WO2019187353A1 - Maldi ion source - Google Patents

Maldi ion source Download PDF

Info

Publication number
WO2019187353A1
WO2019187353A1 PCT/JP2018/044582 JP2018044582W WO2019187353A1 WO 2019187353 A1 WO2019187353 A1 WO 2019187353A1 JP 2018044582 W JP2018044582 W JP 2018044582W WO 2019187353 A1 WO2019187353 A1 WO 2019187353A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sample
ion source
chamber
laser light
Prior art date
Application number
PCT/JP2018/044582
Other languages
French (fr)
Japanese (ja)
Inventor
秀治 志知
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020509623A priority Critical patent/JP6908180B2/en
Publication of WO2019187353A1 publication Critical patent/WO2019187353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the present invention relates to a MALDI ion source for ionizing a sample by MALDI.
  • a MALDI ion source that ionizes a sample by MALDI has been used.
  • a MALDI ion source when used in a mass spectrometer, the sample is ionized by irradiating the sample with laser light. Then, the ionized sample is temporally separated according to the mass-to-charge ratio in the chamber and sequentially detected by an ion detector (for example, see Patent Document 1 below).
  • FIG. 3 is a schematic diagram showing a configuration example of a conventional MALDI ion source 200.
  • a conventional MALDI ion source 200 includes a chamber 201, a laser light source 202, and a camera 203. Each of the laser light source 202 and the camera 203 is disposed at a distance from the chamber 201.
  • Window plates 206 and 207 are provided on the peripheral wall of the chamber 201.
  • a window plate 206 is provided on a portion (different wall surface) different from the portion where the window plate 207 is provided.
  • the laser light source 202 is disposed at a distance from the window plate 206.
  • a lens 208 is provided between the laser light source 202 and the window plate 206.
  • the camera 203 is disposed at a distance from the window plate 207.
  • the camera 203 includes a lens 209 and an adjustment cylinder 210 that houses the lens 209.
  • the chamber 201 accommodates a sample placed on the sample plate 220 and a mirror 221.
  • the laser light emitted from the laser light source 202 is condensed by passing through the lens 208. Further, the laser light passes through the window plate 206 and enters the chamber 201, is reflected by the mirror 221, and is irradiated on the sample on the sample plate 220. Light from the sample passes through the window plate 207 and is received by the camera 203. At this time, the focal length of the lens 209 of the camera 203 is adjusted by the adjustment cylinder 210. Then, the irradiation position of the laser light is adjusted based on the imaging result of the camera 203.
  • the conventional MALDI ion source 200 described above has a problem that the number of parts increases and a problem that a space for arranging each part is required. Therefore, it is conceivable to configure the MALDI ion source 400 shown in FIG. In the MALDI ion source 400 of FIG. 4, the same members as those of the MALDI ion source 200 of FIG.
  • a dichroic mirror 401 is provided in the space between the camera 203 and the window plate 207.
  • the laser light source 202 is disposed at a distance from the dichroic mirror 401, and the lens 208 is disposed between the dichroic mirror 401 and the laser light source 202.
  • the chamber 201 is not provided with the window plate 206 and the mirror 221 described above.
  • the laser light emitted from the laser light source 202 is collected by passing through the lens 208, reflected by the dichroic mirror 401, passes through the window plate 207, and enters the chamber 201. . Then, the light entering the chamber 201 is irradiated on the sample on the sample plate 220. Light from the sample passes through the window plate 207 and is received by the camera 203.
  • the focal length of the lens 209 of the camera 203 is adjusted by the adjustment cylinder 210.
  • the distance L1 (working distance) from the lens 209 of the camera 203 to the sample is longer than in the configuration of the MALDI ion source 200 shown in FIG. Therefore, it is necessary to lengthen the focal length L2 of the lens 209 of the camera 203, and a large space is required in the region from the camera 203 to the sample (the vertical dimension in FIG. 4 becomes large).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a MALDI ion source capable of reducing the number of parts and realizing downsizing.
  • the MALDI ion source according to the present invention is a MALDI ion source that ionizes a sample by MALDI.
  • the MALDI ion source includes a chamber, a laser light source, a camera, an optical element, and a first lens.
  • a sample is installed in the chamber.
  • the laser light source is provided outside the chamber and emits laser light.
  • the camera is provided outside the chamber and receives light from a sample in the chamber irradiated with the laser light.
  • the optical element is provided outside the chamber, and the optical axis of the laser light incident on the chamber and the optical axis of the light from the sample irradiated with the laser light toward the camera are coaxial. .
  • the first lens is provided between the optical element and a sample.
  • the first lens provided between the optical element and the sample can be used as a lens for condensing light from the laser light source and also used as a camera lens. Can do. Therefore, the number of parts in the MALDI ion source can be reduced. Further, since it is not necessary to provide a lens between the laser light source and the optical element, the distance between the laser light source and the optical element can be shortened. Therefore, it is possible to reduce the size of the MALDI ion source.
  • the chamber may have an opening through which the laser beam and light from the sample irradiated with the laser beam pass.
  • the first lens may constitute a window member provided in the opening.
  • the number of parts in the MALDI ion source can be further reduced.
  • the first lens may have a convex curved surface on at least one surface. According to such a configuration, the light from the laser light source can be favorably collected by the first lens.
  • the camera may include an image sensor and at least one second lens.
  • the image sensor receives light from a sample. Light incident on the image sensor passes through the second lens.
  • the MALDI ion source may further include an adjustment mechanism. The adjustment mechanism adjusts a distance between the first lens and the imaging element or a distance between the first lens and the second lens.
  • the light from the sample is accurately imaged by the imaging element. it can.
  • the first lens provided between the optical element and the sample can be used as a lens for condensing light from a laser light source and can be used as a lens for a camera. . Therefore, the number of parts in the MALDI ion source can be reduced. Further, since it is not necessary to provide a lens between the laser light source and the optical element, the distance between the laser light source and the optical element can be shortened. Therefore, it is possible to reduce the size of the MALDI ion source.
  • FIG. 1 is a schematic diagram showing a configuration of a mass spectrometer 10 using a MALDI ion source 1 according to an embodiment of the present invention.
  • the mass spectrometer 10 can be used, for example, when identifying a polymer compound such as a peptide from a mixture sample such as a biological sample.
  • the mass spectrometer 10 is, for example, a matrix-assisted laser desorption ionization ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS).
  • the mass spectrometer 10 includes, for example, a MALDI ion source 1, an ion trap 12, a TOFMS (time-of-flight mass spectrometer) 13, and a main body 100.
  • the main body 100 is formed in a hollow shape.
  • a MALDI ion source 1 an ion trap 12, a TOFMS 13, and the like are provided.
  • a first chamber 101 and a second chamber 102 are formed in the main body 100.
  • the first chamber 101 forms a space for accommodating the MALDI ion source 1.
  • the second chamber 102 forms a space for accommodating the ion trap 12 and the TOFMS 13.
  • the first chamber 101 and the second chamber 102 communicate with each other through the opening 103. That is, the first chamber 101 and the second chamber 102 are partitioned through the partition wall 104 and communicate with each other through the opening 103 formed in the partition wall 104.
  • the first chamber 101 and the second chamber 102 are evacuated by a vacuum pump (not shown) or the like.
