WO2019188127A1 - Fluid circuit for air cylinder - Google Patents

Fluid circuit for air cylinder Download PDF

Info

Publication number
WO2019188127A1
WO2019188127A1 PCT/JP2019/009377 JP2019009377W WO2019188127A1 WO 2019188127 A1 WO2019188127 A1 WO 2019188127A1 JP 2019009377 W JP2019009377 W JP 2019009377W WO 2019188127 A1 WO2019188127 A1 WO 2019188127A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow path
air chamber
check valve
chamber
Prior art date
Application number
PCT/JP2019/009377
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼田芳行
朝原浩之
門田謙吾
新庄直樹
名倉誠一
染谷和孝
風間晶博
大貫献太
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to JP2020509795A priority Critical patent/JPWO2019188127A1/en
Publication of WO2019188127A1 publication Critical patent/WO2019188127A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type

Definitions

  • the present invention relates to a fluid circuit of an air cylinder, and more particularly, to a fluid circuit of a double-acting air cylinder that does not require a large driving force in a return process.
  • this actuator driving device collects and accumulates a part of the exhaust discharged from the driving side pressure chamber 3 of the double-acting cylinder device 1 in the accumulator 12, and returns it to the double-acting cylinder device 1 It is used for power.
  • the switching valve 5 is switched to the state shown in the figure, the high-pressure exhaust in the drive side pressure chamber 3 is accumulated in the accumulator 12 through the recovery port 10 b of the recovery valve 10.
  • the exhaust pressure decreases and the difference between the exhaust pressure and the accumulator pressure decreases, the remaining air in the drive side pressure chamber 3 is released to the atmosphere from the discharge port 10c of the recovery valve 10, and at the same time, the accumulated air in the accumulator 12 is restored. It flows into the side pressure chamber 4.
  • the actuator driving device Since the high-pressure air in the drive-side pressure chamber 3 is not released into the atmosphere until the difference between the exhaust pressure and the accumulator pressure becomes small even when the switching valve 5 is switched, the actuator driving device does not release the double-action cylinder device 1. There is a problem that it takes time until the thrust necessary for returning is obtained. Further, while the pressure difference between the exhaust pressure and the accumulator pressure is large, the inlet port 10a of the recovery valve 10 is communicated with the recovery port 10b, and the inlet port 10a is discharged when the pressure difference between the exhaust pressure and the accumulator pressure becomes small.
  • the recovery valve 10 having a complicated structure for communicating with the port 10c is required.
  • the present applicant is a drive device that recycles a hydraulic cylinder by reusing exhaust pressure, and is intended to reduce the time required for the return and simplify the circuit.
  • a patent application was filed for the invention of the device (Japanese Patent Application No. 2016-253074).
  • one cylinder chamber communicates with the other cylinder chamber via the check valve and also communicates with the exhaust port.
  • the check valve since two pipes from one cylinder chamber to the switching valve are required, there is a problem that it takes time to manage the pipes.
  • the present invention has been made in view of the above circumstances, and aims to shorten the time required for restoration as much as possible while saving energy by reusing the exhaust pressure and restoring the air cylinder. To do. It is another object of the present invention to simplify a fluid circuit for returning an air cylinder by reusing exhaust pressure.
  • a fluid circuit of an air cylinder according to the present invention is a fluid circuit of an air cylinder having a first air chamber and a second air chamber defined by a piston, and includes a switching valve, a first air chamber, and a switching valve.
  • a first air flow path provided between, a second air flow path provided between the second air chamber and the switching valve, an intermediate point of the first air flow path, and an intermediate point of the second air flow path.
  • a bypass flow path to be connected, and a check valve and a pilot check valve interposed in the bypass flow path are provided.
  • the check valve allows air to flow from the second air chamber to the first air chamber and prevents air from flowing from the first air chamber to the second air chamber.
  • the pilot check valve The air flow from the chamber toward the second air chamber is allowed, and when the pilot pressure does not act, the air flow from the second air chamber to the first air chamber is blocked.
  • the air accumulated in the second air chamber can be supplied to the first air chamber and simultaneously discharged to the outside. For this reason, the pressure in the first air chamber increases and the pressure in the second air chamber decreases rapidly, and the time required for returning the air cylinder can be shortened as much as possible.
  • a fluid valve for returning the air cylinder can be simplified without requiring a recovery valve having a complicated structure.
  • a second check valve is interposed in the first air flow path between the intermediate point of the first air flow path and the switching valve, and the second check valve is connected to the first air flow path.
  • the first air flow path between the second check valve and the switching valve is allowed to allow air flow from the intermediate point to the switching valve and to prevent air flow from the switching valve to the intermediate point of the first air flow path.
  • the first air flow path is connected to the air supply source and the second air flow path is connected to the exhaust port to switch
  • the first air flow path is connected to the exhaust port and the second air flow path is connected to the air supply source.
  • the number of pipes from the air cylinder side to the switching valve can be minimized, and labor is not required for handling the pipes. Further, a pilot pressure equal to or higher than a predetermined pressure can be reliably applied to the pilot check valve by a simple fluid circuit.
  • the first air flow path between the first air chamber and the midpoint of the first air flow path preferably includes a tank portion. According to this, the air discharged from the second air chamber can be accumulated in the tank portion, and when the volume of the first air chamber increases during the air cylinder return process, the pressure decreases. Can be suppressed as much as possible.
  • the bypass flow path and the second check valve are preferably provided inside the air cylinder, and a throttle valve is provided in the second air flow path between the intermediate point of the second air flow path and the switching valve.
  • the throttle valve is preferably provided inside the air cylinder. According to this, as much of the fluid circuit of the air cylinder as possible is built in the air cylinder.
  • a piston rod connected to the piston cuts through the first air chamber, and an end of the piston rod extends outside the air cylinder through the rod cover. According to this, when driving the piston in the direction of pushing out the piston rod, the piston can exert a large thrust.
  • the time required for returning the air cylinder can be shortened as much as possible.
  • the fluid circuit for returning the air cylinder can be simplified. it can.
  • FIG. 1 is a circuit diagram conceptually showing a fluid circuit of an air cylinder according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of FIG. 1 when the switching valve is in the first position and the piston rod is in the retracted end position.
  • FIG. 2 is a circuit diagram of FIG. 1 when the switching valve is in a second position and the piston rod is in an end position on the pushing side. It is an external view of the air cylinder of FIG. It is a circuit diagram of the actuator drive device concerning a prior art document.
  • the fluid circuit 20 of the air cylinder includes a first air flow path 24, a second air flow path 26, a bypass flow path 28, and a switching valve 30.
  • the air cylinder 22 includes a cylinder tube 32, a head cover 34, a rod cover 36, a piston 38, a piston rod 40, and the like.
  • One end side of the cylinder tube 32 is closed by a rod cover 36, and the other end side of the cylinder tube 32 is closed by a head cover 34.
  • a piston 38 is disposed in the cylinder tube 32 so as to be reciprocally movable.
  • the internal space of the cylinder tube 32 includes a first air chamber 42 formed between the piston 38 and the rod cover 36, and the piston 38 and the head cover 34. And a second air chamber 44 formed therebetween.
  • the piston rod 40 connected to the piston 38 cuts through the first air chamber 42, and its end extends to the outside through the rod cover 36.
  • the air cylinder 22 performs work such as positioning of a workpiece (not shown) when the piston rod 40 is pushed out (expanded), and does not work when the piston rod 40 is retracted.
  • a first air passage 24 is provided between the first air chamber 42 of the air cylinder 22 and the switching valve 30, and a second air passage 26 is provided between the second air chamber 44 of the air cylinder 22 and the switching valve 30. Is provided.
  • a bypass flow path 28 is branched from the middle of the first air flow path 24, and the bypass flow path 28 merges in the middle of the second air flow path 26. That is, the bypass flow path 28 is provided between the intermediate point M 1 of the first air flow path 24 and the intermediate point M 2 of the second air flow path 26.
