WO2019192335A1 - Plc***的中继传输配置方法、中继传输方法及装置 - Google Patents

Plc***的中继传输配置方法、中继传输方法及装置 Download PDF

Info

Publication number
WO2019192335A1
WO2019192335A1 PCT/CN2019/079210 CN2019079210W WO2019192335A1 WO 2019192335 A1 WO2019192335 A1 WO 2019192335A1 CN 2019079210 W CN2019079210 W CN 2019079210W WO 2019192335 A1 WO2019192335 A1 WO 2019192335A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
node
relay
transmission time
slot
Prior art date
Application number
PCT/CN2019/079210
Other languages
English (en)
French (fr)
Inventor
曾焱
王祥
潘稻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19782210.9A priority Critical patent/EP3764704B1/en
Publication of WO2019192335A1 publication Critical patent/WO2019192335A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/58Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5479Systems for power line communications using repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present invention relates to the field of power line communication, and in particular, to a relay transmission configuration method, a relay transmission method and apparatus of a PLC system.
  • the family's PLC (Power Line Communication) technology mainly solves the problem of insufficient coverage of the home wireless network.
  • the power line can save the cost of network construction. Since the attenuation of the signal increases with the increase of the distance of the PLC network, there is a problem that two nodes that are far apart from each other cannot communicate under the limited transmission power or that the two nodes can only perform under the limited transmission power.
  • the problem of low-rate communication in order to solve the problem that the two nodes in the PLC system cannot communicate or the transmission rate is low, the relay node between the two nodes needs to be amplified and then output, how to carry out in the PLC system. Following transmission is an urgent problem to be solved.
  • the technical problem to be solved by the embodiments of the present invention is to provide a relay transmission method and device for a PLC system, which solves the problem that the transmission performance of two nodes in the PLC system is degraded due to a long communication distance, and ensures the real-time performance of the PLC system. .
  • the present application provides a relay transmission configuration method for a PLC system, including: a domain master node scheduling a transmission time slot in a first medium access control MAC (Medium Access Control) period, a first MAC The period consists of transmission time windows of m different channel states, m is an integer greater than 0; the domain master determines the location of the scheduled transmission slot, and the domain master sends transmission slot configuration information to the relay node, and the transmission slot configuration The information is used to indicate one or more of the location of the transmission slot and the gain information associated with the transmission time window in which the transmission slot is located.
  • MAC Medium Access Control
  • the domain master node periodically performs resource scheduling (for example, time domain resources, frequency domain resources, and the like), and the MAC period is a time interval in which the domain master node performs resource scheduling, and the MAC period includes one or more exchange periods, and the exchange period is The cycle of the AC line on the power line of the PLC system, for example, for 50 Hz mains, the AC cycle is 0.02 s and the MAC cycle is 0.04 s.
  • the first MAC period is any one of the PLC systems, and the first MAC period is pre-divided into m transmission time windows, the transmission time window is a time interval, and the m transmission time windows may be continuously distributed.
  • n MAC periods after the first MAC period m transmission time windows may be divided by using the same rule as the first MAC period, and the value of n may be a pre-stored fixed value, or may be a value indicated by the domain master node.
  • the embodiment of the invention is not limited.
  • the domain master node schedules the transmission time slot in the transmission time window of the m different channel states, and notifies the relay node of the information about the location of the transmission time slot and the transmission time window in which the transmission time slot is located. Therefore, the relay node uses the corresponding gain information to perform analog relay processing in different time periods in the transmission time slot, so as to ensure that the transmission performance of the transmission path is optimal in different time windows, and the relay node is prevented from using a fixed time in the transmission time slot. The transmission performance of the gain information is reduced by the relay processing.
  • the transmission slot configuration information is also used to indicate gain information for the transmission slot.
  • the method before the domain master node schedules the transmission time slot in the MAC cycle, the method further includes:
  • the domain master node schedules a channel estimation time window in the second MAC period; wherein the second MAC period is before the first MAC period;
  • the domain master node obtains the channel quality parameter value of the transmission path in the channel estimation time window
  • the domain master determines the channel state of the transmission path according to the channel quality parameter value
  • the domain master node divides the second MAC period into m transmission time windows according to the channel state
  • the domain master node determines the gain information associated with each of the m transmission time windows.
  • the transmission path represents a communication link between the source node and the destination node, and the transmission path further includes one or more relay nodes.
  • the channel state indicates that the channel quality parameter value of the transmission path reaches a stable state, and the transmission path has different transmission capabilities under different channel transmissions, and the channel state of the transmission path has a certain duration.
  • the transmission quality parameter values include one or more of transmission rate, delay, and SNR (Signal Noise Ratio).
  • the transmission path may have multiple different channel states during the second MAC cycle. For example, the length of the second MAC period is 0.04 s, and the domain master determines that the delay of the first 0.02 s transmission path is 5 ms and the subsequent 0.02 s transmission path according to the channel quality parameter value of the transmission path acquired in the second MAC period.
  • the delay is 1 ms, then there are two different channel states in the second MAC period, and the domain master node divides the second MAC period into two transmission time windows: transmission time window 1 and transmission time window 2, and transmission time window 1
  • the transmission time window 2 is the time interval of 0.02 s.
  • the domain master determines the gain information of each transmission time window according to the channel quality parameters of the transmission path in different transmission time windows.
  • the domain master node divides the second MAC period into m transmission time windows according to channel quality parameter values of the transmission path in the second MAC period, and each transmission time window has different channel states and transmission capabilities, and each The transmission time windows are associated with different gain information, so that the relay node adaptively uses different gain information for relay amplification according to different transmission time windows, thereby improving the performance of the transmission path.
  • the domain master node notifies the relay node of the gain information associated with each of the m transmission time windows and the m transmission time windows, and notifies the source node of the positions of the m transmission time windows and Destination node.
  • the domain master node may number the gain information associated with each of the m transmission time windows, and notify the relay node of the number of the m gain information.
  • the domain master node divides the second MAC period into m transmission time windows of equal length; wherein the second MAC period is before the first MAC period.
  • the channel quality parameters of the domain master node acquiring the transmission path during the channel estimation period include:
  • the domain master node schedules a channel evaluation time window in the second MAC period
  • the domain master node sends a channel information request to the relay node in the transmission path; wherein the channel information request includes one of a start time information of the channel estimation time window, an end time information of the channel evaluation time window, and a type of the requested channel quality parameter. Kind or more.
  • the domain master node receives the channel quality parameter value of each subpath included in the transmission path sent by the relay node.
  • the channel evaluation time window is a time period, and the relay node sends a probe frame in the channel estimation time window, and receives other nodes of the probe frame to evaluate the channel quality of the transmission channel.
  • the domain master determines that the gain information associated with each of the m transmission time windows includes:
  • the domain master determines the gain information based on the power spectral density and the channel attenuation value.
  • the requested channel quality parameter type includes one or more of a bit loading table, a channel attenuation value, a signal to noise ratio, and a noise power.
  • the domain master node determines the physical layer transmission parameter values associated with each of the m transmission time windows, including:
  • the physical layer transmission parameter value of the subcarrier is determined according to the signal to noise ratio of the subcarrier and the bit loading table of the subcarrier.
  • the domain master node notifies the source node and the destination node in the transmission path of the physical layer transmission parameters associated with each of the m transmission time windows.
  • the domain master node may number the physical layer transmission parameters associated with each of the m transmission time windows, and send the physical layer transmission parameters and numbers associated with the m transmission time windows to the source node and the destination node in the transmission path.
  • the method before the domain master node obtains the channel quality parameter value of the transmission path in the second MAC period, the method further includes:
  • the domain master node detects that the source node and the destination node cannot communicate or the transmission performance parameter value between the source node and the destination node does not meet the preset condition.
  • the domain master node needs to select a relay between the source node and the destination node when the domain master node detects that the source node and the destination node cannot communicate or the transmission performance parameter between the source node and the destination node does not meet the preset condition.
  • the number of selected relay nodes may be one or more, and data is transmitted between the source node and the destination node through the selected relay node.
  • the present application provides a relay transmission method for a PLC system, including:
  • the relay node receives the transmission slot configuration information from the domain master node, where the transmission slot configuration information is used to indicate the location of the transmission slot, and the transmission slot is located in the first MAC period, where the The second MAC period is divided into m transmission time windows;
  • the relay node performs relay processing on the received signal according to the associated gain information in the transmission time slot;
  • the relay node outputs a relay processed signal.
  • the relay node determines a transmission time window in which the scheduled transmission time slot is located, acquires gain information associated with the transmission time window, and performs different time windows in the transmission time slot according to the corresponding gain information.
  • Analog relay amplification the relay node does not need to encode and decode the received signal, and reduces the delay of the relay processing.
  • the relay node adaptively uses appropriate gain information according to different channel quality. Following amplification, the transmission performance between the source node and the destination node can be improved compared to using a single gain information for relaying in the transmission slot.
  • the transmission slot configuration information includes one or more of location information of the transmission slot and a number of the gain information.
  • the transmission slot configuration information may be sent in the MAP frame.
  • the relay node receives window configuration information from the domain master node in the first MAC period, and the window configuration information indicates the location of the m time windows of the first MAC period division and the gain associated with each transmission time window. information.
  • the window configuration information includes location information of the m transmission time windows, gain information associated with each of the m transmission time windows, and a number of gain information associated with each of the m transmission time windows.
  • the present application provides a relay transmission apparatus of a PLC system, including: a scheduling unit, configured to schedule a transmission time slot in a first medium access control MAC period; wherein the first MAC period includes a transmission time window having different channel states, where m is an integer greater than 0;
  • the sending unit sends the transmission time slot configuration information to the relay node, where the transmission time slot configuration information is used to indicate the location of the transmission time slot and the gain information associated with the transmission time window in which the transmission time slot is located. One or more.
  • the method further includes: a window configuration unit, configured to acquire a channel quality parameter value of the transmission path in the second MAC period; wherein the second MAC period is before the first MAC period,
  • the window configuration unit is configured to acquire channel quality parameters of the transmission path in the second MAC period, including:
  • the channel information request includes start time information of the channel evaluation time window, the termination time information, and a requested channel quality parameter type;
  • Receiving the transmission path sent by the relay node includes channel quality parameter values of each sub-path.
  • the window configuration unit is configured to determine gain information associated with each of the m transmission time windows, including:
  • the gain information is determined based on the power spectral density and the channel attenuation value for each transmission time window.
  • the window configuration unit is further configured to:
  • the window configuration unit is configured to determine physical layer transmission parameter values associated with each of the m transmission time windows, including:
  • the physical layer transmission parameter value of the subcarrier is determined according to the signal to noise ratio of the subcarrier and the bit loading table of the subcarrier.
  • it also includes:
  • a selecting unit configured to detect that the source node and the destination node cannot communicate, or the value of the transmission performance parameter between the source node and the destination node does not satisfy the preset condition
  • a relay node is selected between the source node and the destination node.
