WO2019188544A1 - Regenerative control device - Google Patents

Regenerative control device Download PDF

Info

Publication number
WO2019188544A1
WO2019188544A1 PCT/JP2019/011337 JP2019011337W WO2019188544A1 WO 2019188544 A1 WO2019188544 A1 WO 2019188544A1 JP 2019011337 W JP2019011337 W JP 2019011337W WO 2019188544 A1 WO2019188544 A1 WO 2019188544A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
deceleration
regenerative
coasting
power generation
Prior art date
Application number
PCT/JP2019/011337
Other languages
French (fr)
Japanese (ja)
Inventor
将司 早崎
圭司 古町
悠司 青木
聡也 山下
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2019188544A1 publication Critical patent/WO2019188544A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This disclosure relates to a regeneration control device.
  • the present disclosure has been made in view of these points, and an object thereof is to suppress a decrease in drivability due to regenerative power generation when coasting on an uphill.
  • a regenerative braking device for a vehicle that generates regenerative braking force by performing regenerative power generation with a generator during coasting, the regenerative brake when the vehicle coasts on a flat road.
  • a storage unit that preliminarily stores a reference deceleration including a deceleration by force, a deceleration acquisition unit that acquires a vehicle deceleration indicating a degree of deceleration of the vehicle during the coasting, and the deceleration acquisition unit
  • a regenerative control device is provided that includes a regenerative control unit that reduces the regenerative power generation amount of the generator.
  • the regenerative control unit determines that the vehicle is coasting on an ascending slope, and while coasting on the ascending slope, The regenerative power generation amount of the generator may be reduced.
  • the regenerative control unit may reduce the regenerative power generation amount of the generator as the vehicle deceleration is larger than the reference deceleration.
  • the deceleration acquisition unit may acquire the vehicle deceleration when the vehicle accelerator is switched off.
  • FIG. 1 is a schematic diagram for explaining an example of the configuration of the vehicle 1 of the present disclosure.
  • FIG. 2 is a diagram for explaining deceleration when coasting on a flat road.
  • FIG. 3 is a diagram for explaining deceleration when coasting on an uphill slope.
  • FIG. 4 is a block diagram for explaining the configuration of the control device 70.
  • FIG. 5 is a diagram for explaining regenerative control when coasting on an ascending slope.
  • FIG. 6 is a flowchart for explaining processing when coasting on an ascending slope.
  • ⁇ Vehicle configuration> A configuration of a vehicle equipped with a regeneration control device according to an embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 1 is a schematic diagram for explaining an example of the configuration of the vehicle 1 of the present disclosure.
  • the vehicle 1 is a hybrid vehicle having an engine and an electric motor as driving power sources.
  • the vehicle 1 is a large vehicle such as a truck.
  • the vehicle 1 includes an engine 10, a transmission 20, a motor generator 30, a battery 32, an inverter 34, and a control device 70.
  • the engine 10 generates heat energy by burning and expanding a mixture of fuel and intake air in the cylinder 12.
  • the engine 10 rotationally drives a crankshaft 14 that is a rotating shaft by heat energy.
  • the engine 10 is a diesel engine, for example, it is not limited to this, For example, a gasoline engine may be sufficient.
  • the transmission 20 is an automatic transmission mechanism that changes the output (rotational power) of the engine 10 to an appropriate torque and rotational speed.
  • the transmission 20 has a plurality of shift stages having different gear ratios.
  • the rotational power changed by the transmission 20 is transmitted to the differential 24 via the propeller shaft 22 and then distributed as a driving force to the pair of drive wheels 26.
  • the motor generator 30 operates as an electric motor or a generator depending on the traveling state of the vehicle 1.
  • the motor generator 30 functions as a traveling power source when operating as an electric motor.
  • the motor generator 30 operates as a generator by the rotational force of the drive wheels 26.
  • the motor generator 30 is, for example, a belt-driven motor generator. However, the motor generator 30 is not limited to this. Also good.
  • the first pulley 16 is attached to the rotating shaft 31 of the motor generator 30.
  • a belt member 18 is wound around the first pulley 16 and the second pulley 17 attached to the end of the crankshaft 14 of the engine 10.
  • the motor generator 30 transmits power to and from the engine 10 via the belt member 18.
  • the battery 32 supplies power to the motor generator 30 when the motor generator 30 operates as an electric motor. Further, when the motor generator 30 operates as a generator, the battery 32 is charged with electric power generated by the motor generator 30 (regenerative electric power generated by converting kinetic energy into electric energy).
  • the battery 32 is, for example, a lithium ion battery.
  • the inverter 34 converts the DC power of the battery 32 into AC power and supplies it to the motor generator 30 when the motor generator 30 operates as an electric motor.
  • the inverter 34 converts AC power generated by the motor generator 30 into DC power and supplies it to the battery 32.
  • the control device 70 is an electronic control device (Electric Control Unit) that controls the operation of each device of the vehicle 1.
  • the control device 70 functions as a regenerative control device that generates regenerative braking force by performing regenerative power generation by the motor generator 30 during coasting.
  • FIG. 2 is a diagram for explaining deceleration when coasting on a flat road.
  • the horizontal axis of the graph in FIG. 2 is the vehicle speed of the vehicle 1, and the vertical axis is the deceleration of the vehicle 1.
  • a curve G1 in FIG. 2 indicates a base deceleration when the vehicle 1 coasts on a flat road.
  • the base deceleration is a deceleration caused by rolling resistance, air resistance, engine braking, or the like of the vehicle 1.
  • a curve G2 is obtained by adding the deceleration due to the regenerative braking force generated by the regenerative power generation of the motor generator 30 to the base deceleration of the curve G1.
  • the deceleration of the curve G2 in FIG. 2 is referred to as a reference deceleration.
  • FIG. 3 is a diagram for explaining deceleration when coasting on an uphill slope.
  • a curve G3 in FIG. 3 shows a base deceleration when the vehicle 1 coasts on an uphill slope, and is larger than a base deceleration (base deceleration when coasting on a flat road) indicated by the curve G1.
  • a curve G4 is obtained by adding the deceleration due to the regenerative braking force generated by the regenerative power generation of the motor generator 30 to the base deceleration of the curve G3.
  • the deceleration of the curve G4 is larger than the reference deceleration of the curve G2. For this reason, the driver feels uncomfortable as if the vehicle is decelerating excessively when traveling on an uphill.
  • the control device 70 of the present embodiment reduces the amount of power generated by regenerative power generation by the motor generator 30 when it is determined that the vehicle 1 is traveling on an uphill slope.
  • the regenerative braking force by regenerative power generation decreases, the actual deceleration of the vehicle 1 when coasting on an ascending slope can be reduced.
  • the vehicle 1 coasts on an ascending slope, it is possible to suppress the driver from feeling uncomfortable as if the driver decelerated excessively.
  • FIG. 4 is a block diagram for explaining the configuration of the control device 70.