  • the bypass flow path 28 is provided with a first check valve (check valve) 46 on the side close to the intermediate point M2 of the second air flow path 26, and a pilot on the side close to the intermediate point M1 of the first air flow path 24.
  • a check valve 48 is interposed.
  • the first check valve 46 allows air to flow from the second air chamber 44 to the first air chamber 42, and prevents air from flowing from the first air chamber 42 to the second air chamber 44.
  • the pilot check valve 48 allows air to flow from the first air chamber 42 to the second air chamber 44.
  • the pilot check valve 48 prevents the flow of air from the second air chamber 44 to the first air chamber 42 when the pilot pressure higher than the predetermined pressure is not acting, and the pilot pressure higher than the predetermined pressure is applied. When this is done, air flow from the second air chamber 44 toward the first air chamber 42 is allowed.
  • the pilot check valve 48 allows air to flow from the first air chamber 42 to the second air chamber 44 when the pilot pressure is not acting, and from the second air chamber 44 to the first air chamber. It functions as a check valve that blocks air flow toward 42, and when pilot pressure is applied, air can flow in either direction and does not function as a check valve.
  • a second check valve 50 is interposed in the first air passage 24 between the intermediate point M1 of the first air passage 24 and the switching valve 30.
  • the second check valve 50 allows air to flow from the intermediate point M1 of the first air passage 24 toward the switching valve 30, and allows air to flow from the switching valve 30 to the intermediate point M1 of the first air passage 24. Stop.
  • a pilot flow path 52 that branches from the first air flow path 24 between the second check valve 50 and the switching valve 30 and reaches the pilot check valve 48 is provided.
  • a speed controller 54 capable of manually adjusting the flow rate of the air discharged from the second air chamber 44 is interposed in the second air passage 26 between the intermediate point M2 of the second air passage 26 and the switching valve 30.
  • the speed controller 54 is a variable throttle valve of a type called meter-out.
  • the switching valve 30 has a first port 30A to a fifth port 30E, and is configured as a 5-port 2-position solenoid valve that can be switched between a first position and a second position.
  • the first port 30 ⁇ / b> A is connected to the first air flow path 24, and the second port 30 ⁇ / b> B is connected to the second air flow path 26.
  • the third port 30C is connected to the air supply source 56.
  • the fourth port 30D is connected to a first exhaust port (exhaust port) 58a provided with a silencer
  • the fifth port 30E is connected to a second exhaust port (exhaust port) 58b provided with a silencer.
  • the switching valve 30 when the switching valve 30 is in the first position, the first port 30A and the third port 30C are connected, and the second port 30B and the fifth port 30E are connected.
  • the switching valve 30 when the switching valve 30 is in the second position, the second port 30B and the third port 30C are connected, and the first port 30A and the fourth port 30D are connected.
  • the switching valve 30 is set to the second position in the driving process of the air cylinder 22 where the piston rod 40 is pushed out, and the switching valve 30 is set to the first position in the return process of the air cylinder 22 into which the piston rod 40 is pulled.
  • FIG. 1 conceptually shows a fluid circuit 20 of an air cylinder by a circuit diagram, and a flow path incorporated in the inside of the air cylinder 22 is drawn as if it is disposed outside the air cylinder 22 for convenience. Yes. Actually, a portion surrounded by a one-dot chain line in FIG. 1, that is, a part of the first air flow path 24 including the bypass flow path 28 including the first check valve 46 and the pilot check valve 48 and the second check valve 50. A part of the second air flow path 26 is incorporated in the air cylinder 22.
  • the first air flow path 24 between the first air chamber 42 and the midpoint M1 of the first air flow path 24 includes a tank portion 24t.
  • the tank portion 24t has a large volume so as to act as an air tank that accumulates air.
  • the first air flow path 24 in the region surrounded by the one-dot chain line in FIG. 1 is provided across the rod cover 36, the cylinder tube 32, and the head cover 34, of which the portion provided in the cylinder tube 32 is the tank portion 24t. It has become.
  • the tank portion 24t may be configured by a space formed between the cylinder tube 32 having a double structure including an inner tube and an outer tube.
  • the fluid circuit 20 of the air cylinder according to the present embodiment is basically configured as described above, and the operation thereof will be described below with reference to FIGS. As shown in FIG. 2, the state where the switching valve 30 is in the first position and the piston rod 40 is most retracted is the initial state.
  • the pressure in the second air chamber 44 starts to increase and the pressure in the first air chamber 42 starts to decrease.
  • the piston rod 40 starts to move in the pushing direction. As shown in FIG. 3, the piston rod 40 extends to the maximum position and is held at that position with a large thrust.
  • the switching valve 30 is switched from the second position to the first position. Then, the high pressure air from the air supply source 56 flows into the first air flow path 24 between the second check valve 50 and the switching valve 30, and the flow is blocked by the second check valve 50 in the flow path. Air pressure rises. Then, the pressure in the pilot flow path 52 connected to the flow path also exceeds a predetermined value, and the pilot check valve 48 does not function as a check valve.
  • the pilot check valve 48 loses its function as a check valve, a part of the air accumulated in the second air chamber 44 passes through the intermediate point M2 of the second air flow path 26 and the first check valve 46 and the pilot.
  • the air is supplied from the intermediate point M1 of the first air passage 24 toward the first air chamber 42 through the bypass passage 28 including the check valve 48.
  • another part of the air accumulated in the second air chamber 44 is discharged to the outside through the second air flow path 26 from the second exhaust port 58b.
  • the pressure in the second air chamber 44 begins to decrease and the pressure in the first air chamber 42 begins to increase.
  • the air supplied toward the first air chamber 42 is mainly accumulated in the tank portion 24t.
  • the largest space in the region where air can exist between the first check valve 46 and the first air chamber 42 including the first air chamber 42 and the bypass flow path 28 is formed. This is because the tank portion 24t is occupied.
  • the first check valve 46 acts.
  • the air in the second air chamber 44 is not supplied toward the first air chamber 42, and the pressure in the first air chamber 42 stops increasing.
  • the pressure in the second air chamber 44 continues to drop.
  • the piston rod 40 When the piston rod 40 starts moving in the retracting direction, the volume of the first air chamber 42 increases and the pressure of the first air chamber 42 decreases. However, the volume of the first air chamber 42 is substantially reduced due to the presence of the tank portion 24t. The rate at which the pressure drops is small. And since the pressure of the 2nd air chamber 44 falls in a bigger rate, the state where the pressure of the 1st air chamber 42 exceeds the pressure of the 2nd air chamber 44 continues. Further, since the sliding resistance of the piston 38 once started to move is smaller than the frictional resistance of the piston 38 in a stationary state, the piston rod 40 can be moved in the retracting direction without any trouble. In this way, the piston rod 40 returns to the initial state where it is most retracted. This state is maintained until the switching valve 30 is switched again.
  • a part of the air accumulated in the second air chamber 44 is supplied to the first air chamber 42 via the first check valve 46 and the pilot check valve 48.
  • the other part of the air accumulated in the second air chamber 44 can be discharged to the outside, the time required for returning the air cylinder 22 can be shortened as much as possible.
  • a second check valve 50 is interposed in the first air flow path 24 between the intermediate point M1 of the first air flow path 24 and the switching valve 30, and between the second check valve 50 and the switching valve 30.
  • a pilot flow path 52 is provided between the first air flow path 24 and the pilot check valve 48, and the first air flow path 24 is connected to an air supply source 56 at the first position of the switching valve 30. Therefore, a pilot pressure equal to or higher than a predetermined pressure can be reliably applied to the pilot check valve 48 with a simple fluid circuit.
  • the piping can be easily handled.
  • the bypass flow path 28 including the first check valve 46 and the pilot check valve 48, a part of the first air flow path 24 including the second check valve 50 and a part of the second air flow path 26 are the air cylinder 22. Since it is incorporated inside, the fluid circuit disposed outside the air cylinder 22 can be reduced as much as possible.
  • the speed controller 54 provided in the second air flow path 26 between the intermediate point M2 of the second air flow path 26 and the switching valve 30 is provided outside the air cylinder 22.
  • a throttle valve in place of the controller 54 may be provided in the air cylinder 22, for example, in the head cover 34.
  • the fluid circuit of the air cylinder according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Actuator (AREA)