  • the application provides a relay transmission device of a PLC system, including:
  • a receiving unit configured to receive transmission slot configuration information from a domain master node, where the transmission slot configuration information is used to indicate a location of a transmission slot, where the transmission slot is located in the first MAC period, where The second MAC period is divided into m transmission time windows.
  • a determining unit configured to determine gain information associated with a transmission time window in which the transmission slot is located
  • a relay unit configured to perform relay processing on the received signal according to the associated gain information in the transmission time slot
  • the sending unit is configured to output a signal after the relay processing.
  • the receiving unit is further configured to receive window configuration information from the domain master node in a first MAC period, where the window configuration information represents the m transmission time windows. Gain information associated with each of the location and the m transmission time windows.
  • the transmission slot configuration information includes one or more of location information of the transmission slot and a number of the gain information.
  • Yet another aspect of the present application provides a computer storage medium comprising a program designed to perform the above aspects.
  • Yet another aspect of the present application provides an apparatus, the apparatus comprising: a memory and a processor; wherein the memory stores a set of program codes, and the processor is configured to invoke program code stored in the memory to perform the above Various possible implementations of the aspects.
  • a still further aspect of the present application provides a computer program product, the computer program comprising instructions, when the computer program is executed by a computer, causing the computer to perform the information transmitting method of any one of the first aspect or the fourth aspect Process.
  • FIG. 1 is a network architecture diagram of a communication system according to an embodiment of the present invention.
  • 2a is a schematic diagram of interaction of a relay transmission method of a PLC system according to an embodiment of the present invention
  • 2b is a timing diagram of a relay transmission according to an embodiment of the present invention.
  • 2c is a timing diagram of a relay transmission according to an embodiment of the present invention.
  • 2d is a network topology diagram of a PLC system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by the present application.
  • the communication system includes multiple nodes, and multiple nodes include a domain master node, and each node is interconnected by a circuit line.
  • the master node is used to manage other nodes in the PLC system.
  • the transmission medium in the PLC system is a power line, and all nodes (Nodes) in the PLC system form a domain.
  • the PLC system can be a communication node End Point (EP) or a working home appliance.
  • the node refers to the communication node if it is not specified. Any two nodes in the system can communicate peer-to-peer.
  • the PLC system includes node C, node A, node H, node B, and domain master node.
  • a relay node node A
  • the relay node relays the signal from the node C to the node H, and simultaneously relays the signal from the node H to the node. C.
  • FIG. 2 is a schematic diagram of interaction of a relay transmission method of a PLC system according to an embodiment of the present invention.
  • the method includes:
  • the domain master node schedules a transmission time slot in the first MAC period.
  • the domain master node periodically performs resource scheduling, including but not limited to scheduling time domain resources and/or frequency domain resources, and an alternating current (AC) period indicates a period of alternating current changes.
  • the first Media Access Control (MAC) cycle includes one or more AC cycles.
  • the AC frequency in the PLC system is 50 Hz
  • the AC period is 0.02 s
  • the first MAC period is two AC periods
  • the first MAC period is 0.04 s.
  • the first MAC period is composed of transmission time windows of m different channel states, that is, the first MAC period is divided into m transmission time windows, and the transmission paths in different transmission time windows have different channel states, and the channel state indicates that the transmission path is The channel quality parameter value in a certain time interval remains stable.
  • m is an integer greater than or equal to 0, and the first MAC period is divided into multiple transmission time windows. Multiple transmission time windows can be continuously distributed. It should be noted that the foregoing transmission path is a communication link between the source node and the destination node, and the communication link includes the determined relay node, and the number of the relay nodes may be one or more.
  • the first MAC period includes 11 slots, the length of each slot is the TTI of the PLC system, and the TTI (Transmission Time Interval) of the PCL system.
  • the time length can be selected according to the needs of the present invention, which is not limited in the embodiment of the present invention.
  • the 11 time slots are respectively recorded as: time slot 1 to time slot 11, and the first MAC period is divided into two transmission time windows: transmission time window 1 and transmission time window 2, and transmission time window 1 corresponds to time slot 1 to time slot 5
  • the transmission time window 2 corresponds to the time slot 6 to the time slot 11
  • the bit loading table of the transmission path in the transmission time window 1 is the bit loading table 1
  • the bit loading table of the transmission path in the transmission time window 2 is the bit loading table 2.
  • the bit loading table represents the bit width of the subcarriers on the transmission path.
  • the domain master node schedules a transmission time slot in the MAC period, and the method for scheduling the transmission time slot is as follows:
  • the transmission time slot occupies a complete transmission time window of the m transmission time windows, or occupies a partial area of one of the m transmission time windows.
  • the domain master node determines the transmission time window in which the scheduled transmission time slot is located, and the domain master node pre-stores or pre-configures the association relationship between the m transmission time windows and the gain information, and the domain master node determines the scheduled transmission time slot according to the association relationship.
  • the gain time associated with the transmission time window may also not notify the relay node of the transmission time window associated with the transmission time slot, and the relay node determines the associated gain information according to the location of the transmission time slot.
  • the transmission slot scheduled by the domain master node corresponds to slot 3 and slot 4, and the length is 2 slots.
  • the transmission slot only occupies part of the transmission time window 1 and the domain master node acquires the scheduling.
  • the scheduled transmission time slot occupies at least two complete transmission time windows in the m transmission time windows, or at least two incomplete transmission time windows, or at least two simultaneously include a complete transmission time window and incomplete Transmission time window.
  • the domain master node pre-stores or pre-configures an association relationship between m transmission time windows and gain information, and the domain master node determines the at least two transmissions according to the association relationship according to at least two transmission time windows in which the scheduled transmission time slot is determined. Gain information associated with each time window.
  • the domain master node may also not notify the relay node of the transmission time window associated with the transmission time slot, and the relay node determines the associated gain information according to the location of the transmission time slot.
  • the transmission time slot scheduled by the domain master node corresponds to time slot 3 to time slot 7, and the length is 5 time slots, and the transmission time slot occupies a partial area of the transmission time window 1 and the transmission time window 2.
  • the domain master node acquires the gain information 1 associated with the transmission time window 1 in which the transmission slot is located, and the gain information 2 of the transmission time window 2 in which the transmission slot is located.
  • the method before the domain master node schedules the transmission time slot in the first MAC period, the method further includes:
  • the domain master node acquires a channel quality parameter value of the transmission path in the second MAC period
  • the domain master determines the channel state of the transmission path according to the channel quality parameter value
  • the domain master node divides the second MAC period into m transmission time windows according to the channel state
  • the domain master node determines the gain information associated with each of the m transmission time windows.
  • the second MAC period is located before the first MAC period, and the node in the transmission path includes a source node, one or more relay nodes, and a destination node.
  • the domain master node may indicate that any node of the transmission path periodically sends the probe data packet to other nodes, and the other nodes evaluate, according to the received probe data packet, a sub-path corresponding to the transmission path in the second MAC period.
  • the channel quality parameter value is then aggregated for the channel quality parameter values of all the sub-paths corresponding to the transmission path in the second MAC period to obtain the channel quality parameter value of the transmission path in the second MAC period.
  • the channel quality parameter values include, but are not limited to, one or more of a bit loading table, an SNR, a channel attenuation value, and a noise power, where the bit loading indicates a bit width of each subcarrier on the transmission channel.
  • the channel quality parameter value of the transmission path may be the channel quality parameter value of each subcarrier.
  • the second MAC period is divided into one or more transmission time windows by the channel quality parameter value of the transmission path, so that the relay node can perform analog relay using corresponding gain information in different transmission time windows, thereby improving data transmission of the transmission path. performance.
  • the channel state indicates that the transmission path is stable for a certain period of time, and the channel state may be measured by using different channel quality parameters, such as one or more of SNR, bit loading wave, transmission rate, or delay.
  • the transmission path may have one or more channel states in the second MAC period according to channel quality parameters in the transmission path.
  • n MAC periods after the first MAC period m transmission time windows may be divided by using the same rule as the first MAC period, and the value of n may be a pre-stored fixed value, or may be a domain master.
  • the value indicated by the node is not limited in the embodiment of the present invention.
  • the domain master node determines, according to the channel quality parameter of the acquired transmission path, that the SNR of the transmission path in the time interval from slot 3 to slot 5 is 20 dB, and the time slot 6 to slot 9 The SNR in the interval is 10 dB.
  • the domain master node divides the first MAC period into two transmission time windows according to the channel quality parameter value of the transmission path, that is, the domain master node takes the time interval of slot 1 to slot 5 as the transmission time window 1 and the time slot 6 to The time interval of the time slot 11 is taken as the transmission time window 2.
  • the domain master node determines the gain information 1 associated with the transmission time window 1 according to the channel quality parameter value of the transmission path in the transmission time window 1, and the domain master node determines the transmission time window 2 association according to the channel quality parameter value of the transmission path in the transmission time window 2 Gain information 2.
  • the method for the domain master node to divide the m transmission time windows in the first MAC period is: dividing the first MAC period into transmission time windows of equal length, and then according to the channel quality of the transmission channel in each transmission time window.
  • the parameter value determines the gain information, and transmits the position information of the m transmission time windows and the gain information of each transmission time window to the relay node.
  • the domain master node may also number the gain information of each transmission time window, and send the number of the gain information associated with each transmission time window to the relay node, so that the domain master node can directly indicate the relay node by numbering. Which gain information is used for relay processing.
  • the channel quality parameter value of the transmission channel remains unchanged in the first MAC period, it is not necessary to divide the time window of the first MAC period, that is, the entire first MAC period as one transmission time window.
  • the domain master node determines that the gain information associated with each of the m transmission time windows includes:
  • the domain master determines the gain information based on the power spectral density and the channel attenuation value of the subcarrier.
  • the domain master determines the gain information of the subcarrier according to the power spectral density and the channel attenuation value.
  • the gain information associated with each of the m transmission time windows may be the same or different, and the present invention is not limited thereto.
  • the acquiring, by the domain master node, the channel quality parameters of the transmission path in the first MAC period includes:
  • the domain master node schedules a channel evaluation time window in the second MAC period
  • the domain master node Transmitting, by the domain master node, a channel information request to a relay node in the transmission path, where the channel information request includes start time information of the channel estimation time window, the termination time information, and the requested channel quality parameter Types of;
  • Receiving, by the domain master node, the transmission path sent by the relay node includes channel quality parameter values of each sub-path.
  • the channel estimation time window is a time period
  • the domain master node may instruct the relay node to send a probe frame to the neighboring other nodes in the channel estimation time window to determine each subpath in the transmission path in the first MAC period.
  • the transmission path includes at least two sub-paths. For example, if the number of relay nodes in the transmission path is one, the transmission path between the source node and the destination node includes a sub-path between the source node and the relay node, and Sub-path between the node and the destination node.
