WO2019189580A1 - Method for producing roasted coffee beans - Google Patents

Method for producing roasted coffee beans Download PDF

Info

Publication number
WO2019189580A1
WO2019189580A1 PCT/JP2019/013616 JP2019013616W WO2019189580A1 WO 2019189580 A1 WO2019189580 A1 WO 2019189580A1 JP 2019013616 W JP2019013616 W JP 2019013616W WO 2019189580 A1 WO2019189580 A1 WO 2019189580A1
Authority
WO
WIPO (PCT)
Prior art keywords
coffee
peptide
coffee beans
producing
roasted
Prior art date
Application number
PCT/JP2019/013616
Other languages
French (fr)
Japanese (ja)
Inventor
芳輝 浜名
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2020509323A priority Critical patent/JP7420066B2/en
Publication of WO2019189580A1 publication Critical patent/WO2019189580A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/02Treating green coffee; Preparations produced thereby
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/04Methods of roasting coffee
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/24Extraction of coffee; Coffee extracts; Making instant coffee

Definitions

  • the present invention relates to a method for producing roasted coffee beans for obtaining a coffee extract with enhanced bitterness, and a method for producing a coffee extract from roasted coffee beans produced by the production method.
  • This application claims the priority based on Japanese Patent Application No. 2018-068976 for which it applied to Japan on March 30, 2018, and uses the content here.
  • Coffee is a palatability drink that is widely used on a daily basis, and many instant coffees that can be drunk when dissolved in liquids such as bottled drinks and water are on the market.
  • Coffee beans are natural products, and in addition to the components responsible for coffee-like taste and aroma, the coffee extract contains miscellaneous components that impair the flavor of coffee. It can be expected that by removing miscellaneous components from the coffee extract, it is possible to produce a container-packed coffee beverage or instant coffee with better flavor.
  • bitterness is one of the important qualities of coffee.
  • roasted coffee beans with a strong bitterness (potency) as a raw material
  • coffee beverages with a stronger bitterness can be produced, and the bitterness can be increased. Without losing, it is possible to reduce the production cost by reducing the amount of roasted coffee beans used.
  • Caffeine, diketopiperazine (DKP), CQL (chlorogenic acid lactone) and the like are known as bitter substances (tastings) of coffee.
  • DKP is a cyclic dipeptide generated by cyclization of the N-terminal amino group of a peptide, and is known to be easily generated from dipeptides containing proline (pro) by roasting in coffee. (See Patent Document 1).
  • the present invention provides a method for producing roasted coffee beans for obtaining a coffee extract with enhanced bitterness, and a method for producing a coffee extract from roasted coffee beans produced by the production method. Objective.
  • the inventors of the present invention roasted a large amount of DKP, which is a bitter component, by absorbing the peptide in the green coffee beans or attaching it to the surface before roasting.
  • the inventors discovered that coffee beans can be obtained and completed the present invention.
  • the method for producing roasted coffee beans according to the first aspect of the present invention comprises the step of bringing the coffee green beans into contact with the peptide and absorbing it inside or adhering it to the surface, followed by roasting. It is characterized by.
  • the ratio of the total content of hydroxyproline and hydroxylysine to all amino acid residues of the peptide is preferably 10% by mass or more.
  • the peptide preferably has a weight average molecular weight of 500 to 5000.
  • the peptide is a collagen peptide derived from fish, a collagen peptide derived from pig, a collagen peptide derived from wheat, or a corn-derived peptide. It is preferably a collagen peptide or a combination of two or more of these collagen peptides.
  • the peptide is preferably a fish-derived collagen peptide.
  • the peptide is preferably a proteolytic product obtained by a peptidase treatment.
  • a method for producing a coffee extract according to the second aspect of the present invention is a method for producing roasted coffee beans modified by the method for producing roasted coffee beans according to any one of [1] to [6]. And a step of preparing a coffee extract containing the soluble solid content of the modified roasted coffee beans.
  • a method for producing a coffee beverage according to the third aspect of the present invention is a method for producing a coffee extract by the method for producing a coffee extract of [7], and then using the obtained coffee extract as a raw material. It is characterized by manufacturing.
  • a method for producing a composition for an instant coffee beverage according to the fourth aspect of the present invention is the production of a coffee extract by the method for producing a coffee extract of [7], and then the obtained coffee extract An instant coffee beverage composition is produced as a raw material.
  • the method for enhancing the bitterness of roasted coffee beans according to the fifth aspect of the present invention is characterized in that after the peptide is brought into contact with green coffee beans and absorbed inside or attached to the surface, roasting is performed. To do.
  • the roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention have a high content of diketoperazine, which is a bitter component. For this reason, by using a coffee extract extracted from roasted coffee beans obtained by the method as a raw material, a composition for coffee beverages and instant coffee beverages having less bitterness peculiar to coffee while maintaining bitterness strength is produced. can do.
  • Example 1 it is the figure which showed the measurement result of content of Cyclo (-Phe-Hypro) of the roasted coffee beans obtained by roasting the coffee-processed coffee beans.
  • instant coffee beverage composition means a composition capable of preparing a coffee beverage by dissolving or diluting it in a liquid such as water or milk.
  • the IC beverage composition may be a powder or a liquid.
  • powder means a granular material (consisting of many solid particles having different size distributions, and some interaction is acting between individual particles).
  • a “granule” is an aggregate of particles (granular granules) granulated from a powder. The powder also includes granules.
  • the method for producing roasted coffee beans according to the present invention comprises a step of bringing the coffee green beans into contact with the peptide and absorbing it inside or adhering it to the surface, followed by roasting.
  • DKP which is one of the bitter components
  • DKP is produced by a cyclization reaction of peptides during roasting. Therefore, by increasing the peptide content of green coffee beans beforehand, roasting with a high DKP content and enhanced bitterness Coffee beans are obtained.
  • the bitterness of roasted coffee beans can be enhanced by bringing the coffee beans into contact with the peptide and absorbing it inside or attaching it to the surface and then roasting.
  • a coffee extract having a high DKP content per soluble solid content and an enhanced bitterness can be obtained.
  • the type and production area of green coffee beans used as a raw material are not particularly limited, may be Arabica, may be robusta, may be Riberica, or may be a blend of these. .
  • the peptide As a peptide to be absorbed into green coffee beans, a peptide having a high content ratio of dipeptide is preferable because DKP production efficiency at the time of roasting is high.
  • the peptide preferably has a weight average molecular weight of 500 to 5000, more preferably 1000 to 4000, still more preferably 1000 to 3000, and still more preferably 1200 to 3000.
  • a peptide to be absorbed into green coffee beans a peptide containing at least one of hydroxyproline and hydroxylysine is preferable because of the high production efficiency of DKP at the time of roasting, and hydroxyproline with respect to all amino acid residues of the peptide Peptides having a total content ratio of hydroxylysine of 10% by mass or more are more preferable, and peptides having the ratio of 10 to 30% by mass are more preferable.
  • a peptide having a total content of hydroxyproline with respect to all amino acid residues of the peptide is preferably 10% by mass or more, and a peptide having the ratio of 15% by mass or more is more preferable.
  • the upper limit value of the ratio of hydroxyproline in all amino acid residues of the peptide is not particularly limited.
  • the ratio is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. preferable.
  • the origin of the peptide is not particularly limited, and peptides derived from various organisms such as fish, pig, milk, wheat, corn and the like can be used.
  • a collagen peptide is preferable, and a collagen peptide derived from fish, pig, wheat, or corn, or among these collagen peptides A combination of two or more of these is more preferred, and fish-derived collagen peptides are particularly preferred.
  • a proteolytic product obtained by decomposing these so as to have a weight average molecular weight of 500 to 5,000 by hydrolysis treatment or the like is preferable.
  • the method for hydrolyzing the protein or peptide is not particularly limited, and may be acid treatment or alkali treatment, or may be proteolytic enzyme treatment.
  • the proteolytic enzyme to be used is not particularly limited and can be appropriately selected from a wide variety of known proteolytic enzymes.
  • the proteolytic enzyme used for a hydrolysis process may be one type, and may be used in combination of 2 or more types.
  • the proteolytic enzyme treatment can be performed by a conventional method.
  • the peptide absorbed by green coffee beans is a protein degradation product obtained by treating the protein with a peptidase, such as a collagen peptide derived from fish or pig More preferably, it is a proteolysate obtained by treating the peptide derived from the peptide with a peptidase, and obtained by treating the collagen peptide derived from fish or the peptide derived from pig with a peptidase so that the weight average molecular weight is 500 to 5,000. More preferably, it is a protein degradation product.
  • a peptidase such as a collagen peptide derived from fish or pig
  • it is a proteolysate obtained by treating the peptide derived from the peptide with a peptidase, and obtained by treating the collagen peptide derived from fish or the peptide derived from pig with a peptidase so that the weight average molecular weight is 500 to 5,000. More preferably, it is a protein degradation product
  • the coffee beans in a peptide solution in which the peptide is dissolved in a suitable solvent such as water. May be immersed for a certain time, and the peptide solution may be sprayed on the surface of green coffee beans.
  • the amount of peptide to be absorbed into green coffee beans is not particularly limited, considering the type of peptide to be used, roasting temperature, roasting time, DKP amount necessary to achieve the desired bitterness intensity, etc. It can be adjusted appropriately. The greater the amount of peptide to be absorbed by the green coffee beans, the greater the amount of DKP produced by roasting.
  • the method for roasting green coffee beans that has absorbed peptides, etc. is not particularly limited. Direct fire roasting method, hot air roasting method, far-infrared roasting method, charcoal fire roasting method, microwave roasting method Any method generally used for roasting coffee beans may be used. Moreover, as long as the effect of bitterness enhancement by DKP production by the peptide is not impaired, the coffee beans after the known roasting pretreatment may be roasted in addition to the absorption of the peptide and the like.
  • the roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention can be used as a raw material for various foods and drinks in the same manner as roasted coffee beans produced by a conventional method.
  • the production of various foods and drinks from the roasted coffee beans can be performed by a conventional method.
  • the method for producing a coffee extract according to the present invention is characterized by using roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention as a raw material. Thereby, the DKP content per soluble solid can be increased, and a coffee extract with enhanced bitterness can be obtained. That is, it has the process of obtaining the roasted coffee bean modified so that DKP content becomes high, and the process of preparing the coffee extract containing the soluble solid content of the modified roasted coffee bean.
  • the roasted coffee beans are preferably pulverized before the soluble solid content is extracted.
  • the roasted coffee beans can be pulverized using a general pulverizer such as a roll mill.
  • the degree of pulverization is not particularly limited, and roasted coffee beans of various shapes such as coarsely ground, mediumly ground, medium ground, medium finely ground, and finely ground can be used.
  • the coffee extract can be obtained by bringing heated solids into contact with roasted coffee beans and extracting soluble solids.
  • the extraction method can be performed by a method generally used when brewing coffee or a method used when extracting soluble solids from a pulverized product of roasted coffee beans when producing instant coffee. .
  • any of a drip method, an espresso method, a siphon method, a percolator method, a coffee press (French press) method, high pressure extraction, continuous high pressure extraction, and the like may be used.
  • roasted coffee beans When two or more types of roasted coffee beans are used as raw materials, all roasted coffee beans used as raw materials may be modified so as to increase the DKP content, and a part of the roasted coffee beans is roasted Only coffee beans may be modified so that the DKP content is high.
  • soluble solids are extracted from a mixture (blended beans) composed of two or more types of roasted coffee beans.
  • a coffee extract may be prepared, or a coffee extract may be prepared by mixing two or more types of coffee extracts obtained by separately extracting soluble solids.
  • the coffee extract produced by the method for producing a coffee extract according to the present invention is suitable as a raw material for a composition for a coffee beverage or an IC beverage.
  • a coffee extract having a high DKP content and enhanced bitterness as a raw material, a composition for coffee beverages and IC beverages having sufficient bitterness can be obtained without increasing the amount of roasted coffee beans used as a raw material. can get.
  • the coffee beverage is sterilized after the coffee extract as a raw material is mixed as it is or other raw materials are added according to the product quality of the target coffee beverage.
  • the sterilization treatment for example, it can be appropriately selected from the sterilization treatments usually performed in the coffee beverage production process such as heat sterilization treatment, retort sterilization treatment, and ultraviolet irradiation sterilization treatment.
  • the heat sterilization treatment may be pasteurization at 100 ° C. or lower or high temperature sterilization at 100 ° C. or higher.
  • coffee drinks are distributed in the market as container-packed drinks sealed in containers.
  • the container and filling method for filling the coffee beverage can be appropriately selected from the containers and filling methods usually used in the production process of the container-packed coffee beverage.
  • Examples of the container include a can, a plastic container, a paper container, and a glass bottle. Further, the filling of the container may be performed in the air or in a nitrogen gas atmosphere.
  • a sterilized coffee beverage that has been sterilized in advance may be aseptically filled into a sterilized container and sealed, or a container that has been filled with a coffee beverage and sealed may be sterilized Alternatively, hot pack filling may be performed in which a heated coffee beverage is filled in a container at a high temperature and sealed.
  • the coffee extract as a raw material may be subjected to various processes such as a concentration process, a dilution process, and an unnecessary material removal process in advance.
  • Concentration treatment of the coffee extract can be performed by a commonly used concentration method such as a heat concentration method, a freezing concentration method, a membrane concentration method using a reverse osmosis membrane, an ultrafiltration membrane or the like.
  • the unnecessary substance removal process can be performed by a process generally performed to remove insoluble matters from the beverage, such as a filtration process and a centrifugal separation process. Moreover, you may perform these processes with respect to the coffee extract after adding and mixing another raw material.
  • ingredients added to the coffee extract include ingredients that can be blended in the beverage.
  • Specific examples include sweeteners, creaming powders (powder added to liquor drinks such as coffee as a substitute for cream), dairy ingredients, fragrances, antioxidants, pH adjusters, thickeners, emulsifiers, and the like. It is done.
  • Sweeteners include sugars such as sugar, sucrose, oligosaccharides, glucose, fructose, sugar alcohols such as sorbitol, maltitol, erythritol, xylitol, reduced syrup, aspartame, acesulfame potassium, sucralose, neotame, advantame, saccharin, etc. High-intensity sweeteners, stevia and the like.
  • the sugar may be granulated sugar or powdered sugar.
  • Milk raw materials include whole milk powder, skim milk powder, whey powder, cow milk, low fat milk, concentrated milk, skim concentrated milk, lactose, fresh cream, butter and the like.
  • whole milk powder and skim milk powder are milk (total fat milk) or skim milk obtained by removing moisture by spray drying or the like and drying to powder.
  • Creaming powder is edible oils and fats such as coconut oil, palm oil, palm kernel oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, milk fat, beef tallow and lard; saccharides such as sucrose, glucose and starch hydrolysate; Other raw materials such as sodium caseinate, dibasic sodium phosphate, sodium citrate, skim milk powder, emulsifier and the like can be selected according to the desired quality characteristics, dispersed in water, homogenized, and dried.
  • the creaming powder can be produced, for example, by mixing raw materials including edible fats and oils in water, then using an emulsifier or the like to make an oil-in-water emulsion (O / W emulsion), and then removing water. .
  • any method such as spray drying, spray freezing, lyophilization, freeze pulverization, extrusion granulation can be selected and performed.
  • the obtained creaming powder may be subjected to classification, granulation, pulverization and the like, if necessary.
  • flavors include coffee flavors and milk flavors.
  • antioxidants examples include vitamin C (ascorbic acid), vitamin E (tocopherol), BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), sodium erythorbate, propyl gallate, sodium sulfite, sulfur dioxide, chlorogen
  • antioxidants include acids and catechins.
  • pH adjusters include citric acid, succinic acid, acetic acid, lactic acid, malic acid, and tartaric acid.
  • examples thereof include organic acids such as gluconic acid, inorganic acids such as phosphoric acid, potassium carbonate, sodium bicarbonate (sodium bicarbonate), and carbon dioxide.
  • thickeners examples include starch degradation products such as dextrin, sugars such as maltose and trehalose, dietary fibers such as indigestible dextrin, pectin, guar gum and carrageenan, and proteins such as casein.
  • the emulsifier examples include glycerin fatty acid ester-based emulsifiers such as monoglyceride, diglyceride, organic acid monoglyceride, and polyglycerol ester; sorbitan fatty acid ester-based emulsifiers such as sorbitan monostearate and sorbitan monooleate; propylene glycol monostearate, propylene glycol Propylene glycol fatty acid ester emulsifiers such as monopalmitate and propylene glycol oleate; Sugar ester emulsifiers such as sucrose stearate, sucrose palmitate and sucrose oleate; lecithin such as lecithin and lecithin enzyme degradation products And emulsifiers.
  • glycerin fatty acid ester-based emulsifiers such as monoglyceride, diglyceride, organic acid monoglyceride, and polyglycerol ester
  • the order in which the other ingredients are mixed with the coffee extract is not particularly limited, and all the components may be added to the coffee extract at the same time, or may be added and mixed sequentially.
  • the coffee extract is preferably concentrated or powdered in advance. Since the storage stability of the obtained IC beverage composition is good, in the method for producing an IC beverage composition according to the present invention, a powdered coffee extract (instant coffee powder) is used as a raw material. It is preferable.
  • Concentration treatment of the coffee extract can be performed in the same manner as the methods listed in the coffee beverage production method.
  • the pulverization of the coffee extract can be obtained by drying the coffee extract. Examples of the method for drying the extract include freeze drying, spray drying, and vacuum drying. Moreover, you may concentrate the extract from coffee beans as needed before drying.
  • the IC beverage composition is produced by mixing a concentrate or powder of coffee extract with other raw materials.
  • the order of mixing is not particularly limited, and all raw materials may be mixed simultaneously or sequentially.
  • a powdered IC beverage composition is produced by mixing all the raw materials as they are.
  • a liquid IC beverage composition is produced by mixing all raw materials as they are.
  • the powder raw material composition is prepared by mixing all powder raw materials in advance and spraying and drying the liquid mixture of liquid raw materials to the obtained mixed powder. Is done.
  • a liquid IC beverage composition is produced by dissolving or dispersing a powder raw material in a liquid mixture of liquid raw materials.
  • a liquid IC beverage composition is produced by adding and dissolving other raw materials to the concentrate of coffee extract. Moreover, a liquid IC beverage composition is also produced by producing a powdered IC beverage composition and then dissolving it in water or milk.
  • ingredients added to the IC beverage composition include sweeteners, creaming powders, dairy ingredients, fragrances, antioxidants, pH adjusters, thickeners, emulsifiers, excipients, binders, and fluidity improvements.
  • Agents anti-caking agents and the like.
  • sweetener, creaming powder, milk raw material, fragrance, antioxidant, pH adjuster, thickener, and emulsifier the same ones listed in the coffee beverage production method can be used.
  • excipients and binders examples include starch degradation products such as dextrin, sugars such as maltose and trehalose, dietary fibers such as indigestible dextrin, and proteins such as casein.
  • the excipient and binder are also used as a carrier during granulation.
  • processing preparations such as fine silicon oxide and tricalcium phosphate may be used.
  • the IC beverage composition according to the present invention can be used to wrap several drinks in a container such as a bottle so that one cup of drink can be individually wrapped in a small pouch, or can be shaken out of the container or taken out with a spoon when used. It can also be packaged and supplied as a product.
  • the individual wrapping type is to pack and wrap the contents of a cup of coffee in a stick-shaped aluminum pouch, one-portion cup, etc., and the contents can be taken out by opening the container and pushing it out with your finger.
  • the individual wrapping type has an advantage that it is easy to handle and hygienic because one cup is hermetically sealed.
  • % means “% by mass” unless otherwise specified.
  • Example 1 Coffee extracts were prepared from roasted coffee beans that had been roasted after immersing green coffee beans in various protein hydrolysates (peptides), and their bitterness was evaluated.
  • peptide solution prepared by dissolving 8 g of each commercially available peptide shown in Table 1 in 100 g of water was prepared, and the peptide solution was poured into a 1 L glass bottle charged with 400 g of green coffee beans. While the glass bottle was rotated every 15 minutes, green coffee beans were immersed in the peptide solution at 80 ° C. for 2 hours. Thereafter, the green coffee beans were taken out of the glass bottle, placed in an aluminum tray, weighed, and dried at 80 ° C. until 400 g was reached. The dried green coffee beans were roasted with a roasting machine until the roast color reached 5.0, to obtain roasted coffee beans. Moreover, it replaced with the peptide and the immersion process was similarly performed using the amino acid (glycine or proline), and the roasted coffee bean was obtained.
  • a coffee extract was obtained in the same manner from roasted coffee beans obtained by roasting green coffee beans that were not immersed in the peptide solution. Using this as a control, the strength of the bitterness intensity of each coffee extract was evaluated.
  • the bitterness intensity was evaluated by 5 trained professional panels in 4 grades (4 points were the strongest bitterness and 1 point was the weakest bitterness), and the control was 1 point. The evaluation results are shown in Table 1.
  • Non-patent Document 1 the amino acid composition of fish collagen peptides A to D, porcine collagen peptides A to C, and wheat glutamine peptides, which had high bitterness enhancing ability, was examined, and whether the proline content (%) correlates with the strength of bitterness enhancing ability. Examined. As a result, the content ratio of proline with respect to all amino acid residues was 10 to 15% in any of the fish collagen peptide, porcine collagen peptide and wheat glutamine peptide, and there was no difference.
  • hydroxyproline (Hypro) and hydroxylysine (Hylys) were not contained in the wheat glutamine peptide at all, whereas they were all contained in the fish collagen peptides A to D and the porcine collagen peptides A to C.
  • the content ratio of hydroxyproline to all amino acid residues was as high as 10 to 20%.
  • DKPs Cyclo (-Leu-Pro) (cyclic form of dipeptide of leucine and proline, the same applies below), Cyclo (-Phe-Pro), Cyclo (-Pro-Val), and Cyclo (-Phe-Hypro)
  • the content in roasted coffee beans was examined.
  • Each DKP was detected and quantified according to the method of GINZ et al. (See Non-Patent Document 2). Details of the analysis conditions are as follows.
  • the sample for analysis was prepared by diluting the coffee extract 1/100 (Brix value is about 0.01) and passing through a 0.2 ⁇ m filter. This analysis sample was put in a vial and analyzed.
  • the HPLC (high performance liquid chromatography) conditions are shown below.
  • the MS conditions were set as shown in Table 3.
  • HPLC apparatus Agilent 1260 Infinity (manufactured by Agilent Technologies) Column: Acquity BEH C18 1.7 ⁇ m (Nippon Waters) Eluent A: 0.1% by mass formic acid Eluent B: Acetonitrile Gradient condition: see Table 2 Column flow rate: 300 ⁇ L / min Column temperature: 40 ° C. Injection volume: 5 ⁇ L Sample temperature: 15 ° C
  • Cyclo (-Leu-Pro), Cyclo (-Phe-Pro), and Cyclo (-Pro-Val) have no correlation with the amount of peptide added to green beans and the bitterness intensity. It was thought that there was no relation to the bitterness enhancement by.
  • Cyclo (-Phe-Hypro) is not detected in untreated samples or water-treated samples, but in samples immersed in fish collagen peptides AC and porcine collagen peptide A, It was observed that as the amount of peptide added to the beans increased, the content of Cyclo (-Phe-Hypro) increased.
  • Example 2 It was examined how the bitterness enhancing ability is affected by hydrolyzing the fish collagen peptide D used in Example 1 to reduce the molecular weight.
  • the peptide hydrolysis treatment was performed by enzymatic treatment using 14 types of commercially available proteolytic enzymes listed in Table 4.
  • Pro1, Pro6, and PD6 enzymes are manufactured by Nagase Sangyo Co., Ltd., and other enzymes are manufactured by Amano Enzyme.
  • the OPA method is a method for quantifying the N-terminus of a protein.
  • OPA binds to the N-terminus of a peptide, a substance having an absorption wavelength at 340 nm is generated.
  • the absorbance value (A 340 value) at 340 nm of each peptide solution is an index of the number of peptide molecules present in those peptide solutions, and the higher the A 340 value, the greater the number of peptide molecules. It means that the peptide was efficiently decomposed by.
  • enzymes having a degree of proteolysis were 3 or more were PD1 to 6 and all were peptidases. .
  • the coffee collagen peptide D was treated using PD1-6 in the combinations shown in Table 5, and the hydrolyzate of the obtained peptide was used in place of the fish collagen peptide D.
  • the green beans were dipped and then dried and roasted, and a coffee extract was obtained from the obtained roasted coffee beans.
  • the bitterness intensity of the obtained coffee extract was determined in the same manner as in Example 1. The evaluation results are shown in Table 5.
  • bitterness intensity of the coffee extract obtained by soaking with the peptides decomposed by PD5 and PD6 was stronger than the single treatment of PD1 to PD6.
  • the peptide which hydrolyzed with the combination of PD5 and PD6 strengthened bitterness most by two types of combinations.
  • the coffee extract obtained from green coffee beans treated with a peptide hydrolyzed with a combination of PD5 and PD6 is a coffee extract obtained from green coffee beans treated with a peptide hydrolyzed using all of PD1-6. Bitter taste was stronger.
  • samples of green coffee beans treated with peptides hydrolyzed using PD1-4 have lower bitterness strength than samples treated with peptides hydrolyzed with PD1-6, and the amount of DKP produced during roasting It was suggested that there were fewer. From these results, it was found that a peptide obtained by hydrolysis treatment with a combination of PD5 and PD6 has high DKP production efficiency during roasting and is preferable.
  • Example 3 The effect of the roasting degree on the bitterness enhancing ability of the raw beans by the peptide dipping treatment was investigated.
  • Example 1 fish collagen peptide C used in Example 1 was hydrolyzed in the same manner as Example 2 with peptidases PD5 and PD6 used in Example 2.
  • a solution of a hydrolyzate of fish collagen peptide C was prepared, and green coffee beans were dipped in the solution and dried, so that the hydrolyzate was 5 or 7 per weight of green coffee beans. Or 10% by mass.
  • the upper limit of the amount of peptide immersion in one immersion treatment was 7% by mass
  • the 10% by mass immersion again immerses the green beans dried after the first immersion treatment in the peptide solution. It was produced by.
  • the coffee beans to which the hydrolyzate was added were roasted in the same manner as in Example 1.
  • the roasting degree was set to three colors of 6.0, 5.0, and 4.0 for the roast color.
  • a coffee extract was prepared from each roasted coffee bean in the same manner as in Example 1, and this was used as a black coffee beverage.
  • a milk coffee beverage in which milk was added to the coffee extract so that the final concentration of the beverage was 20% by mass was also prepared.
  • the strength of bitterness intensity was evaluated. For bitterness intensity, how many times should you dilute with water so that the bitterness intensity of each coffee extract is the same as the control, using the coffee extract prepared from green beans that have not been soaked with peptides? The dilution ratio of this water was taken as the bitterness intensity.
  • Table 6 shows the evaluation results of bitterness intensity for black coffee drinks and milk coffee drinks prepared from each roasted coffee bean.
  • “Peptide X% added bean” indicates a coffee beverage prepared from a coffee extract prepared from roasted coffee beans of green beans added with X mass% peptide per weight of green beans by dipping treatment. .
  • Both the black coffee drink and the milk coffee drink had a bitterness intensity that increased depending on the amount of peptide added, and a double bitterness intensity was confirmed in all color bands when the peptide was immersed in 10%. It was confirmed that at the time of 7% immersion, which is the maximum amount that can be immersed at one time, the bitterness intensity is 2.22 times the maximum.
  • the black coffee drink prepared from the 10% peptide-added beans with a bitterness intensity twice that of the control the astringency, sourness, aroma and solid feeling were compared with the control black coffee drink. was almost the same level. That is, although the bitterness intensity
  • Example 4 A coffee extract was prepared from roasted coffee beans that had been roasted after immersing green coffee beans in the peptide, and instant coffee powder was prepared therefrom.
  • Table 7 shows the measurement results of the contents of the four DKPs (Cyclo (-Leu-Pro), Cyclo (-Phe-Pro), Cyclo (-Pro-Val), and Cyclo (-Phe-Hypro)).
  • the numerical value in the parenthesis in the table is the relative content with the content of the instant coffee coffee as a reference obtained from untreated green coffee beans as 1.
  • the instant coffee powder obtained by the pilot plant and the instant coffee powder obtained by the commercial plant are both made of Cyclo (-Phe-Hypro), which has a strong bitterness enhancing ability by the peptide dipping treatment.
  • the content was significantly increased.
  • ⁇ Aroma analysis> Among the aroma components of each instant coffee beverage, the content in the beverage was measured for 20 types of so-called key aroma components characteristic of coffee. The content of each aroma component is determined by comparing the peak area on the chromatogram obtained by headspace-gas chromatography mass spectrometry with the concentration of each compound in light of an external calibration curve prepared in advance using a standard reagent. Was measured.
  • the relative content of the content of the control instant coffee beverage obtained from untreated green coffee beans was determined as 1.
  • eight aroma components (2-Ethylpyrazine, 2,3,5- Trimethylpyrazine, 2-Ethyl-3,5-dimethylpyrazine, 2-Furfurylmethylsulfide, 2-Acetylpyridine, 5-Methyl-5H-6,7-dihydrocyclopentapyrazine, 2-Phenylacetaldehyde, and Indole
  • Table 8 shows the measurement results of the relative contents of these eight kinds of aroma components.
  • Example 5 A coffee extract was prepared from roasted coffee beans that had been roasted after immersing green coffee beans in the enzyme-treated peptide, and the contained aroma components were examined.
  • ⁇ Peptide treatment> Fish collagen peptide C was hydrolyzed with a proteolytic enzyme.
  • the proteolytic enzyme used was that used in Example 2 (see Table 4).
  • a coffee extract (peptide treatment-pp) was prepared from the roasted coffee beans in the same manner as in Example 1.
  • a coffee extract (untreated-pp) was prepared in the same manner from green coffee beans that were not subjected to peptide immersion treatment.
  • the relative content was determined with the content of the control coffee extract obtained from untreated green coffee beans as 1. As a result, when the proteolytic enzyme used for the hydrolysis of the peptide was different, the relative content of the aroma components in the obtained coffee extract was affected.
  • untreated indicates the result of the coffee extract prepared from green coffee beans not subjected to the peptide soaking treatment
  • no hydrolysis treatment indicates that the peptide not subjected to the proteolytic enzyme treatment is used.
  • the result of the coffee extract prepared from the green coffee beans which performed the immersion process is shown.
  • PDX-PDY (X and Y are numbers 1 to 6) is obtained from green coffee beans that have been soaked with a peptide hydrolyzate prepared using two types of proteolytic enzymes, PDX and PDY.
  • the results of the prepared coffee extract are shown.
  • “6 types” were prepared from green coffee beans that had been soaked with a peptide hydrolyzate prepared using all six types of proteases PD1 to PD6. The result of a coffee extract is shown.
  • the aroma components of the obtained coffee extract change depending on the presence or absence of the hydrolysis treatment of the peptide, the type of proteolytic enzyme used for the hydrolysis, and the combination thereof. It was suggested that a coffee extract in which the composition of the aroma component falls within a desired range can be prepared by appropriately selecting the proteolytic enzyme used for the hydrolysis treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Tea And Coffee (AREA)