  • the MALDI ion source 1 ionizes a sample and supplies the obtained ions to an ion trap 12.
  • the sample is prepared in a state of being concentrated on the sample plate 111, and is set in the MALDI ion source 1 together with the sample plate 111 at the time of analysis.
  • the ion trap 12 is, for example, a three-dimensional quadrupole type.
  • a flight space 131 is formed in the TOFMS 13.
  • the TOFMS 13 is provided with an ion detector 132.
  • the sample is irradiated with laser using MALDI (Matrix Assisted Laser Desorption / Ionization Method). Thereby, the sample is vaporized in a vacuum together with the matrix, and the sample is ionized by exchanging protons between the sample and the matrix.
  • MALDI Microx Assisted Laser Desorption / Ionization Method
  • ions obtained by the MALDI ion source 1 are captured by the ion trap 12.
  • ions obtained by the MALDI ion source 1 are captured by the ion trap 12.
  • a part of the trapped ions is selectively left in the ion trap 12 and cleaved by CID (collision induced dissociation).
  • CID collision induced dissociation
  • ions flying in the flight space 131 are detected by the ion detector 132.
  • ions accelerated by an electric field formed in the flight space 131 are temporally separated according to the mass-to-charge ratio while flying in the flight space 131 and sequentially detected by the ion detector 132.
  • the relationship between the mass-to-charge ratio and the detection intensity in the ion detector 132 is measured as a spectrum, and mass spectrometry is realized.
  • FIG. 2 is a schematic diagram showing a configuration example of the MALDI ion source 1.
  • the MALDI ion source 1 includes a laser light source 2, a chamber 3, and a camera 4. Each of the laser light source 2 and the camera 4 is disposed at a distance from the chamber 3.
  • the chamber 3 is formed in a box shape.
  • the chamber 3 includes a wall portion 31 and a step portion 32.
  • the wall portion 31 is formed as a peripheral wall of the chamber 3.
  • the step portion 32 is recessed inward (toward the center) from a part of the wall portion 31 of the chamber 3. That is, the step portion 32 is a recess provided in the wall portion 31.
  • An opening 321 is formed in the stepped portion 32.
  • the step portion 32 is provided with the lens 6 so as to cover the opening 321.
  • an O-ring 5 is provided on the outer edge portion of the step portion 32.
  • the lens 6 is disposed so as to sandwich the O-ring 5 between the stepped portion 32. Note that the inside of the chamber 3 may be appropriately maintained in a vacuum state by a vacuum pump (not shown).
  • the lens 6 is formed with a convex curved surface 61 and a flat surface 62.
  • the convex curved surface 61 is an outer surface of the lens 6 (a surface facing the outer side of the chamber 3).
  • the convex curved surface 61 is curved so as to swell toward the outer side.
  • the flat surface 62 is an inner surface of the lens 6 (a surface facing the inner side of the chamber 3).
  • the flat surface 62 is in contact with the O-ring 5.
  • the lens 6 constitutes a window member that closes the opening 321. Further, as will be described later, the lens 6 functions as a lens for condensing the laser light from the laser light source 2 and also functions as a lens for the camera 4.
  • the lens 6 constitutes an example of the first lens.
  • a sample placed on the sample plate 111 is accommodated.
  • the sample plate 111 (the sample placed on the sample plate 111) faces the opening 321.
  • the camera 4 is disposed at a distance from the lens 6.
  • the camera 4 includes an imaging unit 41, a CCD 42, an adjustment cylinder 43, and a lens 44.
  • the imaging unit 41 is formed in a hollow shape.
  • the CCD 42 is accommodated in the imaging unit 41.
  • the CCD 42 constitutes an example of an image sensor.
  • the adjustment cylinder 43 is formed in a cylindrical shape and extends from the imaging unit 41 toward the chamber 3 side.
  • the adjustment cylinder 43 is configured so that the dimension in the axial direction can be adjusted.
  • the adjustment cylinder 43 constitutes an example of an adjustment mechanism.
  • the lens 44 is accommodated in the adjustment cylinder 43.
  • the lens 44 is a biconvex lens whose surfaces on both sides are formed in a convex shape.
  • the lens 44 constitutes an example of the second lens.
  • the CCC 42, the lens 44, the lens 6, the opening 321, and the sample plate 111 (the sample on the sample plate 111) are arranged on the same straight line.
  • a mirror 7 is provided in the space between the camera 4 and the lens 6. Further, the laser light source 2 faces the mirror 7.
  • the lens 6 is disposed between the mirror 7 and the sample on the sample plate 111.
  • the mirror 7 is a dichroic mirror, for example. When the mirror 7 is a dichroic mirror, the mirror 7 reflects only light of a specific wavelength and transmits light of other wavelengths.
  • the mirror 7 may be a half mirror or a polarizing mirror.
  • the mirror 7 constitutes an example of an optical element.
  • the MALDI ion source 1 In the MALDI ion source 1, light of a specific wavelength out of the laser light emitted from the laser light source 2 is reflected by the mirror 7 and then passes through the lens 6 (opening 321) and enters the chamber 3. At this time, the laser light is condensed by passing through the lens 6. Then, the laser beam that has passed through the lens 6 is irradiated onto the sample on the sample plate 111.
  • light from the sample passes through the lens 6 (opening 321) and is received by the camera 4.
  • light from the sample passes through the lens 6 and the mirror 7 and enters the adjustment cylinder 43.
  • the light that has entered the adjusting cylinder 43 passes through the lens 44 and is then received by the CCD 42.
  • the focal length of the lens 44 of the camera 4 is adjusted by the adjustment cylinder 43.
  • the irradiation position of the laser beam is adjusted.
  • the adjustment of the focal length of the lens 44 may be performed manually or automatically.
  • the optical axis of the laser light that enters the chamber 3 from the laser light source 2 and the optical axis of the light that travels from the sample irradiated with the laser light toward the camera 4 are positioned coaxially.
  • the lens 6 functions as a lens for condensing the laser light from the laser light source 2 and also functions as a lens for the camera 4.
  • the MALDI ion source 1 includes a laser light source 2, a chamber 3, a camera 4, a lens 6, and a mirror 7.
  • the lens 6 is provided between the mirror 7 and the sample on the sample plate 111.
  • the optical axis of laser light that enters the chamber 3 from the laser light source 2 and the optical axis of light that travels from the sample irradiated with the laser light toward the camera 4 are positioned on the same axis.
  • the lens 6 is used as a lens for condensing light from the laser light source 2 and also as a lens for the camera 4.
  • the number of parts in the MALDI ion source 1 can be reduced.
  • the distance between the laser light source 2 and the mirror 7 can be shortened. Therefore, the MALDI ion source 1 can be downsized.
  • the lens 6 constitutes a window member provided in the opening 321 of the chamber 3. Therefore, the number of parts in the MALDI ion source 1 can be further reduced.
  • the outer surface of the lens 6 is formed as a convex curved surface 61. Therefore, the light from the laser light source 2 can be favorably condensed by the lens 6.
  • the camera 4 includes the CCD 42, the adjustment cylinder 43, and the lens 44.
  • the distance between the lens 44 and the lens 6 is adjusted by the adjustment cylinder 43. Therefore, the light from the sample can be accurately imaged by the CCD 42.
  • the lens 6 has been described on the assumption that the outer surface is formed as the convex curved surface 61.
  • the lens 6 may have a configuration in which a convex curved surface is formed on at least one surface.
  • the lens 6 may have a configuration in which a convex curved surface is formed on the inner side surface, or may have a configuration in which convex curved surfaces are formed on both side surfaces.
  • one lens 44 is accommodated in the adjustment cylinder 43.
  • a plurality of lenses 44 may be accommodated in the adjustment cylinder 43.
  • the position of the lens 44 is adjusted by the adjustment cylinder 43 in the camera 4.
  • the lens 44 is fixed and the position of the CCD 42 (position in the optical axis direction) is adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

