WO2019190067A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2019190067A1
WO2019190067A1 PCT/KR2019/002537 KR2019002537W WO2019190067A1 WO 2019190067 A1 WO2019190067 A1 WO 2019190067A1 KR 2019002537 W KR2019002537 W KR 2019002537W WO 2019190067 A1 WO2019190067 A1 WO 2019190067A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
weight
aromatic vinyl
copolymer
Prior art date
Application number
PCT/KR2019/002537
Other languages
English (en)
French (fr)
Inventor
심인식
김연경
양천석
Original Assignee
롯데첨단소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180148463A external-priority patent/KR102234039B1/ko
Application filed by 롯데첨단소재(주) filed Critical 롯데첨단소재(주)
Publication of WO2019190067A1 publication Critical patent/WO2019190067A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent antistatic property, surface hydrophobicity, and the like, and a molded article formed therefrom.
  • thermoplastic resin rubber-modified aromatic vinyl copolymer resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin) are excellent in mechanical properties, processability, appearance characteristics, etc. It is widely used as interior / exterior materials for automobiles and exterior materials for construction.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • the plastic products prepared from the conventional thermoplastic resin composition have little moisture absorbing power in the air and accumulate without generating the generated static electricity, dust in the air may be adsorbed, causing surface contamination and electrostatic shock, and malfunction of the device. This may cause a malfunction.
  • an antistatic agent may be used, but in order to obtain appropriate antistatic property, an excessive amount of antistatic agent is required, and in this case, deterioration in compatibility, mechanical properties, etc. of the thermoplastic resin composition It may occur.
  • the surface when the thermoplastic resin composition is applied to a product installed outdoors such as a building exterior material, the surface may be modified to have hydrophobicity in order to reduce contamination, dust adhesion due to precipitation, snowfall, and the like.
  • thermoplastic resin composition In order to have a hydrophobic surface of the thermoplastic resin composition, a method such as adding a hydrophobic film coating or the like is used, but such a method has disadvantages such as an increase in cost and a decrease in productivity due to the addition of the process.
  • a method of adding various additives capable of imparting hydrophobicity may be used, but conventionally used silica-based, fluorine-based, and ionic-based additives may cause problems such as deterioration in color, appearance, physical properties, etc. due to excessive addition. There is a risk of rising issues.
  • thermoplastic resin compositions having excellent antistatic property, surface hydrophobicity, balance of physical properties thereof, and the like without these problems.
  • Patent Publication No. 2014-0135790 discloses in, for example, Patent Publication No. 2014-0135790.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in antistatic property, surface hydrophobicity and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition may be a rubber-modified aromatic vinyl copolymer resin; Aliphatic polyamide resins; Polyetheresteramide block copolymers; Saturated fatty acid bis amide; And aliphatic carboxylic acid ester compounds.
  • thermoplastic resin composition of embodiment 1, wherein the thermoplastic resin composition comprises about 60 to about 95 wt% of the rubber-modified aromatic vinyl copolymer resin and about 100 wt% of the base resin including about 5 to about 40 wt% of the aliphatic polyamide resin.
  • the polyetheresteramide block copolymer To about 1 part by weight to about 15 parts by weight of the polyetheresteramide block copolymer, about 0.1 to about 5 parts by weight of the saturated fatty acid bisamide, and about 0.1 to about 10 parts by weight of the aliphatic carboxylic acid ester compound. Can be.
  • the rubber modified aromatic vinyl copolymer resin may include a rubber modified vinyl graft copolymer and an aromatic vinyl copolymer resin.
  • the rubber-modified vinyl graft copolymer may be a graft polymerized monomer mixture comprising an aromatic vinyl monomer and a vinyl cyanide monomer in the rubbery polymer.
  • the polyetheresteramide block copolymer is an amino carboxylic acid, lactam or diamine-dicarboxylate having 6 or more carbon atoms; Polyalkylene glycols; And it may be a block copolymer of the reaction mixture comprising a dicarboxylic acid having 4 to 20 carbon atoms.
  • the saturated fatty acid bis amide is one of methylene bis stearamide, methylene bis oleamide, ethylene bis stearamide, ethylene bis oleamide, hexamethylene bis stearamide and hexamethylene bis oleamide It may contain the above.
  • the aliphatic carboxylic acid ester compound may be a dehydration product of an aliphatic carboxylic acid having 10 to 100 carbon atoms and a monovalent or polyhydric alcohol having 2 to 50 carbon atoms.
  • the weight ratio of the saturated fatty acid bis amide and the aliphatic carboxylic acid ester compound may be about 1: 2 to about 1: 8.
  • the thermoplastic resin composition may have a surface resistance value of about 1 ⁇ 10 9 to about 2 ⁇ 10 10 ⁇ / sq. Measured according to ASTM D257.
  • the thermoplastic resin composition may have a half-life of about 0.1 seconds to about 2 seconds as measured according to KS K 0555.
  • the thermoplastic resin composition may drop 3 ⁇ l of distilled water into a 100 mm ⁇ 100 mm size specimen, and the contact angle of the water droplet on the surface of the specimen measured by a contact angle measuring instrument may be about 92 to about 105 °. have.
  • the molded article is formed from the thermoplastic resin composition according to any one of 1 to 11.
  • This invention has the effect of the invention which provides the thermoplastic resin composition excellent in antistatic property, surface hydrophobicity, etc., and the molded article formed therefrom.
  • thermoplastic resin composition is (A) rubber-modified aromatic vinyl copolymer resin; (B) aliphatic polyamide resins; (C) polyetheresteramide block copolymers; (D) saturated fatty acid bis amide; And (E) aliphatic carboxylic acid ester compounds.
  • the rubber modified aromatic vinyl copolymer resin of the present invention may include (A1) rubber modified vinyl graft copolymer and (A2) aromatic vinyl copolymer resin.
  • Rubber-modified vinyl graft copolymer according to an embodiment of the present invention may be a graft polymerized monomer mixture comprising an aromatic vinyl monomer and a vinyl cyanide monomer in the rubber polymer.
  • the rubber-modified vinyl graft copolymer may be obtained by graft polymerization of a monomer mixture comprising an aromatic vinyl monomer and a vinyl cyanide monomer in a rubbery polymer, and, if necessary, processability and The monomer which gives heat resistance can be further included and graft-polymerized.
