WO2019193014A1 - Vaporisation-condensats-egr - Google Patents

Vaporisation-condensats-egr Download PDF

Info

Publication number
WO2019193014A1
WO2019193014A1 PCT/EP2019/058318 EP2019058318W WO2019193014A1 WO 2019193014 A1 WO2019193014 A1 WO 2019193014A1 EP 2019058318 W EP2019058318 W EP 2019058318W WO 2019193014 A1 WO2019193014 A1 WO 2019193014A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
gases
gas circuit
condensates
engine
Prior art date
Application number
PCT/EP2019/058318
Other languages
English (en)
Inventor
Eric Dumas
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP19713523.9A priority Critical patent/EP3775526A1/fr
Publication of WO2019193014A1 publication Critical patent/WO2019193014A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/005Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a motor vehicle engine.
  • the present invention relates to an exhaust system of burnt gas engine.
  • the present invention more particularly relates to a device for managing and removing condensates in a heat engine exhaust line.
  • a combustion engine of a motor vehicle is equipped with pollution control systems to reduce the release of pollutants outside the vehicle.
  • Said pollution control systems are arranged in the exhaust line of the engine and comprise a catalyst or a particulate filter.
  • the exhaust line of an engine is the whole circuit of the flue gases from the engine from exhaust valves.
  • high-pressure recirculated gases taken from the upstream exhaust circuit according to the direction of flow of the gases of pollution control devices such as, for example, a nitrogen oxide catalyst or trap (NOx).
  • the high pressure recirculated flue gases are taken directly from an exhaust manifold attached to an exhaust face of the cylinder head, the lateral side opposite the intake face.
  • the high-pressure recirculated gases are then sent to the intake ducts or the intake manifold.
  • recirculated low pressure burnt gases taken from the exhaust system and in a known manner after a depollution device. Said recirculated low pressure gases are returned in known manner in the intake circuit upstream of the compressor. They are then mixed with fresh air captured on the front of the vehicle.
  • blow-by gases or oil vapors taken from a decanter generally fixed to the cylinder head The oil vapors generated by the operation of the engine thus pass through the decanter where they are largely free of oil that falls to an oil pan fixed in the lower part of the crankcase.
  • the remaining gases are reinjected into the intake circuit, particularly at the intake distributor. Said gases may still contain oil.
  • the recirculated low pressure flue gases are therefore taken downstream of an exhaust system and returned to the engine intake.
  • the recirculated gases are cooled before being mixed with fresh air captured on the front of the vehicle for example, said mixture is then likely to be compressed at the passage of a compressor.
  • Condensates are likely to form in the low-pressure flue gas recirculation circuit, in particular when the engine is stopped. Said condensates can be formed of water, oil and toxic and corrosive discharges. They can then be conveyed in liquid form when starting the engine to the compressor and damage the wheel of said compressor.
  • the publication EP2375047-A2 thus has a device for reducing corrosive compounds in an exhaust gas condensate of an internal combustion engine, in which the exhaust gases of the internal combustion engine are brought back to the internal combustion engine by via an exhaust gas return duct composed of an exhaust gas cooler and at least one exhaust gas recirculation duct.
  • the device relates to a recirculation circuit of high pressure recirculated gases which are taken from an exhaust manifold to be reintroduced to the inlet of the engine.
  • the device also includes a unit for neutralizing the corrosive compounds of the exhaust gas condensate arranged downstream of the flue gas recirculation circuit and through which the exhaust gases pass.
  • the device can be complex and adds extra weight to the engine
  • the object of the invention is to remedy these problems and one of the objects of the invention is a simple device for managing the condensates formed during the stopping of the engine, downstream of a depollution device arranged on a line of engine exhaust
  • the present invention more particularly relates to a low-pressure recirculated flue gas circuit of a motor vehicle engine comprising:
  • a depollution device arranged upstream according to the direction of circulation of the gases
  • said cooler comprises a condensate control circuit arranged at a downstream end of the cooler.
  • a control circuit of the condensates generated is arranged at a downstream end of the cooler which is the formation zone of said condensates, to allow the collection, removal and removal of the condensates contained in the recirculated gases and in a crankcase. cooler and thus avoid pollution of a compressor wheel to which the recirculated gases are directed after their passage through the cooler.
