8.8重量部(88mmol)に変更し、第2の官能基を有する化合物であるメタクリルアミド0.9重量部(10mmol)を加えなかった。さらに、架橋剤であるエチレングリコールジメタクリレートを0.4重量部(2mmol)追加した。上記の変更以外は、実施例1と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (比較例2)
 絶縁性粒子の作製の際に、上記重合性化合物に関して、メタクリル酸メチルの配合量を17.0重量部(170mmol)に変更し、第1の官能基を有する化合物であるメタクリル酸グリシジル1.4重量部(10mmol)を加えなかった。また、第2の官能基を有する化合物であるメタクリルアミドの配合量を1.7重量部(20mmol)に変更した。さらに、架橋剤であるトリメチロールプロパントリアクリレートを3.0重量部(10mmol)追加した。上記の変更以外は、実施例1と同様にして、絶縁性粒子付き導電性粒子、導電材料、接続構造体を得た。
 (評価)
 (1)絶縁性粒子の密着性
 絶縁性粒子の密着性を以下のようにして評価した。絶縁性粒子の密着性を下記の基準で判定した。
 絶縁性粒子の密着性の評価方法:
 任意の50個の絶縁性粒子付き導電性粒子を、作製の直後に走査型電子顕微鏡(SEM)を用いて観察した。また、得られた導電材料を用いて、絶縁性粒子付き導電性粒子分散液を調製した後にも任意の50個の絶縁性粒子付き導電性粒子を、SEMを用いて観察した。これらのSEMによる観察の結果から、作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数と、分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数とを比較した。なお、SEM観察において、観察された絶縁性粒子の総数を被覆数とした。
 [絶縁性粒子の密着性の判定基準]
 ○○○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が90%以上
 ○○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が70%以上90%未満
 ○:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が50%以上70%未満
 ×:作製直後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数に対する分散液調整後の絶縁性粒子付き導電性粒子における絶縁性粒子の被覆数の割合が50%未満
 (2)導通信頼性(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
 [導通信頼性の判定基準]
 ○○○:接続抵抗が1.5Ω以下
 ○○:接続抵抗が1.5Ωを超え2.0Ω以下
 ○:接続抵抗が2.0Ωを超え5.0Ω以下
 △:接続抵抗が5.0Ωを超え10Ω以下
 ×:接続抵抗が10Ωを超える
 (3)絶縁信頼性(横方向に隣り合う電極間)
 上記(2)導通信頼性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。絶縁信頼性を下記の基準で評価した。
 [絶縁信頼性の判定基準]
 ○○○:抵抗値が10Ω以上の接続構造体の個数が、20個
 ○○:抵抗値が10Ω以上の接続構造体の個数が、18個以上20個未満
 ○:抵抗値が10Ω以上の接続構造体の個数が、15個以上18個未満
 △:抵抗値が10Ω以上の接続構造体の個数が、10個以上15個未満
 ×:抵抗値が10Ω以上の接続構造体の個数が、5個以上10個未満
 ××:抵抗値が10Ω以上の接続構造体の個数が、5個未満
 結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 1…絶縁性粒子付き導電性粒子
 2…導電性粒子
 3…絶縁性粒子
 4…絶縁粒子本体
 5…被覆部
 11…基材粒子
 12…導電部
 21…絶縁性粒子付き導電性粒子
 22…導電性粒子
 31…導電部
 32…芯物質
 33…突起
 41…絶縁性粒子付き導電性粒子
 42…導電性粒子
 51…導電部
 52…突起
 81…接続構造体
 82…第1の接続対象部材
 82a…第1の電極
 83…第2の接続対象部材
 83a…第2の電極
 84…接続部

Claims (18)