  • DM is the domain master node
  • A is the source node
  • B is the destination node.
  • the transmission path of the node, the two transmission paths are the source node A-relay node D-relay node E-destination node B, the source node A-relay node C-destination node B, and the domain master node can be preset according to The rule selects one of the transmission paths, for example, selecting the transmission path with the largest capacity, or selecting the transmission path with the smallest delay, or selecting the transmission path with the highest signal to noise ratio, or selecting the transmission path with the smallest number of hops, etc., which is not limited by the present invention. .
  • the embodiment of the present invention further includes:
  • the source node and the destination node in the transmission path use the physical layer transmission parameter value to send and receive data packets
  • the physical layer transmission parameter values include: a code size of a FEC (Forward Error Correction), a code rate of the FEC, One or more of the number of repetitions of the encoding, the bit loading table, and the power spectral density.
  • the domain master node may number the physical layer parameter reference values associated with each of the m transmission time windows, and then send the physical layer transmission parameter values and numbers to the source node and the destination node, so that the subsequent domain master node can directly pass The number indicates which physical layer transmission parameter value the source or destination node uses to send and receive data.
  • the domain master node schedules the transmission time slot, determine a physical layer transmission parameter value associated with the transmission time window in which the transmission time slot is located, and then notify the source node and the destination node, the source node, and the physical layer transmission parameter value.
  • the destination node transmits and receives data packets according to the associated physical layer transmission parameter value in the transmission time slot.
  • the domain master node notifies the source node and the destination node of the physical layer transmission parameter value associated with the transmission time window.
  • the domain master node sends the number of the physical layer transmission parameter value to the source node and the destination node.
  • the domain master node acquires the physical layer transmission parameter value associated with each transmission time window, and notifies the source node and the destination node of each physical layer transmission parameter value.
  • the transmission time slot corresponds to the time interval of time slots 3 to 4
  • the transmission time slot occupies a partial area of the transmission time window 1
  • the domain master node determines the transmission time window 1 associated physical layer transmission parameter 1
  • the domain master node sends the number of the physical layer transmission parameter 1 to the source node A and the destination node B.
  • the source node A and the source node B transmit and receive data according to the physical layer transmission parameter 1 in the transmission time slot in the subsequent MAC period. package.
  • the transmission slot corresponds to slot 3 to slot 7
  • the transmission slot occupies part of the transmission time window 1 and the transmission time window 2
  • the domain master determines the transmission time window 1 association.
  • the physical layer transmits parameter 1
  • the transmission time window is associated with the physical layer transmission parameter 2
  • the domain master node notifies the source node A and the destination node B of the physical layer transmission parameter 1 and the physical layer transmission parameter 2.
  • the source node A uses the physical layer transmission parameter 1 to transmit and receive data packets in slot 3 to slot 5 in the subsequent MAC period, and uses the physical layer transmission parameter 2 to transmit and receive data packets in slots 6 to 7 .
  • the domain master node determines the physical layer transmission parameter values associated with each of the m transmission time windows, including:
  • the physical layer transmission parameter value of the subcarrier is determined according to the signal to noise ratio of the subcarrier and the bit loading table.
  • the physical layer transmission parameter value is the bit width of the subcarrier.
  • the source node A-the relay node C-the destination node B the domain master node calculates the corresponding use according to the SNR of each subcarrier in the transmission path.
  • b i is the bit width carried by each subcarrier
  • round() is the rounding and rounding nearest rounding function
  • log2() is the logarithm
  • min() is the minimum function.
  • (SNR i ) A->C is the SNR of each subcarrier in the direction of the source node A-relay node C; bit max is the maximum number of bits allowed to be transmitted per subcarrier;
  • SNR i A->C is calculated by SNR i +Codegain-SNR Gap -Margin, where SNR i is the SNR value of each subcarrier fed back to the domain master DM by the relay node C, and codegain is the coding of the system.
  • Gain (determined by the code rate recommended by the domain master), SNR Gap represents the distance between the SNR and Shannon limit required for QAM (Quadrature Amplitude Modulation) modulation at BER 10 -7 , Margin is The margin for actually loading the SNR reserve.
  • the domain master node sends transmission slot configuration information to the relay node, and the relay node receives transmission slot configuration information from the domain master node.
  • the transmission slot configuration information may be sent by the MAP frame, and the transmission slot configuration information is located in a field of the TXOP descriptor.
  • the transmission slot configuration information is used to indicate the location of the transmission slot and the gain information associated with the transmission slot.
  • the transmission slot configuration information indicates only one gain information, and the transmission slot configuration information may include location information of the transmission slot and The number of the gain information.
  • the transmission time slot configuration information needs to indicate multiple gain information, and the correspondence between the transmission time window and the gain information, and the transmission time slot configuration
  • the information includes location information of the transmission slot, location information of the plurality of transmission time windows in which the transmission slot is located, and a number of the gain information associated with the plurality of transmission time windows.
  • the relay node receives the transmission slot configuration information from the domain master node and saves the transmission slot configuration information.
  • S201 to S203 can be configured as an independent relay transmission configuration process, and the domain master node in S201 to S203 can configure any relay node, and is not limited to configuring the relay node in S204 to S206. .
  • the relay node determines gain information of a transmission time window in which the transmission slot is located.
  • the relay node when the relay node needs to perform relay processing on the received signal in the first MAC period, the relay node transmits the slot configuration information from the domain master node to obtain the location of the transmission slot in the first MAC period, and Transmitting time slot associated gain information, the first MAC period is after the second MAC period.
  • the transmission slot occupies one complete transmission time window or a partial area in one transmission time window, the number of gain information is one.
  • Each transmission time window is associated with one gain information when the transmission time slot occupies multiple complete transmission time windows or multiple incomplete transmission time windows.
  • the relay node pre-stores or pre-configures the location information of the m transmission time windows, and the gain information associated with each of the m transmission time windows, and the relay node determines the transmission time window according to the location information of the transmission time slot. And then determine the associated gain information based on the transmission time window.
  • the relay node may also notify the domain master node of the gain information of the transmission time slot, for example, the number of the gain information carried in the transmission time slot configuration information.
  • the relay node acquires the scheduled transmission time slot corresponding to the time slot 3 to the time slot 4 in the second MAC cycle, and the scheduled transmission time slot associates the gain information 1.
  • the relay node acquires the scheduled transmission time slot corresponding to the time slot 3 to the time slot 7 in the second MAC period, where the time slot 3 to the time slot 5 are associated with the gain information 1, the time slot 6
  • the gain information 2 is associated with time slot 7.
  • the relay node performs relay processing on the received signal according to the associated gain information in the transmission time slot.
  • the transmission time slot corresponds to the time interval of time slots 3 to 4
  • the transmission time slot occupies a partial area of the transmission time window 1
  • the domain master node determines the transmission time window 1 associated gain information 1
  • the domain The master node transmits the number of the gain information 1 to the relay node C, and the relay node C relays the received signal according to the gain information 1 in the slot 3 to the slot 4 in the subsequent MAC period.
  • the transmission slot corresponds to slot 3 to slot 7
  • the transmission slot occupies part of the transmission time window 1 and the transmission time window 2
  • the domain master determines the transmission time window 1 association.
  • the gain information 1, the transmission time window is associated with the gain information 2
  • the domain master node notifies the relay node C of the gain information 1 and the gain information 2.
  • the relay node C uses the gain information 1 in the slot 3 to the slot 5 to relay the received signal in the subsequent MAC period, and uses the gain information 2 to receive in the slot 6 to the slot 7.
  • the incoming signal is subjected to analog relay processing.
  • the relay node adaptively uses the appropriate gain information for relay amplification according to different channel qualities, and can improve the relationship between the source node and the destination node compared to using a single gain information for relaying in the transmission slot. Transmission performance.
  • the relay node outputs a signal after the relay processing.
  • the working mode of the relay node may be a full-duplex mode
  • the relay node receives the signal from the source node in the transmission time slot, relays the signal according to the gain information, and sends the signal to the destination node, and simultaneously sends the signal to the destination node.
  • the node receives the signal from the destination node in the transmission time slot, relays the signal according to the gain information, and sends the signal to the source node.
  • the relay node adopts full-duplex analog relay mode to improve data throughput and reduce transmission delay between the source node and the destination node.
  • the method before the acquiring, by the domain master node, the channel quality parameter value of the transmission path in the first MAC period, the method further includes:
  • the domain master node detects that the source node and the destination node cannot communicate, or the transmission performance parameter value between the source node and the destination node does not satisfy the preset condition; the domain master node determines between the source node and the destination node. Following the node.
  • the domain master node DM detects that the source node A and the destination node B cannot communicate, or the transmission rate between the source node A and the destination node B is less than the rate threshold, or the delay is greater than the delay. Threshold value, etc., the domain master node DM selects a relay node between the source node A and the source node B according to the topology network information, and the number of the relay nodes may be one or more, and the transmission of the relay node can avoid the hidden node. The problem, as well as improving the transmission performance of data between the source node and the destination node.
  • S204 to S206 can also be used as an independent relay transmission process, and the relay node in S204 to S206 can receive the configuration from any domain master node, and is not limited to the domain owners in the foregoing S201 to S203.
  • the configuration of the node is not limited to the domain owners in the foregoing S201 to S203.
  • the domain master node schedules the transmission time slot in the transmission time window of the m different channel states, and notifies the relay node of the information about the location of the transmission time slot and the transmission time window in which the transmission time slot is located, so that The relay node processes the received signal by using the specified gain information for a specified period of time, so that the state of the transmission channel is always stable when the relay node performs relay processing, and the corresponding transmission time window is associated.
  • the gain information is relayed to ensure that the transmission path is adaptively optimized in transmission performance, and the transmission performance degradation caused by the relay node using a single gain information for relay processing throughout the MAC period is avoided.
  • FIG. 2a illustrates in detail a relay transmission method of a PLC system according to an embodiment of the present invention.
  • the following provides a relay transmission configuration apparatus (hereinafter referred to as apparatus 3) of a PLC system according to an embodiment of the present invention.
  • the apparatus 3 shown in FIG. 3 can implement the domain master node side of the embodiment shown in FIG. 2a, and the apparatus 3 includes a scheduling unit 301, a determining unit 302, and a sending unit 303.
  • the scheduling unit 301 is configured to schedule a transmission time slot in the first medium access control MAC period, where the first MAC period includes one or more AC periods, and is composed of m transmission time windows having different channel states, m is an integer greater than zero.
  • the determining unit 302 is configured to determine a location of the scheduled transmission time slot; the sending unit 303 is configured to send the transmission time slot configuration information to the relay node, where the transmission time slot configuration information is used to indicate the location of the transmission time slot The location of the transmission slot and the location of the m transmission time windows are used to determine gain information.
