WO2019187930A1 - Optical device and manufacturing method for same - Google Patents

Optical device and manufacturing method for same Download PDF

Info

Publication number
WO2019187930A1
WO2019187930A1 PCT/JP2019/007608 JP2019007608W WO2019187930A1 WO 2019187930 A1 WO2019187930 A1 WO 2019187930A1 JP 2019007608 W JP2019007608 W JP 2019007608W WO 2019187930 A1 WO2019187930 A1 WO 2019187930A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical device
core layer
manufacturing
electrodes
Prior art date
Application number
PCT/JP2019/007608
Other languages
French (fr)
Japanese (ja)
Inventor
高野 真悟
佳澄 石川
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2019187930A1 publication Critical patent/WO2019187930A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Definitions

  • the present invention relates to an optical device and a manufacturing method thereof, and in particular, includes a configuration in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially stacked on a substrate,
  • the present invention relates to an optical device formed of an organic electro-optic polymer (hereinafter referred to as “EO polymer”) and a manufacturing method thereof.
  • EO polymer organic electro-optic polymer
  • polymer material used for the EO polymer examples include acrylic resins such as polymethyl methacrylate, polycarbonate resins, epoxy resins, polyimide resins, silicone resins, polystyrene resins, polyamide resins, polyester resins, and phenol resins.
  • acrylic resins such as polymethyl methacrylate, polycarbonate resins, epoxy resins, polyimide resins, silicone resins, polystyrene resins, polyamide resins, polyester resins, and phenol resins.
  • examples thereof include resins, polyquinoline resins, polyquinoxaline resins, polybenzoxazole resins, polybenzothiazole resins, and polybenzimidazole resins. (Hereinafter referred to as “basic skeleton resin”.)
  • the nonlinear optical organic compound (hereinafter referred to as “EO dye”) is not particularly limited as long as it is a known one, but an atomic group having an electron donating property (hereinafter referred to as “donor”) and an electron in one molecule.
  • donor an atomic group having an electron donating property
  • acceptor an atomic group having an attractive property
  • ⁇ -electron conjugated atomic group is arranged between the donor and the acceptor.
  • Specific examples of such molecules include Disperse Reds, Disperse Oranges, and stilbene compounds.
  • EO polymer refers to a polymer material in which the EO dye is introduced into a polymer material by addition to the polymer material or by chemical bonding to a side chain or main chain of the polymer material.
  • This EO polymer exhibits a second-order nonlinear optical effect greater than that of an inorganic material through a poling treatment for aligning donors and acceptors.
  • the electrons move through the highly conductive ⁇ -electron conjugated system in the EO dye, the optical characteristics change, so that high-speed operation is possible.
  • a lower electrode layer 2 In general, in an optical device using an EO polymer material, a lower electrode layer 2, a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode layer 6 are sequentially formed on a substrate 1 as shown in FIG. It has a stacked configuration.
  • the EO polymer is used for the core layer 4 to form the optical waveguide 40.
  • An optical waveguide having a structure as shown in FIG. 1 is formed as follows, for example. After the lower cladding layer is formed by spin coating, a trench is formed by dry etching or the like. Then, the liquid which melt
  • the optical waveguide is not limited to the rib shape shown in FIG. 1, and a configuration in which a rectangular core layer is disposed so as to be surrounded by a lower clad layer and an upper clad layer, or the lower clad is not processed, and only the EO polymer is left. It is also possible to adopt a rib shape obtained by etching.
  • a polling process (polarization process) is performed by applying a voltage to the formed EO polymer layer while heating.
  • the polymer is softened by heating, and an electric field is applied to the EO polymer layer to align the EO dye contained in the polymer and having a large polarizability.
  • the electric field By cooling with the electric field maintained, the polymer is solidified, the EO dye is fixed, and the alignment state can be maintained.
  • an optical modulator including an Mach-Zehnder interferometer is manufactured with an optical device using an EO polymer
  • a polling process is performed on at least one of the two branched waveguides divided into two branches. It is possible to make a modulator.
  • polling processing is performed so that the polarization directions of the EO dyes in the two branch waveguides are opposite to each other, and signal signals are used in the two branch waveguides.
  • a so-called push-pull type optical modulator can be realized.
  • this optical modulator does not require positive and negative power supplies and can be driven at a low voltage, it is highly convenient as an optical modulator.
  • an optical device having locally different polarization directions of an optical waveguide, such as a push-pull type optical modulator or an acousto-optic modulator using surface acoustic wave (SAW), the optical device shown in FIG.
  • an optical waveguide such as a push-pull type optical modulator or an acousto-optic modulator using surface acoustic wave (SAW)
  • SAW surface acoustic wave
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and even in an optical device in which the polarization direction of the EO dye in the optical waveguide is locally different, the production yield is good and the optical loss of the optical waveguide It is providing the optical device with which suppression was suppressed, and its manufacturing method.
  • the optical device of the present invention has the following technical features.
  • the lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and corresponds to the plurality of electrodes and the plurality of electrodes when the core layer is subjected to a poling process. Then, using the common electrode provided on the upper side of the upper clad layer, the direction in which the core layer is subjected to the polling process is selectively set to a different direction.
  • the upper electrode layer is formed after removing the common electrode.
  • the upper electrode layer is formed by selectively removing the common electrode.
  • the lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and the polled direction of the core layer is selectively different in directions corresponding to the plurality of electrodes. It is characterized by being set.
  • the present invention has a configuration in which a lower electrode layer, a lower clad layer, a core layer, an upper clad layer, and an upper electrode layer are sequentially laminated on a substrate, and an optical device in which the core layer is formed of an EO polymer is manufactured.
  • the lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and when the core layer is subjected to a poling process, the plurality of electrodes and the plurality of electrodes are provided.
  • the core layer is subjected to the poling process in a different direction, so that a plurality of electrodes are covered with the lower clad layer. Is done. For this reason, even when the distance between electrodes is narrow, it becomes difficult to short-circuit between electrodes. As a result, it is possible to suppress a decrease in manufacturing yield of the optical device.
  • the electrode disposed on the upper side of the core layer and the upper cladding layer in the poling process is a common electrode, it can be configured with a larger area than the plurality of electrodes of the lower electrode layer. For this reason, it is possible to reduce as much as possible the portion on the upper side of the core layer, particularly the upper side of the optical waveguide, where no electrode is mounted, and the difference in thermal expansion suppression effect due to the presence or absence of the electrode is less likely to occur. Thereby, the increase in the optical loss of an optical waveguide can also be suppressed.