This MALDI ion source 1 has a lens 6 that is provided between a mirror 7 and a sample on a sample plate 111. In the MALDI ion source 1, the optical axis of a laser beam coming into a chamber 3 from a laser light source 2 is located coaxially with the optical axis of light that is directed toward a camera 4 from the sample irradiated with the laser beam. Additionally, in the MALDI ion source 1, the lens 6 is used as a lens to collect light from the laser light source 2 and also as a lens for the camera 4. With this configuration, it is possible to reduce the number of components in the MALDI ion source 1. Furthermore, since there is no need to provide a lens between the laser light source 2 and the mirror 7, the distance between the laser light source 2 and the mirror 7 can be shortened. Thereby, it is possible to achieve downsizing of the MALDI ion source 1.

Description

MALDIイオン源MALDI ion source
 本発明は、MALDIにより試料をイオン化させるMALDIイオン源に関するものである。 The present invention relates to a MALDI ion source for ionizing a sample by MALDI.
 従来より、MALDIにより試料をイオン化させるMALDIイオン源が利用されている。例えば、質量分析装置にMALDIイオン源を用いる場合には、試料に対してレーザ光が照射されて、試料がイオン化される。そして、イオン化された試料は、チャンバ内で質量電荷比に応じて時間的に分離され、イオン検出器により順次検出される(例えば、下記特許文献1参照)。 Conventionally, a MALDI ion source that ionizes a sample by MALDI has been used. For example, when a MALDI ion source is used in a mass spectrometer, the sample is ionized by irradiating the sample with laser light. Then, the ionized sample is temporally separated according to the mass-to-charge ratio in the chamber and sequentially detected by an ion detector (for example, see Patent Document 1 below).
 図3は、従来のMALDIイオン源200の構成例を示した概略図である。従来のMALDIイオン源200は、チャンバ201と、レーザ光源202と、カメラ203とを備えている。レーザ光源202及びカメラ203のそれぞれは、チャンバ201と間隔を隔てて配置されている。 FIG. 3 is a schematic diagram showing a configuration example of a conventional MALDI ion source 200. A conventional MALDI ion source 200 includes a chamber 201, a laser light source 202, and a camera 203. Each of the laser light source 202 and the camera 203 is disposed at a distance from the chamber 201.
 チャンバ201の周壁には、窓板206,207が設けられている。チャンバ201では、窓板207が設けられる部分と異なる部分(異なる壁面)に、窓板206が設けられている。レーザ光源202は、窓板206と間隔を隔てて配置されている。レーザ光源202と窓板206との間には、レンズ208が設けられている。カメラ203は、窓板207と間隔を隔てて配置されている。カメラ203は、レンズ209と、レンズ209を収容する調整筒210とを備えている。
 チャンバ201には、サンプルプレート220上に載置された試料、及び、ミラー221が収容されている。
Window plates 206 and 207 are provided on the peripheral wall of the chamber 201. In the chamber 201, a window plate 206 is provided on a portion (different wall surface) different from the portion where the window plate 207 is provided. The laser light source 202 is disposed at a distance from the window plate 206. A lens 208 is provided between the laser light source 202 and the window plate 206. The camera 203 is disposed at a distance from the window plate 207. The camera 203 includes a lens 209 and an adjustment cylinder 210 that houses the lens 209.
The chamber 201 accommodates a sample placed on the sample plate 220 and a mirror 221.
 MALDIイオン源では、レーザ光源202から出射されたレーザ光が、レンズ208を通過することによって集光される。また、そのレーザ光は、窓板206を通過してチャンバ201内に入り、ミラー221で反射されてサンプルプレート220上の試料に照射される。また、試料からの光は、窓板207を通過して、カメラ203で受光される。このとき、カメラ203のレンズ209の焦点距離は、調整筒210によって調整される。そして、カメラ203での撮像結果に基づいて、レーザ光の照射位置が調整される。 In the MALDI ion source, the laser light emitted from the laser light source 202 is condensed by passing through the lens 208. Further, the laser light passes through the window plate 206 and enters the chamber 201, is reflected by the mirror 221, and is irradiated on the sample on the sample plate 220. Light from the sample passes through the window plate 207 and is received by the camera 203. At this time, the focal length of the lens 209 of the camera 203 is adjusted by the adjustment cylinder 210. Then, the irradiation position of the laser light is adjusted based on the imaging result of the camera 203.
特開2007-298668号公報JP 2007-298668 A
 上記した従来のMALDIイオン源200では、部品点数が多くなるという不具合や、各部品を配置するためのスペースが必要になるという不具合が生じる。そこで、図4に示すMALDIイオン源400の構成にすることも考えられる。なお、図4のMALDIイオン源400では、図3のMALDIイオン源200と同一の部材については、同一の符号を付している。 The conventional MALDI ion source 200 described above has a problem that the number of parts increases and a problem that a space for arranging each part is required. Therefore, it is conceivable to configure the MALDI ion source 400 shown in FIG. In the MALDI ion source 400 of FIG. 4, the same members as those of the MALDI ion source 200 of FIG.
 図4に示すMALDIイオン源400では、カメラ203と窓板207と間のスペースに、ダイクロイックミラー401が設けられている。また、MALDIイオン源400では、レーザ光源202は、ダイクロイックミラー401と間隔を隔てて配置されており、レンズ208は、ダイクロイックミラー401とレーザ光源202との間に配置されている。チャンバ201には、上記した窓板206及びミラー221が設けられていない。 In the MALDI ion source 400 shown in FIG. 4, a dichroic mirror 401 is provided in the space between the camera 203 and the window plate 207. In the MALDI ion source 400, the laser light source 202 is disposed at a distance from the dichroic mirror 401, and the lens 208 is disposed between the dichroic mirror 401 and the laser light source 202. The chamber 201 is not provided with the window plate 206 and the mirror 221 described above.
 このMALDIイオン源400では、レーザ光源202から出射されたレーザ光は、レンズ208を通過することによって集光された後、ダイクロイックミラー401で反射され、窓板207を通過してチャンバ201内に入る。そして、チャンバ201内に入った光は、サンプルプレート220上の試料に照射される。また、試料からの光は、窓板207を通過して、カメラ203で受光される。 In the MALDI ion source 400, the laser light emitted from the laser light source 202 is collected by passing through the lens 208, reflected by the dichroic mirror 401, passes through the window plate 207, and enters the chamber 201. . Then, the light entering the chamber 201 is irradiated on the sample on the sample plate 220. Light from the sample passes through the window plate 207 and is received by the camera 203.
 このとき、上記した場合と同様に、調整筒210によってカメラ203のレンズ209の焦点距離が調整される。ここで、MALDIイオン源400の構成の場合には、カメラ203のレンズ209から試料までの距離L1(作動距離)が、図3に示すMALDIイオン源200の構成の場合よりも長くなってしまう。そのため、カメラ203のレンズ209の焦点距離L2を長くする必要があり、カメラ203から試料までの領域で大きなスペースが必要となってしまう(図4における上下方向の寸法が大きくなってしまう)。
 本発明は、上記実情に鑑みてなされたものであり、部品点数を減らすことができ、かつ、小型化を実現できるMALDIイオン源を提供することを目的とする。
At this time, as in the case described above, the focal length of the lens 209 of the camera 203 is adjusted by the adjustment cylinder 210. Here, in the configuration of the MALDI ion source 400, the distance L1 (working distance) from the lens 209 of the camera 203 to the sample is longer than in the configuration of the MALDI ion source 200 shown in FIG. Therefore, it is necessary to lengthen the focal length L2 of the lens 209 of the camera 203, and a large space is required in the region from the camera 203 to the sample (the vertical dimension in FIG. 4 becomes large).
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a MALDI ion source capable of reducing the number of parts and realizing downsizing.