  • the condensates control circuit comprises means for collecting the condensates arranged at the downstream end of the cooler housing.
  • control circuit comprises means for collecting condensates from the recirculated gases.
  • Said means are arranged in the cooler housing and at a downstream end of said cooler to allow optimal collection of said condensates.
  • the collection means comprise a collection wall arranged at a downstream end of the cooling device and towards which the recirculated gases are directed, and a collection bag arranged at the foot of said collection wall.
  • the condensate collection means comprise at least one collection wall arranged at a downstream end of the cooling device and towards which the recirculated gases are directed. Said recirculated gases abut against the collection wall to allow separation and collection of pollutants, the condensates are able to flow by gravity along the collection wall to the collection bag arranged at the foot of said wall.
  • the condensates control circuit comprises a condensate retention tank.
  • control circuit comprises a retention tank for holding the condensates, especially in case of stopping the engine.
  • the retention tank is connected with the collection bag of the cooling device via a storage pipe.
  • the condensate tank is connected with the condensate collection bag in the cooler housing by a storage conduit, which optimally arranges said tank.
  • the storage duct has a continuous slope.
  • the storage pipe has a continuous slope between the condensate collection bag and the retention tank which is therefore arranged at the lowest level of the condensate control circuit to facilitate the flow of condensates to the tank.
  • the gas cooler comprises a deflector arranged at a downstream end of said device to hide the outlet of the storage duct.
  • the recirculated gas cooler comprises a deflector for concealing the outlet of the storage duct in the cooler housing and more particularly the recirculated gas collection bag so as not to disturb the operation of the cooler and the passage of the burnt gas.
  • the retaining reel is arranged in contact with the depollution device.
  • the retention tank is arranged in contact with the depollution device in order to take advantage of the high temperatures of the exhaust gases which will allow vaporization of said condensates and then their removal.
  • the retention tank is connected with a mouthpiece for discharging the gases from the cooler via a purge duct.
  • the retention tank is connected with a mouth of the outlet of the cooler gases by a purge duct to allow evacuation of the vapors generated by the residues in contact with the depollution device.
  • the retention tank it is appropriate to arrange the retention tank as close to the pollution control device which may be at an elevated temperature above 100 ° C generally above 300 ° C.
  • the retention tank then has a so-called hot wall vis-à-vis the pollution control device which may be at an elevated temperature also higher than 100 ° C to allow the vaporization of condensates.
  • condensates in liquid form in contact with the hot wall can then turn into vapors and up the purge duct to the outlet mouth of the cooler.
  • this duct has a continuous slope.
  • the purge duct has a continuous slope to facilitate the evacuation of vapors from the condensate.
  • FIG 1 is a schematic view of the engine with the elements of the gas circuit.
  • FIG 2 is a schematic sectional view of the recirculated low pressure gas circuit successively comprising a pollution control device and a gas cooler recirculated with the flow direction of said gas.
  • up / down are relative to a vertical axis orthogonal to a horizontal plane which may be the plane of the vehicle (not shown) passing through the axles of the vehicle wheels.
  • upstream / downstream terms are relative to the flow direction of the flue gases in the gas recirculation circuit.
  • a powertrain of a motor vehicle such as for the invention may comprise a heat engine with accessories for improving the performance of said engine or to ensure the operation of the engine, said accessories comprise for example a turbocharger with a stage turbine and a compressor stage, a gas cooler, a water / gas heat exchanger.
  • the engine 10 of the motor vehicle (not shown) comprises a recirculated flue gas circuit 11 taken from the engine exhaust 14 to return them to the intake 13 of the engine 10 in order to reduce pollutant discharges.
  • Two recirculated gas circuits can be seen: a first circuit of high-pressure burnt gases which are taken from the exhaust manifold of the engine and brought directly to the intake of said engine,
  • a second recirculated gas circuit 16 called low pressure that is taken from or downstream of a pollution control device 12.
  • Said pollution control device may be a particulate filter or a catalyst or a NOx trap for nitrogen oxide.