  • the transmission slot configuration information is further used to indicate the gain information.
  • it also includes:
  • a window configuration unit configured to acquire a channel quality parameter value of the transmission path in the second MAC period, where the second MAC period is before the first MAC period
  • the window configuration unit is configured to acquire channel quality parameters of the transmission path in the second MAC period, including:
  • the channel information request includes start time information of the channel evaluation time window, the termination time information, and a requested channel quality parameter type;
  • Receiving the transmission path sent by the relay node includes channel quality parameter values of each sub-path.
  • the window configuration unit is configured to determine gain information associated with each of the m transmission time windows, including:
  • the gain information is determined based on the power spectral density and the channel attenuation value for each transmission time window.
  • the window configuration unit is further configured to:
  • the window configuration unit is configured to determine physical layer transmission parameter values associated with each of the m transmission time windows, including:
  • the physical layer transmission parameter value of the subcarrier is determined according to the signal to noise ratio of the subcarrier and the bit loading table of the subcarrier.
  • it also includes:
  • a selecting unit configured to detect that the source node and the destination node cannot communicate, or the value of the transmission performance parameter between the source node and the destination node does not satisfy the preset condition
  • a relay node is selected between the source node and the destination node.
  • the device 3 may be a domain master node, and the device 3 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, and a system on chip (SoC).
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU Central processor unit
  • NP network processor
  • NP digital signal processing circuit
  • MCU micro controller unit
  • PLD programmable logic device
  • FIG. 4 provides a relay transmission device (hereinafter referred to as device 4) of a PCL system according to an embodiment of the present invention.
  • the apparatus 4 shown in FIG. 4 can implement the relay node side of the embodiment shown in FIG. 2a, and the apparatus 4 includes a receiving unit 401, a determining unit 402, a relay unit 403, and a transmitting unit 404.
  • the receiving unit 401 is configured to receive transmission slot configuration information from the domain master node, where the transmission slot configuration information carries location information of the transmission slot, where the transmission slot is located in the first MAC period.
  • the second MAC period is divided into m transmission time windows.
  • the determining unit 402 is configured to determine gain information associated with a transmission time window in which the transmission slot is located.
  • a relay unit 403 configured to perform relay processing on the received signal according to the associated gain information in the transmission time slot;
  • the sending unit is configured to output a signal after the relay processing.
  • the receiving unit 401 is further configured to receive window configuration information from the domain master node in a first MAC period, where the window configuration information indicates a location of the m transmission time windows and the m The gain information associated with each of the transmission time windows.
  • the transmission slot configuration information includes one or more of location information information of the transmission slot and a number of the gain information.
  • the device 3 may be a relay node, and the device 4 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, and a system on chip (SoC).
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU Central processor unit
  • NP network processor
  • NP digital signal processing circuit
  • MCU micro controller unit
  • PLD programmable logic device
  • the units in FIG. 3 and FIG. 4 are not limited to being located in two independent devices, and may be located in one device at the same time.
  • FIG. 5 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • the device 5 may be integrated into the foregoing domain master node or a relay node.
  • the device includes: a memory 502, and a processor 501. , a transmitter 504 and a receiver 503.
  • the memory 502 can be a separate physical unit, and can be connected to the processor 501, the transmitter 504, and the receiver 503 via a bus.
  • the memory 502, the processor 501, the transmitter 504, and the receiver 501 can also be integrated together, implemented by hardware, and the like.
  • the memory 502 is configured to store a program that implements the above method embodiments, or various modules of the device embodiment, and the processor 901 calls the program to perform the operations of the foregoing method embodiments.
  • the random access device may also include only the processor.
  • the memory for storing the program is located outside the random access device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the sending module or the transmitter performs the steps of the foregoing method embodiments
  • the receiving module or the receiver performs the steps received by the foregoing method embodiments, and other steps are performed by other modules or processors.
  • the transmitting module and the receiving module can form a transceiver module
  • the receiver and the transmitter can form a transceiver.
  • the embodiment of the present application further provides a computer storage medium, which is stored with a computer program, which is used to execute the relay transmission configuration method or the relay transmission method of the PCL system provided by the foregoing embodiment.