Abstract

An air cylinder fluid circuit (20) which is divided by a piston (38) into a first air chamber (42) and a second air chamber (44) is provided with: a changeover valve (30); a first air flow channel (24) disposed between the first air chamber and the changeover valve; a second air flow channel (26) disposed between the second air chamber and the changeover valve; a bypass flow channel (28) for connecting a midway point of the first air flow channel and a midway point of the second air flow channel; and a pilot check valve (48) and a check valve (46) disposed within the bypass flow channel. The check valve allows air to flow from the second air chamber toward the first air chamber while blocking an air flow from the first air chamber toward the second air chamber. The pilot check valve allows air to flow from the first air chamber toward the second air chamber, but blocks air flow from the second air chamber toward the first air chamber when pilot pressure is not exerted.

Description

エアシリンダの流体回路Air cylinder fluid circuit
 本発明は、エアシリンダの流体回路に関し、特に、復帰工程では大きな駆動力を必要としない複動型エアシリンダの流体回路に関する。 The present invention relates to a fluid circuit of an air cylinder, and more particularly, to a fluid circuit of a double-acting air cylinder that does not require a large driving force in a return process.
 従来から、駆動工程で大きな出力を必要とし、復帰工程では大きな出力を必要としない、空気圧を利用した複動アクチュエータの駆動装置が知られている(実公平2-2965号公報参照)。 Conventionally, a drive device for a double-acting actuator using air pressure that requires a large output in the drive process and does not require a large output in the return process has been known (see Japanese Utility Model Publication No. 2-2965).
 このアクチュエータ駆動装置は、図5に示すように、複動シリンダ装置1の駆動側圧力室3から排出される排気の一部をアキュムレータ12に回収・蓄積し、それを複動シリンダ装置1の復帰動力に使用するものである。具体的には、切換弁5が同図の状態に切り換わると、駆動側圧力室3内の高圧排気が回収弁10の回収ポート10bを通ってアキュムレータ12に蓄積される。排気圧力が低下して、排気圧とアキュムレータ圧力との差が小さくなると、駆動側圧力室3内の残存空気が回収弁10の排出ポート10cから大気に放出され、同時にアキュムレータ12の蓄圧空気が復帰側圧力室4に流入する。 As shown in FIG. 5, this actuator driving device collects and accumulates a part of the exhaust discharged from the driving side pressure chamber 3 of the double-acting cylinder device 1 in the accumulator 12, and returns it to the double-acting cylinder device 1 It is used for power. Specifically, when the switching valve 5 is switched to the state shown in the figure, the high-pressure exhaust in the drive side pressure chamber 3 is accumulated in the accumulator 12 through the recovery port 10 b of the recovery valve 10. When the exhaust pressure decreases and the difference between the exhaust pressure and the accumulator pressure decreases, the remaining air in the drive side pressure chamber 3 is released to the atmosphere from the discharge port 10c of the recovery valve 10, and at the same time, the accumulated air in the accumulator 12 is restored. It flows into the side pressure chamber 4.
 上記アクチュエータ駆動装置は、切換弁5を切り換えても、排気圧とアキュムレータ圧力との差が小さくなるまでは、駆動側圧力室3内の高圧空気が大気に放出されないので、複動シリンダ装置1の復帰に必要な推力が得られるまでに時間がかかるという問題がある。また、排気圧とアキュムレータ圧力との圧力差が大きい間は回収弁10の入口ポート10aを回収ポート10bに連通させ、排気圧とアキュムレータ圧力との圧力差が小さくなったときに入口ポート10aを排出ポート10cに連通させるという複雑な構造の回収弁10を必要とする。 Since the high-pressure air in the drive-side pressure chamber 3 is not released into the atmosphere until the difference between the exhaust pressure and the accumulator pressure becomes small even when the switching valve 5 is switched, the actuator driving device does not release the double-action cylinder device 1. There is a problem that it takes time until the thrust necessary for returning is obtained. Further, while the pressure difference between the exhaust pressure and the accumulator pressure is large, the inlet port 10a of the recovery valve 10 is communicated with the recovery port 10b, and the inlet port 10a is discharged when the pressure difference between the exhaust pressure and the accumulator pressure becomes small. The recovery valve 10 having a complicated structure for communicating with the port 10c is required.
 本出願人は、上記の課題に鑑み、排気圧力を再利用して流体圧シリンダを復帰させる駆動装置であって、復帰に必要な時間を短縮するとともに回路を簡素化することを目的とする駆動装置の発明について特許出願した(特願2016-253074号)。 In view of the above problems, the present applicant is a drive device that recycles a hydraulic cylinder by reusing exhaust pressure, and is intended to reduce the time required for the return and simplify the circuit. A patent application was filed for the invention of the device (Japanese Patent Application No. 2016-253074).
 上記特許出願に係る発明は、切換弁の所定位置において、一方のシリンダ室がチェック弁を介して他方のシリンダ室に連通するとともに排気口に連通するものである。この場合、一方のシリンダ室から切換弁に至る配管が2つ必要になるため、配管の取り回しに手間がかかるという問題がある。 In the invention according to the above patent application, at a predetermined position of the switching valve, one cylinder chamber communicates with the other cylinder chamber via the check valve and also communicates with the exhaust port. In this case, since two pipes from one cylinder chamber to the switching valve are required, there is a problem that it takes time to manage the pipes.
 本発明は、上記事情に鑑みてなされたものであり、排気圧力を再利用してエアシリンダを復帰させることで省エネを図りつつ、復帰に必要な時間を可及的に短縮することを目的とする。また、排気圧力を再利用してエアシリンダを復帰させるための流体回路を簡素化することを目的とする。 The present invention has been made in view of the above circumstances, and aims to shorten the time required for restoration as much as possible while saving energy by reusing the exhaust pressure and restoring the air cylinder. To do. It is another object of the present invention to simplify a fluid circuit for returning an air cylinder by reusing exhaust pressure.
 本発明に係るエアシリンダの流体回路は、ピストンによって区画される第1エア室と第2エア室とを有するエアシリンダの流体回路であって、切換弁と、第1エア室と切換弁との間に設けられる第1エア流路と、第2エア室と切換弁との間に設けられる第2エア流路と、第1エア流路の中間点と第2エア流路の中間点とを接続するバイパス流路と、バイパス流路に介設されるチェック弁およびパイロットチェック弁とを備えることを特徴とする。そして、チェック弁は、第2エア室から第1エア室に向かうエアの流通を許容するとともに第1エア室から第2エア室に向かうエアの流通を阻止し、パイロットチェック弁は、第1エア室から第2エア室に向かうエアの流通を許容するとともにパイロット圧が作用しないときは第2エア室から第1エア室に向かうエアの流通を阻止することを特徴とする。 A fluid circuit of an air cylinder according to the present invention is a fluid circuit of an air cylinder having a first air chamber and a second air chamber defined by a piston, and includes a switching valve, a first air chamber, and a switching valve. A first air flow path provided between, a second air flow path provided between the second air chamber and the switching valve, an intermediate point of the first air flow path, and an intermediate point of the second air flow path. A bypass flow path to be connected, and a check valve and a pilot check valve interposed in the bypass flow path are provided. The check valve allows air to flow from the second air chamber to the first air chamber and prevents air from flowing from the first air chamber to the second air chamber. The pilot check valve The air flow from the chamber toward the second air chamber is allowed, and when the pilot pressure does not act, the air flow from the second air chamber to the first air chamber is blocked.
 上記エアシリンダの流体回路によれば、第2エア室に蓄積されたエアを第1エア室に向けて供給すると同時に外部に排出することが可能になる。このため、第1エア室の圧力が増加するとともに、第2エア室の圧力が急速に減少し、エアシリンダの復帰に必要な時間を可及的に短縮することができる。また、複雑な構造の回収弁を必要とせず、エアシリンダを復帰させるための流体回路を簡素化することができる。 According to the fluid circuit of the air cylinder, the air accumulated in the second air chamber can be supplied to the first air chamber and simultaneously discharged to the outside. For this reason, the pressure in the first air chamber increases and the pressure in the second air chamber decreases rapidly, and the time required for returning the air cylinder can be shortened as much as possible. In addition, a fluid valve for returning the air cylinder can be simplified without requiring a recovery valve having a complicated structure.