  • FIG. 4 is a diagram for explaining the optical device manufacturing process (polling process) of the present invention, and is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 3. It is a top view explaining the shape of the upper electrode layer in the optical device of this invention.
  • FIG. 6 is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 5.
  • the optical device manufacturing method of the present invention has a lower electrode layer (20, 21), a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode on a substrate 1.
  • the lower electrode layer includes at least a plurality of separated electrodes (corresponding to the poling positions of the core layer) 20 and 21), and when the core layer is subjected to the polling process, the plurality of electrodes and the common electrode 7 corresponding to the plurality of electrodes and provided on the upper side of the upper cladding layer 5 are used.
  • the direction of polling processing of the core layer is selectively set to a different direction.
  • FIG. 2 is a plan view showing a state in which the lower electrode layers (20, 21) are arranged on the substrate 1.
  • FIG. 3 is a plan view showing a state in which the common electrode 7 is disposed on the upper clad layer 5. 2 and 3, the arrangement position of the optical waveguide 40 is indicated by a dotted line for reference.
  • FIG. 4 is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 3.
  • the substrate 1 various substrates can be used as long as they have mechanical strength capable of supporting the lower electrode, the core layer, and the cladding layer.
  • the substrate 1 has a difference in linear expansion coefficient from the lower electrode and the cladding layer.
  • Less material is preferred.
  • a glass substrate, a silicon substrate, an acrylic substrate, a polycarbonate substrate, a polyimide substrate, or the like can be used.
  • PMMA-DR1 in which PMMA is used as a basic skeleton resin and Disperse Red1 is polymerized on the side chain of the basic skeleton resin as an EO molecule can be suitably used.
  • heat resistance can be improved by raising the glass transition point Tg of the EO polymer.
  • Tg can be increased by imparting a cage molecule such as an adamantyl group to the side chain of the basic skeleton resin or making the main skeleton resin have a network structure.
  • an untreated basic skeleton resin cannot be used, and a material having a hydroxyl group in the resin has been used.
  • an organic-inorganic hybrid resin copolymerized by using a coating solution in which an alkoxide acrylate, an alkoxysilane, and a polymerization initiator are mixed, and UV irradiation and heating after coating and drying has been used.
  • Examples of the material used for the upper or lower electrode layer or the common electrode include Ti, Cr, Au, Cu, etc. In order to obtain close contact with the substrate, two or more kinds of materials are generally used. It has been broken. In this case, since it is necessary to pattern the upper or lower electrode, a material that can be etched can be preferably used.
  • the feature of the optical device manufacturing method of the present invention is that (a) the lower electrode layer includes at least a plurality of separated electrodes (20, 21) corresponding to the poling position of the core layer. And (b) when the core layer is subjected to the poling process, the core is utilized by utilizing the plurality of electrodes and the common electrode 7 corresponding to the plurality of electrodes and provided on the upper side of the upper clad layer 5. Layer polling.
  • the electrodes (20, 21) in the lower electrode layer are divided, and the dielectric layer of the lower cladding layer 3 is disposed between the electrodes, so that the gap between the electrodes (20, 21) Even if a large potential difference occurs, short-circuiting between the electrodes is suppressed.
  • one common electrode 7 corresponding to the plurality of electrodes (20, 21) of the lower electrode layer is used above the core layer 4 and the upper cladding layer 5 formed of EO polymer. Therefore, the common electrode can be disposed so as to cover the entire optical waveguide 40. As a result, a uniform electrode is disposed on the upper side of the optical waveguide 40, and the occurrence of strain on the optical waveguide due to the presence or absence of the electrode is suppressed.
  • FIG. 2 is a plan view in which the arrangement position of the optical waveguide 40 formed by the core layer 4 is indicated by a dotted line, and the electrode patterns of the lower electrode layers (20, 21) are superimposed thereon.
  • the electrodes (20, 21) of the lower electrode layer are disposed in a portion overlapping the optical waveguide 40, and the electrodes are separately disposed in a portion where the applied voltage is different from a portion where the applied voltage is different.
  • FIG. 2 shows a nested optical waveguide in which two sub Mach-Zehnder optical waveguides are incorporated in a branching waveguide of one main Mach-Zehnder optical waveguide.
  • the same voltage is applied to the two branch waveguides in the vicinity of the center at the electrode 20, and the uppermost branch waveguide and the lowermost branch waveguide are: Another different voltage is applied at the electrode 21 or the like.
  • the electrode pattern can be used as it is for the lower electrode layer after the poling process. However, by connecting the electrode parts exposed from the lower clad layer to each other or electrically connecting them with an external circuit, the optical device It is also possible to use it as a counter electrode to the signal electrode.
  • the common electrode 7 shown in FIG. 3 can be removed, and upper electrode layers (signal electrodes) 60 and 61 can be newly provided as shown in FIGS. Further, the common electrode 7 shown in FIG. 3 is selectively removed, and a part of the common electrode 7 left on the upper cladding layer is replaced with the upper electrode layers (signal electrodes) 60 and 61 shown in FIGS. It can also be used as a part. 6 is a cross-sectional view of the optical device taken along one-dot chain line A-A ′ in FIG.
  • an optical device manufactured using the above-described optical device manufacturing method has a lower electrode layer, a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode on a substrate 1.
  • An optical device having a structure in which the layers 6 are sequentially laminated and the core layer 4 is formed of an EO polymer is obtained.
  • the lower electrode layer includes at least a plurality of separated electrodes (20, 21) corresponding to the poling position of the core layer, and the polled direction of the core layer corresponds to the plurality of electrodes, The optical device is selectively set in different directions.
  • an optical device with good manufacturing yield and reduced optical loss in the optical waveguide and A manufacturing method thereof can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Provided is an optical device, and a manufacturing method for the same, which has a favorable yield during manufacturing and suppresses light loss of an optical waveguide, even for an optical device in which the polarization direction of an EO dye of the optical waveguide differs locally. The optical device has a configuration in which lower electrode layers (20, 21), a lower clad layer 3, a core layer 4, an upper clad layer 5, and an upper electrode layer are layered in order on a substrate 1, with the core layer being formed from an EO polymer. The manufacturing method for this optical device is characterized in that: the lower electrode layers are provided with a plurality of electrodes (20, 21) which are at least separated and correspond to polling positions of the core layer; and on the occasion of subjecting the core layer to polling, the plurality of electrodes and a common electrode 7 corresponding to the plurality of electrodes and provided on the upper side of the upper clad layer 5 are used to selectively set the direction in which core layer polling is performed to a different direction.