  • the embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the relay transmission configuration method or the relay transmission method of the PCL system provided by the foregoing embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种PLC***的中继传输配置方法、中继传输方法和相关装置。在本申请中,域主节点在不同信道状态的传输时间窗内调度传输时隙,将传输时隙的位置和传输时隙所在的传输时间窗关联的增益信息通知给中继节点,以便中继节点在传输时隙中不同的时间段使用相应的增益信息进行模拟中继处理,保证传输路径的传输性能在不同的时间窗达到最优,避免中继节点在传输时隙使用固定的增益信息进行中继处理而造成的传输性能的下降。

Description

PLC***的中继传输配置方法、中继传输方法及装置 技术领域
本发明涉及电力线通信领域,尤其涉及一种PLC***的中继传输配置方法、中继传输方法和装置。
背景技术
家庭的PLC(Power line Communication,电力线通信)技术,主要解决家庭无线网络覆盖不足的问题,电力线作为Wi-Fi信号回传的通道,可以节省建网的成本。由于PLC网络随着距离的增大信号的衰减增大,会出现相隔较远的两个节点在受限的传输功率下无法进行通信的问题或者两个节点在受限的传输功率下只能进行低速率的通信的问题,为了解决PLC***中两个节点无法进行通信或传输速率低的问题,需要借助两个节点之间中继节点对信号进行放大后再输出,如何在PLC***中进行中继传输是目前亟待解决的问题。
发明内容
本发明实施例所要解决的技术问题在于,提供一种PLC***的中继传输方法和装置,解决PLC***中两个节点由于通信距离过长导致传输性能下降的问题,同时保证PLC***的实时性。
第一方面,本申请提供了一种PLC***的中继传输配置方法,包括:域主节点在第一介质访问控制MAC(Medium Access Control,介质访问控制)周期中调度传输时隙,第一MAC周期由m个不同信道状态的传输时间窗组成,m为大于0的整数;域主节点确定调度的传输时隙的位置,域主节点向中继节点发送传输时隙配置信息,传输时隙配置信息用于指示传输时隙的位置和传输时隙所在的传输时间窗关联的增益信息中的一种或多种。
其中,域主节点周期性的进行资源(例如:时域资源、频域资源等)调度,MAC周期为域主节点进行资源调度的时间区间,MAC周期包含一个或多个交流周期,交流周期为PLC***的电力线上交流电的周期,例如:对于50Hz的市电,交流周期为0.02s,MAC周期为0.04s。第一MAC周期为PLC***中的任意一个周期,第一MAC周期预先划分为m个传输时间窗,传输时间窗为一个时间区间,m个传输时间窗可以呈连续分布。对于第一MAC周期之后的n个MAC周期,均可采用与第一MAC周期相同的规则划分m个传输时间窗,n的值可以预存储的固定值,也可以是域主节点指示的值,本发明实施例不作限制。
实施本发明实施例,域主节点在m个不同信道状态的传输时间窗内调度传输时隙,将传输时隙的位置和传输时隙所在的传输时间窗关联的增益信息通知给中继节点,以便中继节点在传输时隙中不同的时间段使用相应的增益信息进行模拟中继处理,保证传输路径的传输性能在不同的时间窗达到最优,避免中继节点在传输时隙使用固定的增益信息进行中继处理而造成的传输性能的下降。
在一种可能的设计中,传输时隙配置信息还用于指示所述传输时隙的增益信息。
在一种可能的设计中,域主节点在MAC周期中调度传输时隙之前,还包括:
域主节点在第二MAC周期内调度信道评估时间窗;其中,第二MAC周期在第一MAC 周期之前;
域主节点在信道评估时间窗内获取传输路径的信道质量参数值;
域主节点根据信道质量参数值确定传输路径的信道状态;
域主节点根据信道状态将第二MAC周期划分为m个传输时间窗;
域主节点确定m个传输时间窗各自关联的增益信息。
其中,传输路径表示源节点到目的节点之间的通信链路,该传输路径中还包括一个或多个中继节点。信道状态表示传输路径的信道质量参数值达到稳定的状态,不同的信道传输下传输路径具有不同的传输能力,传输路径的信道状态具有一定的持续时间。传输质量参数值包括传输速率、时延和SNR(Signal Noise Ratio,信噪比)中的一种或多种。在第二MAC周期内传输路径可能具有多个不同的信道状态。例如:第二MAC周期的长度为0.04s,域主节点根据在第二MAC周期内获取到的传输路径的信道质量参数值确定在前0.02s传输路径的时延为5ms,后0.02s传输路径的时延为1ms,则第二MAC周期内具有两个不同的信道状态,域主节点将第二MAC周期划分为2个传输时间窗:传输时间窗1和传输时间窗2,传输时间窗1为前0.02s的时间区间,传输时间窗2的为后0.02s的时间区间。域主节点根据不同的传输时间窗内传输路径的信道质量参数确定每个传输时间窗的增益信息。
根据以上的描述,域主节点根据第二MAC周期内传输路径的信道质量参数值将第二MAC周期划分为m个传输时间窗,每个传输时间窗具有不同的信道状态和传输能力,且每个传输时间窗关联不同的增益信息,以便中继节点自适应的根据不同的传输时间窗采用不同的增益信息进行中继放大,提高传输路径的性能。
在一种可能的设计中,域主节点将m个传输时间窗的位置和m个传输时间窗各自关联的增益信息通知给中继节点,以及将m个传输时间窗的位置通知给源节点和目的节点。可选的,域主节点可以将m个传输时间窗各自关联的增益信息进行编号,并将m个增益信息的编号通知给中继节点。
在一种可能的设计中,域主节点将第二MAC周期划分为长度相等的m个传输时间窗;其中,第二MAC周期在第一MAC周期之前。
在一种可能的设计中,域主节点在信道评估时间段内获取传输路径的信道质量参数包括:
域主节点在第二MAC周期内调度信道评估时间窗;
域主节点向传输路径中的中继节点发送信道信息请求;其中,信道信息请求包括信道评估时间窗的起始时间信息、信道评估时间窗的终止时间信息和请求的信道质量参数类型中的一种或多种。
域主节点接收中继节点发送的传输路径包括的各个子路径的信道质量参数值。
其中,信道评估时间窗为一个时间段,中继节点在信道评估时间窗内发送probe帧,接收到probe帧的其他节点来评估传输信道的信道质量。
在一种可能的设计中,域主节点确定m个传输时间窗各自关联的增益信息包括:
针对每个传输时间窗,域主节点根据功率谱密度和信道衰减值确定增益信息。
在一种可能的设计中,所述请求的信道质量参数类型包括:比特加载表、信道衰减值、 信噪比、噪声功率中的一种或多种。
在一种可能的设计中,域主节点确定m个传输时间窗各自关联的物理层传输参数值包括:
针对每个传输时间窗,根据子载波的信噪比和子载波的比特加载表确定子载波的物理层传输参数值。
在一种可能的设计中,域主节点将m个传输时间窗各自关联的物理层传输参数通知给传输路径中的源节点和目的节点。可选的,域主节点可以将m个传输时间窗各自关联的物理层传输参数进行编号,将m个传输时间窗各自关联的物理层传输参数和编号发送给传输路径中源节点和目的节点。
在一种可能的设计中,域主节点在第二MAC周期内获取传输路径的信道质量参数值之前,还包括:
域主节点检测到源节点和目的节点之间无法进行通信或者源节点与目的节点之间的传输性能参数值不满足预设条件。
其中,域主节点检测到源节点和目的节点之间无法进行通信或者源节点和目的节点之间的传输性能参数不满足预设条件时,域主节点需要在源节点和目的节点中间选择中继节点,选择的中继节点的数量可以是一个或多个,源节点和目的节点之间通过选择的中继节点传输数据。
第二方面,本申请提供了一种PLC***的中继传输方法,包括:
中继节点接收来自域主节点的传输时隙配置信息;其中,所述传输时隙配置信息用于表示传输时隙的位置,所述传输时隙位于所述第一MAC周期内,所述第二MAC周期划分为m个传输时间窗;
中继节点确定所述传输时隙所在的传输时间窗关联的增益信息;
所述中继节点在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
所述中继节点输出中继处理后的信号。
根据以上描述,在第二MAC周期内,中继节点确定调度的传输时隙所在的传输时间窗,获取传输时间窗关联的增益信息,在传输时隙内不同的时间窗根据对应的增益信息进行模拟中继放大,中继节点不需要对接收到的信号进行编码和解码等过程,减少了中继处理的时延,另外中继节点自适应的根据不同的信道质量采用合适的增益信息进行中继放大,相比在传输时隙中采用单一的增益信息进行中继相比,能提高源节点和目的节点之间的传输性能。
在一种可能的设计中,所述传输时隙配置信息包括所述传输时隙的位置信息和所述增益信息的编号中的一种或多种。其中,传输时隙配置信息可以在MAP帧中发送。
在一种可能的设计中,中继节点在第一MAC周期接收来自域主节点的窗口配置信息,窗口配置信息表示第一MAC周期划分的m个时间窗的位置和各个传输时间窗关联的增益信息。可选的,窗口配置信息包括所述m个传输时间窗的位置信息、所述m个传输时间窗各自关联的增益信息和所述m个传输时间窗各自关联的增益信息的编号。
第三方面,本申请提供了一种PLC***的中继传输装置,包括:调度单元,用于在第一介质访问控制MAC周期中调度传输时隙;其中,所述第一MAC周期包含由m个具有 不同信道状态的传输时间窗组成,m为大于0的整数;
确定单元,确定调度的传输时隙的位置;
发送单元,将传输时隙配置信息发送给中继节点;其中,所述传输时隙配置信息用于指示所述传输时隙的位置和所述传输时隙所在的传输时间窗关联的增益信息中一种或多种。
在一种可能的设计中,还包括:窗口配置单元,用于在所述第二MAC周期获取传输路径的信道质量参数值;其中,第二MAC周期在第一MAC周期之前,
根据信道质量参数值确定传输路径的信道状态;
根据所述信道状态将所述第二MAC周期划分为m个传输时间窗;
确定所述m个传输时间窗各自关联的增益信息。
在一种可能的设计中,所述窗口配置单元用于在所述第二MAC周期内获取传输路径的信道质量参数,包括:
在所述第二MAC周期内调度信道评估时间窗;
向传输路径中的中继节点发送信道信息请求;其中,所述信道信息请求包括所述信道评估时间窗的起始时间信息、所述的终止时间信息和请求的信道质量参数类型;
接收所述中继节点发送的所述传输路径包括各个子路径的信道质量参数值。
在一种可能的设计中,所述窗口配置单元用于确定所述m个传输时间窗各自关联的增益信息,包括:
针对每个传输时间窗,根据功率谱密度和信道衰减值确定增益信息。
在一种可能的设计中,所述窗口配置单元还用于:
确定所述m个传输时间窗各自关联的物理层传输参数值;
将所述m个传输时间窗各自关联的物理层传输参数值发送给传输路径中的源节点和目的节点。
在一种可能的设计中,所述窗口配置单元用于确定所述m个传输时间窗各自关联的物理层传输参数值,包括:
针对每个传输时间窗,根据子载波的信噪比和子载波的比特加载表确定子载波的物理层传输参数值。
在一种可能的设计中,还包括:
选择单元,用于检测到源节点和目的节点之间无法进行通信,或者源节点和目的节点之间的传输性能参数值不满足预设条件;
在所述源节点和目的节点之间选择中继节点。
第四方面,本申请提供了一种PLC***的中继传输装置,包括:
接收单元,用于接收来自域主节点的传输时隙配置信息;其中,所述传输时隙配置信息用于指示传输时隙的位置,所述传输时隙位于所述第一MAC周期内,所述第二MAC周期划分为m个传输时间窗。
确定单元,用于确定所述传输时隙所在的传输时间窗关联的增益信息;
中继单元,用于在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
发送单元,用于输出中继处理后的信号。
在一种可能的设计中,所述接收单元,还用于在第一MAC周期内接收来自所述域主 节点的窗口配置信息;其中,所述窗口配置信息表示所述m个传输时间窗的位置和所述m个传输时间窗各自关联的增益信息。
在一种可能的设计中,所述传输时隙配置信息包括所述传输时隙的位置信息信息和所述增益信息的编号中的一种或多种。
本申请又一方面提供一种计算机存储介质,其包含用于执行上述方面所设计的程序。
本申请又一方面提供了一种装置,该装置包括:存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行上述方面中各个可能的实施方式。
本申请又一方面提供了一种计算机程序产品,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第一方面或第四方面中任意一项的信息发送方法中的流程。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种通信***的网络架构图;
图2a是本发明实施例提供的一种PLC***的中继传输方法的交互示意图;
图2b是本发明实施例提供的一种中继传输的时序图;
图2c是本发明实施例提供的一种中继传输的时序图;
图2d是本发明实施例提供的一种PLC***的网络拓扑图;
图3是本发明实施例提供的一种装置的结构示意图;
图4是本发明实施例提供的一种装置的另一结构示意图;
图5是本发明实施例提供的一种装置的另一结构示意图。
具体实施方式
