WO2019185061A1 - 一种基于双二甲基芴的化合物、制备方法及其应用 - Google Patents

一种基于双二甲基芴的化合物、制备方法及其应用 Download PDF

Info

Publication number
WO2019185061A1
WO2019185061A1 PCT/CN2019/080634 CN2019080634W WO2019185061A1 WO 2019185061 A1 WO2019185061 A1 WO 2019185061A1 CN 2019080634 W CN2019080634 W CN 2019080634W WO 2019185061 A1 WO2019185061 A1 WO 2019185061A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
substituted
group
formula
unsubstituted
Prior art date
Application number
PCT/CN2019/080634
Other languages
English (en)
French (fr)
Inventor
赵四杰
李崇
张兆超
王芳
张小庆
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910146222.7A external-priority patent/CN110317184A/zh
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2019185061A1 publication Critical patent/WO2019185061A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to a compound based on bisdimethylhydrazine, a preparation method and application thereof, and belongs to the technical field of semiconductors.
  • OLED Organic Light Emission Diodes
  • the OLED light-emitting device is like a sandwich structure, including an electrode material film layer and an organic functional material sandwiched between different electrode film layers, and various functional materials are superposed on each other according to the purpose to form an OLED light-emitting device.
  • the OLED light-emitting device functions as a current device.
  • the positive and negative charges in the organic layer functional material film layer are applied by the electric field, the positive and negative charges are further recombined in the light-emitting layer, that is, the OLED electroluminescence is generated.
  • OLED display technology has been applied in the fields of smart phones, tablet computers, etc., and will further expand to large-size applications such as television, but the luminous efficiency and service life of OLED devices are compared with actual product application requirements. Further improvement is needed.
  • research on improving the performance of OLED light-emitting devices includes: reducing the driving voltage of the device, improving the luminous efficiency of the device, and improving the service life of the device.
  • the OLED optoelectronic functional materials applied to OLED devices can be divided into two categories from the use of charge injection transport materials and luminescent materials. Further, the charge injection transport material may be further classified into an electron injection transport material, an electron blocking material, a hole injection transport material, and a hole blocking material, and the luminescent material may be further divided into a host luminescent material and a dopant material.
  • organic functional materials are required to have good photoelectric properties.
  • a charge transport material it is required to have good carrier mobility, high glass transition temperature, etc., as a main body of the light-emitting layer.
  • the material has good bipolarity, appropriate HOMO/LUMO energy levels, and the like.
  • the OLED photoelectric functional material film layer constituting the OLED device includes at least two layers or more, and the industrially applied OLED device structure includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, and an electron transport.
  • Layers, electron injection layers and other film layers, that is to say, the photoelectric functional materials applied to the OLED device include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc., and the material types and combinations are rich. And the characteristics of diversity.
  • the optoelectronic functional materials used have strong selectivity, and the performance of the same materials in different structural devices may be completely different.
  • the photoelectric characteristics of devices must be selected to be more suitable and higher performance OLED functional materials or material combinations in order to achieve high efficiency and long life of the device. And the comprehensive characteristics of low voltage.
  • the development of OLED materials is still far from enough. It is lagging behind the requirements of panel manufacturers, and it is especially important to develop higher performance organic functional materials as material enterprises.
  • One of the objects of the present invention is to provide a compound based on bisdimethylhydrazine.
  • the compound of the invention contains a bisdimethylhydrazine structure, has high glass transition temperature and molecular thermal stability, suitable HOMO and LUMO energy levels, high Eg, and can optimize the photoelectric performance of the OLED device through device structure optimization. And the lifetime of OLED devices.
  • L, L 1 or L 2 are each independently represented by a single bond, a C 6 -C 60 arylene group, a C 6 -C 60 aryl group or a C 5 -C 60 heteroaryl group. Any H atom of a C 6 -C 60 aryl or C 5 -C 60 heteroaryl group may be substituted with a C 1 -C 10 alkyl group;
  • R is represented by the structure represented by the general formula (II) or the general formula (III):
  • X represents one of an oxygen atom, a sulfur atom, an alkyl-substituted alkylene group, an aryl-substituted alkylene group, an alkyl-substituted imido group or an aryl-substituted imido group.
  • R 1 and R 2 are each independently represented by a hydrogen atom, a halogen, a C 1 -C 6 alkyl group, a C 3 -C 6 cycloalkyl group, a substituted or unsubstituted C 3 -C 30 heteroaryl group, a substitution or An unsubstituted C 6 -C 30 aryl group or one of the structures represented by the formula (IV), and at least one of R 1 and R 2 is represented by the structure represented by the formula (IV);
  • the compound of the present invention is an organic light-emitting functional layer material which has the characteristics of being incapable of crystallization, inhomogeneity, and good film formation, and the rigid group in the molecule of the compound of the present invention can improve the thermal stability of the material.
  • the structure of the compound of the invention makes the distribution of electrons and holes in the luminescent layer more balanced, and improves the hole injection/transport performance at the appropriate HOMO level; and at the appropriate LUMO level, it acts as an electron blocking.
  • Enhancing the recombination efficiency of the excitons in the light-emitting layer; when used as a light-emitting functional layer material of the OLED light-emitting device, the use of an aryl-substituted fluorene in combination with the branches within the scope of the invention can effectively improve the exciton utilization and high fluorescence radiation efficiency. Reduces efficiency roll-off at high current densities, reduces device voltage, and improves device current efficiency and lifetime.
  • the present invention can also be improved as follows.
  • the L, L 1 or L 2 are each independently represented by a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylylene group, a substituted or unsubstituted naphthylene group, a substituted or not One of a substituted fluorenylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted fluorenylene group, a substituted or unsubstituted dibenzofuranyl group.
  • the X represents an oxygen atom, a sulfur atom, a dimethyl-substituted alkylene group, a diphenyl-substituted alkylene group, a phenyl-substituted imido group, a biphenyl-substituted imido group, a fluorenyl group.
