WO2019184700A1 - 传输模式确定方法及设备 - Google Patents

传输模式确定方法及设备 Download PDF

Info

Publication number
WO2019184700A1
WO2019184700A1 PCT/CN2019/077794 CN2019077794W WO2019184700A1 WO 2019184700 A1 WO2019184700 A1 WO 2019184700A1 CN 2019077794 W CN2019077794 W CN 2019077794W WO 2019184700 A1 WO2019184700 A1 WO 2019184700A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
user equipment
network side
side device
feedback information
Prior art date
Application number
PCT/CN2019/077794
Other languages
English (en)
French (fr)
Inventor
姜大洁
潘学明
吴凯
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020207029792A priority Critical patent/KR102356640B1/ko
Priority to EP19777738.6A priority patent/EP3780764A4/en
Priority to JP2020552719A priority patent/JP7308858B2/ja
Publication of WO2019184700A1 publication Critical patent/WO2019184700A1/zh
Priority to US17/033,275 priority patent/US11438843B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of mobile communications, and in particular, to a transmission mode determining method and apparatus.
  • the fifth-generation (5G) mobile communication system can adapt to more diverse scenarios and service requirements. Therefore, the application of 5G systems is more and more extensive.
  • user equipment UE
  • the number of receiving antennas must be 4 when the user equipment is working in the predetermined frequency band, or the number of transmitting antennas must be 2.
  • the 2 antenna receiving mode can meet the quality of service (QoS) requirements.
  • QoS quality of service
  • the user equipment still uses 4 antennas to receive downlink information, the user equipment costs. Unnecessary power is not conducive to user equipment to save power.
  • the uplink information is a small data packet
  • the one-antenna transmission mode can satisfy the service QoS requirement. If the user equipment still uses the two antennas to transmit the uplink information, the user equipment will also consume unnecessary power. It is also not conducive to user equipment to save energy.
  • the user equipment directly changes the transmission mode according to its actual needs. For example, changing the number of receiving antennas actually used, that is, changing the number of receiving antennas from 4 to 2.
  • the downlink scheduling of the network side device needs to receive downlink information by using 4 antennas, and the user equipment adopts the 2 antenna receiving mode cannot meet the service QoS requirement, the downlink system performance is degraded, for example, the system block error rate BLER is increased. .
  • the user equipment continuously maintains the transmission mode of 4 antenna reception or 2 antenna transmission, the user equipment consumes unnecessary power, which is disadvantageous to the user equipment to save power; in addition, if the user equipment autonomously transmits Changes in the mode may result in a decrease in the data transmission performance of the system.
  • the purpose of the embodiments of the present disclosure is to provide a method and a device for determining a transmission mode, so as to accurately change a transmission mode of a user equipment, reduce unnecessary power consumption of the user equipment, and achieve the effect of energy saving and power saving, and at the same time, ensure the system. Data transfer performance.
  • an embodiment of the present disclosure provides a method for determining a transmission mode, which is applied to a user equipment, including:
  • an embodiment of the present disclosure provides a method for determining a transmission mode, which is applied to a user equipment, including:
  • the current transmission mode is set to the target transmission mode.
  • an embodiment of the present disclosure provides a method for determining a transmission mode, which is applied to a network side device, and includes:
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • an embodiment of the present disclosure provides a method for determining a transmission mode, which is applied to a network side device, and includes:
  • an embodiment of the present disclosure provides a user equipment, including:
  • a first sending module configured to send, to the network side device, change information, where the change information is used to indicate a desired transmission mode of the user equipment
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • an embodiment of the present disclosure provides a user equipment, including:
  • a first receiving module configured to receive a target transmission mode sent by the network side device
  • the seventh aspect of the present disclosure provides a network side device, including:
  • a second receiving module configured to receive change information sent by the user equipment, where the change information is used to indicate a desired transmission mode of the user equipment;
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • an embodiment of the present disclosure provides a user equipment, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is used by the processor.
  • an embodiment of the present disclosure provides a network side device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the computer program is The steps of the method as described in the fourth aspect above are implemented when the processor executes.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the first aspect as described above.
  • the steps of the method, or the steps of the method as described in the second aspect above, when the computer program is executed by the processor, or the method of the third aspect described above when the computer program is executed by the processor are implemented when the computer program is executed by a processor.
  • the transmission mode determining method and device in the embodiment of the present disclosure sends the change information to the network side device, where the change information is used to indicate a desired transmission mode of the user equipment.
  • the user equipment sends a change request to the network side device to change the transmission mode, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the transmission mode of the user equipment can be accurately performed.
  • the change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • FIG. 1 is a schematic flowchart of a method for determining a transmission mode applied to a user equipment according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining a transmission mode according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic flowchart of a method for determining a transmission mode according to an embodiment of the present disclosure
  • FIG. 4 is a third schematic flowchart of a method for determining a transmission mode according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for determining a transmission mode applied to a user equipment according to another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining a transmission mode applied to a network side device according to another embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for determining a transmission mode applied to a network side device according to still another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a second module structure of a user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a second module structure of a network side device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • a user equipment which may also be called a UE, a mobile terminal, a mobile user equipment, etc., may be connected to one or more cores via a radio access network (for example, a Radio Access Network, RAN).
  • the network communicates, and the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle. They exchange language and/or data with the radio access network.
  • the network side device is configured to communicate with the user equipment, and may be a Base Transceiver Station (BTS) in GSM or CDMA, a base station (Node B) in WCDMA, or an evolved base station (eNB in LTE). Or e-Node B, evolutional Node B) and 5G base station (gNB), the disclosure is not limited, but for convenience of description, the following embodiments are described by taking gNB as an example.
  • BTS Base Transceiver Station
  • Node B base station
  • eNB evolved base station
  • gNB 5G base station
  • BWP Bandwidth Part
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • MIMO Multiple-Input Multiple-Output
  • DCI Downlink Control Information
  • MAC CE Medium Access Control CE
  • Radio Resource Control (RRC);
  • MCS Modulation and Coding Scheme
  • the embodiment of the present disclosure provides a method and a device for determining a transmission mode.
  • the method and device for determining a transmission mode provided by the embodiments of the present disclosure may be applied to a 5G system, which is described in detail below through an embodiment.
  • FIG. 1 is a schematic flowchart of a method for determining a transmission mode according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
  • the foregoing desired transmission mode includes at least one of the following parameters and a value thereof:
  • the user equipment sends a change request to change the transmission mode to the network side device, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the user equipment can be accurately transmitted.
  • the mode change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the transmission mode is associated with the serving cell; or the transmission mode is associated with the target bandwidth part BWP of the serving cell.
  • the change information is requesting to change the transmission mode for the serving cell or the transmission of the BWP for one or more target bandwidth parts. Mode, where the transmission modes of different BWPs can be different.
  • the number of receiving antenna ports can be two, and the number of receiving antenna ports can be two, and the number of receiving antenna ports can also be four.
  • the port receives the downlink data sent by the network side device (that is, the transmission mode of the number of receiving antennas is four receiving antenna ports), and in the case that the downlink service type requires relatively low data receiving performance, the user equipment can adopt two receiving
  • the antenna port receives the downlink data sent by the network side device (that is, the transmission mode of the number of receiving antennas is 2 receiving antenna ports), when the user equipment determines that the transmission mode of the 4 receiving antenna port and the 2 receiving antenna port needs to be switched,
  • the number of desired receiving antenna ports is sent to the network side device, so that the network side device comprehensively determines whether the user equipment can switch to the number of desired receiving antenna ports.
  • the following takes the number of receiving antennas as an example for detailed description, and 4 indicates that the number of receiving antennas is 4, and 2 indicates that the number of receiving antennas is 2.
  • other parameters indicating the transmission mode can be performed in the same manner.
  • the number of receiving antennas is taken as an example, if 0 is set to 2, and 1 is 4, then if the change information sent by the user equipment carries "0", the user equipment expects the number of receiving antennas to be 2; or Taking the number of transmitting antennas as an example, if 0 represents 1 transmission and 1 represents 2 transmissions, if the change information sent by the user equipment carries "0", the number of transmission antennas expected by the user equipment is 1; For example, 1 bit: 0 means 2 and 1 round, 1 means 4 and 2, and if the change information sent by the user equipment carries "0", the user equipment expects the number of receiving antennas to be 2 and the expected transmitting antenna. The number is 1.
  • the number of receiving antennas herein may be any one of the number of transmitting antennas, the number of receiving antenna ports, the number of transmitting antenna ports, the number of receiving channels, the number of transmitting channels, the maximum number of downlink layers, and the maximum number of uplink layers.
  • the network side device After receiving the change information of the user equipment, the network side device returns corresponding feedback information to the user equipment according to the change information, so as to inform the user that the current transmission mode can be performed, and at this time, the user equipment receives the change information.
  • the transmission mode is changed according to the feedback information, as shown in FIG. 2, specifically:
  • the user equipment sends change information for indicating a desired transmission mode.
  • the network side device determines the feedback information according to the change information, where the feedback information is used to indicate whether the desired transmission mode is agreed, or the feedback information is used to indicate the target transmission mode.
  • the target transmission mode is determined by the network side device according to the network side device.
  • the transmission mode influencing factors are comprehensively determined, and the target transmission mode may be the same as or different from the expected transmission mode.
  • the network side device sends feedback information to the user equipment, so that the user equipment receives the feedback information and performs a transmission mode change according to the feedback information.
  • the user equipment After receiving the feedback information, the user equipment sets the current transmission mode to a transmission mode indicated by the feedback information.
  • the foregoing S204 sets the current transmission mode to the transmission mode indicated by the feedback information, and specifically includes:
  • the current transmission mode is set to the desired transmission mode.
  • the network side device comprehensively determines that the user equipment can currently use the desired transmission mode for downlink data reception or uplink data. Sending, at this time, the network side device sends a message indicating that the consent is obtained. For example, if 0 is reserved in advance, and 1 means disagree, the user equipment sets the current transmission mode to the desired transmission mode after receiving the feedback information carrying 0.
  • the network side device comprehensively determines that the user equipment still needs to use the original transmission mode to receive downlink data or send uplink data. At this time, the network side device sends a message indicating that the difference is not satisfied. For example, if 0 is reserved in advance, and 1 is disagree, the user equipment continues to maintain the current transmission mode after receiving the feedback information of carrying 1.
  • the network side device comprehensively determines a transmission mode that the user equipment can currently perform according to the multiple transmission mode influencing factors, and if the determined transmission mode is consistent with the current transmission mode of the user equipment, sending, to the user equipment, the indication that the desired transmission mode is different. Feedback information, so that after receiving the feedback information, the user equipment will continue to maintain the current transmission mode.
  • the user equipment determines that the number of desired receiving antennas is 2 (2) according to its own attribute (for example, a fever condition), but the network side device combines the attributes of the downlink service.
  • the number of receiving antennas that need to be used by the user equipment is determined to be 4.
  • the feedback information sent by the network side device indicates that the desired transmission mode is not agreed.
  • the feedback information indicates the target transmission mode
  • the network side device may provide the user equipment to the user equipment when the target transmission mode is the same as the current transmission mode.
  • Sending the feedback information may also not send the feedback information to the user equipment.
  • the comprehensive discrimination result is performed by disagreeing with the user equipment.
  • the transmission mode is changed.
  • the feedback information is returned to the user equipment.
  • the user equipment needs to determine the desired transmission mode. As shown in FIG. 3, before the user equipment sends the change information for indicating the desired transmission mode, the method includes:
  • S205 Determine a desired transmission mode according to a transmission mode influencing factor, where the transmission mode influencing factor includes at least one of the following factors: a remaining power of the user equipment, a heating indicator of the user equipment, an attribute of the uplink service, and an attribute of the downlink service, Specifically, the attributes of the uplink service affect the parameters of the transmission mode related to the uplink and their values, for example, the number of transmitting antennas, the maximum number of uplink layers, and the like; and the attributes of the downlink service affect the parameters of the transmission mode related to the downlink and Values, for example, the number of receiving antennas, the maximum number of downstream layers, and so on.
  • the transmission mode influencing factor includes at least one of the following factors: a remaining power of the user equipment, a heating indicator of the user equipment, an attribute of the uplink service, and an attribute of the downlink service
  • the attributes of the uplink service affect the parameters of the transmission mode related to the uplink and their values, for example, the number of transmitting antennas, the maximum number of
  • the desired transmission mode when determining the desired transmission mode, it may be determined based on one or more of the transmission mode influencing factors, and in the case of introducing multiple influencing factors, that is, the number of influencing factors of the transmission mode is multiple, combining each impact
  • the initial expected transmission mode corresponding to the factor comprehensively determines the final desired transmission mode.