Description

光デバイス及びその製造方法Optical device and manufacturing method thereof
 本発明は、光デバイス及びその製造方法に関し、特に、基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層が有機電気光学高分子(以下、「EOポリマー」と言う。)で形成された光デバイス及びその製造方法に関する。 The present invention relates to an optical device and a manufacturing method thereof, and in particular, includes a configuration in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially stacked on a substrate, The present invention relates to an optical device formed of an organic electro-optic polymer (hereinafter referred to as “EO polymer”) and a manufacturing method thereof.
 近年、EOポリマーを用いた光デバイスが、次世代の光通信を担う素子として期待されている(特許文献1又は2参照)。 In recent years, an optical device using an EO polymer is expected as an element responsible for next-generation optical communication (see Patent Document 1 or 2).
 EOポリマーに用いる高分子材料としては例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリキノリン系樹脂、ポリキノキサリン系樹脂、ポリベンゾオキサゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂などが挙げられる。(以下、「基本骨格樹脂」と言う。) Examples of the polymer material used for the EO polymer include acrylic resins such as polymethyl methacrylate, polycarbonate resins, epoxy resins, polyimide resins, silicone resins, polystyrene resins, polyamide resins, polyester resins, and phenol resins. Examples thereof include resins, polyquinoline resins, polyquinoxaline resins, polybenzoxazole resins, polybenzothiazole resins, and polybenzimidazole resins. (Hereinafter referred to as “basic skeleton resin”.)
 非線形光学有機化合物(以下、「EO色素」)は、公知のものであれば特に限定されないが、1分子中に、電子供与性を有する原子団(以下、「ドナー」と言う。)と、電子吸引性を有する原子団(以下、「アクセプター」と言う。)との両方を有しており、ドナーとアクセプターの間に、π電子共役系の原子団を配している構造を有した分子が望ましい。このような分子としては、具体的には、Disperse Red類、Disperse Orange類、スチルベン化合物などが挙げられる。 The nonlinear optical organic compound (hereinafter referred to as “EO dye”) is not particularly limited as long as it is a known one, but an atomic group having an electron donating property (hereinafter referred to as “donor”) and an electron in one molecule. A molecule having a structure in which an atomic group having an attractive property (hereinafter referred to as an “acceptor”) is provided, and a π-electron conjugated atomic group is arranged between the donor and the acceptor. desirable. Specific examples of such molecules include Disperse Reds, Disperse Oranges, and stilbene compounds.
 EOポリマーは、前記のEO色素を高分子材料への添加、または高分子材料の側鎖または主鎖への化学結合により、高分子材料に導入したものを言う。このEOポリマーは、ドナー、アクセプターを配向させるポーリング処理を経ることで、無機材料に比べて大きな2次非線形光学効果を示す。また、EO色素内の導電性の高いπ電子共役系を電子が移動することによって、光学特性が変化することから高速動作が可能となる。 EO polymer refers to a polymer material in which the EO dye is introduced into a polymer material by addition to the polymer material or by chemical bonding to a side chain or main chain of the polymer material. This EO polymer exhibits a second-order nonlinear optical effect greater than that of an inorganic material through a poling treatment for aligning donors and acceptors. In addition, since the electrons move through the highly conductive π-electron conjugated system in the EO dye, the optical characteristics change, so that high-speed operation is possible.
 一般に、EOポリマー材料を用いた光デバイスでは、図1に示すように、基板1上に、下部電極層2、下部クラッド層3、コア層4、上部クラッド層5、及び上部電極層6が順次積層された構成を備えている。EOポリマーは、コア層4に使用され、光導波路40を形成している。 In general, in an optical device using an EO polymer material, a lower electrode layer 2, a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode layer 6 are sequentially formed on a substrate 1 as shown in FIG. It has a stacked configuration. The EO polymer is used for the core layer 4 to form the optical waveguide 40.
 図1のような構造を有する光導波路は、例えば、次のように形成される。下部クラッド層をスピンコートで形成した後、ドライエッチング等によりトレンチを形成する。その後、EOポリマーを有機溶剤に溶解した液をスピンコート等で塗布し、乾燥することで、EOポリマーによるコア層が、下向きに突出したリブ部を持って形成される。その上に、上部クラッド層をコーティングする。光導波路は、図1のリブ型形状に限らず、矩形状のコア層を、下部クラッド層と上部クラッド層で取り囲むように配置する構成や、下部クラッドを加工せずEOポリマーをリブ分のみ残してエッチングすることで得られるリブ型にする構成も可能である。 An optical waveguide having a structure as shown in FIG. 1 is formed as follows, for example. After the lower cladding layer is formed by spin coating, a trench is formed by dry etching or the like. Then, the liquid which melt | dissolved EO polymer in the organic solvent is apply | coated by spin coating etc., and the core layer by EO polymer is formed with the rib part protruded downward. On top of this, an upper cladding layer is coated. The optical waveguide is not limited to the rib shape shown in FIG. 1, and a configuration in which a rectangular core layer is disposed so as to be surrounded by a lower clad layer and an upper clad layer, or the lower clad is not processed, and only the EO polymer is left. It is also possible to adopt a rib shape obtained by etching.
 EOポリマーを用いた光デバイスにおいては、形成したEOポリマー層に対し、加熱しながら電圧を印加するポーリング処理(分極処理)を行う。加熱によってポリマーを軟化し、EOポリマー層に電界を印加することで、ポリマーに含有して大きな分極率を持つEO色素を配向させる。電界を維持した状態のまま冷却することでポリマーが固化し、EO色素を固定し、配向状態を維持することが可能となる。 In an optical device using an EO polymer, a polling process (polarization process) is performed by applying a voltage to the formed EO polymer layer while heating. The polymer is softened by heating, and an electric field is applied to the EO polymer layer to align the EO dye contained in the polymer and having a large polarizability. By cooling with the electric field maintained, the polymer is solidified, the EO dye is fixed, and the alignment state can be maintained.
 また、EOポリマーを用いた光デバイスで、マッハツェンダー型干渉計を含む光変調器を作製する際には、二股に分かれた2つの分岐導波路の少なくとも一方について、ポーリング処理を行うことで、光変調器を作製することが可能である。しかしながら、EOポリマーを用いた光変調器では、2つの分岐導波路のEO色素の分極方向を、互いに逆方向になるようにポーリング処理を行い、2つの分岐導波路に信号電極を用いて同一信号が印加する、所謂、プッシュプル型の光変調器を実現できる。しかも、この光変調器では、正負の電源がいらず、低電圧駆動することが可能となるので、光変調器としての利便性も高い。 Further, when an optical modulator including an Mach-Zehnder interferometer is manufactured with an optical device using an EO polymer, a polling process is performed on at least one of the two branched waveguides divided into two branches. It is possible to make a modulator. However, in an optical modulator using an EO polymer, polling processing is performed so that the polarization directions of the EO dyes in the two branch waveguides are opposite to each other, and signal signals are used in the two branch waveguides. Thus, a so-called push-pull type optical modulator can be realized. In addition, since this optical modulator does not require positive and negative power supplies and can be driven at a low voltage, it is highly convenient as an optical modulator.