 上記エアシリンダの流体回路において、第1エア流路の中間点と切換弁との間の第1エア流路に第2チェック弁が介設され、第2チェック弁は、第1エア流路の中間点から切換弁に向かうエアの流通を許容するとともに切換弁から第1エア流路の中間点に向かうエアの流通を阻止し、第2チェック弁と切換弁との間の第1エア流路とパイロットチェック弁との間にパイロット流路が設けられ、切換弁の第1位置において、第1エア流路がエア供給源に接続されるとともに第2エア流路が排気口に接続され、切換弁の第2位置において、第1エア流路が排気口に接続されるとともに第2エア流路がエア供給源に接続されるのが好ましい。 In the fluid circuit of the air cylinder, a second check valve is interposed in the first air flow path between the intermediate point of the first air flow path and the switching valve, and the second check valve is connected to the first air flow path. The first air flow path between the second check valve and the switching valve is allowed to allow air flow from the intermediate point to the switching valve and to prevent air flow from the switching valve to the intermediate point of the first air flow path. Between the pilot check valve and the pilot check valve, and at the first position of the switching valve, the first air flow path is connected to the air supply source and the second air flow path is connected to the exhaust port to switch Preferably, in the second position of the valve, the first air flow path is connected to the exhaust port and the second air flow path is connected to the air supply source.
 これによれば、エアシリンダ側から切換弁にまで至る配管の数を最小限のものとすることができ、配管の取り回しに手間を要しない。また、簡単な流体回路によってパイロットチェック弁に対して確実に所定圧力以上のパイロット圧を作用させることができる。 According to this, the number of pipes from the air cylinder side to the switching valve can be minimized, and labor is not required for handling the pipes. Further, a pilot pressure equal to or higher than a predetermined pressure can be reliably applied to the pilot check valve by a simple fluid circuit.
 上記の場合、第1エア室と第1エア流路の中間点との間の第1エア流路は、タンク部を含むのが好ましい。これによれば、第2エア室から排出されるエアをタンク部に蓄積しておくことができ、エアシリンダの復帰工程時、第1エア室の容積が増大する際にその圧力が低下するのを可及的に抑えることができる。 In the above case, the first air flow path between the first air chamber and the midpoint of the first air flow path preferably includes a tank portion. According to this, the air discharged from the second air chamber can be accumulated in the tank portion, and when the volume of the first air chamber increases during the air cylinder return process, the pressure decreases. Can be suppressed as much as possible.
 また、バイパス流路および第2チェック弁はエアシリンダの内部に設けられるのが好ましく、さらに、第2エア流路の中間点と切換弁との間の第2エア流路に絞り弁が介設され、絞り弁はエアシリンダの内部に設けられるのが好ましい。これによれば、エアシリンダの流体回路について、できるだけ多くの部分がエアシリンダに内蔵される。 The bypass flow path and the second check valve are preferably provided inside the air cylinder, and a throttle valve is provided in the second air flow path between the intermediate point of the second air flow path and the switching valve. The throttle valve is preferably provided inside the air cylinder. According to this, as much of the fluid circuit of the air cylinder as possible is built in the air cylinder.
 また、ピストンに連結されたピストンロッドが第1エア室を縦断し、その端部がロッドカバーを通ってエアシリンダの外部に伸びるのが好ましい。これによれば、ピストンロッドを押し出す方向にピストンを駆動する際にピストンに大きな推力を発揮させることができる。 Also, it is preferable that a piston rod connected to the piston cuts through the first air chamber, and an end of the piston rod extends outside the air cylinder through the rod cover. According to this, when driving the piston in the direction of pushing out the piston rod, the piston can exert a large thrust.
 本発明に係るエアシリンダの流体回路によれば、エアシリンダの復帰に必要な時間を可及的に短縮することができる。また、複雑な構造の回収弁を必要とせず、エアシリンダから切換弁に至る配管の数を最小限のものとすることができるので、エアシリンダを復帰させるための流体回路を簡素化することができる。 According to the fluid circuit of the air cylinder according to the present invention, the time required for returning the air cylinder can be shortened as much as possible. In addition, since the number of pipes from the air cylinder to the switching valve can be minimized without requiring a complicated collection valve, the fluid circuit for returning the air cylinder can be simplified. it can.
本発明の実施形態に係るエアシリンダの流体回路を概念的に示す回路図である。1 is a circuit diagram conceptually showing a fluid circuit of an air cylinder according to an embodiment of the present invention. 切換弁が第1位置にあり、かつ、ピストンロッドが引き込み側の端部位置にあるときの図1の回路図である。FIG. 2 is a circuit diagram of FIG. 1 when the switching valve is in the first position and the piston rod is in the retracted end position. 切換弁が第2位置にあり、かつ、ピストンロッドが押し出し側の端部位置にあるときの図1の回路図である。FIG. 2 is a circuit diagram of FIG. 1 when the switching valve is in a second position and the piston rod is in an end position on the pushing side. 図1のエアシリンダの外観図である。It is an external view of the air cylinder of FIG. 先行技術文献に係るアクチュエータ駆動装置の回路図である。It is a circuit diagram of the actuator drive device concerning a prior art document.
 以下、本発明に係るエアシリンダの流体回路について好適な実施形態を挙げ、添付の図面を参照しながら説明する。 Hereinafter, preferred embodiments of a fluid circuit of an air cylinder according to the present invention will be described with reference to the accompanying drawings.
 図1に示すように、本発明の実施形態に係るエアシリンダの流体回路20は、第1エア流路24、第2エア流路26、バイパス流路28、切換弁30を含む。 As shown in FIG. 1, the fluid circuit 20 of the air cylinder according to the embodiment of the present invention includes a first air flow path 24, a second air flow path 26, a bypass flow path 28, and a switching valve 30.
 図4等に示すように、エアシリンダ22は、シリンダチューブ32、ヘッドカバー34、ロッドカバー36、ピストン38、ピストンロッド40等から構成される。シリンダチューブ32の一端側はロッドカバー36によって閉塞され、シリンダチューブ32の他端側はヘッドカバー34によって閉塞される。シリンダチューブ32の内部にピストン38が往復移動自在に配設され、シリンダチューブ32の内部空間は、ピストン38とロッドカバー36との間に形成される第1エア室42と、ピストン38とヘッドカバー34との間に形成される第2エア室44とに区画される。 As shown in FIG. 4 and the like, the air cylinder 22 includes a cylinder tube 32, a head cover 34, a rod cover 36, a piston 38, a piston rod 40, and the like. One end side of the cylinder tube 32 is closed by a rod cover 36, and the other end side of the cylinder tube 32 is closed by a head cover 34. A piston 38 is disposed in the cylinder tube 32 so as to be reciprocally movable. The internal space of the cylinder tube 32 includes a first air chamber 42 formed between the piston 38 and the rod cover 36, and the piston 38 and the head cover 34. And a second air chamber 44 formed therebetween.
 ピストン38に連結されたピストンロッド40は第1エア室42を縦断し、その端部がロッドカバー36を通って外部に延びる。エアシリンダ22は、ピストンロッド40の押し出し時(伸長時)に図示しないワークの位置決め等の仕事を行い、ピストンロッド40の引き込み時には仕事をしない。 The piston rod 40 connected to the piston 38 cuts through the first air chamber 42, and its end extends to the outside through the rod cover 36. The air cylinder 22 performs work such as positioning of a workpiece (not shown) when the piston rod 40 is pushed out (expanded), and does not work when the piston rod 40 is retracted.
 エアシリンダ22の第1エア室42と切換弁30との間に第1エア流路24が設けられ、エアシリンダ22の第2エア室44と切換弁30との間に第2エア流路26が設けられている。第1エア流路24の途中からバイパス流路28が分岐し、該バイパス流路28は第2エア流路26の途中に合流している。すなわち、第1エア流路24の中間点M1と第2エア流路26の中間点M2との間にバイパス流路28が設けられている。 A first air passage 24 is provided between the first air chamber 42 of the air cylinder 22 and the switching valve 30, and a second air passage 26 is provided between the second air chamber 44 of the air cylinder 22 and the switching valve 30. Is provided. A bypass flow path 28 is branched from the middle of the first air flow path 24, and the bypass flow path 28 merges in the middle of the second air flow path 26. That is, the bypass flow path 28 is provided between the intermediate point M 1 of the first air flow path 24 and the intermediate point M 2 of the second air flow path 26.
 バイパス流路28には、第2エア流路26の中間点M2に近い側に第1チェック弁(チェック弁)46が介設され、第1エア流路24の中間点M1に近い側にパイロットチェック弁48が介設されている。第1チェック弁46は、第2エア室44から第1エア室42に向かうエアの流通を許容し、第1エア室42から第2エア室44に向かうエアの流通を阻止する。 The bypass flow path 28 is provided with a first check valve (check valve) 46 on the side close to the intermediate point M2 of the second air flow path 26, and a pilot on the side close to the intermediate point M1 of the first air flow path 24. A check valve 48 is interposed. The first check valve 46 allows air to flow from the second air chamber 44 to the first air chamber 42, and prevents air from flowing from the first air chamber 42 to the second air chamber 44.