  • the priority of each transmission mode influencing factor may be preset, and the expected transmission mode corresponding to the highest priority influencing factor is determined as the final expectation. Transfer mode.
  • the preset determination condition may also be preset, and the final desired transmission mode is determined according to the expected transmission mode and the preset determination condition corresponding to each influencing factor.
  • the preset determination condition includes: the preset number of influencing factors are the same as the desired transmission mode.
  • the desired transmission mode is set to the final desired transmission mode. For example, among the three influencing factors, wherein the number of expected receiving antennas corresponding to the two influencing factors is two, then the final expected number of receiving antennas is determined to be two.
  • the final desired transmission mode determination manner can be set according to actual needs.
  • the number of receiving antennas is taken as an example.
  • the number of receiving antennas is 2 or 4.
  • the preset correspondence is: the remaining power is less than or equal to the preset power threshold, and the number of receiving antennas is 2. The remaining power is greater than the preset power threshold.
  • the number of antennas is 4;
  • the current remaining power of the user equipment is less than or equal to the first preset power threshold (for example, 10%, it can be set according to actual conditions), and the current number of receiving antennas of the user equipment is 4, that is, 4 is received. , the number of receiving antennas is expected to be 2, that is, 2 received;
  • the first preset power threshold for example, 10%, it can be set according to actual conditions
  • the second preset power threshold for example, 20%, it can be set according to the actual situation
  • the current receiving antenna number of the user equipment is 2, that is, 2 is received, at this time, expectation The number of receiving antennas is 4, that is, 4 is received.
  • the number of receiving antennas is 2 or 4.
  • the preset correspondence is: the measured temperature is greater than the preset temperature threshold, the number of receiving antennas is 2, and the measured temperature is less than or equal to the preset temperature threshold.
  • the number of antennas is 4;
  • the measured temperature of the user equipment is greater than the first preset temperature threshold (eg, 40 degrees Celsius, it can be set according to actual conditions), and the current number of receiving antennas of the user equipment is 4, that is, 4 received, at this time, expectation The number of receiving antennas is 2, that is, 2 receiving;
  • the first preset temperature threshold eg, 40 degrees Celsius, it can be set according to actual conditions
  • the second preset temperature threshold for example, 40 degrees Celsius, it can be set according to actual conditions, and the current number of receiving antennas of the user equipment is 2, that is, 2 is received. At this time, the receiving antenna is expected.
  • the number is 4, which is 4.
  • the correspondence between the attribute of the downlink service and the transmission mode is set in advance, and the expected transmission mode is determined according to the attribute of the downlink service, wherein the attribute of the downlink service affects the parameter of the transmission mode related to the downlink And its value, for example, the number of receiving antennas, the maximum number of downstream layers, and the like;
  • the number of receiving antennas is still 2, and the number of receiving antennas is 2 or 4.
  • the preset correspondence is as follows: the attributes of the downlink service are consistent with the first preset service attribute, the number of receiving antennas is 2, and the attributes of the downlink service are in accordance with the second.
  • the preset service attribute corresponds to the number of receiving antennas being 4;
  • the attribute of the downlink service meets the first preset service attribute, and the current number of receiving antennas of the user equipment is 4, that is, 4 is received, at this time, the number of expected receiving antennas is 2, that is, 2 is received;
  • the attribute of the downlink service meets the second preset service attribute, and the current number of receiving antennas of the user equipment is 2, that is, 2 is received, at this time, the number of expected receiving antennas is 4, that is, 4 is received.
  • the correspondence between the attribute of the uplink service and the transmission mode is preset, and the expected transmission mode is determined according to the attribute of the uplink service, wherein the attribute of the uplink service affects the parameter of the transmission mode related to the uplink And its value, for example, the number of transmitting antennas, the maximum number of upstream layers, and the like;
  • the number of transmitting antennas is 1 or 2.
  • the preset correspondence is as follows: the attribute of the uplink service conforms to the third preset service attribute, the number of transmitting antennas is 1, and the attribute of the uplink service conforms to the fourth pre- Let the service attribute correspond to the number of transmitting antennas is 2;
  • the attribute of the uplink service meets the fourth preset service attribute, and the current number of transmitting antennas of the user equipment is 1, that is, 1 transmission, the number of expected transmission antennas is 2, that is, 2 transmissions.
  • the data transmission is performed according to the transmission mode indicated by the feedback information, and the reporting of the channel-related parameters is specifically as follows:
  • the transmission mode indicated by the feedback information reports the channel related parameter to the network side device
  • the current transmission mode of the user equipment is set based on the feedback indication of the network side device. If the transmission mode corresponding to the received scheduling signaling is inconsistent with the current transmission mode, the user equipment needs to respond to the scheduling of the network side device. After the transmission mode is changed, the scheduling signaling can be performed. The processing mode of the change transmission mode is delayed. Therefore, the user equipment can choose to maintain the current transmission mode and ignore the scheduling of the network side device.
  • the transmission mode corresponding to the scheduling signaling sent by the network side device is different from the transmission mode indicated by the feedback information, the scheduling signaling sent by the network side device is ignored;
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the current transmission mode of the user equipment is 2 receiving antenna ports. If the downlink PMI indicated by the scheduling signaling of the network side device is based on the 4 receiving antenna port, or the downlink RI indicated by the scheduling signaling is greater than 2, or the downlink LI indicated by the scheduling signaling is greater than 2, the current transmission mode cannot be performed at this time.
  • the scheduling signaling of the network side device the UE ignores the scheduling signaling sent by the network side device, that is, does not perform the scheduling signaling. At this time, the UE feeds back NACK (Negative Acknowledgment) to the network side device.
  • NACK Negative Acknowledgment
  • the current transmission mode of the user equipment is 1 transmit antenna port. If the uplink PMI indicated by the scheduling signaling of the network side device is based on the 2 receiving antenna port, or the uplink RI indicated by the scheduling signaling is 2, or the uplink LI indicated by the scheduling signaling is 2, the current transmission mode cannot be performed at this time.
  • the scheduling signaling of the network side device the UE ignores the scheduling signaling sent by the network side device, that is, does not perform the scheduling signaling. At this time, the UE does not send uplink data according to the indication of scheduling signaling.
  • the process is: sending, by the network side device, feedback information to the user equipment, where the feedback information is sent by using one of the following signaling or signals:
  • the foregoing S204 sets the current transmission mode to the transmission mode indicated by the feedback information, and specifically includes:
  • S2041 Determine a transmission mode indicated by the feedback information according to the related information of the wake-up signal and the preset correspondence relationship, where the preset correspondence relationship includes a correspondence between the related information of the wake-up signal and the transmission mode;
  • S2042 Set the current transmission mode to a transmission mode indicated by the feedback information, where the transmission mode indicated by the feedback information may be the same as or different from the expected transmission mode.
  • the related information of the wake-up signal includes at least one of the following:
  • the wake-up signal is a sequence, and the elements of the sequence include: orthogonal cover coding, cyclic shift, root sequence, and scrambling sequence. Each element is different, the sequence is different, and the wake-up signal is different. In specific implementation, the wake-up signal can be pre-stored.
  • the correspondence between each element of the sequence of the signal and the transmission mode is taken as an example of the orthogonal coverage coding of the sequence, and the orthogonal coverage coding of the two sequences indicates different transmission modes. For example, the orthogonal coverage code 1 indicates the number of receiving antennas. For 2 (2), the orthogonal cover code 2 indicates that the number of receiving antennas is 4 (4).
  • the transmission mode indicated by the feedback information is that the number of receive antennas is 2 (2), and at this time, the user equipment will receive the current receive antenna. The number is set to 2 to receive.
  • the transmission mode determining method in the embodiment of the present disclosure sends the change information to the network side device, where the change information is used to indicate a desired transmission mode of the user equipment.
  • the user equipment sends a change request to the network side device to change the transmission mode, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the transmission mode of the user equipment can be accurately performed.
  • the change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • another embodiment of the present disclosure provides a transmission mode determining method, which is applied to a user equipment.
  • the same parts as the foregoing embodiments are described in detail. The content is not repeated in this embodiment.
  • FIG. 5 is a schematic flowchart of a method for determining a transmission mode according to another embodiment of the present disclosure. As shown in FIG. 5, the method includes the following steps:
  • the current transmission mode is set to a target transmission mode sent by the network side device.
  • the network side device may indicate the target transmission mode by using an explicit indication manner, or may indicate the target transmission mode by using an implicit indication manner to display For example, if the pre-agreed 0 represents 2 and the 1 represents 4, the user equipment receives 0, and sets the current number of receiving antennas to 2, that is, the number of target receiving antennas is 2.
  • the user equipment when the network side device actively sends the target transmission mode to the user equipment, the user equipment sets the current transmission mode to the target transmission mode, so that the transmission mode of the user equipment can be accurately changed, thereby reducing
  • the user equipment consumes unnecessary power, achieves the effect of energy saving, and ensures the data transmission performance of the system.
  • the target transmission mode is determined by the network side device according to the transmission mode influencing factor, and the factor includes at least one of the following factors: the remaining power of the user equipment, the heating index of the user equipment, the attribute of the uplink service, and the attribute of the downlink service.
  • the remaining power of the user equipment, the heat index of the user equipment, and the uplink service attribute are reported by the user equipment to the network side device.
  • the network side device mainly determines the transmission mode of the user equipment. Therefore, the more influential factors are introduced when determining the target transmission mode, the more accurate the transmission mode change of the user equipment is, and the specific determination manner of the target transmission mode is as described in the foregoing embodiment. The way in which the expected transmission mode is determined.
  • the above target transmission mode is sent by one of the following signaling or signals:
  • the network side device carries a target transmission mode in any one of physical layer signaling, medium access control MAC signaling, radio resource control RRC signaling, and wake-up signal WUS;
  • the user equipment receives the signaling or signal that is explicitly sent by the network side device to indicate the target transmission mode, and sets the current transmission mode to the target transmission mode.
  • the user equipment configures the transmission mode according to the indication of the network side device, and the network side device may also adopt an implicit indication manner, specifically:
  • an indication signaling or an indication signal for indicating a target transmission mode where the indication signaling includes: physical layer signaling, medium access control MAC signaling, or radio resource control RRC signaling
  • the indication signal includes: a wake-up signal WUS carrying one of the following parameters implicitly indicating the target transmission mode: a bandwidth portion BWP, a modulation and coding strategy MCS, and a multiple input multiple output MIMO layer number.
  • the foregoing S502 sets the current transmission mode to the target transmission mode sent by the network side device, and specifically includes:
  • the target transmission mode indicated by the network side device is determined according to the parameter and the preset correspondence relationship carried in the indication signaling or the indication signal, where the preset correspondence relationship includes a correspondence between different attribute values of the parameters and the transmission mode.
  • the target transmission mode is implicitly indicated by the bandwidth portion BWP
  • the number of the bandwidth portion BWP is 1 indicating that the number of receiving antennas is 2
  • the bandwidth part BWP number 2 indicates that the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current receiving antenna number to 2.
  • the width of the bandwidth part BWP is less than or equal to 20 RBs indicating that the number of receiving antennas is 2 (2), and the width of the bandwidth part BWP is greater than 20
  • the RB indicates that the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas to 2 Received.
  • the modulation and coding strategy MCS For the case where the target transmission mode is implicitly indicated by the modulation and coding strategy MCS, if the correspondence between the modulation order of the different modulation and coding strategy MCS and the transmission mode is previously agreed, for example, the modulation and coding strategy MCS The modulation order is less than or equal to 16QAM indicating that the number of receiving antennas is 2 (2), and the modulation order of the modulation and coding strategy MCS is greater than 16QAM indicating that the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas. For 2 collections.
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas to 2 Received.
  • the target transmission mode may be implicitly indicated by using a related parameter of the wakeup signal WUS.
  • the S502 sets the current transmission mode to the target transmission mode sent by the network side device:
  • the related information of the wake-up signal includes at least one of the following:
  • the wake-up signal is a sequence, and the elements of the sequence include: orthogonal cover coding, cyclic shift, root sequence, and scrambling sequence. Each element is different, the sequence is different, and the wake-up signal is different. In specific implementation, the wake-up signal can be pre-stored.