 プッシュプル型の光変調器や弾性表面波(SAW)を用いた音響光学変調素子などのように、光導波路の分極方向が局所的に異なる光デバイスを作製するには、図1に示す光デバイスでポーリング処理を行う際には、光導波路40の下側にある下部電極層2を共通電極として、上部電極層6に正負の高電位を印加するポーリングを行う必要がある。 To produce an optical device having locally different polarization directions of an optical waveguide, such as a push-pull type optical modulator or an acousto-optic modulator using surface acoustic wave (SAW), the optical device shown in FIG. When the polling process is performed, it is necessary to perform the polling to apply a positive and negative high potential to the upper electrode layer 6 using the lower electrode layer 2 below the optical waveguide 40 as a common electrode.
 しかしながら、このポーリング処理の方法では、上部電極層6には、電極間が数十μm~数100μm程度と狭小な電極間に、1μm当たり数十~数百Vの電界が印加される。このため、ポーリング処理時に以下のような不具合生じる。
(1)電位を印加した際に、電極間がショートし、製品の製造歩留まりが悪化する。
(2)ポーリング処理時の加熱(150℃~250℃程度)により、上部電極層6を搭載している部分と搭載していない部分とでは、熱膨張抑制効果が異なるので、上部クラッド層5やコア層4に歪みが発生し、光導波路の光損失が増大する。
However, in this poling treatment method, an electric field of several tens to several hundreds V per 1 μm is applied to the upper electrode layer 6 between electrodes that are as narrow as several tens to several hundreds of μm. For this reason, the following problems occur during the polling process.
(1) When a potential is applied, the electrodes are short-circuited, and the production yield of the product is deteriorated.
(2) The effect of suppressing thermal expansion differs between the portion where the upper electrode layer 6 is mounted and the portion where the upper electrode layer 6 is not mounted due to heating during the poling process (about 150 ° C. to 250 ° C.). Distortion occurs in the core layer 4 and the optical loss of the optical waveguide increases.
特表2015-501945号公報JP-T-2015-501945 特開2007-25370号公報JP 2007-25370 A
 本発明が解決しようとする課題は、上述したような問題を解決し、光導波路のEO色素の分極方向が局所的に異なる光デバイスであっても、製造の歩留まりが良く、光導波路の光損失が抑制された光デバイス及びその製造方法を提供することである。 The problem to be solved by the present invention is to solve the above-mentioned problems, and even in an optical device in which the polarization direction of the EO dye in the optical waveguide is locally different, the production yield is good and the optical loss of the optical waveguide It is providing the optical device with which suppression was suppressed, and its manufacturing method.
 上記課題を解決するため、本発明の光デバイスは、以下の技術的特徴を有する。
(1) 基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスの製造方法において、該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極を備え、該コア層をポーリング処理する際には、前記複数の電極と、前記複数の電極に対応し、該上部クラッド層の上側に設けられた共通電極とを利用して、該コア層のポーリング処理をする方向を選択的に異なる方向に設定することを特徴とする。
In order to solve the above problems, the optical device of the present invention has the following technical features.
(1) A method of manufacturing an optical device having a configuration in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially stacked on a substrate, and the core layer is formed of an EO polymer. The lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and corresponds to the plurality of electrodes and the plurality of electrodes when the core layer is subjected to a poling process. Then, using the common electrode provided on the upper side of the upper clad layer, the direction in which the core layer is subjected to the polling process is selectively set to a different direction.
(2) 上記(1)に記載の光デバイスの製造方法において、該上部電極層は、該共通電極を除去した後に形成されることを特徴とする。 (2) In the method for manufacturing an optical device according to (1), the upper electrode layer is formed after removing the common electrode.
(3) 上記(1)に記載の光デバイスの製造方法において、該上部電極層は、該共通電極を選択的に除去して形成することを特徴とする。 (3) In the method of manufacturing an optical device according to (1), the upper electrode layer is formed by selectively removing the common electrode.
(4) 上記(1)乃至(3)に記載の光デバイスの製造方法で製造された光デバイスである。 (4) An optical device manufactured by the optical device manufacturing method according to (1) to (3) above.
(5) 基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスにおいて、該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極を備え、該コア層のポーリング処理された方向は、前記複数の電極に対応して、選択的に異なる方向に設定されていることを特徴とする。 (5) In an optical device having a configuration in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially laminated on a substrate, and the core layer is formed of an EO polymer, The lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and the polled direction of the core layer is selectively different in directions corresponding to the plurality of electrodes. It is characterized by being set.
 本発明は、基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスの製造方法において、該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極を備え、該コア層をポーリング処理する際には、前記複数の電極と、前記複数の電極に対応し、該上部クラッド層の上側に設けられた共通電極とを利用して、該コア層のポーリング処理をする方向を選択的に異なる方向に設定するので、複数の電極が下部クラッド層で被覆される。このため、仮に電極間の距離が狭い場合でも、電極間がショートし難くなる。その結果、光デバイスの製造の歩留まりが低下することが抑制される。 The present invention has a configuration in which a lower electrode layer, a lower clad layer, a core layer, an upper clad layer, and an upper electrode layer are sequentially laminated on a substrate, and an optical device in which the core layer is formed of an EO polymer is manufactured. In the method, the lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling positions of the core layer, and when the core layer is subjected to a poling process, the plurality of electrodes and the plurality of electrodes are provided. Correspondingly, by using the common electrode provided on the upper side of the upper clad layer, the core layer is subjected to the poling process in a different direction, so that a plurality of electrodes are covered with the lower clad layer. Is done. For this reason, even when the distance between electrodes is narrow, it becomes difficult to short-circuit between electrodes. As a result, it is possible to suppress a decrease in manufacturing yield of the optical device.