  • the control device 70 includes a storage unit 72 and a control unit 74.
  • the storage unit 72 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 72 stores programs and various data to be executed by the control unit 74.
  • the storage unit 72 stores in advance a reference deceleration (deceleration indicated by a curve G2 in FIG. 2) including deceleration due to the regenerative braking force when the vehicle 1 travels on a flat road.
  • the control unit 74 is, for example, a CPU (Central Processing Unit).
  • the control unit 74 executes regenerative control during coasting of the vehicle 1 by executing a program stored in the storage unit 72.
  • the control unit 74 functions as a deceleration acquisition unit 742 and a regeneration control unit 744.
  • the deceleration acquisition unit 742 acquires a vehicle deceleration indicating the degree to which the vehicle 1 is decelerating during coasting. That is, the deceleration acquisition unit 742 acquires the actual deceleration of the vehicle 1. For example, the deceleration acquisition unit 742 obtains the vehicle deceleration from the time change amount of the vehicle speed of the vehicle 1. Further, the deceleration acquisition unit 742 calculates the reference deceleration described above. For example, the deceleration acquisition unit 742 calculates the base deceleration from the vehicle speed, the vehicle weight, and the rotational speed of the engine 10 at that time, and reduces the calculated base deceleration from the regenerative torque in the motor generator 30. The reference deceleration is calculated by adding the speed.
  • the deceleration acquisition unit 742 acquires the vehicle deceleration when the accelerator pedal 54 is switched off while the vehicle 1 is traveling. That is, the deceleration acquisition unit 742 acquires the vehicle deceleration every time the accelerator pedal 54 is switched to the off state regardless of the road state in which the vehicle 1 is traveling. The deceleration acquisition unit 742 outputs the acquired vehicle deceleration to the regeneration control unit 744.
  • the regeneration control unit 744 determines that the vehicle 1 is traveling on an uphill coast. Thereby, it is possible to detect that the vehicle 1 is traveling on an uphill slope with a simple configuration without using an acceleration sensor or the like.
  • the regenerative control unit 744 determines that the vehicle 1 is traveling on an ascending slope, the regenerative control unit 744 reduces the regenerative power generation amount of the motor generator 30. For example, the regeneration control unit 744 sends an instruction to the inverter 34 to reduce the power generation amount of the motor generator 30.
  • the regenerative control unit 744 maintains a state in which the regenerative power generation amount of the motor generator 30 is reduced while the vehicle 1 is traveling on an uphill coast. Thereby, since the regenerative braking force by regenerative power generation is small while the vehicle 1 is coasting on the uphill, it is possible to prevent the actual deceleration of the vehicle 1 from becoming excessive.
  • FIG. 5 is a diagram for explaining regenerative control when coasting on an ascending slope.
  • FIG. 5 shows the relationship between the vehicle speed, the road gradient, and the vehicle deceleration when the vehicle 1 travels on the coast.
  • the regenerative control unit 744 reduces the regenerative power generation amount, so that the regenerative braking force after time t2 is reduced, and as a result, the vehicle deceleration (actual deceleration) is reduced.
  • the regenerative control unit 744 may reduce the regenerative power generation amount of the motor generator 30 as the vehicle deceleration acquired by the deceleration acquisition unit 742 is larger than the reference deceleration. Thereby, since the actual deceleration of the vehicle 1 can be maintained below a certain level, it is possible to effectively prevent the deceleration from becoming excessive.
  • FIG. 6 is a flowchart for explaining processing when coasting on an ascending slope. This process is performed by the control unit 74 executing a program stored in the storage unit 72. Further, the flowchart of FIG. 6 is started when the vehicle 1 is traveling.
  • control unit 74 determines whether or not the accelerator pedal 54 of the traveling vehicle 1 is in an off state (that is, a coasting state) (step S102). In the coasting state, regenerative power generation is performed by the motor generator 30, and regenerative braking force is generated.
  • step S102 If it is determined in step S102 that the accelerator pedal 54 is in the off state (Yes), the deceleration acquisition unit 742 of the control unit 74 acquires a vehicle deceleration that is an actual deceleration of the vehicle 1 (step S104). .
  • the regeneration control unit 744 determines whether or not the vehicle deceleration is larger than the reference deceleration (step S106). If it is determined in step S106 that the vehicle deceleration is greater than the reference deceleration (Yes), the regeneration control unit 744 determines that the vehicle 1 is traveling on an uphill coast (step S108).
  • the regeneration control unit 744 reduces the amount of power generated by the motor generator 30 while the vehicle 1 is traveling on an uphill coast (step S110). Thereby, the regenerative braking force by regenerative power generation decreases, and the deceleration of the vehicle 1 also decreases.
  • ⁇ Effect in this embodiment> The vehicle 1 of the embodiment described above acquires a vehicle deceleration that is an actual deceleration of the vehicle 1 during coasting. Then, when the vehicle deceleration is larger than the reference deceleration, the vehicle 1 determines that the vehicle 1 is traveling on an uphill coast, and reduces the regenerative power generation amount of the motor generator 30. By reducing the regenerative power generation amount of the motor generator 30, the regenerative braking force by the regenerative power generation is reduced. As a result, when the vehicle 1 that performs regenerative power generation during coasting travels on an ascending slope, it is possible to suppress an actual deceleration from becoming excessive, thereby improving drivability.
  • the vehicle 1 is a hybrid vehicle, but is not limited thereto.
  • the vehicle 1 may be an electric vehicle that performs regenerative power generation using a generator during coasting.
  • the present disclosure has been described using the embodiment, the technical scope of the present disclosure is not limited to the scope described in the embodiment, and various modifications and changes can be made within the scope of the gist. is there.
  • the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do.
  • new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present disclosure. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
  • the regenerative braking force due to the regenerative power generation is reduced, and it is possible to suppress a decrease in drivability due to the regenerative power generation when coasting on an uphill slope. This is useful in that it can be applied to hybrid vehicles and electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A control device 70, which causes regenerative braking force to be generated by performing regenerative power generation via a motor generator 30 during coasting, comprises a storage unit 72 that stores in advance a reference deceleration rate including deceleration by regenerative braking force used when a vehicle 1 is coasting on a flat road, a deceleration rate acquisition unit 742 that acquires a vehicle deceleration rate indicating the degree by which the vehicle decelerates during coasting, and a regenerative control unit 744 that reduces the amount of regenerative power generated by the motor generator 30 when the vehicle deceleration rate acquired by the deceleration rate acquisition unit 742 is greater than the reference deceleration rate.