Abstract

The present invention provides a method for producing roasted coffee beans from which a liquid coffee extract having an enhanced bitter flavor can be obtained, and a method for producing a liquid coffee extract from roasted coffee beans produced by the production method. Specifically, the present invention is a method for producing roasted coffee beans which is characterized by comprising the steps of bringing raw coffee beans into contact with a peptide to allow the peptide to be absorbed therein or attached to the surface, and then roasting the coffee beans. The present invention is also a method for producing a liquid coffee extract which is characterized by comprising the steps of preparing roasted coffee beans modified by the roasted coffee bean production method, and preparing a liquid coffee extract containing a soluble solid component of the modified roasted coffee beans.

Description

焙煎コーヒー豆の製造方法Method for producing roasted coffee beans
 本発明は、苦味が強化されたコーヒー抽出液を得るための焙煎コーヒー豆を製造する方法、及び当該製造方法により製造された焙煎コーヒー豆からコーヒー抽出液を製造する方法に関する。
 本願は、2018年3月30日に日本国に出願された特願2018-068976号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing roasted coffee beans for obtaining a coffee extract with enhanced bitterness, and a method for producing a coffee extract from roasted coffee beans produced by the production method.
This application claims the priority based on Japanese Patent Application No. 2018-068976 for which it applied to Japan on March 30, 2018, and uses the content here.
 コーヒーは、日常的に広く親しまれている嗜好性飲料であり、容器詰飲料や、水等の液体に溶解させることにより喫飲可能となるインスタントコーヒーが多数上市されている。コーヒー豆は天然物であり、コーヒー抽出液中には、コーヒーらしい味や香気を担う成分以外にも、コーヒーの風味を損なうような雑味成分も含まれている。コーヒー抽出液から雑味成分を除くことにより、より香味に優れた容器詰コーヒー飲料やインスタントコーヒーを製造することができると期待できる。 Coffee is a palatability drink that is widely used on a daily basis, and many instant coffees that can be drunk when dissolved in liquids such as bottled drinks and water are on the market. Coffee beans are natural products, and in addition to the components responsible for coffee-like taste and aroma, the coffee extract contains miscellaneous components that impair the flavor of coffee. It can be expected that by removing miscellaneous components from the coffee extract, it is possible to produce a container-packed coffee beverage or instant coffee with better flavor.
 より味や香りに優れたコーヒー抽出液を原料とすることにより、容器詰コーヒー飲料やインスタントコーヒーの味や香りを改善することができると期待できる。特に苦味はコーヒーの重要な品質の1つであり、苦味(力価)の強い焙煎コーヒー豆を原料とすることにより、より苦味が強いコーヒー飲料を製造することができ、苦味の強さを損なうことなく、焙煎コーヒー豆の使用量を低減させて製造コストを低減させることもできる。コーヒーの苦味物質(呈味)としては、カフェインやジケトピペラジン(DKP)、CQL(クロロゲン酸ラクトン)等が知られている。DKPは、ペプチドのN末端アミノ基が環化することで生成される環状ジペプチドであり、コーヒーでは焙煎により生成し、プロリン(pro)を含んだジペプチドから生じやすいことが知られている(非特許文献1参照。)。 It can be expected that the taste and scent of containerized coffee beverages and instant coffee can be improved by using a coffee extract having a better taste and scent as a raw material. In particular, bitterness is one of the important qualities of coffee. By using roasted coffee beans with a strong bitterness (potency) as a raw material, coffee beverages with a stronger bitterness can be produced, and the bitterness can be increased. Without losing, it is possible to reduce the production cost by reducing the amount of roasted coffee beans used. Caffeine, diketopiperazine (DKP), CQL (chlorogenic acid lactone) and the like are known as bitter substances (tastings) of coffee. DKP is a cyclic dipeptide generated by cyclization of the N-terminal amino group of a peptide, and is known to be easily generated from dipeptides containing proline (pro) by roasting in coffee. (See Patent Document 1).
 本発明は、苦味が強化されたコーヒー抽出液を得るための焙煎コーヒー豆を製造する方法、及び当該製造方法により製造された焙煎コーヒー豆からコーヒー抽出液を製造する方法を提供することを目的とする。 The present invention provides a method for producing roasted coffee beans for obtaining a coffee extract with enhanced bitterness, and a method for producing a coffee extract from roasted coffee beans produced by the production method. Objective.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、焙煎前にコーヒー生豆にペプチドを吸収又は表面に付着させておくことにより、苦味成分であるDKPの含有量が多い焙煎コーヒー豆が得られることを見出し、本発明を完成させた。 As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention roasted a large amount of DKP, which is a bitter component, by absorbing the peptide in the green coffee beans or attaching it to the surface before roasting. The inventors discovered that coffee beans can be obtained and completed the present invention.
[1]本発明の第一の態様に係る焙煎コーヒー豆の製造方法は、コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後、焙煎する工程、を有することを特徴とする。
[2]前記[1]の焙煎コーヒー豆の製造方法においては、前記ペプチドの全アミノ酸残基に対するヒドロキシプロリンとヒドロキシリジンの合計含有量の比率が10質量%以上であることが好ましい。
[3]前記[1]又は[2]の焙煎コーヒー豆の製造方法においては、前記ペプチドが、重量平均分子量が500~5000であることが好ましい。
[4]前記[1]~[3]のいずれかの焙煎コーヒー豆の製造方法においては、前記ペプチドが、魚由来のコラーゲンペプチド、豚由来のコラーゲンペプチド、小麦由来のコラーゲンペプチド、トウモロコシ由来のコラーゲンペプチド、又はこれらのコラーゲンペプチドのうちの2以上の組み合わせであることが好ましい。
[5]前記[1]~[3]のいずれかの焙煎コーヒー豆の製造方法においては、前記ペプチドが、魚由来のコラーゲンペプチドであることが好ましい。
[6]前記[1]~[5]のいずれかの焙煎コーヒー豆の製造方法においては、前記ペプチドが、ペプチダーゼ処理によるタンパク質分解物であることが好ましい。
[7]本発明の第二の態様に係るコーヒー抽出液の製造方法は、前記[1]~[6]のいずれかの焙煎コーヒー豆の製造方法により、改質された焙煎コーヒー豆を得る工程と、改質された焙煎コーヒー豆の可溶性固形分を含有するコーヒー抽出液を調製する工程と、を有することを特徴とする。
[8]本発明の第三の態様に係るコーヒー飲料の製造方法は、前記[7]のコーヒー抽出液の製造方法によりコーヒー抽出液を製造した後、得られたコーヒー抽出液を原料としてコーヒー飲料を製造することを特徴とする。
[9]本発明の第四の態様に係るインスタントコーヒー飲料用組成物の製造方法は、前記[7]のコーヒー抽出液の製造方法によりコーヒー抽出液を製造した後、得られたコーヒー抽出液を原料としてインスタントコーヒー飲料用組成物を製造することを特徴とする。
[10]本発明の第五の態様に係る焙煎コーヒー豆の苦味強化方法は、コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後、焙煎することを特徴とする。
[1] The method for producing roasted coffee beans according to the first aspect of the present invention comprises the step of bringing the coffee green beans into contact with the peptide and absorbing it inside or adhering it to the surface, followed by roasting. It is characterized by.
[2] In the method for producing roasted coffee beans of [1], the ratio of the total content of hydroxyproline and hydroxylysine to all amino acid residues of the peptide is preferably 10% by mass or more.
[3] In the method for producing roasted coffee beans of [1] or [2], the peptide preferably has a weight average molecular weight of 500 to 5000.
[4] In the method for producing roasted coffee beans according to any one of [1] to [3], the peptide is a collagen peptide derived from fish, a collagen peptide derived from pig, a collagen peptide derived from wheat, or a corn-derived peptide. It is preferably a collagen peptide or a combination of two or more of these collagen peptides.
[5] In the method for producing roasted coffee beans of any one of [1] to [3], the peptide is preferably a fish-derived collagen peptide.
[6] In the method for producing roasted coffee beans according to any one of [1] to [5], the peptide is preferably a proteolytic product obtained by a peptidase treatment.
[7] A method for producing a coffee extract according to the second aspect of the present invention is a method for producing roasted coffee beans modified by the method for producing roasted coffee beans according to any one of [1] to [6]. And a step of preparing a coffee extract containing the soluble solid content of the modified roasted coffee beans.
[8] A method for producing a coffee beverage according to the third aspect of the present invention is a method for producing a coffee extract by the method for producing a coffee extract of [7], and then using the obtained coffee extract as a raw material. It is characterized by manufacturing.
[9] A method for producing a composition for an instant coffee beverage according to the fourth aspect of the present invention is the production of a coffee extract by the method for producing a coffee extract of [7], and then the obtained coffee extract An instant coffee beverage composition is produced as a raw material.
[10] The method for enhancing the bitterness of roasted coffee beans according to the fifth aspect of the present invention is characterized in that after the peptide is brought into contact with green coffee beans and absorbed inside or attached to the surface, roasting is performed. To do.
 本発明に係る焙煎コーヒー豆の製造方法により製造された焙煎コーヒー豆は、苦味成分であるジケトペラジンの含有量が多い。このため、当該方法により得られた焙煎コーヒー豆から抽出されたコーヒー抽出液を原料とすることにより、苦味強度は保ちながらコーヒー特有の雑味が少ないコーヒー飲料やインスタントコーヒー飲料用組成物を製造することができる。 The roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention have a high content of diketoperazine, which is a bitter component. For this reason, by using a coffee extract extracted from roasted coffee beans obtained by the method as a raw material, a composition for coffee beverages and instant coffee beverages having less bitterness peculiar to coffee while maintaining bitterness strength is produced. can do.
実施例1において、ペプチド処理したコーヒー生豆を焙煎し、得られた焙煎コーヒー豆のCyclo(-Phe-Hypro)の含有量の測定結果を示した図である。In Example 1, it is the figure which showed the measurement result of content of Cyclo (-Phe-Hypro) of the roasted coffee beans obtained by roasting the coffee-processed coffee beans.
 本発明及び本願明細書において、「インスタントコーヒー飲料用組成物(IC飲料用組成物)」とは、水や牛乳等の液体に溶解又は希釈させることによってコーヒー飲料を調製し得る組成物を意味する。IC飲料用組成物は、粉末であってもよく、液体であってもよい。 In the present invention and the present specification, “instant coffee beverage composition (IC beverage composition)” means a composition capable of preparing a coffee beverage by dissolving or diluting it in a liquid such as water or milk. . The IC beverage composition may be a powder or a liquid.
 本発明及び本願明細書において、「粉末」とは粉粒体(異なる大きさの分布をもつ多くの固体粒子からなり,個々の粒子間に,何らかの相互作用が働いているもの)を意味する。また、「顆粒」は粉末から造粒された粒子(顆粒状造粒物)の集合体である。粉末には、顆粒も含まれる。 In the present invention and the specification of the present application, “powder” means a granular material (consisting of many solid particles having different size distributions, and some interaction is acting between individual particles). A “granule” is an aggregate of particles (granular granules) granulated from a powder. The powder also includes granules.
<焙煎コーヒー豆の製造方法>
 本発明に係る焙煎コーヒー豆の製造方法は、コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後、焙煎する工程と、を有することを特徴とする。苦味成分の1種であるDKPは、焙煎時にペプチドの環化反応により生じるため、予めコーヒー生豆のペプチド含有量を高めておくことにより、DKP含有量の多く、苦味が強化された焙煎コーヒー豆が得られる。つまり、コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後に焙煎することにより、焙煎コーヒー豆の苦味を強化することができる。このDKP含有量が高くなるように改質された焙煎コーヒー豆を原料とすることにより、可溶性固形分当たりのDKP含有量が多く、苦味が強化されたコーヒー抽出液を得ることができる。
<Method of manufacturing roasted coffee beans>
The method for producing roasted coffee beans according to the present invention comprises a step of bringing the coffee green beans into contact with the peptide and absorbing it inside or adhering it to the surface, followed by roasting. DKP, which is one of the bitter components, is produced by a cyclization reaction of peptides during roasting. Therefore, by increasing the peptide content of green coffee beans beforehand, roasting with a high DKP content and enhanced bitterness Coffee beans are obtained. In other words, the bitterness of roasted coffee beans can be enhanced by bringing the coffee beans into contact with the peptide and absorbing it inside or attaching it to the surface and then roasting. By using the roasted coffee beans modified so as to increase the DKP content as a raw material, a coffee extract having a high DKP content per soluble solid content and an enhanced bitterness can be obtained.
 原料として用いるコーヒー生豆の種類や産地は特に限定されず、アラビカ種であってもよく、ロバスタ種であってもよく、リベリカ種であってもよく、これらをブレンドしたものであってもよい。 The type and production area of green coffee beans used as a raw material are not particularly limited, may be Arabica, may be robusta, may be Riberica, or may be a blend of these. .
 コーヒー生豆に吸収等させるペプチドとしては、焙煎時におけるDKPの産生効率が高いことから、ジペプチドの含有割合の高いものが好ましい。例えば、当該ペプチドとしては、重量平均分子量は500~5000のものが好ましく、1000~4000のものがより好ましく、1000~3000のものがさらに好ましく、1200~3000のものがよりさらに好ましい。 As a peptide to be absorbed into green coffee beans, a peptide having a high content ratio of dipeptide is preferable because DKP production efficiency at the time of roasting is high. For example, the peptide preferably has a weight average molecular weight of 500 to 5000, more preferably 1000 to 4000, still more preferably 1000 to 3000, and still more preferably 1200 to 3000.
 コーヒー生豆に吸収等させるペプチドとしては、焙煎時におけるDKPの産生効率が高いことから、ヒドロキシプロリンとヒドロキシリジンの少なくとも一方を含んでいるペプチドが好ましく、ペプチドの全アミノ酸残基に対するヒドロキシプロリンとヒドロキシリジンの合計含有量の比率が10質量%以上のペプチドがより好ましく、当該比率が10~30質量%のペプチドがさらに好ましい。特に、DKPの産生効率が特に高いことから、ペプチドの全アミノ酸残基に対するヒドロキシプロリンの合計含有量の比率が10質量%以上のペプチドが好ましく、当該比率が15質量%以上のペプチドがより好ましい。ペプチドの全アミノ酸残基に占めるヒドロキシプロリンの比率の上限値は特に限定されるものではなく、例えば、当該比率は50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。 As a peptide to be absorbed into green coffee beans, a peptide containing at least one of hydroxyproline and hydroxylysine is preferable because of the high production efficiency of DKP at the time of roasting, and hydroxyproline with respect to all amino acid residues of the peptide Peptides having a total content ratio of hydroxylysine of 10% by mass or more are more preferable, and peptides having the ratio of 10 to 30% by mass are more preferable. In particular, since the DKP production efficiency is particularly high, a peptide having a total content of hydroxyproline with respect to all amino acid residues of the peptide is preferably 10% by mass or more, and a peptide having the ratio of 15% by mass or more is more preferable. The upper limit value of the ratio of hydroxyproline in all amino acid residues of the peptide is not particularly limited. For example, the ratio is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. preferable.