 また、ポーリング処理の際にコア層や上部クラッド層の上側に配置される電極が共通電極であるので、下部電極層の複数の電極よりも広い面積で構成することが可能となる。このため、コア層の上側、特に光導波路の上側で電極を搭載していない部分を極力少なくすることも可能となり、電極の有無による熱膨張抑制効果の差が発生し難くなる。これにより、光導波路の光損失の増大も抑制することができる。 In addition, since the electrode disposed on the upper side of the core layer and the upper cladding layer in the poling process is a common electrode, it can be configured with a larger area than the plurality of electrodes of the lower electrode layer. For this reason, it is possible to reduce as much as possible the portion on the upper side of the core layer, particularly the upper side of the optical waveguide, where no electrode is mounted, and the difference in thermal expansion suppression effect due to the presence or absence of the electrode is less likely to occur. Thereby, the increase in the optical loss of an optical waveguide can also be suppressed.
従来の光デバイスの概要を示す断面図である。It is sectional drawing which shows the outline | summary of the conventional optical device. 本発明の光デバイスにおける下部電極層の形状を説明する平面図である。It is a top view explaining the shape of the lower electrode layer in the optical device of this invention. 本発明の光デバイスの製造プロセス(ポーリング処理)に使用する共通電極を説明する平面図である。It is a top view explaining the common electrode used for the manufacturing process (polling process) of the optical device of this invention. 本発明の光デバイスの製造プロセス(ポーリング処理)を説明する図であり、図2及び図3の一点鎖線A-A’における断面図である。FIG. 4 is a diagram for explaining the optical device manufacturing process (polling process) of the present invention, and is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 3. 本発明の光デバイスにおける上部電極層の形状を説明する平面図である。It is a top view explaining the shape of the upper electrode layer in the optical device of this invention. 図2及び図5の一点鎖線A-A’における断面図である。FIG. 6 is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 5.
 以下、本発明の光デバイス及びその製造方法について、好適例を用いて詳細に説明する。
 本発明の光デバイスの製造方法は、図2乃至4に示すように、基板1上に、下部電極層(20,21)、下部クラッド層3、コア層4、上部クラッド層5、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスの製造方法において、該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極(20,21)を備え、該コア層をポーリング処理する際には、前記複数の電極と、前記複数の電極に対応し、該上部クラッド層5の上側に設けられた共通電極7とを利用して、該コア層のポーリング処理をする方向を選択的に異なる方向に設定することを特徴とする。
Hereinafter, the optical device and the manufacturing method thereof according to the present invention will be described in detail using preferred examples.
As shown in FIGS. 2 to 4, the optical device manufacturing method of the present invention has a lower electrode layer (20, 21), a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode on a substrate 1. In the method of manufacturing an optical device having a configuration in which layers are sequentially stacked and the core layer is formed of an EO polymer, the lower electrode layer includes at least a plurality of separated electrodes (corresponding to the poling positions of the core layer) 20 and 21), and when the core layer is subjected to the polling process, the plurality of electrodes and the common electrode 7 corresponding to the plurality of electrodes and provided on the upper side of the upper cladding layer 5 are used. Thus, the direction of polling processing of the core layer is selectively set to a different direction.
 図2は、基板1上に下部電極層(20,21)を配置した様子を示す平面図である。また、図3は、上部クラッド層5の上に共通電極7を配置した様子を示す平面図である。図2及び図3においては、参考までに光導波路40の配置位置を点線で表示している。さらに、図4は、図2及び図3の一点鎖線A-A’における断面図である。 FIG. 2 is a plan view showing a state in which the lower electrode layers (20, 21) are arranged on the substrate 1. FIG. 3 is a plan view showing a state in which the common electrode 7 is disposed on the upper clad layer 5. 2 and 3, the arrangement position of the optical waveguide 40 is indicated by a dotted line for reference. FIG. 4 is a cross-sectional view taken along one-dot chain line A-A ′ in FIGS. 2 and 3.
 基板1としては、下部電極やコア層やクラッド層を支持できる機械的強度があるものであれば、種々のものが使用できるが、好ましくは、下部電極やクラッド層との線膨張係数の差が少ない材料が好ましい。例えば、ガラス基板、シリコン基板、アクリル基板、ポリカーボネート基板、ポリイミド基板などが使用可能である。 As the substrate 1, various substrates can be used as long as they have mechanical strength capable of supporting the lower electrode, the core layer, and the cladding layer. Preferably, the substrate 1 has a difference in linear expansion coefficient from the lower electrode and the cladding layer. Less material is preferred. For example, a glass substrate, a silicon substrate, an acrylic substrate, a polycarbonate substrate, a polyimide substrate, or the like can be used.
 コア層を形成するEOポリマーとしては、基本骨格樹脂としてPMMAを用い、EO分子としてDisperse Red1を基本骨格樹脂の側鎖に重合したPMMA-DR1が好適に使用可能である。また、EOポリマーのガラス転移点Tgを高くすることで耐熱性を向上させることができる。この場合、基本骨格樹脂の側鎖にアダマンチル基などのかご型分子を付与することや主骨格樹脂を網目構造にすることによってTgを高くすることができる。 As the EO polymer forming the core layer, PMMA-DR1 in which PMMA is used as a basic skeleton resin and Disperse Red1 is polymerized on the side chain of the basic skeleton resin as an EO molecule can be suitably used. Moreover, heat resistance can be improved by raising the glass transition point Tg of the EO polymer. In this case, Tg can be increased by imparting a cage molecule such as an adamantyl group to the side chain of the basic skeleton resin or making the main skeleton resin have a network structure.
 上部又は下部クラッド層に使用する材料としては、無処理の基本骨格樹脂を用いることができず、樹脂内にヒドロキシル基を持つ材料などが使われてきた。具体的には、アルコキシドアクリレートとアルコキシシラン及び重合開始剤を混合した塗布液を用い、塗布、乾燥後にUV照射、加熱することで共重合した有機無機ハイブリッド樹脂が用いられてきた。 As a material used for the upper or lower cladding layer, an untreated basic skeleton resin cannot be used, and a material having a hydroxyl group in the resin has been used. Specifically, an organic-inorganic hybrid resin copolymerized by using a coating solution in which an alkoxide acrylate, an alkoxysilane, and a polymerization initiator are mixed, and UV irradiation and heating after coating and drying has been used.
 上部又は下部電極層、あるいは共通電極に使用する材料としては、Ti、Cr、Au、Cuなどが挙げられ、基板との密着を得るために、二種類以上の材料を用いることも一般的に行われている。この場合においては、上部又は下部電極をパターニングする必要があるため、エッチングが可能な材料が好適に使用可能である。 Examples of the material used for the upper or lower electrode layer or the common electrode include Ti, Cr, Au, Cu, etc. In order to obtain close contact with the substrate, two or more kinds of materials are generally used. It has been broken. In this case, since it is necessary to pattern the upper or lower electrode, a material that can be etched can be preferably used.