本申请实施例可以应用于PLC***,图1为本申请提供的一种通信***架构示意图,通信***包括多个节点,多个节点包括域主节点,各个节点之间通过电路线互连,域主节点用于管理PLC***中的其他节点。PLC***中的传输介质为电力线,PLC***中所有的节点(Node)组成一个域(domain)。PLC***作为一个共享介质网络,PLC***中的节点可以是通信节点End Point(EP),也可以是工作的家电设备,在本实施例中节点如果不作特殊说明的情况下均指通信节点,PLC***中任意的两个节点都能进行点对点通信。例如:参见图1所示,PLC***包括节点C、节点A、节点H、节点B和域主节点,在节点C和节点H之间无法通信或传输性能参数值不满足预设条件时,在节点C和节点H之间引入中继节点(节点A),中继节点将来自节点C的信号进行中继放大后发送给节点H,同时将来自节点H的信号进行中继放大后发送给节点C。需要说明的是,图1中各个设备的连接方式和数量仅为举例说明,并不对本发明实施例构成限定。
参见图2a,为本发明实施例提供的一种PLC***的中继传输方法的交互示意图,在本发明实施例中,所述方法包括:
S201、域主节点在第一MAC周期中调度传输时隙。
具体的,域主节点周期性的进行资源调度,包括但不限于进行时域资源和/或频域资源的调度,交流(Alternating Current,AC)周期表示交流电变化的周期。第一介质访问控制(Media Access Control,介质访问控制,MAC)周期包含一个或多个交流周期。可选的,PLC***中交流频率为50Hz,交流周期为0.02s,第一MAC周期为两个交流周期,第一MAC周期为0.04s。第一MAC周期由m个不同信道状态的传输时间窗组成,即第一MAC周期划分为m个传输时间窗,不同的传输时间窗内的传输路径具有不同的信道状态,信道状态表示传输路径在某个时间区间内的信道质量参数值保持稳定的状态,不同的信道状态对应不同的信道质量参数值,m为大于或等于0的整数,第一MAC周期划分为多个传输时间窗的情况下,多个传输时间窗可以呈连续分布。需要说明的是,上述的传输路径是源节点至目的节点之间的通信链路,且通信链路中包括确定的中继节点,中继节点的数量可以是一个或多个。
例如:参见图2b和图2c所示,第一MAC周期包含11个时隙(slot),每个时隙的长度为PLC***的TTI,PCL***的TTI(Transmission Time Interval,传输时间间隔)的时长可根据需要选择合适的时间粒度,本发明实施例不作限制。11个时隙分别记为:时隙1至时隙11,第一MAC周期划分为2个传输时间窗:传输时间窗1和传输时间窗2,传输时间窗1对应时隙1至时隙5,传输时间窗2对应时隙6至时隙11,在传输时间窗1内传输路径的比特加载表为比特加载表1,在传输时间窗2内传输路径的比特加载表为比特加载表2。比特加载表表示传输路径上个子载波的位宽。
其中,域主节点在MAC周期内调度一个传输时隙,调度传输时隙的方法如下:
可选的,传输时隙占用m个传输时间窗中的一个完整的传输时间窗,或者占用m个传输时间窗中的一个传输时间窗的部分区域。域主节点确定调度的传输时隙所在的传输时间窗,域主节点预存储或预配置有m个传输时间窗和增益信息的关联关系,域主节点根据该关联关系确定调度的传输时隙所在的传输时间窗关联的增益信息。可选的,域主节点也可以不通知中继节点传输时隙所在的传输时间窗关联的增益信息,由中继节点根据传输时隙的位置确定关联的增益信息。
例如:参见图2b所示,域主节点调度的传输时隙对应时隙3和时隙4,长度为2个时隙,传输时隙只占用传输时间窗1的部分区域,域主节点获取调度的传输时隙所在的传输时间窗1关联的增益信息1。
可选的,调度的传输时隙占用m个传输时间窗中至少两个完整的传输时间窗,或至少两个不完整的传输时间窗,或至少两个同时包括完整的传输时间窗和不完整的传输时间窗。域主节点预存储或预配置有m个传输时间窗和增益信息的关联关系,域主节点根据确定调度的传输时隙所在的至少两个传输时间窗,根据该关联关系确定该至少两个传输时间窗各自关联的增益信息。可选的,域主节点也可以不通知中继节点传输时隙所在的传输时间窗关联的增益信息,由中继节点根据传输时隙的位置确定关联的增益信息。
例如:参见图2c所示,域主节点调度的传输时隙对应时隙3至时隙7,长度为5个时 隙,传输时隙占用传输时间窗1和传输时间窗2的部分区域。域主节点获取传输时隙所在的传输时间窗1关联的增益信息1,以及传输时隙所在的传输时间窗2的增益信息2。
在一种可能的实施方式中,域主节点在第一MAC周期中调度传输时隙之前,还包括:
域主节点在第二MAC周期内获取传输路径的信道质量参数值;
域主节点根据信道质量参数值确定传输路径的信道状态;
域主节点根据信道状态将第二MAC周期划分为m个传输时间窗;
域主节点确定m个传输时间窗各自关联的增益信息。
具体的,第二MAC周期位于第一MAC周期之前,传输路径中的节点包括源节点、一个或多个中继节点、目的节点。可选的,域主节点可指示传输路径的任意一个节点周期性地向其他节点发送探测数据包,其他节点根据接收到的探测数据包来评估传输路径对应的一个子路径在第二MAC周期内的信道质量参数值,然后对传输路径对应的所有子路径在第二MAC周期内的信道质量参数值进行汇总得到传输路径在第二MAC周期内的信道质量参数值。可选的,信道质量参数值包括但不限于比特加载表、SNR、信道衰减值和噪声功率中的一种或多种,其中,比特加载表示传输信道上各个子载波的位宽。需要说明的是,传输路径使用多个子载波传输数据包时,传输路径的信道质量参数值可以为各个子载波的信道质量参数值。通过传输路径的信道质量参数值将第二MAC周期划分为一个或多个传输时间窗,这样中继节点可以在不同的传输时间窗使用对应的增益信息进行模拟中继,提高传输路径的数据传输性能。
其中,信道状态表示传输路径在某一段时间内保持稳定的状态,信道状态可根据需要使用不同的信道质量参数来衡量,例如:SNR、比特加载波、传输速率或时延中的一种或多种,根据传输路径中的信道质量参数,在第二MAC周期内传输路径可具有一个或多个信道状态。
需要说明的是,对于第一MAC周期之后的n个MAC周期,均可采用与第一MAC周期相同的规则划分m个传输时间窗,n的值可以预存储的固定值,也可以是域主节点指示的值,本发明实施例不作限制。
例如:参见图2b和图2c,域主节点根据获取到的传输路径的信道质量参数确定时隙3至时隙5的时间区间内传输路径的SNR为20dB,时隙6至时隙9的时间区间内的SNR为10dB。域主节点根据传输路径的信道质量参数值将第一MAC周期划分为2个传输时间窗,即域主节点将时隙1至时隙5的时间区间作为传输时间窗1,将时隙6至时隙11的时间区间作为传输时间窗2。域主节点根据传输时间窗1内传输路径的信道质量参数值确定传输时间窗1关联的增益信息1,以及域主节点根据传输时间窗2内传输路径的信道质量参数值确定传输时间窗2关联的增益信息2。
可选的,域主节点在第一MAC周期内划分m个传输时间窗的方法为:将第一MAC周期划分为长度相等的传输时间窗,然后根据每个传输时间窗内传输信道的信道质量参数值确定增益信息,将m个传输时间窗的位置信息和各个传输时间窗的增益信息发送给中继节点。另外,域主节点还可以将各个传输时间窗的增益信息进行编号,并将各个传输时间窗关联的增益信息的编号发送给中继节点,以便域主节点后续可以直接通过编号来指示中继节点使用哪个增益信息进行中继处理。
需要说明的是,在第一MAC周期内传输信道的信道质量参数值保持不变时,不需要对第一MAC周期划分时间窗,即整个第一MAC周期作为1个传输时间窗。
在一种可能的实施方式中,域主节点确定m个传输时间窗各自关联的增益信息包括:
针对每个传输时间窗,域主节点根据功率谱密度和子载波的信道衰减值确定的增益信息。
具体的,针对每个传输时间窗,域主节点根据功率谱密度和信道衰减值确定该子载波的增益信息。其中,m个传输时间窗各自关联的增益信息可以相同,也可以不同,本发明不作限制。
例如:第一MAC周期划分为2个传输时间窗:传输时间窗1和传输时间窗2,传输时间窗1内传输路径的功率谱密度为PSD,传输时间窗1内传输路径的信道衰减值为Hac,那么在传输时间窗1关联的增益因子AGT=PSD/Hac。
在一种可能的实施方式中,域主节点在第一MAC周期内获取传输路径的信道质量参数包括:
所述域主节点在所述第二MAC周期内调度信道评估时间窗;
所述域主节点向传输路径中的中继节点发送信道信息请求;其中,所述信道信息请求包括所述信道评估时间窗的起始时间信息、所述的终止时间信息和请求的信道质量参数类型;
所述域主节点接收所述中继节点发送的所述传输路径包括各个子路径的信道质量参数值。
具体的,信道评估时间窗为一个时间段,域主节点可指示中继节点在信道评估时间窗内向相邻的其他节点发送probe帧的方式来确定第一MAC周期内传输路径中各个子路径的信道质量参数值。传输路径包括至少两个子路径,例如:传输路径中的中继节点的数量为一个的情况下,源节点到目的节点之间的传输路径包括源节点到中继节点之间的子路径,以及中继节点到目的节点之间的子路径。
例如:参见图2d所示,DM为域主节点,A为源节点,B为目的节点,根据图2d的网络拓扑结构可以看出,源节点A到目的节点B之间存在两条包括中继节点的传输路径,两条传输路径分别为源节点A-中继节点D-中继节点E-目的节点B、源节点A-中继节点C-目的节点B,域主节点可根据预设的规则选择其中的一个传输路径,例如:选择容量最大的传输路径,或选择时延最小的传输路径,或选择信噪比最高的传输路径,或选择跳数最小的传输路径等,本发明不作限制。
在一种可能的实施方式中,本发明实施例还包括:
所述域主节点确定所述m个传输时间窗各自关联的物理层传输参数值;
将所述m个传输时间窗各自关联的物理层传输参数值发送给传输路径中的源节点和目的节点。
具体的,传输路径中的源节点和目的节点使用物理层传输参数值收发数据包,物理层传输参数值包括:FEC(Forward Error Correction,前向纠错码)的码子大小、FEC的码率、编码的重复次数、比特加载表和功率谱密度中的一种或多种。可选的,域主节点可以将m个传输时间窗各自关联的物理层参数参照值进行编号,然后将物理层传输参数值和编号发 送给源节点和目的节点,以便后续域主节点可直接通过编号来指示源节点或目的节点使用哪个物理层传输参数值来收发数据。
可选的,在域主节点调度传输时隙后,确定传输时隙所在的传输时间窗关联的物理层传输参数值,然后将该物理层传输参数值通知给源节点和目的节点,源节点和目的节点在传输时隙内根据关联的物理层传输参数值收发数据包。在传输时隙所在的传输时间窗的数量为1时,域主节点将该传输时间窗关联的物理层传输参数值通知给源节点和目的节点。例如:域主节点向源节点和目的节点发送该物理层传输参数值的编号。在传输时隙所在的传输时间窗的数量大于或等于2时,域主节点获取每个传输时间窗关联的物理层传输参数值,将每个物理层传输参数值通知给源节点和目的节点。
例如:参见图2b和图2d所示,传输时隙对应时隙3至4的时间区间,传输时隙占用传输时间窗1的部分区域,域主节点确定传输时间窗1关联物理层传输参数1,域主节点将物理层传输参数1的编号发送给源节点A和目的节点B,源节点A和源节点B在后续的MAC周期内,在传输时隙内根据物理层传输参数1来收发数据包。
又例如:参见图2c和图2d所示,传输时隙对应时隙3至时隙7,传输时隙占用传输时间窗1和传输时间窗2的部分区域,域主节点确定传输时间窗1关联物理层传输参数1,传输时间窗关联物理层传输参数2,域主节点将物理层传输参数1和物理层传输参数2通知给源节点A和目的节点B。源节点A在后续的MAC周期内,在时隙3至时隙5内使用物理层传输参数1来收发数据包,在时隙6至时隙7内使用物理层传输参数2来收发数据包。
在一种可能的实施方式中,域主节点确定m个传输时间窗各自关联的物理层传输参数值包括:
针对每个传输时间窗,根据子载波的信噪比和比特加载表确定子载波的物理层传输参数值。
例如:物理层传输参数值为子载波的位宽,根据图2d中传输路径:源节点A-中继节点C-目的节点B,域主节点根据传输路径中每个子载波的SNR计算出使用相应中继节点C进行中继处理使用的物理层传输参数值(子载波的位宽):
b i=min(round(log2(1+min((SNR i) A->C,(SNR i) C->B))),bit max)。
b i为每个子载波承载的位宽,round()为四舍五入取整就近取整函数,log2()为取对数,min()为取最小值函数。
(SNR i) A->C为源节点A-中继节点C方向每个子载波的SNR;bit max是每个子载波允许发送的最大bit数目;
(SNR i) A->C通过SNR i+Codegain-SNR Gap-Margin计算得出,其中SNR i为中继节点C反馈给域主节点DM的每个子载波的SNR值,codegain为该***的编码增益(由域主节点建议的码率决定),SNR Gap表示***在BER为10 -7时QAM(Quadrature Amplitude Modulation,正交振幅调制)调制所需要的SNR和香农限之间的距离,Margin为实际加载SNR预留的余量。
S202、域主节点向中继节点发送传输时隙配置信息,中继节点接收来自域主节点的传输时隙配置信息。
具体的,传输时隙配置信息可由MAP帧来发送,传输时隙配置信息位于TXOP descriptor的字段中。传输时隙配置信息用于指示传输时隙的位置和传输时隙关联的增益信息。在传输时隙占用1个完整的传输时间窗或1个传输时间窗中的部分区域时,传输时隙配置信息只指示1个增益信息,传输时隙配置信息可包括传输时隙的位置信息和增益信息的编号。在传输时隙占用多个完整的传输时间窗或多个不完整的传输时间窗时,传输时隙配置信息需要指示多个增益信息,以及传输时间窗和增益信息的对应关系,传输时隙配置信息包括传输时隙的位置信息、传输时隙所在的多个传输时间窗的位置信息和该多个传输时间窗关联的增益信息的编号。中继节点接收来自域主节点的传输时隙配置信息,并保存传输时隙配置信息。
可选的,S201至S203可以作为一个独立的中继传输配置流程,S201至S203中的域主节点可以对任意的中继节点进行配置,并不限于对S204至S206中的中继节点进行配置。
S203、中继节点确定传输时隙所在的传输时间窗的增益信息。