  • a substituted imino group a dibenzofuranyl substituted imido group, or an N-phenylcarbazolyl substituted imido group.
  • Another object of the present invention is to provide a process for the preparation of the above bisdimethylhydrazine-based compound.
  • the preparation method of the bisdimethylhydrazine-based compound of the invention is simple, has a broad market prospect, and is suitable for large-scale production.
  • the technical solution of the present invention to solve the above technical problems is as follows:
  • the preparation method of the above-mentioned bisdimethylhydrazine-based compound, the reaction equation occurring during the preparation process is:
  • the compound A and the compound B are weighed, dissolved in toluene, and then Pd 2 (dba) 3 , tri-tert-butylphosphine and sodium t-butoxide are added; the mixed solution of the above reactants is reacted at a reaction temperature of 95-110 under an inert atmosphere. °C, the reaction is 10-24 hours, the reaction solution is cooled and filtered, and the filtrate is steamed and passed through a silica gel column to obtain the target product;
  • the molar ratio of the compound A to the compound B is 1: (1.0-1.5)
  • the molar ratio of the Pd 2 (dba) 3 to the compound A is (0.004-0.01): 1
  • the tri-tert-butyl group The molar ratio of phosphine to compound A is (0.004-0.01): 1
  • the molar ratio of sodium t-butoxide to compound A is (1-1.5):1.
  • a third object of the present invention is to provide an organic electroluminescent device.
  • the compound of the invention has good application effects in OLED light-emitting devices and has good industrialization prospects.
  • An organic electroluminescent device at least one functional layer containing the above-mentioned didimethylfluorene-based compound.
  • the present invention can also be improved as follows.
  • the functional layer is a light-emitting layer and/or an electron blocking layer and/or a hole transport layer.
  • a fourth object of the invention is to provide an illumination or display element.
  • the organic electroluminescent device of the invention can be applied to illumination or display originals, so that the current efficiency, power efficiency and external quantum efficiency of the device are greatly improved; at the same time, the device lifetime is improved obviously, and the OLED light-emitting device has good performance.
  • the application effect has a good industrialization prospect.
  • an illumination or display element comprising the organic electroluminescent device as described above.
  • the compound of the invention contains a bisdimethylhydrazine structure, has a high glass transition temperature and molecular thermal stability, a suitable HOMO and LUMO energy level, a high Eg, and is optimized by device structure, which can effectively enhance the OLED device. Photoelectric properties and lifetime of OLED devices.
  • the compound of the present invention is an organic light-emitting functional layer material, which has the characteristics that it is difficult to crystallize, is difficult to aggregate, and has good film forming properties.
  • the rigid group in the molecule of the compound of the present invention can improve the thermal stability of the material. Sex.
  • the structure of the compound of the present invention makes the distribution of electrons and holes in the luminescent layer more balanced, and improves the hole injection/transport performance at the appropriate HOMO level; and at the appropriate LUMO level, it also acts as an electron blocking.
  • the effect of improving the recombination efficiency of the exciton in the luminescent layer; when used as the luminescent functional layer material of the OLED illuminating device, the use of the aryl-substituted hydrazine in combination with the branch within the scope of the invention can effectively improve the exciton utilization and high fluorescence radiation. Efficiency, reducing efficiency roll-off at high current densities, reducing device voltage, and improving device current efficiency and lifetime.
  • the preparation method of the bisdimethylhydrazine-based compound of the invention is simple, has a broad market prospect, and is suitable for large-scale production.
  • the compound of the invention has good application effect in OLED light-emitting devices, and has good industrialization prospects.
  • Figure 1 is a schematic view showing the structure of a device to which the compound of the present invention is applied, wherein the components represented by the respective numerals are as follows:
  • FIG. 2 is a graph showing current efficiency versus temperature for an OLED device of the present invention.
  • FIG. 3 is a graph showing a leakage current test of a reverse voltage of a device fabricated in Device Example 1 and Device Comparative Example 1 of the present invention.
  • Elemental Analysis Structure (Molecular Formula C 46 H 35 NO): Theory C, 89.43; H, 5.71; N, 2.27; O, 2.59; Tests: C, 89.40; H, 5.69; N, 2.30; O, 2.61.
  • HPLC-MS The material had a molecular weight of 617.79 and a molecular weight of 618.65.
  • the synthesis step of the compound 24 is similar to the synthesis step of the compound 1, except that the compound A1 is replaced with the compound A2;
  • Elemental analysis structure (Molecular formula C 53 H 43 N): Theory C, 91.74; H, 6.25; N, 2.02; ⁇ / RTI> C, 91.71; H, 6.26; N, 2.04.
  • HPLC-MS The material had a molecular weight of 693.93 and a molecular weight of 694.28.
  • Elemental Analysis Structure (Molecular Formula C 56 H 42 N 2 ): Theory C, 90.53; H, 5.70; N, 3.77; Tests: C, 90.51; H, 5.71; N, 3.78.
  • HPLC-MS The material had a molecular weight of 742.97 and a molecular weight of 742.65.
  • the synthetic step of compound 46 is similar to the synthetic step of compound 1, except that compound A1 is replaced with compound A4;
  • Elemental analysis structure (Molecular formula C 61 H 49 N): Theory C, 92.04; H, 6.20; N, 1.76; Tests: C, 92.00; H, 6.21.; N, 1.79.
  • HPLC-MS The material had a molecular weight of 796.07 and a molecular weight of 795.67.
  • the synthetic step of compound 57 is similar to the synthetic step of compound 1, except that compound A1 is replaced with compound A5;
  • Elemental Analysis Structure (Molecular Formula C 52 H 39 NO): Theory C, 90.01; H, 5.67; N, 2.02; O, 2.31; Tests: C, 89.98; H, 5.66; N, 2.04; O, 2.33.
  • HPLC-MS The material had a molecular weight of 693.89 and a molecular weight of 694.23.
  • HPLC-MS The material had a molecular weight of 844.11 and a molecular weight of 843.09.