 パイロットチェック弁48は、第1エア室42から第2エア室44に向かうエアの流通を許容する。また、パイロットチェック弁48は、所定圧力以上のパイロット圧が作用していないときは、第2エア室44から第1エア室42に向かうエアの流通を阻止し、所定圧力以上のパイロット圧が作用しているときは、第2エア室44から第1エア室42に向かうエアの流通を許容する。換言すれば、パイロットチェック弁48は、パイロット圧が作用していないときは、第1エア室42から第2エア室44に向かうエアの流通を許容するとともに第2エア室44から第1エア室42に向かうエアの流通を阻止する逆止弁として機能し、パイロット圧が作用しているときは、エアがいずれの方向にも流通可能となり、逆止弁として機能しない。 The pilot check valve 48 allows air to flow from the first air chamber 42 to the second air chamber 44. The pilot check valve 48 prevents the flow of air from the second air chamber 44 to the first air chamber 42 when the pilot pressure higher than the predetermined pressure is not acting, and the pilot pressure higher than the predetermined pressure is applied. When this is done, air flow from the second air chamber 44 toward the first air chamber 42 is allowed. In other words, the pilot check valve 48 allows air to flow from the first air chamber 42 to the second air chamber 44 when the pilot pressure is not acting, and from the second air chamber 44 to the first air chamber. It functions as a check valve that blocks air flow toward 42, and when pilot pressure is applied, air can flow in either direction and does not function as a check valve.
 第1エア流路24の中間点M1と切換弁30との間の第1エア流路24に第2チェック弁50が介設されている。第2チェック弁50は、第1エア流路24の中間点M1から切換弁30に向かうエアの流通を許容し、切換弁30から第1エア流路24の中間点M1に向かうエアの流通を阻止する。第2チェック弁50と切換弁30との間の第1エア流路24から分岐してパイロットチェック弁48に至るパイロット流路52が設けられている。 A second check valve 50 is interposed in the first air passage 24 between the intermediate point M1 of the first air passage 24 and the switching valve 30. The second check valve 50 allows air to flow from the intermediate point M1 of the first air passage 24 toward the switching valve 30, and allows air to flow from the switching valve 30 to the intermediate point M1 of the first air passage 24. Stop. A pilot flow path 52 that branches from the first air flow path 24 between the second check valve 50 and the switching valve 30 and reaches the pilot check valve 48 is provided.
 第2エア流路26の中間点M2と切換弁30との間の第2エア流路26に、第2エア室44から排出されるエアの流量を手動により調整可能なスピードコントローラ54が介設されている。すなわち、スピードコントローラ54は、メータアウトと呼ばれる形式の可変絞り弁である。スピードコントローラ54を操作することによって、第2エア室44に蓄積されたエアを第1エア室42に向けて供給する量と外部に排出する量との割合を調整することができる。 A speed controller 54 capable of manually adjusting the flow rate of the air discharged from the second air chamber 44 is interposed in the second air passage 26 between the intermediate point M2 of the second air passage 26 and the switching valve 30. Has been. That is, the speed controller 54 is a variable throttle valve of a type called meter-out. By operating the speed controller 54, the ratio between the amount of air accumulated in the second air chamber 44 supplied toward the first air chamber 42 and the amount discharged outside can be adjusted.
 切換弁30は、第1ポート30Aないし第5ポート30Eを有し、第1位置と第2位置との間で切り換え可能な5ポート2位置電磁弁として構成される。第1ポート30Aは第1エア流路24に繋がっており、第2ポート30Bは第2エア流路26に繋がっている。第3ポート30Cはエア供給源56に繋がっている。第4ポート30Dはサイレンサが付設された第1排気口(排気口)58aに繋がっており、第5ポート30Eはサイレンサが付設された第2排気口(排気口)58bに繋がっている。 The switching valve 30 has a first port 30A to a fifth port 30E, and is configured as a 5-port 2-position solenoid valve that can be switched between a first position and a second position. The first port 30 </ b> A is connected to the first air flow path 24, and the second port 30 </ b> B is connected to the second air flow path 26. The third port 30C is connected to the air supply source 56. The fourth port 30D is connected to a first exhaust port (exhaust port) 58a provided with a silencer, and the fifth port 30E is connected to a second exhaust port (exhaust port) 58b provided with a silencer.
 図2に示すように、切換弁30が第1位置にあるときは、第1ポート30Aと第3ポート30Cが繋がり、かつ、第2ポート30Bと第5ポート30Eが繋がる。一方、図1に示すように、切換弁30が第2位置にあるときは、第2ポート30Bと第3ポート30Cが繋がり、かつ、第1ポート30Aと第4ポート30Dが繋がる。ピストンロッド40が押し出されるエアシリンダ22の駆動工程では切換弁30が第2位置とされ、ピストンロッド40が引き込まれるエアシリンダ22の復帰工程では切換弁30が第1位置とされる。 As shown in FIG. 2, when the switching valve 30 is in the first position, the first port 30A and the third port 30C are connected, and the second port 30B and the fifth port 30E are connected. On the other hand, as shown in FIG. 1, when the switching valve 30 is in the second position, the second port 30B and the third port 30C are connected, and the first port 30A and the fourth port 30D are connected. The switching valve 30 is set to the second position in the driving process of the air cylinder 22 where the piston rod 40 is pushed out, and the switching valve 30 is set to the first position in the return process of the air cylinder 22 into which the piston rod 40 is pulled.
 図1は、エアシリンダの流体回路20を回路図によって概念的に示したもので、エアシリンダ22の内部に組み込まれる流路も便宜上エアシリンダ22の外側に配設されているかの如く描かれている。実際には、図1の一点鎖線で囲まれた部分、すなわち、第1チェック弁46とパイロットチェック弁48を含むバイパス流路28、第2チェック弁50を含む第1エア流路24の一部および第2エア流路26の一部は、エアシリンダ22の内部に組み込まれている。 FIG. 1 conceptually shows a fluid circuit 20 of an air cylinder by a circuit diagram, and a flow path incorporated in the inside of the air cylinder 22 is drawn as if it is disposed outside the air cylinder 22 for convenience. Yes. Actually, a portion surrounded by a one-dot chain line in FIG. 1, that is, a part of the first air flow path 24 including the bypass flow path 28 including the first check valve 46 and the pilot check valve 48 and the second check valve 50. A part of the second air flow path 26 is incorporated in the air cylinder 22.
 第1エア室42と第1エア流路24の中間点M1との間の第1エア流路24には、タンク部24tが含まれる。タンク部24tは、エアを蓄積するエアタンクとして作用するように容積を大きくとってある。例えば、図1の一点鎖線で囲まれた領域の第1エア流路24は、ロッドカバー36とシリンダチューブ32とヘッドカバー34とに亘って設けられ、そのうちシリンダチューブ32に設けられる部分がタンク部24tとなっている。タンク部24tは、例えば、シリンダチューブ32を内側チューブと外側チューブからなる二重構造とし、両者の間に形成される空間によって構成するとよい。 The first air flow path 24 between the first air chamber 42 and the midpoint M1 of the first air flow path 24 includes a tank portion 24t. The tank portion 24t has a large volume so as to act as an air tank that accumulates air. For example, the first air flow path 24 in the region surrounded by the one-dot chain line in FIG. 1 is provided across the rod cover 36, the cylinder tube 32, and the head cover 34, of which the portion provided in the cylinder tube 32 is the tank portion 24t. It has become. For example, the tank portion 24t may be configured by a space formed between the cylinder tube 32 having a double structure including an inner tube and an outer tube.
 本実施形態に係るエアシリンダの流体回路20は、基本的には以上のように構成されるものであり、以下、図2および図3を参照しながら、その作用について説明する。なお、図2に示すように、切換弁30が第1位置にあり、ピストンロッド40が最も引き込まれた状態を初期状態とする。 The fluid circuit 20 of the air cylinder according to the present embodiment is basically configured as described above, and the operation thereof will be described below with reference to FIGS. As shown in FIG. 2, the state where the switching valve 30 is in the first position and the piston rod 40 is most retracted is the initial state.
 この初期状態において、切換弁30を第1位置から第2位置に切り換えると、エア供給源56からの高圧エアが第2エア流路26を介して第2エア室44に供給され、第1エア室42内のエアが第2チェック弁50を含む第1エア流路24を介して第1排気口58aから外部に排出されるようになる。 In this initial state, when the switching valve 30 is switched from the first position to the second position, high-pressure air from the air supply source 56 is supplied to the second air chamber 44 via the second air flow path 26, and the first air The air in the chamber 42 is discharged to the outside from the first exhaust port 58 a via the first air flow path 24 including the second check valve 50.
 これにより、第2エア室44の圧力が上昇し始めるとともに、第1エア室42の圧力が下降し始める。第2エア室44の圧力がピストン38の静止摩擦抵抗に打ち勝つ分だけ第1エア室42の圧力を上回ると、ピストンロッド40の押し出し方向への移動が始まる。そして、図3に示すように、ピストンロッド40は最大位置まで伸長し、大きな推力でその位置に保持される。 As a result, the pressure in the second air chamber 44 starts to increase and the pressure in the first air chamber 42 starts to decrease. When the pressure in the second air chamber 44 exceeds the pressure in the first air chamber 42 by an amount that overcomes the static frictional resistance of the piston 38, the piston rod 40 starts to move in the pushing direction. As shown in FIG. 3, the piston rod 40 extends to the maximum position and is held at that position with a large thrust.