具体的,中继节点需要在第一MAC周期内对接收到的信号进行中继处理时,中继节点上述的来自域主节点传输时隙配置信息获取第一MAC周期内传输时隙的位置以及传输时隙关联的增益信息,第一MAC周期在第二MAC周期之后。在传输时隙占用1个完整的传输时间窗或一个传输时间窗中的部分区域时,增益信息的数量为1个。在传输时隙占用多个完整的传输时间窗或多个不完整的传输时间窗时,每个传输时间窗关联1个增益信息。
可选的,中继节点预存储或预配置有m个传输时间窗的位置信息,以及m个传输时间窗各自关联的增益信息,中继节点根据传输时隙的位置信息确定所在的传输时间窗,然后根据传输时间窗确定关联的增益信息。
可选的,中继节点也可以由域主节点通知传输时隙的增益信息,例如:在传输时隙配置信息中携带增益信息的编号。
例如:参见图2b所示,中继节点获取到调度的传输时隙在第二MAC周期内对应时隙3至时隙4,调度的传输时隙关联增益信息1。
又例如:参见图2c所示,中继节点获取到调度的传输时隙在第二MAC周期内对应时隙3至时隙7,其中时隙3至时隙5关联增益信息1,时隙6至时隙7关联增益信息2。
S204、中继节点在传输时隙内根据关联的增益信息对接收到的信号进行中继处理。
例如:参见图2b和图2d所示,传输时隙对应时隙3至4的时间区间,传输时隙占用传输时间窗1的部分区域,域主节点确定传输时间窗1关联增益信息1,域主节点将增益信息1的编号发送给中继节点C,中继节点C在后续的MAC周期内,在时隙3至时隙4内根据增益信息1对接收到的信号进行中继处理。
又例如:参见图2c和图2d所示,传输时隙对应时隙3至时隙7,传输时隙占用传输时间窗1和传输时间窗2的部分区域,域主节点确定传输时间窗1关联增益信息1,传输时间窗关联增益信息2,域主节点将增益信息1和增益信息2通知中继节点C。中继节点C在后续的MAC周期内,在时隙3至时隙5内使用增益信息1来对接收到的信号进行中继处理,在时隙6至时隙7内使用增益信息2对接收到的信号进行模拟中继处理。
根据以上描述,在传输时隙内不同的时间窗根据对应的增益信息进行模拟中继放大,中继节点不需要对接收到的信号进行编码和解码等过程,减少了中继处理的时延,另外中 继节点自适应的根据不同的信道质量采用合适的增益信息进行中继放大,相比在传输时隙中采用单一的增益信息进行中继相比,能提高源节点和目的节点之间的传输性能。
S205、中继节点输出中继处理后的信号。
具体的,中继节点的工作模式可以是全双工模式,中继节点在传输时隙内接收来自源节点的信号,根据增益信息对该信号进行中继处理后发送给目的节点,同时,中继节点在传输时隙接收来自目的节点的信号,根据增益信息对该信号进行中继处理后发送给源节点。中继节点采用全双工的模拟中继方式能提高源节点和目的节点之间的数据吞吐量和降低传输时延。
在一种可能的实施方式中,所述域主节点在所述第一MAC周期内获取所述传输路径的信道质量参数值之前,还包括:
所述域主节点检测到源节点和目的节点之间无法进行通信,或者源节点和目的节点之间的传输性能参数值不满足预设条件;域主节点在源节点和目的节点之间确定中继节点。
例如:参见图2d所示,域主节点DM检测到源节点A和目的节点B之间无法进行通信,或者源节点A和目的节点B之间的传输速率小于速率阈值,或者时延大于时延阈值等,域主节点DM根据拓扑网络信息在源节点A和源节点B之间选择一个中继节点,中继节点的数量可以是一个或多个,通过中继节点的传输能避免隐藏节点的问题,以及提高源节点和目的节点之间数据的传输性能。
可选的,S204至S206也可以作为一个独立的中继传输流程,S204至S206中的中继节点可以接收来自任意的域主节点的配置,并不限于与前面的S201至S203中的域主节点的配置。
根据以上描述,域主节点在m个不同信道状态的传输时间窗内调度传输时隙,将传输时隙的位置和传输时隙所在的传输时间窗关联的增益信息通知给中继节点,以便中继节点在指定的时间段使用指定的增益信息对接收到的信号进行中继处理,这样中继节点在进行中继处理时传输信道的状态始终是稳定的,且相应的使用该传输时间窗关联的增益信息进行中继处理,使传输路径在传输性能自适应的保持最优,避免中继节点在整个MAC周期使用单一的增益信息进行中继处理而造成的传输性能的下降。
上述图2a详细阐述了本发明实施例的一种PLC***的中继传输方法,下面提供了本发明实施例的一种PLC***的中继传输配置装置(以下简称装置3)。
需要说明的是,图3所示的装置3可以实现图2a所示实施例的域主节点侧,装置3包括调度单元301、确定单元302和发送单元303。调度单元301,用于在第一介质访问控制MAC周期中调度传输时隙;其中,所述第一MAC周期包含一个或多个交流周期,且由m个具有不同信道状态的传输时间窗组成,m为大于0的整数。确定单元302,用于确定调度的传输时隙的位置;发送单元303,将传输时隙配置信息发送给中继节点;其中,所述传输时隙配置信息用于指示所述传输时隙的位置,所述传输时隙的位置和所述m个传输时间窗的位置用于确定增益信息。
可选的,传输时隙配置信息还用于指示增益信息。
可选的,还包括:
窗口配置单元,用于在所述第二MAC周期获取传输路径的信道质量参数值;其中,第二MAC周期在第一MAC周期之前,
根据信道质量参数值确定传输路径的信道状态;
根据所述信道状态将所述第二MAC周期划分为m个传输时间窗;
确定所述m个传输时间窗各自关联的增益信息。
可选的,所述窗口配置单元用于在所述第二MAC周期内获取传输路径的信道质量参数,包括:
在所述第二MAC周期内调度信道评估时间窗;
向传输路径中的中继节点发送信道信息请求;其中,所述信道信息请求包括所述信道评估时间窗的起始时间信息、所述的终止时间信息和请求的信道质量参数类型;
接收所述中继节点发送的所述传输路径包括各个子路径的信道质量参数值。
可选的,所述窗口配置单元用于确定所述m个传输时间窗各自关联的增益信息,包括:
针对每个传输时间窗,根据功率谱密度和信道衰减值确定增益信息。
可选的,所述窗口配置单元还用于:
确定所述m个传输时间窗各自关联的物理层传输参数值;
将所述m个传输时间窗各自关联的物理层传输参数值发送给传输路径中的源节点和目的节点。
可选的,所述窗口配置单元用于确定所述m个传输时间窗各自关联的物理层传输参数值,包括:
针对每个传输时间窗,根据子载波的信噪比和子载波的比特加载表确定子载波的物理层传输参数值。
可选的,还包括:
选择单元,用于检测到源节点和目的节点之间无法进行通信,或者源节点和目的节点之间的传输性能参数值不满足预设条件;
在所述源节点和目的节点之间选择中继节点。
所述装置3可以为域主节点,所述装置3也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本发明实施例和图2a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2a的方法实施例的描述,此处不再赘述。
图4提供了本发明实施例的一种PCL***的中继传输装置(以下简称装置4)。
需要说明的是,图4所示的装置4可以实现图2a所示实施例的中继节点侧,装置4包括接收单元401、确定单元402、中继单元403和发送单元404。
接收单元401,用于接收来自域主节点的传输时隙配置信息;其中,所述传输时隙配置信息携带所述传输时隙的位置信息,所述传输时隙位于所述第一MAC周期内,所述第 二MAC周期划分为m个传输时间窗。
确定单元402,用于确定所述传输时隙所在的传输时间窗关联的增益信息。
中继单元403,用于在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
发送单元,用于输出中继处理后的信号。
可选的,接收单元401,还用于在第一MAC周期内接收来自所述域主节点的窗口配置信息;其中,所述窗口配置信息表示所述m个传输时间窗的位置和所述m个传输时间窗各自关联的增益信息。
可选的,所述传输时隙配置信息包括所述传输时隙的位置信息信息和所述增益信息的编号中的一种或多种。
所述装置3可以为中继节点,所述装置4也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本发明实施例和图2a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2a的方法实施例的描述,此处不再赘述。
可选的,图3和图4中的单元并不限于位于两个独立的设备中,也可以同时位于一个设备中。
图5为本发明实施例提供的一种装置结构示意图,以下简称装置5,装置5可以集成于前述域主节点或中继节点,如图5所示,该装置包括:存储器502、处理器501、发射器504以及接收器503。
存储器502可以是独立的物理单元,与处理器501、发射器504以及接收器503可以通过总线连接。存储器502、处理器501、发射器504以及接收器501也可以集成在一起,通过硬件实现等。
存储器502用于存储实现以上方法实施例,或者装置实施例各个模块的程序,处理器901调用该程序,执行以上方法实施例的操作。
可选地,当上述实施例的PCL***的中继传输配置方法或中继传输方法中的部分或全部通过软件实现时,随机接入装置也可以只包括处理器。用于存储程序的存储器位于随机接入装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
上述实施例中,发送模块或发射器执行上述各个方法实施例发送的步骤,接收模块或接收器执行上述各个方法实施例接收的步骤,其它步骤由其他模块或处理器执行。发送模块和接收模块可以组成收发模块,接收器和发射器可以组成收发器。
本申请实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序用于执行上述实施例提供的PCL***的中继传输配置方法或中继传输方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的PCL***的中继传输配置方法或中继传输方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (18)

  1. 一种PLC***的中继传输配置方法,其特征在于,包括:
    域主节点在第一介质访问控制MAC周期中调度传输时隙;其中,所述第一MAC周期由m个具有不同信道状态的传输时间窗组成,m为大于0的整数;
    所述域主节点确定调度的传输时隙的位置;
    所述域主节点将传输时隙配置信息发送给中继节点;其中,所述传输时隙配置信息用于指示所述传输时隙的位置,所述传输时隙的位置和所述m个传输时间窗的位置用于确定增益信息。
  2. 如权利要求1所述的方法,其特征在于,所述传输时隙配置信息还用于指示所述增益信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述域主节点在第一介质访问控制MAC周期中调度传输时隙之前,还包括:
    所述域主节点在第二MAC周期获取传输路径的信道质量参数值;其中,所述第二MAC周期在第一MAC周期之前,
    所述域主节点根据信道质量参数值确定传输路径的信道状态;
    所述域主节点根据所述信道状态将所述第二MAC周期划分为m个传输时间窗;
    所述域主节点确定所述m个传输时间窗各自关联的增益信息。
  4. 如权利要求2所述的方法,其特征在于,所述域主节点在所述第二MAC周期内获取传输路径的信道质量参数包括:
    所述域主节点在所述第二MAC周期内调度信道评估时间窗;
    所述域主节点向传输路径中的中继节点发送信道信息请求;其中,所述信道信息请求包括所述信道评估时间窗的起始时间信息、所述的终止时间信息和请求的信道质量参数类型;
    所述域主节点接收所述中继节点发送的所述传输路径包括各个子路径的信道质量参数值。
  5. 如权利要求2-4任意一项所述的方法,其特征在于,所述请求的信道质量参数类型包括:
    比特加载表、信道衰减值、信噪比、噪声功率中的一种或多种。
  6. 如权利要求2所述的方法,其特征在于,所述域主节点在所述信道评估时间窗内获取所述传输路径的信道质量参数值之前,还包括:
    所述域主节点检测到源节点和目的节点之间无法进行通信,或者源节点和目的节点之间的传输性能参数值不满足预设条件;
    所述域主节点在所述源节点和目的节点之间选择中继节点。
  7. 一种PLC***的中继传输方法,其特征在于,包括:
    中继节点接收来自域主节点的传输时隙配置信息;其中,所述传输时隙配置信息用于表示传输时隙的位置,所述传输时隙位于所述第一MAC周期内,所述第二MAC周期划分为m个传输时间窗;
    中继节点确定所述传输时隙所在的传输时间窗关联的增益信息;
    所述中继节点在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
    所述中继节点输出中继处理后的信号。
  8. 如权利要求7所述的中继传输方法,其特征在于,所述中继节点接收来自域主节点的传输时隙配置信息之前,还包括:
    所述中继节点在第一MAC周期内接收来自所述域主节点的窗口配置信息;其中,所述窗口配置信息表示所述m个传输时间窗的位置和所述m个传输时间窗各自关联的增益信息。
  9. 如权利要求7或8所述的方法,其特征在于,所述传输时隙配置信息包括所述传输时隙的位置信息和所述增益信息的编号中的一种或多种。
  10. 一种PLC***的中继传输配置装置,其特征在于,包括:
    调度单元,用于在第一介质访问控制MAC周期中调度传输时隙;其中,所述第一MAC周期由m个具有不同信道状态的传输时间窗组成,m为大于0的整数;
    确定单元,用于确定调度的传输时隙的位置;
    发送单元,将传输时隙配置信息发送给中继节点;其中,所述传输时隙配置信息用于指示所述传输时隙的位置,所述传输时隙的位置和所述m个传输时间窗的位置用于确定增益信息。