 また、当該ペプチドの由来は特に限定されるものではなく、魚、豚、乳、小麦、トウモロコシ等、様々な生物由来のペプチドを用いることができる。コーヒー生豆に吸収等させるペプチドとしては、ヒドロキシプロリン又はヒドロキシリジンの含有割合が比較的高いため、コラーゲンペプチドが好ましく、魚、豚、小麦、若しくはトウモロコシ由来のコラーゲンペプチド、又はこれらのコラーゲンペプチドのうちの2以上の組み合わせがより好ましく、魚由来のコラーゲンペプチドが特に好ましい。なかでも、これらを加水分解処理等により重量平均分子量が500~5000となるように分解したタンパク質分解物であることが好ましい。 Further, the origin of the peptide is not particularly limited, and peptides derived from various organisms such as fish, pig, milk, wheat, corn and the like can be used. As a peptide to be absorbed into green coffee beans, since the content ratio of hydroxyproline or hydroxylysine is relatively high, a collagen peptide is preferable, and a collagen peptide derived from fish, pig, wheat, or corn, or among these collagen peptides A combination of two or more of these is more preferred, and fish-derived collagen peptides are particularly preferred. Of these, a proteolytic product obtained by decomposing these so as to have a weight average molecular weight of 500 to 5,000 by hydrolysis treatment or the like is preferable.
 タンパク質やペプチドの加水分解処理の方法は特に限定されるものではなく、酸処理やアルカリ処理であってもよく、タンパク質分解酵素処理であってもよい。タンパク質分解酵素処理の場合、用いるタンパク質分解酵素としては、特に限定されるものではなく、多種多様の公知のタンパク質分解酵素の中から適宜選択して用いることができる。また、加水分解処理に用いるタンパク質分解酵素は、1種類であってもよく、2種類以上を組み合わせて使用してもよい。また、タンパク質分解酵素処理は常法により行うことができる。焙煎した場合のDKPの産生効率が高いことから、コーヒー生豆に吸収等させるペプチドとしては、タンパク質をペプチダーゼ処理して得られたタンパク質分解物であることが好ましく、魚由来のコラーゲンペプチドや豚由来のペプチドをペプチダーゼ処理して得られたタンパク質分解物であることがより好ましく、魚由来のコラーゲンペプチドや豚由来のペプチドを重量平均分子量が500~5000となるようにペプチダーゼ処理して得られたタンパク質分解物であることがさらに好ましい。 The method for hydrolyzing the protein or peptide is not particularly limited, and may be acid treatment or alkali treatment, or may be proteolytic enzyme treatment. In the case of proteolytic enzyme treatment, the proteolytic enzyme to be used is not particularly limited and can be appropriately selected from a wide variety of known proteolytic enzymes. Moreover, the proteolytic enzyme used for a hydrolysis process may be one type, and may be used in combination of 2 or more types. The proteolytic enzyme treatment can be performed by a conventional method. Because of the high production efficiency of DKP when roasted, it is preferable that the peptide absorbed by green coffee beans is a protein degradation product obtained by treating the protein with a peptidase, such as a collagen peptide derived from fish or pig More preferably, it is a proteolysate obtained by treating the peptide derived from the peptide with a peptidase, and obtained by treating the collagen peptide derived from fish or the peptide derived from pig with a peptidase so that the weight average molecular weight is 500 to 5,000. More preferably, it is a protein degradation product.
 コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させる方法は、特に限定されるものではなく、例えば、ペプチドを水等の適当な溶媒に溶解させたペプチド溶液に、コーヒー生豆を一定時間浸漬させてもよく、コーヒー生豆の表面にペプチド溶液を噴霧してもよい。コーヒー生豆に吸収等させるペプチドの量は特に限定されるものではなく、使用するペプチドの種類、焙煎温度、焙煎時間、目的の苦味強度にするために必要なDKP量等を考慮して適宜調整することができる。コーヒー生豆に吸収等させるペプチドの量が多いほど、焙煎により製造されるDKPの量が多くなる。 There is no particular limitation on the method of bringing the coffee beans into contact with the peptide so that the peptides are absorbed inside or attached to the surface. For example, the coffee beans in a peptide solution in which the peptide is dissolved in a suitable solvent such as water. May be immersed for a certain time, and the peptide solution may be sprayed on the surface of green coffee beans. The amount of peptide to be absorbed into green coffee beans is not particularly limited, considering the type of peptide to be used, roasting temperature, roasting time, DKP amount necessary to achieve the desired bitterness intensity, etc. It can be adjusted appropriately. The greater the amount of peptide to be absorbed by the green coffee beans, the greater the amount of DKP produced by roasting.
 ペプチドを吸収等させたコーヒー生豆の焙煎方法は特に限定されるものではなく、直火焙煎法、熱風焙煎法、遠赤外線焙煎法、炭火式焙煎法、マイクロ波焙煎法等の一般的にコーヒー豆の焙煎に使用されるいずれの方法で行ってもよい。また、ペプチドによるDKP産生による苦味強化の効果を損なわない限り、ペプチドの吸収等以外にも、さらに、公知の焙煎前処理を行った後のコーヒー生豆を焙煎してもよい。 The method for roasting green coffee beans that has absorbed peptides, etc. is not particularly limited. Direct fire roasting method, hot air roasting method, far-infrared roasting method, charcoal fire roasting method, microwave roasting method Any method generally used for roasting coffee beans may be used. Moreover, as long as the effect of bitterness enhancement by DKP production by the peptide is not impaired, the coffee beans after the known roasting pretreatment may be roasted in addition to the absorption of the peptide and the like.
 本発明に係る焙煎コーヒー豆の製造方法により製造された焙煎コーヒー豆は、常法により製造された焙煎コーヒー豆と同様に、各種飲食品の原料として用いることができる。当該焙煎コーヒー豆からの各種飲食品の製造は、常法により行うことができる。 The roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention can be used as a raw material for various foods and drinks in the same manner as roasted coffee beans produced by a conventional method. The production of various foods and drinks from the roasted coffee beans can be performed by a conventional method.
<コーヒー抽出液の製造方法>
 本発明に係るコーヒー抽出液の製造方法は、本発明に係る焙煎コーヒー豆の製造方法により製造された焙煎コーヒー豆を原料とすることを特徴とする。これにより、可溶性固形分当たりのDKP含有量が多く、苦味が強化されたコーヒー抽出液を得ることができる。すなわち、DKP含有量が高くなるように改質された焙煎コーヒー豆を得る工程と、改質された焙煎コーヒー豆の可溶性固形分を含有するコーヒー抽出液を調製する工程とを有する。
<Method for producing coffee extract>
The method for producing a coffee extract according to the present invention is characterized by using roasted coffee beans produced by the method for producing roasted coffee beans according to the present invention as a raw material. Thereby, the DKP content per soluble solid can be increased, and a coffee extract with enhanced bitterness can be obtained. That is, it has the process of obtaining the roasted coffee bean modified so that DKP content becomes high, and the process of preparing the coffee extract containing the soluble solid content of the modified roasted coffee bean.
 可溶性固形分の抽出効率が高くなるため、焙煎コーヒー豆は、可溶性固形分が抽出される前に粉砕されていることが好ましい。焙煎コーヒー豆の粉砕は、ロールミル等の一般的な粉砕機を用いて行うことができる。粉砕度は特に限定されるものではなく、粗挽き、中粗挽き、中挽き、中細挽き、細挽きなどの種々の形状の焙煎コーヒー豆を用いることができる。 Since the extraction efficiency of soluble solid content is increased, the roasted coffee beans are preferably pulverized before the soluble solid content is extracted. The roasted coffee beans can be pulverized using a general pulverizer such as a roll mill. The degree of pulverization is not particularly limited, and roasted coffee beans of various shapes such as coarsely ground, mediumly ground, medium ground, medium finely ground, and finely ground can be used.
 コーヒー抽出液は、焙煎コーヒー豆に加熱した水を接触させて可溶性固形分を抽出させることにより得られる。抽出方法は、一般的にコーヒーを淹れる際に用いられる方法や、インスタントコーヒーを製造する際に、焙煎コーヒー豆の粉砕物から可溶性固形分を抽出する際に用いられる方法により行うことができる。具体的には、ドリップ式、エスプレッソ式、サイフォン式、パーコレーター式、コーヒープレス(フレンチプレス)式、高圧抽出、連続高圧抽出等のいずれを用いて行ってもよい。 The coffee extract can be obtained by bringing heated solids into contact with roasted coffee beans and extracting soluble solids. The extraction method can be performed by a method generally used when brewing coffee or a method used when extracting soluble solids from a pulverized product of roasted coffee beans when producing instant coffee. . Specifically, any of a drip method, an espresso method, a siphon method, a percolator method, a coffee press (French press) method, high pressure extraction, continuous high pressure extraction, and the like may be used.
 原料として2種類以上の焙煎コーヒー豆を用いる場合、原料とする全ての焙煎コーヒー豆がDKP含有量が高くなるように改質されたものであってもよく、原料の一部の焙煎コーヒー豆のみがDKP含有量が高くなるように改質されたものであってもよい。原料として2種類以上の焙煎コーヒー豆を用いる場合、本発明に係るコーヒー抽出液の製造方法においては、2種類以上の焙煎コーヒー豆からなる混合物(ブレンド豆)から可溶性固形分を抽出してコーヒー抽出液を調製してもよく、別個に可溶性固形分を抽出して得られた2種類以上のコーヒー抽出液を混合することによりコーヒー抽出液を調製してもよい。 When two or more types of roasted coffee beans are used as raw materials, all roasted coffee beans used as raw materials may be modified so as to increase the DKP content, and a part of the roasted coffee beans is roasted Only coffee beans may be modified so that the DKP content is high. When two or more types of roasted coffee beans are used as a raw material, in the method for producing a coffee extract according to the present invention, soluble solids are extracted from a mixture (blended beans) composed of two or more types of roasted coffee beans. A coffee extract may be prepared, or a coffee extract may be prepared by mixing two or more types of coffee extracts obtained by separately extracting soluble solids.
 本発明に係るコーヒー抽出液の製造方法により製造されたコーヒー抽出液は、コーヒー飲料やIC飲料用組成物の原料として好適である。DKP含有量が高く、苦味が強化されたコーヒー抽出液を原料とすることにより、原料として用いる焙煎コーヒー豆の量を増大させることなく、充分な苦味を備えるコーヒー飲料やIC飲料用組成物が得られる。 The coffee extract produced by the method for producing a coffee extract according to the present invention is suitable as a raw material for a composition for a coffee beverage or an IC beverage. By using a coffee extract having a high DKP content and enhanced bitterness as a raw material, a composition for coffee beverages and IC beverages having sufficient bitterness can be obtained without increasing the amount of roasted coffee beans used as a raw material. can get.
<コーヒー飲料の製造方法>
 具体的には、コーヒー飲料は、原料とするコーヒー抽出液をそのまま、又は目的とするコーヒー飲料の製品品質に応じてその他の原料を添加して混合した後、殺菌処理が施される。殺菌処理としては、例えば、加熱殺菌処理、レトルト殺菌処理、紫外線照射殺菌処理等のコーヒー飲料の製造工程において通常行われている殺菌処理の中から適宜選択して行うことができる。例えば、加熱殺菌処理としては、100℃以下の低温殺菌であってもよく、100℃以上の高温殺菌であってもよい。
<Method for producing coffee drink>
Specifically, the coffee beverage is sterilized after the coffee extract as a raw material is mixed as it is or other raw materials are added according to the product quality of the target coffee beverage. As the sterilization treatment, for example, it can be appropriately selected from the sterilization treatments usually performed in the coffee beverage production process such as heat sterilization treatment, retort sterilization treatment, and ultraviolet irradiation sterilization treatment. For example, the heat sterilization treatment may be pasteurization at 100 ° C. or lower or high temperature sterilization at 100 ° C. or higher.
 通常、コーヒー飲料は容器に密封充填された容器詰飲料として市場を流通する。コーヒー飲料を充填する容器や充填方法は、容器詰コーヒー飲料の製造工程において通常使用されている容器や充填方法の中から適宜選択して行うことができる。当該容器としては、例えば、缶、プラスチック容器、紙製容器、ガラス瓶等が挙げられる。また、容器への充填は、大気中で行ってもよく、窒素ガス雰囲気下で行うこともできる。 Usually, coffee drinks are distributed in the market as container-packed drinks sealed in containers. The container and filling method for filling the coffee beverage can be appropriately selected from the containers and filling methods usually used in the production process of the container-packed coffee beverage. Examples of the container include a can, a plastic container, a paper container, and a glass bottle. Further, the filling of the container may be performed in the air or in a nitrogen gas atmosphere.
 容器詰コーヒー飲料を製造する場合、予め殺菌処理したコーヒー飲料を殺菌処理済の容器に無菌充填して密封してもよく、コーヒー飲料を充填し密封した容器に対して殺菌処理を施してもよく、加熱したコーヒー飲料を高温のまま容器に充填して密封するホットパック充填を行ってもよい。 When producing a container-packed coffee beverage, a sterilized coffee beverage that has been sterilized in advance may be aseptically filled into a sterilized container and sealed, or a container that has been filled with a coffee beverage and sealed may be sterilized Alternatively, hot pack filling may be performed in which a heated coffee beverage is filled in a container at a high temperature and sealed.
 コーヒー飲料の製造においては、原料とするコーヒー抽出液は、予め濃縮処理や希釈処理、不要物除去処理等の各種処理を施しておいてもよい。コーヒー抽出液の濃縮処理は、熱濃縮方法、冷凍濃縮方法、逆浸透膜や限外濾過膜等を用いた膜濃縮方法等の汎用されている濃縮方法により行うことができる。不要物除去処理は、濾過処理、遠心分離処理等の一般的に飲料から不溶物を除去するために行われている処理で行うことができる。また、これらの処理は、その他の原料を添加して混合した後のコーヒー抽出液に対して行ってもよい。 In the production of coffee beverages, the coffee extract as a raw material may be subjected to various processes such as a concentration process, a dilution process, and an unnecessary material removal process in advance. Concentration treatment of the coffee extract can be performed by a commonly used concentration method such as a heat concentration method, a freezing concentration method, a membrane concentration method using a reverse osmosis membrane, an ultrafiltration membrane or the like. The unnecessary substance removal process can be performed by a process generally performed to remove insoluble matters from the beverage, such as a filtration process and a centrifugal separation process. Moreover, you may perform these processes with respect to the coffee extract after adding and mixing another raw material.