Description

回生制御装置Regenerative control device
 本開示は、回生制御装置に関する。 This disclosure relates to a regeneration control device.
 ハイブリット車両においては、減速する際やコースト走行する際に、発電機においてタイヤの運動エネルギーを電気エネルギーに変換して電力を回収する(回生発電)。この際、発電機の回転抵抗を制動力として利用する回生ブレーキ力が発生する。 In a hybrid vehicle, when decelerating or coasting, the kinetic energy of the tire is converted into electric energy by a generator and electric power is recovered (regenerative power generation). At this time, a regenerative braking force that uses the rotational resistance of the generator as a braking force is generated.
日本国特開2017-140864号公報Japanese Unexamined Patent Publication No. 2017-140864
 車両が上り勾配をコースト走行するケースがある。通常、上り勾配を走行する場合には、平坦路を走行する場合に比べて、車両の減速度が大きくなる。このため、上り勾配をコースト走行する際に回生ブレーキ力が発生すると、運転者は車両が過大に減速したような違和感を受けることになり、ドライバビリティが悪化する。 There are cases where the vehicle coasts uphill. Usually, when traveling on an uphill, the deceleration of the vehicle is greater than when traveling on a flat road. For this reason, when regenerative braking force is generated when coasting on an ascending slope, the driver feels uncomfortable as if the vehicle is excessively decelerated, and drivability deteriorates.
 そこで、本開示はこれらの点に鑑みてなされたものであり、上り勾配をコースト走行する際の回生発電に起因するドライバビリティの低下を抑制することを目的とする。 Therefore, the present disclosure has been made in view of these points, and an object thereof is to suppress a decrease in drivability due to regenerative power generation when coasting on an uphill.
 本開示の一の態様においては、コースト走行時に発電機によって回生発電を行うことで回生ブレーキ力を発生させる車両の回生制御装置であって、前記車両が平坦路をコースト走行する際の前記回生ブレーキ力による減速を含む基準減速度を予め記憶している記憶部と、前記コースト走行時に前記車両が減速している度合いを示す車両減速度を取得する減速度取得部と、前記減速度取得部が取得した前記車両減速度が、前記基準減速度よりも大きい場合には、前記発電機の回生発電量を少なくさせる回生制御部と、を備える、回生制御装置を提供する。 In one aspect of the present disclosure, a regenerative braking device for a vehicle that generates regenerative braking force by performing regenerative power generation with a generator during coasting, the regenerative brake when the vehicle coasts on a flat road. A storage unit that preliminarily stores a reference deceleration including a deceleration by force, a deceleration acquisition unit that acquires a vehicle deceleration indicating a degree of deceleration of the vehicle during the coasting, and the deceleration acquisition unit When the acquired vehicle deceleration is larger than the reference deceleration, a regenerative control device is provided that includes a regenerative control unit that reduces the regenerative power generation amount of the generator.
 また、前記回生制御部は、前記車両減速度が前記基準減速度よりも大きい場合には、前記車両が上り勾配をコースト走行していると判定し、前記上り勾配をコースト走行している間、前記発電機の回生発電量を少なくさせることとしてもよい。 Further, when the vehicle deceleration is greater than the reference deceleration, the regenerative control unit determines that the vehicle is coasting on an ascending slope, and while coasting on the ascending slope, The regenerative power generation amount of the generator may be reduced.
 また、前記回生制御部は、前記車両減速度が前記基準減速度よりも大きいほど、前記発電機の回生発電量をより少なくさせることとしてもよい。 Further, the regenerative control unit may reduce the regenerative power generation amount of the generator as the vehicle deceleration is larger than the reference deceleration.
 また、前記減速度取得部は、前記車両のアクセルがオフに切り替わった際に、前記車両減速度を取得することとしてもよい。 In addition, the deceleration acquisition unit may acquire the vehicle deceleration when the vehicle accelerator is switched off.
 本開示によれば、上り勾配をコースト走行する際の回生発電に起因するドライバビリティの低下を抑制できるという効果を奏する。 According to the present disclosure, there is an effect that it is possible to suppress a decrease in drivability due to regenerative power generation when coasting on an ascending slope.
図1は、本開示の車両1の構成の一例を説明するための模式図である。FIG. 1 is a schematic diagram for explaining an example of the configuration of the vehicle 1 of the present disclosure. 図2は、平坦路をコースト走行する際の減速度を説明するための図である。FIG. 2 is a diagram for explaining deceleration when coasting on a flat road. 図3は、上り勾配をコースト走行する際の減速度を説明するための図である。FIG. 3 is a diagram for explaining deceleration when coasting on an uphill slope. 図4は、制御装置70の構成を説明するためのブロック図である。FIG. 4 is a block diagram for explaining the configuration of the control device 70. 図5は、上り勾配をコースト走行する際の回生制御を説明するための図である。FIG. 5 is a diagram for explaining regenerative control when coasting on an ascending slope. 図6は、上り勾配をコースト走行する際の処理を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining processing when coasting on an ascending slope.
 <車両の構成>
 本開示の一の実施形態に係る回生制御装置が搭載された車両の構成について、図1を参照しながら説明する。
<Vehicle configuration>
A configuration of a vehicle equipped with a regeneration control device according to an embodiment of the present disclosure will be described with reference to FIG.
 図1は、本開示の車両1の構成の一例を説明するための模式図である。車両1は、ここでは、走行動力源としてエンジン及び電動機を有するハイブリッド車両である。車両1は、例えばトラック等の大型車両である。車両1は、図1に示すように、エンジン10と、変速機20と、モータージェネレーター30と、バッテリー32と、インバーター34と、制御装置70とを有する。 FIG. 1 is a schematic diagram for explaining an example of the configuration of the vehicle 1 of the present disclosure. Here, the vehicle 1 is a hybrid vehicle having an engine and an electric motor as driving power sources. The vehicle 1 is a large vehicle such as a truck. As shown in FIG. 1, the vehicle 1 includes an engine 10, a transmission 20, a motor generator 30, a battery 32, an inverter 34, and a control device 70.
 エンジン10は、気筒12内で燃料と吸気の混合気を燃焼、膨張させて、熱エネルギーを発生する。エンジン10は、熱エネルギーにより、回転軸であるクランクシャフト14を回転駆動させる。エンジン10は、例えばディーゼルエンジンであるが、これに限定されず、例えばガソリンエンジンであってもよい。 The engine 10 generates heat energy by burning and expanding a mixture of fuel and intake air in the cylinder 12. The engine 10 rotationally drives a crankshaft 14 that is a rotating shaft by heat energy. Although the engine 10 is a diesel engine, for example, it is not limited to this, For example, a gasoline engine may be sufficient.