  • the polymerization may be carried out by known polymerization methods such as emulsion polymerization and suspension polymerization.
  • the rubber-modified vinyl graft copolymer may form a core (rubber polymer) -shell (copolymer of monomer mixture) structure, but is not limited thereto.
  • the rubbery polymer may be a diene rubber such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), or a saturated rubber hydrogenated to the diene rubber, isoprene rubber, C 2 to C 10 alkyl (meth) acrylate rubbers, copolymers of alkyl (meth) acrylates having 2 to 10 carbon atoms and styrene, ethylene-propylene-diene monomer terpolymers (EPDM), and the like. These can be applied individually or in mixture of 2 or more types.
  • a diene rubber, (meth) acrylate rubber, etc. can be used, Specifically, butadiene rubber, butyl acrylate rubber, etc. can be used.
  • the rubbery polymer (rubber particles) has an average particle size (D50) measured by particle size analyzer of about 0.05 to about 6 ⁇ m, for example about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m Can be.
  • D50 average particle size measured by particle size analyzer of about 0.05 to about 6 ⁇ m, for example about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m Can be.
  • the thermoplastic resin composition may be excellent in impact resistance, appearance characteristics, and the like.
  • the content of the rubbery polymer may be about 20 to about 70% by weight, for example about 25 to about 60% by weight of the total 100% by weight of the rubber-modified vinyl-based graft copolymer, the monomer mixture (aromatic The vinyl monomer and the vinyl cyanide monomer) may be about 30 to about 80 wt%, for example about 40 to about 75 wt%, of 100 wt% of the total rubber-modified vinyl graft copolymer.
  • the thermoplastic resin composition may be excellent in impact resistance, appearance characteristics, and the like.
  • the aromatic vinyl monomer may be graft copolymerized to the rubbery polymer, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene, etc. can be illustrated. These may be used alone or in combination of two or more thereof.
  • the aromatic vinyl monomer may be included in an amount of about 10 wt% to about 90 wt%, for example, about 40 wt% to about 90 wt% in 100 wt% of the monomer mixture. In the above range, the processability, impact resistance, and the like of the thermoplastic resin composition may be excellent.
  • the vinyl cyanide monomer is copolymerizable with the aromatic vinyl system, and may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. It can be illustrated. These may be used alone or in combination of two or more thereof. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide monomer may be about 10 wt% to about 90 wt%, for example about 10 wt% to about 60 wt%, in 100 wt% of the monomer mixture. In the above range, the thermoplastic resin composition may have excellent chemical resistance, mechanical properties, and the like.
  • monomers for imparting processability and heat resistance may include, but are not limited to, (meth) acrylic acid, maleic anhydride, N-substituted maleimide, and the like.
  • the content may be about 15% by weight or less, for example about 0.1 to about 10% by weight of 100% by weight of the monomer mixture. In the above range, processability and heat resistance can be imparted to the thermoplastic resin composition without deteriorating other physical properties.
  • the rubber-modified vinyl graft copolymer is a copolymer in which a styrene monomer, which is an aromatic vinyl compound, and an acrylonitrile monomer, which is a vinyl cyanide compound, are grafted to a butadiene rubber polymer, and butyl acryl.
  • An acrylate-styrene-acrylonitrile graft copolymer (g-ASA) which is a copolymer in which the styrene monomer which is an aromatic vinyl type compound, and the acrylonitrile monomer which is a vinyl cyanide compound is grafted to a latex rubbery polymer can be illustrated. have.
  • the rubber-modified vinyl graft copolymer is about 10 to about 50 weight in 100% by weight of the total rubber-modified aromatic vinyl copolymer resin (rubber modified vinyl graft copolymer and aromatic vinyl copolymer copolymer resin) %, For example from about 25 to about 45% by weight.
  • the impact resistance, fluidity (molding processability), appearance properties, balance of physical properties, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin according to one embodiment of the present invention may be an aromatic vinyl copolymer resin used in a conventional rubber-modified vinyl copolymer resin.
  • the aromatic vinyl copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl monomer and a monomer copolymerizable with the aromatic vinyl monomer.
  • the aromatic vinyl copolymer resin may be obtained by mixing an aromatic vinyl monomer and a monomer copolymerizable with an aromatic vinyl monomer, and then polymerizing them, and the polymerization may be emulsion polymerization, suspension polymerization, bulk polymerization, or the like. It can be carried out by a known polymerization method of.
  • the aromatic vinyl monomers include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethyl styrene, vinyl xylene, monochlorostyrene, dichlorostyrene, dibromostyrene , Vinylnaphthalene and the like can be used. These can be applied individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl monomer may be about 20 to about 90 wt%, for example about 30 to about 80 wt%, of 100 wt% of the total aromatic vinyl copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the monomer copolymerizable with the aromatic vinyl monomer may include at least one of a vinyl cyanide monomer and an alkyl (meth) acrylic monomer.
  • a vinyl cyanide monomer and an alkyl (meth) acrylic monomer may be a vinyl cyanide monomer or a vinyl cyanide monomer and an alkyl (meth) acrylic monomer, specifically, a vinyl cyanide monomer and an alkyl (meth) acrylic monomer.
  • examples of the vinyl cyanide monomer may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like, but are not limited thereto. Do not. These may be used alone or in combination of two or more thereof. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • examples of the alkyl (meth) acrylic monomer may include (meth) acrylic acid and / or alkyl (meth) acrylate having 1 to 10 carbon atoms. These may be used alone or in combination of two or more thereof. For example, methyl methacrylate, methyl acrylate, etc. can be used.
  • the content of the vinyl cyanide monomer may be 100% by weight of the monomer copolymerizable with the aromatic vinyl monomer.
  • the thermoplastic resin composition may have excellent transparency, heat resistance, processability, and the like.
  • the content of the monomer copolymerizable with the aromatic vinyl monomer may be about 10 to about 80 wt%, for example about 20 to about 70 wt%, of 100 wt% of the total aromatic vinyl copolymer resin. In the above range, the impact resistance, fluidity, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin has a weight average molecular weight (Mw) of about 10,000 to about 300,000 g / mol, for example, about 15,000 to about 150,000 g / mol, as measured by gel permeation chromatography (GPC). Can be. In the above range, the mechanical strength, moldability, and the like of the thermoplastic resin composition may be excellent.