  11. 如权利要求10所述的装置,其特征在于,所述传输时隙配置信息还用于指示所述增益信息。
  12. 如权利要求10或11所述的装置,其特征在于,还包括:
    窗口配置单元,用于在所述第二MAC周期获取传输路径的信道质量参数值;其中,第二MAC周期在第一MAC周期之前,
    根据信道质量参数值确定传输路径的信道状态;
    根据所述信道状态将所述第二MAC周期划分为m个传输时间窗;
    确定所述m个传输时间窗各自关联的增益信息。
  13. 如权利要求12所述的装置,其特征在于,所述窗口配置单元用于在所述第二MAC 周期内获取传输路径的信道质量参数,包括:
    在所述第二MAC周期内调度信道评估时间窗;
    向传输路径中的中继节点发送信道信息请求;其中,所述信道信息请求包括所述信道评估时间窗的起始时间信息、所述的终止时间信息和请求的信道质量参数类型;
    接收所述中继节点发送的所述传输路径包括各个子路径的信道质量参数值。
  14. 如权利要求12所述的装置,其特征在于,还包括:
    选择单元,用于检测到源节点和目的节点之间无法进行通信,或者源节点和目的节点之间的传输性能参数值不满足预设条件;
    在所述源节点和目的节点之间选择中继节点。
  15. 一种PLC***的中继传输装置,其特征在于,包括:
    接收单元,用于接收来自域主节点的传输时隙配置信息;其中,所述传输时隙配置信息携带所述传输时隙的位置信息,所述传输时隙位于所述第一MAC周期内,所述第一MAC周期划分为m个传输时间窗;
    确定单元,用于确定所述传输时隙所在的传输时间窗关联的增益信息;
    中继单元,用于在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
    发送单元,用于输出中继处理后的信号。
  16. 如权利要求15所述的装置,其特征在于,
    所述接收单元,还用于在第一MAC周期内接收来自所述域主节点的窗口配置信息;其中,所述窗口配置信息表示所述m个传输时间窗的位置和所述m个传输时间窗各自关联的增益信息。
  17. 如权利要求15或16所述的装置,其特征在于,所述传输时隙配置信息包括所述传输时隙的位置信息和所述增益信息的编号中的一种或多种。
  18. 一种电力线通信***,其特征在于,包括:域主节点和中继节点;
    域主节点,用于在第一介质访问控制MAC周期中调度传输时隙;其中,所述第一MAC周期由m个具有不同信道状态的传输时间窗组成,m为大于0的整数;
    确定调度的传输时隙的位置;
    将传输时隙配置信息发送给中继节点;其中,所述传输时隙配置信息用于指示所述传输时隙的位置,所述传输时隙的位置和所述m个传输时间窗的位置用于确定增益信息;
    中继节点,用于接收来自域主节点的传输时隙配置信息;
    确定所述传输时隙所在的传输时间窗关联的增益信息;
    在所述传输时隙内根据关联的增益信息对接收到的信号进行中继处理;
    输出中继处理后的信号。
PCT/CN2019/079210 2018-04-03 2019-03-22 Plc***的中继传输配置方法、中继传输方法及装置 WO2019192335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19782210.9A EP3764704B1 (en) 2018-04-03 2019-03-22 Relay transmission configuration method, and relay transmission method and apparatus for plc system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810288750.1A CN110350948B (zh) 2018-04-03 2018-04-03 Plc***的中继传输配置方法、中继传输方法及装置
CN201810288750.1 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019192335A1 true WO2019192335A1 (zh) 2019-10-10

Family

ID=68099811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079210 WO2019192335A1 (zh) 2018-04-03 2019-03-22 Plc***的中继传输配置方法、中继传输方法及装置

Country Status (3)

Country Link
EP (1) EP3764704B1 (zh)
CN (1) CN110350948B (zh)
WO (1) WO2019192335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756407A (zh) * 2020-06-24 2020-10-09 国网安徽省电力有限公司电力科学研究院 基于优化各态历经数据到达率的异构单中继通道传输方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821920B (zh) * 2019-10-29 2021-12-24 华为技术有限公司 一种信号处理方法、通信芯片以及通信装置
CN110995315B (zh) * 2019-11-27 2022-02-11 深圳市力合微电子股份有限公司 一种基于高速电力线载波的通信方法
CN114204964B (zh) * 2020-09-17 2022-12-06 华为技术有限公司 一种电力线网络流通道建立方法、装置和***
CN116888897A (zh) * 2021-03-05 2023-10-13 华为技术有限公司 用于物联网的电力线通信的方法、装置和***
CN115225131A (zh) * 2021-04-16 2022-10-21 华为技术有限公司 一种信号转发方法、中继设备及通信***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184007A (zh) * 2006-11-13 2008-05-21 三星电子株式会社 分配带宽的方法和设备以及发送和接收数据的方法和设备
CN101202597A (zh) * 2007-12-03 2008-06-18 北京创毅视讯科技有限公司 移动数字多媒体广播的自动增益控制方法及装置
CN102204365A (zh) * 2008-11-04 2011-09-28 高通股份有限公司 无线通信网络中基于接收机增益设置的发射功率控制
CN102265512A (zh) * 2009-01-26 2011-11-30 高通股份有限公司 无线通信网络中的自动增益控制
US20150304964A1 (en) * 2012-11-02 2015-10-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and Apparatuses for Boosting Channel Transmission in a Network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150271021A1 (en) * 2011-11-11 2015-09-24 Stmicroelectronics, Inc. System and Method for an Energy Efficient Network Adaptor with Security Provisions
EP2733857B1 (en) * 2012-11-16 2017-11-15 Alcatel Lucent Method and apparatus for relaying messages in a PLC network
US20150372717A1 (en) * 2014-06-18 2015-12-24 Qualcomm Incorporated Slotted message access protocol for powerline communication networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184007A (zh) * 2006-11-13 2008-05-21 三星电子株式会社 分配带宽的方法和设备以及发送和接收数据的方法和设备
CN101202597A (zh) * 2007-12-03 2008-06-18 北京创毅视讯科技有限公司 移动数字多媒体广播的自动增益控制方法及装置
CN102204365A (zh) * 2008-11-04 2011-09-28 高通股份有限公司 无线通信网络中基于接收机增益设置的发射功率控制
CN102265512A (zh) * 2009-01-26 2011-11-30 高通股份有限公司 无线通信网络中的自动增益控制
US20150304964A1 (en) * 2012-11-02 2015-10-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and Apparatuses for Boosting Channel Transmission in a Network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764704A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756407A (zh) * 2020-06-24 2020-10-09 国网安徽省电力有限公司电力科学研究院 基于优化各态历经数据到达率的异构单中继通道传输方法

Also Published As

Publication number Publication date
CN110350948B (zh) 2020-12-15
EP3764704B1 (en) 2022-07-27
CN110350948A (zh) 2019-10-18
EP3764704A1 (en) 2021-01-13
EP3764704A4 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2019192335A1 (zh) Plc***的中继传输配置方法、中继传输方法及装置
US10448274B2 (en) Method for dynamic CSI feedback
US9590790B2 (en) Optimizing throughput of data frames in orthogonal frequency division multiplexing (OFDM) communication networks
US8995280B2 (en) System and method for an energy efficient network adapter
JP6285031B2 (ja) 通信システムにおける応答フレーム間スペースの最適化
TWI507066B (zh) 配置用於降低功率之一訊框的方法及傳送端、處理降低功率的方法及通訊系統
JP4592396B2 (ja) 通信システムおよび通信装置
JP2006191279A (ja) 無線通信装置
CN108809484A (zh) 一种信道状态的指示方法、装置及网络设备
US20160099790A1 (en) Cost Effective Network Interference Cancellation For Wireless Networks
WO2014154171A1 (zh) 一种确定上行信道状态信息的方法和装置
Petroccia et al. Performance evaluation of underwater medium access control protocols: At-sea experiments
EP4029344A1 (en) Methods and apparatus for resource selection
JP6538207B2 (ja) Csi−rsによって生成される干渉の予測を用いたアウターループリンク適応
WO2014026382A1 (zh) 数据发送方法和装置
JP5034652B2 (ja) モデム通信方法及びモデム装置
Wang et al. NCAC-MAC: Network coding aware cooperative medium access control for wireless networks
JP6109184B2 (ja) 無線送受信機とのマルチチャネル、マルチ変調、マルチレート通信
Yoon et al. Adaptive rate control and contention window-size adjustment for power-line communication
WO2019051830A1 (en) METHOD AND NETWORK NODE FOR RADIO RESOURCE ALLOCATION
Chu et al. Analysis and determination of cooperative MAC strategies from throughput perspectives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019782210

Country of ref document: EP

Effective date: 20201005