 変速機20は、エンジン10の出力(回転動力)を適切なトルク及び回転速度に変速する自動変速機構である。変速機20は、互いに変速比の異なる複数の変速段を有する。変速機20で変速された回転動力は、プロペラシャフト22を介してデファレンシャル24に伝達された後に、一対の駆動輪26に駆動力として分配される。 The transmission 20 is an automatic transmission mechanism that changes the output (rotational power) of the engine 10 to an appropriate torque and rotational speed. The transmission 20 has a plurality of shift stages having different gear ratios. The rotational power changed by the transmission 20 is transmitted to the differential 24 via the propeller shaft 22 and then distributed as a driving force to the pair of drive wheels 26.
 モータージェネレーター30は、車両1の走行状態によって、電動機又は発電機として動作する。モータージェネレーター30は、電動機として動作する際には、走行動力源として機能する。一方で、車両1が減速する場合やコースト走行(ブレーキペダル52及びアクセルペダル54がオフ状態での走行)する場合には、駆動輪26の回転力によりモータージェネレーター30が発電機として動作する。
 モータージェネレーター30は、例えばベルト駆動のモータージェネレーターであるが、これに限定されず、例えばエンジン10の後方、変速機20の前段、変速機20の後段のいずれかに配置されるモータージェネレーターであってもよい。
The motor generator 30 operates as an electric motor or a generator depending on the traveling state of the vehicle 1. The motor generator 30 functions as a traveling power source when operating as an electric motor. On the other hand, when the vehicle 1 decelerates or coasts (travels when the brake pedal 52 and the accelerator pedal 54 are off), the motor generator 30 operates as a generator by the rotational force of the drive wheels 26.
The motor generator 30 is, for example, a belt-driven motor generator. However, the motor generator 30 is not limited to this. Also good.
 モータージェネレーター30の回転軸31には、第1プーリー16が取り付けられている。また、第1プーリー16と、エンジン10のクランクシャフト14の端部に取り付けられた第2プーリー17との間には、ベルト部材18が掛け回されている。モータージェネレーター30は、ベルト部材18を介して、エンジン10との間で動力を伝達する。 The first pulley 16 is attached to the rotating shaft 31 of the motor generator 30. A belt member 18 is wound around the first pulley 16 and the second pulley 17 attached to the end of the crankshaft 14 of the engine 10. The motor generator 30 transmits power to and from the engine 10 via the belt member 18.
 バッテリー32は、モータージェネレーター30が電動機として動作する際に、モータージェネレーター30に電力を供給する。また、バッテリー32は、モータージェネレーター30が発電機として動作する際には、モータージェネレーター30が発電した電力(運動エネルギーを電気エネルギーに変換して発生した回生電力)によって充電される。バッテリー32は、例えばリチウムイオンバッテリーである。 The battery 32 supplies power to the motor generator 30 when the motor generator 30 operates as an electric motor. Further, when the motor generator 30 operates as a generator, the battery 32 is charged with electric power generated by the motor generator 30 (regenerative electric power generated by converting kinetic energy into electric energy). The battery 32 is, for example, a lithium ion battery.
 インバーター34は、モータージェネレーター30が電動機として動作する際には、バッテリー32の直流電力を交流電力に変換して、モータージェネレーター30に供給する。インバーター34は、モータージェネレーター30が発電機として動作する際には、モータージェネレーター30が発電する交流電力を直流電力に変換してバッテリー32に供給する。 The inverter 34 converts the DC power of the battery 32 into AC power and supplies it to the motor generator 30 when the motor generator 30 operates as an electric motor. When the motor generator 30 operates as a generator, the inverter 34 converts AC power generated by the motor generator 30 into DC power and supplies it to the battery 32.
 制御装置70は、車両1の各装置の動作を制御する電子制御装置(Electric Control Unit)である。例えば、制御装置70は、コースト走行時にモータージェネレーター30によって回生発電を行うことで回生ブレーキ力を発生させる回生制御装置として機能する。 The control device 70 is an electronic control device (Electric Control Unit) that controls the operation of each device of the vehicle 1. For example, the control device 70 functions as a regenerative control device that generates regenerative braking force by performing regenerative power generation by the motor generator 30 during coasting.
 ところで、車両1が、上り勾配をコースト走行するケースがある。通常、上り勾配を走行する場合には、平坦路を走行する場合に比べて、車両1の減速度が大きくなる。このため、上り勾配をコースト走行する際にモータージェネレーター30の回生発電に伴い回生ブレーキ力が発生すると、運転者は車両1が過大に減速したような違和感を受けることになり、ドライバビリティが悪化する。 Incidentally, there are cases where the vehicle 1 travels on an uphill coast. Usually, when traveling on an uphill, the deceleration of the vehicle 1 is greater than when traveling on a flat road. For this reason, when regenerative braking force is generated in association with regenerative power generation of the motor generator 30 when coasting on an ascending slope, the driver feels uncomfortable as if the vehicle 1 is excessively decelerated, and drivability deteriorates. .
 図2は、平坦路をコースト走行する際の減速度を説明するための図である。図2のグラフの横軸は車両1の車速であり、縦軸は車両1の減速度である。図2の曲線G1は、車両1が平坦路をコースト走行する際のベース減速度を示している。ベース減速度は、車両1の転がり抵抗、空気抵抗及びエンジンブレーキ等による減速度である。曲線G2は、曲線G1のベース減速度に、モータージェネレーター30の回生発電に伴い発生する回生ブレーキ力による減速度を足したものである。以下では、図2の曲線G2の減速度を、基準減速度と呼ぶ。 FIG. 2 is a diagram for explaining deceleration when coasting on a flat road. The horizontal axis of the graph in FIG. 2 is the vehicle speed of the vehicle 1, and the vertical axis is the deceleration of the vehicle 1. A curve G1 in FIG. 2 indicates a base deceleration when the vehicle 1 coasts on a flat road. The base deceleration is a deceleration caused by rolling resistance, air resistance, engine braking, or the like of the vehicle 1. A curve G2 is obtained by adding the deceleration due to the regenerative braking force generated by the regenerative power generation of the motor generator 30 to the base deceleration of the curve G1. Hereinafter, the deceleration of the curve G2 in FIG. 2 is referred to as a reference deceleration.
 図3は、上り勾配をコースト走行する際の減速度を説明するための図である。図3の曲線G3は、車両1が上り勾配をコースト走行する際のベース減速度を示しており、曲線G1が示すベース減速度(平坦路をコースト走行する際のベース減速度)よりも大きい。曲線G4は、曲線G3のベース減速度に、モータージェネレーター30の回生発電に伴い発生する回生ブレーキ力による減速度を足したものである。曲線G4の減速度は、曲線G2の基準減速度よりも大きい。このため、運転者は、上り勾配を走行する際に、過大に減速したような違和感を受けることになる。 FIG. 3 is a diagram for explaining deceleration when coasting on an uphill slope. A curve G3 in FIG. 3 shows a base deceleration when the vehicle 1 coasts on an uphill slope, and is larger than a base deceleration (base deceleration when coasting on a flat road) indicated by the curve G1. A curve G4 is obtained by adding the deceleration due to the regenerative braking force generated by the regenerative power generation of the motor generator 30 to the base deceleration of the curve G3. The deceleration of the curve G4 is larger than the reference deceleration of the curve G2. For this reason, the driver feels uncomfortable as if the vehicle is decelerating excessively when traveling on an uphill.