  • the correspondence between each element of the sequence of the signal and the transmission mode is taken as an example of the orthogonal coverage coding of the sequence, and the orthogonal coverage coding of the two sequences indicates different transmission modes. For example, the orthogonal coverage code 1 indicates the number of receiving antennas. For 2 (2), the orthogonal cover code 2 indicates that the number of receiving antennas is 4 (4).
  • the transmission mode indicated by the feedback information is that the number of receive antennas is 2 (2), and at this time, the user equipment will receive the current receive antenna. The number is set to 2 to receive.
  • the data transmission is performed based on the target transmission mode, and the reporting of the channel-related parameters is specifically as follows:
  • the channel related parameter includes at least one of the following parameters: a channel quality indication CQI, a rank indication RI, a precoding matrix indication PMI, and a layer indication LI.
  • the current transmission mode of the user equipment is set based on the target transmission mode indication of the network side device, if the transmission mode corresponding to the received scheduling signaling is inconsistent with the current transmission mode, at this time, if the user equipment responds to the network side device After the scheduling mode is changed, the scheduling signaling can be performed. If the transmission mode is changed, there is a processing delay. Therefore, the user equipment can choose to maintain the current transmission mode and ignore the scheduling of the network side device. for:
  • the scheduling signaling sent by the network side device is ignored;
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the current transmission mode of the user equipment is 2 receiving antenna ports. If the downlink PMI indicated by the scheduling signaling of the network side device is based on the 4 receiving antenna port, or the downlink RI indicated by the scheduling signaling is greater than 2, or the downlink LI indicated by the scheduling signaling is greater than 2, the current transmission mode cannot be performed at this time.
  • the scheduling signaling of the network side device the UE ignores the scheduling signaling sent by the network side device, that is, does not perform the scheduling signaling. At this time, the UE feeds back NACK (Negative Acknowledgment) to the network side device.
  • NACK Negative Acknowledgment
  • the current transmission mode of the user equipment is 1 transmit antenna port. If the uplink PMI indicated by the scheduling signaling of the network side device is based on the 2 receiving antenna port, or the uplink RI indicated by the scheduling signaling is 2, or the uplink LI indicated by the scheduling signaling is 2, the current transmission mode cannot be performed at this time.
  • the scheduling signaling of the network side device the UE ignores the scheduling signaling sent by the network side device, that is, does not perform the scheduling signaling. At this time, the UE does not send uplink data according to the indication of scheduling signaling.
  • the user equipment when the network side device actively sends the target transmission mode to the user equipment, the user equipment sets the current transmission mode to the target transmission mode, so that the transmission mode of the user equipment can be accurately changed.
  • the utility model not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • another embodiment of the present disclosure provides a transmission mode determining method, which is applied to a network side device.
  • the same parts as the foregoing embodiment are described in detail. The content of the example is not repeated in this embodiment.
  • FIG. 6 is a schematic flowchart of a method for determining a transmission mode according to another embodiment of the present disclosure. As shown in FIG. 6, the method includes the following steps:
  • the foregoing desired transmission mode includes at least one of the following parameters and a value thereof:
  • the network device After the user equipment determines that the transmission mode change is required, the network device automatically sends the change information for requesting to change the transmission mode, where the change information may be information that does not carry the desired transmission mode, and the change information may also be used.
  • the information indicating the expected transmission mode, that is, the change information carries the desired transmission mode determined by the user equipment.
  • the change information is optional. Used to indicate the desired transmission mode of the user equipment.
  • the network side device receives the change information of the request change transmission mode sent by the user equipment, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the transmission of the user equipment can be accurately performed.
  • the mode change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the network side device After receiving the change information of the user equipment, the network side device returns corresponding feedback information to the user equipment according to the change information, so as to inform the user that the current transmission mode can be performed, so that the user equipment receives the feedback. After the information is received, the transmission mode is changed according to the feedback information. Specifically, after receiving the change information sent by the user equipment in S601, the method further includes:
  • the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, and generates corresponding feedback information according to the determination result;
  • the user equipment sets the current transmission mode to a transmission mode indicated by the feedback information, where the feedback information is used to indicate whether the desired transmission mode is agreed, or the feedback information is used to indicate the target transmission.
  • the mode specifically, the target transmission mode is determined by the network side device according to a transmission mode influencing factor, and the target transmission mode may be the same as or different from the expected transmission mode.
  • the network side device determines the feedback information based on the influencing factors of the transmission mode when determining the feedback information. Therefore, determining the feedback information based on the change information includes:
  • the network side device comprehensively determines the current transmission mode that the user equipment can perform according to the multiple transmission mode influencing factors, and if the determined transmission mode is consistent with the current transmission mode of the user equipment, The feedback information for indicating that the desired transmission mode is not sent is sent to the user equipment, so that after receiving the feedback information, the user equipment continues to maintain the current transmission mode.
  • the user equipment determines that the number of desired receiving antennas is 2 (2) according to its own attribute (for example, a fever condition), but the network side device combines the attributes of the downlink service.
  • the number of receiving antennas that need to be used by the user equipment is determined to be 4.
  • the feedback information sent by the network side device indicates that the desired transmission mode is not agreed.
  • the transmission mode influencing factor that is referenced when the network side device determines the feedback information includes at least one of the following factors:
  • the transmission mode is associated with the serving cell; or the transmission mode is associated with the target bandwidth part BWP of the serving cell.
  • the change information is requesting to change the transmission mode for the serving cell or the transmission of the BWP for one or more target bandwidth parts. Mode, where the transmission modes of different BWPs can be different.
  • the network side device receives at least one of the following information sent by the user equipment:
  • the received information is used as a transmission mode influencing factor for determining feedback information.
  • the process is: sending, by the network side device, feedback information to the user equipment, where the feedback information is sent by using one of the following signaling or signals:
  • the related information of the wake-up signal has a preset correspondence relationship with the transmission mode, so that the user equipment determines the transmission mode indicated by the feedback information according to the related information of the wake-up signal and the preset correspondence relationship.
  • the current transmission mode is set to a transmission mode indicated by the feedback information, wherein the transmission mode indicated by the feedback information may be the same or different from the desired transmission mode.
  • the transmission mode indicated by the feedback information is that the number of receive antennas is 2 (2), and at this time, the user equipment will receive the current receive antenna. The number is set to 2 to receive.
  • the network side device receives the change information of the request to change the transmission mode sent by the user equipment, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the network side device can accurately
  • the transmission mode of the user equipment is changed, which not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • a further embodiment of the present disclosure provides a transmission mode determining method, which is applied to a network side device.
  • the same parts as the foregoing embodiments are described in detail with reference to the foregoing implementation. The content of the example is not repeated in this embodiment.
  • FIG. 7 is a schematic flowchart of a method for determining a transmission mode according to another embodiment of the present disclosure. As shown in FIG. 7, the method includes the following steps:
  • the target transmission mode is sent to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode, where the network side device determines that the user equipment needs to perform the transmission mode change, if the user equipment does not issue the change request.
  • the target transmission mode can be actively sent to the user equipment.
  • the network side device may indicate the target transmission mode by using an explicit indication manner, or may indicate the target transmission mode by using an implicit indication manner, and the explicit indication is taken as an example. If the pre-agreed 0 represents 2 collection, 1 represents 4 collection. When the user equipment receives 0, the number of current receiving antennas is set to 2, that is, the number of target receiving antennas is 2.
  • the network side device when determining that the user equipment needs to perform the transmission mode change, actively sends the target transmission mode to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode, so that the network device can accurately
  • the transmission mode of the user equipment is changed, which not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the method further includes:
  • the target transmission mode is determined according to the transmission mode influencing factors.
  • the target transmission mode is determined by the network side device according to the transmission mode influencing factor, and the factor includes at least one of the following factors: the remaining power of the user equipment, the heating index of the user equipment, the attribute of the uplink service, and the attribute of the downlink service.
  • the remaining power of the user equipment, the heat index of the user equipment, and the uplink service attribute are reported by the user equipment to the network side device.
  • the network side device mainly determines the transmission mode of the user equipment. Therefore, the more influential factors are introduced when determining the target transmission mode, the more accurate the transmission mode change of the user equipment is, and the specific determination manner of the target transmission mode is as described in the foregoing embodiment. The way in which the expected transmission mode is determined.
  • the above target transmission mode is sent by one of the following signaling or signals:
  • the user equipment configures the transmission mode according to the indication of the network side device, and the network side device may adopt an explicit indication manner, specifically:
  • the network side device carries a target transmission mode in any one of physical layer signaling, medium access control MAC signaling, radio resource control RRC signaling, and wake-up signal WUS;
  • the user equipment configures the transmission mode according to the indication of the network side device, and the network side device may also adopt an implicit indication manner, specifically:
  • the foregoing S701 sends the target transmission mode to the user equipment, which specifically includes:
  • indication signaling or an indication signal, which is used to indicate a target transmission mode
  • the indication signaling includes: physical layer signaling, medium access control MAC signaling, or radio resource control RRC signaling
  • the indication signal includes The wake-up signal WUS, which carries one of the following parameters implicitly indicating the target transmission mode: a bandwidth portion BWP, a modulation and coding strategy MCS, and a multiple-input multiple-output MIMO layer number.
  • the user equipment After receiving the indication signaling or the indication signal sent by the network side device, the user equipment sets the current transmission mode to the target transmission mode sent by the network side device, and specifically includes:
  • the target transmission mode indicated by the network side device is determined according to the parameter and the preset correspondence relationship carried in the indication signaling or the indication signal, where the preset correspondence relationship includes a correspondence between different attribute values of the parameters and the transmission mode.
  • the network side device configures the transmission mode of the user equipment by using an implicit indication manner, so that the network side device sends the bandwidth part BWP, the modulation and coding strategy MCS, and the multiple input multiple output MIMO layer to the user equipment.
  • the scheduling signaling of any one of the modes is performed, the target transmission mode that the device needs to perform is implicitly notified, and the number of times that the network side device sends the scheduling signaling to the user equipment is reduced.
  • the target transmission mode is implicitly indicated by the bandwidth portion BWP
  • the number of the bandwidth portion BWP is 1 indicating that the number of receiving antennas is 2
  • the bandwidth part BWP number 2 indicates that the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current receiving antenna number to 2.
  • the width of the different bandwidth portion BWP is pre-arranged.
  • the width of the bandwidth portion BWP is less than or equal to 20 rb indicating that the number of receiving antennas is 2 (2), and the width of the bandwidth portion BWP is greater than 20 rb indicating the receiving antenna.
  • the number is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas to 2.
  • the target transmission mode is implicitly indicated by the modulation and coding strategy MCS
  • the modulation and coding strategy MCS If the modulation order is less than or equal to 16qam, the number of receiving antennas is 2 (2), and the modulation order of the modulation and coding strategy MCS is greater than 16qam, indicating that the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas. For 2 collections.
  • the target transmission mode is implicitly indicated by the number of multiple input multiple output MIMO layers
  • the correspondence between the number of multiple input multiple output MIMO layers and the transmission mode is predetermined, for example, the number of multiple input multiple output MIMO layers
  • the number of receiving antennas is 1 or 2, and the number of receiving antennas is 3 or 4, and the number of receiving antennas is 4 (4).
  • the target transmission mode indicated by the network side device is that the number of receiving antennas is 2 (2), and at this time, the user equipment sets the current number of receiving antennas to 2 Received.
  • the target transmission mode may be implicitly indicated by using the relevant parameter of the wake-up signal WUS.
  • the user equipment receives the indication signaling or indication signal sent by the network-side device, and then uses the current transmission mode. Set the target transmission mode sent by the network side device. Specifically:
  • the related information of the wake-up signal includes at least one of the following:
  • the wake-up signal is a sequence, and the elements of the sequence include: orthogonal cover coding, cyclic shift, root sequence, and scrambling sequence. Each element is different, the sequence is different, and the wake-up signal is different. In specific implementation, the wake-up signal can be pre-stored.
  • the correspondence between each element of the sequence of signals and the transmission mode is exemplified by the orthogonal coverage coding of the sequence, and the orthogonal coverage coding of the two sequences indicates different transmission modes. For example, orthogonal coverage coding 1 indicates the number of receiving antennas. For 2 (2), the orthogonal cover code 2 indicates that the number of receiving antennas is 4 (4).