  • the aromatic vinyl copolymer resin may be included in about 50 to about 90% by weight, for example about 55 to about 75% by weight of 100% by weight of the total rubber-modified aromatic vinyl copolymer resin.
  • Impact resistance, fluidity (molding processability) and the like of the thermoplastic resin composition in the above range may be excellent.
  • the rubber-modified aromatic vinyl copolymer resin (A) is about 60% by weight of 100% by weight of the base resin (A + B) including the rubber-modified aromatic vinyl copolymer resin and the aliphatic polyamide resin. To about 95 weight percent, such as about 65 to about 85 weight percent. In the above range, the mechanical properties, antistatic properties, surface hydrophobicity, etc. of the thermoplastic resin composition may be excellent.
  • the aliphatic polyamide resin according to one embodiment of the present invention can improve the antistatic properties of the thermoplastic resin composition even when a small amount of the antistatic agent is used, and a conventional aliphatic polyamide resin can be used.
  • the aliphatic polyamide resin can be polyamide 6, polyamide 11, polyamide 12, polyamide 4.6, polyamide 6.6, polyamide 6.10, combinations thereof, and the like.
  • polyamide 6, polyamide 6.6 and the like can be used.
  • the aliphatic polyamide resin has a relative viscosity (RV) of about 2.0 to about 3.5, such as about 2.3 to about 3.5, as measured by a Ubbelodhde viscometer in a sulfuric acid solution (96%) at 25 ° C. About 3.2. It may be excellent in the antistatic property, heat resistance and the like of the thermoplastic resin composition in the above range.
  • the aliphatic polyamide resin (B) is about 5 to about 40 weight of 100% by weight of the total base resin (A + B) comprising the rubber-modified aromatic vinyl copolymer resin and the aliphatic polyamide resin %, For example from about 15 to about 35% by weight.
  • the mechanical properties of the thermoplastic resin composition may be excellent in antistatic properties.
  • Polyetheresteramide block copolymer according to an embodiment of the present invention is to improve the antistatic properties of the thermoplastic resin composition (test piece), etc., a polyetheresteramide block copolymer commonly used as an antistatic agent Aminocarboxylic acids, lactams or diamine-dicarboxylates having 6 or more carbon atoms; Polyalkylene glycols; And a block copolymer of a reaction mixture containing dicarboxylic acid having 4 to 20 carbon atoms.
  • Aminocarboxylic acids such as acid, ⁇ -aminocapric acid, 1,1-aminoundecanoic acid, 1,2-aminododecanoic acid and the like
  • Lactams such as caprolactam, enanthlactam, capryllactam, lauryl lactam and the like
  • salts of diamines and dicarboxylic acids such as salts of hexamethylenediamine-adipic acid, salts of hexamethylenediamine-isophthalic acid, and the like.
  • 1,2-aminododecanoic acid, caprolactam, salts of hexamethylenediamine-adipic acid 1,2-a
  • the polyalkylene glycol may include polyethylene glycol, poly (1,2- and 1,3-propylene glycol), polytetramethylene glycol, polyhexamethylene glycol, a block of ethylene glycol and propylene glycol or random air.
  • a copolymer, a copolymer of ethylene glycol and tetrahydrofuran, etc. can be illustrated.
  • polyethylene glycol, a copolymer of ethylene glycol and propylene glycol, etc. can be used.
  • examples of the dicarboxylic acid having 4 to 20 carbon atoms include terephthalic acid, 1,4-cyclohexacarboxylic acid, sebacic acid, adipic acid, dodecanoic acid, and the like.
  • the bond of the amino carboxylic acid, lactam or diamine-dicarboxylic acid salt of 6 or more carbon atoms; and the polyalkylene glycol; may be an ester bond, the amino carboxylic acid, lactam or of 6 or more carbon atoms
  • the combination of the diamine-dicarboxylic acid salt and the dicarboxylic acid having 4 to 20 carbon atoms may be an amide bond, and the combination of the polyalkylene glycol; and the dicarboxylic acid having 4 to 20 carbon atoms; It may be an ester bond.
  • the polyetheresteramide block copolymer may be prepared by a known synthesis method, for example, according to the synthesis method disclosed in Japanese Patent Publication No. 56-045419 and Japanese Patent Publication No. 55-133424. Can be.
  • the polyetheresteramide block copolymer can comprise about 10 to about 95 weight percent of the polyether-ester block. It may be excellent in the antistatic property, heat resistance and the like of the thermoplastic resin composition in the above range.
  • the polyetheresteramide block copolymer may be included in an amount of about 1 to about 15 parts by weight, such as about 2 to about 10 parts by weight, based on about 100 parts by weight of the base resin (A + B). In the above range, the antistatic property, impact resistance (impact strength) and the like of the thermoplastic resin composition may be excellent.
  • Saturated fatty acid bis amide according to one embodiment of the present invention together with the aliphatic carboxylic acid ester compound, can improve the surface hydrophobicity, mold release property, etc., without deterioration of the antistatic properties of the thermoplastic resin composition, and the like Bis amides can be used.
  • the saturated fatty acid bisamide is methylene bis stearamide, methylene bis oleamide, ethylene bis stearamide, ethylene bis oleamide, Hexamethylene bis stearamide, hexamethylene bis oleamide, combinations thereof, and the like.
  • the saturated fatty acid bis amide may be included from about 0.1 to about 5 parts by weight, for example from about 0.1 to about 2 parts by weight, based on about 100 parts by weight of the base resin (A + B). In the above range, the surface hydrophobicity, mold release property and the like of the thermoplastic resin composition may be excellent.
  • the aliphatic carboxylic acid ester compound according to one embodiment of the present invention is capable of improving surface hydrophobicity, mold release property, and the like, together with a saturated fatty acid bis amide, without deterioration of antistatic properties of the thermoplastic resin composition, and having 10 to 100 carbon atoms. It may be a dehydration product of an aliphatic carboxylic acid of and a monovalent or polyhydric alcohol having 2 to 50 carbon atoms.