  • the flue gases then pass through a gas cooler which may be a water / gas heat exchanger to be successively directed to an intake duct 17 for fresh air to be mixed with fresh air from a collection generally from the front face of the vehicle, a compressor 18, another heat exchanger 19 before reaching the intake face of the engine and the intake ducts (not shown) leading to the cylinders of said engine.
  • the pollution control device 12 comprises a decontamination casing 20 surrounding a bread 21 depollution.
  • the recirculated gases are at high temperature and pass through the decollution bread to reach a cooler 22 to lower their temperature before mixing with the fresh air.
  • the cooler 22 is generally a water / gas heat exchanger and comprises a cooler housing 23 surrounding cylindrical tubes 24 immersed in a volume of water 25 fed by an inlet nozzle 26 and an outlet nozzle 27, said two endpieces are connected to a water-based cooling circuit (not shown) of the engine.
  • the cylindrical tubes 24 pass the recirculated gases to give some of their heat to the water.
  • the gases strike at a downstream end 31 a wall 28 of a funnel leading to the outlet mouth 29 of the cooler 22.
  • the cooler comprises a condensates control circuit 40 for collecting, storing, and removing said condensates.
  • the control circuit 40 includes means for collecting the condensates.
  • Said means comprise the wall 28 at the downstream end which has an inclined surface and a collection bag 33 arranged at the bottom of the collection wall 28.
  • Said collection bag may be for example a recess dug in the lower wall 34 of the housing 23 of cooler.
  • a deflector 35 which may be a sheet of material with the cooler housing 22. Said deflector 35 conceals the collection bag 33 for the recirculated gas. Said recirculated gases are thus directed at the outlet of the cylindrical tubes towards the collection wall at the downstream end, and above the collection bag 33.
  • the control circuit also comprises a retention tank 41 of the condensates.
  • Said tank is preferably arranged in abutment against the wall of the casing 20 of the depollution device 12 and in the lower position relative to the cooler 22.
  • a storage duct 42 connects the casing 23 of the cooler 22 to the holding tank 41. More precisely, the storage duct opens at a first end into the collection bag 33 of the casing 23 and at the opposite end in the tank 41.
  • the storage duct has a continuous slope and the retention tank is thus arranged at the bottom of the casing 2 "and the storage duct.
  • continuous slope is meant the fact that the storage conduit does not have a bend that can form another retention pocket. The condensates can thus flow by gravity from the collection bag 33 to the holding tank 41.
  • the control circuit also includes a purge duct 43 which connects the holding tank 41 to the outlet mouth 29 of the cooler.
  • the purge duct 43 also has a continuous slope. The purge duct 43 thus opens to a first end in the cooler housing 23 and the second opposite end in the holding tank 41 and preferably near the neck of the cooler outlet funnel 22.
  • control circuit The operation of the control circuit is as follows:
  • the recirculated gases generate condensates which are collected on the inclined wall 28 at the downstream end of the cooler 22.
  • the condensates in liquid form flow on this inclined wall until to the collection bag 33 passing under the baffle 35.
  • the condensates enter the storage conduit 42 to be directed to the retention tank 41 by gravity.
  • the exhaust gases are at high temperature and cause the temperature of the pollution control casing 20 to rise.
  • the retention tank in contact with said casing also rises in temperature, which is greater than 100 ° C.
  • the condensates in the holding tank turn into steam and are redirected through the bleed pipe 42 to the outlet mouth 29 of the cooler housing 23.
  • the vapors are then mixed with the recirculated gases in the flue gas recirculation circuit to be finally removed in one of the combustion chambers of the engine.
  • the purge duct 43 is arranged above and parallel to the storage duct 42.
  • the purge duct 43 is merged with the storage duct 42.
  • the low-pressure recirculated flue gas circuit includes a condensate control circuit formed in the cooler housing when the engine is shut down.
  • Said control circuit makes it easy to store the condensates during engine shutdown and then remove them during operation of the engine to avoid the risk of pollution of the compressor wheel.
  • the invention is not limited to the embodiments of this plug, described above as examples, it encompasses all variants. It is thus possible to add an electric heating element to ensure rapid and optimal removal of the condensates in the holding tank for example in cold weather.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Circuit de gaz brulés (16) recirculés basse pression d'un moteur thermique (10) de véhicule automobile comprenant : - un dispositif de dépollution (12) disposé en amont selon le sens de circulation des gaz d'un - refroidisseur (22) des gaz brulés caractérisé en ce que ledit refroidisseur (22) comprend un circuit de contrôle (40) de condensats agencé à une extrémité aval (32) du refroidisseur.