  • the transmission mode indicated by the feedback information is that the number of receive antennas is 2 (2), and at this time, the user equipment will receive the current receive antenna. The number is set to 2 to receive.
  • the network side device when determining that the user equipment needs to perform the transmission mode change, the network side device actively sends the target transmission mode to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode, so that The transmission mode of the user equipment can be accurately changed, which not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving performance of the system.
  • the present embodiment provides a user equipment, and the user equipment provided by the embodiment of the present disclosure can implement the processes described in the foregoing embodiment of the transmission mode determining method in an embodiment.
  • FIG. 8 is a schematic diagram of a first module of a user equipment according to an embodiment of the present disclosure. As shown in FIG. 8, the user equipment includes:
  • the first sending module 801 is configured to send, to the network side device, change information, where the change information is used to indicate a desired transmission mode of the user equipment;
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • the foregoing user equipment further includes:
  • a feedback information receiving module configured to receive feedback information sent by the network side device after sending the change information to the network side device
  • a transmission mode setting module configured to set a current transmission mode to a transmission mode indicated by the feedback information.
  • the feedback information is used to indicate whether the desired transmission mode is agreed.
  • the transmission mode setting module is specifically configured to:
  • the current transmission mode is set to the target transmission mode.
  • the desired transmission mode determining module is configured to determine the expected transmission mode according to a transmission mode influencing factor before transmitting the change information to the network side device.
  • the foregoing user equipment further includes:
  • the channel related parameter includes at least one of the following parameters: a channel quality indicator CQI, a rank indication RI, a precoding matrix indication PMI, and a layer indication LI.
  • a first determining module configured to: after the current transmission mode is set to the transmission mode indicated by the feedback information, if the transmission mode corresponding to the scheduling signaling sent by the network side device is different from the transmission mode indicated by the feedback information, Ignoring the scheduling signaling sent by the network side device;
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the desired transmission mode is associated with a serving cell
  • the foregoing user equipment further includes:
  • the information sending module is configured to send at least one of the following information to the network side device:
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the feedback information is sent by one of the following signaling or signals:
  • the transmission mode setting module is further specifically configured to:
  • the current transmission mode is set to the transmission mode indicated by the feedback information.
  • the related information of the wakeup signal includes at least one of the following:
  • Orthogonal cover coding of the sequence of the wake-up signal sequence cyclic shift of the wake-up signal, root sequence of the sequence of the wake-up signal, and scrambling sequence of the sequence of the wake-up signal.
  • the user equipment in the embodiment of the present disclosure sends the change information to the network side device, where the change information is used to indicate a desired transmission mode of the user equipment.
  • the user equipment sends a change request to the network side device to change the transmission mode, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the transmission mode of the user equipment can be accurately performed.
  • the change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the user equipment provided by the embodiment of the present disclosure can implement various processes in the foregoing embodiment corresponding to the foregoing transmission mode determining method. To avoid repetition, details are not described herein again.
  • the present embodiment provides a user equipment, and the user equipment provided by the embodiment of the present disclosure can implement the processes described in the foregoing embodiment of the transmission mode determining method in another embodiment.
  • FIG. 9 is a schematic diagram of a second module structure of a user equipment according to an embodiment of the present disclosure. As shown in FIG. 9, the user equipment includes:
  • the first receiving module 901 is configured to receive a target transmission mode sent by the network side device.
  • the transmission mode setting module 902 is configured to set the current transmission mode to the target transmission mode.
  • the foregoing user equipment further includes:
  • the channel related parameter includes at least one of the following parameters: a channel quality indicator CQI, a rank indication RI, a precoding matrix indication PMI, and a layer indication LI.
  • the second determining module is configured to ignore the scheduling signaling sent by the network side device if the transmission mode corresponding to the scheduling signaling sent by the network side device is different from the target transmission mode;
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the user equipment provided by the embodiment of the present disclosure can implement various processes in the foregoing embodiment corresponding to the foregoing transmission mode determining method. To avoid repetition, details are not described herein again.
  • FIG. 10 is a schematic diagram of a first module of a network side device according to an embodiment of the present disclosure. As shown in FIG. 10, the network side device includes:
  • the second receiving module 1001 is configured to receive the change information sent by the user equipment, where the change information is used to indicate a desired transmission mode of the user equipment;
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • the network side device further includes:
  • a feedback information determining module configured to determine feedback information based on the change information after receiving the change information sent by the user equipment
  • the feedback information is used to indicate whether the desired transmission mode is agreed.
  • the feedback information is used to indicate a target transmission mode.
  • the feedback information determining module is specifically configured to:
  • the feedback information is determined according to the change information and a transmission mode influencing factor.
  • the transmission mode influencing factor includes at least one of the following factors:
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the desired transmission mode is associated with a serving cell
  • the information receiving module is configured to receive at least one of the following information sent by the user equipment:
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the related information of the wake-up signal has a preset correspondence relationship with the transmission mode, so that the user equipment according to the related information of the wake-up signal and the preset correspondence relationship Determining a transmission mode indicated by the feedback information.
  • the related information of the wakeup signal includes at least one of the following:
  • Orthogonal cover coding of the sequence of the wake-up signal sequence cyclic shift of the wake-up signal, root sequence of the sequence of the wake-up signal, and scrambling sequence of the sequence of the wake-up signal.
  • the network side device in the embodiment of the present disclosure receives the change information of the request change transmission mode sent by the user equipment, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the user can accurately
  • the transmission mode of the device is changed, which not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the network side device provided by the embodiment of the present disclosure can implement various processes in the embodiment corresponding to the foregoing method for determining a transmission mode. To avoid repetition, details are not described herein again.
  • the present embodiment provides a network side device, and the network side device provided by the embodiment of the present disclosure can implement the foregoing descriptions of the foregoing embodiments of the transmission mode determining method in another embodiment. process.
  • FIG. 11 is a schematic diagram of a second module structure of a network side device according to an embodiment of the present disclosure. As shown in FIG. 11 , the network side device includes:
  • the second sending module 1101 is configured to send a target transmission mode to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode.
  • the network side device further includes:
  • the target transmission mode determining module is configured to determine the target transmission mode according to the transmission mode influencing factor before transmitting the target transmission mode to the user equipment.
  • the target transmission mode is sent by one of the following signaling or signals:
  • the network side device when determining that the user equipment needs to perform a transmission mode change, the network side device actively sends a target transmission mode to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode, so that Accurately changing the transmission mode of the user equipment not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the network side device provided by the embodiment of the present disclosure can implement various processes in the foregoing embodiment corresponding to the foregoing transmission mode determining method. To avoid repetition, details are not described herein again.
  • the present embodiment provides a user equipment according to the same technical concept.
  • the user equipment provided by the embodiment of the present disclosure can implement various processes implemented by the user equipment in the foregoing embodiment.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment 1200 includes at least one processor 1201, a memory 1202, at least one network interface 1204, and a user interface 1203.
  • the various components in user device 1200 are coupled together by bus system 1205.
  • bus system 1205 is used to implement connection communication between these components.
  • Bus system 1205 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1205 in FIG.
  • the user interface 1203 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1202 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 1202 of the systems and methods described in the embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the memory 1202 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 12021 and an application 12022.
  • the operating system 12021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 12022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 12022.
  • the user equipment 1200 further includes: a computer program stored on the memory 1202 and operable on the processor 1201, the computer program being executed by the processor 1201 to implement the following steps:
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • the feedback information is used to indicate whether the desired transmission mode is agreed.
  • the feedback information is used to indicate a target transmission mode.
  • the setting the current transmission mode to the transmission mode indicated by the feedback information includes:
  • the current transmission mode is set to the target transmission mode.
  • the method further includes:
  • the desired transmission mode is determined according to a transmission mode influencing factor.
  • the channel related parameter includes at least one of the following parameters: a channel quality indicator CQI, a rank indication RI, a precoding matrix indication PMI, and a layer indication LI.
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the transmission mode influencing factors include at least one of the following factors:
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the desired transmission mode is associated with a serving cell; or,
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the feedback information is sent by one of the following signaling or signals:
  • the setting the current transmission mode to the transmission mode indicated by the feedback information includes:
  • the related information of the wake-up signal includes at least one of the following:
  • Orthogonal cover coding of the sequence of the wake-up signal sequence cyclic shift of the wake-up signal, root sequence of the sequence of the wake-up signal, and scrambling sequence of the sequence of the wake-up signal.
  • the user equipment 1200 in the embodiment of the present disclosure sends change information to the network side device, where the change information is used to indicate a desired transmission mode of the user equipment.
  • the user equipment sends a change request to the network side device to change the transmission mode, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the transmission mode of the user equipment can be accurately performed.
  • the change not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the user equipment 1200 further includes: a computer program stored on the memory 1202 and operable on the processor 1201, the computer program being executed by the processor 1201 to implement the following steps:
  • the current transmission mode is set to the target transmission mode.
  • the channel related parameter includes at least one of the following parameters: a channel quality indicator CQI, a rank indication RI, a precoding matrix indication PMI, and a layer indication LI.
  • the scheduling signaling sent by the network side device is ignored;
  • the scheduling signaling includes signaling for scheduling downlink data or signaling for scheduling uplink data.
  • the target transmission mode is transmitted by one of the following signaling or signals:
  • the user equipment when the network side device actively sends the target transmission mode to the user equipment, the user equipment sets the current transmission mode to the target transmission mode, so that the transmission mode of the user equipment can be accurately changed. It not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1201 or implemented by the processor 1201.
  • the processor 1201 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1201 or an instruction in a form of software.
  • the processor 1201 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in the memory 1202, and the processor 1201 reads the information in the memory 1202 and performs the steps of the above method in combination with its hardware.
  • the computer readable storage medium stores a computer program that, when executed by the processor 1201, implements the steps as in the above embodiments.
  • the user equipment 1200 provided by the embodiment of the present disclosure can implement various processes implemented by the user equipment in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • this embodiment provides a network side device, and the network side device provided by the embodiment of the present disclosure can implement various processes implemented by the network side device in the foregoing embodiment.
  • FIG. 13 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure, which can implement details of a transmission mode determining method in the third embodiment to the fourth embodiment, and achieve the same effect.
  • the network side device 1300 includes: a processor 1301, a transceiver 1302, a memory 1303, a user interface 1304, and a bus interface, where:
  • the network side device 1300 further includes: a computer program stored on the memory 1303 and executable on the processor 1301. When the computer program is executed by the processor 1301, the following steps are implemented:
  • the desired transmission mode includes at least one of the following parameters and a value thereof:
  • the feedback information is used to indicate whether the desired transmission mode is agreed.
  • the feedback information is used to indicate a target transmission mode.
  • the determining the feedback information based on the change information includes:
  • the feedback information is determined according to the change information and a transmission mode influencing factor.
  • the transmission mode influencing factors include at least one of the following factors:
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the desired transmission mode is associated with a serving cell; or,
  • the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service is the remaining power of the user equipment, the heating index of the user equipment, the attributes of the uplink service, and the attributes of the downlink service.
  • the feedback information is sent by one of the following signaling or signals:
  • the related information of the wake-up signal has a preset correspondence relationship with the transmission mode, so that the user equipment determines the feedback according to the related information of the wake-up signal and the preset correspondence relationship.
  • the transmission mode indicated by the information is a preset correspondence relationship with the transmission mode.
  • the related information of the wake-up signal includes at least one of the following:
  • Orthogonal cover coding of the sequence of the wake-up signal sequence cyclic shift of the wake-up signal, root sequence of the sequence of the wake-up signal, and scrambling sequence of the sequence of the wake-up signal.
  • the network side device receives the change information of the request change transmission mode sent by the user equipment, so that the network side device determines, according to the change information, a transmission mode that the user equipment can currently perform, so that the user can accurately
  • the transmission mode of the device is changed, which not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the network side device 1300 further includes: a computer program stored on the memory 1303 and executable on the processor 1301. When the computer program is executed by the processor 1301, the following steps are implemented:
  • the target transmission mode is determined according to the transmission mode influencing factor before the target transmission mode is transmitted to the user equipment.
  • the target transmission mode is transmitted by one of the following signaling or signals:
  • the network side device when determining that the user equipment needs to perform a transmission mode change, the network side device actively sends a target transmission mode to the user equipment, so that the user equipment sets the current transmission mode to the target transmission mode, so that Accurately changing the transmission mode of the user equipment not only reduces the unnecessary power consumption of the user equipment, but also achieves the effect of energy saving and power saving, and ensures the data transmission performance of the system.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1301 and various circuits of memory represented by memory 1303.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1302 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1304 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1303 can store data used by the processor 1301 in performing operations.