  • HPLC-MS The material had a molecular weight of 743.95 and a molecular weight of 743.65.
  • the synthetic step of compound 78 is similar to the synthetic step of compound 1, except that compound A1 is replaced with compound A8;
  • HPLC-MS The material had a molecular weight of 793.03 and a molecular weight of 792.86.
  • the synthesis procedure of Compound 80 is similar to the synthesis procedure of Compound 1, except that Compound A1 is replaced with Compound A9;
  • HPLC-MS The material had a molecular weight of 769.99 and a molecular weight of 769.78.
  • the synthetic step of the compound 95 is similar to the synthetic step of the compound 1, except that the compound A1 is replaced with the compound A10;
  • HPLC-MS The material had a molecular weight of 769.99 and a molecular weight of 769.
  • the synthetic step of the compound 101 is similar to the synthetic step of the compound 1, except that the compound A1 is replaced with the compound A11;
  • HPLC-MS The material had a molecular weight of 846.09 and a molecular weight of 845.17.
  • the synthetic step of the compound 115 is similar to the synthetic step of the compound 1, except that the compound A1 is replaced with the compound A12;
  • Elemental analysis structure (Molecular formula C 61 H 49 N): Theory C, 92.04; H, 6.20; N, 1.76; Tests: C, 91.99; H, 6.22; N, 1.79.
  • HPLC-MS The material had a molecular weight of 796.07 and a molecular weight of 795.26.
  • the synthetic step of the compound 125 is similar to the synthetic step of the compound 1, except that the compound A1 is replaced with the compound A13;
  • Elemental analysis structure (Molecular formula C 67 H 53 N): Theory C, 92.27; H, 6.13; N, 1.61; ⁇ / RTI> ⁇ /RTI> C, 92.23; H, 6.14; N, 1.64.
  • HPLC-MS The material had a molecular weight of 872.17 and a molecular weight of 871.06.
  • the synthetic step of compound 128 is similar to the synthetic step of compound 1, except that compound A1 is replaced with compound A14;
  • Elemental Analysis Structure (Molecular Formula C 64 H 48 N 2 ): Theory C, 90.96; H, 5.73; N, 3.31; ⁇ / RTI> C, 90.93; H, 5.73; N, 3.34.
  • HPLC-MS The material had a molecular weight of 845.10 and a molecular weight of 844.03.
  • the synthetic step of the compound 137 is similar to the synthetic step of the compound 1, except that the compound A1 is replaced with the compound A15;
  • Elemental analysis structure (Molecular formula C 58 H 44 N 2 ): Theory C, 90.59; H, 5.77; N, 3.64; ⁇ / RTI> C, 90.55; H, 5.78; N, 3.67.
  • HPLC-MS The material had a molecular weight of 769.00 and a molecular weight of 768.34.
  • the organic compound of the present invention is used in a light-emitting device and can be used as a material for a hole transport layer.
  • the compounds 1, 24, 28, 46, 57, 62, 65, 78, 80, 95, 101, 115, 125, 128, 137 prepared in the examples of the present invention were tested for thermal properties and HOMO levels, respectively. Table 1 shows.
  • the triplet energy level T1 is tested by Hitachi's F4600 fluorescence spectrometer.
  • the test conditions of the material are 2 ⁇ 10 -5 toluene solution;
  • the glass transition temperature Tg is by differential scanning calorimetry (DSC, Germany NETZSCH DSC204F1 differential scanning)
  • the calorimeter was measured at a heating rate of 10 ° C/min;
  • the thermogravimetric temperature Td was a temperature at which the weight loss was 1% in a nitrogen atmosphere, and was measured on a TGA-50H thermogravimetric analyzer of Shimadzu Corporation, Japan, and the flow rate of nitrogen was 20 mL/ Min;
  • the highest occupied molecular orbital HOMO level is tested by the ionization energy test system (IPS3) and tested as the atmospheric environment.
  • IPS3 ionization energy test system
  • the organic compounds of the present invention have different HOMO energy levels and can be applied to different functional layers.
  • the compounds based on bisdimethylhydrazine of the present invention have higher triplet energy levels and higher heat.
  • the stability makes the efficiency and lifetime of the fabricated OLED device containing the organic compound of the present invention improved.
  • the application effects of the OLED material synthesized by the present invention in a device will be described in detail below by means of Device Examples 1-15 and Device Comparative Example 1.
  • the device embodiments 2-15, the device comparative example 1 of the present invention have the same fabrication process as the device embodiment 1, and the same substrate material and electrode material are used, and the film thickness of the electrode material is also maintained. Consistently, the difference between device embodiments 2-8 is the use of the materials of the present invention as hole transport layer applications, and device embodiments 9-15 are applications using the materials of the present invention as electron blocking layers.
  • Table 2 The performance test results of the devices obtained in the respective examples are shown in Table 2.
  • transparent glass is used as the transparent substrate layer 1.
  • ITO was coated thereon to a thickness of 150 nm, and as an ITO anode layer 2, it was washed, that is, sequentially washed with alkali, washed with pure water, then dried, and then subjected to ultraviolet-ozone washing to remove organic residues on the surface of the transparent ITO. .
  • HAT-CN having a thickness of 10 nm was deposited as a hole injecting layer 3 by a vacuum evaporation apparatus.
  • the compound 1 prepared in Preparation Example 1 having a thickness of 60 nm was deposited as the hole transport layer 4.
  • TAPC having a thickness of 20 nm was evaporated as the electron blocking layer 5.
  • vacuum evaporation was performed on the electron blocking layer to obtain a light-emitting layer 6 having a thickness of 30 nm, which used 90 parts by weight of CBP as a host material and 10 parts by weight of Ir(ppy) 3 as a dopant material. The total amount of the host material and the dopant material is 100 parts by weight.
  • TPBI having a thickness of 40 nm was vacuum-deposited on the light-emitting layer as the electron transport layer 7.
  • lithium fluoride (LiF) having a thickness of 1 nm was vacuum-deposited on the electron transport layer as the electron injection layer 8.
