WO2019193973A1 - 診断装置及び診断方法 - Google Patents

診断装置及び診断方法 Download PDF

Info

Publication number
WO2019193973A1
WO2019193973A1 PCT/JP2019/011562 JP2019011562W WO2019193973A1 WO 2019193973 A1 WO2019193973 A1 WO 2019193973A1 JP 2019011562 W JP2019011562 W JP 2019011562W WO 2019193973 A1 WO2019193973 A1 WO 2019193973A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
control unit
battery
voltage
Prior art date
Application number
PCT/JP2019/011562
Other languages
English (en)
French (fr)
Inventor
正直 島▲崎▼
菊地 義行
田中 順也
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019016397A external-priority patent/JP7219104B2/ja
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US17/042,486 priority Critical patent/US11307256B2/en
Priority to CN201980023400.5A priority patent/CN111954824A/zh
Priority to DE112019001753.5T priority patent/DE112019001753T5/de
Publication of WO2019193973A1 publication Critical patent/WO2019193973A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a diagnostic apparatus and a diagnostic method.
  • the battery after charging the battery voltage to the capacitor, the battery is disconnected from the capacitor, and in that state, the voltage of the capacitor is detected by a voltage detection circuit, thereby indirectly measuring the battery voltage of the flying capacitor method.
  • the device is known.
  • the battery whose voltage is to be detected is also used as a power source for diagnosis, and thus the reliability of diagnosis depends on the battery.
  • An object of the present invention made in view of such a viewpoint is to provide a diagnostic device and a diagnostic method capable of diagnosing the state of a flying capacitor or a switch without depending on a battery as a voltage detection target.
  • a diagnostic apparatus is A capacitor connectable in parallel to each first battery of a plurality of first batteries connected in series; A plurality of first switches for switching a connection state between the plurality of first batteries and the capacitor; Detecting a potential difference between both terminals of the capacitor, or detecting a discharge current from the capacitor; A second switch for switching a connection state between the capacitor and the detection circuit; A changeover switch for switching a connection state between the second battery different from the first battery and the capacitor; A control unit for controlling the first switch, the second switch, and the changeover switch; A diagnostic unit for diagnosing at least one of the capacitor, the first switch of the lowest stage connected to the ground among the plurality of first switches, and the second switch; After the controller turns on the changeover switch and applies a voltage from the second battery to the capacitor, the detection circuit detects a potential difference or a discharge current, The diagnosis unit diagnoses at least one of the capacitor, the lowermost first switch, and the second switch.
  • a diagnostic method is: Capacitors that can be connected in parallel to each of the first batteries of the plurality of first batteries connected in series, a plurality of first switches that switch connection states between the plurality of first batteries and the capacitor, and both terminals of the capacitors A detection circuit that detects a potential difference between them, or a discharge current from the capacitor; a second switch that switches a connection state between the capacitor and the detection circuit; and a second battery that is different from the first battery; A switching method for switching a connection state with the capacitor, a diagnostic method in a diagnostic device comprising: After the switch is turned on and a voltage is applied from the second battery to the capacitor, the detection circuit detects a potential difference or a discharge current; Diagnosing at least one of the capacitor, the first switch at the lowest stage connected to the ground among the plurality of first switches, and the second switch.
  • a diagnostic device for detecting voltage or current; A detection connection circuit capable of connecting a first battery to the detection circuit; A diagnostic connection circuit capable of connecting a power supply different from the first battery to the detection connection circuit; A diagnostic unit configured to connect the diagnostic connection circuit to the detection connection circuit and diagnose the detection connection circuit.
  • the state of the flying capacitor or the switch can be diagnosed without depending on the voltage detection target battery.
  • the diagnostic method it is possible to diagnose the state of the flying capacitor or the switch without depending on the voltage detection target battery.
  • the state of the flying capacitor or the switch can be diagnosed without depending on the voltage detection target battery.
  • FIG. 2 is a block diagram illustrating an example of a configuration of a constant voltage circuit in FIG. 1. It is a flowchart which shows an example of the procedure of the diagnostic method by the diagnostic apparatus which concerns on one Embodiment. It is a block diagram for demonstrating diagnosis 1-1. It is a block diagram for demonstrating diagnosis 1-2. It is a figure which shows the timing chart of the diagnosis 1-2. It is a block diagram for demonstrating the diagnosis 2. FIG. It is a figure which shows the timing chart of the diagnosis 2. FIG. It is a block diagram for demonstrating diagnosis 3-1. It is a figure which shows the timing chart of the diagnosis 3-1.
  • FIG. 3 It is a block diagram for demonstrating diagnosis 3-2. It is a figure which shows the timing chart of the diagnosis 3-2. It is a block diagram for demonstrating diagnosis 3-3. It is a figure which shows the timing chart of diagnosis 3-3. It is a block diagram for demonstrating diagnosis 3-4. It is a figure which shows the timing chart of the diagnosis 3-4. It is a block diagram for demonstrating diagnosis 3-5. It is a figure which shows the timing chart of the diagnosis 3-5. It is a block diagram for demonstrating diagnosis 3-6. It is a figure which shows the timing chart of the diagnosis 3-6. It is a block diagram for demonstrating diagnosis 3-7. It is a figure which shows the timing chart of the diagnosis 3-7. It is a block diagram for demonstrating the diagnosis 4. FIG.
  • FIG. It is a figure which shows the timing chart of the diagnosis 4.
  • FIG. It is a flowchart which shows an example of the detailed procedure of step S3 and step S4 of FIG. It is a flowchart which shows an example of the detailed procedure of step S3 and step S4 of FIG. It is a flowchart which shows an example of the detailed procedure of step S3 and step S4 of FIG. It is a block diagram which shows the structural example of the diagnostic apparatus which concerns on a modification.
  • a diagnostic device 100 is connected to first batteries 200A to 200E.
  • the diagnostic device 100 and the first batteries 200A to 200E may be mounted on a vehicle such as a vehicle including an internal combustion engine such as a gasoline engine or a diesel engine, or a hybrid vehicle capable of running with the power of both the internal combustion engine and the electric motor. .
  • the first batteries 200A to 200E may be included in the battery pack.
  • the battery pack may include the diagnostic device 100.
  • the battery pack may include BMS (Battery Management System).
  • the diagnostic device 100 may function as a BMS or may be included in the BMS.
  • the first battery 200A, the first battery 200B, the first battery 200C, the first battery 200D, and the first battery 200E are connected in series.
  • the first batteries 200A to 200E may be collectively referred to as the first battery 200 unless it is particularly necessary to distinguish them.
  • first batteries 200 are connected in series, but the number of the first batteries 200 is not limited to this. Any number of the first battery 200 may be connected in series.
  • the first battery 200 may be a secondary battery with a wide SOC (State Of Charge) bandwidth.
  • the SOC bandwidth of the first battery 200 may be, for example, 10 to 90%.
  • the first battery 200 is, for example, a lithium ion battery or a nickel hydride battery, but is not limited thereto, and may be another secondary battery.
  • Diagnostic device 100 includes first switches 1A to 1K, second switches 2A and 2B, fourth switch 4, capacitor 10, resistor 11, detection circuit 20, constant voltage circuit 30, and capacitor voltage detection circuit. 40, a sub detection circuit 50, a control unit 60, and a storage unit 70.
  • the capacitor 10 can be connected in parallel to the first batteries 200A to 200E via the first switches 1A to 1K.
  • the capacitor 10 can be charged with electric power supplied from the first battery 200.
  • the detection circuit 20 can detect a potential difference between both terminals of the capacitor 10 charged by the first battery 200. That is, the capacitor 10 functions as a flying capacitor in voltage measurement of the flying capacitor method.
  • the first switches 1A to 1K switch the connection state between the first battery 200 and the capacitor 10 in accordance with a command from the control unit 60.
  • the first switches 1A to 1K are controlled to be turned on, both ends thereof are conducted.
  • the first switches 1A to 1K are controlled to be turned off, both ends thereof are insulated.
  • the control lines from the control unit 60 to the first switches 1A to 1K are not shown in order to improve readability.
  • the first switch 1A, the first switch 1C, the first switch 1E, the first switch 1G, and the first switch 1J are respectively a first battery 200A, a first battery 200B, a first battery 200C, a first battery 200D, and a first switch.
  • the connection state between the positive electrode of the battery 200E and the first node 10A is switched.
  • the first node 10 ⁇ / b> A is a node connected to one end of the capacitor 10.
  • the first switch 1B, the first switch 1D, the first switch 1F, the first switch 1H and the first switch 1K are respectively a first battery 200A, a first battery 200B, a first battery 200C, a first battery 200D and a first switch.
  • the connection state between the negative electrode of the battery 200E and the second node 10B is switched.
  • the second node 10 ⁇ / b> B is a node connected to the other end of the capacitor 10.
  • the first switch 1 may be a mechanical switch having a movable part.
  • the first switch 1 may have a contact, and may be configured to switch between a conduction state and an insulation state by opening and closing the contact.
  • the first switch 1 may be, for example, an electromagnetic relay.
  • 2nd switch 2A and 2B switches the connection state of the capacitor 10, the detection circuit 20, and the sub detection circuit 50 according to the instruction
  • FIG. When the second switches 2A and 2B are controlled to be turned on, both ends thereof are conducted. When the second switches 2A and 2B are controlled to be turned off, both ends thereof are insulated. In FIG. 1, the control lines from the control unit 60 to the second switches 2A and 2B are not shown in order to improve readability.
  • the second switch 2A switches the connection state between the first node 10A, the detection circuit 20, and the sub detection circuit 50.
  • the second switch 2B switches the connection state between the second node 10B and the ground.
  • the second switch 2A is also referred to as an upper second switch.
  • the second switch 2B is also referred to as a lower second switch.
  • the second switches 2A and 2B may be collectively referred to as the second switch 2 when it is not necessary to distinguish between them.
  • the second switch 2 may be a mechanical switch having a movable part.
  • the 2nd switch 2 has a contact, and may be comprised so that a conduction
  • the second switch 2 may be, for example, an electromagnetic relay.
  • the fourth switch 4 switches the connection state between the first node 10A and the resistor 11 in accordance with a command from the control unit 60.
  • the fourth switch 4 may be a mechanical switch having a movable part.
  • the fourth switch 4 may have a contact, and may be configured to switch between a conduction state and an insulation state by opening and closing the contact.
  • the fourth switch 4 may be, for example, an electromagnetic relay. In FIG. 1, the control line from the control unit 60 to the fourth switch 4 is omitted in order to improve readability.
  • the resistor 11 is connected to the fourth switch 4 at one end and grounded at the other end.
  • the fourth switch 4 is controlled so as to be off in normal times.
  • the capacitor 10 is discharged via the resistor 11. That is, the fourth switch 4 and the resistor 11 constitute a discharge circuit for discharging the charge charged in the capacitor 10.
  • the detection circuit 20 can detect a potential difference between both terminals of the capacitor 10 in a state where the second switch 2 is on.
  • the detection circuit 20 includes an operational amplifier 21 and an AD converter 22.
  • the detection circuit 20 can detect a potential difference between both terminals of the capacitor 10 based on an input to the operational amplifier 21.
  • the detection circuit 20 can detect the voltage of each first battery 200 by detecting a potential difference between both terminals of the capacitor 10. For example, after the first switch 1A and the first switch 1B are turned on and the capacitor 10 is charged with the voltage of the first battery 200A, the first switch 1A and the first switch 1B are turned off and the both terminals of the capacitor 10 are connected. By detecting the potential difference, the detection circuit 20 can detect the voltage of the first battery 200A. Similarly, the detection circuit 20 can also detect the voltages of the first batteries 200B to 200E.
  • the operational amplifier 21 forms a voltage follower by connecting a negative input terminal and an output terminal.
  • the voltage follower including the operational amplifier 21 functions as a buffer and outputs the voltage input to the detection circuit 20 to the AD converter 22.
  • the voltage follower configured by the operational amplifier 21 is disposed in front of the AD converter 22 is an example, and the configuration of the detection circuit 20 is not limited thereto.
  • an amplifier having an amplification factor different from 1 may be arranged in front of the AD converter 22. That is, an amplifier circuit having an arbitrary amplification factor, such as a voltage follower with an amplification factor of 1 or an amplifier having an amplification factor different from that of the amplification factor 1, may be disposed in front of the AD converter 22.
  • the AD converter 22 has an AD input terminal 22A.
  • the AD converter 22 converts an analog voltage input from the voltage follower configured by the operational amplifier 21 to the AD input terminal 22 ⁇ / b> A into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • the AD converter 22 further has AD input terminals 22B and 22C.
  • the AD input terminal 22B is connected to the first node 10A via the third switch 3A and the resistor 41.
  • the AD input terminal 22B is grounded via a resistor 42.
  • the AD input terminal 22C is connected to the second node 10B via the third switch 3B and the resistor 43.
  • the AD input terminal 22C is grounded via a resistor 44.
  • the AD converter 22 converts the analog voltage input to the AD input terminal 22B into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • the AD converter 22 converts the analog voltage input to the AD input terminal 22 ⁇ / b> C into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • the constant voltage circuit 30 has a control terminal 30A and an output terminal 30B.
  • the constant voltage circuit 30 outputs a constant voltage from the output terminal 30B in response to a control signal input from the control unit 60 to the control terminal 30A.
  • the constant voltage circuit 30 can output a constant voltage to the capacitor 10.
  • the constant voltage circuit 30 outputs a constant voltage when a high signal is input from the control unit 60 to the control terminal 30A, and stops outputting the constant voltage when a low signal is input. To do.
  • FIG. 2 shows an example of the configuration of the constant voltage circuit 30.
  • the constant voltage circuit 30 includes a power supply terminal 30C not shown in FIG. 1 in addition to the control terminal 30A and the output terminal 30B.
  • the constant voltage circuit 30 receives supply of power supply voltage from the power supply terminal 30C. As shown in FIG. 2, the constant voltage circuit 30 is supplied with the power supply voltage from the second battery 300 to the power supply terminal 30 ⁇ / b> C via the voltage conversion circuit 400, for example.
  • the second battery 300 is a battery different from the first battery 200.
  • the second battery 300 may be a secondary battery having a narrower SOC bandwidth than the first battery 200.
  • the second battery 300 is, for example, a lead storage battery, but is not limited thereto, and may be another secondary battery. Although not particularly illustrated, the second battery 300 is connected in parallel to the first battery 200 and supplies power to the auxiliary equipment of the vehicle.
  • the voltage conversion circuit 400 converts the voltage supplied from the second battery 300 and supplies it to the power supply terminal 30C of the constant voltage circuit 30. For example, the voltage conversion circuit 400 steps down the voltage of 12V supplied from the second battery 300 to 5V and supplies the voltage to the power supply terminal 30C of the constant voltage circuit 30.
  • the constant voltage circuit 30 includes an NPN transistor 31, a PNP transistor 32, a capacitor 33, resistors 34 to 38, and a diode 39.
  • the base voltage of the NPN transistor 31 rises and the NPN transistor 31 is turned on.
  • the base voltage of the PNP transistor 32 is lowered and the PNP transistor 32 is turned on.
  • a current can be supplied from the output terminal 30B to the first node 10A.
  • the capacitor 10 can be charged by the current supplied from the output terminal 30B of the constant voltage circuit 30.
  • the PNP transistor 32 can function as a changeover switch that switches the connection state between the second battery 300 and the capacitor 10 in accordance with a command from the control unit 60.
  • the voltage from the second battery 300 can be applied to the capacitor 10.
  • the diode 39 has a cathode connected to the first battery 200 side so as to prevent a current from flowing backward from the first battery 200.
  • the constant voltage circuit 30 thus generates a constant voltage based on the power supply voltage supplied from the secondary battery having a narrow SOC bandwidth, for example, the second battery 300 which is a lead storage battery. Thereby, the constant voltage circuit 30 can generate
  • the constant voltage output from the constant voltage circuit 30 is the maximum voltage that can be supplied by the first batteries 200A to 200E connected in series, that is, the positive terminal of the first battery 200A and the negative terminal of the first battery 200E.
  • the voltage may be smaller than the voltage between.
  • the maximum voltage that can be supplied by each first battery 200 is 2.4V
  • the maximum voltage that can be supplied by the first batteries 200A to 200E connected in series is 12V.
  • the constant voltage output from the constant voltage circuit 30 can be smaller than 12V.
  • the constant voltage output from the constant voltage circuit 30 can be greater than the maximum voltage that each first battery 200 can supply.
  • the maximum voltage that can be supplied to each first battery 200 is 2.4V
  • the constant voltage output from the constant voltage circuit 30 can be greater than 2.4V.
  • the control part 60 can confirm that the said voltage is not the voltage supplied from the 1st battery 200, when detecting the voltage charged in the capacitor 10 from the constant voltage circuit 30 in the diagnostic process.
  • Diagnostic device 100 can perform failure diagnosis using the constant voltage output from constant voltage circuit 30. If the voltage of the first battery 200 that is the detection target is used as the reference voltage when the diagnosis apparatus 100 performs the failure diagnosis, when the battery capacity of the first battery 200 is reduced, the capacitor 10, Failures such as the first switch 1 and the second switch 2 may not be correctly detected. However, since the diagnostic apparatus 100 according to the present embodiment performs failure diagnosis using the constant voltage output from the constant voltage circuit 30, the capacitor 10, the first switch 1, and the first switch are not dependent on the first battery 200. 2 The state of the switch 2 or the like can be diagnosed.
  • the capacitor voltage detection circuit 40 is a circuit for detecting the voltage at both terminals of the capacitor 10, that is, the voltage at the first node 10A and the second node 10B without using the operational amplifier 21 of the detection circuit 20.
  • the capacitor voltage detection circuit 40 includes third switches 3A and 3B, a resistor 41, a resistor 42, a resistor 43, and a resistor 44.
  • the third switch 3A switches the connection state between the first node 10A and the resistor 41 in accordance with a command from the control unit 60.
  • the third switch 3 ⁇ / b> B switches the connection state between the second node 10 ⁇ / b> B and the resistor 43 in accordance with a command from the control unit 60.
  • the third switches 3A and 3B are controlled to be turned on, both ends thereof are conducted.
  • the third switches 3A and 3B are controlled to be turned off, both ends thereof are insulated.
  • the control lines from the control unit 60 to the third switches 3 ⁇ / b> A and 3 ⁇ / b> B are not shown in order to improve readability.
  • the third switch 3A can be connected to the first node 10A and the AD input terminal 22B by bypassing the operational amplifier 21 by being controlled to be turned on.
  • the third switch 3 ⁇ / b> B can be connected to the second node 10 ⁇ / b> B and the AD input terminal 22 ⁇ / b> C by bypassing the operational amplifier 21 by being turned on.
  • the first node 10A is connected to terminals of the first switch 1A, the first switch 1C, the first switch 1E, the first switch 1G, and the first switch 1J that are not connected to the first battery 200.
  • the second node 10B is connected to terminals of the first switch 1B, the first switch 1D, the first switch 1F, the first switch 1H, and the first switch 1K that are not connected to the first battery 200.
  • the third switches 3A and 3B may be collectively referred to as the third switch 3 when it is not necessary to distinguish between them.
  • the third switch 3 may be a mechanical switch having a movable part.
  • the third switch 3 may have a contact, and may be configured to switch between a conduction state and an insulation state by opening and closing the contact.
  • the third switch 3 may be, for example, an electromagnetic relay.
  • the resistor 41 is connected to the first node 10A through the third switch 3A at one end.
  • the resistor 41 is connected to the AD input terminal 22B of the AD converter 22 and the resistor 42 at the other end.
  • the resistor 42 is connected to the AD input terminal 22B and the resistor 41 of the AD converter 22 at one end.
  • the resistor 42 is grounded at the other end.
  • the resistor 43 is connected to the second node 10B via the third switch 3B at one end.
  • the resistor 43 is connected to the AD input terminal 22C of the AD converter 22 and the resistor 44 at the other end.
  • the resistor 44 is connected to the AD input terminal 22C and the resistor 43 of the AD converter 22 at one end.
  • the resistor 44 is grounded at the other end.
  • any of the first switch 1A, the first switch 1C, the first switch 1E, the first switch 1G, and the first switch 1J is on.
  • the voltage on the positive side of the first battery 200 connected to the first switch 1 that is turned on is divided by the resistor 41 and the resistor 42 and supplied to the AD input terminal 22 ⁇ / b> B of the AD converter 22.
  • the first switch 1A, the first switch 1C, the first switch 1E, the first switch 1G, and the first switch 1J are all off. Then, 0V is supplied to the AD input terminal 22B of the AD converter 22 through the resistor 42 that is grounded.
  • the constant voltage circuit 30 When the constant voltage circuit 30 is off and the third switch 3B is on, if any of the first switch 1B, the first switch 1D, the first switch 1F, and the first switch 1H is on, it is on.
  • the voltage on the negative side of the first battery 200 connected to the first switch 1 is divided by the resistors 43 and 44 and supplied to the AD input terminal 22 ⁇ / b> C of the AD converter 22.
  • the sub detection circuit 50 can detect a potential difference between both terminals of the capacitor 10 in a state where the second switch 2 is on.
  • the sub detection circuit 50 is a circuit for diagnosing whether or not the operational amplifier 21 of the detection circuit 20 is operating normally.
  • the sub detection circuit 50 operates together when the detection circuit 20 operates.
  • the sub detection circuit 50 includes an operational amplifier 51 and an AD converter 52.
  • the operational amplifier 51 is connected to a negative input terminal and an output terminal to constitute a voltage follower.
  • the voltage follower including the operational amplifier 51 functions as a buffer and outputs the voltage input to the sub detection circuit 50 to the AD converter 52.
  • the AD converter 52 converts the analog voltage input from the voltage follower configured by the operational amplifier 51 into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • FIG. 1 shows a configuration in which the AD converter 52 is an AD converter different from the AD converter 22.
  • the control unit 60 is communicably connected to each component of the diagnostic device 100 by wired or wireless communication.
  • the control unit 60 may output a control instruction to each component unit or obtain information from each component unit.
  • the control unit 60 controls on / off of the first switch 1, the second switch 2, the third switch 3, and the fourth switch 4.
  • the control unit 60 controls on / off of the constant voltage circuit 30.
  • the constant voltage circuit 30 can supply a constant voltage to the first node 10A.
  • the control unit 60 can acquire a digital signal corresponding to the analog voltage input to the AD input terminals 22A, 22B, and 22C from the AD converter 22 of the detection circuit 20.