  • the network side device 1300 can implement various processes implemented by the network side device in the foregoing embodiment, and achieve the same technical effect. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by the processor to implement the foregoing embodiment.
  • the transmission mode determines each process of the method embodiment, and can achieve the same technical effect, or the computer program is executed by the processor to implement the processes of the embodiment of the transmission mode determining method in the foregoing embodiment, and can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种传输模式确定方法及设备,其中,该方法包括:向网络侧设备发送变更信息,该变更信息用于指示用户设备的期望传输模式。

Description

传输模式确定方法及设备
相关申请的交叉引用
本申请主张在2018年3月30日在中国提交的中国专利申请号No.201810276377.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及移动通信领域,尤其涉及一种传输模式确定方法及设备。
背景技术
目前,随着移动通信技术的快速发展,第五代(fifth-generation,5G)移动通信***能够适应更加多样化的场景和业务需求,因此,5G***的应用越来越广泛。其中,在5G***中,针对不同的应用场景,用户设备(user equipment,UE)可能支持不同数值配置的业务,例如,UE既支持URLLC低时延高可靠业务,又支持大容量高速率的eMBB业务。
对于支持多种类型业务的用户设备,为了保证***的数据传输性能,在5G***中,要求用户设备工作在预定频段时必须支持接收天线数为4,或者必须支持发送天线数为2。那么针对下行信息为小数据包的情况,此时采用2天线接收方式就能够满足业务服务质量(Quality of Service,QoS)要求,如果用户设备仍采用4天线接收下行信息,则将导致用户设备耗费不必要的电量,不利于用户设备节省电能。同样的,针对上行信息为小数据包的情况,此时采用1天线发送方式就能够满足业务QoS要求,如果用户设备仍采用2天线发送上行信息,则也将导致用户设备耗费不必要的电量,同样不利于用户设备节省电能。
当前,为了减少用户设备耗费不必要的电量,用户设备根据自身实际需求直接进行传输模式的变更,例如,更改实际使用的接收天线数,即将接收天线数由4变为2。此时,如果网络侧设备的下行调度需要采用4天线接收下行信息,而用户设备采用2天线接收方式无法满足业务QoS要求,将导致下行***性能降低,例如,将导致***误块率BLER增大。
由此可知,在5G***中,如果用户设备持续保持4天线接收或2天线发送的传输模式,将导致用户设备耗费不必要的电量,不利于用户设备节省电能;另外,如果用户设备自主对传输模式进行变更,可能导致***的数据传输性能下降。
发明内容
本公开实施例的目的是提供一种传输模式确定方法及设备,以准确地对用户设备的传输模式进行变更,减少用户设备耗费不必要的电量,达到节能省电的效果,同时,保证***的数据传输性能。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种传输模式确定方法,应用于用户设备,包括:
向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
第二方面,本公开实施例提供了一种传输模式确定方法,应用于用户设备,包括:
接收网络侧设备发送的目标传输模式;
将当前传输模式设置为所述目标传输模式。
第三方面,本公开实施例提供了一种传输模式确定方法,应用于网络侧设备,包括:
接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
第四方面,本公开实施例提供了一种传输模式确定方法,应用于网络侧 设备,包括:
向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
第五方面,本公开实施例提供了一种用户设备,包括:
第一发送模块,用于向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
第六方面,本公开实施例提供了一种用户设备,包括:
第一接收模块,用于接收网络侧设备发送的目标传输模式;
传输模式设置模块,用于将当前传输模式设置为所述目标传输模式。
第七方面,本公开实施例提供了一种网络侧设备,包括:
第二接收模块,用于接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
第八方面,本公开实施例提供了一种网络侧设备,包括:
第二发送模块,用于向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
第九方面,本公开实施例提供了一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第一方面所述的方法的步骤。
第十方面,本公开实施例提供了一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第二方面所述的方法的步骤。
第十一方面,本公开实施例提供了一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计 算机程序被所述处理器执行时实现如上述第三方面所述的方法的步骤。
第十二方面,本公开实施例提供了一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第四方面所述的方法的步骤。
第十三方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如上述第二方面所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如上述第三方面所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如上述第四方面所述的方法的步骤。
本公开实施例中的传输模式确定方法及设备,向网络侧设备发送变更信息,该变更信息用于指示用户设备的期望传输模式。本公开实施例中,用户设备通过向网络侧设备发送请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一实施例提供的应用于用户设备的传输模式确定方法的流程示意图;
图2为本公开一实施例提供的传输模式确定方法的流程示意图之一;
图3为本公开一实施例提供的传输模式确定方法的流程示意图之二;
图4为本公开一实施例提供的传输模式确定方法的流程示意图之三;
图5为本公开另一实施例提供的应用于用户设备的传输模式确定方法的 流程示意图;
图6为本公开又一实施例提供的应用于网络侧设备的传输模式确定方法的流程示意图;
图7为本公开再一实施例提供的应用于网络侧设备的传输模式确定方法的流程示意图;
图8为本公开实施例提供的用户设备的第一种模块组成示意图;
图9为本公开实施例提供的用户设备的第二种模块组成示意图;
图10为本公开实施例提供的网络侧设备的第一种模块组成示意图;
图11为本公开实施例提供的网络侧设备的第二种模块组成示意图;
图12为本公开一个实施例提供的网络侧设备的结构示意图;
图13为本公开一个实施例提供的用户设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。说明书以及权利要求中使用“和/或”表示连接对象至少其中之一。
本公开的技术方案,可以应用于各种通信***,例如:全球移动通讯***(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)***,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution advanced,LTE-A),新空口(New Radio,NR)等。
用户设备(User Equipment,UE),也可称之为用户端、移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交 换语言和/或数据。
网络侧设备,用于与用户设备通信,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(Node B),还可以是LTE中的演进型基站(eNB或e-Node B,evolutional Node B)及5G基站(gNB),本公开并不限定,但为描述方便,下述实施例以gNB为例进行说明。
本公开实施例涉及的英文名称及其含义示例如下:
带宽部分(Bandwidth Part,BWP);
信道质量指示(Channel Quality Indicator,CQI);
秩指示(Rank Indication,RI);
预编码矩阵指示(Precoding Matrix Indicator,PMI);
层指示(Layer Indication,LI);
多输入多输出(Multiple-Input Multiple-Output,MIMO);
下行控制信息(Downlink Control Information,DCI);
介质访问控制单元(Medium Access Control CE,MAC CE);
无线资源控制(Radio Resource Control,RRC);
唤醒信号(Wake Up Signal,WUS);
调制与编码策略(Modulation and Coding Scheme,MCS)。
本公开实施例提供了一种传输模式确定方法及设备,本公开实施例提供的传输模式确定方法及设备可以应用于5G***,下面通过实施例进行详细介绍。
本公开一实施例提供了一种传输模式确定方法,应用于用户设备,图1为本公开一个实施例提供的传输模式确定方法的流程示意图,如图1所示,该方法包括以下步骤:
S101,向网络侧设备发送变更信息,其中,该变更信息用于指示用户设备的期望传输模式;
其中,上述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
其中,在用户设备确定需要进行传输模式变更后,向网络设备发送用于请求变更传输模式的变更信息,其中,该变更信息可以是不携带期望传输模式的信息,该变更信息还可以是用于指示期望传输模式的信息,即变更信息中携带用户设备确定出的期望传输模式,在具体实施时,为了保证网络侧设备快速确定用户设备希望切换到的传输模式,可选的,该变更信息用于指示用户设备的期望传输模式,且在该期望传输模式与用户设备的当前传输模式不一致时,用户设备向网络侧设备发送变更信息。
在本公开实施例中,用户设备通过向网络侧设备发送请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
其中,传输模式与服务小区关联;或,传输模式与服务小区的目标带宽部分BWP关联,具体的,变更信息是请求变更针对服务小区的传输模式或针对某一个或者多个目标带宽部分BWP的传输模式,其中,不同BWP的传输模式可以不同。
以接收天线端口数为例,接收天线端口数可以是2个,接收天线端口数也可以是4个,在下行业务类型对数据接收性能要求比较高的情况下,需要用户设备采用4个接收天线端口来接收网络侧设备发送的下行数据(即关于接收天线数的传输模式为4个接收天线端口),而在下行业务类型对数据接收性能要求比较低的情况下,用户设备可以采用2个接收天线端口接收网络侧设备发送的下行数据(即关于接收天线数的传输模式为2个接收天线端口),在用户设备确定需要在4接收天线端口与2接收天线端口的传输模式之间切换时,向网络侧设备发送期望接收天线端口数,以使网络侧设备综合判别用户设备是否可以切换到其期望接收天线端口数。
为了简化描述,接下来均以接收天线数为例进行详细说明,且4收表示接收天线数为4,2收表示接收天线数为2,另外,指示传输模式的其他参数可以采用相同的方式进行确定,以接收天线数为例,如果设定0代表2收,1代表4收,此时,若用户设备发送的变更信息中携带“0”,说明用户设备期待 接收天线数为2;或,以发送天线数为例,如果0代表1发,1代表2发,此时,若用户设备发送的变更信息中携带“0”,说明用户设备期待发送天线数为1;或者,采用收发联合编码,例如,1bit:0代表2收及1发,1代表4收及2发,此时,若用户设备发送的变更信息中携带“0”,说明用户设备期待接收天线数为2以及期待发送天线数为1。此处的接收天线数还可以是发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数的任意一种。
其中,在具体实施时,网络侧设备接收到用户设备的变更信息后,将基于该变更信息向用户设备返回相应的反馈信息,以告知用户设备当前可以执行的传输模式,此时,用户设备接收到反馈信息后,根据该反馈信息对传输模式进行变更,如图2所示,具体为:
S201,用户设备发送用于指示期望传输模式的变更信息。
S202,网络侧设备根据变更信息确定反馈信息,其中,该反馈信息用于指示是否同意期望传输模式,或者,该反馈信息用于指示目标传输模式,具体的,该目标传输模式是网络侧设备根据传输模式影响因素综合确定的,该目标传输模式与期望传输模式可以相同,也可以不同。
S203,网络侧设备向用户设备发送反馈信息,以便用户设备接收该反馈信息并根据该反馈信息进行传输模式变更。
S204,用户设备在接收到反馈信息后,将当前传输模式设置为反馈信息指示的传输模式。
具体的,上述S204将当前传输模式设置为反馈信息指示的传输模式,具体包括:
针对反馈信息用于指示是否同意期望传输模式的情况,存在以下两种可能:
(1)在反馈信息指示同意期望传输模式时,将当前传输模式设置为期望传输模式,具体的,可以是网络侧设备综合判别用户设备当前可以采用期望传输模式进行下行数据的接收或上行数据的发送,此时网络侧设备发送一个表征同意的信息,例如,预先设定0代表同意,1代表不同意,则用户设备接收到携带0的反馈信息后,将当前传输模式设置为期望传输模式。
(2)在反馈信息指示不同意期望传输模式时,维持当前传输模式不变,具体的,可以是网络侧设备综合判别用户设备当前还需要采用原传输模式进行下行数据的接收或上行数据的发送,此时网络侧设备发送一个表征不同意的信息,例如,预先设定0代表同意,1代表不同意,则用户设备接收到携带1的反馈信息后,继续维持当前传输模式不变。
其中,网络侧设备根据多个传输模式影响因素综合确定用户设备当前可以执行的传输模式,如果确定出的传输模式与用户设备当前传输模式一致,则向用户设备发送用于指示不同意期望传输模式的反馈信息,这样用户设备接收到该反馈信息后,将继续维持当前传输模式不变。
例如,在用户设备的接收天线数为4(即4收)时,用户设备根据自身属性(例如,发热情况)确定期望接收天线数为2(2收),但网络侧设备结合下行业务的属性确定用户设备的需要使用的接收天线数为4,此时,网络侧设备发送的反馈信息指示不同意期望传输模式。
针对反馈信息用于指示目标传输模式的情况,也存在以下两种可能:
(1)在反馈信息指示目标传输模式时,若目标传输模式与当前传输模式不同,则将当前传输模式设置为目标传输模式,其中,该目标传输模式与期望传输模式可能相同,也可能不同。
(2)在反馈信息指示目标传输模式时,若目标传输模式与当前传输模式相同,则维持当前传输模式不变,其中,在目标传输模式与当前传输模式相同时,网络侧设备可以向用户设备发送反馈信息,也可以不向用户设备发送反馈信息,在具体实施时,为了便于用户设备获知网络侧设备已接收到其发送的变更信息,并且基于变更信息进行综合判别结果为不同意用户设备进行传输模式变更,可选的,即使网络侧设备确定出的目标传输模式与当前传输模式相同,也向用户设备返回反馈信息。
具体的,用户设备在向网络侧设备发送变更信息之前,需要先确定自身期望传输模式,如图3所示,在S201用户设备发送用于指示期望传输模式的变更信息之前,还包括:
S205,根据传输模式影响因素确定期望传输模式,其中,该传输模式影响因素包括以下因素中的至少一种:用户设备的剩余电量、用户设备的发热 指标、上行业务的属性、下行业务的属性,具体的,上行业务的属性影响与上行有关的传输模式的参数及其取值,例如,发送天线数、最大上行层数等等;而下行业务的属性影响与下行有关的传输模式的参数及其取值,例如,接收天线数、最大下行层数等等。
其中,在确定期望传输模式时,可以基于传输模式影响因素中的一项或多项进行确定,在引入多项影响因素的情况下,即传输模式影响因素的数量为多个,结合每项影响因素对应的初始期望传输模式,综合确定最终的期望传输模式,在具体实施时,可以预先设置各传输模式影响因素的优先级,将优先级最高的影响因素对应的期望传输模式确定为最终的期望传输模式。
也可以预先设定预设判别条件,根据各影响因素对应的期望传输模式和预设判别条件确定最终的期望传输模式,例如,预设判定条件包括:预设数量的影响因素对应期望传输模式相同,将该期望传输模式设置为最终的期望传输模式,例如,在3个影响因素中,其中2个影响因素对应的期望接收天线数为2收,那么确定最终的期望接收天线数为2收。在具体实施时,最终的期望传输模式确定方式可以根据实际需求进行设定。
其中,针对每项传输模式影响因素而言,确定对应的期望传输模式的过程具体为:
(1)针对用户设备的剩余电量,预先设定剩余电量与传输模式之间的对应关系,根据用户设备的当前剩余电量确定期望传输模式;
例如,仍以接收天线数为例,接收天线数为2或4,预设对应关系为:剩余电量小于等于预设电量阈值对应于接收天线数为2,剩余电量大于预设电量阈值对应于接收天线数为4;
因此,若用户设备的当前剩余电量小于等于第一预设电量门限值(如10%,可以根据实际情况进行设定),且用户设备的当前接收天线数为4,即4收,此时,期望接收天线数为2,即2收;
若用户设备的当前剩余电量大于等于第二预设电量门限值(如20%,可以根据实际情况进行设定),且用户设备的当前接收天线数为2,即2收,此时,期望接收天线数为4,即4收。
(2)针对用户设备的发热情况,预先设定实测温度与传输模式之间的对 应关系,根据用户设备的实测温度确定期望传输模式;
例如,仍以接收天线数为例,接收天线数为2或4,预设对应关系为:实测温度大于预设温度阈值对应于接收天线数为2,实测温度小于等于预设温度阈值对应于接收天线数为4;
因此,若用户设备的实测温度大于第一预设温度门限值(如40摄氏度,可以根据实际情况进行设定),且用户设备的当前接收天线数为4,即4收,此时,期望接收天线数为2,即2收;
若用户设备的实测温度小于等于第二预设温度门限值(如40摄氏度,可以根据实际情况进行设定,且用户设备的当前接收天线数为2,即2收,此时,期望接收天线数为4,即4收。
(3)针对下行业务的属性,预先设定下行业务的属性与传输模式之间的对应关系,根据下行业务的属性确定期望传输模式,其中,下行业务的属性影响与下行有关的传输模式的参数及其取值,例如,接收天线数、最大下行层数等等;
例如,仍以接收天线数为例,接收天线数为2或4,预设对应关系为:下行业务的属性符合第一预设业务属性对应于接收天线数为2,下行业务的属性符合第二预设业务属性对应于接收天线数为4;
因此,若下行业务的属性符合第一预设业务属性,且用户设备的当前接收天线数为4,即4收,此时,期望接收天线数为2,即2收;
若下行业务的属性符合第二预设业务属性,且用户设备的当前接收天线数为2,即2收,此时,期望接收天线数为4,即4收。
(4)针对上行业务的属性,预先设定上行业务的属性与传输模式之间的对应关系,根据上行业务的属性确定期望传输模式,其中,上行业务的属性影响与上行有关的传输模式的参数及其取值,例如,发送天线数、最大上行层数等等;
例如,以发送天线数为例,发送天线数为1或2,预设对应关系为:上行业务的属性符合第三预设业务属性对应于发送天线数为1,上行业务的属性符合第四预设业务属性对应于发送天线数为2;
因此,若上行业务的属性符合第三预设业务属性,且用户设备的当前发 送天线数为2,即2发,此时,期望发送天线数为1,即1发;
若上行业务的属性符合第四预设业务属性,且用户设备的当前发送天线数为1,即1发,此时,期望发送天线数为2,即2发。
进一步的,用户设备向网络侧设备发送以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性,以便网络侧设备将该信息作为用于确定反馈信息的传输模式影响因素。
其中,用户设备根据网络侧设备发送的反馈信息设置传输模式后,基于反馈信息指示的传输模式进行数据传输,针对信道相关参数的上报,具体为:
在接收到反馈信息后,基于反馈信息指示的传输模式向网络侧设备上报信道相关参数;
其中,信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
其中,由于用户设备的当前传输模式是基于网络侧设备的反馈指示设置的,如果接收到的调度信令对应的传输模式与当前传输模式不一致,此时如果用户设备响应网络侧设备的调度,需要变更传输模式后,才可以执行调度信令的话,变更传输模式存在处理时延,因此,用户设备可以选择维持当前传输模式不变,并忽略网络侧设备的调度,基于此,具体为:
在将当前传输模式设置为所述反馈信息指示的传输模式之后,若网络侧设备发送的调度信令对应的传输模式与反馈信息指示的传输模式不同,则忽略网络侧设备发送的调度信令;
其中,调度信令包括调度下行数据的信令或调度上行数据的信令。
具体为,例如,用户设备的当前传输模式为2接收天线端口。若网络侧设备的调度信令指示的下行PMI是基于4接收天线端口的,或者调度信令指示的下行RI大于2,或者调度信令指示的下行LI大于2,此时基于当前传输模式无法执行网络侧设备的调度信令,UE忽略网络侧设备发送的调度信令,即不执行该调度信令。此时,UE反馈NACK(Negative Acknowledgment)给网络侧设备。
再例如,用户设备的当前传输模式为1发送天线端口。若网络侧设备的 调度信令指示的上行PMI是基于2接收天线端口的,或者调度信令指示的上行RI为2,或者调度信令指示的上行LI为2,此时基于当前传输模式无法执行网络侧设备的调度信令,UE忽略网络侧设备发送的调度信令,即不执行该调度信令。此时,UE不根据调度信令的指示发送上行数据。
具体的,针对网络侧设备向用户设备发送反馈信息的过程,该反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
其中,针对反馈信息通过唤醒信号WUS发送时,如图4所示,上述S204将当前传输模式设置为反馈信息指示的传输模式,具体包括:
S2041,根据唤醒信号的相关信息和预设对应关系确定反馈信息指示的传输模式,其中,该预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
S2042,将当前传输模式设置为反馈信息指示的传输模式,其中,该反馈信息指示的传输模式与期望传输模式可以相同或不同。
具体的,上述唤醒信号的相关信息包括以下至少一种:
唤醒信号的序列的正交覆盖编码、唤醒信号的序列循环移位、唤醒信号的序列的根序列、唤醒信号的序列的加扰序列。
其中,唤醒信号是一个序列,该序列的要素包括:正交覆盖编码、循环移位、根序列、加扰序列,每个要素不同,序列不同,唤醒信号不同,在具体实施时,可以预存唤醒信号的序列的各要素与传输模式之间的对应关系,以序列的正交覆盖编码为例,两个序列的正交覆盖编码指示不同的传输模式,例如,正交覆盖编码1指示接收天线数为2(2收),正交覆盖编码2指示接收天线数为4(4收)。
对应的,如果接收到的唤醒信号的序列的正交覆盖编码为正交覆盖编码1,则反馈信息指示的传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
本公开实施例中的传输模式确定方法,向网络侧设备发送变更信息,该变更信息用于指示用户设备的期望传输模式。本公开实施例中,用户设备通 过向网络侧设备发送请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
与上述一实施例相对应,本公开另一实施例提供了一种传输模式确定方法,应用于用户设备,在本实施例中,与前述实施例相同的部分,详细描述可参考前述实施例的内容,本实施例不再重复。
图5为本公开另一实施例提供的传输模式确定方法的流程示意图,如图5所示,该方法包括以下步骤:
S501,接收网络侧设备发送的目标传输模式,其中,针对用户设备未发出变更请求的情况,网络侧设备在确定用户设备需要进行传输模式变更时,可以主动向用户设备发送目标传输模式。
S502,将当前传输模式设置为网络侧设备发送的目标传输模式,具体的,网络侧设备可以采用显式指示的方式指示目标传输模式,也可以采用隐式指示的方式指示目标传输模式,以显式指示为例,如果预先约定0代表2收,1代表4收,则用户设备接收到0时,将当前接收天线数设置为2,即目标接收天线数为2。
在本公开实施例中,在网络侧设备主动向用户设备发送目标传输模式时,用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
其中,上述目标传输模式是网络侧设备根据传输模式影响因素确定的,该因素包括以下因素中的至少一种:用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性,用户设备的剩余电量、用户设备的发热指标、上行业务属性是用户设备向网络侧设备上报的。其中,由于网络侧设备主要决定用户设备的传输模式,因此,在确定目标传输模式时引入的影响因素越多,对用户设备的传输模式变更越准确,目标传输模式的具体确定方式参见前述实施例中的期望传输模式确定方式。
其中,上述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
在具体实施时,用户设备根据网络侧设备的指示来配置传输模式,网络侧设备可以采用显式指示的方式,具体为:
网络侧设备在物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS中的任一种携带目标传输模式;
用户设备接收网络侧设备发送的显式指示目标传输模式的信令或信号,并将当前传输模式设置为该目标传输模式。
在具体实施时,用户设备根据网络侧设备的指示来配置传输模式,网络侧设备还可以采用隐式指示的方式,具体为:
上述S501接收网络侧设备发送的目标传输模式,具体包括:
接收网络侧设备发送的用于指示目标传输模式的指示信令或指示信号,其中,该指示信令包括:物理层信令、介质访问控制MAC信令、或无线资源控制RRC信令,该指示信号包括:唤醒信号WUS,该指示信令或指示信号中携带隐式指示目标传输模式的如下参数中的一种:带宽部分BWP、调制与编码策略MCS、多输入多输出MIMO层数。
上述S502将当前传输模式设置为网络侧设备发送的目标传输模式,具体包括:
根据指示信令或指示信号中携带的参数和预设对应关系确定网络侧设备指示的目标传输模式,其中,该预设对应关系包括各参数的不同属性值与传输模式之间的对应关系。
将当前传输模式设置为网络侧设备指示的目标传输模式。
在本公开实施例中,网络侧设备采用隐式指示的方式来配置用户设备的传输模式,这样网络侧设备向用户设备发送携带带宽部分BWP、调制与编码策略MCS、多输入多输出MIMO层数中任一种的调度信令时,可以隐式告知用户设备需要执行的目标传输模式,减少了网络侧设备向用户设备发送调度信令的次数。
(1)针对通过带宽部分BWP来隐式指示目标传输模式的情况,如果预先约定不同带宽部分BWP的编号与传输模式之间的对应关系,例如,带宽部 分BWP的编号为1指示接收天线数为2(2收),带宽部分BWP的编号为2指示接收天线数为4(4收)。
对应的,如果接收到的带宽部分BWP编号为1,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
或者,预先约定不同带宽部分BWP的宽度与传输模式之间的对应关系,例如,带宽部分BWP的宽度小于等于20个RB指示接收天线数为2(2收),带宽部分BWP的宽度大于20个RB指示接收天线数为4(4收).