(1)本発明に係るMALDIイオン源は、MALDIにより試料をイオン化させるMALDIイオン源である。前記MALDIイオン源は、チャンバと、レーザ光源と、カメラと、光学素子と、第1レンズとを備える。前記チャンバは、内部に試料が設置される。前記レーザ光源は、前記チャンバの外部に設けられ、レーザ光を出射する。前記カメラは、前記チャンバの外部に設けられ、前記レーザ光が照射された前記チャンバ内の試料からの光を受光する。前記光学素子は、前記チャンバの外部に設けられ、前記チャンバ内に入射する前記レーザ光の光軸と、前記レーザ光が照射された試料から前記カメラに向かう光の光軸とを同軸上にする。前記第1レンズは、前記光学素子と試料との間に設けられる。 (1) The MALDI ion source according to the present invention is a MALDI ion source that ionizes a sample by MALDI. The MALDI ion source includes a chamber, a laser light source, a camera, an optical element, and a first lens. A sample is installed in the chamber. The laser light source is provided outside the chamber and emits laser light. The camera is provided outside the chamber and receives light from a sample in the chamber irradiated with the laser light. The optical element is provided outside the chamber, and the optical axis of the laser light incident on the chamber and the optical axis of the light from the sample irradiated with the laser light toward the camera are coaxial. . The first lens is provided between the optical element and a sample.
 このような構成によれば、光学素子と試料との間に設けられた第1レンズを、レーザ光源からの光を集光するためのレンズとして用いることができるとともに、カメラ用のレンズとして用いることができる。
 そのため、MALDIイオン源における部品点数を減らすことができる。
 また、レーザ光源と光学素子との間にレンズを設ける必要がないため、レーザ光源と光学素子との間の距離を短くすることができる。
 そのため、MALDIイオン源の小型化を実現できる。
According to such a configuration, the first lens provided between the optical element and the sample can be used as a lens for condensing light from the laser light source and also used as a camera lens. Can do.
Therefore, the number of parts in the MALDI ion source can be reduced.
Further, since it is not necessary to provide a lens between the laser light source and the optical element, the distance between the laser light source and the optical element can be shortened.
Therefore, it is possible to reduce the size of the MALDI ion source.
(2)また、前記チャンバには、前記レーザ光及び当該レーザ光が照射された試料からの光が通過する開口が形成されていてもよい。前記第1レンズは、前記開口に設けられた窓部材を構成していてもよい。 (2) The chamber may have an opening through which the laser beam and light from the sample irradiated with the laser beam pass. The first lens may constitute a window member provided in the opening.
 このような構成によれば、MALDIイオン源における部品点数をさらに減らすことができる。 According to such a configuration, the number of parts in the MALDI ion source can be further reduced.
(3)また、前記第1レンズは、少なくとも一方の面に凸湾曲面を有してもよい。
 このような構成によれば、第1レンズによってレーザ光源からの光を良好に集光できる。
(3) The first lens may have a convex curved surface on at least one surface.
According to such a configuration, the light from the laser light source can be favorably collected by the first lens.
(4)また、前記カメラは、撮像素子と、少なくとも1つの第2レンズとを有してもよい。前記撮像素子は、試料からの光を受光する。前記第2レンズには、前記撮像素子に入射する光が通過する。前記MALDIイオン源は、調整機構をさらに備えてもよい。前記調整機構は、前記第1レンズと前記撮像素子との距離、又は、前記第1レンズと前記第2レンズとの距離を調整する。 (4) The camera may include an image sensor and at least one second lens. The image sensor receives light from a sample. Light incident on the image sensor passes through the second lens. The MALDI ion source may further include an adjustment mechanism. The adjustment mechanism adjusts a distance between the first lens and the imaging element or a distance between the first lens and the second lens.
 このような構成によれば、第1レンズと撮像素子との距離、又は、第1レンズと第2レンズとの距離を調整機構により調整することで、試料からの光を撮像素子で精度よく撮像できる。 According to such a configuration, by adjusting the distance between the first lens and the imaging element or the distance between the first lens and the second lens by the adjustment mechanism, the light from the sample is accurately imaged by the imaging element. it can.
 本発明によれば、光学素子と試料との間に設けられた第1レンズを、レーザ光源からの光を集光するためのレンズとして用いることができるとともに、カメラ用のレンズとして用いることができる。そのため、MALDIイオン源における部品点数を減らすことができる。また、レーザ光源と光学素子との間にレンズを設ける必要がないため、レーザ光源と光学素子との間の距離を短くすることができる。そのため、MALDIイオン源の小型化を実現できる。 According to the present invention, the first lens provided between the optical element and the sample can be used as a lens for condensing light from a laser light source and can be used as a lens for a camera. . Therefore, the number of parts in the MALDI ion source can be reduced. Further, since it is not necessary to provide a lens between the laser light source and the optical element, the distance between the laser light source and the optical element can be shortened. Therefore, it is possible to reduce the size of the MALDI ion source.
本発明の一実施形態に係るMALDIイオン源を用いた質量分析装置の構成を示した概略図である。It is the schematic which showed the structure of the mass spectrometer using the MALDI ion source which concerns on one Embodiment of this invention. 本発明の一実施形態に係るMALDIイオン源の構成例を示した概略図である。It is the schematic which showed the structural example of the MALDI ion source which concerns on one Embodiment of this invention. 従来のMALDIイオン源の構成例を示した概略図である。It is the schematic which showed the structural example of the conventional MALDI ion source. 図3のMALDIイオン源の構成を一部変更したMALDIイオン源を示した概略図である。It is the schematic which showed the MALDI ion source which changed the structure of the MALDI ion source of FIG. 3 partially.
1.質量分析装置の構成
 図1は、本発明の一実施形態に係るMALDIイオン源1を用いた質量分析装置10の構成を示した概略図である。質量分析装置10は、例えば、生体試料等の混合物試料からペプチドを始めとする高分子化合物を同定する際に使用可能である。質量分析装置10は、例えば、マトリックス支援レーザ脱離イオン化イオントラップ飛行時間型質量分析装置(MALDI-IT-TOFMS)である。
 質量分析装置10は、例えば、MALDIイオン源1、イオントラップ12及びTOFMS(飛行時間型質量分析計)13及び本体100を備えている。
1. Configuration of Mass Spectrometer FIG. 1 is a schematic diagram showing a configuration of a mass spectrometer 10 using a MALDI ion source 1 according to an embodiment of the present invention. The mass spectrometer 10 can be used, for example, when identifying a polymer compound such as a peptide from a mixture sample such as a biological sample. The mass spectrometer 10 is, for example, a matrix-assisted laser desorption ionization ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS).
The mass spectrometer 10 includes, for example, a MALDI ion source 1, an ion trap 12, a TOFMS (time-of-flight mass spectrometer) 13, and a main body 100.
 本体100は、中空状に形成されている。本体100内に、MALDIイオン源1、イオントラップ12及びTOFMS13などが設けられている。本体100内には、例えば、第1チャンバ101及び第2チャンバ102が形成されている。この例では、第1チャンバ101は、MALDIイオン源1を収容する空間を形成している。一方、第2チャンバ102は、イオントラップ12及びTOFMS13を収容する空間を形成している。 The main body 100 is formed in a hollow shape. In the main body 100, a MALDI ion source 1, an ion trap 12, a TOFMS 13, and the like are provided. In the main body 100, for example, a first chamber 101 and a second chamber 102 are formed. In this example, the first chamber 101 forms a space for accommodating the MALDI ion source 1. On the other hand, the second chamber 102 forms a space for accommodating the ion trap 12 and the TOFMS 13.
 第1チャンバ101及び第2チャンバ102は、開口103を介して互いに連通している。すなわち、第1チャンバ101と第2チャンバ102とは、区画壁104を介して区画されており、当該区画壁104に形成された開口103を介して互いに連通している。
第1チャンバ101内及び第2チャンバ102内は、図示しない真空ポンプなどにより真空状態となる。
The first chamber 101 and the second chamber 102 communicate with each other through the opening 103. That is, the first chamber 101 and the second chamber 102 are partitioned through the partition wall 104 and communicate with each other through the opening 103 formed in the partition wall 104.