  • the control unit 60 can acquire a digital signal corresponding to the analog voltage input to the sub detection circuit 50 from the AD converter 52 of the sub detection circuit 50.
  • the control unit 60 may be configured by a processor such as a CPU (Central Processing Unit) that executes a program that defines a control procedure.
  • a processor such as a CPU (Central Processing Unit) that executes a program that defines a control procedure.
  • the control unit 60 may be configured as an ECU (Electric Control Unit or Engine Control Unit) of the vehicle.
  • the storage unit 70 is connected to the control unit 60 and stores information acquired from the control unit 60.
  • the storage unit 70 may function as a working memory for the control unit 60.
  • the storage unit 70 may store a program executed by the control unit 60.
  • the storage unit 70 is configured by, for example, a semiconductor memory, but is not limited thereto, and may be configured by a magnetic storage medium or may be configured by another storage medium.
  • the storage unit 70 may be included as part of the control unit 60.
  • the first switch 1, the capacitor 10, and the second switch 2 ⁇ / b> A can function as a detection connection circuit that enables the first battery 200 to be connected to the detection circuit 20.
  • the constant voltage circuit 30 can function as a diagnostic connection circuit for enabling the second battery 300 to be connected to the detection connection circuit.
  • the control unit 60 of the diagnostic apparatus 100 can diagnose the components in the diagnostic apparatus 100 according to the procedure shown in the flowchart of FIG.
  • the control unit 60 can diagnose whether or not a failure has occurred in the first switch 1, the second switch 2, the capacitor 10, and the operational amplifier 21.
  • the control unit 60 first performs a diagnosis mainly using the capacitor voltage detection circuit 40 (step S1).
  • step S1 the control unit 60 diagnoses the first switch 1 other than the first switch 1K that is the first switch 1 at the lowest stage connected to the ground, that is, the first switches 1A to 1J.
  • diagnosis 1 the diagnosis in step S1 of the control unit 60 is referred to as “diagnosis 1”.
  • step S2 the control unit 60 diagnoses the first switch 1K at the lowest stage.
  • diagnosis 2 the diagnosis in step S2 of the control unit 60 is referred to as “diagnosis 2”.
  • step S3 the control unit 60 diagnoses the capacitor 10, the second switch 2, the operational amplifier 21, and the first switch 1K at the lowest stage.
  • diagnosis 3 the diagnosis in step S3 of the control unit 60 is referred to as “diagnosis 3”.
  • step S4 the control unit 60 diagnoses the operational amplifier 21.
  • diagnosis 4 the diagnosis in step S4 of the control unit 60 is referred to as “diagnosis 4”.
  • control unit 60 sets a failure flag and stops the subsequent diagnosis processing. You can do it.
  • the control unit 60 controls the on / off of the first switch 1, the second switch 2, the third switch 3, the fourth switch 4, and the constant voltage circuit 30, and the first switch 1,
  • the processor may include a control unit 60 and a diagnosis unit.
  • the control unit 60 executes on / off control of the first switch 1, the second switch 2, the third switch 3, the fourth switch 4, and the constant voltage circuit 30, and the diagnosis unit performs the first switch. Diagnosis of the first switch 2, the second switch 2, the capacitor 10, and the operational amplifier 21 may be performed.
  • Diagnosis 1 includes the following two diagnoses. Diagnosis 1-1: Short fault diagnosis of the first switches 1A to 1J Diagnosis 1-2: Open fault diagnosis of the first switches 1A to 1J
  • Diagnosis 1-1 is a short fault diagnosis of the first switches 1A to 1J other than the first switch 1K at the lowest stage.
  • the diagnosis 1-1 will be described with reference to the block diagram shown in FIG. In FIG. 4, some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be turned off, the second switch 2 to be turned off, and the third switch 3 to be turned on. Further, the control unit 60 controls the constant voltage circuit 30 shown in FIG. 1 to be turned off.
  • the AD converter 22 is connected to the first switch 1 having a short circuit failure at either the AD input terminal 22B or 22C.
  • the voltage of the first battery 200 is detected.
  • FIG. 4 shows a state where the first switch 1A is short-circuited as an assumed failure site. In this case, even if the first switch 1A is controlled to be turned off, the first switch 1A remains short-circuited, so the AD input terminal 22B of the AD converter 22 detects the voltage on the positive side of the first battery 200A.
  • the AD converter 22 detects 0 V at both the AD input terminals 22B and 22C.
  • the controller 60 detects a voltage other than 0V in a state where the first switch 1 is turned off, the second switch 2 is turned off, the third switch 3 is turned on, and the constant voltage circuit 30 is turned off, It can be determined that any of the switches 1A to 1J may have a short circuit failure.
  • the control unit 60 may determine that a voltage other than 0 V has been detected when a voltage equal to or higher than a predetermined threshold is detected.
  • the diagnostic apparatus 100 executes the diagnosis 1-1 as the first diagnosis, and confirms whether there is a short circuit failure in the first switches 1A to 1J. This is because if any of the first switches 1A to 1J is short-circuited, a voltage higher than that allowed by the operational amplifier 21 is applied to the operational amplifier 21 when the second switch 2 is turned on, and the operational amplifier 21 may be damaged. Because there is.
  • the controller 60 executes the diagnosis 1-1 before executing the process of turning on the second switch 2, and if it is determined that any of the first switches 1A to 1J has a short fault, the second switch 2 Is maintained off, and the subsequent diagnostic processing is stopped. Thereby, the diagnostic apparatus 100 can reduce the risk of failure of the operational amplifier 21 due to the application of a relatively high voltage.
  • Diagnosis 1-2 is an open failure diagnosis of the first switches 1A to 1J other than the first switch 1K at the lowest stage.
  • the diagnosis 1-2 will be described with reference to the block diagram shown in FIG. 5 and the timing chart shown in FIG. In FIG. 5, some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the second switch 2 to be turned off and the third switch 3 to be turned on. Further, the control unit 60 controls the constant voltage circuit 30 shown in FIG. 1 to be turned off.
  • the controller 60 sequentially turns on / off the first switch 1 connected to both terminals of the first battery 200 from the low potential side of the first battery 200 toward the high side. That is, the controller 60 first turns on / off the first switches 1J and 1K in a state where all the first switches 1 are off. Subsequently, the control unit 60 turns on / off the first switches 1G and 1H. The control unit 60 continues this process until the first switches 1A and 1B are turned on / off.
  • the control unit 60 sequentially turns the first switch 1 connected to both terminals of the first battery 200 from the high potential side to the low side rather than from the low potential side to the high side. It may be turned on / off.
  • FIG. 6 shows a timing chart when the control unit 60 turns on / off the first switches 1A and 1B.
  • the control unit 60 measures the voltages input to the AD input terminals 22B and 22C at predetermined measurement timings t1 and t2. Thereafter, the controller 60 turns off the first switches 1A and 1B.
  • the control unit 60 may calculate an average value of the voltages measured at t1 and t2 to obtain a detected voltage value.
  • the control unit 60 measures the voltage at two timings t1 and t2, but the measurement timing is not limited to this.
  • the control unit 60 may measure the voltage at one timing or may measure the voltage at three or more timings.
  • the control unit 60 may calculate an average value and use it as a detected voltage value.
  • the same concept applies to the diagnosis 2 and later, and therefore, the description about the calculation of the number of measurement timings and the average value is omitted in the description after the diagnosis 2.
  • the AD converter 22 is connected to the first switch 1 when the first switch 1 having the open failure is turned on. 0 V is detected at the AD input terminal 22B or 22C.
  • FIG. 5 shows a state in which the first switches 1A and 1B are turned on when the first switch 1A has an open failure as an assumed failure part.
  • the AD input terminal 22B of the AD converter 22 detects 0V.
  • the AD input terminal 22C of the AD converter 22 detects the voltage on the negative side of the first battery 200A divided by the resistors 43 and 44.
  • the timing chart of FIG. 6 shows two states, when the first switch 1A is normal and when there is an open failure.
  • the AD input terminal 22 ⁇ / b> B of the AD converter 22 detects the voltage on the positive side of the first battery 200 ⁇ / b> A divided by the resistor 41 and the resistor 42.
  • the AD input terminal 22B of the AD converter 22 detects 0V.
  • the controller 60 sequentially turns on / off the first switch 1 with the second switch 2 turned off, the third switch 3 turned on, and the constant voltage circuit 30 turned off, If 0V is detected in a state where any one of the first switches 1A to 1J is turned on, it can be determined that there is a possibility that the first switch 1 has an open failure.
  • the control unit 60 may determine that 0 V is detected when a voltage equal to or lower than a predetermined threshold is detected.
  • Diagnosis 2 is an open failure diagnosis of the first switch 1K which is the lowest switch of the first switch 1. The diagnosis 2 will be described with reference to the block diagram shown in FIG. 7 and the timing chart shown in FIG. In FIG. 7, some of the components of the diagnostic device 100 shown in FIG.
  • control unit 60 controls the third switch 3 and the constant voltage circuit 30 shown in FIG. In addition, before the start of diagnosis 2, the control unit 60 turns off all of the first switch 1 and the second switch 2.
  • Fig. 8 shows a timing chart for diagnosis 2.
  • the controller 60 turns on / off the first switches 1J and 1K connected to both terminals of the first battery 200E, which is the battery having the lowest potential among the first batteries 200. Thereafter, when the second switch 2 is turned on, the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t1 to t4. Thereafter, the controller 60 turns off the second switch 2.
  • the control unit 60 may calculate an average value of the voltages measured at t1 to t4 and use it as a detected voltage value.
  • the control unit 60 When the control unit 60 turns on the first switches 1J and 1K, when the first switches 1J and 1K are normal, the potential difference between both terminals of the capacitor 10 reaches the voltage of the first battery 200E as shown in FIG. To rise. Thereafter, even if the control unit 60 turns off the first switches 1J and 1K, the potential difference is maintained between both terminals of the capacitor 10. In this case, the control unit 60 detects a voltage corresponding to the voltage of the first battery 200E at predetermined measurement timings t1 to t4 after turning on the second switch.
  • FIG. 7 shows a state in which the first switch 1K has an open failure as an assumed failure site.
  • the first switch 1K since the first switch 1K remains open even when the first switches 1J and 1K are controlled to be on, the capacitor 10 is not charged, and the potential difference between both terminals of the capacitor 10 is shown in FIG. Thus, it remains at 0V.
  • the control unit 60 detects 0 V at predetermined measurement timings t1 to t4 after turning on the second switch.
  • the capacitor 10 is not charged even if the first switch 1J, rather than the first switch 1K, has an open failure.
  • the control unit 60 may determine that there is a possibility that the first switch 1K has an open failure.
  • sequence based on the timing chart shown in FIG. 8 is the same sequence as the sequence when the control unit 60 detects the voltage of the first battery 200 in the normal process. Therefore, the control unit 60 can execute the diagnosis 2 in the same sequence as the normal voltage detection sequence of the first battery 200.
  • Diagnosis 3 includes the following seven diagnoses. Diagnosis 3-1: Capacitor 10 leak or short fault diagnosis Diagnosis 3-2: Second switch 2 open fault diagnosis Diagnosis 3-3: Operational amplifier 21 output voltage sticking diagnosis (0 V) Diagnosis 3-4: Short failure diagnosis of the second switch 2A Diagnosis 3-5: Short failure diagnosis of the second switch 2B Diagnosis 3-6: Short failure diagnosis of the first switch 1K Diagnosis 3-7: Operational amplifier 21 Output voltage sticking diagnosis (5V)
  • the diagnosis 3-1 diagnoses a leak failure or a short-circuit failure of the capacitor 10.
  • the diagnosis 3-1 will be described with reference to the block diagram shown in FIG. 9 and the timing chart shown in FIG.
  • the failure diagnosis target of diagnosis 3-1 is a capacitor 10.
  • FIG. 9 some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the start of the diagnosis 3-1, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • FIG. 10 shows a timing chart in diagnosis 3-1.
  • the control unit 60 outputs a high signal to the control terminal 30A, turns on the constant voltage circuit 30, and turns on the second switch 2.
  • the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t1 to t4.
  • the measurement at predetermined measurement timings t1 to t4 is also referred to as “measurement 1”.
  • the control unit 60 then outputs a low signal to the control terminal 30A to turn off the constant voltage circuit 30.
  • the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t5 to t8.
  • the measurement at predetermined measurement timings t5 to t8 is also referred to as “measurement 2”.
  • the control unit 60 may match the conditions of the predetermined measurement timings t1 to t4 and t5 to t8 as much as possible with the conditions of the measurement timing when detecting the voltage of the first battery 200 in the normal process. For example, when the number of measurements in the normal process is four times and the four measurement values are averaged, the control unit 60 measures four times at the timings t1 to t4 in the measurement 1, and the four measurement values are obtained. May average. In addition, the control unit 60 may measure four times at the timing t5 to t8 in the measurement 2 and average the four measurement values. Further, the control unit 60, for example, a delay time from turning on the second switch 2 to starting measurement 2 is defined as a delay time from turning on the second switch 2 in normal processing to starting measurement.
  • the control unit 60 can Measurement 1 and measurement 2 can be performed with a small error.
  • the measurement timing conditions are measured when the voltage of the first battery 200 is detected in normal processing. It may be matched to the timing conditions as much as possible.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is charged by the constant voltage supplied from the constant voltage circuit 30 when the capacitor 10 is normal. In this case, in the measurement 1, the control unit 60 detects a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30. Even when there is a leak failure in the capacitor 10, the capacitor 10 can be charged by the constant voltage supplied from the constant voltage circuit 30. In this case, in the measurement 1, the control unit 60 can detect a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30. When the capacitor 10 has a short circuit failure, the capacitor 10 is not charged even if a constant voltage is supplied from the constant voltage circuit 30. In this case, in the measurement 1, the control unit 60 detects 0V.
  • the capacitor 10 maintains a charged state when the capacitor 10 is normal.
  • the control unit 60 detects a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30.
  • the control unit 60 detects a voltage smaller than the voltage detected in the measurement 1.
  • the control unit 60 continues to detect 0V.
  • the control unit 60 can determine that there is a possibility of a short circuit failure in the capacitor 10 when the voltage detected in the measurement 1 is 0V.
  • the control unit 60 may determine that 0 V is detected when a voltage equal to or lower than a predetermined threshold is detected.
  • the control unit 60 may determine that the capacitor 10 may be leaking when the difference obtained by subtracting the voltage detected in the measurement 2 from the voltage detected in the measurement 1 is larger than a predetermined threshold.
  • the predetermined threshold value may be set to an appropriate value in consideration of voltage reading error, noise, and the like.
  • control unit 60 can determine that there is a possibility that a leak failure has occurred in the capacitor 10. As a result, the control unit 60 can reduce the possibility that the voltage of the first battery 200 is misread in the normal process due to a leakage failure of the capacitor 10 and the first battery 200 is overcharged.
  • the diagnosis 3-2 is an open failure diagnosis of the second switch 2.
  • the diagnosis 3-2 will be described with reference to the block diagram shown in FIG. 11 and the timing chart shown in FIG. As shown in FIG. 11, the failure diagnosis targets of the diagnosis 3-2 are the second switches 2A and 2B. In FIG. 11, some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be turned off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the start of the diagnosis 3-2, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • Fig. 12 shows a timing chart for diagnosis 3-2.
  • the control unit 60 controls on / off of the constant voltage circuit 30 and on / off of the second switch 2 at the same timing as the timing chart shown in FIG. Further, the control unit 60 performs measurement 1 at the measurement timings t1 to t4 similar to the timing chart shown in FIG. Further, the control unit 60 performs the measurement 2 at the measurement timings t5 to t8 similar to the timing chart shown in FIG.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is charged by the constant voltage supplied from the constant voltage circuit 30 when the second switch 2B is normal. In this state, when the second switch 2 ⁇ / b> A is normal, in the measurement 1, the control unit 60 can detect a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30. Further, since the capacitor 10 remains charged even when the constant voltage circuit 30 is turned off, the control unit 60 can detect a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30 also in the measurement 2. .
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is not charged by the constant voltage circuit 30 if the second switch 2B has an open failure. In this case, the control unit 60 detects 0 V in measurement 1 and measurement 2.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, if the second switch 2A has an open failure, the voltage of the first node 10A is not applied to the AD input terminal 22A of the AD converter 22. . In this case, since the input terminal on the positive side of the operational amplifier 21 is grounded via a resistance component of about several kilohms due to a wraparound of a peripheral circuit, the control unit 60 performs 0V in measurement 1 and measurement 2. Is detected.
  • the control unit 60 can determine that there is a possibility of an open failure in the second switch 2 when the voltage detected in the measurement 1 and the measurement 2 is 0V.
  • the control unit 60 may determine that 0 V is detected when a voltage equal to or lower than a predetermined threshold is detected.
  • diagnosis 3-3 diagnoses whether the output voltage of the operational amplifier 21 is stuck at 0V.
  • the diagnosis 3-3 will be described with reference to the block diagram shown in FIG. 13 and the timing chart shown in FIG. As shown in FIG. 13, the failure diagnosis target of diagnosis 3-3 is an operational amplifier 21.
  • FIG. 13 some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be turned off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the start of the diagnosis 3-3, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • FIG. 14 shows a timing chart in diagnosis 3-3.
  • the control unit 60 controls on / off of the constant voltage circuit 30 and on / off of the second switch 2 at the same timing as the timing chart shown in FIG. Further, the control unit 60 performs measurement 1 at the measurement timings t1 to t4 similar to the timing chart shown in FIG. Further, the control unit 60 performs the measurement 2 at the measurement timings t5 to t8 similar to the timing chart shown in FIG.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is charged by the constant voltage supplied from the constant voltage circuit 30. In this state, when the operational amplifier 21 is normal, the operational amplifier 21 outputs a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30 to the AD input terminal 22 ⁇ / b> A of the AD converter 22. Therefore, the control unit 60 can detect a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30 in the measurement 1. Further, since the capacitor 10 remains charged even when the constant voltage circuit 30 is turned off, the control unit 60 can detect a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30 also in the measurement 2. .
  • the control unit 60 detects 0V in measurement 1 and measurement 2.
  • the output of the detection circuit 20 also sticks to 0V.
  • the control unit 60 can determine that the output of the operational amplifier 21 may be stuck to 0V when the voltage detected in the measurement 1 and the measurement 2 is 0V.
  • the control unit 60 may determine that 0 V is detected when a voltage equal to or lower than a predetermined threshold is detected.
  • Diagnosis 3-4 Diagnosis 3-4 is a short fault diagnosis of the second switch 2A.
  • the diagnosis 3-4 will be described with reference to the block diagram shown in FIG. 15 and the timing chart shown in FIG. As shown in FIG. 15, the failure diagnosis target of diagnosis 3-4 is the second switch 2A. In FIG. 15, some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the start of the diagnosis 3-4, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • FIG. 16 shows a timing chart in diagnosis 3-4.
  • the control unit 60 controls on / off of the constant voltage circuit 30 and on / off of the second switch 2 at the same timing as the timing chart shown in FIG. Further, the control unit 60 performs measurement 1 at the measurement timings t1 to t4 similar to the timing chart shown in FIG. Further, the control unit 60 performs the measurement 2 at the measurement timings t5 to t8 similar to the timing chart shown in FIG.
  • the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t9 to t12.
  • the measurement at predetermined measurement timings t9 to t12 is also referred to as “measurement 3”.
  • the positive input terminal of the operational amplifier 21 is grounded to the ground through a resistance component of about several kilohms due to wraparound of peripheral circuits. For this reason, when the control unit 60 turns off the second switch, when the second switch 2A is normal, the input voltage of the operational amplifier 21 gradually decreases due to current leakage through the resistance component. In this case, the control unit 60 detects a voltage smaller than the voltage detected in the measurement 2 in the measurement 3.
  • the second switch 2A If the second switch 2A is short-circuited, the second switch 2A remains short-circuited even if the control unit 60 controls to turn off the second switch 2. In this case, the input voltage of the operational amplifier 21 does not change even when the control unit 60 performs control to turn off the second switch 2. Therefore, the control unit 60 detects a voltage equivalent to the voltage detected in the measurement 2 in the measurement 3.
  • control unit 60 can determine that there is a possibility of a short failure in the second switch 2A.
  • the control unit 60 may determine that the difference is zero when the difference obtained by subtracting the voltage detected in measurement 3 from the voltage detected in measurement 1 or measurement 2 is equal to or less than a predetermined threshold.
  • Diagnosis 3-5 is a short failure diagnosis of the second switch 2B.
  • the diagnosis 3-5 will be described with reference to the block diagram shown in FIG. 17 and the timing chart shown in FIG. As shown in FIG. 17, the failure diagnosis target of diagnosis 3-5 is the second switch 2B. In FIG. 17, some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the diagnosis 3-5 is started, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • FIG. 18 shows a timing chart in diagnosis 3-5.
  • the control unit 60 outputs a high signal to the control terminal 30A to turn on the constant voltage circuit 30, and outputs a low signal to the control terminal 30A to turn off the constant voltage circuit 30 when a predetermined time elapses.
  • the controller 60 turns off the constant voltage circuit 30, turns on the second switch 2, and then turns off the second switch 2.
  • the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t13 to t16.
  • the measurement at the predetermined measurement timings t13 to t16 is also referred to as “measurement 4”.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 with the second switch 2 turned off, the capacitor 10 is not charged. This is because the second node 10B is not grounded when the second switch 2B is normal. Therefore, after that, after the control unit 60 turns off the constant voltage circuit 30, when the second switch 2 is turned on, the control unit 60 detects 0V.
  • the capacitor 10 is charged when the control unit 60 turns on the constant voltage circuit 30 with the second switch 2 turned off. This is because when the second switch 2B is short-circuited, the second node 10B is grounded. Therefore, when the control unit 60 turns off the constant voltage circuit 30 and then turns on the second switch 2, the control unit 60 detects a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30.
  • the control unit 60 can determine that there is a possibility of a short circuit failure in the second switch 2B.
  • the control unit 60 may determine that a voltage other than 0 V is detected when a voltage equal to or higher than a predetermined threshold is detected.
  • Diagnosis 3-6 is a short fault diagnosis of the first switch 1K which is the lowest switch of the first switch 1.
  • the diagnosis 3-6 will be described with reference to the block diagram shown in FIG. 19 and the timing chart shown in FIG. As shown in FIG. 19, the failure diagnosis target of diagnosis 3-6 is the first switch 1K.