对应的,如果接收到的带宽部分BWP的宽度小于20个RB,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
(2)针对通过调制与编码策略MCS来隐式指示目标传输模式的情况,如果预先约定不同调制与编码策略MCS的调制阶数与传输模式之间的对应关系,例如,调制与编码策略MCS的调制阶数小于等于16QAM指示接收天线数为2(2收),调制与编码策略MCS的调制阶数大于16QAM指示接收天线数为4(4收)。
对应的,如果接收到的调制与编码策略MCS的调制阶数小于16QAM,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
(3)针对通过多输入多输出MIMO层数来隐式指示目标传输模式的情况,如果预先约定多输入多输出MIMO层数与传输模式之间的对应关系,例如,多输入多输出MIMO层数为1或2指示接收天线数为2(2收),带多输入多输出MIMO层数为3或4指示接收天线数为4(4收)。
对应的,如果接收到的多输入多输出MIMO层数为1,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
另外,还可以利用唤醒信号WUS的相关参数隐式指示目标传输模式,针对目标传输模式通过唤醒信号WUS发送时,上述S502将当前传输模式设置为网络侧设备发送的目标传输模式:
根据唤醒信号的相关信息和预设对应关系确定目标传输模式,其中,该预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
将当前传输模式设置为确定出的目标传输模式。
具体的,上述唤醒信号的相关信息包括以下至少一种:
唤醒信号的序列的正交覆盖编码、唤醒信号的序列循环移位、唤醒信号的序列的根序列、唤醒信号的序列的加扰序列。
其中,唤醒信号是一个序列,该序列的要素包括:正交覆盖编码、循环移位、根序列、加扰序列,每个要素不同,序列不同,唤醒信号不同,在具体实施时,可以预存唤醒信号的序列的各要素与传输模式之间的对应关系,以序列的正交覆盖编码为例,两个序列的正交覆盖编码指示不同的传输模式,例如,正交覆盖编码1指示接收天线数为2(2收),正交覆盖编码2指示接收天线数为4(4收)。
对应的,如果接收到的唤醒信号的序列的正交覆盖编码为正交覆盖编码1,则反馈信息指示的传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
其中,用户设备根据网络侧设备指示的目标传输模式设置当前传输模式后,基于目标传输模式进行数据传输,针对信道相关参数的上报,具体为:
基于目标传输模式向网络侧设备上报信道相关参数;
其中,信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
其中,由于用户设备的当前传输模式是基于网络侧设备的目标传输模式指示设置的,如果接收到的调度信令对应的传输模式与当前传输模式不一致,此时,如果用户设备响应网络侧设备的调度,需要变更传输模式后,才可以执行调度信令的话,变更传输模式时存在处理时延,因此,用户设备可以选择维持当前传输模式不变,并忽略网络侧设备的调度,基于此,具体为:
若网络侧设备发送的调度信令对应的传输模式与目标传输模式不同,则忽略网络侧设备发送的调度信令;
其中,调度信令包括调度下行数据的信令或调度上行数据的信令。
具体为,例如,用户设备的当前传输模式为2接收天线端口。若网络侧 设备的调度信令指示的下行PMI是基于4接收天线端口的,或者调度信令指示的下行RI大于2,或者调度信令指示的下行LI大于2,此时基于当前传输模式无法执行网络侧设备的调度信令,UE忽略网络侧设备发送的调度信令,即不执行该调度信令。此时,UE反馈NACK(Negative Acknowledgment)给网络侧设备。
再例如,用户设备的当前传输模式为1发送天线端口。若网络侧设备的调度信令指示的上行PMI是基于2接收天线端口的,或者调度信令指示的上行RI为2,或者调度信令指示的上行LI为2,此时基于当前传输模式无法执行网络侧设备的调度信令,UE忽略网络侧设备发送的调度信令,即不执行该调度信令。此时,UE不根据调度信令的指示发送上行数据。
本公开实施例中的传输模式确定方法,在网络侧设备主动向用户设备发送目标传输模式时,用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例的具体实施过程可以参考前述实施例的描述,这里不再重复。
与上述一实施例相对应,本公开又一实施例提供了一种传输模式确定方法,应用于网络侧设备,在本实施例中,与前述一实施例相同的部分,详细描述可参考前述实施例的内容,本实施例不再重复。
图6为本公开又一实施例提供的传输模式确定方法的流程示意图,如图6所示,该方法包括以下步骤:
S601,接收用户设备发送的变更信息,其中,该变更信息用于指示用户设备的期望传输模式
其中,上述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
其中,在用户设备确定需要进行传输模式变更后,自动向网络设备发送用于请求变更传输模式的变更信息,其中,该变更信息可以是不携带期望传输模式的信息,该变更信息还可以是用于指示期望传输模式的信息,即变更 信息中携带用户设备确定出的期望传输模式,在具体实施时,为了保证网络侧设备快速确定用户设备希望切换到的传输模式,可选的,该变更信息用于指示用户设备的期望传输模式。
在本公开实施例中,网络侧设备接收用户设备发送的请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
其中,在具体实施时,网络侧设备接收到用户设备的变更信息后,将基于该变更信息向用户设备返回相应的反馈信息,以告知用户设备当前可以执行的传输模式,以便用户设备接收到反馈信息后,根据该反馈信息对传输模式进行变更,具体的,在S601接收用户设备发送的变更信息之后,还包括:
S602,基于变更信息确定反馈信息,具体的,网络侧设备接收到用户设备发送的变更信息后,基于该变更信息确定用户设备当前可以执行的传输模式,并结合确定结果生成相应的反馈信息;
S603,向用户设备发送反馈信息,以使用户设备将当前传输模式设置为反馈信息指示的传输模式,其中,该反馈信息用于指示是否同意期望传输模式,或者,该反馈信息用于指示目标传输模式,具体的,该目标传输模式是网络侧设备根据传输模式影响因素综合确定的,该目标传输模式与期望传输模式可以相同,也可以不同。
具体的,网络侧设备为了保证更加准确地对用户设备的传输模式进行配置,在确定反馈信息时,综合参考传输模式影响因素来确定反馈信息,因此,基于变更信息确定反馈信息,具体包括:
根据变更信息和传输模式影响因素确定反馈信息,其中,网络侧设备根据多个传输模式影响因素综合确定用户设备当前可以执行的传输模式,如果确定出的传输模式与用户设备当前传输模式一致,则向用户设备发送用于指示不同意期望传输模式的反馈信息,这样用户设备接收到该反馈信息后,将继续维持当前传输模式不变。
例如,在用户设备的接收天线数为4(即4收)时,用户设备根据自身 属性(例如,发热情况)确定期望接收天线数为2(2收),但网络侧设备结合下行业务的属性确定用户设备的需要使用的接收天线数为4,此时,网络侧设备发送的反馈信息指示不同意期望传输模式。
其中,网络侧设备确定反馈信息时参考的传输模式影响因素包括以下因素中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。其中,具体确定过程可以参照前述实施例描述的内容,在此不再赘述。
其中,传输模式与服务小区关联;或,传输模式与服务小区的目标带宽部分BWP关联,具体的,变更信息是请求变更针对服务小区的传输模式或针对某一个或者多个目标带宽部分BWP的传输模式,其中,不同BWP的传输模式可以不同。
进一步的,网络侧设备接收用户设备发送的以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性;
将接收到的信息作为用于确定反馈信息的传输模式影响因素。
具体的,针对网络侧设备向用户设备发送反馈信息的过程,该反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
其中,针对反馈信息通过唤醒信号WUS发送时,唤醒信号的相关信息与传输模式之间具有预设对应关系,以使用户设备根据唤醒信号的相关信息和预设对应关系确定反馈信息指示的传输模式。
具体的,用户设备在接收到反馈信息后,将当前传输模式设置为反馈信息指示的传输模式,具体包括:
根据唤醒信号的相关信息和预设对应关系确定反馈信息指示的传输模式,其中,该预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
将当前传输模式设置为反馈信息指示的传输模式,其中,该反馈信息指示的传输模式与期望传输模式可以相同或不同。
具体的,上述唤醒信号的相关信息包括以下至少一种:
唤醒信号的序列的正交覆盖编码、唤醒信号的序列循环移位、唤醒信号的序列的根序列、唤醒信号的序列的加扰序列。
其中,唤醒信号是一个序列,该序列的要素包括:正交覆盖编码、循环移位、根序列、加扰序列,每个要素不同,序列不同,唤醒信号不同,在具体实施时,可以预存唤醒信号的序列的各要素与传输模式之间的对应关系,以序列的正交覆盖编码为例,两个序列的正交覆盖编码指示不同的传输模式,例如,正交覆盖编码1指示接收天线数为2(2收),正交覆盖编码2指示接收天线数为4(4收)。
对应的,如果接收到的唤醒信号的序列的正交覆盖编码为正交覆盖编码1,则反馈信息指示的传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
本公开实施例中的传输模式确定方法,网络侧设备接收用户设备发送的请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例的具体实施过程可以参考前述实施例的描述,这里不再重复。
与上述另一实施例相对应,本公开还一实施例提供了一种传输模式确定方法,应用于网络侧设备,在本实施例中,与前述实施例相同的部分,详细描述可参考前述实施例的内容,本实施例不再重复。
图7为本公开还一实施例提供的传输模式确定方法的流程示意图,如图7所示,该方法包括以下步骤:
S701,向用户设备发送目标传输模式,以使用户设备将当前传输模式设置为目标传输模式,其中,针对用户设备未发出变更请求的情况,网络侧设备在确定用户设备需要进行传输模式变更时,可以主动向用户设备发送目标传输模式。
具体的,网络侧设备可以采用显式指示的方式指示目标传输模式,也可 以采用隐式指示的方式指示目标传输模式,以显式指示为例,如果预先约定0代表2收,1代表4收,则用户设备接收到0时,将当前接收天线数设置为2,即目标接收天线数为2。
在本公开实施例中,网络侧设备在确定用户设备需要进行传输模式变更时,主动向用户设备发送目标传输模式,以使用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
其中,在S701向用户设备发送目标传输模式之前,还包括:
根据传输模式影响因素确定目标传输模式。
其中,上述目标传输模式是网络侧设备根据传输模式影响因素确定的,该因素包括以下因素中的至少一种:用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性,用户设备的剩余电量、用户设备的发热指标、上行业务属性是用户设备向网络侧设备上报的。其中,由于网络侧设备主要决定用户设备的传输模式,因此,在确定目标传输模式时引入的影响因素越多,对用户设备的传输模式变更越准确,目标传输模式的具体确定方式参见前述实施例中的期望传输模式确定方式。
其中,上述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
在具体实施时,用户设备根据网络侧设备的指示来配置传输模式,网络侧设备可以采用显式指示的方式,具体为:
网络侧设备在物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS中的任一种携带目标传输模式;
用户设备接收网络侧设备发送的显式指示目标传输模式的信令或信号,并将当前传输模式设置为该目标传输模式。
在具体实施时,用户设备根据网络侧设备的指示来配置传输模式,网络侧设备还可以采用隐式指示的方式,具体为:
上述S701向用户设备发送目标传输模式,具体包括:
向用户设备发送用于指示目标传输模式的指示信令或指示信号,其中,该指示信令包括:物理层信令、介质访问控制MAC信令、或无线资源控制RRC信令,该指示信号包括:唤醒信号WUS,该指示信令或指示信号中携带隐式指示目标传输模式的如下参数中的一种:带宽部分BWP、调制与编码策略MCS、多输入多输出MIMO层数。
其中,用户设备接收到网络侧设备发送的指示信令或指示信号后,将当前传输模式设置为网络侧设备发送的目标传输模式,具体包括:
根据指示信令或指示信号中携带的参数和预设对应关系确定网络侧设备指示的目标传输模式,其中,该预设对应关系包括各参数的不同属性值与传输模式之间的对应关系。
将当前传输模式设置为网络侧设备指示的目标传输模式。
在本公开实施例中,网络侧设备采用隐式指示的方式来配置用户设备的传输模式,这样网络侧设备向用户设备发送携带带宽部分BWP、调制与编码策略MCS、多输入多输出MIMO层数中任一种的调度信令时,可以隐式告知用户设备需要执行的目标传输模式,减少了网络侧设备向用户设备发送调度信令的次数。
(1)针对通过带宽部分BWP来隐式指示目标传输模式的情况,如果预先约定不同带宽部分BWP的编号与传输模式之间的对应关系,例如,带宽部分BWP的编号为1指示接收天线数为2(2收),带宽部分BWP的编号为2指示接收天线数为4(4收)。
对应的,如果接收到的带宽部分BWP编号为1,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
或者,预先约定不同带宽部分BWP的宽度与传输模式之间的对应关系,例如,带宽部分BWP的宽度小于等于20rb指示接收天线数为2(2收),带宽部分BWP的宽度大于20rb指示接收天线数为4(4收)。
对应的,如果接收到的带宽部分BWP的宽度小于20rb,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
(2)针对通过调制与编码策略MCS来隐式指示目标传输模式的情况,如果预先约定不同调制与编码策略MCS的调制阶数与传输模式之间的对应关系,例如,调制与编码策略MCS的调制阶数小于等于16qam指示接收天线数为2(2收),调制与编码策略MCS的调制阶数大于16qam指示接收天线数为4(4收)。
对应的,如果接收到的调制与编码策略MCS的调制阶数小于16qam,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
(3)针对通过多输入多输出MIMO层数来隐式指示目标传输模式的情况,如果预先约定多输入多输出MIMO层数与传输模式之间的对应关系,例如,多输入多输出MIMO层数为1或2指示接收天线数为2(2收),带多输入多输出MIMO层数为3或4指示接收天线数为4(4收)。
对应的,如果接收到的多输入多输出MIMO层数为1,则网络侧设备指示的目标传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
另外,还可以利用唤醒信号WUS的相关参数隐式指示目标传输模式,针对目标传输模式通过唤醒信号WUS发送时,用户设备接收到网络侧设备发送的指示信令或指示信号后,将当前传输模式设置为网络侧设备发送的目标传输模式,具体的:
根据唤醒信号的相关信息和预设对应关系确定目标传输模式,其中,该预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
将当前传输模式设置为确定出的目标传输模式。
具体的,上述唤醒信号的相关信息包括以下至少一种:
唤醒信号的序列的正交覆盖编码、唤醒信号的序列循环移位、唤醒信号的序列的根序列、唤醒信号的序列的加扰序列。
其中,唤醒信号是一个序列,该序列的要素包括:正交覆盖编码、循环移位、根序列、加扰序列,每个要素不同,序列不同,唤醒信号不同,在具体实施时,可以预存唤醒信号的序列的各要素与传输模式之间的对应关系,以序列的正交覆盖编码为例,两个序列的正交覆盖编码指示不同的传输模式, 例如,正交覆盖编码1指示接收天线数为2(2收),正交覆盖编码2指示接收天线数为4(4收)。