The first chamber 101 and the second chamber 102 are evacuated by a vacuum pump (not shown) or the like.
 MALDIイオン源1は、試料をイオン化し、得られたイオンをイオントラップ12に供給する。試料は、例えば、サンプルプレート111上に濃縮された状態で準備され、分析の際にサンプルプレート111ごとMALDIイオン源1にセットされる。
 イオントラップ12は、例えば、三次元四重極型である。
 TOFMS13には、飛行空間131が形成されている。また、TOFMS13には、イオン検出器132が設けられている。
The MALDI ion source 1 ionizes a sample and supplies the obtained ions to an ion trap 12. For example, the sample is prepared in a state of being concentrated on the sample plate 111, and is set in the MALDI ion source 1 together with the sample plate 111 at the time of analysis.
The ion trap 12 is, for example, a three-dimensional quadrupole type.
A flight space 131 is formed in the TOFMS 13. The TOFMS 13 is provided with an ion detector 132.
 質量分析装置10を使用する際には、まず、MALDIイオン源1において、MALDI(マトリックス支援レーザ脱離イオン化法)を用いて試料にレーザが照射される。これにより、試料がマトリックスとともに真空中で気化され、試料とマトリックスとの間のプロトンの授受によって試料がイオン化される。 When using the mass spectrometer 10, first, in the MALDI ion source 1, the sample is irradiated with laser using MALDI (Matrix Assisted Laser Desorption / Ionization Method). Thereby, the sample is vaporized in a vacuum together with the matrix, and the sample is ionized by exchanging protons between the sample and the matrix.
 そして、MALDIイオン源1で得られたイオンがイオントラップ12で捕捉される。イオントラップ12では、捕捉したイオンの一部を選択的にイオントラップ12内に残し、CID(衝突誘起解離)により開裂させる。このようにして開裂されたイオンは、イオントラップ12からTOFMS13に供給される。 Then, ions obtained by the MALDI ion source 1 are captured by the ion trap 12. In the ion trap 12, a part of the trapped ions is selectively left in the ion trap 12 and cleaved by CID (collision induced dissociation). The ions cleaved in this way are supplied from the ion trap 12 to the TOFMS 13.
 TOFMS13では、飛行空間131を飛行したイオンがイオン検出器132により検出される。具体的には、飛行空間131に形成された電場により加速されたイオンが、当該飛行空間131を飛行する間に質量電荷比に応じて時間的に分離され、イオン検出器132により順次検出される。これにより、質量電荷比とイオン検出器132における検出強度との関係がスペクトルとして測定され、質量分析が実現される。 In the TOFMS 13, ions flying in the flight space 131 are detected by the ion detector 132. Specifically, ions accelerated by an electric field formed in the flight space 131 are temporally separated according to the mass-to-charge ratio while flying in the flight space 131 and sequentially detected by the ion detector 132. . Thereby, the relationship between the mass-to-charge ratio and the detection intensity in the ion detector 132 is measured as a spectrum, and mass spectrometry is realized.
2.MALDIイオン源の構成
 図2は、MALDIイオン源1の構成例を示した概略図である。
 MALDIイオン源1は、レーザ光源2と、チャンバ3と、カメラ4とを備えている。レーザ光源2及びカメラ4のそれぞれは、チャンバ3と間隔を隔てて配置されている。
 チャンバ3は、箱状に形成されている。チャンバ3は、壁部31と段差部32とを備えている。
2. Configuration of MALDI Ion Source FIG. 2 is a schematic diagram showing a configuration example of the MALDI ion source 1.
The MALDI ion source 1 includes a laser light source 2, a chamber 3, and a camera 4. Each of the laser light source 2 and the camera 4 is disposed at a distance from the chamber 3.
The chamber 3 is formed in a box shape. The chamber 3 includes a wall portion 31 and a step portion 32.
 壁部31は、チャンバ3の周壁として形成されている。
 段差部32は、チャンバ3の壁部31の一部分から内方に向かって(中心側に向かって)窪んでいる。すなわち、段差部32は、壁部31に設けられる凹部である。段差部32には、開口321が形成されている。段差部32には、開口321を覆うようにして、レンズ6が設けられている。具体的には、段差部32の外縁部には、Oリング5が設けられている。そして、段差部32との間でOリング5を挟むようにしてレンズ6が配置されている。なお、チャンバ3内は、図示しない真空ポンプにより、適宜真空状態に保たれてもよい。
The wall portion 31 is formed as a peripheral wall of the chamber 3.
The step portion 32 is recessed inward (toward the center) from a part of the wall portion 31 of the chamber 3. That is, the step portion 32 is a recess provided in the wall portion 31. An opening 321 is formed in the stepped portion 32. The step portion 32 is provided with the lens 6 so as to cover the opening 321. Specifically, an O-ring 5 is provided on the outer edge portion of the step portion 32. The lens 6 is disposed so as to sandwich the O-ring 5 between the stepped portion 32. Note that the inside of the chamber 3 may be appropriately maintained in a vacuum state by a vacuum pump (not shown).
 レンズ6には、凸湾曲面61及び平坦面62が形成されている。凸湾曲面61は、レンズ6における外方側の面(チャンバ3の外方側を向く面)である。凸湾曲面61は、外方側に向かって膨らむように湾曲している。平坦面62は、レンズ6における内方側の面(チャンバ3の内方側を向く面)である。平坦面62は、Oリング5に当接している。レンズ6は、開口321を閉塞する窓部材を構成している。また、レンズ6は、後述するように、レーザ光源2からのレーザ光を集光するためのレンズとして機能するとともに、カメラ4用のレンズとしても機能する。レンズ6が、第1レンズの一例を構成している。 The lens 6 is formed with a convex curved surface 61 and a flat surface 62. The convex curved surface 61 is an outer surface of the lens 6 (a surface facing the outer side of the chamber 3). The convex curved surface 61 is curved so as to swell toward the outer side. The flat surface 62 is an inner surface of the lens 6 (a surface facing the inner side of the chamber 3). The flat surface 62 is in contact with the O-ring 5. The lens 6 constitutes a window member that closes the opening 321. Further, as will be described later, the lens 6 functions as a lens for condensing the laser light from the laser light source 2 and also functions as a lens for the camera 4. The lens 6 constitutes an example of the first lens.
 チャンバ3内には、サンプルプレート111上に載置された試料が収容されている。サンプルプレート111(サンプルプレート111上に載置された試料)は、開口321に対向している。 In the chamber 3, a sample placed on the sample plate 111 is accommodated. The sample plate 111 (the sample placed on the sample plate 111) faces the opening 321.
 カメラ4は、レンズ6と間隔を隔てて配置されている。カメラ4は、撮像部41と、CCD42と、調整筒43と、レンズ44とを備えている。
 撮像部41は、中空状に形成されている。
 CCD42は、撮像部41内に収容されている。CCD42が、撮像素子の一例を構成している。
The camera 4 is disposed at a distance from the lens 6. The camera 4 includes an imaging unit 41, a CCD 42, an adjustment cylinder 43, and a lens 44.
The imaging unit 41 is formed in a hollow shape.
The CCD 42 is accommodated in the imaging unit 41. The CCD 42 constitutes an example of an image sensor.
 調整筒43は、筒状に形成されており、撮像部41からチャンバ3側に向かって延びている。調整筒43は、軸線方向の寸法を調整できるように構成されている。調整筒43が、調整機構の一例を構成している。 The adjustment cylinder 43 is formed in a cylindrical shape and extends from the imaging unit 41 toward the chamber 3 side. The adjustment cylinder 43 is configured so that the dimension in the axial direction can be adjusted. The adjustment cylinder 43 constitutes an example of an adjustment mechanism.
 レンズ44は、調整筒43内に収容されている。レンズ44は、両側の表面が凸状に形成される両凸レンズである。レンズ44が、第2レンズの一例を構成している。
 CCC42、レンズ44、レンズ6、開口321及びサンプルプレート111(サンプルプレート111上の試料)は、同一の直線上に配置されている。
The lens 44 is accommodated in the adjustment cylinder 43. The lens 44 is a biconvex lens whose surfaces on both sides are formed in a convex shape. The lens 44 constitutes an example of the second lens.
The CCC 42, the lens 44, the lens 6, the opening 321, and the sample plate 111 (the sample on the sample plate 111) are arranged on the same straight line.