Description

VAPORISATION-CONDENSATS-EGR
Domaine technique de l’invention
La présente invention concerne un moteur thermique de véhicule automobile.
La présente invention concerne un circuit d’échappement da gaz brûlés de moteur thermique.
La présente invention concerne plus particulièrement un dispositif de gestion et de suppression des condensais dans une ligne d’échappement de moteur thermique. Etat de la technique
De manière connue, un moteur thermique d’un véhicule automobile est équipé de systèmes de dépollution pour réduire les rejets de polluants à l’extérieur du véhicule. Lesdits systèmes de dépollution sont disposés dans la ligne d’échappement du moteur et comprennent un catalyseur ou un filtre à particules. On appelle ligne d’échappement d’un moteur tout le circuit des gaz brûlés issus du moteur depuis des soupapes d’échappement.
Pour réduire des rejets de polluants générés par la combustion, il est connu de ramener des gaz brûlés à l’échappement c’est-à-dire en aval de la combustion dans les cylindres, vers les conduits d’admission. On a ainsi différents types de gaz brûlés recirculés :
-des gaz recirculés haute pression prélevés depuis le circuit d’échappement en amont selon le sens d’écoulement des gaz de dispositifs de dépollution comme par exemple un catalyseur ou piège à oxyde d’azote (Nox). De manière générale, les gaz brûlés recirculés haute pression sont prélevés directement depuis un collecteur d’échappement fixé à une face d’échappement de la culasse, du côté latéral opposé à la face d’admission. Les gaz recirculés haute pression sont envoyés ensuite vers les conduits d’admission ou dans le répartiteur d’admission. -des gaz brûlés recirculés basse pression prélevés dans le circuit d’échappement et de manière connue après un dispositif de dépollution. Lesdits gaz recirculés basse pression sont renvoyés de manière connue dans le circuit d’admission en amont du compresseur. Ils sont alors mélangés avec l’air frais capté en face avant du véhicule.
-des gaz de blow-by ou de vapeurs d’huile prélevés depuis un décanteur fixé généralement à la culasse. Les vapeurs d’huile générées par le fonctionnement du moteur passent ainsi par le décanteur où elles sont en grande partie débarrassées de l’huile qui retombe vers un carter d’huile fixé en partie inférieure du carter-cylindres. Les gaz restants sont réinjectés dans le circuit d’admission notamment au niveau du répartiteur d’admission. Lesdits gaz sont susceptibles de contenir encore de l’huile.
Les gaz brûlés recirculés basse pression sont donc prélevés en aval d’un dispositif d’échappement et renvoyés vers l’admission du moteur. De manière connue, les gaz recirculés sont refroidis avant d’être mélangés avec de l’air frais capté en face avant du véhicule par exemple, ledit mélange est ensuite susceptible d’être compressé au passage d’un compresseur.
Des condensais sont susceptibles de se former dans le circuit de recirculation des gaz brûlés basse pression notamment lors de l’arrêt du moteur. Lesdits condensais peuvent être formés d’eau, d’huile et rejets toxiques et corrosifs. Ils peuvent ensuite être véhiculés sous forme liquide lors du démarrage du moteur vers le compresseur et endommager la roue dudit compresseur.
La publication EP2375047 -A2 présente ainsi un dispositif de réduction de composés corrosifs dans un condensât de gaz d’échappement d’un moteur à combustion interne, dans lequel les gaz d’échappement du moteur à combustion interne sont ramenés au moteur à combustion interne par l’intermédiaire d’un conduit de retour des gaz d’échappement composé d’un refroidisseur de gaz d’échappement et d’au moins un conduit de recirculation des gaz d’échappement. Le dispositif concerne un circuit de recirculation des gaz recirculés haute pression qui sont prélevés depuis un collecteur d’échappement pour être réintroduits à l’admission du moteur. Le dispositif comprend également une unité de neutralisation des composés corrosifs du condensât de gaz d’échappement agencée en aval du circuit de recirculation des gaz brûlés et qui est traversée par les gaz d’échappement. Le dispositif peut être complexe et amène une surcharge supplémentaire au poids du moteur
Le but de l’invention est de remédier à ces problèmes et un des objets de l’invention est un dispositif simple de gestion des condensais formés lors de l’arrêt du moteur, en aval d’un dispositif de dépollution agencé sur une ligne d’échappement de moteur thermique
Présentation de l’invention La présente invention concerne plus particulièrement un circuit de gaz brûlés recirculés basse pression d’un moteur thermique de véhicule automobile comprenant :
-un dispositif de dépollution disposé en amont selon le sens de circulation des gaz
-un refroidisseur des gaz brûlés
Caractérisé en ce que ledit refroidisseur comprend un circuit de contrôle de condensais agencé à une extrémité aval du refroidisseur.
De manière avantageuse, un circuit de contrôle des condensais générés est agencé à une extrémité aval du refroidisseur qui est la zone de formation desdits condensais, pour permettre le recueil, l’enlèvement et la suppression des condensais contenus dans les gaz recirculés et dans un carter du refroidisseur et ainsi éviter la pollution d’une roue de compresseur vers lequel sont dirigés les gaz recirculés après leur passage dans le refroidisseur.
Selon d’autres caractéristiques de l’invention,
-le circuit de contrôle des condensais comporte des moyens de recueil des condensais agencés à l’extrémité aval du carter du refroidisseur.
De manière avantageuse, le circuit de contrôle comporte des moyens destinés à recueillir des condensais depuis les gaz recirculés. Lesdits moyens sont agencés dans le carter du refroidisseur et à une extrémité aval dudit refroidisseur pour permettre un recueil optimal desdits condensais.