 コーヒー飲料の製造において、コーヒー抽出液に添加されるその他の原料としては、飲料に配合可能な成分が挙げられる。具体的には、甘味料、クリーミングパウダー(クリームの代用として、コーヒー等の嗜好性飲料に添加される粉末)、乳原料、香料、酸化防止剤、pH調整剤、増粘剤、乳化剤等が挙げられる。 In the production of coffee beverages, other ingredients added to the coffee extract include ingredients that can be blended in the beverage. Specific examples include sweeteners, creaming powders (powder added to liquor drinks such as coffee as a substitute for cream), dairy ingredients, fragrances, antioxidants, pH adjusters, thickeners, emulsifiers, and the like. It is done.
 甘味料としては、砂糖、ショ糖、オリゴ糖、ブドウ糖、果糖等の糖類、ソルビトール、マルチトール、エリスリトール、キシリトール、還元水あめ等の糖アルコール、アスパルテーム、アセスルファムカリウム、スクラロース、ネオテーム、アドバンテーム、サッカリン等の高甘味度甘味料、ステビア等が挙げられる。砂糖としては、グラニュー糖であってもよく、粉糖であってもよい。 Sweeteners include sugars such as sugar, sucrose, oligosaccharides, glucose, fructose, sugar alcohols such as sorbitol, maltitol, erythritol, xylitol, reduced syrup, aspartame, acesulfame potassium, sucralose, neotame, advantame, saccharin, etc. High-intensity sweeteners, stevia and the like. The sugar may be granulated sugar or powdered sugar.
 乳原料としては、全粉乳、脱脂粉乳、ホエイパウダー、牛乳、低脂肪乳、濃縮乳、脱脂濃縮乳、乳糖、生クリーム、バター等が挙げられる。なお、全粉乳及び脱脂粉乳は、それぞれ、牛乳(全脂乳)又は脱脂乳を、スプレードライ等により水分を除去して乾燥し粉末化したものである。 Milk raw materials include whole milk powder, skim milk powder, whey powder, cow milk, low fat milk, concentrated milk, skim concentrated milk, lactose, fresh cream, butter and the like. In addition, whole milk powder and skim milk powder are milk (total fat milk) or skim milk obtained by removing moisture by spray drying or the like and drying to powder.
 クリーミングパウダーは、ヤシ油、パーム油、パーム核油、大豆油、コーン油、綿実油、ナタネ油、乳脂、牛脂、豚脂等の食用油脂;ショ糖、グルコース、澱粉加水分解物等の糖質;カゼインナトリウム、第二リン酸ナトリウム、クエン酸ナトリウム、脱脂粉乳、乳化剤等のその他の原料等を、望まれる品質特性に応じて選択し、水に分散し、均質化し、乾燥することによって製造できる。クリーミングパウダーは、例えば、食用油脂をはじめとする原料を水中で混合し、次いで乳化機等で水中油型乳化液(O/Wエマルション)とした後、水分を除去することによって製造することができる。水分を除去する方法としては、噴霧乾燥、噴霧凍結、凍結乾燥、凍結粉砕、押し出し造粒法等、任意の方法を選択して行うことができる。得られたクリーミングパウダーは、必要に応じて、分級、造粒及び粉砕等を行ってもよい。 Creaming powder is edible oils and fats such as coconut oil, palm oil, palm kernel oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, milk fat, beef tallow and lard; saccharides such as sucrose, glucose and starch hydrolysate; Other raw materials such as sodium caseinate, dibasic sodium phosphate, sodium citrate, skim milk powder, emulsifier and the like can be selected according to the desired quality characteristics, dispersed in water, homogenized, and dried. The creaming powder can be produced, for example, by mixing raw materials including edible fats and oils in water, then using an emulsifier or the like to make an oil-in-water emulsion (O / W emulsion), and then removing water. . As a method for removing moisture, any method such as spray drying, spray freezing, lyophilization, freeze pulverization, extrusion granulation can be selected and performed. The obtained creaming powder may be subjected to classification, granulation, pulverization and the like, if necessary.
 香料としては、コーヒー香料、ミルク香料等が挙げられる。 Examples of flavors include coffee flavors and milk flavors.
 酸化防止剤としては、例えば、ビタミンC(アスコルビン酸)、ビタミンE(トコフェロール)、BHT(ジブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)、エリソルビン酸ナトリウム、没食子酸プロピル、亜硫酸ナトリウム、二酸化硫黄、クロロゲン酸、カテキン等が挙げられる。 Examples of the antioxidant include vitamin C (ascorbic acid), vitamin E (tocopherol), BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), sodium erythorbate, propyl gallate, sodium sulfite, sulfur dioxide, chlorogen Examples include acids and catechins.
 pH調整剤としては、例えば、クエン酸、コハク酸、酢酸、乳酸、リンゴ酸、酒石酸。グルコン酸等の有機酸や、リン酸等の無機酸、炭酸カリウム、炭酸水素ナトリウム(重炭酸ナトリウム)、二酸化炭素等が挙げられる。 Examples of pH adjusters include citric acid, succinic acid, acetic acid, lactic acid, malic acid, and tartaric acid. Examples thereof include organic acids such as gluconic acid, inorganic acids such as phosphoric acid, potassium carbonate, sodium bicarbonate (sodium bicarbonate), and carbon dioxide.
 増粘剤としては、デキストリン等の澱粉分解物、麦芽糖、トレハロース等の糖類、難消化性デキストリン、ペクチン、グアーガム、カラギーナン等の食物繊維、カゼイン等のタンパク質等が挙げられる。 Examples of thickeners include starch degradation products such as dextrin, sugars such as maltose and trehalose, dietary fibers such as indigestible dextrin, pectin, guar gum and carrageenan, and proteins such as casein.
 乳化剤としては、例えば、モノグリセライド、ジグリセライド、有機酸モノグリセライド、ポリグリセリンエステル等のグリセリン脂肪酸エステル系乳化剤;ソルビタンモノステアレート、ソルビタンモノオレエート等のソルビタン脂肪酸エステル系乳化剤;プロピレングリコールモノステアレート、プロピレングリコールモノパルミテート、プロピレングリコールオレエート等のプロピレングリコール脂肪酸エステル系乳化剤;ショ糖ステアリン酸エステル、ショ糖パルミチン酸エステル、ショ糖オレイン酸エステル等のシュガーエステル系乳化剤;レシチン、レシチン酵素分解物等のレシチン系乳化剤等が挙げられる。 Examples of the emulsifier include glycerin fatty acid ester-based emulsifiers such as monoglyceride, diglyceride, organic acid monoglyceride, and polyglycerol ester; sorbitan fatty acid ester-based emulsifiers such as sorbitan monostearate and sorbitan monooleate; propylene glycol monostearate, propylene glycol Propylene glycol fatty acid ester emulsifiers such as monopalmitate and propylene glycol oleate; Sugar ester emulsifiers such as sucrose stearate, sucrose palmitate and sucrose oleate; lecithin such as lecithin and lecithin enzyme degradation products And emulsifiers.
 コーヒー抽出液にその他の原料を混合する順番は特に限定されるものではなく、全ての成分を同時にコーヒー抽出液に添加して混合してもよく、順次添加して混合させてもよい。 The order in which the other ingredients are mixed with the coffee extract is not particularly limited, and all the components may be added to the coffee extract at the same time, or may be added and mixed sequentially.
<IC飲料用組成物の製造方法>
 IC飲料用組成物の原料とするためには、コーヒー抽出液を予め濃縮又は粉末化しておくことが好ましい。得られたIC飲料用組成物の保存安定性が良好であるため、本発明に係るIC飲料用組成物の製造方法においては、コーヒー抽出液を粉末化したもの(インスタントコーヒー粉末)を原料とすることが好ましい。
<Method for producing IC beverage composition>
In order to use as a raw material for the IC beverage composition, the coffee extract is preferably concentrated or powdered in advance. Since the storage stability of the obtained IC beverage composition is good, in the method for producing an IC beverage composition according to the present invention, a powdered coffee extract (instant coffee powder) is used as a raw material. It is preferable.
 コーヒー抽出液の濃縮処理は、コーヒー飲料の製造方法で列挙された方法と同様にして行うことができる。
 コーヒー抽出液の粉末化は、コーヒー抽出液を乾燥することにより得られる。抽出物の乾燥方法としては、凍結乾燥、噴霧乾燥、真空乾燥等が挙げられる。また、コーヒー豆からの抽出物は、乾燥前に、必要に応じて濃縮してもよい。
Concentration treatment of the coffee extract can be performed in the same manner as the methods listed in the coffee beverage production method.
The pulverization of the coffee extract can be obtained by drying the coffee extract. Examples of the method for drying the extract include freeze drying, spray drying, and vacuum drying. Moreover, you may concentrate the extract from coffee beans as needed before drying.
 IC飲料用組成物は、コーヒー抽出液の濃縮液又は粉末を、その他の原料と混合することによって製造される。混合の順番は特に限定されるものではなく、全ての原料を同時に混合してもよく、順次混合させてもよい。 The IC beverage composition is produced by mixing a concentrate or powder of coffee extract with other raw materials. The order of mixing is not particularly limited, and all raw materials may be mixed simultaneously or sequentially.
 全ての原料が粉末の場合には、全ての原料をそのまま混合することによって、粉末のIC飲料用組成物が製造される。一方で、全ての原料が液状の場合には、全ての原料をそのまま混合することによって、液状のIC飲料用組成物が製造される。 When all the raw materials are powders, a powdered IC beverage composition is produced by mixing all the raw materials as they are. On the other hand, when all raw materials are liquid, a liquid IC beverage composition is produced by mixing all raw materials as they are.
 粉末原料と液状の原料を用いる場合、粉末の原料を全て予め混合し、得られた混合粉末に、液状の原料の混合液を噴霧して乾燥させることによって、粉末のIC飲料用組成物が製造される。また、液状の原料の混合液に、粉末の原料を溶解又は分散させることによって、液状のIC飲料用組成物が製造される。 When powder raw material and liquid raw material are used, the powder raw material composition is prepared by mixing all powder raw materials in advance and spraying and drying the liquid mixture of liquid raw materials to the obtained mixed powder. Is done. Moreover, a liquid IC beverage composition is produced by dissolving or dispersing a powder raw material in a liquid mixture of liquid raw materials.
 原料としてコーヒー抽出液の濃縮液を用いる場合には、コーヒー抽出液の濃縮液にその他の原料を添加し、溶解させることによって、液体のIC飲料用組成物が製造される。また、粉末のIC飲料用組成物を製造した後、水や牛乳等に溶解させることによっても、液体のIC飲料用組成物が製造される。 When using a concentrate of coffee extract as a raw material, a liquid IC beverage composition is produced by adding and dissolving other raw materials to the concentrate of coffee extract. Moreover, a liquid IC beverage composition is also produced by producing a powdered IC beverage composition and then dissolving it in water or milk.
 IC飲料用組成物に添加されるその他の原料としては、甘味料、クリーミングパウダー、乳原料、香料、酸化防止剤、pH調整剤、増粘剤、乳化剤、賦形剤、結合剤、流動性改良剤(固結防止剤)等が挙げられる。甘味料、クリーミングパウダー、乳原料、香料、酸化防止剤、pH調整剤、増粘剤、及び乳化剤としては、コーヒー飲料の製造方法で列挙されたものと同様のものを用いることができる。 Other ingredients added to the IC beverage composition include sweeteners, creaming powders, dairy ingredients, fragrances, antioxidants, pH adjusters, thickeners, emulsifiers, excipients, binders, and fluidity improvements. Agents (anti-caking agents) and the like. As the sweetener, creaming powder, milk raw material, fragrance, antioxidant, pH adjuster, thickener, and emulsifier, the same ones listed in the coffee beverage production method can be used.
 賦形剤や結合剤としては、デキストリン等の澱粉分解物、麦芽糖、トレハロース等の糖類、難消化性デキストリン等の食物繊維、カゼイン等のタンパク質等が挙げられる。なお、賦形剤や結合剤は、造粒時の担体としても用いられる。 Examples of excipients and binders include starch degradation products such as dextrin, sugars such as maltose and trehalose, dietary fibers such as indigestible dextrin, and proteins such as casein. The excipient and binder are also used as a carrier during granulation.
 流動性改良剤としては、微粒酸化ケイ素、第三リン酸カルシウム等の加工用製剤が用いられてもよい。 As the fluidity improver, processing preparations such as fine silicon oxide and tricalcium phosphate may be used.
 本発明に係るIC飲料用組成物は、飲用1杯分を小パウチなどに個包装したり、使用時に容器から振り出したりスプーンで取り出したりして使用するように瓶などの容器に数杯分をまとめて包装して商品として供給することもできる。 The IC beverage composition according to the present invention can be used to wrap several drinks in a container such as a bottle so that one cup of drink can be individually wrapped in a small pouch, or can be shaken out of the container or taken out with a spoon when used. It can also be packaged and supplied as a product.
 個包装タイプとは、スティック状アルミパウチ、ワンポーションカップなどにコーヒー飲料1杯分の中身を充填包装するものであり、容器を開けて指で押し出すなどの方法で中身を取り出すことができる。個包装タイプは、1杯分が密閉包装されているので取り扱いも簡単で、衛生的であるという利点を有する。 The individual wrapping type is to pack and wrap the contents of a cup of coffee in a stick-shaped aluminum pouch, one-portion cup, etc., and the contents can be taken out by opening the container and pushing it out with your finger. The individual wrapping type has an advantage that it is easy to handle and hygienic because one cup is hermetically sealed.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下、特に記載のない限り、「%」は「質量%」を意味する。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. Hereinafter, “%” means “% by mass” unless otherwise specified.
[実施例1]
 様々なタンパク質加水分解物(ペプチド)にコーヒー生豆を浸漬させた後に焙煎した焙煎コーヒー豆からコーヒー抽出液を調製し、これの苦味を評価した。
[Example 1]
Coffee extracts were prepared from roasted coffee beans that had been roasted after immersing green coffee beans in various protein hydrolysates (peptides), and their bitterness was evaluated.
<生豆のペプチド処理と焙煎コーヒー豆の調製>
 表1に記載の市販の各ペプチド8gを100gの水に溶解させたペプチド溶液を調製し、当該ペプチド溶液を、コーヒー生豆400gを投入した1L容ガラス瓶に注いだ。当該ガラス瓶を15分おきに回転させながら、80℃で2時間、コーヒー生豆をペプチド溶液に浸漬させた。その後、当該コーヒー生豆を当該ガラス瓶から出してアルミトレイに並べて計量し、400gになるまで80℃で乾燥させた。乾燥させたコーヒー生豆を焙煎機でローストカラーが5.0になるまで焙煎させ、焙煎コーヒー豆を得た。また、ペプチドに代えて、アミノ酸(グリシン又はプロリン)を用いて同様にして浸漬処理し、焙煎コーヒー豆を得た。
<Peptide treatment of green beans and preparation of roasted coffee beans>
A peptide solution prepared by dissolving 8 g of each commercially available peptide shown in Table 1 in 100 g of water was prepared, and the peptide solution was poured into a 1 L glass bottle charged with 400 g of green coffee beans. While the glass bottle was rotated every 15 minutes, green coffee beans were immersed in the peptide solution at 80 ° C. for 2 hours. Thereafter, the green coffee beans were taken out of the glass bottle, placed in an aluminum tray, weighed, and dried at 80 ° C. until 400 g was reached. The dried green coffee beans were roasted with a roasting machine until the roast color reached 5.0, to obtain roasted coffee beans. Moreover, it replaced with the peptide and the immersion process was similarly performed using the amino acid (glycine or proline), and the roasted coffee bean was obtained.
<コーヒー抽出液の苦味強度の評価>
 焙煎コーヒー豆42gにお湯100gを投入し、20~30秒間蒸らした後、さらにお湯700gを投入し、コーヒー抽出液を得た。ペプチド溶液に浸漬させていないコーヒー生豆を焙煎した焙煎コーヒー豆から同様にしてコーヒー抽出液を得、これをコントロールとして、各コーヒー抽出液の苦味強度の強弱を評価した。苦味強度は、トレーニングされた専門パネル5名により、4段階(4点が最も苦味が強く、1点が苦味が弱い)で評価し、コントロールを1点とした。評価結果を表1に示す。
<Evaluation of bitterness intensity of coffee extract>