  • aliphatic carboxylic acid ester compound pentaerythritol tetrastearate, glycerol monostearate, palmityl palmitate, stearyl stearate, or a combination thereof may be used.
  • the aliphatic carboxylic acid ester compound may be included in about 0.1 to about 10 parts by weight, for example about 1 to about 7 parts by weight, based on about 100 parts by weight of the base resin (A + B). In the above range, the surface hydrophobicity, mold release property and the like of the thermoplastic resin composition may be excellent.
  • the weight ratio (C: (D + E)) of the polyetheresteramide block copolymer (C) and the saturated fatty acid bis amide (D) and aliphatic carboxylic acid ester compound (E) is from about 1: 0.2 to About 1: 1, for example, about 1: 0.43 to about 1: 0.75.
  • the thermoplastic resin composition may have better antistatic property, surface hydrophobicity, release property, and the like.
  • the weight ratio (D: E) of the saturated fatty acid bis amide (D) and the aliphatic carboxylic acid ester compound (E) is about 1: 2 to about 1: 8, for example about 1: 2 to about 1: 6, specifically about 1: 3 to about 1: 5.
  • the surface hydrophobicity, mold release property, and the like of the thermoplastic resin composition may be more excellent.
  • the thermoplastic resin composition according to one embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additives may include, but are not limited to, flame retardants, fillers, antioxidants, anti drip agents, lubricants, mold release agents, nucleating agents, stabilizers, pigments, dyes, mixtures thereof, and the like.
  • the content may be about 0.001 to about 40 parts by weight, for example about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition according to an embodiment of the present invention may be in the form of pellets mixed with the components and melt-extruded at about 200 to about 280 ° C, for example, about 220 to about 250 ° C, using a conventional twin screw extruder. Can be.
  • the thermoplastic resin composition has a surface resistance value measured in accordance with ASTM D257 of about 1 ⁇ 10 9 to about 2 ⁇ 10 10 ⁇ / sq. (Square), for example about 7 ⁇ 10 9 to about 1 X 10 10 ⁇ / sq.
  • the thermoplastic resin composition may have a half-life of about 0.1 to about 2 seconds, for example about 0.5 to about 1 second, as measured by KS K 0555.
  • the thermoplastic resin composition is prepared by dropping 3 ⁇ l of distilled water into a 100 mm ⁇ 100 mm size specimen based on a water drop shape analysis method, and then measuring the surface of the specimen by using a drop shape analyzer (DSA 100).
  • the droplet contact angle of may be about 92 to about 105 degrees, for example about 95 to about 100 degrees.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be prepared in a pellet form, and the prepared pellet may be manufactured into various molded products (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such molding methods are well known by those skilled in the art. Since the molded article is excellent in antistatic property, surface hydrophobicity, mechanical properties, balance of these properties, etc., it is useful as interior / exterior materials, interior / exterior materials for automobiles, building exterior materials, etc. of electrical / electronic products.
  • SAN resin (weight average molecular weight: 130,000 g / mol) polymerized with 75% by weight of styrene and 25% by weight of acrylonitrile was used.
  • polyamide 6 manufactured by Kepitchemtech, product name: EN-300 was used as the aliphatic polyamide resin (B1).
  • polyamide 6T (manufacturer: DuPont, product name: HTN 501) was used.
  • PELECTRON AS (PA6-PEO, manufactured by Sanyo) was used.
  • Ethylene bis stearamide (manufacturer: Shin-Won Chem, product name: HI-LUB B-50) was used.
  • PP-PEO olefin antistatic agent manufactured by Sanyo, product name: UC.
  • Example Comparative example One 2 3 4 One 2 3 4 (A) (% by weight) 85 85 70 70 70 70 70 70 (B1) (wt%) 15 15 30 30 - 30 30 30 (B2) (wt%) - - - - 30 - - - (C) (parts by weight) 8 8 8 8 8 - 8 (D) (parts by weight) 0.5 One 0.5 One One One 6 - (E) (parts by weight) 3 5 3 5 5 5 5 5 - 6 (F) (parts by weight) - - - - - 8 - - Surface resistance value ( ⁇ / sq.) 8 ⁇ 10 9 8 ⁇ 10 9 8 ⁇ 10 9 8 ⁇ 10 9 4 ⁇ 10 11 5 ⁇ 10 11 1 ⁇ 10 10 9 ⁇ 10 9 Half-life (seconds) 0.2 0.2 0.2 0.2 4 4 0.5 0.4 Contact angle (°) 98 103 97 98 105 88 85
  • thermoplastic resin composition of the present invention is excellent in both antistatic property and surface hydrophobicity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지; 지방족 폴리아미드 수지; 폴리에테르에스테르아미드 블록 공중합체; 포화지방산 비스 아미드; 및 지방족 카르복실산 에스테르 화합물;을 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 대전방지성, 표면 소수성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 대전방지성, 표면 소수성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
열가소성 수지로서, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS 수지) 등의 고무변성 방향족 비닐계 공중합체 수지는 기계적 물성, 가공성, 외관 특성 등이 우수하여, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 널리 사용되고 있다.
그러나, 통상적인 열가소성 수지 조성물로부터 제조된 플라스틱 제품은 공기 중의 수분 흡수력이 거의 없고, 발생된 정전기를 흘려 버리지 못하고 축적되므로, 공기 중의 먼지가 흡착되어 표면 오염 및 정전기 충격이 발생할 수 있으며, 기기의 오작동이나 고장의 원인이 될 수 있다.
열가소성 수지 조성물의 대전방지성을 확보하기 위하여, 대전방지제를 사용할 수 있으나, 적절한 대전방지성을 얻기 위해서는 과량의 대전방지제가 필요하며, 이 경우, 열가소성 수지 조성물의 상용성, 기계적 물성 등의 저하가 발생할 우려가 있다.
또한, 이러한 열가소성 수지 조성물이 건축용 외장재 등 실외에 설치되는 제품에 적용될 경우, 강수, 강설 등에 의한 오염, 먼지 부착 등을 저감하기 위하여, 표면이 소수성을 갖도록 개질할 수 있다.