  1.  導電部を少なくとも表面に有する導電性粒子と、
     前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、
     前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、
     前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含み、
     前記被覆部が、前記第1の官能基と前記第2の官能基とを有する、絶縁性粒子付き導電性粒子。
  2.  前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む、請求項1に記載の絶縁性粒子付き導電性粒子。
  3.  前記第1の官能基と前記第2の官能基とが、刺激により反応可能な性質を有する、請求項1又は2に記載の絶縁性粒子付き導電性粒子。
  4.  前記刺激が、加熱又は光の照射である、請求項3に記載の絶縁性粒子付き導電性粒子。
  5.  導電部を少なくとも表面に有する導電性粒子と、
     前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、
     前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、
     前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含み、
     前記被覆部が、前記第1の官能基と前記第2の官能基とが反応した構造を含む、絶縁性粒子付き導電性粒子。
  6.  前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む、請求項5に記載の絶縁性粒子付き導電性粒子。
  7.  下記式(1)により求められる前記被覆部の架橋度が、10以上である、請求項1~6のいずれか1項に記載の絶縁性粒子付き導電性粒子。
     架橋度=A×[(B/D)×100]+[(C/D)×100] 式(1)
     前記式(1)中、Aは架橋剤の重合性官能基数であり、Bは架橋剤のモル数であり、Cは前記第1の官能基を有する化合物及び前記第2の官能基を有する化合物の合計のモル数であり、Dは前記重合性化合物の合計のモル数である。
  8.  前記絶縁性粒子本体が、無機粒子又は有機無機ハイブリッド粒子である、請求項1~7のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  9.  前記第1の官能基が、環状エーテル基、イソシアネート基、アルデヒド基又はニトリル基である、請求項1~8のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  10.  前記環状エーテル基が、エポキシ基又はオキセタニル基である、請求項9に記載の絶縁性粒子付き導電性粒子。
  11.  前記第2の官能基が、アミド基、水酸基、カルボキシル基、イミド基又はアミノ基である、請求項1~10のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  12.  前記導電性粒子の粒子径が、1μm以上5μm以下である、請求項1~11のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  13.  導電部を少なくとも表面に有する導電性粒子と、複数の絶縁性粒子とを用いて、
     前記導電性粒子の表面上に前記絶縁性粒子を配置する配置工程を備え、
     前記絶縁性粒子が、絶縁性粒子本体と、前記絶縁性粒子本体の表面の少なくとも一部を覆っておりかつ重合性化合物により形成された被覆部とを有し、
     前記重合性化合物が、第1の官能基を有する化合物と、前記第1の官能基とは異なる第2の官能基を有する化合物とを含む、絶縁性粒子付き導電性粒子の製造方法。
  14.  前記重合性化合物が、架橋剤を含まないか、又は、前記重合性化合物100重量%中に架橋剤を10重量%以下で含む、請求項13に記載の絶縁性粒子付き導電性粒子の製造方法。
  15.  前記配置工程の温度が50℃未満であり、
     前記被覆部が、前記第1の官能基と前記第2の官能基とを有する絶縁性粒子付き導電性粒子を得る、請求項13又は14に記載の絶縁性粒子付き導電性粒子の製造方法。
  16.  前記配置工程の後に、前記絶縁性粒子付き導電性粒子を加熱する加熱工程を備え、
     前記加熱工程の加熱温度が70℃以上であり、前記加熱工程の加熱時間が1時間以上であり、
     前記被覆部が、前記第1の官能基と前記第2の官能基とが反応した構造を含む絶縁性粒子付き導電性粒子を得る、請求項13~15のいずれか1項に記載の絶縁性粒子付き導電性粒子の製造方法。
  17.  請求項1~12のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料。
  18.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
     前記接続部の材料が、請求項1~12のいずれか1項に記載の絶縁性粒子付き導電性粒子であるか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料であり、
     前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電部により電気的に接続されている、接続構造体。
PCT/JP2019/014483 2018-04-04 2019-04-01 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体 WO2019194133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019528588A JP7312108B2 (ja) 2018-04-04 2019-04-01 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
CN201980023205.2A CN111971757B (zh) 2018-04-04 2019-04-01 导电性粒子、其制造方法、导电材料及连接结构体
KR1020207027726A KR20200140807A (ko) 2018-04-04 2019-04-01 절연성 입자를 갖는 도전성 입자, 절연성 입자를 갖는 도전성 입자의 제조 방법, 도전 재료 및 접속 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072519 2018-04-04
JP2018072519 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019194133A1 true WO2019194133A1 (ja) 2019-10-10