-les moyens de recueil comprennent une paroi de recueil agencée à une extrémité aval du dispositif de refroidissement et vers laquelle sont dirigés les gaz recirculés, et une poche de recueil agencée au pied de ladite paroi de recueil.
De manière avantageuse, les moyens de recueil des condensais comportent au moins une paroi de recueil agencée à une extrémité aval du dispositif de refroidissement et vers laquelle sont dirigés les gaz recirculés. Lesdits gaz recirculés viennent buter contre la paroi de recueil pour permettre une séparation et un recueil des polluants, les condensais sont aptes à s’écouler par gravité le long de la paroi de recueil vers la poche de recueil agencée au pied de ladite paroi.
-le circuit de contrôle des condensais comporte un réservoir de rétention de condensais.
De manière avantageuse, le circuit de contrôle comporte un réservoir de rétention pour garder les condensais notamment en cas d’arrêt du moteur.
-le réservoir de rétention est connecté avec la poche de recueil du dispositif de refroidissement par un conduit de stockage.
De manière avantageuse, le réservoir de condensais est connecté avec la poche de recueil de condensais dans le carter du refroidisseur par un conduit de stockage, ce qui permet d’agencer de manière optimale ledit réservoir.
-le conduit de stockage présente une pente continue.
De manière avantageuse, le conduit de stockage présente une pente continue entre la poche de recueil des condensais et le réservoir de rétention qui est donc agencé au niveau le plus bas du circuit de contrôle des condensais pour faciliter l’écoulement des condensais vers le réservoir.
-le refroidisseur des gaz comprend un déflecteur agencé à une extrémité aval dudit dispositif pour cacher le débouché du conduit de stockage. De manière avantageuse, le refroid isseur de gaz recirculés comprend un déflecteur destiné à cacher le débouché du conduit de stockage dans le carter du refroidisseur et plus particulièrement la poche de recueil des gaz recirculés afin de ne pas perturber le fonctionnement du refroidisseur et le passage des gaz brûlés.
-le reversoir de rétention est agencé en contact avec le dispositif de dépollution.
De manière avantageuse, le réservoir de rétention est agencé au contact avec le dispositif de dépollution afin de profiter des températures hautes des gaz d’échappement qui vont permettre une vaporisation desdits condensais et puis leur suppression.
-le réservoir de rétention est connecté avec une embouchure de sortie des gaz du refroidisseur par un conduit de purge.
De manière avantageuse, le réservoir de rétention est connecté avec une embouchure de sortie des gaz du refroidisseur par un conduit de purge pour permettre une évacuation des vapeurs générées par les résidus au contact avec le dispositif de dépollution. En effet, il convient d’agencer le réservoir de rétention au plus près du dispositif de dépollution qui peut être à une température élevée supérieure à 100°C généralement supérieure à 300°C. Le réservoir de rétention présente alors une paroi dite chaude vis-à-vis du dispositif de dépollution qui pourra être à une température élevée également supérieure à 100°C pour permettre la vaporisation des condensais. En effet, les condensais sous forme liquide au contact avec la paroi chaude peuvent alors se transformer en vapeurs et remonter le conduit de purge vers l’embouchure de sortie du refroidisseur.
-ledit conduit de purge présente une pente continue.
De manière avantageuse, le conduit de purge présente une pente continue pour faciliter l’évacuation des vapeurs issus des condensais.
Brève description des figures D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés sur les dessins annexés, dans lesquels :
-la figure 1 est une vue schématique du moteur avec les éléments du circuit de gaz.
-la figure 2 est une vue schématique de coupe du circuit de gaz recirculés basse pression comprenant successivement un dispositif de dépollution et un refroidisseur de gaz recirculés avec le sens de circulation desdits gaz. Description détaillée des figures
Dans la description qui va suivre, des chiffres de référence identiques désignent des pièces identiques ou ayant des fonctions similaires.
Les termes haut/bas sont relatif à un axe vertical orthogonal à un plan horizontal qui peut être le plan du véhicule (non représenté) passant par les essieux des roues du véhicule.
De même, les termes amont/aval sont relatif au sens d’écoulement des gaz brûlés dans le circuit de recirculation des gaz.
De manière connue, un groupe motopropulseur de véhicule automobile tel que pour l’invention peut comporter un moteur thermique avec des accessoires destinés à améliorer la performance dudit moteur thermique ou à assurer le fonctionnement du moteur, lesdits accessoires comprennent par exemple un turbocompresseur avec un étage de turbine et un étage de compresseur, un refroidisseur de gaz, un échangeur de chaleur eau/gaz.
Selon la figure 1 , le moteur thermique 10 du véhicule automobile (non représenté) comprend un circuit de gaz brûlés recirculés 11 prélevés depuis l’échappement 14 du moteur pour les renvoyer vers l’admission 13 du moteur 10 afin de réduire les rejets de polluants. On peut voir deux circuits de gaz recirculés : -un premier circuit de gaz 15 brûlés dits haute pression qui sont prélevés depuis le collecteur d’échappement du moteur et amenés directement à l’admission dudit moteur,
-un deuxième circuit de gaz 16 recirculés dits basse pression qui sont prélevés depuis ou en aval d’un dispositif de dépollution 12. Ledit dispositif de dépollution peut être un filtre à particules ou un catalyseur ou un piège à Nox pour oxyde d’azote. Les gaz brûlés traversent ensuite un refroidisseur de gaz qui peut être un échangeur de chaleur eau/gaz pour être dirigés vers successivement un conduit d’admission 17 d’air frais pour être mélangés avec l’air frais issu d’un captage en général depuis la face avant du véhicule, un compresseur 18, un autre échangeur de chaleur 19 avant d’atteindre la face d’admission du moteur et les conduits d’admission (non représentés) menant aux cylindres dudit moteur.