 カメラ4とレンズ6との間のスペースには、ミラー7が設けられている。また、レーザ光源2は、ミラー7と対向している。レンズ6は、ミラー7とサンプルプレート111上の試料との間に配置されている。ミラー7は、例えば、ダイクロイックミラーである。ミラー7がダイクロイックミラーである場合には、ミラー7は、特定波長の光のみを反射し、その他の波長の光を透過する。なお、ミラー7は、ハーフミラーであってもよいし、偏光ミラーであってもよい。ミラー7が、光学素子の一例を構成している。 A mirror 7 is provided in the space between the camera 4 and the lens 6. Further, the laser light source 2 faces the mirror 7. The lens 6 is disposed between the mirror 7 and the sample on the sample plate 111. The mirror 7 is a dichroic mirror, for example. When the mirror 7 is a dichroic mirror, the mirror 7 reflects only light of a specific wavelength and transmits light of other wavelengths. The mirror 7 may be a half mirror or a polarizing mirror. The mirror 7 constitutes an example of an optical element.
 MALDIイオン源1では、レーザ光源2から出射されたレーザ光のうち特定波長の光は、ミラー7で反射された後、レンズ6(開口321)を通過してチャンバ3内に入る。このとき、レーザ光は、レンズ6を通過することで、集光される。そして、レンズ6を通過したレーザ光は、サンプルプレート111上の試料に照射される。 In the MALDI ion source 1, light of a specific wavelength out of the laser light emitted from the laser light source 2 is reflected by the mirror 7 and then passes through the lens 6 (opening 321) and enters the chamber 3. At this time, the laser light is condensed by passing through the lens 6. Then, the laser beam that has passed through the lens 6 is irradiated onto the sample on the sample plate 111.
 また、試料からの光は、レンズ6(開口321)を通過して、カメラ4で受光される。具体的には、試料からの光は、レンズ6及びミラー7を通過し、調整筒43内に入る。そして、調整筒43内に入った光は、レンズ44を通過した後、CCD42で受光される。このとき、カメラ4のレンズ44の焦点距離は、調整筒43によって調整される。そして、CCD42からの信号に基づいて、レーザ光の照射位置が調整される。レンズ44の焦点距離の調整は、手動で行われてもよいし、自動で行われてもよい。 Also, light from the sample passes through the lens 6 (opening 321) and is received by the camera 4. Specifically, light from the sample passes through the lens 6 and the mirror 7 and enters the adjustment cylinder 43. The light that has entered the adjusting cylinder 43 passes through the lens 44 and is then received by the CCD 42. At this time, the focal length of the lens 44 of the camera 4 is adjusted by the adjustment cylinder 43. Based on the signal from the CCD 42, the irradiation position of the laser beam is adjusted. The adjustment of the focal length of the lens 44 may be performed manually or automatically.
 このように、MALDIイオン源1では、レーザ光源2からチャンバ3内に入射するレーザ光の光軸と、レーザ光が照射された試料からカメラ4に向かう光の光軸とが同軸上に位置する。また、レンズ6は、レーザ光源2からのレーザ光を集光するためのレンズとして機能するとともに、カメラ4用のレンズとしても機能する。 As described above, in the MALDI ion source 1, the optical axis of the laser light that enters the chamber 3 from the laser light source 2 and the optical axis of the light that travels from the sample irradiated with the laser light toward the camera 4 are positioned coaxially. . The lens 6 functions as a lens for condensing the laser light from the laser light source 2 and also functions as a lens for the camera 4.
3.作用効果
(1)本実施形態によれば、図2に示すように、MALDIイオン源1は、レーザ光源2と、チャンバ3と、カメラ4と、レンズ6と、ミラー7とを備えている。レンズ6は、ミラー7と、サンプルプレート111上の試料との間に設けられている。MALDIイオン源1では、レーザ光源2からチャンバ3内に入射するレーザ光の光軸と、レーザ光が照射された試料からカメラ4に向かう光の光軸とが同軸上に位置する。また、MALDIイオン源1において、レンズ6は、レーザ光源2からの光を集光するためのレンズとして用いられるとともに、カメラ4用のレンズとしても用いられる。
3. Operational Effect (1) According to the present embodiment, as shown in FIG. 2, the MALDI ion source 1 includes a laser light source 2, a chamber 3, a camera 4, a lens 6, and a mirror 7. The lens 6 is provided between the mirror 7 and the sample on the sample plate 111. In the MALDI ion source 1, the optical axis of laser light that enters the chamber 3 from the laser light source 2 and the optical axis of light that travels from the sample irradiated with the laser light toward the camera 4 are positioned on the same axis. In the MALDI ion source 1, the lens 6 is used as a lens for condensing light from the laser light source 2 and also as a lens for the camera 4.
 そのため、MALDIイオン源1における部品点数を減らすことができる。
 また、レーザ光源2とミラー7との間にレンズを設ける必要がないため、レーザ光源2とミラー7との間の距離を短くすることができる。
 そのため、MALDIイオン源1の小型化を実現できる。
Therefore, the number of parts in the MALDI ion source 1 can be reduced.
In addition, since it is not necessary to provide a lens between the laser light source 2 and the mirror 7, the distance between the laser light source 2 and the mirror 7 can be shortened.
Therefore, the MALDI ion source 1 can be downsized.
(2)また、本実施形態によれば、図2に示すように、レンズ6は、チャンバ3の開口321に設けられた窓部材を構成している。
 そのため、MALDIイオン源1における部品点数をさらに減らすことができる。
(2) Further, according to the present embodiment, as shown in FIG. 2, the lens 6 constitutes a window member provided in the opening 321 of the chamber 3.
Therefore, the number of parts in the MALDI ion source 1 can be further reduced.
(3)また、本実施形態によれば、図2に示すように、レンズ6における外方側の面は、凸湾曲面61として形成されている。
 そのため、レンズ6によって、レーザ光源2からの光を良好に集光できる。
(3) According to the present embodiment, as shown in FIG. 2, the outer surface of the lens 6 is formed as a convex curved surface 61.
Therefore, the light from the laser light source 2 can be favorably condensed by the lens 6.
(4)また、本実施形態によれば、図2に示すように、カメラ4は、CCD42と、調整筒43と、レンズ44とを備えている。レンズ44とレンズ6との距離は、調整筒43により調整される。
 そのため、試料からの光をCCD42で精度よく撮像できる。
(4) According to the present embodiment, as shown in FIG. 2, the camera 4 includes the CCD 42, the adjustment cylinder 43, and the lens 44. The distance between the lens 44 and the lens 6 is adjusted by the adjustment cylinder 43.
Therefore, the light from the sample can be accurately imaged by the CCD 42.
4.変形例
 以上の実施形態では、レンズ6は、外方側の面が凸湾曲面61として形成されるとして説明した。しかし、レンズ6は、少なくとも一方の面に凸湾曲面が形成される構成であればよい。例えば、レンズ6は、内方側の面に凸湾曲面が形成される構成でもよく、両側の面に凸湾曲面が形成される構成でもよい。
4). Modifications In the above embodiment, the lens 6 has been described on the assumption that the outer surface is formed as the convex curved surface 61. However, the lens 6 may have a configuration in which a convex curved surface is formed on at least one surface. For example, the lens 6 may have a configuration in which a convex curved surface is formed on the inner side surface, or may have a configuration in which convex curved surfaces are formed on both side surfaces.
 また、以上の実施形態では、1つのレンズ44が調整筒43内に収容されるとして説明した。しかし、調整筒43内に複数のレンズ44が収容されてもよい。 In the above embodiment, it has been described that one lens 44 is accommodated in the adjustment cylinder 43. However, a plurality of lenses 44 may be accommodated in the adjustment cylinder 43.
 また、以上の実施形態では、カメラ4では、調整筒43によりレンズ44の位置が調整されるとして説明した。しかし、カメラ4において、レンズ44が固定され、CCD42の位置(光軸方向の位置)が調整される機構を用いることも可能である。 In the above embodiment, it has been described that the position of the lens 44 is adjusted by the adjustment cylinder 43 in the camera 4. However, in the camera 4, it is possible to use a mechanism in which the lens 44 is fixed and the position of the CCD 42 (position in the optical axis direction) is adjusted.
   1    MALDIイオン源
   2    レーザ光源
   3    チャンバ
   4    カメラ
   6    レンズ
   7    ミラー
   42   CCD
   43   調整筒
   44   レンズ
   61   凸湾曲面
   321  開口
1 MALDI ion source 2 Laser light source 3 Chamber 4 Camera 6 Lens 7 Mirror 42 CCD
43 Adjusting cylinder 44 Lens 61 Convex curved surface 321 Opening