  • aluminum (Al) having a thickness of 100 nm was vacuum-deposited on the electron injecting layer as the cathode layer 9.
  • the molecular structure of the relevant material is as follows:
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 80 prepared in Preparation Example 9 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 95 prepared in Preparation Example 10 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 101 prepared in Preparation Example 11 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 115 prepared in Preparation Example 12 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 125 prepared in Preparation Example 13 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 128 prepared in Preparation Example 14 as an electron blocking material.
  • Example 1 The procedure of the above Example 1 was repeated except that the hole transport layer 4 used NPB as a hole transporting material; the electron blocking layer 5 used the compound 137 prepared in Preparation Example 15 as an electron blocking material.
  • Table 2 shows the test results of current efficiency, color, and LT95 lifetime at 5000 nit brightness of the prepared OLED device.
  • the life test system is the OLED device life tester jointly researched by the owner of the invention and Shanghai University.
  • the OLED device of the embodiment of the present invention has a great improvement in both efficiency and lifetime, and in particular, the driving life of the device is greatly improved.
  • Table 3 shows the test results of the efficiency attenuation coefficient ⁇ of the prepared OLED device.
  • Example number Efficiency attenuation coefficient ⁇ Example number Efficiency attenuation coefficient ⁇
  • Example 1 0.22
  • Example 9 0.12
  • Example 2 0.23
  • Example 10 0.13
  • Example 3 0.19
  • Example 11 0.17
  • Example 4 0.21
  • Example 12 0.17
  • Example 5 0.18
  • Example 13 0.16
  • Example 6 0.15
  • Example 14 0.19
  • Example 7 0.18
  • Example 15 0.18
  • Example 8 0.16 Comparative example 1 0.40
  • Table 4 shows the results of current efficiency tests of the OLED devices of Examples 1, 5, 9, and 13 and Comparative Example 1 in the range of -10 to 80 °C.
  • Table 4 The results of Table 4 are plotted as Figure 2. As can be seen from Table 4 and FIG. 2, compared with Comparative Example 1, the OLED device of the embodiment of the present invention has not only low temperature efficiency but also a gradual increase in efficiency during temperature rise.
  • the devices fabricated in Device Example 1 and Device Comparative Example 1 of the present invention were subjected to a reverse voltage leakage current test, and the test data is shown in FIG.
  • FIG. 3 compared with the device fabricated in the device example 1 and the device comparative example 1 of the compound of the present invention, the leakage current is small and the current curve is stable. Therefore, the material of the present invention is applied to the device after fabrication. Long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种基于双二甲基芴的化合物、制备方法及其应用,属于半导体技术领域。本发明提供的化合物的结构如通式(I)所示:本发明还公开了上述化合物的应用。本发明的化合物含有双二甲基芴结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。

Description

一种基于双二甲基芴的化合物、制备方法及其应用 技术领域
本发明涉及一种基于双二甲基芴的化合物、制备方法及其应用,属于半导体技术领域。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻 璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
本发明的目的之一,是提供一种基于双二甲基芴的化合物。本发明的化合物含有双二甲基芴结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
本发明解决上述技术问题的技术方案如下:一种基于双二甲基芴的化合物,该化合物的结构如通式(1)所示:
Figure PCTCN2019080634-appb-000001
通式(I)中,L、L 1或L 2分别独立的表示为单键、C 6-C 60亚芳基、C 6-C 60芳基或C 5-C 60杂芳基,所述C 6-C 60芳基或C 5-C 60杂芳基的任一H原子可被C 1-C 10的烷基取代;
R表示为通式(II)或通式(III)所示结构:
Figure PCTCN2019080634-appb-000002
通式(II)中,X表示为氧原子、硫原子、烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
R 1、R 2分别独立的表示为氢原子、卤素、C 1-C 6的烷基、C 3-C 6环烷基、取代或者未取代的C 3-C 30的杂芳基、取代或者未取代的C 6-C 30的芳基或通式(IV)所示结构中的一种,且R 1、R 2中至少有一个表示为通式(IV)所示结构;
Figure PCTCN2019080634-appb-000003
通式(IV)中,*代表与其它基团连接的部分;并且通式(IV)通过CL 1-CL 2键、CL 2-CL 3键、CL 3-CL 4键、CL 5-CL 6键、CL 6-CL 7键或CL 7-CL 8键与通式(II)或通式(III)连接。
本发明的化合物是一种有机发光功能层材料,该类材料具有分子间不易结晶、不易聚集、具有良好成膜性的特点,本发明化合物分子中的刚性基团可以提高材料的热稳定性。