Selon la figure 2, le dispositif de dépollution 12 comprend un carter de dépollution 20 entourant un pain 21 de dépollution. Les gaz recirculés sont à haute température et traversent le pain de dépollution pour atteindre un refroidisseur 22 pour abaisser leur température avant le mélange avec l’air frais. Le refroidisseur 22 est généralement un échangeur de chaleur eau/gaz et comprend un carter de refroidisseur 23 entourant des tubes cylindriques 24 baignant dans un volume d’eau 25 alimenté par un embout d’entrée 26 et un embout de sortie 27, lesdits deux embouts sont connectés à un circuit de refroidissement à base d’eau (non représenté) du moteur.
Dans les tubes cylindriques 24 passent les gaz recirculés pour donner une partie de leur chaleur à l’eau. Les gaz viennent frapper à une extrémité aval 31 une paroi 28 d’un entonnoir menant à l’embouchure 29 de sortie du refroidisseur 22.
A l’arrêt et pendant l’arrêt du moteur, des condensais composés d’eau avec éventuellement des composants corrosifs et de l’huile peuvent se déposer dans le carter 23 de refroidisseur 22 essentiellement à son extrémité aval 32. Lesdits condensais peuvent ensuite au démarrage du moteur être entraînés vers le compresseur et polluer la roue du compresseur avec les composants nocifs et corrosifs, pouvant entraîner des pannes du moteur. Selon un mode préféré de réalisation de l’invention, le refroidisseur comprend un circuit de contrôle 40 des condensais pour recueillir, stocker, et supprimer lesdits condensais. Le circuit de contrôle 40 comprend des moyens pour recueillir les condensais. Lesdits moyens comprennent la paroi 28 en extrémité aval qui présente une surface inclinée et une poche de recueil 33 agencée en bas de la paroi de recueil 28. Ladite poche de recueil peut être par exemple un évidement creusé dans la paroi inférieure 34 du carter 23 de refroidisseur.
De ladite paroi inférieure 34 s’étend de manière préférentielle un déflecteur 35 qui peut être une feuille issue de matière avec le carter de refroidisseur 22. Ledit déflecteur 35 permet de cacher la poche de recueil 33 pour les gaz recirculés. Lesdits gaz recirculés sont ainsi dirigés à la sortie des tubes cylindriques vers la paroi de recueil à l’extrémité aval, et au-dessus de la poche de recueil 33.
Le circuit de contrôle comprend également un réservoir de rétention 41 des condensais. Ledit réservoir est agencé de manière préférentielle en appui contre la paroi du carter 20 du dispositif de dépollution 12 et en position basse par rapport au refroidisseur 22.
Un conduit de stockage 42 connecte le carter 23 du refroidisseur 22 au réservoir de rétention 41 . Plus précisément le conduit de stockage débouche à une première extrémité dans la poche de recueil 33 du carter 23 et à la deuxième extrémité opposée dans le réservoir 41 . Le conduit de stockage présente une pente continue et le réservoir de rétention est ainsi agencé au plus bas du carter 2 » et du conduit de stockage. On entend par pente continue le fait que le conduit de stockage ne présente pas de coude qui peut former une autre poche de rétention. Les condensais peuvent ainsi s’écouler par gravité depuis la poche de recueil 33 jusqu’au réservoir de rétention 41 .
Le circuit de contrôle comprend aussi un conduit de purge 43 qui connecte le réservoir de rétention 41 à l’embouchure de sortie 29 du refroidisseur. De manière préférentielle le conduit de purge 43 présente également une pente continue. Le conduit de purge 43 débouche ainsi à une première extrémité dans le carter 23 de refroidisseur et à la seconde extrémité opposée dans le réservoir de rétention 41 et de manière préférentielle à proximité du col de l’entonnoir de sortie du refroidisseur 22.
Le fonctionnement du circuit de contrôle s’effectue comme suit :
Lors de l’arrêt et également pendant l’arrêt du moteur, les gaz recirculés génèrent des condensais qui sont recueillis sur la paroi inclinée 28 à l’extrémité aval du refroidisseur 22. Les condensais sous forme liquide s’écoulent sur cette paroi inclinée jusqu’à la poche de recueil 33 en passant en dessous de déflecteur 35. Les condensais pénètrent dans le conduit de stockage 42 pour être dirigés vers le réservoir de rétention 41 par gravité.
Lors du fonctionnement du moteur, les gaz d’échappement sont à haute température et entraînent la montée en température du carter de dépollution 20. Le réservoir de rétention en contact avec ledit carter monte également-en température, laquelle est supérieure à 100°C. Les condensais se trouvant dans le réservoir de rétention se transforment en vapeur et sont redirigés grâce au conduit de purge 42 vers l’embouchure de sortie 29 du carter 23 de refroidisseur. Les vapeurs sont alors mélangées avec les gaz recirculés dans le circuit de recirculation des gaz brûlés pour être finalement supprimées dans l’une des chambres de combustion du moteur.
De manière préférentielle, le conduit de purge 43 est agencé au-dessus et parallèlement au conduit de stockage 42.
Selon un autre mode de réalisation le conduit de purge 43 est confondu avec le conduit de stockage 42.
L’objectif est atteint : le circuit de gaz brûlés recirculés basse pression comprend un circuit de contrôle des condensais formés dans le carter du refroidisseur lors de l’arrêt du moteur.
Ledit circuit de contrôle permet de façon aisée de stocker les condensais lors de l’arrêt du moteur puis de les supprimer lors du fonctionnement du moteur pour éviter les risques de pollution de la roue de compresseur. Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de cette prise, décrites ci-dessus à titre d'exemples, elle en embrasse au contraire toutes les variantes. On peut ainsi ajouter un élément de chauffe électrique pour assurer une suppression rapide et optimale des condensais dans le réservoir de rétention par exemple par temps froids.