  • FIG. 19 some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off. Further, before the start of the diagnosis 3-6, the control unit 60 turns off the constant voltage circuit 30 and the second switch 2.
  • FIG. 20 shows a timing chart in diagnosis 3-6.
  • the control unit 60 controls on / off of the constant voltage circuit 30 and on / off of the second switch 2 at the same timing as the timing chart shown in FIG. Further, the control unit 60 performs measurement 4 at the measurement timings t13 to t16 similar to the timing chart shown in FIG.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 with the second switch 2 turned off, the capacitor 10 is not charged. This is because the second node 10B is not grounded when the first switch 1K is normal. Therefore, after that, after the control unit 60 turns off the constant voltage circuit 30, when the second switch 2 is turned on, the control unit 60 detects 0V.
  • the capacitor 10 is charged when the control unit 60 turns on the constant voltage circuit 30 with the second switch 2 turned off. This is because the second node 10B is grounded when the first switch 1K is short-circuited. Therefore, when the control unit 60 turns off the constant voltage circuit 30 and then turns on the second switch 2, the control unit 60 detects a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30.
  • the control unit 60 can determine that there is a possibility of a short circuit failure in the first switch 1K.
  • the control unit 60 may determine that a voltage other than 0 V is detected when a voltage equal to or higher than a predetermined threshold is detected.
  • the diagnosis 3-7 diagnoses whether the output voltage of the operational amplifier 21 is stuck to the power supply voltage (for example, 5V).
  • the diagnosis 3-7 will be described with reference to the block diagram shown in FIG. 21 and the timing chart shown in FIG. As shown in FIG. 21, the failure diagnosis target of diagnosis 3-7 is an operational amplifier 21.
  • FIG. 21 some of the components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the first switch 1 to be off. Further, the control unit 60 controls the third switch 3 shown in FIG. 1 to be turned off.
  • Fig. 22 shows a timing chart for diagnosis 3-7.
  • the controller 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t17 to t20 before the constant voltage circuit 30 and the second switch 2 are turned on.
  • the measurement at predetermined measurement timings t17 to t20 is also referred to as “measurement 5”.
  • the capacitor 10 Before the controller 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is not charged. In this state, when the operational amplifier 21 is normal, the operational amplifier 21 outputs 0 V to the AD input terminal 22 ⁇ / b> A of the AD converter 22. Therefore, the control unit 60 can detect 0 V in the measurement 5.
  • the control unit 60 detects 5V in the measurement 5.
  • the output of the detection circuit 20 also sticks to 5V.
  • the control unit 60 can determine that the output of the operational amplifier 21 may be stuck to 5 V when the voltage detected in the measurement 5 is the power supply voltage (for example, 5 V) of the operational amplifier 21.
  • the control unit 60 may determine that 5V has been detected when a voltage with a difference from 5V being equal to or less than a predetermined threshold is detected.
  • Diagnosis 4 is a failure diagnosis of the operational amplifier 21. The diagnosis 4 will be described with reference to the block diagram shown in FIG. 23 and the timing chart shown in FIG. In FIG. 23, some components of the diagnostic apparatus 100 shown in FIG.
  • control unit 60 controls the third switch 3 and the constant voltage circuit 30 shown in FIG. Further, before the diagnosis 4 is started, the control unit 60 turns off all of the first switch 1 and the second switch 2.
  • FIG. 24 shows a timing chart in diagnosis 4.
  • the control unit 60 outputs a high signal to the control terminal 30A, turns on the constant voltage circuit 30, and turns on the second switch 2.
  • the control unit 60 measures the voltage input to the AD input terminal 22A of the AD converter 22 at predetermined measurement timings t21 to t24.
  • diagnosis 4 when the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the voltage input to the AD input terminal of the AD converter 52 of the sub detection circuit 50 at the measurement timings t21 to t24. Also measure.
  • the measurement at predetermined measurement timings t21 to t24 is also referred to as “measurement 6”.
  • the control unit 60 When the control unit 60 turns on the constant voltage circuit 30 and the second switch 2, the capacitor 10 is charged by the constant voltage supplied from the constant voltage circuit 30. In this case, in the measurement 6, when the operational amplifier 21 is normal, the control unit 60 detects a voltage corresponding to the constant voltage supplied by the constant voltage circuit 30 from both the detection circuit 20 and the sub detection circuit 50. When there is an abnormality in the operational amplifier 21, the control unit 60 detects different voltages from the detection circuit 20 and the sub detection circuit 50 in the measurement 6.
  • control unit 60 may indicate that the operational amplifier 21 may have failed. Can be judged.
  • step S3 diagnosis 3
  • step S4 diagnosis 4
  • the control unit 60 of the diagnostic device 100 starts the flow shown in FIGS. 25 to 27 from the state where the first switch 1, the second switch 2, the third switch 3, and the constant voltage circuit 30 are controlled to be turned off. .
  • the controller 60 turns on the second switch 2 (step S101) and turns on the constant voltage circuit 30 (step S102), for example, as in the timing chart shown in FIG.
  • the control unit 60 may execute step S101 and step S102 simultaneously.
  • the controller 60 may execute step S102 before step S101.
  • Control unit 60 performs measurement 1 (step S103).
  • the controller 60 turns off the constant voltage circuit 30 (step S104).
  • the control unit 60 performs measurement 2 (step S105).
  • the control unit 60 determines whether a failure of diagnosis 3-1, diagnosis 3-2 or diagnosis 3-3 has been detected based on the results of measurement 1 and measurement 2 (step S106).
  • the control unit 60 can determine that there is a possibility of any of the following failures.
  • the control unit 60 may determine that 0 V is detected when a voltage equal to or lower than a predetermined threshold is detected. ⁇ Short circuit failure of capacitor 10 (diagnosis 3-1) ⁇ Open switch 2 failure (diagnosis 3-2) ⁇ Paste output of operational amplifier 21 to 0V (diagnosis 3-3)
  • control unit 60 may determine that the capacitor 10 may be leaking (diagnosis 3- 1).
  • step S106 When the failure of diagnosis 3-1, diagnosis 3-2 or diagnosis 3-3 is detected (Yes in step S106), the control unit 60 sets a failure flag (step S107) and ends the diagnosis process.
  • step S106 If no failure of diagnosis 3-1, diagnosis 3-2 or diagnosis 3-3 is detected (No in step S106), the control unit 60 proceeds to step S108.
  • the control unit 60 turns off the second switch 2 (step S108) and executes the measurement 3 (step S109), for example, as in the timing chart shown in FIG.
  • the control unit 60 determines whether a failure of the diagnosis 3-4 has been detected based on the results of the measurement 1 to the measurement 3 (step S110).
  • the control unit 60 can determine that the second switch 2A may have a short fault (diagnosis 3). -4). The control unit 60 may determine that the difference is zero when the difference obtained by subtracting the voltage detected in measurement 3 from the voltage detected in measurement 1 or measurement 2 is equal to or less than a predetermined threshold.
  • control unit 60 sets a failure flag (step S111) and ends the diagnosis process.
  • step S110 If no failure of diagnosis 3-4 is detected (No in step S110), the control unit 60 proceeds to step S112.
  • the control unit 60 turns on the fourth switch 4 to discharge the capacitor 10 (step S112).
  • the controller 60 turns on the constant voltage circuit 30 after turning it on (step S113) and turns on the second switch 2 (step S114), for example, as in the timing chart shown in FIG.
  • the control unit 60 performs measurement 4 (step S115).
  • the control unit 60 determines whether a failure of the diagnosis 3-5 or the diagnosis 3-6 is detected based on the result of the measurement 4 (step S116).
  • the control unit 60 can determine that there is a possibility of any of the following failures.
  • the control unit 60 may determine that a voltage other than 0 V is detected when a voltage equal to or higher than a predetermined threshold is detected.
  • ⁇ Short circuit failure of 2nd switch 2B (diagnosis 3-5) ⁇ 1st switch 1K short circuit failure (Diagnosis 3-6)
  • step S116 When the failure of diagnosis 3-5 or diagnosis 3-6 is detected (Yes in step S116), the control unit 60 sets a failure flag (step S117) and ends the diagnosis process.
  • step S116 If no diagnosis 3-5 or diagnosis 3-6 failure has been detected (No in step S116), the control unit 60 proceeds to step S118.
  • the control unit 60 turns off the second switch 2 (step S118).
  • the control unit 60 turns on the fourth switch 4 and discharges the capacitor 10 (step S119).
  • step S119 can be omitted.
  • the control unit 60 performs the measurement 5 with the constant voltage circuit 30 and the second switch 2 turned off, for example, as in the timing chart shown in FIG. 22 (step S120).
  • the control unit 60 turns on the constant voltage circuit 30 (step S121) and turns on the second switch 2 (step S122), for example, as in the timing chart shown in FIG.
  • the control unit 60 may execute step S121 and step S122 at the same time.
  • the control unit 60 may execute step S122 before step S121.
  • Control unit 60 performs measurement 6 (step S123).
  • the control unit 60 determines whether a failure of the diagnosis 3-7 or the diagnosis 4 has been detected based on the results of the measurement 5 and the measurement 6 (step S124).
  • the control unit 60 can determine that the output of the operational amplifier 21 may be stuck to 5V (diagnosis 3-7). .
  • the control unit 60 may determine that 5V has been detected when a voltage with a difference from 5V being equal to or less than a predetermined threshold is detected.
  • control unit 60 may indicate that the operational amplifier 21 may have failed. Can be determined (diagnosis 4).
  • control unit 60 sets a failure flag (step S125) and ends the diagnosis process.
  • control unit 60 ends the diagnosis process.
  • the control unit 60 may control to stop the subsequent use of the first battery 200 when the diagnosis process is ended by setting a failure flag in step S107, step S111, step S117, or step S125.
  • step S106 The timing of failure determination in step S106, step S110, step S116, and step S124 is an example, and is not limited to this.
  • step S106 the following failure determination in step S106 may be performed when measurement 1 is performed in step S103. ⁇ Short circuit failure of capacitor 10 (diagnosis 3-1) ⁇ Open switch 2 failure (diagnosis 3-2) ⁇ Paste output of operational amplifier 21 to 0V (diagnosis 3-3)
  • the failure determination in step S106 may be performed together with the failure determination in step S110 after performing measurement 3 in step S109.
  • the failure determination of diagnosis 3-7 in step S124 may be executed when measurement 5 is executed in step S120.
  • the detection circuit 20 is described as detecting a potential difference between both terminals of the capacitor 10, but the detection circuit 20 may detect a discharge current from the capacitor 10.
  • the diagnostic apparatus 100 can apply a voltage to the capacitor 10 from the second battery 300 different from the first battery 200.
  • the detection circuit 20 detects a potential difference or a discharge current after the control unit 60 turns on the PNP transistor 32 and applies a voltage from the second battery 300 to the capacitor 10. Then, the control unit 60 diagnoses at least one of the capacitor 10, the first switch 1K, and the second switch 2. Thereby, the diagnostic apparatus 100 according to the present embodiment can diagnose the states of the capacitor 10, the first switch 1K, and the second switch 2 without depending on the first battery 200 that is a voltage detection target.
  • a constant voltage can be supplied from the constant voltage circuit 30 to the capacitor 10 during failure diagnosis, so that a threshold value for determining whether or not a failure has occurred can be easily set. Yes.
  • the diagnostic apparatus 100 includes the capacitor 10 that functions as a flying capacitor, the first switch 1 that switches the connection state between the first battery 200 and the capacitor 10, and the capacitor 10.
  • the second switch 2 that switches the connection state with the detection circuit 20 is diagnosed.
  • the diagnostic device 100 when the diagnostic device 100 detects a short failure of the first switch 1, the diagnostic device 100 maintains the state in which the second switch 2 is turned off, and the capacitor 10 and the second The diagnosis of the switch 2 can be stopped. As a result, it is possible to reduce the risk that the operational amplifier 21 will fail due to a high voltage applied to the operational amplifier 21 of the detection circuit 20 due to a short circuit failure of the first switch 1.
  • the diagnostic device 100 includes an amplifier circuit that connects the terminal of the first switch 1 on the side not connected to the first battery 200 and the AD converter 22 of the detection circuit 20.
  • the third switch 3 is provided which can be connected by bypassing the operational amplifier 21 functioning as Further, the diagnostic apparatus 100 turns off the first switch 1 based on the detection result of the AD converter 22 when the first switch 1 is turned on or off with the second switch 2 turned off and the third switch 3 turned on. 1 Diagnose switch 1.
  • the diagnostic apparatus 100 according to the present embodiment can diagnose the first switch 1 by bypassing the operational amplifier 21, it is possible to reduce the possibility that the operational amplifier 21 functioning as an amplifier circuit will fail.
  • FIG. 28 shows the configuration of a diagnostic apparatus 110 according to a modification.
  • the diagnostic apparatus 110 according to the modification is different from the diagnostic apparatus 100 illustrated in FIG. 1 in that a detection circuit 23 is provided in addition to the detection circuit 20.
  • a detection circuit 23 is provided in addition to the detection circuit 20.
  • differences from the diagnostic apparatus 100 illustrated in FIG. 1 will be mainly described.
  • the detection circuit 23 includes an AD converter 24.
  • the AD converter 24 has AD input terminals 24A and 24B.
  • the AD converter 24 converts the analog voltage input to the AD input terminal 24 ⁇ / b> A into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • the AD converter 24 converts the analog voltage input to the AD input terminal 24B into a digital signal corresponding to the analog voltage and outputs the digital signal to the control unit 60.
  • the detection circuit 20 and the detection circuit 23 may function as a first detection circuit and a second detection circuit, respectively.
  • the AD converter 22 and the AD converter 24 may function as a first AD converter and a second AD converter, respectively.
  • the third switch 3A is connected to the AD input terminal 24A of the AD converter 24 via the resistor 41.
  • the third switch 3B is connected to the AD input terminal 24B of the AD converter 24 via the resistor 43.
  • Patent Document 1 does not discuss a switch for switching the connection between a battery and a capacitor, and failure diagnosis of the capacitor.
  • a diagnostic apparatus according to the following fourth aspect, a diagnostic method according to the fifth aspect, and a first aspect capable of comprehensively performing failure diagnosis required in the configuration employing the flying capacitor method
  • the diagnostic apparatus which concerns on 6 viewpoints can be provided.
  • a diagnostic device connectable in parallel to each first battery of a plurality of first batteries connected in series; A plurality of first switches for switching a connection state between the plurality of first batteries and the capacitor; A detection circuit having an AD converter and detecting a potential difference between both terminals of the capacitor; A second switch for switching a connection state between the capacitor and the detection circuit; A third switch connectable to a terminal of the first switch not connected to the first battery and one of the detection circuit or another AD converter, bypassing the second switch; A control unit for controlling the first switch, the second switch, and the third switch, The controller is Based on the detection result of one of the detection circuit or the other AD converter when the first switch is turned on or off with the second switch turned off and the third switch turned on, Diagnosing the first switch; After the diagnosis of the first switch, the third switch is turned off, the second switch is turned on from off, and the capacitor and the second switch are diagnosed.
  • the controller may maintain the state where the second switch is turned off and stop the diagnosis of the capacitor and the second switch.
  • the detection circuit includes an amplification circuit that outputs to the AD converter, detects a potential difference between both terminals of the capacitor based on an input to the amplification circuit,
  • the third switch can be connected to a terminal of the first switch that is not connected to the first battery and the AD converter or the other AD converter, bypassing the amplifier circuit,
  • the controller detects one of the AD converter or the other AD converter when the first switch is turned on or off with the second switch turned off and the third switch turned on. Based on the result, the first switch may be diagnosed.
  • a switching switch for switching a connection state between the second battery different from the first battery and the capacitor The controller turns off the third switch after the diagnosis of the first switch, turns the second switch on from off, turns on the changeover switch, and applies a voltage from the second battery to the capacitor. Later, the capacitor and the second switch may be diagnosed based on the detection result of the detection circuit.
  • a constant voltage circuit capable of generating a constant voltage from the second battery and outputting the constant voltage to the capacitor via the changeover switch.
  • the constant voltage may be smaller than a maximum voltage that can be supplied by the plurality of first batteries connected in series.
  • the constant voltage may be greater than a maximum voltage that the first battery can supply.
  • the first battery may be a lithium ion battery or a nickel metal hydride battery.
  • the second battery may be a lead storage battery, a lithium ion battery, or a nickel metal hydride battery.
  • a diagnostic method is: A capacitor that can be connected in parallel to each first battery of a plurality of first batteries connected in series, a plurality of first switches that switch a connection state between the plurality of first batteries and the capacitor, and an AD converter A detection circuit for detecting a potential difference between both terminals of the capacitor, a second switch for switching a connection state between the capacitor and the detection circuit, and a terminal of the first switch not connected to the first battery And a third switch that can be connected to the detection circuit or one of the other AD converters by bypassing the second switch, Based on the detection result of one of the detection circuit or the other AD converter when the first switch is turned on or off with the second switch turned off and the third switch turned on, Diagnosing the first switch; After the diagnosis of the first switch, turning off the third switch, turning the second switch from off to on, and diagnosing the capacitor and the second switch.
  • a diagnostic apparatus is A capacitor connectable in parallel to each first battery of a plurality of first batteries connected in series; A plurality of first switches for switching a connection state between the plurality of first batteries and the capacitor; A first detection circuit for detecting a potential difference between both terminals of the capacitor; A second switch for switching a connection state between the capacitor and the first detection circuit; A second detection circuit capable of detecting the voltage of a terminal of the first switch not connected to the first battery by bypassing the second switch; A third switch for switching a connection state between the first switch and the second detection circuit; A control unit for controlling the first switch, the second switch, and the third switch, The controller is The first switch is diagnosed based on the detection result of the second detection circuit when the first switch is turned on or off with the second switch turned off and the third switch turned on. And After the diagnosis of the first switch, the third switch is turned off, the second switch is turned on from off, and the capacitor and the second switch are diagnosed based on the detection result of the first detection circuit
  • the diagnostic device According to the diagnostic device according to the fourth aspect, it is possible to comprehensively perform failure diagnosis required in the configuration employing the flying capacitor method.
  • failure diagnosis required in the configuration adopting the flying capacitor method can be comprehensively performed.
  • the diagnostic apparatus According to the diagnostic apparatus according to the sixth aspect, it is possible to comprehensively perform fault diagnosis required in the configuration employing the flying capacitor method.
  • an amplifier circuit such as an operational amplifier amplifies the capacitor voltage, and an analog signal output from the amplifier circuit is digitally converted by an A / D converter
  • a configuration for converting to a signal is known (for example, Japanese Patent Application Laid-Open No. 2010-78572).
  • a switch for switching the connection between a battery and a capacitor needs to operate normally, and therefore it is necessary to diagnose the failure of the switch.
  • a switch connected to the battery on the high potential side and a voltage on the low potential side If the switch connected to the battery is short-circuited at the same time, a voltage higher than the voltage allowed by the amplifier circuit is applied to the amplifier circuit, which may cause the amplifier circuit to fail during failure diagnosis.
  • the diagnostic device according to the following seventh aspect, the diagnostic method according to the eighth aspect, and the ninth aspect that can reduce the possibility of failure of the amplifier circuit that detects the voltage of the flying capacitor.
  • the diagnostic apparatus which concerns on can be provided.
  • a diagnostic apparatus capable of detecting the voltage of each first battery of a plurality of first batteries connected in series, the detection circuit having an amplifier circuit and an AD converter; A plurality of first switches connected to the positive and negative electrodes of the plurality of first batteries; A second switch for switching a connection state between the plurality of first switches and the amplifier circuit of the detection circuit; A third switch capable of connecting between the first switch and the second switch and one of the AD converter or the other AD converter; A control unit for controlling the first switch, the second switch, and the third switch, The control unit turns off the second switch and turns on the third switch, and turns on or off the first switch when one of the AD converter or the other AD converter is turned on. Based on the detection result, the first switch is diagnosed.
  • the control unit may maintain a state in which the second switch is turned off when a short failure of the first switch is detected.
  • a capacitor that can be connected in parallel to each first battery of the plurality of first batteries via the plurality of first switches may be further provided.
  • a switching switch for switching a connection state between the second battery different from the first battery and the capacitor may diagnose the capacitor and the second switch based on a detection result of the detection circuit after turning on the changeover switch and applying a voltage from the second battery to the capacitor.
  • the second battery may be a lead storage battery.
  • the first battery may be a lithium ion battery or a nickel metal hydride battery.
  • a diagnostic method capable of detecting the voltage of each first battery of the plurality of first batteries connected in series, the detection circuit having an amplifier circuit and an AD converter, and connected to the positive and negative electrodes of the plurality of first batteries
  • a diagnostic device capable of detecting a voltage of each first battery of the plurality of first batteries connected in series, the first detection circuit having an amplifier circuit and a first AD converter; A second detection circuit capable of detecting the voltage of each first battery, the second detection circuit having a second AD converter; A plurality of first switches connected to the positive and negative electrodes of the plurality of first batteries; A second switch for switching a connection state between the plurality of first switches and the amplifier circuit of the first detection circuit; A third switch capable of connecting the first switch and the second AD converter; A control unit for controlling the first switch, the second switch, and the third switch, The control unit is configured to turn off the second switch and turn on the third switch, and based on a detection result of the second AD converter when the first switch is turned on or off. Diagnose one switch.
  • the diagnostic device it is possible to reduce the risk of failure of the amplifier circuit that detects the voltage of the flying capacitor.
  • the diagnostic method according to the eighth aspect it is possible to reduce the possibility of failure of the amplifier circuit that detects the voltage of the flying capacitor.
  • the possibility that the amplifier circuit that detects the voltage of the flying capacitor breaks down can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