 本発明の光デバイスの製造方法の特徴は、(a)下部電極層は、コア層のポーリング位置に対応した、少なくとも分離した複数の電極(20,21)を備えることである。そして、(b)コア層をポーリング処理する際には、前記複数の電極と、前記複数の電極に対応し、上部クラッド層5の上側に設けられた共通電極7とを利用して、該コア層のポーリング処理を行うことである。 The feature of the optical device manufacturing method of the present invention is that (a) the lower electrode layer includes at least a plurality of separated electrodes (20, 21) corresponding to the poling position of the core layer. And (b) when the core layer is subjected to the poling process, the core is utilized by utilizing the plurality of electrodes and the common electrode 7 corresponding to the plurality of electrodes and provided on the upper side of the upper clad layer 5. Layer polling.
 上記(a)のように、下部電極層内の電極(20,21)を分割し、電極間には下部クラッド層3の誘電体層が配置されるので、電極(20,21)との間に大きな電位差が生じても、電極間が容易にショートすることが抑制される。 As in (a) above, the electrodes (20, 21) in the lower electrode layer are divided, and the dielectric layer of the lower cladding layer 3 is disposed between the electrodes, so that the gap between the electrodes (20, 21) Even if a large potential difference occurs, short-circuiting between the electrodes is suppressed.
 また、上記(b)のように、EOポリマーで形成したコア層4と上部クラッド層5の上側には、下部電極層の複数の電極(20,21)に対応する一つの共通電極7を用いることが可能となるので、当該共通電極を光導波路40全体を覆うように配置することが可能となる。これにより、光導波路40の上側には一様な電極が配置されることとなり、電極の有無による光導波路への歪の発生が抑制される。 Further, as in (b) above, one common electrode 7 corresponding to the plurality of electrodes (20, 21) of the lower electrode layer is used above the core layer 4 and the upper cladding layer 5 formed of EO polymer. Therefore, the common electrode can be disposed so as to cover the entire optical waveguide 40. As a result, a uniform electrode is disposed on the upper side of the optical waveguide 40, and the occurrence of strain on the optical waveguide due to the presence or absence of the electrode is suppressed.
 図2は、コア層4で形成される光導波路40の配置位置を点線で表示し、その上に下部電極層(20,21)の電極パターンを重ね合わせて表示した平面図である。下部電極層の電極(20,21)は、光導波路40と重なる部分に配置されると共に、印加電圧が同じ部分と異なる部分とでは、電極が分離して配置されている。図2は、1つのメイン・マッハツェンダー型光導波路の分岐導波路に2つのサブ・マッハツェンダー型光導波路を組み込んだネスト型光導波路が示されている。中央の上下方向に4つある分岐導波路の内、中央付近の2つの分岐導波路は、電極20で同じ電圧が印加され、最も上段にある分岐導波路と最も下段にある分岐導波路は、電極21などで、他の異なる電圧が印加される。 FIG. 2 is a plan view in which the arrangement position of the optical waveguide 40 formed by the core layer 4 is indicated by a dotted line, and the electrode patterns of the lower electrode layers (20, 21) are superimposed thereon. The electrodes (20, 21) of the lower electrode layer are disposed in a portion overlapping the optical waveguide 40, and the electrodes are separately disposed in a portion where the applied voltage is different from a portion where the applied voltage is different. FIG. 2 shows a nested optical waveguide in which two sub Mach-Zehnder optical waveguides are incorporated in a branching waveguide of one main Mach-Zehnder optical waveguide. Of the four branch waveguides in the central vertical direction, the same voltage is applied to the two branch waveguides in the vicinity of the center at the electrode 20, and the uppermost branch waveguide and the lowermost branch waveguide are: Another different voltage is applied at the electrode 21 or the like.
 下部電極層は、ポーリング処理後、電極パターンをそのまま利用することも可能であるが、下部クラッド層から露出した電極部分を相互に接続したり、外部回路で電気的に接続することで、光デバイスの信号電極に対する対向電極として使用することも可能である。 The electrode pattern can be used as it is for the lower electrode layer after the poling process. However, by connecting the electrode parts exposed from the lower clad layer to each other or electrically connecting them with an external circuit, the optical device It is also possible to use it as a counter electrode to the signal electrode.
 また、ポーリング処理した後は、図3の共通電極7を除去し、図5及び図6のように、新たに上部電極層(信号電極)60及び61を設けることができる。また、図3の共通電極7を選択的に除去し、上部クラッド層上に残した共通電極7の一部を、図5及び図6の上部電極層(信号電極)60及び61、あるいはその一部として用いることも可能である。図6は、図5の一点鎖線A-A’における光デバイスの断面図を示す図である。 Further, after the polling process, the common electrode 7 shown in FIG. 3 can be removed, and upper electrode layers (signal electrodes) 60 and 61 can be newly provided as shown in FIGS. Further, the common electrode 7 shown in FIG. 3 is selectively removed, and a part of the common electrode 7 left on the upper cladding layer is replaced with the upper electrode layers (signal electrodes) 60 and 61 shown in FIGS. It can also be used as a part. 6 is a cross-sectional view of the optical device taken along one-dot chain line A-A ′ in FIG.
 上述した光デバイスの製造方法を用いて製造される光デバイスは、図6に示すように、基板1上に、下部電極層、下部クラッド層3、コア層4、上部クラッド層5、及び上部電極層6が順次積層された構成を備え、該コア層4がEOポリマーで形成された光デバイスとなる。特に、下部電極層は、コア層のポーリング位置に対応した、少なくとも分離した複数の電極(20,21)を備え、該コア層のポーリング処理された方向は、前記複数の電極に対応して、選択的に異なる方向に設定されている光デバイスとなる。 As shown in FIG. 6, an optical device manufactured using the above-described optical device manufacturing method has a lower electrode layer, a lower cladding layer 3, a core layer 4, an upper cladding layer 5, and an upper electrode on a substrate 1. An optical device having a structure in which the layers 6 are sequentially laminated and the core layer 4 is formed of an EO polymer is obtained. In particular, the lower electrode layer includes at least a plurality of separated electrodes (20, 21) corresponding to the poling position of the core layer, and the polled direction of the core layer corresponds to the plurality of electrodes, The optical device is selectively set in different directions.
 以上説明したように、本発明によれば、光導波路のEO色素の分極方向が局所的に異なる光デバイスであっても、製造の歩留まりが良く、光導波路の光損失が抑制された光デバイス及びその製造方法を提供することができる。 As described above, according to the present invention, even in an optical device in which the polarization direction of the EO dye in the optical waveguide is locally different, an optical device with good manufacturing yield and reduced optical loss in the optical waveguide and A manufacturing method thereof can be provided.
1 基板
2,20,21 下部電極層
3 下部クラッド層
4 コア層
40 光導波路(コア層)
5 上部クラッド層
6,60,61 上部電極層
7 共通電極
1 Substrate 2, 20, 21 Lower electrode layer 3 Lower cladding layer 4 Core layer 40 Optical waveguide (core layer)
5 Upper cladding layer 6, 60, 61 Upper electrode layer 7 Common electrode