本发明化合物结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入/传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,采用芳基取代的芴搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述L、L 1或L 2分别独立的表示为单键、取代或未取代的亚苯基、取代或未取代的亚联苯基、取代或未取代的亚萘基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚芴基、取代或未取代的二苯并呋喃基中的一种。
进一步,所述X表示为氧原子、硫原子、二甲基取代的亚烷基、二苯基取代的亚烷基、苯基取代的亚胺基、联苯基取代的亚胺基、芴基取代的亚胺基、二苯并呋喃基取代的亚胺基、N-苯基咔唑基取代的亚胺基中的一种。
更进一步,所述化合物的具体结构式为:
Figure PCTCN2019080634-appb-000004
Figure PCTCN2019080634-appb-000005
Figure PCTCN2019080634-appb-000006
Figure PCTCN2019080634-appb-000007
Figure PCTCN2019080634-appb-000008
Figure PCTCN2019080634-appb-000009
Figure PCTCN2019080634-appb-000010
Figure PCTCN2019080634-appb-000011
Figure PCTCN2019080634-appb-000012
Figure PCTCN2019080634-appb-000013
Figure PCTCN2019080634-appb-000014
Figure PCTCN2019080634-appb-000015
Figure PCTCN2019080634-appb-000016
Figure PCTCN2019080634-appb-000017
Figure PCTCN2019080634-appb-000018
Figure PCTCN2019080634-appb-000019
Figure PCTCN2019080634-appb-000020
中的任意一种。
本发明的目的之二,是提供一种上述基于双二甲基芴的化合物的制备方法。本发明的基于双二甲基芴的化合物的制备方法简单,市场前景广阔,适合规模化生产。
本发明解决上述技术问题的技术方案如下:上述的基于双二甲基芴的化合物的制备方法,制备过程中发生的反应方程式是:
Figure PCTCN2019080634-appb-000021
称取化合物A和化合物B,用甲苯溶解,再加入Pd 2(dba) 3、三叔丁基膦和叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95-110℃,反应10-24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产 物;
其中,所述化合物A与化合物B的摩尔比为1:(1.0-1.5),所述Pd 2(dba) 3与化合物A的摩尔比为(0.004-0.01):1,所述三叔丁基膦与化合物A的摩尔比为(0.004-0.01):1,所述叔丁醇钠与化合物A的摩尔比为(1-1.5):1。
本发明的目的之三,是提供一种有机电致发光器件。本发明的化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
本发明解决上述技术问题的技术方案如下:一种有机电致发光器件,至少一层功能层含有上述基于双二甲基芴的化合物。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述功能层为发光层和/或电子阻挡层和/或空穴传输层。
本发明的目的之四,是提供一种照明或显示元件。本发明的有机电致发光器件可以应用在照明或显示原件,使器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
本发明解决上述技术问题的技术方案如下:一种照明或显示元件,包括如上所述的有机电致发光器件。
本发明的有益效果是:
1.本发明的化合物含有双二甲基芴结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。
2.本发明的化合物是一种有机发光功能层材料,该类材料具有分子间不易结晶、不易聚集、具有良好成膜性的特点,本发明化合物分子中的刚性基团可以提高材料的热稳定性。
3.本发明化合物结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入/传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,采用芳基取代的芴搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。
4.本发明的基于双二甲基芴的化合物的制备方法简单,市场前景广阔,适合规模化生产。
5.本发明的化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。
附图说明
图1为本发明化合物应用的器件结构示意图,其中,各标号所代表的部件如下:
1、透明基板层,2、ITO阳极层,3、空穴注入层,4、空穴传输层,5、电子阻挡层,6、发光层,7、电子传输层,8、电子注入层,9、阴极反射电极层。
图2为本发明OLED器件的电流效率随温度的变化曲线。
图3为本发明器件实施例1与器件比较例1所制作的器件进行反向电压的漏电流测试曲线图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
制备实施例1:化合物1的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000022
250mL的四口瓶,在通入氮气的气氛下,加入0.005mol A1,0.006mol B1,0.01mol叔丁醇钠,3×10 -4mol Pd 2(dba) 3,1.2×10 -3mol三叔丁基膦,60mL甲苯,加热回流,反应4小时,利用TLC观察反应,直至反应完全;自然冷却至室温,向反应体系中加入水萃取,分液,将有机相进行减压旋蒸至无馏分。所得物质通过硅胶柱纯化,得到题述目标产物,纯度99.7%,收率 75%。
元素分析结构(分子式C 46H 35NO):理论值C,89.43;H,5.71;N,2.27;O,2.59;测试值:C,89.40;H,5.69;N,2.30;O,2.61。
HPLC-MS:材料分子量为617.79,实测分子量618.65。
制备实施例2:化合物24的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000023
化合物24的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A2代替;
元素分析结构(分子式C 53H 43N):理论值C,91.74;H,6.25;N,2.02;测试值:C,91.71;H,6.26;N,2.04。
HPLC-MS:材料分子量为693.93,实测分子量694.28。
制备实施例3:化合物28的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000024
化合物28的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A3代替;
元素分析结构(分子式C 56H 42N 2):理论值C,90.53;H,5.70;N,3.77;测试值:C,90.51;H,5.71;N,3.78。
HPLC-MS:材料分子量为742.97,实测分子量742.65。
制备实施例4:化合物46的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000025
化合物46的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A4代替;
元素分析结构(分子式C 61H 49N):理论值C,92.04;H,6.20;N,1.76;测试值:C,92.00;H,6.21;N,1.79。
HPLC-MS:材料分子量为796.07,实测分子量795.67。
制备实施例5:化合物57的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000026
化合物57的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A5代替;
元素分析结构(分子式C 52H 39NO):理论值C,90.01;H,5.67;N,2.02;O,2.31;测试值:C,89.98;H,5.66;N,2.04;O,2.33。
HPLC-MS:材料分子量为693.89,实测分子量694.23。
制备实施例6:化合物62的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000027
化合物8的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A6代替;
元素分析结构(分子式C 65H 49N):理论值C,92.49;H,5.85;N,1.66;测试值:C,92.4;H,5.87;N,1.69。
HPLC-MS:材料分子量为844.11,实测分子量843.09。
制备实施例7:化合物65的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000028
化合物65的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A7代替;
元素分析结构(分子式C 56H 41NO):理论值C,90.41;H,5.56;N,1.88;O,2.15;测试值:C,90.37;H,5.55;N,1.90;O,2.18。
HPLC-MS:材料分子量为743.95,实测分子量743.65。