Claims

REVENDICATIONS
1. Circuit de gaz brûlés (16) recirculés basse pression d’un moteur thermique (10) de véhicule automobile comprenant :
-un dispositif de dépollution (12) disposé en amont selon le sens de circulation des gaz d’un
-refroidisseur (22) des gaz brûlés
Caractérisé en ce que ledit refroidisseur (22) comprend un circuit de contrôle (40) de condensais agencé à une extrémité aval (32) du refroidisseur.
2. Circuit de gaz (16) selon la revendication 1 , caractérisé en ce que le circuit de contrôle (40) des condensais comporte des moyens de recueil des condensais.
3. Circuit de gaz (16) selon la revendication 2, caractérisé en ce que les moyens de recueil comprennent une paroi de recueil (28) agencée à l’extrémité aval (32) du refroidisseur (22) et vers laquelle sont dirigés les gaz recirculés, et une poche de recueil (33) agencée au pied de ladite paroi de recueil (28).
4. Circuit de gaz (16) selon la revendication 1 à 3, caractérisé en ce que le circuit de contrôle (40) des condensais comporte un réservoir de rétention (41 ) de condensais.
5. Circuit de gaz (16) selon la revendication 4, caractérisé en ce que le réservoir de rétention (41 ) est connecté avec la poche de recueil (33) du refroidisseur (22) par un conduit de stockage (42).
6. Circuit de gaz (16) selon la revendication 5, caractérisé en ce que le conduit de stockage (42) présente une pente continue.
7. Circuit de gaz (16) selon la revendication 5 ou 6, caractérisé en ce que le refroidisseur (22) des gaz comprend un déflecteur (35) agencé à l’extrémité aval (32) dudit refroidisseur pour cacher le débouché du conduit de stockage (42) dans le carter (23).
8. Circuit de gaz (16) selon l’une quelconque des revendications 4 à
7, caractérisé en ce que le reversoir de rétention (41 ) est agencé en contact avec le dispositif de dépollution (12).
9. Circuit de gaz (16) selon l’une quelconque des revendications 4 à
8, caractérisé en ce que le réservoir de rétention (41 ) est connecté avec une embouchure de sortie (29) des gaz du dispositif de refroidissement par un conduit de purge (43).
10. Circuit de gaz (16) selon la revendication 9, caractérisé en ce que ledit conduit de purge (43) présente une pente continue.
PCT/EP2019/058318 2018-04-05 2019-04-02 Vaporisation-condensats-egr WO2019193014A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19713523.9A EP3775526A1 (fr) 2018-04-05 2019-04-02 Vaporisation-condensats-egr

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852960A FR3079881B1 (fr) 2018-04-05 2018-04-05 Vaporisation-condensats-egr
FR1852960 2018-04-05

Publications (1)

Publication Number Publication Date
WO2019193014A1 true WO2019193014A1 (fr) 2019-10-10

Family

ID=62143410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/058318 WO2019193014A1 (fr) 2018-04-05 2019-04-02 Vaporisation-condensats-egr

Country Status (3)

Country Link
EP (1) EP3775526A1 (fr)
FR (1) FR3079881B1 (fr)
WO (1) WO2019193014A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3109605A1 (fr) * 2020-04-28 2021-10-29 Renault S.A.S Siphon a condensats-EGR