 これに対して、本実施形態の制御装置70は、詳細は後述するが、車両1が上り勾配をコースト走行していると判定すると、モータージェネレーター30による回生発電の発電量を少なくさせる。これにより、回生発電による回生ブレーキ力が減少するので、上り勾配をコースト走行する際の車両1の実際の減速度を減少させることができる。この結果、車両1が上り勾配をコースト走行する際に、運転者が過大に減速したような違和感を受けることを抑制できる。 On the other hand, as will be described in detail later, the control device 70 of the present embodiment reduces the amount of power generated by regenerative power generation by the motor generator 30 when it is determined that the vehicle 1 is traveling on an uphill slope. Thereby, since the regenerative braking force by regenerative power generation decreases, the actual deceleration of the vehicle 1 when coasting on an ascending slope can be reduced. As a result, when the vehicle 1 coasts on an ascending slope, it is possible to suppress the driver from feeling uncomfortable as if the driver decelerated excessively.
 図4は、制御装置70の構成を説明するためのブロック図である。制御装置70は、図4に示すように、記憶部72と、制御部74とを有する。
 記憶部72は、例えばROM(Read Only Memory)及びRAM(Random Access Memory)を含む。記憶部72は、制御部74が実行するためのプログラムや各種データを記憶する。記憶部72は、車両1が平坦路をコースト走行する際の回生ブレーキ力による減速を含む基準減速度(図2の曲線G2が示す減速度)を予め記憶している。
FIG. 4 is a block diagram for explaining the configuration of the control device 70. As illustrated in FIG. 4, the control device 70 includes a storage unit 72 and a control unit 74.
The storage unit 72 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 72 stores programs and various data to be executed by the control unit 74. The storage unit 72 stores in advance a reference deceleration (deceleration indicated by a curve G2 in FIG. 2) including deceleration due to the regenerative braking force when the vehicle 1 travels on a flat road.
 制御部74は、例えばCPU(Central Processing Unit)である。制御部74は、記憶部72に記憶されたプログラムを実行することにより、車両1のコースト走行時の回生制御を実行する。制御部74は、減速度取得部742及び回生制御部744として機能する。 The control unit 74 is, for example, a CPU (Central Processing Unit). The control unit 74 executes regenerative control during coasting of the vehicle 1 by executing a program stored in the storage unit 72. The control unit 74 functions as a deceleration acquisition unit 742 and a regeneration control unit 744.
 減速度取得部742は、コースト走行時に車両1が減速している度合いを示す車両減速度を取得する。すなわち、減速度取得部742は、車両1の実際の減速度を取得する。例えば、減速度取得部742は、車両1の車速の時間変化量から、車両減速度を求める。また、減速度取得部742は、前述した基準減速度を算出する。例えば、減速度取得部742は、その時点での車速、車両重量、エンジン10の回転速度からベース減速度を算出し、算出したベース減速度に、モータージェネレーター30での回生トルクから算出される減速度を加えることで、基準減速度を算出する。 The deceleration acquisition unit 742 acquires a vehicle deceleration indicating the degree to which the vehicle 1 is decelerating during coasting. That is, the deceleration acquisition unit 742 acquires the actual deceleration of the vehicle 1. For example, the deceleration acquisition unit 742 obtains the vehicle deceleration from the time change amount of the vehicle speed of the vehicle 1. Further, the deceleration acquisition unit 742 calculates the reference deceleration described above. For example, the deceleration acquisition unit 742 calculates the base deceleration from the vehicle speed, the vehicle weight, and the rotational speed of the engine 10 at that time, and reduces the calculated base deceleration from the regenerative torque in the motor generator 30. The reference deceleration is calculated by adding the speed.
 減速度取得部742は、車両1の走行中にアクセルペダル54がオフ状態に切り替わると、車両減速度を取得する。すなわち、減速度取得部742は、車両1が走行している道路状態に関わらず、アクセルペダル54がオフ状態に切り替わる度に車両減速度を取得する。減速度取得部742は、取得した車両減速度を回生制御部744に出力する。 The deceleration acquisition unit 742 acquires the vehicle deceleration when the accelerator pedal 54 is switched off while the vehicle 1 is traveling. That is, the deceleration acquisition unit 742 acquires the vehicle deceleration every time the accelerator pedal 54 is switched to the off state regardless of the road state in which the vehicle 1 is traveling. The deceleration acquisition unit 742 outputs the acquired vehicle deceleration to the regeneration control unit 744.
 回生制御部744は、減速度取得部742が取得した車両減速度が、算出した基準減速度よりも大きい場合には、車両1が上り勾配をコースト走行していると判定する。これにより、加速度センサー等を用いなくても、簡易な構成で車両1が上り勾配をコースト走行していることを検出できる。 When the vehicle deceleration acquired by the deceleration acquisition unit 742 is greater than the calculated reference deceleration, the regeneration control unit 744 determines that the vehicle 1 is traveling on an uphill coast. Thereby, it is possible to detect that the vehicle 1 is traveling on an uphill slope with a simple configuration without using an acceleration sensor or the like.
 回生制御部744は、車両1が上り勾配をコースト走行していると判定すると、モータージェネレーター30の回生発電量を少なくさせる。例えば、回生制御部744は、インバーター34に指示を送り、モータージェネレーター30の発電量を減少させる。回生制御部744は、車両1が上り勾配をコースト走行している間、モータージェネレーター30の回生発電量を少なくさせた状態を維持させる。これにより、車両1が上り勾配をコースト走行している間、回生発電による回生ブレーキ力が小さいので、車両1の実際の減速度が過大になることを防止できる。 If the regenerative control unit 744 determines that the vehicle 1 is traveling on an ascending slope, the regenerative control unit 744 reduces the regenerative power generation amount of the motor generator 30. For example, the regeneration control unit 744 sends an instruction to the inverter 34 to reduce the power generation amount of the motor generator 30. The regenerative control unit 744 maintains a state in which the regenerative power generation amount of the motor generator 30 is reduced while the vehicle 1 is traveling on an uphill coast. Thereby, since the regenerative braking force by regenerative power generation is small while the vehicle 1 is coasting on the uphill, it is possible to prevent the actual deceleration of the vehicle 1 from becoming excessive.
 図5は、上り勾配をコースト走行する際の回生制御を説明するための図である。図5には、車両1がコースト走行する際の車速、道路の勾配、車両減速度の関係が示されている。ここでは、時間t1のタイミングで、車両1が上り勾配をコースト走行し始め、時間t1~t2の間で車両減速度が基準減速度よりも小さくなっているものとする。そして、回生制御部744が回生発電量を少なくさせることで、時間t2以降の回生ブレーキ力が減少し、この結果、車両減速度(実減速度)が減少している。 FIG. 5 is a diagram for explaining regenerative control when coasting on an ascending slope. FIG. 5 shows the relationship between the vehicle speed, the road gradient, and the vehicle deceleration when the vehicle 1 travels on the coast. Here, it is assumed that at the timing of time t1, the vehicle 1 starts to coast on an ascending slope, and the vehicle deceleration is smaller than the reference deceleration between times t1 and t2. Then, the regenerative control unit 744 reduces the regenerative power generation amount, so that the regenerative braking force after time t2 is reduced, and as a result, the vehicle deceleration (actual deceleration) is reduced.