制备实施例8:化合物78的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000029
化合物78的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A8代替;
元素分析结构(分子式C 60H 44N 2):理论值C,90.87;H,5.59;N,3.53;测试值:C,90.83;H,5.58;N,3.56。
HPLC-MS:材料分子量为793.03,实测分子量792.86。
制备实施例9:化合物80的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000030
化合物80的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A9代替;
元素分析结构(分子式C 58H 43NO):理论值C,90.47;H,5.63;N,1.82;O,2.08;测试值:C,90.43;H,5.63;N,1.85;O,2.09。
HPLC-MS:材料分子量为769.99,实测分子量769.78。
制备实施例10:化合物95的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000031
化合物95的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A10代替;
元素分析结构(分子式C 54H 41NO):理论值C,90.09;H,5.74;N,1.95;O,2.22;测试值:C,90.05;H,5.74;N,1.97;O,2.24。
HPLC-MS:材料分子量为769.99,实测分子量769.。
制备实施例11:化合物101的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000032
化合物101的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A11代替;
元素分析结构(分子式C 64H 47NO):理论值C,90.85;H,5.60;N,1.66;O,1.89;测试值:C,90.81;H,5.60;N,1.67;O,1.92。
HPLC-MS:材料分子量为846.09,实测分子量845.17。
制备实施例12:化合物115的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000033
化合物115的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A12代替;
元素分析结构(分子式C 61H 49N):理论值C,92.04;H,6.20;N,1.76;测试值:C,91.99;H,6.22;N,1.79。
HPLC-MS:材料分子量为796.07,实测分子量795.26。
制备实施例13:化合物125的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000034
化合物125的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A13代替;
元素分析结构(分子式C 67H 53N):理论值C,92.27;H,6.13;N,1.61;测试值:C,92.23;H,6.14;N,1.64。
HPLC-MS:材料分子量为872.17,实测分子量871.06。
制备实施例14:化合物128的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000035
化合物128的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A14代替;
元素分析结构(分子式C 64H 48N 2):理论值C,90.96;H,5.73;N,3.31;测试值:C,90.93;H,5.73;N,3.34。
HPLC-MS:材料分子量为845.10,实测分子量844.03。
制备实施例15:化合物137的合成
该化合物的具体合成路线:
Figure PCTCN2019080634-appb-000036
化合物137的合成步骤与化合物1的合成步骤相似,只是将化合物A1用化合物A15代替;
元素分析结构(分子式C 58H 44N 2):理论值C,90.59;H,5.77;N,3.64;测试值:C,90.55;H,5.78;N,3.67。
HPLC-MS:材料分子量为769.00,实测分子量768.34。
本发明的有机化合物在发光器件中使用,可以作为空穴传输层材料。对本发明实施例制备的化合物1、24、28、46、57、62、65、78、80、95、101、115、125、128、137分别进行热性能、HOMO能级的测试,检测结果如表1所示。
表1
化合物 T1(ev) Tg(℃) Td(℃) HOMO能级(ev)
化合物1 2.60 135 412 -5.55
化合物24 2.62 143 406 -5.54
化合物28 2.59 145 402 -5.50
化合物46 2.56 140 417 -5.61
化合物57 2.55 136 414 -5.53
化合物62 2.56 139 418 -5.61
化合物65 2.56 137 416 -5.53
化合物78 2.59 140 412 -5.51
化合物80 2.78 129 428 -5.67
化合物95 278 132 425 -5.65
化合物101 2.76 134 418 -5.62
化合物115 2.77 137 408 -5.61
化合物125 2.76 138 411 -5.60
化合物128 2.76 141 409 -5.60
化合物137 2.80 133 420 -5.59
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2×10 -5的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试***(IPS3)测试,测试为大气环境。
由上表数据可知,本发明的有机化合物具有不同的HOMO能级,可应用于不同的功能层,本发明基于双二甲基芴的的化合物具有较高的三线态能级及较高的热稳定性,使得所制作的含有本发明有机化合物的OLED器件效率和寿命均得到提升。
以下通过器件实施例1-15和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2-15、器件比较例1与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例2-8为 使用本发明所述材料作为空穴传输层应用,器件实施例9-15为使用本发明所述材料作为电子阻挡层应用。各实施例所得器件的性能测试结果如表2所示。
制备本发明的有机电致发光器件
<器件实施例1>
如图1所示,使用透明玻璃作为透明基板层1。在其上涂覆厚度为150nm的ITO,作为ITO阳极层2,对其进行洗涤,即依次进行碱洗涤、纯水洗涤,然后干燥,再进行紫外线-臭氧洗涤以清除透明ITO表面的有机残留物。在经洗涤的ITO阳极层2上,利用真空蒸镀装置,蒸镀厚度为10nm的HAT-CN作为空穴注入层3。接着蒸镀厚度为60nm的制备实施例1所制备的化合物1作为空穴传输层4。然后蒸镀厚度为20nm的TAPC作为电子阻挡层5。随后,在该电子阻挡层上进行真空蒸镀得到厚度为30nm的发光层6,所述发光层使用90重量份的CBP作为主体材料,10重量份的Ir(ppy) 3作为掺杂材料,所述主体材料和掺杂材料总量计为100重量份。然后,在发光层上继续真空蒸镀厚度为40nm的TPBI作为电子传输层7。接着,在该电子传输层上真空蒸镀厚度为1nm的氟化锂(LiF)作为电子注入层8。最后,在电子注入层上真空蒸镀厚度为100nm的铝(Al)作为阴极层9。相关材料的分子结构式如下所示:
Figure PCTCN2019080634-appb-000037
<器件实施例2>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例2所制备的化合物24作为空穴传输材料。
<器件实施例3>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例3所制备的化合物28作为空穴传输材料。
<器件实施例4>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例4所制备的化合物46作为空穴传输材料。
<器件实施例5>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例5所制备的化合物57作为空穴传输材料。
<器件实施例6>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例6所制备的化合物62作为空穴传输材料。
<器件实施例7>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例7所制备的化合物65作为空穴传输材料。
<器件实施例8>
重复上述实施例1的过程,不同之处在于空穴传输层4使用制备实施例8所制备的化合物78作为空穴传输材料。
<器件实施例9>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例9所制备的化合物80作为电子阻挡材料。
<器件实施例10>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例10所制备的化合物95作为电子阻挡材料。
<器件实施例11>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例11所制备的化合物101作为电子阻挡材料。