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131263B1 (en) * 2005-11-03 2006-11-07 Ford Global Technologies, Llc Exhaust gas recirculation cooler contaminant removal method and system
FR2919349A3 (fr) * 2007-07-24 2009-01-30 Renault Sas Refroidisseur d'air de suralimentation pour moteur de vehicule automobile avec capacite de retention.
US20100300647A1 (en) * 2009-05-28 2010-12-02 Hans-Ulrich Steurer Heat exchanger
US20110094219A1 (en) * 2009-10-27 2011-04-28 Ford Global Technologies, Llc Condensation trap for charge air cooler
EP2375047A2 (fr) 2010-04-12 2011-10-12 Behr GmbH & Co. KG Dispositif de réduction de composants corrosifs dans un condensat de gaz d'échappement d'un moteur à combustion interne
WO2012048784A1 (fr) * 2010-10-14 2012-04-19 Daimler Ag Recyclage des gaz d'échappement avec évacuation du condensat
US20130019845A1 (en) * 2011-07-18 2013-01-24 Ford Global Technologies, Llc System for a charge-air-cooler
EP3059434A1 (fr) * 2013-09-30 2016-08-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif de séparation d'eau de condensation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131263B1 (en) * 2005-11-03 2006-11-07 Ford Global Technologies, Llc Exhaust gas recirculation cooler contaminant removal method and system
FR2919349A3 (fr) * 2007-07-24 2009-01-30 Renault Sas Refroidisseur d'air de suralimentation pour moteur de vehicule automobile avec capacite de retention.
US20100300647A1 (en) * 2009-05-28 2010-12-02 Hans-Ulrich Steurer Heat exchanger
US20110094219A1 (en) * 2009-10-27 2011-04-28 Ford Global Technologies, Llc Condensation trap for charge air cooler
EP2375047A2 (fr) 2010-04-12 2011-10-12 Behr GmbH & Co. KG Dispositif de réduction de composants corrosifs dans un condensat de gaz d'échappement d'un moteur à combustion interne
WO2012048784A1 (fr) * 2010-10-14 2012-04-19 Daimler Ag Recyclage des gaz d'échappement avec évacuation du condensat
US20130019845A1 (en) * 2011-07-18 2013-01-24 Ford Global Technologies, Llc System for a charge-air-cooler
EP3059434A1 (fr) * 2013-09-30 2016-08-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif de séparation d'eau de condensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3109605A1 (fr) * 2020-04-28 2021-10-29 Renault S.A.S Siphon a condensats-EGR
EP3904664A1 (fr) * 2020-04-28 2021-11-03 RENAULT s.a.s. Siphon a condensats-egr

Also Published As

Publication number Publication date
EP3775526A1 (fr) 2021-02-17
FR3079881B1 (fr) 2020-11-13
FR3079881A1 (fr) 2019-10-11

Similar Documents

Publication Publication Date Title
US8375713B2 (en) EGR cooler cleaning system and method
FR2922962A1 (fr) Dispositif de recuperation et d'evacuation de produits de condensation d'un flux d'air d'admission
FR2925351A1 (fr) Module de filtrage de produits de condensation pour echangeur de chaleur et ensemble forme par un echangeur de chaleur et son module de filtrage.
FR2970064A1 (fr) Systeme de purge pour turbine a combustion
EP2855902A1 (fr) Moteur a combustion interne muni d'un systeme de recirculation des gaz d'echappement (egr) et procede de commande de la recirculation des gaz associe
EP3775526A1 (fr) Vaporisation-condensats-egr
EP1965045B1 (fr) Procédé et dispositif de réchauffage de gaz de carter et chambre de décantation destinée aux gaz de carter
FR2926325A3 (fr) Systeme d'injection d'eau dans une chambre de combustion d'un cylindre de moteur a combustion interne.
FR2893677A1 (fr) Dispositif de recirculation des gaz brules et refroidisseur d'air de suralimentation adapte pour un tel dispositif
EP3904664A1 (fr) Siphon a condensats-egr
FR2922961A1 (fr) Refroidisseur d'air de suralimentation d'un moteur de vehicule automobile
FR2928683A1 (fr) Dispositif de dilution de gaz de carter dans un moteur de vehicule automobile
FR2882571A1 (fr) Dispositif de filtrage de particules pour moteur diesel avec recyclage de gaz d'echappement
FR2833652A1 (fr) Procede d'alimentation d'un moteur a combustion interne et dispositif associe
FR2955621A1 (fr) Boitier de filtrage d'air de suralimentation, systeme de refroidissement d'air de suralimentation comportant un tel boitier et vehicule equipe de ce systeme
FR3074531A1 (fr) Installation pour une turbomachine
EP3234335A1 (fr) Vanne comportant des moyens d'actionnement entre deux conduits d'entrée
FR2908505A1 (fr) Echangeur thermique comportant des moyens de purge automatique.
FR3082241A1 (fr) Repartiteur d'admission pour moteur thermique avec dispositif de melange de gaz recircules
FR2920822A1 (fr) SYSTEME POUR INTRODUIRE UN CARBURANT VAPORISE A l'INTERIEUR D'UN ELEMENT D'ECHAPPEMENT
FR2922960A1 (fr) Systeme de reinjection de gaz de carter et echangeur de chaleur mis en oeuvre dans ledit systeme
FR2930000A1 (fr) Procede et dispositif pour le traitement des gaz d'echappement.
FR2961254A3 (fr) Dispositif de controle des emissions polluantes d'un moteur a combustion interne
EP2045450B1 (fr) Dispositif de vaporisation de gazole et ligne d'échappement de véhicule automobile comprenant ce dispositif de vaporisation
EP3550120A1 (fr) Module d'admission double flux de moteur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19713523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019713523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019713523

Country of ref document: EP

Effective date: 20201105