Claims (4)

  1.  MALDIにより試料をイオン化させるMALDIイオン源であって、
     内部に試料が設置されるチャンバと、
     前記チャンバの外部に設けられ、レーザ光を出射するレーザ光源と、
     前記チャンバの外部に設けられ、前記レーザ光が照射された前記チャンバ内の試料からの光を受光するカメラと、
     前記チャンバの外部に設けられ、前記チャンバ内に入射する前記レーザ光の光軸と、前記レーザ光が照射された試料から前記カメラに向かう光の光軸とを同軸上にする光学素子と、
     前記光学素子と試料との間に設けられた第1レンズとを備えることを特徴とするMALDIイオン源。
    A MALDI ion source for ionizing a sample by MALDI,
    A chamber in which the sample is placed;
    A laser light source provided outside the chamber and emitting laser light;
    A camera that is provided outside the chamber and receives light from a sample in the chamber irradiated with the laser beam;
    An optical element that is provided outside the chamber and coaxially aligns an optical axis of the laser light incident into the chamber and an optical axis of light directed from the sample irradiated with the laser light toward the camera;
    A MALDI ion source comprising: a first lens provided between the optical element and a sample.
  2.  前記チャンバには、前記レーザ光及び当該レーザ光が照射された試料からの光が通過する開口が形成されており、
     前記第1レンズは、前記開口に設けられた窓部材を構成していることを特徴とする請求項1に記載のMALDIイオン源。
    In the chamber, an opening is formed through which the laser light and light from the sample irradiated with the laser light pass.
    The MALDI ion source according to claim 1, wherein the first lens constitutes a window member provided in the opening.
  3.  前記第1レンズは、少なくとも一方の面に凸湾曲面を有することを特徴とする請求項1に記載のMALDIイオン源。 The MALDI ion source according to claim 1, wherein the first lens has a convex curved surface on at least one surface.
  4.  前記カメラは、試料からの光を受光する撮像素子と、前記撮像素子に入射する光が通過する少なくとも1つの第2レンズとを有し、
     前記第1レンズと前記撮像素子との距離、又は、前記第1レンズと前記第2レンズとの距離を調整するための調整機構をさらに備えることを特徴とする請求項1に記載のMALDIイオン源。
    The camera includes an image sensor that receives light from a sample, and at least one second lens through which light incident on the image sensor passes,
    2. The MALDI ion source according to claim 1, further comprising an adjustment mechanism for adjusting a distance between the first lens and the imaging element or a distance between the first lens and the second lens. .
PCT/JP2018/044582 2018-03-27 2018-12-04 Maldi ion source WO2019187353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509623A JP6908180B2 (en) 2018-03-27 2018-12-04 MALDI ion source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059654 2018-03-27
JP2018059654 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187353A1 true WO2019187353A1 (en) 2019-10-03