 ピストンロッド40が伸長してワークの位置決め等の作業が行われた後、切換弁30が第2位置から第1位置に切り換えられる。すると、エア供給源56からの高圧エアが第2チェック弁50と切換弁30との間の第1エア流路24内に流れ込み、第2チェック弁50によって流れを阻まれた該流路内のエアの圧力が上昇する。そして該流路に接続されたパイロット流路52の圧力も所定以上になり、パイロットチェック弁48が逆止弁として機能しなくなる。 After the piston rod 40 is extended and work such as workpiece positioning is performed, the switching valve 30 is switched from the second position to the first position. Then, the high pressure air from the air supply source 56 flows into the first air flow path 24 between the second check valve 50 and the switching valve 30, and the flow is blocked by the second check valve 50 in the flow path. Air pressure rises. Then, the pressure in the pilot flow path 52 connected to the flow path also exceeds a predetermined value, and the pilot check valve 48 does not function as a check valve.
 パイロットチェック弁48が逆止弁としての機能を失うと、第2エア室44に蓄積されたエアの一部は、第2エア流路26の中間点M2を経て、第1チェック弁46とパイロットチェック弁48を含むバイパス流路28を通り、第1エア流路24の中間点M1から第1エア室42に向けて供給される。それと同時に、第2エア室44に蓄積されたエアの他の一部は、第2エア流路26を介して第2排気口58bから外部に排出される。これにより、第2エア室44の圧力が下降し始めるとともに、第1エア室42の圧力が上昇し始める。このとき、第1エア室42に向けて供給されるエアは、主にタンク部24tに蓄積される。ピストンロッド40の引き込みが始まる前は、第1エア室42とバイパス流路28を含めて第1チェック弁46から第1エア室42までの間にエアが存在し得る領域のうち最も大きな空間を占めるのはタンク部24tであるからである。 When the pilot check valve 48 loses its function as a check valve, a part of the air accumulated in the second air chamber 44 passes through the intermediate point M2 of the second air flow path 26 and the first check valve 46 and the pilot. The air is supplied from the intermediate point M1 of the first air passage 24 toward the first air chamber 42 through the bypass passage 28 including the check valve 48. At the same time, another part of the air accumulated in the second air chamber 44 is discharged to the outside through the second air flow path 26 from the second exhaust port 58b. As a result, the pressure in the second air chamber 44 begins to decrease and the pressure in the first air chamber 42 begins to increase. At this time, the air supplied toward the first air chamber 42 is mainly accumulated in the tank portion 24t. Before the piston rod 40 starts to be retracted, the largest space in the region where air can exist between the first check valve 46 and the first air chamber 42 including the first air chamber 42 and the bypass flow path 28 is formed. This is because the tank portion 24t is occupied.
 第2エア室44の圧力が減少し、第1エア室42の圧力が上昇して、第2エア室44の圧力が第1エア室42の圧力に等しくなると、第1チェック弁46の作用により、第2エア室44のエアが第1エア室42に向けて供給されなくなり、第1エア室42の圧力の上昇が止まる。一方、第2エア室44の圧力は下降し続ける。そして、第1エア室42の圧力がピストン38の静止摩擦抵抗に打ち勝つ分だけ第2エア室44の圧力を上回ると、ピストンロッド40の引き込み方向への移動が始まる。 When the pressure in the second air chamber 44 decreases, the pressure in the first air chamber 42 increases, and the pressure in the second air chamber 44 becomes equal to the pressure in the first air chamber 42, the first check valve 46 acts. The air in the second air chamber 44 is not supplied toward the first air chamber 42, and the pressure in the first air chamber 42 stops increasing. On the other hand, the pressure in the second air chamber 44 continues to drop. When the pressure in the first air chamber 42 exceeds the pressure in the second air chamber 44 by an amount that overcomes the static frictional resistance of the piston 38, the piston rod 40 starts to move in the retracting direction.
 ピストンロッド40が引き込み方向へ移動を始めると、第1エア室42の容積が増加するため第1エア室42の圧力は下降するが、タンク部24tの存在によって第1エア室42の容積は実質的に大きなものとなっており、圧力が下降する割合は小さい。そして、第2エア室44の圧力はそれより大きな割合で下降するので、第1エア室42の圧力が第2エア室44の圧力を上回る状態は継続する。また、一旦移動を始めたピストン38の摺動抵抗は静止状態でのピストン38の摩擦抵抗よりも小さいので、ピストンロッド40の引き込み方向への移動は支障なく行われる。こうして、ピストンロッド40が最も引き込まれた初期状態に戻る。再び切換弁30が切り換えられるまでこの状態が維持される。 When the piston rod 40 starts moving in the retracting direction, the volume of the first air chamber 42 increases and the pressure of the first air chamber 42 decreases. However, the volume of the first air chamber 42 is substantially reduced due to the presence of the tank portion 24t. The rate at which the pressure drops is small. And since the pressure of the 2nd air chamber 44 falls in a bigger rate, the state where the pressure of the 1st air chamber 42 exceeds the pressure of the 2nd air chamber 44 continues. Further, since the sliding resistance of the piston 38 once started to move is smaller than the frictional resistance of the piston 38 in a stationary state, the piston rod 40 can be moved in the retracting direction without any trouble. In this way, the piston rod 40 returns to the initial state where it is most retracted. This state is maintained until the switching valve 30 is switched again.
 本実施形態によれば、エアシリンダ22の復帰工程において、第2エア室44に蓄積されたエアの一部を第1チェック弁46とパイロットチェック弁48を介して第1エア室42に供給しつつ、第2エア室44に蓄積されたエアの他の一部を外部に排出することができるので、エアシリンダ22の復帰に必要な時間を可及的に短縮することができる。 According to the present embodiment, in the return process of the air cylinder 22, a part of the air accumulated in the second air chamber 44 is supplied to the first air chamber 42 via the first check valve 46 and the pilot check valve 48. However, since the other part of the air accumulated in the second air chamber 44 can be discharged to the outside, the time required for returning the air cylinder 22 can be shortened as much as possible.
 また、第1エア流路24の中間点M1と切換弁30との間の第1エア流路24に第2チェック弁50が介設され、第2チェック弁50と切換弁30との間の第1エア流路24とパイロットチェック弁48との間にパイロット流路52が設けられ、切換弁30の第1位置において、第1エア流路24がエア供給源56に接続される。このため、簡単な流体回路によってパイロットチェック弁48に対して確実に所定圧力以上のパイロット圧を作用させることができる。 In addition, a second check valve 50 is interposed in the first air flow path 24 between the intermediate point M1 of the first air flow path 24 and the switching valve 30, and between the second check valve 50 and the switching valve 30. A pilot flow path 52 is provided between the first air flow path 24 and the pilot check valve 48, and the first air flow path 24 is connected to an air supply source 56 at the first position of the switching valve 30. Therefore, a pilot pressure equal to or higher than a predetermined pressure can be reliably applied to the pilot check valve 48 with a simple fluid circuit.
 さらに、エアシリンダ22側から切換弁30にまで至る流路は、第1エア流路24と第2エア流路26の二つしかないので、配管の取り回しが簡単になる。また、第1チェック弁46とパイロットチェック弁48を含むバイパス流路28、第2チェック弁50を含む第1エア流路24の一部および第2エア流路26の一部がエアシリンダ22の内部に組み込まれるので、エアシリンダ22の外部に配設される流体回路をできるだけ少なくすることができる。 Furthermore, since there are only two flow paths from the air cylinder 22 side to the switching valve 30, the first air flow path 24 and the second air flow path 26, the piping can be easily handled. Further, the bypass flow path 28 including the first check valve 46 and the pilot check valve 48, a part of the first air flow path 24 including the second check valve 50 and a part of the second air flow path 26 are the air cylinder 22. Since it is incorporated inside, the fluid circuit disposed outside the air cylinder 22 can be reduced as much as possible.
 本実施形態では、第2エア流路26の中間点M2と切換弁30との間の第2エア流路26に介設するスピードコントローラ54をエアシリンダ22の外部に設けることとしたが、スピードコントローラ54に代わる絞り弁をエアシリンダ22の内部、例えばヘッドカバー34に設けてもよい。 In the present embodiment, the speed controller 54 provided in the second air flow path 26 between the intermediate point M2 of the second air flow path 26 and the switching valve 30 is provided outside the air cylinder 22. A throttle valve in place of the controller 54 may be provided in the air cylinder 22, for example, in the head cover 34.
 本発明に係るエアシリンダの流体回路は、上述の実施形態に限らず、本発明の要旨を逸脱することのない範囲で、種々の構成を採り得ることはもちろんである。 Of course, the fluid circuit of the air cylinder according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Claims (6)