Family

ID=68100497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014483 WO2019194133A1 (ja) 2018-04-04 2019-04-01 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP7312108B2 (ja)
KR (1) KR20200140807A (ja)
CN (1) CN111971757B (ja)
TW (1) TWI822753B (ja)
WO (1) WO2019194133A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015019A (ja) * 2010-07-02 2012-01-19 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体
WO2014007238A1 (ja) * 2012-07-03 2014-01-09 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP2014132569A (ja) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
WO2017138482A1 (ja) * 2016-02-10 2017-08-17 日立化成株式会社 導電粒子、絶縁被覆導電粒子、異方導電性接着剤、接続構造体及び導電粒子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722493B1 (ko) 2005-09-02 2007-05-28 제일모직주식회사 절연 전도성 미립자 및 이를 이용한 이방 전도성 접착필름
TW200739612A (en) * 2006-02-27 2007-10-16 Hitachi Chemical Co Ltd Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
CN101390174A (zh) * 2006-02-27 2009-03-18 日立化成工业株式会社 电路连接材料、使用其的电路部件的连接结构及其制造方法
JP5151920B2 (ja) * 2008-02-05 2013-02-27 日立化成工業株式会社 導電粒子及び導電粒子の製造方法
JP5368760B2 (ja) * 2008-09-29 2013-12-18 積水化学工業株式会社 絶縁被覆導電性粒子、異方性導電材料及び接続構造体
JP2011060502A (ja) * 2009-09-08 2011-03-24 Sekisui Chem Co Ltd 絶縁粒子付き導電性粒子、異方性導電材料及び接続構造体
WO2012002508A1 (ja) 2010-07-02 2012-01-05 積水化学工業株式会社 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP5899063B2 (ja) * 2011-06-22 2016-04-06 積水化学工業株式会社 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP5927862B2 (ja) 2011-11-24 2016-06-01 日立化成株式会社 サブミクロン重合体粒子及びこれを備えた絶縁被覆導電粒子の製造方法
JP6079425B2 (ja) * 2012-05-16 2017-02-15 日立化成株式会社 導電粒子、異方性導電接着剤フィルム及び接続構造体
CN104584141B (zh) * 2012-11-28 2017-04-12 积水化学工业株式会社 带有绝缘性粒子的导电性粒子、导电材料及连接结构体
JP6212369B2 (ja) * 2012-12-05 2017-10-11 積水化学工業株式会社 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
US20150299408A1 (en) * 2012-12-27 2015-10-22 Toray Industries, Inc. Conductive fiber reinforced polymer composite and multifunctional composite
JP2016089153A (ja) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 導電材料
TWI676184B (zh) * 2014-11-20 2019-11-01 日商積水化學工業股份有限公司 導電性粒子、導電性粒子之製造方法、導電材料及連接構造體
JP2017224602A (ja) * 2016-06-13 2017-12-21 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015019A (ja) * 2010-07-02 2012-01-19 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体
WO2014007238A1 (ja) * 2012-07-03 2014-01-09 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP2014132569A (ja) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
WO2017138482A1 (ja) * 2016-02-10 2017-08-17 日立化成株式会社 導電粒子、絶縁被覆導電粒子、異方導電性接着剤、接続構造体及び導電粒子の製造方法

Also Published As

Publication number Publication date
JPWO2019194133A1 (ja) 2021-02-18
CN111971757B (zh) 2023-03-14
CN111971757A (zh) 2020-11-20
TWI822753B (zh) 2023-11-21
JP7312108B2 (ja) 2023-07-20
TW201942916A (zh) 2019-11-01
KR20200140807A (ko) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5216165B1 (ja) 導電性粒子、導電材料及び接続構造体
WO2014007237A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
WO2019194135A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP5530571B1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6431411B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7412100B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7381547B2 (ja) 導電性粒子、導電材料及び接続構造体
WO2019194133A1 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
WO2019194134A1 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP7348776B2 (ja) 絶縁部付き導電性粒子、絶縁部付き導電性粒子の製造方法、導電材料及び接続構造体
JP2018137225A (ja) 導電性粒子、導電材料及び接続構造体
WO2022260159A1 (ja) 被覆粒子、被覆粒子の製造方法、樹脂組成物及び接続構造体
TWI807064B (zh) 附絕緣性粒子之導電性粒子、導電材料及連接構造體
JP6441555B2 (ja) 導電性粒子、導電材料及び接続構造体
JP7235611B2 (ja) 導電材料及び接続構造体
JP7132112B2 (ja) 導電フィルム及び接続構造体
WO2022260158A1 (ja) 被覆粒子、樹脂組成物及び接続構造体
WO2022239776A1 (ja) 導電性粒子、導電材料及び接続構造体
JP6333624B2 (ja) 接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528588

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782345

Country of ref document: EP

Kind code of ref document: A1