100 g of hot water was added to 42 g of roasted coffee beans, steamed for 20 to 30 seconds, and then 700 g of hot water was added to obtain a coffee extract. A coffee extract was obtained in the same manner from roasted coffee beans obtained by roasting green coffee beans that were not immersed in the peptide solution. Using this as a control, the strength of the bitterness intensity of each coffee extract was evaluated. The bitterness intensity was evaluated by 5 trained professional panels in 4 grades (4 points were the strongest bitterness and 1 point was the weakest bitterness), and the control was 1 point. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 苦味評価の結果、ペプチド浸漬サンプルはいずれも未処理サンプルに比べて苦味が強くなることが確認された。また、魚コラーゲンペプチドA~Dを比較したところ、重量平均分子量が小さいほど、得られるコーヒー抽出席の苦味が強い傾向が確認された。この傾向は、豚コラーゲンペプチドA~Cにおいても観察された。また、小麦ペプチドA及びB、乳ペプチドA、トウモロコシペプチドAで処理した場合にも、苦味強化の効果は確認された。 As a result of bitterness evaluation, it was confirmed that all of the peptide-immersed samples had stronger bitterness than the untreated samples. Further, when the fish collagen peptides A to D were compared, it was confirmed that the smaller the weight average molecular weight, the stronger the bitter taste of the obtained coffee extraction seat. This tendency was also observed in porcine collagen peptides AC. Also, when treated with wheat peptides A and B, milk peptide A, and corn peptide A, the effect of enhancing bitterness was confirmed.
 各ペプチドについて、コーヒー生豆を浸漬させるペプチド溶液の濃度をふってコーヒー生豆への吸収(又は付着)量を変動させたところ、ペプチド溶液の濃度が高くなるほど得られたコーヒー抽出液の苦味は強かった。すなわち、それぞれのペプチドによる苦味強化は、ペプチドのコーヒー生豆への吸収(又は付着)量が多いほど強くなることが確認された。 For each peptide, when the amount of absorption (or adhesion) to the green coffee beans was varied by varying the concentration of the peptide solution in which the green coffee beans were immersed, the bitterness of the coffee extract obtained as the peptide solution concentration increased It was strong. That is, it was confirmed that the bitterness enhancement by each peptide becomes stronger as the amount of absorption (or adhesion) of the peptide to green coffee beans increases.
<ペプチドのアミノ酸組成と苦味強化能>
 コーヒー中のDKPはプロリンを含む場合が多いことが報告されている(非特許文献1)。そこで、苦味強化能が高かった魚コラーゲンペプチドA~D、豚コラーゲンペプチドA~Cと、小麦グルタミンペプチドについて、アミノ酸組成を調べ、プロリンの含有比率(%)が苦味強化能の強さと相関するか調べた。この結果、魚コラーゲンペプチドと豚コラーゲンペプチドと小麦グルタミンペプチドのいずれでも、全アミノ酸残基に対するプロリンの含有比率が10~15%であり、差はなかった。一方で、ヒドロキシプロリン(Hypro)及びヒドロキシリジン(Hylys)は、小麦グルタミンペプチドには全く含まれていなかったのに対して、魚コラーゲンペプチドA~D、豚コラーゲンペプチドA~Cには全て含まれており、特に、全アミノ酸残基に対するヒドロキシプロリンの含有比率は10~20%と高かった。
<Amino acid composition and bitterness enhancing ability of peptides>
It has been reported that DKP in coffee often contains proline (Non-patent Document 1). Therefore, the amino acid composition of fish collagen peptides A to D, porcine collagen peptides A to C, and wheat glutamine peptides, which had high bitterness enhancing ability, was examined, and whether the proline content (%) correlates with the strength of bitterness enhancing ability. Examined. As a result, the content ratio of proline with respect to all amino acid residues was 10 to 15% in any of the fish collagen peptide, porcine collagen peptide and wheat glutamine peptide, and there was no difference. On the other hand, hydroxyproline (Hypro) and hydroxylysine (Hylys) were not contained in the wheat glutamine peptide at all, whereas they were all contained in the fish collagen peptides A to D and the porcine collagen peptides A to C. In particular, the content ratio of hydroxyproline to all amino acid residues was as high as 10 to 20%.
<ペプチド処理と焙煎によるDKPの産生>
 魚コラーゲンペプチドA~C、豚コラーゲンペプチドAを用いて、同様にしてコーヒー生豆に浸漬処理し、コーヒー生豆に対して各ペプチドを1質量%、2質量%、又は5質量%添加した。浸漬処理後のコーヒー生豆を焙煎し、得られた焙煎コーヒー豆中のDKPの含有量を調べ、ペプチドの浸漬処理と相関するかを調べた。コントロールとして、浸漬処理を行わなかったコーヒー生豆を焙煎した焙煎コーヒー豆(未処理サンプル)と、水で浸漬処理したコーヒー生豆を焙煎した焙煎コーヒー豆(水処理サンプル)についてもDKPの含有量を調べた。
<Production of DKP by peptide treatment and roasting>
Fish collagen peptides A to C and porcine collagen peptide A were similarly used to soak in green coffee beans, and each peptide was added at 1% by mass, 2% by mass, or 5% by mass with respect to green coffee beans. The green coffee beans after the immersion treatment were roasted, and the content of DKP in the obtained roasted coffee beans was examined to examine whether it correlated with the peptide immersion treatment. As a control, roasted coffee beans (untreated sample) roasted from green coffee beans that had not been dipped, and roasted coffee beans (water-treated sample) roasted from green coffee beans that had been dipped in water The content of DKP was examined.
 DKPのうち、Cyclo(-Leu-Pro)(ロイシンとプロリンのジペプチドの環状体。以下同様)、Cyclo(-Phe-Pro)、Cyclo(-Pro-Val)、及びCyclo(-Phe-Hypro)について、焙煎コーヒー豆中の含有量を調べた。各DKPの検出及び定量は、GINZらの方法(非特許文献2参照。)の方法に準じて行った。分析条件の詳細は下記の通りである。 Among DKPs, Cyclo (-Leu-Pro) (cyclic form of dipeptide of leucine and proline, the same applies below), Cyclo (-Phe-Pro), Cyclo (-Pro-Val), and Cyclo (-Phe-Hypro) The content in roasted coffee beans was examined. Each DKP was detected and quantified according to the method of GINZ et al. (See Non-Patent Document 2). Details of the analysis conditions are as follows.
 分析用サンプルは、コーヒー抽出液を1/100希釈(Brix値が0.01程度)し、0.2μmフィルターを通過させて調製した。この分析サンプルは、バイアル瓶に入れ、分析を行った。HPLC(高速液体クロマトグラフィ)条件を以下に示す。また、MS条件は表3に示す通りに設定した。 The sample for analysis was prepared by diluting the coffee extract 1/100 (Brix value is about 0.01) and passing through a 0.2 μm filter. This analysis sample was put in a vial and analyzed. The HPLC (high performance liquid chromatography) conditions are shown below. The MS conditions were set as shown in Table 3.
<HPLC条件>
HPLC装置:アジレント1260インフィニティ(アジレント・テクノロジー社製)
カラム:Acquity BEH C18 1.7μm(日本ウォーターズ社製)
溶離液A:0.1質量%ギ酸
溶離液B:アセトニトリル
グラジエント条件:表2参照
カラム流量:300μL/分
カラム温度:40℃
インジェクション量:5μL
サンプル温度:15℃
<HPLC conditions>
HPLC apparatus: Agilent 1260 Infinity (manufactured by Agilent Technologies)
Column: Acquity BEH C18 1.7 μm (Nippon Waters)
Eluent A: 0.1% by mass formic acid Eluent B: Acetonitrile Gradient condition: see Table 2 Column flow rate: 300 μL / min Column temperature: 40 ° C.
Injection volume: 5μL
Sample temperature: 15 ° C
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果、Cyclo(-Leu-Pro)、Cyclo(-Phe-Pro)、及びCyclo(-Pro-Val)は、いずれもペプチドの生豆への添加量や苦味強度との相関が無く、ペプチド浸漬による苦味強化とは関連が無いと考えられた。一方で、Cyclo(-Phe-Hypro)は、図1に示すように、未処理サンプルや水処理サンプルでは検出されず、魚コラーゲンペプチドA~C及び豚コラーゲンペプチドAで浸漬処理したサンプルでは、生豆に添加したぺプチドの量が多くなるほど、Cyclo(-Phe-Hypro)の含有量が多くなる傾向が観察された。すなわち、焙煎コーヒー豆中のCyclo(-Phe-Hypro)の含有量は、生豆へ添加したペプチドの量との相関が大きく、特に苦味の強い魚コラーゲンペプチドBで処理した焙煎コーヒー豆では高値であることから、ヒドロキシプロリンを含むペプチドからDKPが生成し、苦味強化に寄与していると考えられた。 As a result, all of Cyclo (-Leu-Pro), Cyclo (-Phe-Pro), and Cyclo (-Pro-Val) have no correlation with the amount of peptide added to green beans and the bitterness intensity. It was thought that there was no relation to the bitterness enhancement by. On the other hand, as shown in FIG. 1, Cyclo (-Phe-Hypro) is not detected in untreated samples or water-treated samples, but in samples immersed in fish collagen peptides AC and porcine collagen peptide A, It was observed that as the amount of peptide added to the beans increased, the content of Cyclo (-Phe-Hypro) increased. That is, the content of Cyclo (-Phe-Hypro) in roasted coffee beans has a large correlation with the amount of peptide added to green beans, especially in roasted coffee beans treated with fish collagen peptide B, which has a strong bitter taste. Since it was high value, it was thought that DKP produced | generated from the peptide containing a hydroxyproline and contributed to bitterness enhancement.
[実施例2]
 実施例1で用いた魚コラーゲンペプチドDを加水分解処理し、低分子化させることにより、苦味強化能がどのような影響を受けるかを調べた。
[Example 2]
It was examined how the bitterness enhancing ability is affected by hydrolyzing the fish collagen peptide D used in Example 1 to reduce the molecular weight.
 ペプチドの加水分解処理は、表4に記載の市販の14種類のタンパク質分解酵素を用いた酵素処理で行った。表中、Pro1、Pro6、及びPD6の酵素は長瀬産業社製であり、その他の酵素は天野エンザイム社製である。 The peptide hydrolysis treatment was performed by enzymatic treatment using 14 types of commercially available proteolytic enzymes listed in Table 4. In the table, Pro1, Pro6, and PD6 enzymes are manufactured by Nagase Sangyo Co., Ltd., and other enzymes are manufactured by Amano Enzyme.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次いで、各タンパク質分解酵素の分解能力検証のため、ペプチド溶液(8質量%)に対して0.1%の酵素濃度となるよう添加し、40℃で24時間処理した。酵素処理後のペプチド溶液中のペプチドの分子数をOPA法により測定し、分解度を調べた。ここで、OPA法は、タンパク質のN末端を定量する手法であり、ペプチドのN末端にOPAが結合すると340nmに吸収波長をもつ物質が生成される。つまり、各ペプチド溶液の340nmの吸光度値(A340値)は、それらのペプチド溶液中に存在するペプチドの分子数の指標となり、A340値が高いほど、ペプチドの分子数が多く、タンパク質分解酵素によるペプチドの分解が効率よく行われたことを意味する。この結果、タンパク分解度(酵素未処理のA340値を1とした場合の各ペプチド溶液の相対A340値)が3以上であった酵素は、PD1~6であり、いずれもペプチダーゼであった。 Subsequently, in order to verify the degradation ability of each proteolytic enzyme, it was added to a peptide solution (8% by mass) so as to have an enzyme concentration of 0.1%, and treated at 40 ° C. for 24 hours. The number of peptides in the peptide solution after the enzyme treatment was measured by the OPA method, and the degree of degradation was examined. Here, the OPA method is a method for quantifying the N-terminus of a protein. When OPA binds to the N-terminus of a peptide, a substance having an absorption wavelength at 340 nm is generated. That is, the absorbance value (A 340 value) at 340 nm of each peptide solution is an index of the number of peptide molecules present in those peptide solutions, and the higher the A 340 value, the greater the number of peptide molecules. It means that the peptide was efficiently decomposed by. As a result, enzymes having a degree of proteolysis (relative A 340 value of each peptide solution when the A 340 value of the untreated enzyme was set to 1) were 3 or more were PD1 to 6 and all were peptidases. .
 そこで、PD1~6を表5の組み合わせで用いて魚コラーゲンペプチドDを処理し、得られたペプチドの加水分解物を魚コラーゲンペプチドDに代えて用いた以外は実施例1と同様にして、コーヒー生豆を浸漬させた後に乾燥させて焙煎し、得られた焙煎コーヒー豆からコーヒー抽出物を得た。実施例1と同様にして、得られたコーヒー抽出物の苦味の強度を判断した。評価結果を表5に示す。 Thus, the coffee collagen peptide D was treated using PD1-6 in the combinations shown in Table 5, and the hydrolyzate of the obtained peptide was used in place of the fish collagen peptide D. The green beans were dipped and then dried and roasted, and a coffee extract was obtained from the obtained roasted coffee beans. The bitterness intensity of the obtained coffee extract was determined in the same manner as in Example 1. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 苦味強度の評価の結果、PD1~6の単体処理と比較すると、PD5及びPD6で分解したペプチドで浸漬させて得たコーヒー抽出液の苦味強度が強いことが分かった。また、2種の組み合わせでは、PD5及びPD6の組み合わせで加水分解処理されたペプチドが最も苦味を強化することが確認された。また、PD5及びPD6の組み合わせで加水分解したペプチドで処理したコーヒー生豆から得たコーヒー抽出液は、PD1~6の全てを用いて加水分解したペプチドで処理したコーヒー生豆から得たコーヒー抽出液よりも、苦味が強かった。一方で、コーヒー生豆をPD1~4を用いて加水分解したペプチドで処理したサンプルでは、PD1~6で加水分解したペプチドで処理したサンプルよりも苦味強度が小さく、焙煎時のDKPの産生量がより少なかったことが示唆された。これらの結果から、PD5及びPD6の組み合わせで加水分解処理して得られたペプチドは、焙煎時にDKPの産生効率が高く好ましいことがわかった。 As a result of evaluation of the bitterness intensity, it was found that the bitterness intensity of the coffee extract obtained by soaking with the peptides decomposed by PD5 and PD6 was stronger than the single treatment of PD1 to PD6. Moreover, it was confirmed that the peptide which hydrolyzed with the combination of PD5 and PD6 strengthened bitterness most by two types of combinations. The coffee extract obtained from green coffee beans treated with a peptide hydrolyzed with a combination of PD5 and PD6 is a coffee extract obtained from green coffee beans treated with a peptide hydrolyzed using all of PD1-6. Bitter taste was stronger. On the other hand, samples of green coffee beans treated with peptides hydrolyzed using PD1-4 have lower bitterness strength than samples treated with peptides hydrolyzed with PD1-6, and the amount of DKP produced during roasting It was suggested that there were fewer. From these results, it was found that a peptide obtained by hydrolysis treatment with a combination of PD5 and PD6 has high DKP production efficiency during roasting and is preferable.
[実施例3]
 生豆に対するペプチド浸漬処理による苦味強化能に対する焙煎度の影響を調べた。
[Example 3]
The effect of the roasting degree on the bitterness enhancing ability of the raw beans by the peptide dipping treatment was investigated.
 まず、実施例1で用いた魚コラーゲンペプチドCを、実施例2で用いたペプチダーゼPD5及びPD6によって、実施例2と同様にして加水分解した。実施例1と同様にして、魚コラーゲンペプチドCの加水分解物の溶液を調製し、これにコーヒー生豆を浸漬させて乾燥させることにより、当該加水分解物をコーヒー生豆の重量当たり5、7、又は10質量%添加した。なお、1回の浸漬処理でのペプチドの浸漬量は7質量%が上限であったが、10質量%の浸漬は、1回目の浸漬処理の後に乾燥させた生豆を再びペプチド溶液に浸漬させることで作製した。加水分解物を添加したコーヒー生豆を実施例1と同様にして焙煎した。焙煎度は、ローストカラーが6.0、5.0、及び4.0の3カラー設定した。 First, fish collagen peptide C used in Example 1 was hydrolyzed in the same manner as Example 2 with peptidases PD5 and PD6 used in Example 2. In the same manner as in Example 1, a solution of a hydrolyzate of fish collagen peptide C was prepared, and green coffee beans were dipped in the solution and dried, so that the hydrolyzate was 5 or 7 per weight of green coffee beans. Or 10% by mass. In addition, although the upper limit of the amount of peptide immersion in one immersion treatment was 7% by mass, the 10% by mass immersion again immerses the green beans dried after the first immersion treatment in the peptide solution. It was produced by. The coffee beans to which the hydrolyzate was added were roasted in the same manner as in Example 1. The roasting degree was set to three colors of 6.0, 5.0, and 4.0 for the roast color.