열가소성 수지 조성물의 표면이 소수성을 갖도록 하기 위해서는 소수막 코팅 등의 공정 등을 추가하는 방법 등이 사용되고 있으나, 이러한 방법은 공정 추가에 따른 비용 상승, 생산성 저하 등의 단점이 있다. 또한, 소수성을 부여할 수 있는 다양한 첨가제를 첨가하는 방법이 사용될 수 있으나, 기존에 사용되던 실리카 계열, 불소 계열, 이온 계열 첨가제 등은 과량 첨가에 따른, 색상, 외관, 물성 등의 저하 문제 및 가격 상승 문제 등이 발생할 우려가 있다.
따라서, 이러한 문제 없이, 대전방지성, 표면 소수성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 공개특허 2014-0135790호 등에 개시되어 있다.
본 발명의 목적은 대전방지성, 표면 소수성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지; 지방족 폴리아미드 수지; 폴리에테르에스테르아미드 블록 공중합체; 포화지방산 비스 아미드; 및 지방족 카르복실산 에스테르 화합물;을 포함한다.
2. 상기 1 구체예에서, 상기 열가소성 수지 조성물은 상기 고무변성 방향족 비닐계 공중합체 수지 약 60 내지 약 95 중량% 및 상기 지방족 폴리아미드 수지 약 5 내지 약 40 중량%를 포함하는 기초 수지 약 100 중량부에 대하여, 상기 폴리에테르에스테르아미드 블록 공중합체 약 1 내지 약 15 중량부, 상기 포화지방산 비스 아미드 약 0.1 내지 약 5 중량부, 및 상기 지방족 카르복실산 에스테르 화합물 약 0.1 내지 약 10 중량부를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함할 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산;을 포함하는 반응 혼합물의 블록 공중합체일 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드, 메틸렌 비스 올레아미드, 에틸렌 비스 스테아르아미드, 에틸렌 비스 올레아미드, 헥사메틸렌 비스 스테아르아미드 및 헥사메틸렌 비스 올레아미드 중 1종 이상을 포함할 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 지방족 카르복실산 에스테르 화합물은 탄소수 10 내지 100의 지방족 카르복실산 및 탄소수 2 내지 50의 1가 또는 다가 알코올의 탈수축합물일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 포화지방산 비스 아미드 및 상기 지방족 카르복실산 에스테르 화합물의 중량비는 약 1 : 2 내지 약 1 : 8일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 ASTM D257에 의거하여 측정한 표면저항 값이 약 1 × 109 내지 약 2 × 1010 Ω/sq.일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 KS K 0555에 의거하여 측정한 대전압의 반감기가 약 0.1 내지 약 2 초일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 열가소성 수지 조성물은 100 mm × 100 mm 크기 시편에 증류수 3 ㎕를 떨어뜨린 후, 접촉각 측정기로 측정한 시편 표면의 물방울 접촉각이 약 92 내지 약 105°일 수 있다.
12. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 11 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 대전방지성, 표면 소수성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 고무변성 방향족 비닐계 공중합체 수지; (B) 지방족 폴리아미드 수지; (C) 폴리에테르에스테르아미드 블록 공중합체; (D) 포화지방산 비스 아미드; 및 (E) 지방족 카르복실산 에스테르 화합물을 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 고무변성 방향족 비닐계 공중합체 수지
본 발명의 고무변성 방향족 비닐계 공중합체 수지는 (A1) 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함할 수 있다.
(A1) 고무변성 비닐계 그라프트 공중합체
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체(고무 입자)는 입도분석기로 측정한 평균 입자 크기(D50)가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 고무질 중합체의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 70 중량%, 예를 들면 약 25 내지 약 60 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 80 중량%, 예를 들면 약 40 내지 약 75 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 기계적 특성 등이 우수할 수 있다.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체로는 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS), 부틸 아크릴레이트계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체인 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(g-ASA) 등을 예시할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 전체 고무변성 방향족 비닐계 공중합체 수지(고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지) 100 중량% 중 약 10 내지 약 50 중량%, 예를 들면 약 25 내지 약 45 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성), 외관 특성, 이들의 물성 발란스 등이 우수할 수 있다.
(A2) 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상적인 고무변성 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 상기 방향족 비닐계 단량체와 공중합 가능한 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 방향족 비닐계 단량체와 공중합 가능한 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체는 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체 중 1종 이상을 포함할 수 있다. 예를 들면, 시안화 비닐계 단량체 또는 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체, 구체적으로 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체일 수 있다.
구체예에서, 상기 시안화 비닐계 단량체로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있으나, 이에 제한되지 않는다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다.
구체예에서, 상기 알킬(메타)아크릴계 단량체로는 (메타)아크릴산 및/또는 탄소수 1 내지 10의 알킬(메타)아크릴레이트 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 메틸메타크릴레이트, 메틸아크릴레이트 등을 사용할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체가 시안화 비닐계 단량체 및 알킬(메타)아크릴계 단량체의 혼합물일 경우, 상기 시안화 비닐계 단량체의 함량은 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 100 중량% 중 약 1 내지 약 40 중량%, 예를 들면 약 2 내지 약 35 중량%일 수 있고, 상기 알킬(메타)아크릴계 단량체의 함량은 상기 방향족 비닐계 단량체와 공중합 가능한 단량체 100 중량% 중 약 60 내지 약 99 중량%, 예를 들면 약 65 내지 약 98 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 투명성, 내열성, 가공성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체와 공중합 가능한 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중, 약 50 내지 약 90 중량%, 예를 들면 약 55 내지 약 75 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성) 등이 우수할 수 있다.
구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지(A)는 상기 고무변성 방향족 비닐계 공중합체 수지 및 상기 지방족 폴리아미드 수지를 포함하는 기초 수지(A+B) 전체 100 중량% 중, 약 60 내지 약 95 중량%, 예를 들면 약 65 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 물성, 대전방지성, 표면 소수성 등이 우수할 수 있다.
(B) 지방족 폴리아미드 수지
본 발명의 일 구체예에 따른 지방족 폴리아미드 수지는 소량의 대전방지제 사용 시에도 열가소성 수지 조성물의 대전방지성 등을 향상시킬 수 있는 것으로서, 통상의 지방족 폴리아미드 수지를 사용할 수 있다.