 回生制御部744は、減速度取得部742が取得した車両減速度が基準減速度よりも大きいほど、モータージェネレーター30の回生発電量をより少なくさせてもよい。これにより、車両1の実際の減速度を一定以下に維持できるので、減速度が過大になることを有効に防止できる。 The regenerative control unit 744 may reduce the regenerative power generation amount of the motor generator 30 as the vehicle deceleration acquired by the deceleration acquisition unit 742 is larger than the reference deceleration. Thereby, since the actual deceleration of the vehicle 1 can be maintained below a certain level, it is possible to effectively prevent the deceleration from becoming excessive.
 <上り勾配をコースト走行する際の処理>
 図6は、上り勾配をコースト走行する際の処理を説明するためのフローチャートである。本処理は、制御部74が記憶部72に記憶されたプログラムを実行することで、行われる。また、図6のフローチャートは、車両1が走行しているところから開始される。
<Process when coasting uphill>
FIG. 6 is a flowchart for explaining processing when coasting on an ascending slope. This process is performed by the control unit 74 executing a program stored in the storage unit 72. Further, the flowchart of FIG. 6 is started when the vehicle 1 is traveling.
 まず、制御部74は、走行中の車両1のアクセルペダル54がオフ状態(すなわち、コースト走行状態)になったか否かを判定する(ステップS102)。コースト走行状態になると、モータージェネレーター30により回生発電が行われ、回生ブレーキ力が発生する。 First, the control unit 74 determines whether or not the accelerator pedal 54 of the traveling vehicle 1 is in an off state (that is, a coasting state) (step S102). In the coasting state, regenerative power generation is performed by the motor generator 30, and regenerative braking force is generated.
 ステップS102でアクセルペダル54がオフ状態であると判定されると(Yes)、制御部74の減速度取得部742は、車両1の実際の減速度である車両減速度を取得する(ステップS104)。 If it is determined in step S102 that the accelerator pedal 54 is in the off state (Yes), the deceleration acquisition unit 742 of the control unit 74 acquires a vehicle deceleration that is an actual deceleration of the vehicle 1 (step S104). .
 次に、回生制御部744は、車両減速度が基準減速度よりも大きいか否かを判定する(ステップS106)。回生制御部744は、ステップS106で車両減速度が基準減速度よりも大きいと判定した場合には(Yes)、車両1が上り勾配をコースト走行していると判定する(ステップS108)。 Next, the regeneration control unit 744 determines whether or not the vehicle deceleration is larger than the reference deceleration (step S106). If it is determined in step S106 that the vehicle deceleration is greater than the reference deceleration (Yes), the regeneration control unit 744 determines that the vehicle 1 is traveling on an uphill coast (step S108).
 次に、回生制御部744は、車両1が上り勾配をコースト走行している間、モータージェネレーター30の発電量を減少させる(ステップS110)。これにより、回生発電による回生ブレーキ力が減少し、車両1の減速度も減少する。 Next, the regeneration control unit 744 reduces the amount of power generated by the motor generator 30 while the vehicle 1 is traveling on an uphill coast (step S110). Thereby, the regenerative braking force by regenerative power generation decreases, and the deceleration of the vehicle 1 also decreases.
 <本実施形態における効果>
 上述した実施形態の車両1は、コースト走行時の車両1の実減速度である車両減速度を取得する。そして、車両1は、車両減速度が基準減速度よりも大きい場合には、車両1が上り勾配をコースト走行していると判断し、モータージェネレーター30の回生発電量を少なくさせる。
 モータージェネレーター30の回生発電量を少なくさせることで、回生発電による回生ブレーキ力が減少する。これにより、コースト走行時に回生発電を行う車両1が上り勾配をコースト走行する際に、実際の減速度が過大になることを抑制できるので、ドライビリティを向上できる。
<Effect in this embodiment>
The vehicle 1 of the embodiment described above acquires a vehicle deceleration that is an actual deceleration of the vehicle 1 during coasting. Then, when the vehicle deceleration is larger than the reference deceleration, the vehicle 1 determines that the vehicle 1 is traveling on an uphill coast, and reduces the regenerative power generation amount of the motor generator 30.
By reducing the regenerative power generation amount of the motor generator 30, the regenerative braking force by the regenerative power generation is reduced. As a result, when the vehicle 1 that performs regenerative power generation during coasting travels on an ascending slope, it is possible to suppress an actual deceleration from becoming excessive, thereby improving drivability.
 なお、上記では、車両1がハイブリッド車両であることとしたが、これに限定されない。例えば、車両1は、コースト走行時に発電機による回生発電を行う電気自動車であってもよい。 In the above description, the vehicle 1 is a hybrid vehicle, but is not limited thereto. For example, the vehicle 1 may be an electric vehicle that performs regenerative power generation using a generator during coasting.
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本開示の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。 Although the present disclosure has been described using the embodiment, the technical scope of the present disclosure is not limited to the scope described in the embodiment, and various modifications and changes can be made within the scope of the gist. is there. For example, the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do. In addition, new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present disclosure. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
 本出願は、2018年03月26日付で出願された日本国特許出願(特願2018-058423)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2018-058423) filed on March 26, 2018, the contents of which are incorporated herein by reference.
 本開示によれば、モータージェネレーターの回生発電量を少なくさせることで、回生発電による回生ブレーキ力が減少し、上り勾配をコースト走行する際の回生発電に起因するドライバビリティの低下を抑制できるという効果を奏し、ハイブリッド車両や電気自動車に適用することができる点において有用である。 According to the present disclosure, by reducing the regenerative power generation amount of the motor generator, the regenerative braking force due to the regenerative power generation is reduced, and it is possible to suppress a decrease in drivability due to the regenerative power generation when coasting on an uphill slope. This is useful in that it can be applied to hybrid vehicles and electric vehicles.
 1  車両
 30  モータージェネレーター
 34  インバーター
 54  アクセルペダル
 70  制御装置
 72  記憶部
 742  減速度取得部
 744  回生制御部
1 Vehicle 30 Motor Generator 34 Inverter 54 Accelerator Pedal 70 Controller 72 Storage Unit 742 Deceleration Acquisition Unit 744 Regeneration Control Unit