Claims (5)

  1.  基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスの製造方法において、
     該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極を備え、
     該コア層をポーリング処理する際には、前記複数の電極と、前記複数の電極に対応し、該上部クラッド層の上側に設けられた共通電極とを利用して、該コア層のポーリング処理をする方向を選択的に異なる方向に設定することを特徴とする光デバイスの製造方法。
    In a method for manufacturing an optical device, comprising a structure in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially laminated on a substrate, and the core layer is formed of an EO polymer.
    The lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling position of the core layer,
    When the core layer is polled, the core layer is polled using the plurality of electrodes and a common electrode corresponding to the plurality of electrodes and provided on the upper clad layer. A method for manufacturing an optical device, characterized in that a direction to be selectively set is set to a different direction.
  2.  請求項1に記載の光デバイスの製造方法において、
     該上部電極層は、該共通電極を除去した後に形成されることを特徴とする光デバイスの製造方法。
    In the manufacturing method of the optical device of Claim 1,
    The method of manufacturing an optical device, wherein the upper electrode layer is formed after removing the common electrode.
  3.  請求項1に記載の光デバイスの製造方法において、
     該上部電極層は、該共通電極を選択的に除去して形成することを特徴とする光デバイスの製造方法。
    In the manufacturing method of the optical device of Claim 1,
    The method of manufacturing an optical device, wherein the upper electrode layer is formed by selectively removing the common electrode.
  4.  請求項1乃至3に記載の光デバイスの製造方法で製造された光デバイス。 An optical device manufactured by the optical device manufacturing method according to claim 1.
  5.  基板上に、下部電極層、下部クラッド層、コア層、上部クラッド層、及び上部電極層が順次積層された構成を備え、該コア層がEOポリマーで形成された光デバイスにおいて、
     該下部電極層は、該コア層のポーリング位置に対応した、少なくとも分離した複数の電極を備え、
     該コア層のポーリング処理された方向は、前記複数の電極に対応して、選択的に異なる方向に設定されていることを特徴とする光デバイス。
    In an optical device having a structure in which a lower electrode layer, a lower cladding layer, a core layer, an upper cladding layer, and an upper electrode layer are sequentially stacked on a substrate, and the core layer is formed of an EO polymer.
    The lower electrode layer includes at least a plurality of separated electrodes corresponding to the poling position of the core layer,
    The direction in which the core layer is subjected to the polling process is selectively set to a different direction corresponding to the plurality of electrodes.
PCT/JP2019/007608 2018-03-29 2019-02-27 Optical device and manufacturing method for same WO2019187930A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065384A JP7035719B2 (en) 2018-03-29 2018-03-29 Optical device and its manufacturing method
JP2018-065384 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187930A1 true WO2019187930A1 (en) 2019-10-03