구체예에서, 상기 지방족 폴리아미드 수지는 폴리아미드 6, 폴리아미드 11, 폴리아미드 12, 폴리아미드 4.6, 폴리아미드 6.6, 폴리아미드 6.10, 이들의 조합 등일 수 있다. 예를 들면, 폴리아미드 6, 폴리아미드 6.6 등이 사용될 수 있다.
구체예에서, 상기 지방족 폴리아미드 수지는 25℃의 황산 용액(96%)에서 우베로드(Ubbelodhde) 점도계로 측정한 상대 점도(Relative viscosity: RV)가 약 2.0 내지 약 3.5, 예를 들면 약 2.3 내지 약 3.2일 수 있다. 상기 범위에서 열가소성 수지 조성물의 대전방지성, 내열성 등이 우수할 수 있다.
구체예에서, 상기 지방족 폴리아미드 수지(B)는 상기 고무변성 방향족 비닐계 공중합체 수지 및 상기 지방족 폴리아미드 수지를 포함하는 기초 수지(A+B) 전체 100 중량% 중, 약 5 내지 약 40 중량%, 예를 들면 약 15 내지 약 35 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 물성, 대전방지성 등이 우수할 수 있다.
(C) 폴리에테르에스테르아미드 블록 공중합체
본 발명의 일 구체예에 따른 폴리에테르에스테르아미드 블록 공중합체는 열가소성 수지 조성물(시편)의 대전방지성 등을 향상시킬 수 있는 것으로서, 통상적으로 대전방지제로 사용되는 폴리에테르에스테르아미드 블록 공중합체를 사용할 수 있으며, 예를 들면, 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산;을 포함하는 반응 혼합물의 블록 공중합체를 사용할 수 있다.
구체예에서, 상기 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산의 염으로는, ω-아미노카프론산, ω-아미노에난트산, ω-아미노카프릴산, ω-아미노펠콘산, ω-아미노카프린산, 1,1-아미노운데칸산, 1,2-아미노도데칸산 등과 같은 아미노카르복실산류; 카프로락탐, 에난트락탐, 카프릴락탐, 라우릴락탐등과 같은 락탐류; 및 헥사메틸렌디아민-아디핀산의 염, 헥사메틸렌디아민-이소프탈산의 염등과 같은 디아민과 디카르복실산의 염 등을 예시할 수 있다. 예를 들면, 1,2-아미노도데칸산, 카프로락탐, 헥사메틸렌디아민-아디핀산의 염 등이 사용될 수 있다.
구체예에서, 상기 폴리알킬렌글리콜로는, 폴리에틸렌글리콜, 폴리(1,2- 및 1,3-프로필렌글리콜), 폴리테트라메틸렌글리콜, 폴리헥사메틸렌글리콜, 에틸렌글리콜과 프로필렌글리콜의 블록 또는 랜덤 공중합체, 에틸렌글리콜과 테트라히드로퓨란의 공중합체 등을 예시할 수 있다. 예를 들면, 폴리에틸렌글리콜, 에틸렌글리콜과 프로필렌글리콜의 공중합체 등을 사용할 수 있다.
구체예에서, 상기 탄소수 4 내지 20의 디카르복실산으로는, 테레프탈산, 1,4-시클로헥사카르복실산, 세바신산, 아디핀산, 도데카노카르복실산 등을 예시할 수 있다.
구체예에서, 상기 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산 염;과 상기 폴리알킬렌글리콜;의 결합은 에스테르 결합일 수 있고, 상기 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산 염;과 상기 탄소수 4 내지 20의 디카르복실산;의 결합은 아미드 결합일 수 있고, 상기 폴리알킬렌글리콜;과 상기 탄소수 4 내지 20의 디카르복실산;의 결합은 에스테르 결합일 수 있다.
구체예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 공지된 합성방법에 의해 제조될 수 있으며, 예를 들면, 일본 특허공보 소56-045419 및 일본 특허공개 소55-133424에 개시된 합성방법에 따라 제조될 수 있다.
구체예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 폴리에테르-에스테르 블록을 약 10 내지 약 95 중량% 포함할 수 있다. 상기 범위에서 열가소성 수지 조성물의 대전방지성, 내열성 등이 우수할 수 있다.
구체예에서, 상기 폴리에테르에스테르아미드 블록 공중합체는 상기 기초 수지(A+B) 약 100 중량부에 대하여, 약 1 내지 약 15 중량부, 예를 들면 약 2 내지 약 10 중량부로 포함될 수 있다. 상기 범위에서, 열가소성 수지 조성물의 대전방지성, 내충격성(충격강도) 등이 우수할 수 있다.
(D) 포화지방산 비스 아미드
본 발명의 일 구체예에 따른 포화지방산 비스 아미드는 지방족 카르복실산 에스테르 화합물과 함께, 열가소성 수지 조성물의 대전방지성 등의 저하 없이, 표면 소수성, 이형성 등을 향상시킬 수 있는 것으로서, 통상의 포화지방산 비스 아미드를 사용할 수 있다.
구체예에서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드(methylene bis stearamide), 메틸렌 비스 올레아미드(methylene bis oleamide), 에틸렌 비스 스테아르아미드(ethylene bis stearamide), 에틸렌 비스 올레아미드(ethylene bis oleamide), 헥사메틸렌 비스 스테아르아미드(hexa methylene bis stearamide), 헥사메틸렌 비스 올레아미드(hexamethylene bis oleamide) 및 이들의 조합 등을 포함할 수 있다.
구체예에서, 상기 포화지방산 비스 아미드는 상기 기초 수지(A+B) 약 100 중량부에 대하여, 약 0.1 내지 약 5 중량부, 예를 들면 약 0.1 내지 약 2 중량부로 포함될 수 있다. 상기 범위에서, 열가소성 수지 조성물의 표면 소수성, 이형성 등이 우수할 수 있다.
(E) 지방족 카르복실산 에스테르 화합물
본 발명의 일 구체예에 따른 지방족 카르복실산 에스테르 화합물은 포화지방산 비스 아미드와 함께, 열가소성 수지 조성물의 대전방지성 등의 저하 없이, 표면 소수성, 이형성 등을 향상시킬 수 있는 것으로서, 탄소수 10 내지 100의 지방족 카르복실산 및 탄소수 2 내지 50의 1가 또는 다가 알코올의 탈수축합물일 수 있다.