Claims (4)

  1.  コースト走行時に発電機によって回生発電を行うことで回生ブレーキ力を発生させる車両の回生制御装置であって、
     前記車両が平坦路をコースト走行する際の前記回生ブレーキ力による減速を含む基準減速度を予め記憶している記憶部と、
     前記コースト走行時に前記車両が減速している度合いを示す車両減速度を取得する減速度取得部と、
     前記減速度取得部が取得した前記車両減速度が、前記基準減速度よりも大きい場合には、前記発電機の回生発電量を少なくさせる回生制御部と、
     を備える、回生制御装置。
    A regenerative control device for a vehicle that generates regenerative braking force by performing regenerative power generation with a generator during coasting,
    A storage unit that stores in advance a reference deceleration including deceleration due to the regenerative braking force when the vehicle travels on a flat road;
    A deceleration acquisition unit that acquires a vehicle deceleration indicating the degree of deceleration of the vehicle during the coasting;
    When the vehicle deceleration acquired by the deceleration acquisition unit is greater than the reference deceleration, a regenerative control unit that reduces the regenerative power generation amount of the generator;
    A regenerative control device.
  2.  前記回生制御部は、
     前記車両減速度が前記基準減速度よりも大きい場合には、前記車両が上り勾配をコースト走行していると判定し、
     前記上り勾配をコースト走行している間、前記発電機の回生発電量を少なくさせる、
     請求項1に記載の回生制御装置。
    The regeneration controller is
    If the vehicle deceleration is greater than the reference deceleration, it is determined that the vehicle is traveling on an ascending slope,
    Reducing the amount of regenerative power generated by the generator while coasting on the ascending slope,
    The regeneration control apparatus according to claim 1.
  3.  前記回生制御部は、前記車両減速度が前記基準減速度よりも大きいほど、前記発電機の回生発電量をより少なくさせる、
     請求項1又は2に記載の回生制御装置。
    The regenerative control unit decreases the regenerative power generation amount of the generator as the vehicle deceleration is larger than the reference deceleration.
    The regeneration control apparatus according to claim 1 or 2.
  4.  前記減速度取得部は、前記車両のアクセルがオフに切り替わった際に、前記車両減速度を取得する、
     請求項1から3のいずれか1項に記載の回生制御装置。
    The deceleration acquisition unit acquires the vehicle deceleration when an accelerator of the vehicle is switched off.
    The regeneration control apparatus of any one of Claim 1 to 3.
PCT/JP2019/011337 2018-03-26 2019-03-19 Regenerative control device WO2019188544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058423 2018-03-26
JP2018058423A JP2019170134A (en) 2018-03-26 2018-03-26 Regenerative controller