  1.  ピストンによって区画される第1エア室と第2エア室とを有するエアシリンダの流体回路であって、
     切換弁と、前記第1エア室と前記切換弁との間に設けられる第1エア流路と、前記第2エア室と前記切換弁との間に設けられる第2エア流路と、前記第1エア流路の中間点と前記第2エア流路の中間点とを接続するバイパス流路と、前記バイパス流路に介設されるチェック弁およびパイロットチェック弁とを備え、
     前記チェック弁は、前記第2エア室から前記第1エア室に向かうエアの流通を許容するとともに前記第1エア室から前記第2エア室に向かうエアの流通を阻止し、前記パイロットチェック弁は、前記第1エア室から前記第2エア室に向かうエアの流通を許容するとともにパイロット圧が作用しないときは前記第2エア室から前記第1エア室に向かうエアの流通を阻止する
     ことを特徴とするエアシリンダの流体回路。
    A fluid circuit of an air cylinder having a first air chamber and a second air chamber defined by a piston,
    A switching valve; a first air flow path provided between the first air chamber and the switching valve; a second air flow path provided between the second air chamber and the switching valve; A bypass passage connecting an intermediate point of one air passage and an intermediate point of the second air passage; a check valve and a pilot check valve interposed in the bypass passage;
    The check valve allows air to flow from the second air chamber to the first air chamber and prevents air from flowing from the first air chamber to the second air chamber. The pilot check valve The air flow from the first air chamber to the second air chamber is allowed and when the pilot pressure does not act, the air flow from the second air chamber to the first air chamber is blocked. Air cylinder fluid circuit.
  2.  請求項1記載のエアシリンダの流体回路において、
     前記第1エア流路の中間点と前記切換弁との間の前記第1エア流路に第2チェック弁が介設され、前記第2チェック弁は、前記第1エア流路の中間点から前記切換弁に向かうエアの流通を許容するとともに前記切換弁から前記第1エア流路の中間点に向かうエアの流通を阻止し、前記第2チェック弁と前記切換弁との間の前記第1エア流路と前記パイロットチェック弁との間にパイロット流路が設けられ、前記切換弁の第1位置において、前記第1エア流路がエア供給源に接続されるとともに前記第2エア流路が排気口に接続され、前記切換弁の第2位置において、前記第1エア流路が排気口に接続されるとともに前記第2エア流路が前記エア供給源に接続される
     ことを特徴とするエアシリンダの流体回路。
    In the fluid circuit of the air cylinder according to claim 1,
    A second check valve is interposed in the first air flow path between the intermediate point of the first air flow path and the switching valve, and the second check valve is connected to the intermediate point of the first air flow path. The flow of air toward the switching valve is allowed and the flow of air from the switching valve toward the intermediate point of the first air flow path is prevented, and the first check valve and the switching valve are arranged between the first check valve and the switching valve. A pilot flow path is provided between the air flow path and the pilot check valve, and at the first position of the switching valve, the first air flow path is connected to an air supply source and the second air flow path is An air connected to an exhaust port, wherein the first air flow path is connected to an exhaust port and the second air flow path is connected to the air supply source at a second position of the switching valve. Cylinder fluid circuit.
  3.  請求項2記載のエアシリンダの流体回路において、
     前記第1エア室と前記第1エア流路の中間点との間の前記第1エア流路は、タンク部を含む
     ことを特徴とするエアシリンダの流体回路。
    In the fluid circuit of the air cylinder according to claim 2,
    The fluid circuit of an air cylinder, wherein the first air flow path between the first air chamber and an intermediate point of the first air flow path includes a tank portion.
  4.  請求項2記載のエアシリンダの流体回路において、
     前記バイパス流路および前記第2チェック弁は前記エアシリンダの内部に設けられる
     ことを特徴とするエアシリンダの流体回路。
    In the fluid circuit of the air cylinder according to claim 2,
    The bypass circuit and the second check valve are provided inside the air cylinder. A fluid circuit of an air cylinder, wherein:
  5.  請求項4記載のエアシリンダの流体回路において、
     前記第2エア流路の中間点と前記切換弁との間の前記第2エア流路に絞り弁が介設され、前記絞り弁は前記エアシリンダの内部に設けられる
     ことを特徴とするエアシリンダの流体回路。
    In the fluid circuit of the air cylinder according to claim 4,
    An air cylinder, wherein a throttle valve is interposed in the second air flow path between an intermediate point of the second air flow path and the switching valve, and the throttle valve is provided inside the air cylinder. Fluid circuit.
  6.  請求項1記載のエアシリンダの流体回路において、
     前記ピストンに連結されたピストンロッドが前記第1エア室を縦断し、その端部がロッドカバーを通って外部に伸びる
     ことを特徴とするエアシリンダの流体回路。
    In the fluid circuit of the air cylinder according to claim 1,
    A fluid circuit of an air cylinder, wherein a piston rod connected to the piston cuts through the first air chamber, and an end of the piston rod extends outside through a rod cover.
PCT/JP2019/009377 2018-03-27 2019-03-08 Fluid circuit for air cylinder WO2019188127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509795A JPWO2019188127A1 (en) 2018-03-27 2019-03-08 Air cylinder fluid circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060031 2018-03-27
JP2018060031 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188127A1 true WO2019188127A1 (en) 2019-10-03