구체예에서, 상기 지방족 카르복실산 에스테르 화합물로는 펜타에리스리톨 테트라스테아레이트, 글리세롤 모노스테아레이트, 팔미틸 팔미테이트, 스테아릴스테아레이트 이들의 조합 등을 사용할 수 있다.
구체예에서, 상기 지방족 카르복실산 에스테르 화합물은 상기 기초 수지(A+B) 약 100 중량부에 대하여, 약 0.1 내지 약 10 중량부, 예를 들면 약 1 내지 약 7 중량부로 포함될 수 있다. 상기 범위에서, 열가소성 수지 조성물의 표면 소수성, 이형성 등이 우수할 수 있다.
구체예에서, 폴리에테르에스테르아미드 블록 공중합체(C) 및 상기 포화지방산 비스 아미드(D) 및 지방족 카르복실산 에스테르 화합물(E)의 중량비(C:(D+E))는 약 1 : 0.2 내지 약 1 : 1, 예를 들면 약 1 : 0.43 내지 약 1 : 0.75일 수 있다. 상기 범위에서 열가소성 수지 조성물의 대전방지성, 표면 소수성, 이형성 등이 더 우수할 수 있다.
구체예에서, 상기 포화지방산 비스 아미드(D) 및 상기 지방족 카르복실산 에스테르 화합물(E)의 중량비(D:E)는 약 1 : 2 내지 약 1 : 8, 예를 들면 약 1 : 2 내지 약 1 : 6, 구체적으로 약 1 : 3 내지 약 1 : 5일 수 있다. 상기 범위에서 열가소성 수지 조성물의 표면 소수성, 이형성 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 난연제, 충진제, 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 열가소성 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 250℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D257에 의거하여 측정한 표면저항 값이 약 1 × 109 내지 약 2 × 1010 Ω/sq.(square), 예를 들면 약 7 × 109 내지 약 1 × 1010 Ω/sq.일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 KS K 0555에 의거하여 측정한 대전압의 반감기가 약 0.1 내지 약 2초, 예를 들면 약 0.5 내지 약 1초일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 Water Drop Shape Analysis 방법에 의거하여, 100 mm × 100 mm 크기 시편에 증류수 3 ㎕를 떨어뜨린 후, 접촉각 측정기(drop shape analyzer(DSA 100))로 측정한 시편 표면의 물방울 접촉각이 약 92 내지 약 105°, 예를 들면 약 95 내지 약 100°일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 대전방지성, 표면 소수성, 기계적 물성, 이들의 물성 발란스 등이 우수하므로, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 고무변성 방향족 비닐계 공중합체 수지
하기 (A1) 고무변성 방향족 비닐계 그라프트 공중합체 30 중량% 및 (A2) 방향족 비닐계 공중합체 수지 70 중량%를 혼합하여 사용하였다.
(A1) 고무변성 방향족 비닐계 그라프트 공중합체
45 중량%의 부타디엔 고무(평균 입자 크기: 310 nm인)에 55 중량%의 스티렌 및 아크릴로니트릴(중량비: 75/25)가 그라프트 공중합된 g-ABS를 사용하였다.
(A2) 방향족 비닐계 공중합체 수지
스티렌 75 중량% 및 아크릴로니트릴 25 중량%가 중합된 SAN 수지(중량평균분자량: 130,000 g/mol)를 사용하였다.
(B) 폴리아미드 수지
(B1) 지방족 폴리아미드 수지로서, 폴리아미드 6(제조사: 케피켐텍, 제품명: EN-300)를 사용하였다.
(B2) 방향족 폴리아미드 수지로서, 폴리아미드 6T(제조사: DuPont, 제품명: HTN 501)를 사용하였다.
(C) 폴리에테르에스테르아미드 블록 공중합체
PELECTRON AS(PA6-PEO, 제조사: Sanyo)를 사용하였다.
(D) 포화지방산 비스 아미드
에틸렌 비스 스테아르아미드(제조사: 신원화학, 제품명: HI-LUB B-50)를 사용하였다.
(E) 지방족 카르복실산 에스테르 화합물
LOXIOL P861(long chain(C15~C25) ester of pentaerythritol, 제조사: Emery oleochemicals)를 사용하였다.
(F) 대전방지제
PP-PEO 올레핀계 대전방지제(제조사: Sanyo, 제품명: UC)를 사용하였다.
실시예 1 내지 4 및 비교예 1 내지 4
상기 각 구성 성분을 하기 표 1에 기재된 바와 같은 함량으로 첨가한 후, 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=36, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 2시간 이상 건조 후, 6 Oz 사출기(성형 온도 230℃, 금형 온도: 60℃)에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 측정 방법
(1) 표면 저항 값(단위: Ω/sq.): ASTM D257에 의거하여, 표면저항 측정 장치(제조사: 미쯔비시케미칼, 장치명: Hiresta-UP(MCP-HT450))로 측정하였다.
(2) 반감기(단위: 초): KS K 0555에 의거하여, 4.5 cm × 4.5 cm 크기 시편 5개에 대해 하기 방법으로 대전압의 반감기를 측정하였다.
① 반감기 측정기와 싱크로스콥 또는 기록계를 접속시킨다.
② 인가전압을 (+)10,000 V로 한다.
③ 인가부의 침전극의 선단으로부터 회전반의 면까지의 거리를 20 mm, 수전부의 전극판에서 회전반의 면까지의 거리를 15 mm로 각각 조절한다.
④ 시편 1개를 표면이 위로 되도록 부착틀에 부착하여 전기를 제거한다.
⑤ 회전반을 회전시키면서 10,000 V의 인가를 개시하여 30초 후에 인가를 끝내 그 상태로 회전반을 회전시키면서 대전압이 반으로 감쇠할 때까지의 시간(초)을 측정한다.
(3) 접촉각(단위: °): Water Drop Shape Analysis 방법에 의거하여, 100 mm × 100 mm 크기 시편에 증류수 3 ㎕를 떨어뜨린 후, 접촉각 측정기(drop shape analyzer(DSA 100))로 물방울 접촉각을 6회 측정 하고, 평균값을 산출하였다.