Publications (1)

Publication Number Publication Date
WO2019188544A1 true WO2019188544A1 (en) 2019-10-03

Family

ID=68061567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011337 WO2019188544A1 (en) 2018-03-26 2019-03-19 Regenerative control device

Country Status (2)

Country Link
JP (1) JP2019170134A (en)
WO (1) WO2019188544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134605A1 (en) * 2022-01-14 2023-07-20 长城汽车股份有限公司 Adaptive energy recovery method and apparatus for automobile, and automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373315B (en) * 2020-11-23 2022-04-22 安徽江淮汽车集团股份有限公司 Energy recovery method, device, equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132404A (en) * 1997-06-24 1999-02-02 Nabco Ltd Travel motion control equipment for electric vehicle
JP2002152903A (en) * 1995-09-20 2002-05-24 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152903A (en) * 1995-09-20 2002-05-24 Mitsubishi Motors Corp Regenerative braking controller for electric vehicle
JPH1132404A (en) * 1997-06-24 1999-02-02 Nabco Ltd Travel motion control equipment for electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134605A1 (en) * 2022-01-14 2023-07-20 长城汽车股份有限公司 Adaptive energy recovery method and apparatus for automobile, and automobile

Also Published As

Publication number Publication date
JP2019170134A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5692243B2 (en) Regenerative control device, regenerative control method, and hybrid vehicle
EP1970240B1 (en) Engine start control system for hybrid vehicle
JP5247000B2 (en) Coastal deceleration control device for vehicle
JP5521340B2 (en) Control device for hybrid vehicle
JP5987570B2 (en) Shift control device for automatic transmission
KR102542523B1 (en) Brake system and controlling method thereof
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
CN103140400B (en) Vehicle and control method
US8775004B2 (en) Vehicle, control method, and computer program
JP2006160238A (en) Vehicle and method of controlling it
JP6075355B2 (en) Automobile
JP5165812B2 (en) Regenerative control device, hybrid vehicle, regenerative control method, and program
JP2007230384A (en) Controller for hybrid electric car
JP2009143306A (en) Internal combustion engine device and control method thereof, and power output device
WO2019188544A1 (en) Regenerative control device
JP2009214580A (en) Hybrid vehicle and control method therefor
JP6060757B2 (en) Vehicle control device
JP2015189382A (en) Hybrid automobile and regenerative control method
JP2012111464A (en) Hybrid vehicle
JP2007312463A (en) Vehicle and its control method
WO2015019789A1 (en) Flywheel regeneration system, and method of controlling same
JP3966214B2 (en) Vehicle control device
JP5853800B2 (en) Motor generator for vehicle
KR102558573B1 (en) Torque control device for hybrid vehicle and torque control method using the same
JP7088035B2 (en) Vehicle control unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777391

Country of ref document: EP

Kind code of ref document: A1