<器件实施例12>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例12所制备的化合物115作为电 子阻挡材料。
<器件实施例13>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例13所制备的化合物125作为电子阻挡材料。
<器件实施例14>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例14所制备的化合物128作为电子阻挡材料。
<器件实施例15>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料;电子阻挡层5使用制备实施例15所制备的化合物137作为电子阻挡材料。
<器件比较例1>
重复上述实施例1的过程,不同之处在于空穴传输层4使用NPB作为空穴传输材料。
表2示出了所制备的OLED器件的电流效率、颜色和5000nit亮度下的LT95寿命的测试结果。
表2
Figure PCTCN2019080634-appb-000038
Figure PCTCN2019080634-appb-000039
注:寿命测试***为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表2的结果可以看出,与比较例1相比,本发明实施例的OLED器件无论是效率还是寿命均获得较大改观,特别是器件的驱动寿命获得较大的提升。表3示出了所制备的OLED器件的效率衰减系数φ的测试结果。
表3
实施例编号 效率衰减系数φ 实施例编号 效率衰减系数φ
实施例1 0.22 实施例9 0.12
实施例2 0.23 实施例10 0.13
实施例3 0.19 实施例11 0.17
实施例4 0.21 实施例12 0.17
实施例5 0.18 实施例13 0.16
实施例6 0.15 实施例14 0.19
实施例7 0.18 实施例15 0.18
实施例8 0.16 比较例1 0.40
表3的结果表明,与比较例1相比,本发明实施例的OLED器件在高电流密度下具有较平缓的效率滚降趋势,为产业化提供了良好的前景。
表4示出了实施例1、5、9和13与比较例1的OLED器件在-10至80℃区间的电流效率测试结果。
表4
Figure PCTCN2019080634-appb-000040
将表4的结果绘制为图2。由表4和图2可以看出,与比较例1相比,本发明实施例的OLED器件不仅低温效率高,而且在温度升高过程中,效率平稳升高。
为进一步测试本发明化合物所产生的有益效果,将本发明器件实施例1和器件比较例1所制作器件进行反向电压的漏电流测试,测试数据如图3所示。从图3中可得知,应用本发明化合物的器件实施例1和器件比较例1所制作器件相比,漏电流很小,且电流曲线稳定,因此,本发明材料应用于器件制作后,具有较长使用寿命。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于双二甲基芴的化合物,其特征在于,该化合物的结构如通式(I)所示:
    Figure PCTCN2019080634-appb-100001
    通式(I)中,L、L 1或L 2分别独立的表示为单键、C 6-C 60亚芳基、C 6-C 60芳基或C 5-C 60杂芳基,所述C 6-C 60芳基或C 5-C 60杂芳基的任一H原子可被C 1-C 10的烷基取代;
    R表示为通式(II)或通式(III)所示结构:
    Figure PCTCN2019080634-appb-100002
    通式(II)中,X表示为氧原子、硫原子、烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
    R 1、R 2分别独立的表示为氢原子、卤素、C 1-C 6的烷基、C 3-C 6环烷基、取代或者未取代的C 3-C 30的杂芳基、取代或者未取代的C 6-C 30的芳基或通式(IV)所示结构中的一种,且R 1、R 2中至少有一个表示为通式(IV)所示结构;
    Figure PCTCN2019080634-appb-100003
    通式(IV)中,*代表与其它基团连接的部分;并且通式(IV)通过CL 1-CL 2键、CL 2-CL 3键、CL 3-CL 4键、CL 5-CL 6键、CL 6-CL 7键或CL 7-CL 8键与通式(II)或通式(III)连接。
  2. 根据权利要求1所述的一种基于双二甲基芴的化合物,其特征在于,所述L、L 1或L 2分别独立的表示为单键、取代或未取代的亚苯基、取代或未取代的亚联苯基、取代或未取代的亚萘基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚芴基、取代或未取代的二苯并呋喃基中的一种。
  3. 根据权利要求1所述的一种基于双二甲基芴的化合物,其特征在于,所述X表示为氧原子、硫原子、二甲基取代的亚烷基、二苯基取代的亚烷基、苯基取代的亚胺基、联苯基取代的亚胺基、芴基取代的亚胺基、二苯并呋喃基取代的亚胺基、N-苯基咔唑基取代的亚胺基中的一种。
  4. 根据权利要求1-3任一项所述的一种基于双二甲基芴的化合物,其特征在于,所述化合物的具体结构式为:
    Figure PCTCN2019080634-appb-100004
    Figure PCTCN2019080634-appb-100005
    Figure PCTCN2019080634-appb-100006
    Figure PCTCN2019080634-appb-100007
    Figure PCTCN2019080634-appb-100008
    Figure PCTCN2019080634-appb-100009
    Figure PCTCN2019080634-appb-100010
    Figure PCTCN2019080634-appb-100011
    Figure PCTCN2019080634-appb-100012
    Figure PCTCN2019080634-appb-100013
    Figure PCTCN2019080634-appb-100014
    Figure PCTCN2019080634-appb-100015
    Figure PCTCN2019080634-appb-100016
    Figure PCTCN2019080634-appb-100017
    Figure PCTCN2019080634-appb-100018
    中的任意一种。
  5. 一种如权利要求1-4任一项所述的基于双二甲基芴的化合物的制备方法,其特征在于,制备过程中发生的反应方程式是:
    Figure PCTCN2019080634-appb-100019
    称取化合物A和化合物B,用甲苯溶解,再加入Pd 2(dba) 3、三叔丁基膦和叔丁醇钠;在惰性气氛下,将上述反应物的混合溶液于反应温度95-110℃,反应10-24小时,冷却并过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;
    其中,所述化合物A与化合物B的摩尔比为1:(1.0-1.5),所述Pd 2(dba) 3与化合物A的摩尔比为(0.004-0.01):1,所述三叔丁基膦与化合物A的摩尔比为(0.004-0.01):1,所述叔丁醇钠与化合物A的摩尔比为(1-1.5):1。
  6. 一种有机电致发光器件,其特征在于,至少一层功能层含有权利要求1-4任一项所述的基于双二甲基芴的化合物。
  7. 根据权利要求6所述的一种有机电致发光器件,其特征在于,所述功能层为发光层和/或电子阻挡层和/或空穴传输层。
  8. 一种照明或显示元件,其特征在于,包括如权利要求6或7所述的有机电致发光器件。
PCT/CN2019/080634 2018-03-29 2019-03-29 一种基于双二甲基芴的化合物、制备方法及其应用 WO2019185061A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810273506.8 2018-03-29
CN201810273506 2018-03-29
CN201910146222.7 2019-02-27
CN201910146222.7A CN110317184A (zh) 2018-03-29 2019-02-27 一种基于双二甲基芴的化合物、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2019185061A1 true WO2019185061A1 (zh) 2019-10-03

Family

ID=68059494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080634 WO2019185061A1 (zh) 2018-03-29 2019-03-29 一种基于双二甲基芴的化合物、制备方法及其应用

Country Status (1)

Country Link
WO (1) WO2019185061A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200335698A1 (en) * 2019-04-17 2020-10-22 Lg Display Co., Ltd. Novel compound and organic light emitting device
US20210198167A1 (en) * 2019-12-26 2021-07-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2022050592A1 (ko) * 2020-09-04 2022-03-10 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022108141A1 (ko) * 2020-11-18 2022-05-27 엘티소재주식회사 화합물 및 이를 포함하는 유기 발광 소자