실시예 비교예
1 2 3 4 1 2 3 4
(A) (중량%) 85 85 70 70 70 70 70 70
(B1) (중량%) 15 15 30 30 - 30 30 30
(B2) (중량%) - - - - 30 - - -
(C) (중량부) 8 8 8 8 8 - 8 8
(D) (중량부) 0.5 1 0.5 1 1 1 6 -
(E) (중량부) 3 5 3 5 5 5 - 6
(F) (중량부) - - - - - 8 - -
표면 저항 값(Ω/sq.) 8×109 8×109 8×109 8×109 4×1011 5×1011 1×1010 9×109
반감기 (초) 0.2 0.2 0.2 0.2 4 4 0.5 0.4
접촉각 (°) 98 103 97 98 98 105 88 85
* 중량부: 기초 수지(A+B) 100 중량부에 대한 중량부
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 대전방지성, 표면 소수성 등이 모두 우수함을 알 수 있다.
반면, 지방족 폴리아미드 수지(B1)를 사용하지 않거나(비교예 1), 폴리에테르에스테르아미드 블록 공중합체를 사용하지 않을 경우(비교예 2), 상용성 저하에 의하여, 대전방지성(표면저항 및 반감기) 등이 저하됨을 알 수 있고, 포화지방산 비스 아미드(D) 또는 지방족 카르복실산 에스테르 화합물(E)을 적용하지 않을 경우(비교예 3 및 4), 표면 소수성 등이 저하됨을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (12)

  1. 고무변성 방향족 비닐계 공중합체 수지;
    지방족 폴리아미드 수지;
    폴리에테르에스테르아미드 블록 공중합체;
    포화지방산 비스 아미드; 및
    지방족 카르복실산 에스테르 화합물;을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 열가소성 수지 조성물은 상기 고무변성 방향족 비닐계 공중합체 수지 약 60 내지 약 95 중량% 및 상기 지방족 폴리아미드 수지 약 5 내지 약 40 중량%를 포함하는 기초 수지 약 100 중량부에 대하여, 상기 폴리에테르에스테르아미드 블록 공중합체 약 1 내지 약 15 중량부, 상기 포화지방산 비스 아미드 약 0.1 내지 약 5 중량부, 및 상기 지방족 카르복실산 에스테르 화합물 약 0.1 내지 약 10 중량부를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제3항에 있어서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 폴리에테르에스테르아미드 블록 공중합체는 탄소수 6 이상의 아미노 카르복실산, 락탐 또는 디아민-디카르복실산염; 폴리알킬렌글리콜; 및 탄소수 4 내지 20의 디카르복실산;을 포함하는 반응 혼합물의 블록 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드, 메틸렌 비스 올레아미드, 에틸렌 비스 스테아르아미드, 에틸렌 비스 올레아미드, 헥사메틸렌 비스 스테아르아미드 및 헥사메틸렌 비스 올레아미드 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 지방족 카르복실산 에스테르 화합물은 탄소수 10 내지 100의 지방족 카르복실산 및 탄소수 2 내지 50의 1가 또는 다가 알코올의 탈수축합물인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 포화지방산 비스 아미드 및 상기 지방족 카르복실산 에스테르 화합물의 중량비는 약 1 : 2 내지 약 1 : 8인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D257에 의거하여 측정한 표면저항 값이 약 1 × 109 내지 약 2 × 1010 Ω/sq.인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 KS K 0555에 의거하여 측정한 대전압의 반감기가 약 0.1 내지 약 2 초인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 100 mm × 100 mm 크기 시편에 증류수 3 ㎕를 떨어뜨린 후, 접촉각 측정기로 측정한 시편 표면의 물방울 접촉각이 약 92 내지 약 105°인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2019/002537 2018-03-28 2019-03-05 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2019190067A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0035544 2018-03-28
KR20180035544 2018-03-28
KR1020180148463A KR102234039B1 (ko) 2018-03-28 2018-11-27 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR10-2018-0148463 2018-11-27

Publications (1)

Publication Number Publication Date
WO2019190067A1 true WO2019190067A1 (ko) 2019-10-03

Family

ID=68059309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002537 WO2019190067A1 (ko) 2018-03-28 2019-03-05 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (1)

Country Link
WO (1) WO2019190067A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980009374A (ko) * 1996-07-18 1998-04-30 유현식 영구적 대전방지성을 갖는 열가소성 스티렌계 수지 조성물 및 그 제조방법
JP2011218642A (ja) * 2010-04-08 2011-11-04 Denki Kagaku Kogyo Kk 帯電防止性能を有する多層成形体
KR101276430B1 (ko) * 2009-12-29 2013-06-19 주식회사 삼양사 열가소성 수지 조성물
KR20170039197A (ko) * 2014-08-06 2017-04-10 도레이 카부시키가이샤 섬유 강화 열가소성 수지 성형 재료 및 섬유 강화 열가소성 수지 성형품
KR20170133445A (ko) * 2015-03-31 2017-12-05 가부시키가이샤 아데카 수지 첨가제 조성물 및 대전 방지성 열가소성 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980009374A (ko) * 1996-07-18 1998-04-30 유현식 영구적 대전방지성을 갖는 열가소성 스티렌계 수지 조성물 및 그 제조방법
KR101276430B1 (ko) * 2009-12-29 2013-06-19 주식회사 삼양사 열가소성 수지 조성물
JP2011218642A (ja) * 2010-04-08 2011-11-04 Denki Kagaku Kogyo Kk 帯電防止性能を有する多層成形体
KR20170039197A (ko) * 2014-08-06 2017-04-10 도레이 카부시키가이샤 섬유 강화 열가소성 수지 성형 재료 및 섬유 강화 열가소성 수지 성형품
KR20170133445A (ko) * 2015-03-31 2017-12-05 가부시키가이샤 아데카 수지 첨가제 조성물 및 대전 방지성 열가소성 수지 조성물

Similar Documents

Publication Publication Date Title
WO2019078464A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020111552A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018038573A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018124657A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016089042A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2013077492A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2012144781A2 (ko) 생분해성 고분자 복합재
WO2013085090A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2017082661A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2018124505A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
KR102234039B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019059452A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 성형품
WO2018124592A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR101971804B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019190067A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2022114589A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019132388A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2019078479A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2023219272A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2023128306A1 (ko) 항바이러스성 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776028

Country of ref document: EP

Kind code of ref document: A1