Family

ID=68061103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044582 WO2019187353A1 (en) 2018-03-27 2018-12-04 Maldi ion source

Country Status (2)

Country Link
JP (1) JP6908180B2 (en)
WO (1) WO2019187353A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993009A4 (en) * 2020-02-10 2023-02-08 Zhejiang Digena Diagnosis Technology Co., Ltd. Laser coaxial ion excitation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245453A1 (en) * 2003-06-05 2004-12-09 Nicolae Izgarian Rod assembly in ion source
US7180058B1 (en) * 2005-10-05 2007-02-20 Thermo Finnigan Llc LDI/MALDI source for enhanced spatial resolution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245453A1 (en) * 2003-06-05 2004-12-09 Nicolae Izgarian Rod assembly in ion source
US7180058B1 (en) * 2005-10-05 2007-02-20 Thermo Finnigan Llc LDI/MALDI source for enhanced spatial resolution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993009A4 (en) * 2020-02-10 2023-02-08 Zhejiang Digena Diagnosis Technology Co., Ltd. Laser coaxial ion excitation device

Also Published As

Publication number Publication date
JP6908180B2 (en) 2021-07-21
JPWO2019187353A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7423260B2 (en) Apparatus for combined laser focusing and spot imaging for MALDI
US5965884A (en) Atmospheric pressure matrix assisted laser desorption
US7180058B1 (en) LDI/MALDI source for enhanced spatial resolution
US20210257203A1 (en) Maldi ion source and mass spectrometer
Strupat et al. MALDI produced ions inspected with a linear ion trap-Orbitrap hybrid mass analyzer
US9468953B2 (en) Methods and apparatuses for cleaning at least one surface of an ion source
JP6908180B2 (en) MALDI ion source
CN107107127B (en) Method and apparatus relating to cleaning ion sources
JP2009164034A (en) Laser desorption ionization method, laser desorption ionization device, and mass spectroscope
CN209843661U (en) Matrix-assisted laser desorption ionization time-of-flight mass spectrometer
CN110265282B (en) Matrix-assisted laser desorption ionization time-of-flight mass spectrometer and sample detection method
JP7021612B2 (en) Mass spectrometer and mass spectrometry method
JP6699770B2 (en) MALDI ion source and mass spectrometer
CN109923408B (en) Ion analysis apparatus
JP7226114B2 (en) Mass spectrometer and mass calibration method
JPS63146339A (en) Time-of-flight type mass spectrometer
JPH07226184A (en) Mass spectrometer
JP2020202102A5 (en)
CN217544541U (en) Mass spectrum analysis device and ion source illumination imaging system thereof
JP2011034900A (en) Mass spectrometer
JPH0945276A (en) Mass spectrometer
JP2020145100A (en) Mass spectrometer
JPH04306549A (en) Microscopic laser mass spectrometer
CN118020139A (en) Ion source assembly
JPH01311555A (en) Massspectrometer with spectrometric function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020509623

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912224

Country of ref document: EP

Kind code of ref document: A1