診断装置100は、第1電池200に並列に接続可能なキャパシタ10と、複数の第1電池200とキャパシタ10との接続状態を切り替える複数の第1スイッチ1と、検出回路20と、キャパシタ10と検出回路20との接続状態を切り替える第2スイッチ2と、第2電池300とキャパシタ10との接続状態を切り替える切替スイッチ32と、制御部60と、診断部と、を備える。制御部60は、切替スイッチ32をオンして、第2電池300からキャパシタ10に電圧を印加した後に、検出回路20が電位差又は放電電流を検出し、診断部は、キャパシタ10、最下段の第1スイッチ1K及び第2スイッチ2の少なくとも1つを診断する。

Description

診断装置及び診断方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2018-071107号(2018年4月2日出願)、日本国特許出願2019-016395号(2019年1月31日出願)及び日本国特許出願2019-016397号(2019年1月31日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、診断装置及び診断方法に関する。
 従来、電池の電圧をキャパシタに充電させた後、電池をキャパシタから切り離し、その状態でキャパシタの電圧を電圧検出回路によって検出することで、間接的に電池の電圧を測定するフライングキャパシタ方式の電池監視装置が知られている。
 上記のようなフライングキャパシタ方式の電池監視装置において、キャパシタと電圧検出回路との接続を切り替えるスイッチの故障診断を行うことが知られている。例えば、特許文献1では、キャパシタと電圧検出回路との接続を切り替えるスイッチにオフ指令をしているにも関わらず電圧検出回路が電圧を検出した場合は、スイッチがショート故障していると判断する。
特開2014-182089号公報
 上記電池監視装置では、電圧検出対象の電池を、診断用の電源としても利用するものであるため、診断の信頼性が当該電池に依存することになる。
 かかる観点に鑑みてなされた本発明の目的は、電圧検出対象の電池に依存せずに、フライングキャパシタ或いはスイッチの状態を診断することができる診断装置及び診断方法を提供することにある。
 上記課題を解決するために、第1の観点に係る診断装置は、
 直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、
 前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、
 前記キャパシタの両端子間の電位差を検出する、又は、前記キャパシタからの放電電流を検出する検出回路と、
 前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、
 前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチと、
 前記第1スイッチ、前記第2スイッチ及び前記切替スイッチを制御する制御部と、
 前記キャパシタと、前記複数の第1スイッチのうちグランドと接続する最下段の第1スイッチと、前記第2スイッチとの少なくとも1つを診断する診断部と、を備え、
 前記制御部が前記切替スイッチをオンして、前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路が電位差又は放電電流を検出し、
 前記診断部が、前記キャパシタ、前記最下段の第1スイッチ及び前記第2スイッチの少なくとも1つを診断する。
 上記課題を解決するために、第2の観点に係る診断方法は、
 直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、前記キャパシタの両端子間の電位差を検出する、又は、前記キャパシタからの放電電流を検出する検出回路と、前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチと、を備える診断装置における診断方法であって、
 前記切替スイッチをオンして、前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路が電位差又は放電電流を検出するステップと、
 前記キャパシタと、前記複数の第1スイッチのうちグランドと接続する最下段の第1スイッチと、前記第2スイッチとの少なくとも1つを診断するステップと、を含む。
 上記課題を解決するために、第3の観点に係る診断装置は、
 電圧または電流を検出する検出回路と、
 第1電池を前記検出回路に接続可能な検出用接続回路と、
 前記第1電池とは異なる電源を前記検出用接続回路に接続可能な診断用接続回路と、
 前記診断用接続回路を前記検出用接続回路に接続して、前記検出用接続回路を診断する診断部と、を備える。
 第1の観点に係る診断装置によれば、電圧検出対象の電池に依存せずに、フライングキャパシタ或いはスイッチの状態を診断しうる。
 第2の観点に係る診断方法によれば、電圧検出対象の電池に依存せずに、フライングキャパシタ或いはスイッチの状態を診断しうる。
 第3の観点に係る診断装置によれば、電圧検出対象の電池に依存せずに、フライングキャパシタ或いはスイッチの状態を診断しうる。
一実施形態に係る診断装置の構成例を示すブロック図である。 図1の定電圧回路の構成の一例を示すブロック図である。 一実施形態に係る診断装置による診断方法の手順の一例を示すフローチャートである。 診断1-1を説明するためのブロック図である。 診断1-2を説明するためのブロック図である。 診断1-2のタイミングチャートを示す図である。 診断2を説明するためのブロック図である。 診断2のタイミングチャートを示す図である。 診断3-1を説明するためのブロック図である。 診断3-1のタイミングチャートを示す図である。 診断3-2を説明するためのブロック図である。 診断3-2のタイミングチャートを示す図である。 診断3-3を説明するためのブロック図である。 診断3-3のタイミングチャートを示す図である。 診断3-4を説明するためのブロック図である。 診断3-4のタイミングチャートを示す図である。 診断3-5を説明するためのブロック図である。 診断3-5のタイミングチャートを示す図である。 診断3-6を説明するためのブロック図である。 診断3-6のタイミングチャートを示す図である。 診断3-7を説明するためのブロック図である。 診断3-7のタイミングチャートを示す図である。 診断4を説明するためのブロック図である。 診断4のタイミングチャートを示す図である。 図3のステップS3及びステップS4の詳細な手順の一例を示すフローチャートである。 図3のステップS3及びステップS4の詳細な手順の一例を示すフローチャートである。 図3のステップS3及びステップS4の詳細な手順の一例を示すフローチャートである。 変形例に係る診断装置の構成例を示すブロック図である。
 以下、本開示の実施形態について、図面を参照して説明する。
 図1に示すように、一実施形態に係る診断装置100は、第1電池200A~200Eと接続する。診断装置100及び第1電池200A~200Eは、ガソリンエンジン若しくはディーゼルエンジン等の内燃機関を備えた車両、又は内燃機関と電動機との双方の動力で走行可能なハイブリッド車両等の車両に搭載されてよい。
 第1電池200A~200Eは、電池パックに含まれてよい。電池パックは、診断装置100を含んでよい。電池パックは、BMS(Battery Management System)を含んでよい。診断装置100は、BMSとして機能してもよいし、BMSに含まれてもよい。
 図1に示す例では、第1電池200A、第1電池200B、第1電池200C、第1電池200D及び第1電池200Eが直列に接続している。以後、第1電池200A~200Eについて、特に区別する必要がない場合は、第1電池200と総称する場合がある。
 図1に示す例では、5つの第1電池200が直列に接続されているが、第1電池200の個数はこれに限定されない。第1電池200は、任意の複数の個数が直列に接続されていてよい。
 第1電池200は、SOC(State Of Charge)のバンド幅が広い二次電池であってよい。第1電池200のSOCのバンド幅は、例えば10~90%であってよい。第1電池200は、例えば、リチウムイオン電池又はニッケル水素電池等であるが、これらに限られず、他の二次電池であってよい。
 診断装置100は、第1スイッチ1A~1Kと、第2スイッチ2A及び2Bと、第4スイッチ4と、キャパシタ10と、抵抗11と、検出回路20と、定電圧回路30と、キャパシタ電圧検出回路40と、サブ検出回路50と、制御部60と、記憶部70とを備える。
 キャパシタ10は、第1スイッチ1A~1Kを介して、第1電池200A~200Eに並列に接続しうる。キャパシタ10は、第1電池200から供給される電力によって充電しうる。検出回路20は、第1電池200によって充電されたキャパシタ10の両端子間の電位差を検出しうる。すなわち、キャパシタ10は、フライングキャパシタ方式の電圧測定におけるフライングキャパシタとして機能する。
 第1スイッチ1A~1Kは、制御部60からの指令に応じて、第1電池200とキャパシタ10との接続状態を切り替える。第1スイッチ1A~1Kは、オンに制御されると、その両端が導通する。第1スイッチ1A~1Kは、オフに制御されると、その両端が絶縁する。なお、図1においては、可読性を高めるため、制御部60から第1スイッチ1A~1Kへの制御線の記載を省略している。
 第1スイッチ1A、第1スイッチ1C、第1スイッチ1E、第1スイッチ1G及び第1スイッチ1Jは、それぞれ、第1電池200A、第1電池200B、第1電池200C、第1電池200D及び第1電池200Eの正極と、第1節点10Aとの接続状態を切り替える。第1節点10Aは、キャパシタ10の一端に接続される節点である。
 第1スイッチ1B、第1スイッチ1D、第1スイッチ1F、第1スイッチ1H及び第1スイッチ1Kは、それぞれ、第1電池200A、第1電池200B、第1電池200C、第1電池200D及び第1電池200Eの負極と、第2節点10Bとの接続状態を切り替える。第2節点10Bは、キャパシタ10の他端に接続される節点である。
 以後、第1スイッチ1A~1Kについて、特に区別する必要がない場合は、第1スイッチ1と総称する場合がある。第1スイッチ1は、可動部を有する機械的なスイッチであってよい。第1スイッチ1は、接点を有し、接点を開閉することによって、導通状態と絶縁状態とを切り替えるように構成されてよい。第1スイッチ1は、例えば、電磁式のリレーであってよい。
 第2スイッチ2A及び2Bは、制御部60からの指令に応じて、キャパシタ10と、検出回路20及びサブ検出回路50との接続状態を切り替える。第2スイッチ2A及び2Bは、オンに制御されると、その両端が導通する。第2スイッチ2A及び2Bは、オフに制御されると、その両端が絶縁する。なお、図1においては、可読性を高めるため、制御部60から第2スイッチ2A及び2Bへの制御線の記載を省略している。
 第2スイッチ2Aは、第1節点10Aと、検出回路20及びサブ検出回路50との接続状態を切り替える。第2スイッチ2Bは、第2節点10Bとグランドとの接続状態を切り替える。第2スイッチ2Aは、上側第2スイッチとも称する。第2スイッチ2Bは、下側第2スイッチとも称する。
 以後、第2スイッチ2A及び2Bについて、特に区別する必要がない場合は、第2スイッチ2と総称する場合がある。第2スイッチ2は、可動部を有する機械的なスイッチであってよい。第2スイッチ2は、接点を有し、接点を開閉することによって、導通状態と絶縁状態とを切り替えるように構成されてよい。第2スイッチ2は、例えば、電磁式のリレーであってよい。
 第4スイッチ4は、制御部60からの指令に応じて、第1節点10Aと抵抗11との接続状態を切り替える。第4スイッチ4は、オンに制御されると、その両端が導通する。第4スイッチ4は、オフに制御されると、その両端が絶縁する。第4スイッチ4は、可動部を有する機械的なスイッチであってよい。第4スイッチ4は、接点を有し、接点を開閉することによって、導通状態と絶縁状態とを切り替えるように構成されてよい。第4スイッチ4は、例えば、電磁式のリレーであってよい。なお、図1においては、可読性を高めるため、制御部60から第4スイッチ4への制御線の記載を省略している。
 抵抗11は、一端で第4スイッチ4と接続し、他端で接地されている。第4スイッチ4は、通常時は、オフとなるように制御されている。第4スイッチ4がオンすると、キャパシタ10は、抵抗11を介して放電する。すなわち、第4スイッチ4及び抵抗11は、キャパシタ10に充電されている電荷を放電するための放電回路を構成する。
 検出回路20は、第2スイッチ2がオンしている状態において、キャパシタ10の両端子間の電位差を検出しうる。検出回路20は、オペアンプ21と、ADコンバータ22とを備える。検出回路20は、オペアンプ21への入力に基づいて、キャパシタ10の両端子間の電位差を検出しうる。
 検出回路20は、キャパシタ10の両端子間の電位差を検出することで、各第1電池200の電圧を検出しうる。例えば、第1スイッチ1A及び第1スイッチ1Bをオンにして、第1電池200Aの電圧でキャパシタ10を充電した後、第1スイッチ1A及び第1スイッチ1Bをオフにしてキャパシタ10の両端子間の電位差を検出することで、検出回路20は、第1電池200Aの電圧を検出しうる。同様にして、検出回路20は、第1電池200B~200Eの電圧も検出しうる。
 オペアンプ21は、負側の入力端子と出力端子とが接続されてボルテージフォロアを構成する。オペアンプ21を含んで構成されるボルテージフォロアは、バッファとして機能し、検出回路20に入力された電圧をADコンバータ22に出力する。
 なお、ADコンバータ22の前段にオペアンプ21で構成されるボルテージフォロアが配置されているのは一例であり、検出回路20の構成はこれに限定されない。ボルテージフォロアの代わりに、1倍とは異なる増幅率を有する増幅器がADコンバータ22の前段に配置されていてもよい。すなわち、増幅率が1倍のボルテージフォロア、又は、増幅率が1倍とは異なる増幅器など、任意の増幅率を有する増幅回路がADコンバータ22の前段に配置されていてよい。
 ADコンバータ22は、AD入力端子22Aを有する。ADコンバータ22は、オペアンプ21で構成されるボルテージフォロアからAD入力端子22Aに入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。
 ADコンバータ22は、さらにAD入力端子22B及び22Cを有する。AD入力端子22Bは、第1節点10Aに、第3スイッチ3A及び抵抗41を介して接続されている。また、AD入力端子22Bは、抵抗42を介して接地されている。AD入力端子22Cは、第2節点10Bに、第3スイッチ3B及び抵抗43を介して接続されている。また、AD入力端子22Cは、抵抗44を介して接地されている。
 ADコンバータ22は、AD入力端子22Bに入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。ADコンバータ22は、AD入力端子22Cに入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。
 定電圧回路30は、制御端子30A及び出力端子30Bを有する。定電圧回路30は、制御部60から制御端子30Aに入力される制御信号に応じて、出力端子30Bから定電圧を出力する。定電圧回路30は、キャパシタ10に定電圧を出力しうる。本実施形態においては、定電圧回路30は、制御部60から制御端子30Aに、ハイ信号を入力されると定電圧を出力し、ロー信号を入力されると定電圧の出力を停止するものとする。
 図2に、定電圧回路30の構成の一例を示す。定電圧回路30は、制御端子30A及び出力端子30Bに加えて、図1では図示を省略している電源端子30Cを有する。
 定電圧回路30は、電源端子30Cから電源電圧の供給を受ける。図2に示すように、定電圧回路30は、例えば、第2電池300から電圧変換回路400を介して電源端子30Cに電源電圧の供給を受ける。
 第2電池300は、第1電池200とは異なる電池である。第2電池300は、第1電池200よりもSOCのバンド幅が狭い二次電池であってよい。第2電池300は、例えば、鉛蓄電池であるが、これに限られず、他の二次電池であってよい。また、特に図示しないが、第2電池300は、第1電池200と並列に接続され、車両の補機類に電力を供給している。
 電圧変換回路400は、第2電池300から供給される電圧を変換して定電圧回路30の電源端子30Cに供給する。電圧変換回路400は、例えば、第2電池300から供給される12Vの電圧を5Vに降圧して、定電圧回路30の電源端子30Cに供給する。
 定電圧回路30は、図2に示すように、NPNトランジスタ31と、PNPトランジスタ32と、キャパシタ33と、抵抗34~38と、ダイオード39とを備える。
 定電圧回路30の制御端子30Aに、制御部60からハイ信号を受けると、NPNトランジスタ31のベース電圧が上昇し、NPNトランジスタ31がオンする。NPNトランジスタ31がオンすると、PNPトランジスタ32のベース電圧が低下し、PNPトランジスタ32がオンする。PNPトランジスタ32がオンすると、出力端子30Bから第1節点10Aに電流を供給しうる。例えば図1に示す第2スイッチ2Bがオンしている場合、定電圧回路30の出力端子30Bから供給される電流によってキャパシタ10が充電されうる。この際、定電圧回路30の出力端子30Bには、電源端子30Cに入力されている電源電圧から、抵抗34及びPNPトランジスタ32による電圧降下分だけ下がった定電圧が供給される。このように、PNPトランジスタ32は、制御部60からの指令に応じて第2電池300とキャパシタ10との接続状態を切り替える切替スイッチとして機能しうる。PNPトランジスタ32がオンすると、第2電池300からの電圧をキャパシタ10に印加しうる。ダイオード39は、第1電池200から電流が逆流することを防ぐように、カソードが第1電池200側に接続されている。
 定電圧回路30は、このように、SOCのバンド幅が狭い二次電池、例えば鉛蓄電池である第2電池300から供給される電源電圧に基づいて定電圧を生成する。これにより、定電圧回路30は、所定の大きさ以上の定電圧を安定して生成することができる。
 定電圧回路30が出力する定電圧は、直列接続された第1電池200A~200Eが供給可能な最大電圧、すなわち、第1電池200Aの正極側の端子と第1電池200Eの負極側の端子との間の電圧より小さい電圧としうる。例えば、各第1電池200の供給可能な最大電圧が2.4Vである場合、直列接続された第1電池200A~200Eが供給可能な最大電圧は12Vである。この場合、定電圧回路30が出力する定電圧は、12Vより小さくしうる。これにより、定電圧回路30が出力する定電圧が検出回路20のオペアンプ21に入力された際に、オペアンプ21が故障するおそれを低減しうる。
 定電圧回路30が出力する定電圧は、各第1電池200が供給可能な最大電圧より大きくしうる。例えば、各第1電池200の供給可能な最大電圧が2.4Vである場合、定電圧回路30が出力する定電圧は、2.4Vより大きくしうる。これにより、制御部60は、診断処理において定電圧回路30からキャパシタ10に充電された電圧を検出する場合、当該電圧が第1電池200から供給された電圧でないことを確認しうる。
 診断装置100は、定電圧回路30が出力する定電圧を用いて故障診断を実施しうる。仮に、診断装置100が故障診断を実施する際に、参照電圧として検出対象である第1電池200の電圧を用いるとすると、第1電池200の電池容量が減っている場合に、キャパシタ10、第1スイッチ1及び第2スイッチ2などの故障を正しく検出できないことが起こりうる。しかしながら、本実施形態に係る診断装置100は、定電圧回路30が出力する定電圧を用いて故障診断を実施するため、第1電池200に依存せずに、キャパシタ10、第1スイッチ1及び第2スイッチ2などの状態を診断しうる。
 再び図1を参照して説明する。
 キャパシタ電圧検出回路40は、キャパシタ10の両端子の電圧、すなわち、第1節点10A及び第2節点10Bの電圧を、検出回路20のオペアンプ21を用いずに検出するための回路である。
 キャパシタ電圧検出回路40は、第3スイッチ3A及び3Bと、抵抗41と、抵抗42と、抵抗43と、抵抗44とを備える。
 第3スイッチ3Aは、制御部60からの指令に応じて、第1節点10Aと抵抗41との接続状態を切り替える。第3スイッチ3Bは、制御部60からの指令に応じて、第2節点10Bと抵抗43との接続状態を切り替える。第3スイッチ3A及び3Bは、オンに制御されると、その両端が導通する。第3スイッチ3A及び3Bは、オフに制御されると、その両端が絶縁する。なお、図1においては、可読性を高めるため、制御部60から第3スイッチ3A及び3Bへの制御線の記載を省略している。