 各焙煎コーヒー豆から実施例1と同様にしてコーヒー抽出液を調製し、これをブラックコーヒー飲料とした。また、このコーヒー抽出液に飲料の最終濃度が20質量%となるように牛乳を入れたミルクコーヒー飲料も調製した。これらの飲料について、苦味強度の強弱を評価した。苦味強度は、ペプチドの浸漬処理をしていない生豆から調製されたコーヒー抽出液をコントロールとし、各コーヒー抽出液の苦味強度がコントロールと同程度になるように水で何倍希釈すればよいかを求め、この水の希釈倍率を苦味強度とした。例えば、ある焙煎コーヒー豆のコーヒー抽出液の2倍希釈液(=コーヒー抽出液の使用量は0.5倍)が、コントロールのコーヒー抽出液同じ苦味の強度であった場合に、当該焙煎コーヒー豆のコーヒー抽出液の苦味強度はコントロールの2倍と評価した。 A coffee extract was prepared from each roasted coffee bean in the same manner as in Example 1, and this was used as a black coffee beverage. In addition, a milk coffee beverage in which milk was added to the coffee extract so that the final concentration of the beverage was 20% by mass was also prepared. About these drinks, the strength of bitterness intensity was evaluated. For bitterness intensity, how many times should you dilute with water so that the bitterness intensity of each coffee extract is the same as the control, using the coffee extract prepared from green beans that have not been soaked with peptides? The dilution ratio of this water was taken as the bitterness intensity. For example, when a two-fold dilution of a coffee extract of a roasted coffee bean (= the amount of coffee extract used is 0.5 times) has the same bitterness intensity as the control coffee extract, the roast The bitterness intensity of the coffee extract of coffee beans was evaluated as twice that of the control.
 各焙煎コーヒー豆から調製されたブラックコーヒー飲料とミルクコーヒー飲料について、苦味強度の評価結果を表6に示す。表中、「ペプチドX%添加豆」は、浸漬処理により生豆の重量当たりX質量%のペプチドを添加した生豆の焙煎コーヒー豆から調製されたコーヒー抽出液から調製されたコーヒー飲料を示す。 Table 6 shows the evaluation results of bitterness intensity for black coffee drinks and milk coffee drinks prepared from each roasted coffee bean. In the table, “Peptide X% added bean” indicates a coffee beverage prepared from a coffee extract prepared from roasted coffee beans of green beans added with X mass% peptide per weight of green beans by dipping treatment. .
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ブラックコーヒー飲料とミルクコーヒー飲料のどちらも、ペプチド添加量依存的に苦味強度が大きくなり、ペプチド10%浸漬時は全てのカラー帯において2倍の苦味強度が確認された。一度に浸漬可能な最大量である7%浸漬時は、最大で2.22倍の苦味強度を持つことが確認された。なお、コントロールに対して苦味強度が2倍であったペプチド10%添加豆から調製されたブラックコーヒー飲料について、渋味、酸味、香り、ソリッド感をそれぞれコントロールのブラックコーヒー飲料と比較したところ、いずれもほぼ同程度であった。すなわち、生豆へのペプチド浸漬処理によって、コーヒー飲料の苦味強度は強くなるが、渋味、酸味、香り、ソリッド感はあまり影響を受けなかった。 Both the black coffee drink and the milk coffee drink had a bitterness intensity that increased depending on the amount of peptide added, and a double bitterness intensity was confirmed in all color bands when the peptide was immersed in 10%. It was confirmed that at the time of 7% immersion, which is the maximum amount that can be immersed at one time, the bitterness intensity is 2.22 times the maximum. In addition, about the black coffee drink prepared from the 10% peptide-added beans with a bitterness intensity twice that of the control, the astringency, sourness, aroma and solid feeling were compared with the control black coffee drink. Was almost the same level. That is, although the bitterness intensity | strength of a coffee drink became strong by the peptide immersion process to green beans, astringency, sourness, aroma, and a solid feeling were not influenced so much.
[実施例4]
 ペプチドにコーヒー生豆を浸漬させた後に焙煎した焙煎コーヒー豆からコーヒー抽出液を調製し、これからインスタントコーヒー粉末を作製した。
[Example 4]
A coffee extract was prepared from roasted coffee beans that had been roasted after immersing green coffee beans in the peptide, and instant coffee powder was prepared therefrom.
<パイロットプラント(PP)によるインスタントコーヒー粉末の作製>
 実施例1と同様にして、魚コラーゲンペプチドCのペプチド溶液にPD5及びPD6を添加してペプチドの分解処理をし、これにコーヒー生豆を浸漬させて乾燥させた後、焙煎して焙煎コーヒー豆を得た。この焙煎コーヒー豆から実施例1と同様にしてコーヒー抽出液を調製し、これを粉末化してインスタントコーヒー粉末(ペプチド処理-pp)を作製した。対照として、ペプチド浸漬処理をしていないコーヒー生豆から同様にしてインスタントコーヒー粉末(未処理-pp)を作製した。
<Preparation of instant coffee powder by pilot plant (PP)>
In the same manner as in Example 1, PD5 and PD6 were added to a peptide solution of fish collagen peptide C to decompose the peptide, and green coffee beans were dipped in this and dried, then roasted and roasted. I got coffee beans. A coffee extract was prepared from the roasted coffee beans in the same manner as in Example 1, and this was pulverized to produce an instant coffee powder (peptide treatment-pp). As a control, instant coffee powder (untreated-pp) was prepared in the same manner from green coffee beans that had not been subjected to peptide immersion treatment.
<コマーシャルプラント(CP)によるインスタントコーヒー粉末の作製>
 まず、分子量分布が、魚コラーゲンペプチドCのPD5及びPD6による処理物と同等になるように、魚コラーゲンペプチドを調製した。
 次いで、実施例2と同様にして、調製したペプチドのペプチド溶液を調製し、これにコーヒー生豆を浸漬させて乾燥させた後、焙煎して焙煎コーヒー豆を得た。この焙煎コーヒー豆から、175℃で連続式多段抽出によりコーヒー抽出液を調製し、これを粉末化してインスタントコーヒー粉末(ペプチド処理-cp)を作製した。対照として、ペプチド浸漬処理をしていないコーヒー生豆から同様にしてインスタントコーヒー粉末(未処理-cp)を作製した。
<Preparation of instant coffee powder by commercial plant (CP)>
First, a fish collagen peptide was prepared so that the molecular weight distribution was equivalent to that of the fish collagen peptide C treated with PD5 and PD6.
Next, in the same manner as in Example 2, a peptide solution of the prepared peptide was prepared, and green coffee beans were immersed in the solution and dried, followed by roasting to obtain roasted coffee beans. A coffee extract was prepared from the roasted coffee beans by continuous multi-stage extraction at 175 ° C., and this was pulverized to produce an instant coffee powder (peptide treatment-cp). As a control, instant coffee powder (untreated-cp) was prepared in the same manner from green coffee beans that had not been subjected to peptide immersion treatment.
<DKP含有量の測定>
 各インスタントコーヒー粉末1gをそれぞれ100mLのお湯に溶解させて、インスタントコーヒー飲料を得た。これらのインスタントコーヒー飲料のDKPの含有量を、実施例1と同様にして調べた。4種のDKP(Cyclo(-Leu-Pro)、Cyclo(-Phe-Pro)、Cyclo(-Pro-Val)、及びCyclo(-Phe-Hypro))の含有量の測定結果を表7に示す。また、表中の括弧内の数値は、未処理のコーヒー生豆から得た対照のインスタントコーヒー飲料の含有量を1とした相対含有量である。
<Measurement of DKP content>
1 g of each instant coffee powder was dissolved in 100 mL of hot water to obtain an instant coffee beverage. The content of DKP in these instant coffee beverages was examined in the same manner as in Example 1. Table 7 shows the measurement results of the contents of the four DKPs (Cyclo (-Leu-Pro), Cyclo (-Phe-Pro), Cyclo (-Pro-Val), and Cyclo (-Phe-Hypro)). Moreover, the numerical value in the parenthesis in the table is the relative content with the content of the instant coffee coffee as a reference obtained from untreated green coffee beans as 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、パイロットプラントにより得られたインスタントコーヒー粉末と、コマーシャルプラントにより得られたインスタントコーヒー粉末は、いずれも、ペプチド浸漬処理により、苦味強化能の強いCyclo(-Phe-Hypro)の含有量が顕著に増大していた。 As shown in Table 7, the instant coffee powder obtained by the pilot plant and the instant coffee powder obtained by the commercial plant are both made of Cyclo (-Phe-Hypro), which has a strong bitterness enhancing ability by the peptide dipping treatment. The content was significantly increased.
<アロマ分析>
 各インスタントコーヒー飲料のアロマ成分のうち、コーヒーに特徴的ないわゆるキーアロマ成分の20種について、飲料中の含有量を測定した。各アロマ成分の含有量は、ヘッドスペース-ガスクロマトグラフィー質量分析法により得られたクロマトグラム上のピーク面積を、予め標準試薬を用いて作成していた外部検量線に照らして、各化合物の濃度を測定した。
<Aroma analysis>
Among the aroma components of each instant coffee beverage, the content in the beverage was measured for 20 types of so-called key aroma components characteristic of coffee. The content of each aroma component is determined by comparing the peak area on the chromatogram obtained by headspace-gas chromatography mass spectrometry with the concentration of each compound in light of an external calibration curve prepared in advance using a standard reagent. Was measured.
 各アロマ成分について、未処理のコーヒー生豆から得た対照のインスタントコーヒー飲料の含有量を1とした相対含有量を求めたところ、8種のアロマ成分(2-Ethylpyrazine、2,3,5-Trimethylpyrazine、2-Ethyl-3,5-dimethylpyrazine、2-Furfurylmethylsulfide、2-Acetylpyridine、5-Methyl-5H-6,7-dihydrocyclopentapyrazine、2-Phenylacetaldehyde、及びIndole)が、相対含有量が大きかった。これらの8種のアロマ成分の相対含有量の測定結果を表8に示す。 For each aroma component, the relative content of the content of the control instant coffee beverage obtained from untreated green coffee beans was determined as 1. As a result, eight aroma components (2-Ethylpyrazine, 2,3,5- Trimethylpyrazine, 2-Ethyl-3,5-dimethylpyrazine, 2-Furfurylmethylsulfide, 2-Acetylpyridine, 5-Methyl-5H-6,7-dihydrocyclopentapyrazine, 2-Phenylacetaldehyde, and Indole) had a large relative content. Table 8 shows the measurement results of the relative contents of these eight kinds of aroma components.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[実施例5]
 酵素処理したペプチドにコーヒー生豆を浸漬させた後に焙煎した焙煎コーヒー豆からコーヒー抽出液を調製し、含まれているアロマ成分について調べた。
[Example 5]
A coffee extract was prepared from roasted coffee beans that had been roasted after immersing green coffee beans in the enzyme-treated peptide, and the contained aroma components were examined.
<ペプチド処理>
 魚コラーゲンペプチドCを、タンパク質分解酵素により加水分解処理した。タンパク質分解酵素は、実施例2で使用されたもの(表4参照。)を用いた。得られたペプチド加水分解物の溶液を用いて、実施例2と同様にしてコーヒー生豆をペプチド浸漬処理して乾燥させた後、焙煎して焙煎コーヒー豆を得た。この焙煎コーヒー豆から実施例1と同様にしてコーヒー抽出液(ペプチド処理-pp)を調製した。対照として、ペプチド浸漬処理をしていないコーヒー生豆から同様にしてコーヒー抽出液(未処理処理-pp)を作製した。これらのコーヒー抽出液は、そのままレギュラーコーヒー飲料となり得る。
<Peptide treatment>
Fish collagen peptide C was hydrolyzed with a proteolytic enzyme. The proteolytic enzyme used was that used in Example 2 (see Table 4). Using the obtained peptide hydrolyzate solution, the green coffee beans were subjected to peptide immersion treatment and dried in the same manner as in Example 2 and then roasted to obtain roasted coffee beans. A coffee extract (peptide treatment-pp) was prepared from the roasted coffee beans in the same manner as in Example 1. As a control, a coffee extract (untreated-pp) was prepared in the same manner from green coffee beans that were not subjected to peptide immersion treatment. These coffee extracts can be used as regular coffee beverages as they are.
<アロマ分析>
 各コーヒー抽出液のアロマ成分のうち、コーヒーに特徴的ないわゆるキーアロマ成分の22種について、飲料中の含有量を測定した。各アロマ成分の含有量は、実施例4と同様にして測定した。
<Aroma analysis>
Among the aroma components of each coffee extract, the content in the beverage was measured for 22 types of so-called key aroma components characteristic of coffee. The content of each aroma component was measured in the same manner as in Example 4.
 各アロマ成分について、未処理のコーヒー生豆から得た対照のコーヒー抽出液の含有量を1とした相対含有量を求めた。その結果、ペプチドの加水分解に使用したタンパク質分解酵素が異なると、得られたコーヒー抽出液のアロマ成分の相対含有量が影響を受けた。 For each aroma component, the relative content was determined with the content of the control coffee extract obtained from untreated green coffee beans as 1. As a result, when the proteolytic enzyme used for the hydrolysis of the peptide was different, the relative content of the aroma components in the obtained coffee extract was affected.
 なかでも、ペプチドの加水分解処理に2種類のタンパク質分解酵素を組み合わせて行った場合に、4種のアロマ成分(5-Methyl-5H-6,7-dihydrocyclopentapyrazine、2,3-Dimethylphenol、2,3,5-Trimethylpyrazine、及び2-Ethyl-3,5-dimethylpyrazine)は相対含有量が2以上となり、3種のアロマ成分(2-Furfurylmethylsulfide、Furaneol、及び4-Vinylguaiacol)は相対含有量が0.5以下となった。これらの7種のアロマ成分の相対含有量の測定結果を表9~11に示す。表中、「未処理」はペプチド浸漬処理を行わなかったコーヒー生豆から調製されたコーヒー抽出液の結果を示し、「加水分解処理なし」は、タンパク質分解酵素処理を行わなかったペプチドを用いて浸漬処理を行ったコーヒー生豆から調製されたコーヒー抽出液の結果を示す。また、「PDX-PDY」(X及びYは1~6の番号)は、PDXとPDYの2種類のタンパク質分解酵素を使用して調製したペプチド加水分解物で浸漬処理を行ったコーヒー生豆から調製されたコーヒー抽出液の結果を示し、「6種」はPD1~PD6の6種のタンパク質分解酵素を全て使用して調製したペプチド加水分解物で浸漬処理を行ったコーヒー生豆から調製されたコーヒー抽出液の結果を示す。 In particular, when two types of proteolytic enzymes are used in combination with peptide hydrolysis, four kinds of aroma components (5-Methyl-5H-6,7-dihydrocyclopentapyrazine, 2,3-Dimethylphenol, 2,3 , 5-Trimethylpyrazine and 2-Ethyl-3,5-dimethylpyrazine) have a relative content of 2 or more, and the three aroma components (2-Furfurylmethylsulfide, Furaneol, and 4-Vinylguaiacol) have a relative content of 0.5. It became the following. Tables 9 to 11 show the measurement results of the relative contents of these seven kinds of aroma components. In the table, “untreated” indicates the result of the coffee extract prepared from green coffee beans not subjected to the peptide soaking treatment, and “no hydrolysis treatment” indicates that the peptide not subjected to the proteolytic enzyme treatment is used. The result of the coffee extract prepared from the green coffee beans which performed the immersion process is shown. In addition, “PDX-PDY” (X and Y are numbers 1 to 6) is obtained from green coffee beans that have been soaked with a peptide hydrolyzate prepared using two types of proteolytic enzymes, PDX and PDY. The results of the prepared coffee extract are shown. “6 types” were prepared from green coffee beans that had been soaked with a peptide hydrolyzate prepared using all six types of proteases PD1 to PD6. The result of a coffee extract is shown.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 これらの結果から、ペプチドの加水分解処理の有無や、加水分解に使用するタンパク質分解酵素の種類やその組み合わせによって、得られるコーヒー抽出液のアロマ成分が変化することが明らかとなった。加水分解処理に使用するタンパク質分解酵素を適宜選択することによって、アロマ成分の組成が所望の範囲となるコーヒー抽出液が調製できることが示唆された。 From these results, it was clarified that the aroma components of the obtained coffee extract change depending on the presence or absence of the hydrolysis treatment of the peptide, the type of proteolytic enzyme used for the hydrolysis, and the combination thereof. It was suggested that a coffee extract in which the composition of the aroma component falls within a desired range can be prepared by appropriately selecting the proteolytic enzyme used for the hydrolysis treatment.