Family

ID=68059954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009377 WO2019188127A1 (en) 2018-03-27 2019-03-08 Fluid circuit for air cylinder

Country Status (3)

Country Link
JP (1) JPWO2019188127A1 (en)
TW (1) TWI699488B (en)
WO (1) WO2019188127A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242506U (en) * 1975-09-22 1977-03-26
JPS5634103U (en) * 1979-08-23 1981-04-03
JPS5754626A (en) * 1980-09-18 1982-04-01 Hitachi Constr Mach Co Ltd Hydraulic control circuit for pile-driving hammer
JPH02266103A (en) * 1989-04-03 1990-10-30 Toyota Autom Loom Works Ltd Working circuit for single action hydraulic cylinder
JPH0348006A (en) * 1989-07-15 1991-03-01 Daishin:Kk Hydraulic cylinder device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242506B2 (en) 2009-06-22 2013-07-24 矢崎エナジーシステム株式会社 Alarm
JP5634103B2 (en) 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242506U (en) * 1975-09-22 1977-03-26
JPS5634103U (en) * 1979-08-23 1981-04-03
JPS5754626A (en) * 1980-09-18 1982-04-01 Hitachi Constr Mach Co Ltd Hydraulic control circuit for pile-driving hammer
JPH02266103A (en) * 1989-04-03 1990-10-30 Toyota Autom Loom Works Ltd Working circuit for single action hydraulic cylinder
JPH0348006A (en) * 1989-07-15 1991-03-01 Daishin:Kk Hydraulic cylinder device

Also Published As

Publication number Publication date
JPWO2019188127A1 (en) 2021-03-25
TW201942480A (en) 2019-11-01
TWI699488B (en) 2020-07-21

Similar Documents

Publication Publication Date Title
KR102209367B1 (en) Fluid pressure cylinder drive method and drive device
TWI784173B (en) Fluid circuit for air cylinder
JP5948260B2 (en) Fluid pressure control device
JP6673551B2 (en) Fluid pressure cylinder
JP6182447B2 (en) Fluid pressure control device
WO2012129042A1 (en) Regeneration circuit
JP2021050820A (en) Fluid return device for double acting cylinder and method for operating double acting cylinder
KR102372065B1 (en) Fluid pressure control device
WO2019188127A1 (en) Fluid circuit for air cylinder
JP2012107687A (en) Switching valve and hydraulic device having switching valve
EP3896293A1 (en) Fluid pressure cylinder
JP2020085183A (en) Drive device of fluid pressure cylinder
WO2019188129A1 (en) Air cylinder
KR101596303B1 (en) Operating method for Reciprocatable double acting flow amplifier
JP5688316B2 (en) Electric fluid pressure actuator
WO2015174250A1 (en) Fluidic control device
KR20050101646A (en) Pressure interensifying cylinder
JP2010101400A (en) Fluid pressure control device
US20210108657A1 (en) Fluid circuit for air cylinders
FI82122B (en) Hydraulic high-speed valve
JPH0228724B2 (en) KUYUSEIGYOSOCHI
JPH0148401B2 (en)
JPS61185687A (en) Hydraulic controller for reciprocating double acting cylinder type capacity pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774742

Country of ref document: EP

Kind code of ref document: A1