 第3スイッチ3Aは、オンに制御されることで、第1節点10AとAD入力端子22Bとを、オペアンプ21をバイパスして接続しうる。第3スイッチ3Bは、オンに制御されることで、第2節点10BとAD入力端子22Cとを、オペアンプ21をバイパスして接続しうる。第1節点10Aは、第1スイッチ1A、第1スイッチ1C、第1スイッチ1E、第1スイッチ1G及び第1スイッチ1Jの第1電池200に接続されていない側の端子と接続されている。第2節点10Bは、第1スイッチ1B、第1スイッチ1D、第1スイッチ1F、第1スイッチ1H及び第1スイッチ1Kの第1電池200に接続されていない側の端子と接続されている。
 以後、第3スイッチ3A及び3Bについて、特に区別する必要がない場合は、第3スイッチ3と総称する場合がある。第3スイッチ3は、可動部を有する機械的なスイッチであってよい。第3スイッチ3は、接点を有し、接点を開閉することによって、導通状態と絶縁状態とを切り替えるように構成されてよい。第3スイッチ3は、例えば、電磁式のリレーであってよい。
 抵抗41は、一端で第3スイッチ3Aを介して第1節点10Aに接続する。抵抗41は、他端でADコンバータ22のAD入力端子22B、及び抵抗42に接続する。
 抵抗42は、一端でADコンバータ22のAD入力端子22B及び抵抗41に接続する。抵抗42は、他端で接地されている。
 抵抗43は、一端で第3スイッチ3Bを介して第2節点10Bに接続する。抵抗43は、他端でADコンバータ22のAD入力端子22C、及び抵抗44に接続する。
 抵抗44は、一端でADコンバータ22のAD入力端子22C及び抵抗43に接続する。抵抗44は、他端で接地されている。
 定電圧回路30がオフ、且つ、第3スイッチ3Aがオンである場合において、第1スイッチ1A、第1スイッチ1C、第1スイッチ1E、第1スイッチ1G及び第1スイッチ1Jのいずれかがオンしていると、オンしている第1スイッチ1に接続されている第1電池200の正極側の電圧が抵抗41と抵抗42で分圧され、ADコンバータ22のAD入力端子22Bに供給される。
 定電圧回路30がオフ、且つ、第3スイッチ3Aがオンである場合において、第1スイッチ1A、第1スイッチ1C、第1スイッチ1E、第1スイッチ1G及び第1スイッチ1Jが全てオフしていると、接地されている抵抗42を介して0VがADコンバータ22のAD入力端子22Bに供給される。
 定電圧回路30がオフ、且つ、第3スイッチ3Bがオンである場合において、第1スイッチ1B、第1スイッチ1D、第1スイッチ1F及び第1スイッチ1Hのいずれかがオンしていると、オンしている第1スイッチ1に接続されている第1電池200の負極側の電圧が抵抗43と抵抗44で分圧され、ADコンバータ22のAD入力端子22Cに供給される。
 定電圧回路30がオフ、且つ、第3スイッチ3Bがオンである場合において、第1スイッチ1B、第1スイッチ1D、第1スイッチ1F及び第1スイッチ1Hが全てオフしていると、接地されている抵抗44を介して0VがADコンバータ22のAD入力端子22Cに供給される。
 第3スイッチ3Aがオフしている場合は、接地されている抵抗42を介して0VがADコンバータ22のAD入力端子22Bに供給される。第3スイッチ3Bがオフしている場合は、接地されている抵抗44を介して0VがADコンバータ22のAD入力端子22Cに供給される。
 サブ検出回路50は、第2スイッチ2がオンしている状態において、キャパシタ10の両端子間の電位差を検出しうる。サブ検出回路50は、検出回路20のオペアンプ21が正常に動作しているか否かを診断するための回路である。サブ検出回路50は、検出回路20が動作する際に、共に動作している。
 サブ検出回路50は、オペアンプ51と、ADコンバータ52とを備える。
 オペアンプ51は、負側の入力端子と出力端子とが接続されてボルテージフォロアを構成する。オペアンプ51を含んで構成されるボルテージフォロアは、バッファとして機能し、サブ検出回路50に入力された電圧をADコンバータ52に出力する。
 ADコンバータ52は、オペアンプ51で構成されるボルテージフォロアから入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。
 図1には、ADコンバータ52がADコンバータ22とは異なるADコンバータである構成を示している。
 制御部60は、診断装置100の各構成部に有線又は無線の通信によって通信可能に接続する。制御部60は、各構成部に対して制御指示を出力したり、各構成部から情報を取得したりしてよい。
 制御部60は、第1スイッチ1、第2スイッチ2、第3スイッチ3及び第4スイッチ4のオン/オフを制御する。制御部60は、定電圧回路30のオン/オフを制御する。制御部60が定電圧回路30をオンすると、定電圧回路30は、第1節点10Aに定電圧を供給しうる。
 制御部60は、検出回路20のADコンバータ22から、AD入力端子22A、22B及び22Cに入力されたアナログ電圧に応じたデジタル信号を取得しうる。制御部60は、サブ検出回路50のADコンバータ52から、サブ検出回路50に入力されたアナログ電圧に応じたデジタル信号を取得しうる。
 制御部60は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサで構成されてよい。診断装置100が車両に搭載される場合、制御部60は、車両のECU(Electric Control Unit又はEngine Control Unit)として構成されてよい。
 記憶部70は、制御部60に接続され、制御部60から取得した情報を格納する。記憶部70は、制御部60のワーキングメモリとして機能してよい。記憶部70は、制御部60で実行されるプログラムを格納してよい。記憶部70は、例えば、半導体メモリで構成されるが、これには限られず、磁気記憶媒体で構成されてよいし、他の記憶媒体で構成されてよい。記憶部70は、制御部60の一部として含まれてよい。
 本実施形態において、第1スイッチ1、キャパシタ10及び第2スイッチ2Aは、第1電池200を検出回路20に接続可能とするための検出用接続回路として機能しうる。また、定電圧回路30は、第2電池300を検出用接続回路に接続可能とするための診断用接続回路として機能しうる。
 診断装置100の制御部60は、図3のフローチャートに示す手順に沿って、診断装置100内の構成要素を診断しうる。制御部60は、第1スイッチ1、第2スイッチ2、キャパシタ10、及びオペアンプ21について故障が発生しているか否かを診断しうる。
 制御部60は、最初に、キャパシタ電圧検出回路40を主に用いた診断を行う(ステップS1)。制御部60は、ステップS1において、グランドと接続する最下段の第1スイッチ1である第1スイッチ1K以外の第1スイッチ1、すなわち第1スイッチ1A~1Jについて診断を行う。以後、制御部60のステップS1における診断を「診断1」と称する。
 制御部60は、続いて、検出回路20を主に用いた診断を行う(ステップS2)。制御部60は、ステップS2において、最下段の第1スイッチ1Kについて診断を行う。以後、制御部60のステップS2における診断を「診断2」と称する。
 制御部60は、続いて、定電圧回路30を主に用いた診断を行う(ステップS3)。制御部60は、ステップS3において、キャパシタ10、第2スイッチ2、オペアンプ21、及び最下段の第1スイッチ1Kについて診断を行う。以後、制御部60のステップS3における診断を「診断3」と称する。
 制御部60は、続いて、サブ検出回路50を主に用いた診断を行う(ステップS4)。制御部60は、ステップS4において、オペアンプ21について診断を行う。以後、制御部60のステップS4における診断を「診断4」と称する。
 制御部60は、診断1~診断4のいずれかの段階において、診断装置100の構成要素のいずれかに故障が発生していると判定した場合、故障フラグを立てて、その後の診断処理を停止してよい。
 本実施形態においては、制御部60が、第1スイッチ1、第2スイッチ2、第3スイッチ3、第4スイッチ4及び定電圧回路30のオン/オフの制御、並びに、第1スイッチ1、第2スイッチ2、キャパシタ10、及びオペアンプ21についての診断の双方を行うものとして説明するが、この構成に限定されない。例えば、プロセッサは、制御部60と診断部とを有してよい。この場合、制御部60が、第1スイッチ1、第2スイッチ2、第3スイッチ3、第4スイッチ4及び定電圧回路30のオン/オフの制御等を実行し、診断部が、第1スイッチ1、第2スイッチ2、キャパシタ10、及びオペアンプ21についての診断等を実行してよい。
 以後、診断1~診断4の詳細について説明する。
[診断1]
 診断1は、以下の2つの診断を含む。
 ・診断1-1:第1スイッチ1A~1Jのショート故障診断
 ・診断1-2:第1スイッチ1A~1Jのオープン故障診断
(診断1-1)
 診断1-1は、最下段の第1スイッチ1K以外の第1スイッチ1A~1Jのショート故障診断である。図4に示すブロック図を参照して、診断1-1について説明する。なお、図4においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断1-1において、制御部60は、第1スイッチ1をオフ、第2スイッチ2をオフ、第3スイッチ3をオンに制御している。また、制御部60は、図1に示す定電圧回路30をオフに制御している。
 この際、第1スイッチ1A~1Jのうちのいずれかがショート故障していると、ADコンバータ22は、AD入力端子22B又は22Cのいずれかにおいて、ショート故障している第1スイッチ1に接続している第1電池200の電圧を検出する。
 図4は、想定故障部位として、第1スイッチ1Aがショート故障している場合の様子を示している。この場合、第1スイッチ1Aはオフに制御されてもショートしたままであるため、ADコンバータ22のAD入力端子22Bは、第1電池200Aの正極側の電圧を検出する。
 第1スイッチ1A~1Jのいずれもショート故障していない場合、ADコンバータ22は、AD入力端子22B及び22Cの双方において0Vを検出する。
 すなわち、制御部60は、第1スイッチ1をオフ、第2スイッチ2をオフ、第3スイッチ3をオン、定電圧回路30をオフに制御した状態で、0V以外の電圧を検出すると、第1スイッチ1A~1Jのいずれかがショート故障している可能性があると判定しうる。制御部60は、所定の閾値以上の電圧を検出した場合に、0V以外の電圧を検出したと判定してよい。
 本実施形態では、診断装置100は、最初の診断として診断1-1を実行し、第1スイッチ1A~1Jにショート故障がないかを確認する。これは、第1スイッチ1A~1Jのいずれかがショート故障していると、第2スイッチ2をオンしたときにオペアンプ21にオペアンプ21が許容する以上の電圧が印加され、オペアンプ21が故障するおそれがあるためである。
 制御部60は、第2スイッチ2をオンする処理を実行する前に診断1-1を実行し、第1スイッチ1A~1Jのいずれかにショート故障があると判定した場合は、第2スイッチ2をオフにした状態を維持し、その後の診断処理を停止する。これにより、診断装置100は、比較的高い電圧が印加されることに起因するオペアンプ21の故障のおそれを低減しうる。
(診断1-2)
 診断1-2は、最下段の第1スイッチ1K以外の第1スイッチ1A~1Jのオープン故障診断である。図5に示すブロック図及び図6に示すタイミングチャートを参照して、診断1-2について説明する。なお、図5においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断1-2において、制御部60は、第2スイッチ2をオフ、第3スイッチ3をオンに制御している。また、制御部60は、図1に示す定電圧回路30をオフに制御している。
 制御部60は、第1電池200の電位の低い側から高い側に向かって、第1電池200の両端子に接続されている第1スイッチ1を順番にオン/オフしていく。すなわち、制御部60は、第1スイッチ1が全てオフである状態において、最初に、第1スイッチ1J及び1Kをオン/オフする。続いて、制御部60は、第1スイッチ1G及び1Hをオン/オフする。制御部60は、第1スイッチ1A及び1Bをオン/オフさせるまで、この処理を続ける。
 制御部60は、第1電池200の電位の低い側から高い側ではなく、電位の高い側から低い側に向かって、第1電池200の両端子に接続されている第1スイッチ1を順番にオン/オフしてもよい。
 図6は、制御部60が第1スイッチ1A及び1Bをオン/オフする際のタイミングチャートを示す。制御部60は、第1スイッチ1A及び1Bをオンさせると、所定の測定タイミングt1及びt2でAD入力端子22B及び22Cに入力される電圧を測定する。制御部60は、その後、第1スイッチ1A及び1Bをオフする。制御部60は、t1及びt2で測定した電圧の平均値を算出して、電圧の検出値としてよい。
 図6に示す例では、制御部60は、t1及びt2の2つのタイミングで電圧を測定しているが、測定タイミングはこれに限定されない。制御部60は、1つのタイミングで電圧を測定してもよいし、3つ以上のタイミングで電圧を測定してもよい。制御部60は、複数のタイミングで電圧を測定した場合、平均値を算出して、電圧の検出値としてよい。測定タイミングの回数及び平均値の算出に関しては、診断2以後についても同様の考え方であるため、診断2以後の説明においては、測定タイミングの回数及び平均値の算出に関する説明を省略する。
 この際、第1スイッチ1A~1Jのうちのいずれかがオープン故障していると、ADコンバータ22は、オープン故障している第1スイッチ1をオンさせた際に、当該第1スイッチ1が接続しているAD入力端子22B又は22Cにおいて0Vを検出する。
 図5は、想定故障部位として、第1スイッチ1Aがオープン故障している場合に、第1スイッチ1A及び1Bをオンにしたときの様子を示している。この場合、第1スイッチ1Aはオンに制御されてもオープンしたままであるため、ADコンバータ22のAD入力端子22Bは、0Vを検出する。また、第1スイッチ1Bは正常にオンしているため、ADコンバータ22のAD入力端子22Cは、抵抗43と抵抗44で分圧された第1電池200Aの負極側の電圧を検出する。
 図6のタイミングチャートには、第1スイッチ1Aが正常である場合と、オープン故障している場合との2つの様子を示している。図6に示すように、第1スイッチ1Aが正常である場合、ADコンバータ22のAD入力端子22Bは、抵抗41と抵抗42で分圧された第1電池200Aの正極側の電圧を検出する。第1スイッチ1Aがオープン故障している場合、ADコンバータ22のAD入力端子22Bは、0Vを検出する。
 すなわち、制御部60は、第2スイッチ2をオフ、第3スイッチ3をオン、定電圧回路30をオフに制御した状態で、第1スイッチ1を順番にオン/オフしていった場合に、第1スイッチ1A~1Jのいずれかをオンさせた状態で0Vを検出すると、当該第1スイッチ1がオープン故障している可能性があると判定しうる。制御部60は、所定の閾値以下の電圧を検出した場合に、0Vを検出したと判定してよい。
[診断2]
 診断2は、第1スイッチ1の最下段のスイッチである第1スイッチ1Kのオープン故障診断である。図7に示すブロック図及び図8に示すタイミングチャートを参照して、診断2について説明する。なお、図7においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断2において、制御部60は、図1に示す第3スイッチ3及び定電圧回路30をオフに制御している。また、診断2の開始前、制御部60は、第1スイッチ1及び第2スイッチ2を全てオフしている。
 図8に、診断2におけるタイミングチャートを示す。制御部60は、第1電池200のうち最も電位の低い側の電池である第1電池200Eの両端子に接続されている第1スイッチ1J及び1Kをオン/オフする。その後、制御部60は、第2スイッチ2をオンさせると、所定の測定タイミングt1~t4で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。制御部60は、その後、第2スイッチ2をオフする。制御部60は、t1~t4で測定した電圧の平均値を算出して、電圧の検出値としてよい。
 制御部60が第1スイッチ1J及び1Kをオンすると、第1スイッチ1J及び1Kが正常である場合、キャパシタ10の両端子間の電位差は、図8に示すように、第1電池200Eの電圧まで上昇する。その後、制御部60が第1スイッチ1J及び1Kをオフしても、キャパシタ10の両端子間は、当該電位差を維持する。この場合、制御部60は、第2スイッチをオンさせた後、所定の測定タイミングt1~t4において、第1電池200Eの電圧に相当する電圧を検出する。
 図7は、想定故障部位として、第1スイッチ1Kがオープン故障している場合の様子を示している。この場合、第1スイッチ1J及び1Kがオンに制御されても、第1スイッチ1Kがオープンしたままであるため、キャパシタ10は充電されず、キャパシタ10の両端子間の電位差は、図8に示すように0Vのままである。この場合、制御部60は、第2スイッチをオンさせた後、所定の測定タイミングt1~t4において、0Vを検出する。
 なお、第1スイッチ1Kではなく第1スイッチ1Jがオープン故障していても、キャパシタ10は充電されない。しかしながら、第1スイッチ1Jがオープン故障している場合は、診断1-2においてオープン故障が検出され、その時点で診断処理が停止している。したがって、診断2が実行されて、所定の測定タイミングt1~t4において0Vを検出すると、制御部60は、第1スイッチ1Kがオープン故障している可能性があると判定しうる。
 また、図8に示すタイミングチャートに基づくシーケンスは、通常の処理において制御部60が第1電池200の電圧を検出する際のシーケンスと同様のシーケンスである。したがって、制御部60は、通常の第1電池200の電圧検出シーケンスと同様のシーケンスで、診断2を実行しうる。
[診断3]
 診断3は、以下の7つの診断を含む。
 ・診断3-1:キャパシタ10のリーク又はショート故障診断
 ・診断3-2:第2スイッチ2のオープン故障診断
 ・診断3-3:オペアンプ21の出力電圧張り付き診断(0V)
 ・診断3-4:第2スイッチ2Aのショート故障診断
 ・診断3-5:第2スイッチ2Bのショート故障診断
 ・診断3-6:第1スイッチ1Kのショート故障診断
 ・診断3-7:オペアンプ21の出力電圧張り付き診断(5V)
(診断3-1)
 診断3-1は、キャパシタ10のリーク故障又はショート故障を診断する。図9に示すブロック図及び図10に示すタイミングチャートを参照して、診断3-1について説明する。図9に示すように、診断3-1の故障診断対象は、キャパシタ10である。なお、図9においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-1において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-1の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図10に、診断3-1におけるタイミングチャートを示す。制御部60は、制御端子30Aにハイ信号を出力し定電圧回路30をオンさせ、また、第2スイッチ2をオンする。制御部60は、定電圧回路30及び第2スイッチ2をオンさせると、所定の測定タイミングt1~t4で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。以後、所定の測定タイミングt1~t4における測定を「測定1」とも称する。
 制御部60は、その後、制御端子30Aにロー信号を出力し定電圧回路30をオフさせる。制御部60は、定電圧回路30をオフさせると、所定の測定タイミングt5~t8で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。以後、所定の測定タイミングt5~t8における測定を「測定2」とも称する。
 制御部60は、所定の測定タイミングt1~t4及びt5~t8の条件を、通常処理において第1電池200の電圧を検出する際の測定タイミングの条件にできるだけ合わせてよい。制御部60は、例えば、通常処理における測定回数が4回で、4回の測定値を平均している場合、測定1においてもt1~t4のタイミングで4回測定し、4回の測定値を平均してよい。また、制御部60は、測定2においてもt5~t8のタイミングで4回測定し、4回の測定値を平均してよい。また、制御部60は、例えば、第2スイッチ2をオンしてから測定2を開始するまでの遅延時間を、通常処理における第2スイッチ2をオンしてから測定を開始するまでの遅延時間と同じ時間としてもよい。このように、診断3-1における測定タイミングt1~t4及びt5~t8の条件を、通常処理において第1電池200の電圧を検出する際の測定タイミングの条件にできるだけ合わせることにより、制御部60は、少ない誤差で測定1及び測定2を実行しうる。図12、図14、図16、図18、図20、図22及び図24に示す測定1~6についても、測定タイミングの条件を、通常処理において第1電池200の電圧を検出する際の測定タイミングの条件にできるだけ合わせてよい。
 制御部60が定電圧回路30及び第2スイッチ2をオンすると、キャパシタ10が正常である場合、定電圧回路30から供給される定電圧によってキャパシタ10は充電される。この場合、測定1において、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出する。また、キャパシタ10にリーク故障がある場合も、定電圧回路30から供給される定電圧によってキャパシタ10は充電されうる。この場合、測定1において、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出しうる。また、キャパシタ10にショート故障がある場合は、定電圧回路30から定電圧が供給されてもキャパシタ10は充電されない。この場合、測定1において、制御部60は、0Vを検出する。