EP4089073A1 (en) * 2021-05-12 2022-11-16 Samsung Display Co., Ltd. Luminescence device and nitrogen-containing compound for a luminescence device
WO2023182836A1 (ko) * 2022-03-23 2023-09-28 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2023199832A1 (ja) 2022-04-12 2023-10-19 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024117003A1 (ja) * 2022-12-01 2024-06-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027940A (ko) * 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
CN105764876A (zh) * 2013-12-06 2016-07-13 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含所述化合物的有机电致发光装置
WO2017191896A1 (en) * 2016-05-03 2017-11-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20180040080A (ko) * 2016-10-11 2018-04-19 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN108191744A (zh) * 2017-12-05 2018-06-22 李现伟 苯并芴类有机电致发光材料、发光器件及显示器
CN108203406A (zh) * 2017-12-05 2018-06-26 李现伟 苯并芴类有机电致发光材料、发光器件及显示器
CN108774177A (zh) * 2018-05-29 2018-11-09 长春海谱润斯科技有限公司 一种含苯并芴化合物及其有机发光器件
CN108822041A (zh) * 2018-05-29 2018-11-16 长春海谱润斯科技有限公司 一种含苯并芴化合物及其有机电致发光器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764876A (zh) * 2013-12-06 2016-07-13 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含所述化合物的有机电致发光装置
KR20160027940A (ko) * 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
WO2017191896A1 (en) * 2016-05-03 2017-11-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20180040080A (ko) * 2016-10-11 2018-04-19 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN108191744A (zh) * 2017-12-05 2018-06-22 李现伟 苯并芴类有机电致发光材料、发光器件及显示器
CN108203406A (zh) * 2017-12-05 2018-06-26 李现伟 苯并芴类有机电致发光材料、发光器件及显示器
CN108774177A (zh) * 2018-05-29 2018-11-09 长春海谱润斯科技有限公司 一种含苯并芴化合物及其有机发光器件
CN108822041A (zh) * 2018-05-29 2018-11-16 长春海谱润斯科技有限公司 一种含苯并芴化合物及其有机电致发光器件

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200335698A1 (en) * 2019-04-17 2020-10-22 Lg Display Co., Ltd. Novel compound and organic light emitting device
US11844270B2 (en) * 2019-04-17 2023-12-12 Lg Display Co., Ltd. Compound and organic light emitting device including the same
US20210198167A1 (en) * 2019-12-26 2021-07-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2022050592A1 (ko) * 2020-09-04 2022-03-10 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022108141A1 (ko) * 2020-11-18 2022-05-27 엘티소재주식회사 화합물 및 이를 포함하는 유기 발광 소자
EP4089073A1 (en) * 2021-05-12 2022-11-16 Samsung Display Co., Ltd. Luminescence device and nitrogen-containing compound for a luminescence device
WO2023182836A1 (ko) * 2022-03-23 2023-09-28 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2023199832A1 (ja) 2022-04-12 2023-10-19 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024117003A1 (ja) * 2022-12-01 2024-06-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Similar Documents

Publication Publication Date Title
WO2019185061A1 (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
WO2018192227A1 (zh) 一种以三嗪和苯并咪唑为核心的有机化合物及其在有机电致发光器件上的应用
WO2022047902A1 (zh) 一种化合物及有机电致发光器件
WO2017215549A1 (zh) 一种有机电致发光化合物及其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
WO2018113538A1 (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
WO2018033088A1 (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
WO2020135687A1 (zh) 一种含硼化合物及其制备方法和其应用
CN110317184A (zh) 一种基于双二甲基芴的化合物、制备方法及其应用
WO2020034805A1 (zh) 一种基于激基复合物和激基缔合物体系的有机电致发光器件
WO2018033085A1 (zh) 一种以蒽酮为核心的化合物及其在oled器件中的应用
WO2018019254A1 (zh) 一种基于二芳基酮的化合物及其应用
WO2019233429A1 (zh) 一种以三芳胺结构为核心的化合物及其制备方法
CN106397423B (zh) 一种以氮杂苯为核心的有机化合物及其在oled上的应用
WO2020135686A1 (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
WO2019061796A1 (zh) 一种以三嗪和喹喔啉为核心的有机化合物及其在oled上的应用
TW200920814A (en) Organic electroluminescence device and material for organic electroluminescence device
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
CN112321646B (zh) 一种有机化合物、电致发光材料及其应用
CN110317140B (zh) 一种以芳胺接双二甲基芴为核心的化合物及其应用
WO2019174650A1 (zh) 一种以均苯为核心的化合物、制备方法及其在有机电致发光器件上的应用
WO2023284103A1 (zh) 一种有机化合物及其应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
WO2021121230A1 (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN107056737B (zh) 一种含有二甲基蒽结构的光电材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777565

Country of ref document: EP

Kind code of ref document: A1