Claims (10)

  1.  コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後、焙煎する工程、を有することを特徴とする、焙煎コーヒー豆の製造方法。 A method for producing roasted coffee beans, comprising the step of bringing a peptide into contact with green coffee beans so as to be absorbed inside or adhering to the surface and then roasting.
  2.  前記ペプチドの全アミノ酸残基に対するヒドロキシプロリンとヒドロキシリジンの合計含有量の比率が10質量%以上である、請求項1に記載の焙煎コーヒー豆の製造方法。 The method for producing roasted coffee beans according to claim 1, wherein the ratio of the total content of hydroxyproline and hydroxylysine to all amino acid residues of the peptide is 10% by mass or more.
  3.  前記ペプチドが、重量平均分子量が500~5000である、請求項1又は2に記載の焙煎コーヒー豆の製造方法。 The method for producing roasted coffee beans according to claim 1 or 2, wherein the peptide has a weight average molecular weight of 500 to 5,000.
  4.  前記ペプチドが、魚由来のコラーゲンペプチド、豚由来のコラーゲンペプチド、小麦由来のコラーゲンペプチド、トウモロコシ由来のコラーゲンペプチド、又はこれらのコラーゲンペプチドのうちの2以上の組み合わせである、請求項1~3のいずれか一項に記載の焙煎コーヒー豆の製造方法。 The peptide according to any one of claims 1 to 3, wherein the peptide is a collagen peptide derived from fish, a collagen peptide derived from pig, a collagen peptide derived from wheat, a collagen peptide derived from corn, or a combination of two or more of these collagen peptides. The method for producing roasted coffee beans according to claim 1.
  5.  前記ペプチドが、魚由来のコラーゲンペプチドである、請求項1~3のいずれか一項に記載の焙煎コーヒー豆の製造方法。 The method for producing roasted coffee beans according to any one of claims 1 to 3, wherein the peptide is a collagen peptide derived from fish.
  6.  前記ペプチドが、ペプチダーゼ処理によるタンパク質分解物である、請求項1~5のいずれか一項に記載の焙煎コーヒー豆の製造方法。 The method for producing roasted coffee beans according to any one of claims 1 to 5, wherein the peptide is a protein degradation product by a peptidase treatment.
  7.  請求項1~6のいずれか一項に記載の焙煎コーヒー豆の製造方法により、改質された焙煎コーヒー豆を得る工程と、
     改質された焙煎コーヒー豆の可溶性固形分を含有するコーヒー抽出液を調製する工程と、
    を有することを特徴とする、コーヒー抽出液の製造方法。
    A step of obtaining a roasted coffee bean modified by the method for producing roasted coffee bean according to any one of claims 1 to 6;
    Preparing a coffee extract containing soluble solids of modified roasted coffee beans;
    A method for producing a coffee extract, comprising:
  8.  請求項7に記載のコーヒー抽出液の製造方法によりコーヒー抽出液を製造した後、得られたコーヒー抽出液を原料としてコーヒー飲料を製造することを特徴とする、コーヒー飲料の製造方法。 A method for producing a coffee beverage, comprising producing a coffee extract by the method for producing a coffee extract according to claim 7, and then producing a coffee beverage using the obtained coffee extract as a raw material.
  9.  請求項7に記載のコーヒー抽出液の製造方法によりコーヒー抽出液を製造した後、得られたコーヒー抽出液を原料としてインスタントコーヒー飲料用組成物を製造することを特徴とする、インスタントコーヒー飲料用組成物の製造方法。 A composition for instant coffee beverages, wherein a coffee extract is produced by the method for producing a coffee extract according to claim 7, and then an instant coffee beverage composition is produced using the obtained coffee extract as a raw material. Manufacturing method.
  10.  コーヒー生豆にペプチドを接触させて内部に吸収させる又は表面に付着させた後、焙煎する、焙煎コーヒー豆の苦味強化方法。 A method for enhancing the bitterness of roasted coffee beans, wherein the peptide is brought into contact with green coffee beans and absorbed or adhering to the surface, followed by roasting.
PCT/JP2019/013616 2018-03-30 2019-03-28 Method for producing roasted coffee beans WO2019189580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509323A JP7420066B2 (en) 2018-03-30 2019-03-28 How to produce roasted coffee beans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068976 2018-03-30
JP2018068976 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189580A1 true WO2019189580A1 (en) 2019-10-03