 続いて、制御部60が定電圧回路30をオフすると、キャパシタ10が正常である場合、キャパシタ10は充電状態を維持する。この場合、測定2において、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出する。また、キャパシタ10にリーク故障がある場合は、キャパシタ10に充電されている電荷は、リークにより減少する。この場合、測定2において、制御部60は、測定1で検出した電圧よりも小さい電圧を検出する。また、キャパシタ10にショート故障がある場合は、測定2において、制御部60は、引き続き0Vを検出する。
 制御部60は、測定1で検出した電圧が0Vである場合、キャパシタ10にショート故障の可能性があると判定しうる。制御部60は、所定の閾値以下の電圧を検出した場合に、0Vを検出したと判定してよい。
 制御部60は、測定1で検出した電圧から測定2で検出した電圧を引いた差分が、所定の閾値より大きい場合、キャパシタ10がリークしている可能性があると判定しうる。所定の閾値は、電圧の読み取り誤差、及びノイズ等を考慮して適切な値に設定してよい。
 このように、制御部60は、キャパシタ10にリーク故障が発生している可能性があることを判定しうる。これにより、制御部60は、キャパシタ10のリーク故障に起因して通常処理において第1電池200の電圧を低めに読み違え、第1電池200を過充電させてしまうおそれを低減しうる。
(診断3-2)
 診断3-2は、第2スイッチ2のオープン故障診断である。図11に示すブロック図及び図12に示すタイミングチャートを参照して、診断3-2について説明する。図11に示すように、診断3-2の故障診断対象は、第2スイッチ2A及び2Bである。なお、図11においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-2において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-2の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図12に、診断3-2におけるタイミングチャートを示す。制御部60は、図10に示したタイミングチャートと同様のタイミングで、定電圧回路30のオン/オフ、及び第2スイッチ2のオン/オフを制御する。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt1~t4において測定1を行う。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt5~t8において測定2を行う。
 制御部60が定電圧回路30及び第2スイッチ2をオンすると、第2スイッチ2Bが正常である場合、定電圧回路30から供給される定電圧によってキャパシタ10は充電される。この状態において、第2スイッチ2Aが正常である場合、測定1において、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出しうる。また、定電圧回路30をオフしても、キャパシタ10は充電状態を維持するため、制御部60は、測定2においても、定電圧回路30によって供給される定電圧に相当する電圧を検出しうる。
 制御部60が定電圧回路30及び第2スイッチ2をオンしたとき、第2スイッチ2Bがオープン故障していると、キャパシタ10は、定電圧回路30によって充電されない。この場合、制御部60は、測定1及び測定2において、0Vを検出する。
 制御部60が定電圧回路30及び第2スイッチ2をオンしたとき、第2スイッチ2Aがオープン故障していると、ADコンバータ22のAD入力端子22Aには、第1節点10Aの電圧が印加されない。この場合、オペアンプ21の正側の入力端子は、周辺回路の回り込み等により、数キロオーム程度の抵抗成分を介してグランドに接地されているため、制御部60は、測定1及び測定2において、0Vを検出する。
 制御部60は、測定1及び測定2で検出した電圧が0Vである場合、第2スイッチ2にオープン故障の可能性があると判定しうる。制御部60は、所定の閾値以下の電圧を検出した場合に、0Vを検出したと判定してよい。
(診断3-3)
 診断3-3は、オペアンプ21の出力電圧が0Vに張り付いているかを診断する。図13に示すブロック図及び図14に示すタイミングチャートを参照して、診断3-3について説明する。図13に示すように、診断3-3の故障診断対象は、オペアンプ21である。なお、図13においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-3において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-3の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図14に、診断3-3におけるタイミングチャートを示す。制御部60は、図10に示したタイミングチャートと同様のタイミングで、定電圧回路30のオン/オフ、及び第2スイッチ2のオン/オフを制御する。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt1~t4において測定1を行う。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt5~t8において測定2を行う。
 制御部60が定電圧回路30及び第2スイッチ2をオンすると、定電圧回路30から供給される定電圧によってキャパシタ10は充電される。この状態において、オペアンプ21が正常である場合、オペアンプ21は、定電圧回路30によって供給される定電圧に相当する電圧をADコンバータ22のAD入力端子22Aに出力する。したがって、制御部60は、測定1において、定電圧回路30によって供給される定電圧に相当する電圧を検出しうる。また、定電圧回路30をオフしても、キャパシタ10は充電状態を維持するため、制御部60は、測定2においても、定電圧回路30によって供給される定電圧に相当する電圧を検出しうる。
 オペアンプ21の出力が0Vに張り付いていると、オペアンプ21は、定電圧回路30によって供給される定電圧に相当する電圧を入力されても、0Vを出力する。したがって、オペアンプ21の出力が0Vに張り付いている場合、制御部60は、測定1及び測定2において、0Vを検出する。オペアンプ21の出力が0Vに張り付くと、検出回路20の出力も0Vに張り付く。
 制御部60は、測定1及び測定2で検出した電圧が0Vである場合、オペアンプ21の出力が0Vに張り付いている可能性があると判定しうる。制御部60は、所定の閾値以下の電圧を検出した場合に、0Vを検出したと判定してよい。
(診断3-4)
 診断3-4は、第2スイッチ2Aのショート故障診断である。図15に示すブロック図及び図16に示すタイミングチャートを参照して、診断3-4について説明する。図15に示すように、診断3-4の故障診断対象は、第2スイッチ2Aである。なお、図15においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-4において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-4の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図16に、診断3-4におけるタイミングチャートを示す。制御部60は、図10に示したタイミングチャートと同様のタイミングで、定電圧回路30のオン/オフ、及び第2スイッチ2のオン/オフを制御する。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt1~t4において測定1を行う。また、制御部60は、図10に示したタイミングチャートと同様の測定タイミングt5~t8において測定2を行う。
 制御部60は、第2スイッチ2をオフさせると、所定の測定タイミングt9~t12で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。以後、所定の測定タイミングt9~t12における測定を「測定3」とも称する。
 オペアンプ21の正側の入力端子は、周辺回路の回り込み等により、数キロオーム程度の抵抗成分を介してグランドに接地されている。そのため、制御部60が第2スイッチをオフすると、第2スイッチ2Aが正常である場合、オペアンプ21の入力電圧は、当該抵抗成分を介して電流がリークすることにより、徐々に低下していく。この場合、制御部60は、測定3において、測定2で検出した電圧よりも小さい電圧を検出する。
 第2スイッチ2Aがショート故障していると、制御部60が第2スイッチ2をオフする制御をしても、第2スイッチ2Aはショートしたままである。この場合、オペアンプ21の入力電圧は、制御部60が第2スイッチ2をオフする制御をしても変わらない。したがって、制御部60は、測定3において、測定2で検出した電圧と同等の電圧を検出する。
 制御部60は、測定1又は測定2で検出した電圧から測定3で検出した電圧を引いた差分がゼロである場合、第2スイッチ2Aにショート故障の可能性があると判定しうる。制御部60は、測定1又は測定2で検出した電圧から測定3で検出した電圧を引いた差分が所定の閾値以下である場合、差分がゼロであると判定してよい。
(診断3-5)
 診断3-5は、第2スイッチ2Bのショート故障診断である。図17に示すブロック図及び図18に示すタイミングチャートを参照して、診断3-5について説明する。図17に示すように、診断3-5の故障診断対象は、第2スイッチ2Bである。なお、図17においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-5において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-5の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図18に、診断3-5におけるタイミングチャートを示す。制御部60は、制御端子30Aにハイ信号を出力し定電圧回路30をオンさせ、所定時間経過すると、制御端子30Aにロー信号を出力し定電圧回路30をオフさせる。制御部60は、定電圧回路30をオフさせた後、第2スイッチ2をオンさせ、その後、第2スイッチ2をオフする。制御部60は、第2スイッチ2をオンさせると、所定の測定タイミングt13~t16で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。以後、所定の測定タイミングt13~t16における測定を「測定4」とも称する。
 制御部60が、第2スイッチ2をオフさせた状態で、定電圧回路30をオンすると、キャパシタ10は充電されない。これは、第2スイッチ2Bが正常である場合、第2節点10Bが接地されていないためである。そのため、その後、制御部60が定電圧回路30をオフさせた後、第2スイッチ2をオンすると、制御部60は0Vを検出する。
 第2スイッチ2Bがショート故障している場合、制御部60が、第2スイッチ2をオフさせた状態で、定電圧回路30をオンすると、キャパシタ10は充電される。これは、第2スイッチ2Bがショート故障している場合、第2節点10Bが接地されてしまっているためである。そのため、その後、制御部60が定電圧回路30をオフさせた後、第2スイッチ2をオンすると、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出する。
 制御部60は、測定4で検出した電圧が0Vでない場合、第2スイッチ2Bにショート故障の可能性があると判定しうる。制御部60は、所定の閾値以上の電圧を検出した場合に、0Vでない電圧を検出したと判定してよい。
(診断3-6)
 診断3-6は、第1スイッチ1の最下段のスイッチである第1スイッチ1Kのショート故障診断である。図19に示すブロック図及び図20に示すタイミングチャートを参照して、診断3-6について説明する。図19に示すように、診断3-6の故障診断対象は、第1スイッチ1Kである。なお、図19においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-6において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。また、診断3-6の開始前、制御部60は、定電圧回路30及び第2スイッチ2をオフしている。
 図20に、診断3-6におけるタイミングチャートを示す。制御部60は、図18に示したタイミングチャートと同様のタイミングで、定電圧回路30のオン/オフ、及び第2スイッチ2のオン/オフを制御する。また、制御部60は、図18に示したタイミングチャートと同様の測定タイミングt13~t16において測定4を行う。
 制御部60が、第2スイッチ2をオフさせた状態で、定電圧回路30をオンすると、キャパシタ10は充電されない。これは、第1スイッチ1Kが正常である場合、第2節点10Bが接地されていないためである。そのため、その後、制御部60が定電圧回路30をオフさせた後、第2スイッチ2をオンすると、制御部60は0Vを検出する。
 第1スイッチ1Kがショート故障している場合、制御部60が、第2スイッチ2をオフさせた状態で、定電圧回路30をオンすると、キャパシタ10は充電される。これは、第1スイッチ1Kがショート故障している場合、第2節点10Bが接地されてしまっているためである。そのため、その後、制御部60が定電圧回路30をオフさせた後、第2スイッチ2をオンすると、制御部60は、定電圧回路30によって供給される定電圧に相当する電圧を検出する。
 制御部60は、測定4で検出した電圧が0Vでない場合、第1スイッチ1Kにショート故障の可能性があると判定しうる。制御部60は、所定の閾値以上の電圧を検出した場合に、0Vでない電圧を検出したと判定してよい。
(診断3-7)
 診断3-7は、オペアンプ21の出力電圧が電源電圧(例えば5V)に張り付いているかを診断する。図21に示すブロック図及び図22に示すタイミングチャートを参照して、診断3-7について説明する。図21に示すように、診断3-7の故障診断対象は、オペアンプ21である。なお、図21においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断3-7において、制御部60は、第1スイッチ1をオフに制御している。また、制御部60は、図1に示す第3スイッチ3をオフに制御している。
 図22に、診断3-7におけるタイミングチャートを示す。制御部60は、定電圧回路30及び第2スイッチ2をオンする前の所定の測定タイミングt17~t20で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。以後、所定の測定タイミングt17~t20における測定を「測定5」とも称する。
 制御部60が定電圧回路30及び第2スイッチ2をオンする前は、キャパシタ10は充電されていない。この状態において、オペアンプ21が正常である場合、オペアンプ21は、0VをADコンバータ22のAD入力端子22Aに出力する。したがって、制御部60は、測定5において、0Vを検出しうる。
 オペアンプ21の出力が電源電圧(例えば5V)に張り付いていると、オペアンプ21は、オペアンプ21に0Vが入力されていても、5Vを出力する。したがって、オペアンプ21の出力が5Vに張り付いている場合、制御部60は、測定5において、5Vを検出する。オペアンプ21の出力が5Vに張り付くと、検出回路20の出力も5Vに張り付く。
 制御部60は、測定5で検出した電圧がオペアンプ21の電源電圧(例えば5V)である場合、オペアンプ21の出力が5Vに張り付いている可能性があると判定しうる。制御部60は、5Vとの差分が所定の閾値以下の電圧を検出した場合に、5Vを検出したと判定してよい。
[診断4]
 診断4は、オペアンプ21の故障診断である。図23に示すブロック図及び図24に示すタイミングチャートを参照して、診断4について説明する。なお、図23においては、図1に示した診断装置100の構成要素の一部を適宜省略して簡略化して示している。
 診断4において、制御部60は、図1に示す第3スイッチ3及び定電圧回路30をオフに制御している。また、診断4の開始前、制御部60は、第1スイッチ1及び第2スイッチ2を全てオフしている。
 図24に、診断4におけるタイミングチャートを示す。制御部60は、制御端子30Aにハイ信号を出力し定電圧回路30をオンさせ、また、第2スイッチ2をオンする。制御部60は、定電圧回路30及び第2スイッチ2をオンさせると、所定の測定タイミングt21~t24で、ADコンバータ22のAD入力端子22Aに入力される電圧を測定する。また、診断4においては、制御部60は、定電圧回路30及び第2スイッチ2をオンさせると、測定タイミングt21~t24で、サブ検出回路50のADコンバータ52のAD入力端子に入力される電圧も測定する。以後、所定の測定タイミングt21~t24における測定を「測定6」とも称する。
 制御部60が定電圧回路30及び第2スイッチ2をオンすると、定電圧回路30から供給される定電圧によってキャパシタ10は充電される。この場合、測定6において、制御部60は、オペアンプ21が正常である場合、検出回路20とサブ検出回路50の双方から、定電圧回路30によって供給される定電圧に相当する電圧を検出する。オペアンプ21に異常がある場合、制御部60は、測定6において、検出回路20とサブ検出回路50から、異なる電圧を検出する。
 制御部60は、測定6において、検出回路20から取得した電圧と、サブ検出回路50から取得した電圧との差分が、所定の閾値より大きい場合、オペアンプ21が故障している可能性があると判定しうる。
[診断3及び診断4の手順]
 図25~図27に示すフローチャートを参照して、図3に示したステップS3(診断3)及びステップS4(診断4)の詳細な手順の一例について説明する。
 診断装置100の制御部60は、第1スイッチ1、第2スイッチ2、第3スイッチ3、及び定電圧回路30をオフに制御している状態から、図25~図27に示すフローを開始する。
 制御部60は、例えば図10に示すタイミングチャートのように、第2スイッチ2をオンし(ステップS101)、定電圧回路30をオンする(ステップS102)。制御部60は、ステップS101とステップS102を同時に実行してよい。制御部60は、ステップS101の前にステップS102を実行してよい。
 制御部60は、測定1を実行する(ステップS103)。制御部60は、定電圧回路30をオフする(ステップS104)。制御部60は、測定2を実行する(ステップS105)。
 制御部60は、測定1及び測定2の結果に基づいて、診断3-1、診断3-2又は診断3-3の故障を検出したか判定する(ステップS106)。
 制御部60は、測定1で検出した電圧が0Vである場合、以下のいずれかの故障の可能性があると判定しうる。制御部60は、所定の閾値以下の電圧を検出した場合に、0Vを検出したと判定してよい。
 ・キャパシタ10のショート故障(診断3-1)
 ・第2スイッチ2のオープン故障(診断3-2)
 ・オペアンプ21の出力の0Vへの張り付き(診断3-3)
 制御部60は、測定1で検出した電圧から測定2で検出した電圧を引いた差分が、所定の閾値より大きい場合、キャパシタ10がリークしている可能性があると判定しうる(診断3-1)。
 診断3-1、診断3-2又は診断3-3の故障を検出した場合(ステップS106のYes)、制御部60は、故障フラグを立てて(ステップS107)、診断処理を終了する。
 診断3-1、診断3-2又は診断3-3の故障を検出しなかった場合(ステップS106のNo)、制御部60は、ステップS108に進む。
 制御部60は、例えば図16に示すタイミングチャートのように、第2スイッチ2をオフし(ステップS108)、測定3を実行する(ステップS109)。
 制御部60は、測定1~測定3の結果に基づいて、診断3-4の故障を検出したか判定する(ステップS110)。
 制御部60は、測定1又は測定2で検出した電圧から測定3で検出した電圧を引いた差分がゼロである場合、第2スイッチ2Aにショート故障の可能性があると判定しうる(診断3-4)。制御部60は、測定1又は測定2で検出した電圧から測定3で検出した電圧を引いた差分が所定の閾値以下である場合、差分がゼロであると判定してよい。
 診断3-4の故障を検出した場合(ステップS110のYes)、制御部60は、故障フラグを立てて(ステップS111)、診断処理を終了する。
 診断3-4の故障を検出しなかった場合(ステップS110のNo)、制御部60は、ステップS112に進む。
 制御部60は、第4スイッチ4をオンし、キャパシタ10を放電させる(ステップS112)。
 制御部60は、例えば図18に示すタイミングチャートのように、定電圧回路30をオンさせてからオフし(ステップS113)、第2スイッチ2をオンする(ステップS114)。制御部60は、測定4を実行する(ステップS115)。