Family

ID=68061202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007608 WO2019187930A1 (en) 2018-03-29 2019-02-27 Optical device and manufacturing method for same

Country Status (2)

Country Link
JP (1) JP7035719B2 (en)
WO (1) WO2019187930A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347300B2 (en) * 2020-03-31 2023-09-20 住友大阪セメント株式会社 light modulator
WO2023162526A1 (en) * 2022-02-28 2023-08-31 株式会社村田製作所 Optical laminate and optical element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109518A (en) * 1998-10-08 2000-04-18 Hitachi Chem Co Ltd New compound, organic polymer, resin composition, non- linear optical part and non-linear optical device
WO2002037173A2 (en) * 2000-11-02 2002-05-10 Pacific Wave Industries, Inc. Electrode poling of electro-optic polymers
WO2002084393A1 (en) * 2001-04-10 2002-10-24 Lockheed Martin Corporation Method for eliminating high voltage arcing during dc planar push-pull poling of polymer electro-optical modulators
JP2008039908A (en) * 2006-08-02 2008-02-21 Fuji Xerox Co Ltd Method for manufacturing optical waveguide module, and poling processing device
JP2008039907A (en) * 2006-08-02 2008-02-21 Fuji Xerox Co Ltd Optical waveguide module and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109518A (en) * 1998-10-08 2000-04-18 Hitachi Chem Co Ltd New compound, organic polymer, resin composition, non- linear optical part and non-linear optical device
WO2002037173A2 (en) * 2000-11-02 2002-05-10 Pacific Wave Industries, Inc. Electrode poling of electro-optic polymers
WO2002084393A1 (en) * 2001-04-10 2002-10-24 Lockheed Martin Corporation Method for eliminating high voltage arcing during dc planar push-pull poling of polymer electro-optical modulators
JP2008039908A (en) * 2006-08-02 2008-02-21 Fuji Xerox Co Ltd Method for manufacturing optical waveguide module, and poling processing device
JP2008039907A (en) * 2006-08-02 2008-02-21 Fuji Xerox Co Ltd Optical waveguide module and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BECHTEL, JAMES H. ET AL.: "Low-driving-voltage electro-optic polymer modulators for advanced photonic applications", PROCEEDINGS OF SPIE, 2000, pages 58 - 64, XP055638632 *
OH, MIN-CHEOL ET AL.: "Recent Advances in Electrooptic Polymer Modulators Incorporating Highly Nonlinear Chromophore", JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 7, no. 5, 2001, pages 826 - 835, XP002205539, doi:10.1109/2944.979344 *

Also Published As

Publication number Publication date
JP2019174750A (en) 2019-10-10
JP7035719B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5398923B2 (en) Apparatus and method for directing light waves
US5854864A (en) In-line polymeric construct for modulators, filters, switches and other electro-optic devices
WO2019187930A1 (en) Optical device and manufacturing method for same
US7403678B2 (en) Optical switching element
JP3846284B2 (en) Manufacturing method of optical waveguide
Luo et al. Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices
CN106716234B (en) Optical device
JP4892840B2 (en) Polling method for vertically laminated waveguide device and driving method for vertically laminated waveguide device
JP6606631B6 (en) Light modulator
TW202338446A (en) Electro-optical modulator and manufacturing method thereof
US11543688B2 (en) Waveguide component
JP2015197499A (en) Optical waveguide element and method for manufacturing the same
US7639913B2 (en) Optical waveguide element
JP2009145475A (en) Waveguide device
JP4766131B2 (en) Fabrication method of waveguide element
JP5104610B2 (en) Waveguide device
US20080144161A1 (en) Integrated linear polarizer
WO2019187522A1 (en) Optical waveguide element
JP2009058906A (en) Waveguide device
JPH0667232A (en) Waveguide type optical nonlinear element
JPH0922035A (en) Waveguide type optical modulation element and its fabrication
JP6398382B2 (en) Optical device
JP2009098196A (en) Optical waveguide device and polling processing method of optical waveguide device
JP2007140045A (en) Method of manufacturing waveguide device and waveguide device
Dalton et al. MaterialsFeature Article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776069

Country of ref document: EP

Kind code of ref document: A1