Family

ID=68060269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013616 WO2019189580A1 (en) 2018-03-30 2019-03-28 Method for producing roasted coffee beans

Country Status (2)

Country Link
JP (1) JP7420066B2 (en)
WO (1) WO2019189580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828520A (en) * 2021-08-17 2021-12-24 北京新阳高科技有限责任公司 Sorting, baking, subpackaging and marking method for coffee beans
CN115551359A (en) * 2020-05-18 2022-12-30 三得利控股株式会社 Method for producing alcohol-containing coffee beans

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050800A (en) * 1998-08-11 2000-02-22 Asahi Soft Drinks Co Ltd Regulation of flavor of coffee drink and coffee drink obtained thereby
WO2014024470A1 (en) * 2012-08-06 2014-02-13 キリンビバレッジ株式会社 Coffee substitute
KR20160134001A (en) * 2015-05-14 2016-11-23 (주)옥천당 Method for Preparing Coffee Beans with Improved Sensory Attribute
JP2017060455A (en) * 2015-09-25 2017-03-30 寧夫 新井 Wine-flavored coffee and production process therefor
KR20180029537A (en) * 2016-09-12 2018-03-21 박희동 Functional coffee bean and its preparing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695631A4 (en) 2003-09-25 2011-09-07 Suntory Holdings Ltd Method of processing green coffee beans

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050800A (en) * 1998-08-11 2000-02-22 Asahi Soft Drinks Co Ltd Regulation of flavor of coffee drink and coffee drink obtained thereby
WO2014024470A1 (en) * 2012-08-06 2014-02-13 キリンビバレッジ株式会社 Coffee substitute
KR20160134001A (en) * 2015-05-14 2016-11-23 (주)옥천당 Method for Preparing Coffee Beans with Improved Sensory Attribute
JP2017060455A (en) * 2015-09-25 2017-03-30 寧夫 新井 Wine-flavored coffee and production process therefor
KR20180029537A (en) * 2016-09-12 2018-03-21 박희동 Functional coffee bean and its preparing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAGA, Y. ET AL.: "Identification of Collagen-Derived Hydroxyproline (Hyp)-Containing Cyclic Dipeptides with High Oral Bioavailability: Efficient Formation of Cyclo(X-Hyp) from X. Hyp-Gly-Type Tripeptides by Heating", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 65, 7 October 2017 (2017-10-07), pages 9514 - 9521, XP055640765 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551359A (en) * 2020-05-18 2022-12-30 三得利控股株式会社 Method for producing alcohol-containing coffee beans
CN113828520A (en) * 2021-08-17 2021-12-24 北京新阳高科技有限责任公司 Sorting, baking, subpackaging and marking method for coffee beans

Also Published As

Publication number Publication date
JP7420066B2 (en) 2024-01-23
JPWO2019189580A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6683735B2 (en) Beer taste beverage
EP2476317B1 (en) Almond drinks and methods for their production
RU2326550C2 (en) Coffee aroma-containing component and method of its preparation
AU2012218372C1 (en) Method for manufacturing ingredient for tea drink
JP5567304B2 (en) Drink with milk
AU2013301024B2 (en) Coffee substitute
WO2017168718A1 (en) Packaged beverage
WO2019189580A1 (en) Method for producing roasted coffee beans
JPWO2014155746A1 (en) Coffee drink
JP5666792B2 (en) Coffee beverage additives and coffee beverages
WO2017168717A1 (en) Packaged beverage
JP7392766B2 (en) Method for producing instant tea beverage composition
JP6777372B2 (en) Method for producing powdered soft drink composition
JP2015091271A (en) Coffee drink
JP2021000080A (en) Method for making roasted coffee bean
WO2018025298A1 (en) Packaged beverage
JP7521659B1 (en) Unpleasant odor reducer
JP6805477B2 (en) How to enhance the richness of milk-flavored foods and drinks containing fats and oils
JP2017070282A (en) Coffee extract and manufacturing method thereof
JP6683736B2 (en) Packaged beverages
KR102276057B1 (en) Functional coffee composition comprising extract of peanut and manufacturing method thereof
WO2023013555A1 (en) Coffee bean extract with improved flavor, food or beverage, packaged beverage and method for producing coffee bean extract
US20230133105A1 (en) Cross-maillardized plant substrates
JP2022015956A (en) Method of improving flavor of coffee extract
JP2023113306A (en) Flavor improvement method of roasted green tea drink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509323

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777681

Country of ref document: EP

Kind code of ref document: A1