 制御部60は、測定4の結果に基づいて、診断3-5又は診断3-6の故障を検出したか判定する(ステップS116)。
 制御部60は、測定4で検出した電圧が0Vでない場合、以下のいずれかの故障の可能性があると判定しうる。制御部60は、所定の閾値以上の電圧を検出した場合に、0Vでない電圧を検出したと判定してよい。
 ・第2スイッチ2Bのショート故障(診断3-5)
 ・第1スイッチ1Kのショート故障(診断3-6)
 診断3-5又は診断3-6の故障を検出した場合(ステップS116のYes)、制御部60は、故障フラグを立てて(ステップS117)、診断処理を終了する。
 診断3-5又は診断3-6の故障を検出しなかった場合(ステップS116のNo)、制御部60は、ステップS118に進む。
 制御部60は、第2スイッチ2をオフする(ステップS118)。
 制御部60は、第4スイッチ4をオンし、キャパシタ10を放電させる(ステップS119)。診断3-5又は診断3-6の故障が発生していない場合、キャパシタ10には電荷が充電されていないため、ステップS119は省略しうる。
 制御部60は、例えば図22に示すタイミングチャートのように、定電圧回路30及び第2スイッチ2がオフの状態で、測定5を実行する(ステップS120)。
 制御部60は、例えば図24に示すタイミングチャートのように、定電圧回路30をオンし(ステップS121)、第2スイッチ2をオンする(ステップS122)。制御部60は、ステップS121とステップS122を同時に実行してよい。制御部60は、ステップS121の前にステップS122を実行してよい。
 制御部60は、測定6を実行する(ステップS123)。
 制御部60は、測定5及び測定6の結果に基づいて、診断3-7又は診断4の故障を検出したか判定する(ステップS124)。
 制御部60は、測定5で検出した電圧がオペアンプ21の電源電圧(例えば5V)である場合、オペアンプ21の出力が5Vに張り付いている可能性があると判定しうる(診断3-7)。制御部60は、5Vとの差分が所定の閾値以下の電圧を検出した場合に、5Vを検出したと判定してよい。
 制御部60は、測定6において、検出回路20から取得した電圧と、サブ検出回路50から取得した電圧との差分が、所定の閾値より大きい場合、オペアンプ21が故障している可能性があると判定しうる(診断4)。
 診断3-7又は診断4の故障を検出した場合(ステップS124のYes)、制御部60は、故障フラグを立てて(ステップS125)、診断処理を終了する。
 診断3-7又は診断4の故障を検出しなかった場合(ステップS124のNo)、制御部60は、診断処理を終了する。
 制御部60は、ステップS107、ステップS111、ステップS117又はステップS125において故障フラグを立てて診断処理を終了する際、以後の第1電池200の使用を停止するよう制御してよい。
 ステップS106、ステップS110、ステップS116及びステップS124における故障判定のタイミングは一例であり、これに限定されない。
 例えば、ステップS106における、以下の故障判定は、ステップS103において測定1を実行した段階で実行してよい。
 ・キャパシタ10のショート故障(診断3-1)
 ・第2スイッチ2のオープン故障(診断3-2)
 ・オペアンプ21の出力の0Vへの張り付き(診断3-3)
 例えば、ステップS106における故障判定は、ステップS109において測定3を実行した後に、ステップS110の故障判定と併せて実行してよい。
 例えば、ステップS124における、診断3-7の故障判定は、ステップS120において測定5を実行した段階で実行してよい。
 本実施形態においては、検出回路20は、キャパシタ10の両端子間の電位差を検出するものとして説明したが、検出回路20は、キャパシタ10からの放電電流を検出してもよい。
 本実施形態に係る診断装置100によれば、診断装置100は、第1電池200とは異なる第2電池300からキャパシタ10に電圧を印加しうる。また、検出回路20は、制御部60がPNPトランジスタ32をオンして、第2電池300からキャパシタ10に電圧を印加した後に、電位差又は放電電流を検出する。そして、制御部60は、キャパシタ10、第1スイッチ1K及び第2スイッチ2の少なくとも1つを診断する。これにより、本実施形態に係る診断装置100は、電圧検出対象である第1電池200に依存せずに、キャパシタ10、第1スイッチ1K及び第2スイッチ2の状態を診断しうる。
 また、本実施形態に係る診断装置100によれば、故障診断の際に、定電圧回路30からキャパシタ10に定電圧を供給しうるため、故障か否かを判定するための閾値を容易に設定しうる。
 また、本実施形態に係る診断装置100によれば、診断装置100は、フライングキャパシタとして機能するキャパシタ10と、第1電池200とキャパシタ10との接続状態を切り替える第1スイッチ1と、キャパシタ10と検出回路20との接続状態を切り替える第2スイッチ2とを診断する。これにより、本実施形態に係る診断装置100は、フライングキャパシタ方式を採用した構成において必要とされる故障診断を総合的に行いうる。
 また、本実施形態に係る診断装置100によれば、診断装置100は、第1スイッチ1のショート故障を検出した場合、第2スイッチ2をオフにした状態を維持して、キャパシタ10及び第2スイッチ2の診断を中止しうる。これにより、第1スイッチ1のショート故障に伴って、検出回路20のオペアンプ21に高い電圧が印加されてオペアンプ21が故障するおそれを低減しうる。
 また、本実施形態に係る診断装置100によれば、診断装置100は、第1スイッチ1の第1電池200に接続されていない側の端子と、検出回路20のADコンバータ22とを、増幅回路として機能するオペアンプ21をバイパスして接続可能な第3スイッチ3を備える。また、診断装置100は、第2スイッチ2をオフにし、且つ、第3スイッチ3をオンにした状態で、第1スイッチ1をオン又はオフしたときのADコンバータ22の検出結果に基づいて、第1スイッチ1を診断する。これにより、本実施形態に係る診断装置100は、オペアンプ21をバイパスして第1スイッチ1を診断することができるため、増幅回路として機能するオペアンプ21が故障するおそれを低減することができる。
(診断装置の構成の変形例)
 図28に変形例に係る診断装置110の構成を示す。変形例に係る診断装置110は、図1に示した診断装置100とは、検出回路20に加えて検出回路23を備える点で相違する。変形例に係る診断装置110については、図1に示した診断装置100との相違点について主に説明する。
 検出回路23は、ADコンバータ24を備える。ADコンバータ24は、AD入力端子24A及び24Bを有する。ADコンバータ24は、AD入力端子24Aに入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。ADコンバータ24は、AD入力端子24Bに入力されたアナログ電圧を、当該アナログ電圧に応じたデジタル信号に変換して制御部60に出力する。
 変形例に係る診断装置110において、検出回路20及び検出回路23は、それぞれ、第1検出回路及び第2検出回路として機能してよい。ADコンバータ22及びADコンバータ24は、それぞれ、第1ADコンバータ及び第2ADコンバータとして機能してよい。
 変形例に係る診断装置110においては、第3スイッチ3Aは、抵抗41を介してADコンバータ24のAD入力端子24Aに接続されている。第3スイッチ3Bは、抵抗43を介してADコンバータ24のAD入力端子24Bに接続されている。
 変形例に係る診断装置110の構成であっても、図1に示した診断装置100と同様の効果を有しうる。
(総合的な故障診断)
 フライングキャパシタ方式の電池監視装置においては、キャパシタと電圧検出回路との接続を切り替えるスイッチの故障診断だけでなく、電池とキャパシタとの接続を切り替えるスイッチ、及び、キャパシタの故障診断もすることが望ましい。しかしながら、特許文献1においては、電池とキャパシタとの接続を切り替えるスイッチ、及び、キャパシタの故障診断について検討されていない。
 この観点に鑑みて、フライングキャパシタ方式を採用した構成において必要とされる故障診断を総合的に行うことができる下記の第4の観点に係る診断装置、第5の観点に係る診断方法、及び第6の観点に係る診断装置を提供しうる。
 上記課題を解決するために、第4の観点に係る診断装置は、
 直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、
 前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、
 ADコンバータを有し、前記キャパシタの両端子間の電位差を検出する検出回路と、
 前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、
 前記第1スイッチの前記第1電池に接続されていない側の端子と、前記検出回路又は他のADコンバータの一方とを、前記第2スイッチをバイパスして接続可能な第3スイッチと、
 前記第1スイッチ、前記第2スイッチ及び前記第3スイッチを制御する制御部と、を備え、
 前記制御部は、
  前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記検出回路又は前記他のADコンバータの一方の検出結果に基づいて、前記第1スイッチを診断し、
  前記第1スイッチの診断の後に前記第3スイッチをオフし、前記第2スイッチをオフからオンにし、前記キャパシタ及び前記第2スイッチを診断する。
 第4の観点に係る診断装置において、
 前記制御部は、前記第1スイッチのショート故障を検出した場合、前記第2スイッチをオフにした状態を維持し、前記キャパシタ及び前記第2スイッチの診断を中止してよい。
 第4の観点に係る診断装置において、
 前記検出回路は、前記ADコンバータに出力する増幅回路を有し、前記増幅回路への入力に基づいて前記キャパシタの両端子間の電位差を検出し、
 前記第3スイッチは、前記第1スイッチの前記第1電池に接続されていない側の端子と前記ADコンバータ又は前記他のADコンバータとを、前記増幅回路をバイパスして接続可能であり、
 前記制御部は、前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記ADコンバータ又は前記他のADコンバータの一方の検出結果に基づいて、前記第1スイッチを診断してよい。
 第4の観点に係る診断装置において、
 前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチをさらに備え、
 前記制御部は、前記第1スイッチの診断の後に前記第3スイッチをオフし、前記第2スイッチをオフからオンにし、前記切替スイッチをオンして前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路の検出結果に基づいて、前記キャパシタ及び前記第2スイッチを診断してよい。
 第4の観点に係る診断装置において、
 前記第2電池から定電圧を生成して、前記切替スイッチを介して前記キャパシタに定電圧を出力可能な定電圧回路をさらに備えてよい。
 第4の観点に係る診断装置において、
 前記定電圧は、直列接続された複数の前記第1電池が供給可能な最大電圧より小さくてよい。
 第4の観点に係る診断装置において、
 前記定電圧は、前記第1電池が供給可能な最大電圧より大きくてよい。
 第4の観点に係る診断装置において、
 前記第1電池は、リチウムイオン電池又はニッケル水素電池であってよい。
 第4の観点に係る診断装置において、
 前記第2電池は、鉛蓄電池又はリチウムイオン電池又はニッケル水素電池であってよい。
 上記課題を解決するために、第5の観点に係る診断方法は、
 直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、ADコンバータを有し、前記キャパシタの両端子間の電位差を検出する検出回路と、前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、前記第1スイッチの前記第1電池に接続されていない側の端子と、前記検出回路又は他のADコンバータの一方とを前記第2スイッチをバイパスして接続可能な第3スイッチと、を備える診断装置における診断方法であって、
 前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記検出回路又は前記他のADコンバータの一方の検出結果に基づいて、前記第1スイッチを診断するステップと、
 前記第1スイッチの診断の後に前記第3スイッチをオフし、前記第2スイッチをオフからオンにし、前記キャパシタ及び前記第2スイッチを診断するステップと、を含む。
 上記課題を解決するために、第6の観点に係る診断装置は、
 直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、
 前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、
 前記キャパシタの両端子間の電位差を検出する第1検出回路と、
 前記キャパシタと前記第1検出回路との接続状態を切り替える第2スイッチと、
 前記第1スイッチの前記第1電池に接続されていない側の端子の電圧を、前記第2スイッチをバイパスして検出可能な第2検出回路と、
 前記第1スイッチと前記第2検出回路との接続状態を切り替える第3スイッチと、
 前記第1スイッチ、前記第2スイッチ及び前記第3スイッチを制御する制御部と、を備え、
 前記制御部は、
  前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記第2検出回路の検出結果に基づいて、前記第1スイッチを診断し、
  前記第1スイッチの診断の後に前記第3スイッチをオフし、前記第2スイッチをオフからオンにし、前記第1検出回路の検出結果に基づいて、前記キャパシタ及び前記第2スイッチを診断する。
 第4の観点に係る診断装置によれば、フライングキャパシタ方式を採用した構成において必要とされる故障診断を総合的に行いうる。
 第5の観点に係る診断方法によれば、フライングキャパシタ方式を採用した構成において必要とされる故障診断を総合的に行いうる。
 第6の観点に係る診断装置によれば、フライングキャパシタ方式を採用した構成において必要とされる故障診断を総合的に行いうる。
(フライングキャパシタの電圧を検出する増幅回路の故障のおそれの低減)
 フライングキャパシタ方式の電池監視装置においてキャパシタの電圧を検出する電圧検出回路の構成として、オペアンプなどの増幅回路でキャパシタの電圧を増幅し、増幅回路から出力されるアナログ信号をA/D変換器でデジタル信号に変換する構成が知られている(例えば、特開2010-78572号公報)。
 フライングキャパシタ方式の電池監視装置においては、電池とキャパシタとの接続を切り替えるスイッチが正常に動作している必要があるため、そのスイッチの故障診断をすることが必要である。複数の電池が直列に接続されている構成に対して各電池の電圧をフライングキャパシタ方式の電池監視装置で監視している場合、高電位側の電池に接続されているスイッチと、低電位側の電池に接続されているスイッチとが同時にショート故障していると、増幅回路に当該増幅回路が許容する電圧以上の電圧が印加されてしまうため、故障診断中に増幅回路が故障するおそれがある。
 この観点に鑑みて、フライングキャパシタの電圧を検出する増幅回路が故障するおそれを低減することができる下記の第7の観点に係る診断装置、第8の観点に係る診断方法、及び第9の観点に係る診断装置を提供しうる。
 上記課題を解決するために、第7の観点に係る診断装置は、
 直列接続された複数の第1電池の各第1電池の電圧を検出可能な検出回路であって、増幅回路及びADコンバータを有する検出回路と、
 前記複数の第1電池の正極及び負極に接続される複数の第1スイッチと、
 前記複数の第1スイッチと前記検出回路の前記増幅回路との接続状態を切り替える第2スイッチと、
 前記第1スイッチと前記第2スイッチとの間と、前記ADコンバータ又は他のADコンバータの一方とを接続可能な第3スイッチと、
 前記第1スイッチ、前記第2スイッチ及び前記第3スイッチを制御する制御部と、を備え、
 前記制御部は、前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの、前記ADコンバータ又は前記他のADコンバータの一方の検出結果に基づいて、前記第1スイッチを診断する。
 第7の観点に係る診断装置において、
 前記制御部は、前記第1スイッチのショート故障を検出した場合、前記第2スイッチをオフにした状態を維持してよい。
 第7の観点に係る診断装置において、
 前記複数の第1スイッチを介して、前記複数の第1電池の各第1電池に並列に接続可能なキャパシタをさらに備えてよい。
 第7の観点に係る診断装置において、
 オンすることで前記キャパシタに充電されている電荷を放電することが可能な第4スイッチをさらに備えてよい。
 第7の観点に係る診断装置において、
 前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチをさらに備え、
 前記制御部は、前記切替スイッチをオンして前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路の検出結果に基づいて、前記キャパシタ及び前記第2スイッチを診断してよい。
 第7の観点に係る診断装置において、
 前記第2電池は、鉛蓄電池であってよい。
 第7の観点に係る診断装置において、
 前記第1電池は、リチウムイオン電池又はニッケル水素電池であってよい。
 上記課題を解決するために、第8の観点に係る診断方法は、
 直列接続された複数の第1電池の各第1電池の電圧を検出可能な検出回路であって増幅回路及びADコンバータを有する検出回路と、前記複数の第1電池の正極及び負極に接続される複数の第1スイッチと、前記複数の第1スイッチと前記検出回路の前記増幅回路との接続状態を切り替える第2スイッチと、前記第1スイッチと前記第2スイッチとの間と前記ADコンバータ又は他のADコンバータの一方とを接続可能な第3スイッチと、を備える診断装置における診断方法であって、
 前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記ADコンバータ又は前記他のADコンバータの一方の検出結果に基づいて、前記第1スイッチを診断するステップを含む。
 上記課題を解決するために、第9の観点に係る診断装置は、
 直列接続された複数の第1電池の各第1電池の電圧を検出可能な第1検出回路であって、増幅回路及び第1ADコンバータを有する第1検出回路と、
 前記各第1電池の電圧を検出可能な第2検出回路であって、第2ADコンバータを有する第2検出回路と、
 前記複数の第1電池の正極及び負極に接続される複数の第1スイッチと、
 前記複数の第1スイッチと前記第1検出回路の前記増幅回路との接続状態を切り替える第2スイッチと、
 前記第1スイッチと前記第2ADコンバータとを接続可能な第3スイッチと、
 前記第1スイッチ、前記第2スイッチ及び前記第3スイッチを制御する制御部と、を備え、
 前記制御部は、前記第2スイッチをオフにし、且つ、前記第3スイッチをオンにした状態で、前記第1スイッチをオン又はオフしたときの前記第2ADコンバータの検出結果に基づいて、前記第1スイッチを診断する。
 第7の観点に係る診断装置によれば、フライングキャパシタの電圧を検出する増幅回路が故障するおそれを低減しうる。
 第8の観点に係る診断方法によれば、フライングキャパシタの電圧を検出する増幅回路が故障するおそれを低減しうる。
 第9の観点に係る診断装置によれば、フライングキャパシタの電圧を検出する増幅回路が故障するおそれを低減しうる。
 本開示に係る一実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各手段に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段等を1つに組み合わせたり、あるいは分割したりすることが可能である。
 100、110 診断装置
 1、1A~1K 第1スイッチ
 2、2A、2B 第2スイッチ
 3、3A、3B 第3スイッチ
 4 第4スイッチ
 10 キャパシタ(フライングキャパシタ)
 10A 第1節点
 10B 第2節点
 11 抵抗
 20 検出回路
 21 オペアンプ
 22 ADコンバータ
 22A~22C AD入力端子
 23 検出回路
 24 ADコンバータ
 24A~24B AD入力端子
 30 定電圧回路
 30A 制御端子
 30B 出力端子
 30C 電源端子
 31 NPNトランジスタ
 32 PNPトランジスタ
 33 キャパシタ
 34、35、36、37、38 抵抗
 39 ダイオード
 40 キャパシタ電圧検出回路
 41、42、43、44 抵抗
 50 サブ検出回路
 51 オペアンプ
 52 ADコンバータ
 60 制御部
 70 記憶部
 200、200A~200E 第1電池
 300 第2電池
 400 電圧変換回路

Claims (13)

  1.  直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、
     前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、
     前記キャパシタの両端子間の電位差を検出する、又は、前記キャパシタからの放電電流を検出する検出回路と、
     前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、
     前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチと、
     前記第1スイッチ、前記第2スイッチ及び前記切替スイッチを制御する制御部と、
     前記キャパシタと、前記複数の第1スイッチのうちグランドと接続する最下段の第1スイッチと、前記第2スイッチとの少なくとも1つを診断する診断部と、を備え、
     前記制御部が前記切替スイッチをオンして、前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路が電位差又は放電電流を検出し、
     前記診断部が、前記キャパシタ、前記最下段の第1スイッチ及び前記第2スイッチの少なくとも1つを診断する、診断装置。
  2.  請求項1に記載の診断装置において、
     前記第2電池から定電圧を生成して、前記切替スイッチを介して前記キャパシタに定電圧を出力可能な定電圧回路をさらに備えた、診断装置。
  3.  請求項2に記載の診断装置において、
     前記定電圧は、直列接続された複数の前記第1電池が供給可能な最大電圧より小さい、診断装置。
  4.  請求項2又は3に記載の診断装置において、
     前記定電圧は、前記第1電池が供給可能な最大電圧より大きい、診断装置。
  5.  請求項1から4のいずれか一項に記載の診断装置において、
     前記第2電池は鉛蓄電池である、診断装置。
  6.  請求項2に記載の診断装置において、
     前記制御部は、前記定電圧を前記キャパシタに出力し、前記第2スイッチをオンにした状態で、前記検出回路が検出した前記キャパシタの両端子間の電位差に基づいて、前記キャパシタのショート故障、前記第2スイッチのオープン故障、又は前記検出回路の出力の0Vへの張り付きの可能性があるかを診断する、診断装置。
  7.  請求項6に記載の診断装置において、
     前記制御部は、前記定電圧をオフした後に前記検出回路が検出した前記キャパシタの両端子間の電位差にさらに基づいて、前記キャパシタがリークしている可能性があるかを診断する、診断装置。
  8.  請求項6又は7に記載の診断装置において、
     前記第2スイッチは、前記キャパシタの一端と前記検出回路との接続状態を切り替える上側第2スイッチと、前記キャパシタの他端とグランドとの接続状態を切り替える下側第2スイッチとを有し、
     前記制御部は、前記定電圧をオフした後に前記第2スイッチをオフにした後に前記検出回路が検出した前記キャパシタの両端子間の電位差にさらに基づいて、前記上側第2スイッチのショート故障の可能性があるかを診断する、診断装置。
  9.  請求項8に記載の診断装置において、
     前記制御部は、前記定電圧を前記キャパシタに出力した後に前記定電圧をオフし、その後前記第2スイッチをオンした後に前記検出回路が検出した前記キャパシタの両端子間の電位差に基づいて、前記下側第2スイッチのショート故障、又は前記最下段の第1スイッチのショート故障の可能性があるかを診断する、診断装置。
  10.  請求項1から9のいずれか一項に記載の診断装置において、
     前記制御部は、前記第2スイッチがオフの状態で、前記定電圧を前記キャパシタに出力する前に、前記検出回路が検出した前記キャパシタの両端子間の電位差に基づいて、前記検出回路の出力の電源電圧への張り付きの可能性があるかを診断する、診断装置。
  11.  請求項1から10のいずれか一項に記載の診断装置において、
     前記制御部は、前記定電圧を前記キャパシタに出力し、前記第2スイッチをオンにした状態で、前記検出回路が検出した前記キャパシタの両端子間の電位差に基づいて、前記検出回路が故障している可能性があるかを診断する、診断装置。
  12.  直列接続された複数の第1電池の各第1電池に並列に接続可能なキャパシタと、前記複数の第1電池と前記キャパシタとの接続状態を切り替える複数の第1スイッチと、前記キャパシタの両端子間の電位差を検出する、又は、前記キャパシタからの放電電流を検出する検出回路と、前記キャパシタと前記検出回路との接続状態を切り替える第2スイッチと、前記第1電池とは異なる第2電池と前記キャパシタとの接続状態を切り替える切替スイッチと、を備える診断装置における診断方法であって、
     前記切替スイッチをオンして、前記第2電池から前記キャパシタに電圧を印加した後に、前記検出回路が電位差又は放電電流を検出するステップと、
     前記キャパシタと、前記複数の第1スイッチのうちグランドと接続する最下段の第1スイッチと、前記第2スイッチとの少なくとも1つを診断するステップと、を含む診断方法。
  13.  電圧または電流を検出する検出回路と、
     第1電池を前記検出回路に接続可能な検出用接続回路と、
     前記第1電池とは異なる電源を前記検出用接続回路に接続可能な診断用接続回路と、
     前記診断用接続回路を前記検出用接続回路に接続して、前記検出用接続回路を診断する診断部と、を備えた診断装置。
PCT/JP2019/011562 2018-04-02 2019-03-19 診断装置及び診断方法 WO2019193973A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,486 US11307256B2 (en) 2018-04-02 2019-03-19 Diagnostic apparatus and diagnostic method
CN201980023400.5A CN111954824A (zh) 2018-04-02 2019-03-19 诊断装置和诊断方法
DE112019001753.5T DE112019001753T5 (de) 2018-04-02 2019-03-19 Diagnosevorrichtung und diagnoseverfahren

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018071107 2018-04-02
JP2018-071107 2018-04-02
JP2019016397A JP7219104B2 (ja) 2018-04-02 2019-01-31 診断装置及び診断方法
JP2019016395A JP7211832B2 (ja) 2018-04-02 2019-01-31 診断装置及び診断方法
JP2019-016397 2019-01-31
JP2019-016395 2019-01-31

Publications (1)

Publication Number Publication Date
WO2019193973A1 true WO2019193973A1 (ja) 2019-10-10

Family

ID=68100392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011562 WO2019193973A1 (ja) 2018-04-02 2019-03-19 診断装置及び診断方法

Country Status (2)

Country Link
US (1) US11307256B2 (ja)
WO (1) WO2019193973A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039114A (zh) * 2021-11-04 2022-02-11 中汽数据有限公司 电池管理***的采样失效诊断方法、设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340265B2 (en) * 2019-10-01 2022-05-24 Silego Technology Inc. Circuit and method for real time detection of a faulty capacitor
CN113985858B (zh) * 2021-11-30 2024-05-17 卧龙电气南阳防爆集团股份有限公司 一种针对电控***偶发故障的检测与诊断装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281681A (ja) * 2001-03-22 2002-09-27 Denso Corp 組電池用直流電圧検出装置のモニタ方法
JP2010140785A (ja) * 2008-12-12 2010-06-24 Panasonic Corp 故障診断回路、及び電池パック
WO2012144373A1 (ja) * 2011-04-21 2012-10-26 ルネサスエレクトロニクス株式会社 スイッチ回路、選択回路、及び電圧測定装置
JP2013108924A (ja) * 2011-11-24 2013-06-06 Denso Corp 電池監視装置
US20140239897A1 (en) * 2013-02-25 2014-08-28 Fairchild Korea Semiconductor Ltd. Voltage measuring apparatus and battery management system including the same
JP2014182089A (ja) * 2013-03-21 2014-09-29 Denso Corp 電池監視装置
WO2015025709A1 (ja) * 2013-08-23 2015-02-26 日立オートモティブシステムズ株式会社 電池監視装置
JP2015080334A (ja) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 蓄電システム
JP2017102026A (ja) * 2015-12-02 2017-06-08 富士通テン株式会社 状態判定装置および状態判定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281681A (ja) * 2001-03-22 2002-09-27 Denso Corp 組電池用直流電圧検出装置のモニタ方法
JP2010140785A (ja) * 2008-12-12 2010-06-24 Panasonic Corp 故障診断回路、及び電池パック
WO2012144373A1 (ja) * 2011-04-21 2012-10-26 ルネサスエレクトロニクス株式会社 スイッチ回路、選択回路、及び電圧測定装置
JP2013108924A (ja) * 2011-11-24 2013-06-06 Denso Corp 電池監視装置
US20140239897A1 (en) * 2013-02-25 2014-08-28 Fairchild Korea Semiconductor Ltd. Voltage measuring apparatus and battery management system including the same
JP2014182089A (ja) * 2013-03-21 2014-09-29 Denso Corp 電池監視装置
WO2015025709A1 (ja) * 2013-08-23 2015-02-26 日立オートモティブシステムズ株式会社 電池監視装置
JP2015080334A (ja) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 蓄電システム
JP2017102026A (ja) * 2015-12-02 2017-06-08 富士通テン株式会社 状態判定装置および状態判定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039114A (zh) * 2021-11-04 2022-02-11 中汽数据有限公司 电池管理***的采样失效诊断方法、设备和存储介质

Also Published As

Publication number Publication date
US20210025941A1 (en) 2021-01-28
US11307256B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US10197619B2 (en) State determination apparatus
KR102059076B1 (ko) 스위치 부품의 고장 진단 장치 및 방법
US9696380B2 (en) Relay control system and method for controlling same
US10114056B2 (en) Deterioration specifying device and deterioration specifying method
US10139453B2 (en) Battery voltage monitoring device using capacitor circuit and switch failure detection circuit
KR101610906B1 (ko) 커패시터를 이용한 절연 저항 추정 장치 및 그 방법
CN107889526B (zh) 电池***监视装置
KR101619328B1 (ko) 절연 저항 측정 장치 및 그 방법
KR20160054935A (ko) 정확한 진단 전압의 측정이 가능한 전기 접촉기 진단 장치
KR101610921B1 (ko) 선택적 스위칭을 이용한 절연 저항 측정 장치 및 방법
EP2799894A1 (en) Monitor system and vehicle
US10161980B2 (en) Deterioration detecting apparatus and deterioration detecting method
WO2019193973A1 (ja) 診断装置及び診断方法
JP7219104B2 (ja) 診断装置及び診断方法
KR101826645B1 (ko) 배터리 관리 시스템의 고장 진단 방법
JP6770184B2 (ja) 電源システム、電源システムの故障診断方法およびシステム制御装置
JP6659887B2 (ja) 診断装置及び診断方法
KR101918361B1 (ko) 차량의 배터리 관리 시스템
JP7258827B2 (ja) 二次電池のリレースイッチ溶着診断回路及びプリチャージ処理回路
JP2019221022A (ja) 電池監視装置、電池監視システム、および電池監視方法
KR20230055077A (ko) 컨택터의 고장 진단 방법 및 그 방법을 제공하는 배터리 시스템
JP2019169471A (ja) 電池システム監視装置
JP2016161357A (ja) 電源監視装置および電源監視方法
SE541183C2 (en) Motor Vehicle and Method for Charging a Motor Vehicle Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19780992

Country of ref document: EP

Kind code of ref document: A1