对应的,如果接收到的唤醒信号的序列的正交覆盖编码为正交覆盖编码1,则反馈信息指示的传输模式为接收天线数为2(2收),此时,用户设备将当前接收天线数设置为2收。
本公开实施例中的传输模式确定方法,网络侧设备在确定用户设备需要进行传输模式变更时,主动向用户设备发送目标传输模式,以使用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例的具体实施过程可以参考前述实施例的描述,这里不再重复。
对应上述一实施例提供的传输模式确定方法,本实施例提供了一种用户设备,本公开实施例提供的用户设备能够实现上述一实施例中传输模式确定方法实施例描述的各个过程。
图8为本公开实施例提供的用户设备的第一种模块组成示意图,如图8所示,该用户设备包括:
第一发送模块801,用于向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
可选地,上述用户设备还包括:
反馈信息接收模块,用于在向网络侧设备发送变更信息之后,接收所述网络侧设备发送的反馈信息;
传输模式设置模块,用于将当前传输模式设置为所述反馈信息指示的传输模式。
可选地,所述反馈信息用于指示是否同意所述期望传输模式;或,
所述反馈信息用于指示目标传输模式。
可选地,所述传输模式设置模块,具体用于:
在所述反馈信息指示同意所述期望传输模式时,将当前传输模式设置为所述期望传输模式;
在所述反馈信息指示不同意所述期望传输模式时,维持当前传输模式不变;
在所述反馈信息指示目标传输模式时,将当前传输模式设置为所述目标传输模式。
可选地,上述用户设备还包括:
期望传输模式确定模块,用于在向网络侧设备发送变更信息之前,根据传输模式影响因素确定所述期望传输模式。
可选地,上述用户设备还包括:
信道参数发送模块,用于在接收到所述反馈信息后,基于所述反馈信息指示的传输模式向所述网络侧设备上报信道相关参数;
其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
可选地,上述用户设备还包括:
第一判断模块,用于在将当前传输模式设置为所述反馈信息指示的传输模式之后,若所述网络侧设备发送的调度信令对应的传输模式与所述反馈信息指示的传输模式不同,则忽略所述网络侧设备发送的调度信令;
其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
可选地,所述传输模式影响因素包括以下因素中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选地,所述期望传输模式与服务小区关联;或,
与服务小区的目标带宽部分BWP关联。
可选地,上述用户设备还包括:
信息发送模块,用于向网络侧设备发送以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选地,所述反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
可选地,所述传输模式设置模块,还具体用于:
在所述反馈信息通过唤醒信号发送时,根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式,所述预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
将当前传输模式设置为所述反馈信息指示的传输模式。
可选地,所述唤醒信号的相关信息包括以下至少一种:
所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
本公开实施例中的用户设备,向网络侧设备发送变更信息,该变更信息用于指示用户设备的期望传输模式。本公开实施例中,用户设备通过向网络侧设备发送请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例提供的用户设备能够实现上述传输模式确定方法对应的实施例中的各个过程,为避免重复,这里不再赘述。
对应上述另一实施例提供的传输模式确定方法,本实施例提供了一种用户设备,本公开实施例提供的用户设备能够实现上述另一实施例中传输模式确定方法实施例描述的各个过程。
图9为本公开实施例提供的用户设备的第二种模块组成示意图,如图9所示,该用户设备包括:
第一接收模块901,用于接收网络侧设备发送的目标传输模式;
传输模式设置模块902,用于将当前传输模式设置为所述目标传输模式。
可选地,上述用户设备还包括:
信道参数发送模块,用于基于所述目标传输模式向所述网络侧设备上报信道相关参数;
其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
可选地,上述用户设备还包括:
第二判断模块,用于若所述网络侧设备发送的调度信令对应的传输模式与所述目标传输模式不同,则忽略所述网络侧设备发送的调度信令;
其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
可选地,所述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
本公开实施例中的用户设备,在网络侧设备主动向用户设备发送目标传输模式时,用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例提供的用户设备能够实现上述传输模式确定方法对应的实施例中的各个过程,为避免重复,这里不再赘述。
对应上述又一实施例提供的传输模式确定方法,本实施例提供了一种网络侧设备,本公开实施例提供的网络侧设备能够实现上述又一实施例中传输模式确定方法实施例描述的各个过程。
图10为本公开实施例提供的网络侧设备的第一种模块组成示意图,如图10所示,该网络侧设备包括:
第二接收模块1001,用于接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
可选地,上述网络侧设备还包括:
反馈信息确定模块,用于在接收用户设备发送的变更信息之后,基于所述变更信息确定反馈信息;
反馈信息发送模块,用于向所述用户设备发送所述反馈信息,以使所述 用户设备将当前传输模式设置为所述反馈信息指示的传输模式。
可选地,所述反馈信息用于指示是否同意所述期望传输模式;或,
所述反馈信息用于指示目标传输模式。
可选地,所述反馈信息确定模块,具体用于:
根据所述变更信息和传输模式影响因素确定所述反馈信息。
可选地,所述传输模式影响因素包括以下因素中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选地,所述期望传输模式与服务小区关联;或,
与服务小区的目标带宽部分BWP关联。
可选地,上述网络侧设备还包括:
信息接收模块,用于接收用户设备发送的以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选地,所述反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
可选地,在所述反馈信息通过唤醒信号发送时,所述唤醒信号的相关信息与传输模式之间具有预设对应关系,以使用户设备根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式。
可选地,所述唤醒信号的相关信息包括以下至少一种:
所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
本公开实施例中的网络侧设备,网络侧设备接收用户设备发送的请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例提供的网络侧设备能够实现上述传输模式确定方法对应的 实施例中的各个过程,为避免重复,这里不再赘述。
对应上述还一实施例提供的传输模式确定方法,本实施例提供了一种网络侧设备,本公开实施例提供的网络侧设备能够实现上述再一实施例中传输模式确定方法实施例描述的各个过程。
图11为本公开实施例提供的网络侧设备的第二种模块组成示意图,如图11所示,该网络侧设备包括:
第二发送模块1101,用于向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
可选地,上述网络侧设备还包括:
目标传输模式确定模块,用于在向用户设备发送目标传输模式之前,根据传输模式影响因素确定目标传输模式。
可选地,所述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
本公开实施例中的网络侧设备,网络侧设备在确定用户设备需要进行传输模式变更时,主动向用户设备发送目标传输模式,以使用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
本公开实施例提供的网络侧设备能够实现上述传输模式确定方法对应的实施例中的各个过程,为避免重复,这里不再赘述。
对应上述实施例提供的传输模式确定方法,基于相同的技术构思,本实施例提供了一种用户设备,本公开实施例提供的用户设备能够实现上述实施例中用户设备实现的各个过程。
图12为本公开实施例提供的用户设备的结构示意图。如图12所示,该用户设备1200包括:至少一个处理器1201、存储器1202、至少一个网络接口1204和用户接口1203。用户设备1200中的各个组件通过总线***1205耦合在一起。可理解,总线***1205用于实现这些组件之间的连接通信。总线***1205除包括数据总线之外,还包括电源总线、控制总线和状态信号总 线。但是为了清楚说明起见,在图12中将各种总线都标为总线***1205。
其中,用户接口1203可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器1202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的***和方法的存储器1202旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1202存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***12021和应用程序12022。
其中,操作***12021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序12022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序12022中。
在本公开一具体实施例中,用户设备1200还包括:存储在存储器1202上并可在处理器1201上运行的计算机程序,该计算机程序被处理器1201执行时实现如下步骤:
向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
在向网络侧设备发送变更信息之后,接收所述网络侧设备发送的反馈信息;
将当前传输模式设置为所述反馈信息指示的传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述反馈信息用于指示是否同意所述期望传输模式;或,
所述反馈信息用于指示目标传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述将当前传输模式设置为所述反馈信息指示的传输模式,包括:
在所述反馈信息指示同意所述期望传输模式时,将当前传输模式设置为所述期望传输模式;
在所述反馈信息指示不同意所述期望传输模式时,维持当前传输模式不变;
在所述反馈信息指示目标传输模式时,将当前传输模式设置为所述目标传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
在向网络侧设备发送变更信息之前,还包括:
根据传输模式影响因素确定所述期望传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
在接收到所述反馈信息后,基于所述反馈信息指示的传输模式向所述网络侧设备上报信道相关参数;
其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
在将当前传输模式设置为所述反馈信息指示的传输模式之后,若所述网络侧设备发送的调度信令对应的传输模式与所述反馈信息指示的传输模式不同,则忽略所述网络侧设备发送的调度信令;
其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述传输模式影响因素包括以下因素中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述期望传输模式与服务小区关联;或,
与服务小区的目标带宽部分BWP关联。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
向网络侧设备发送以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述将当前传输模式设置为所述反馈信息指示的传输模式,包括:
在所述反馈信息通过唤醒信号发送时,根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式,所述预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
将当前传输模式设置为所述反馈信息指示的传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述唤醒信号的相关信息包括以下至少一种:
所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
本公开实施例中的用户设备1200,向网络侧设备发送变更信息,该变更信息用于指示用户设备的期望传输模式。本公开实施例中,用户设备通过向网络侧设备发送请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
在本公开另一具体实施例中,用户设备1200还包括:存储在存储器1202上并可在处理器1201上运行的计算机程序,该计算机程序被处理器1201执行时实现如下步骤:
接收网络侧设备发送的目标传输模式;
将当前传输模式设置为所述目标传输模式。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
基于所述目标传输模式向所述网络侧设备上报信道相关参数;
其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
若所述网络侧设备发送的调度信令对应的传输模式与所述目标传输模式不同,则忽略所述网络侧设备发送的调度信令;
其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
可选的,计算机程序被处理器1201执行时,还可实现如下步骤:
所述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
本公开实施例中的用户设备1200,在网络侧设备主动向用户设备发送目标传输模式时,用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
上述本公开实施例揭示的方法可以应用于处理器1201中,或者由处理器1201实现。处理器1201可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中,上述方法的各步骤可以通过处理器1201中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1201可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1202,处理器1201读取存储器1202中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器1201执行时实现如上述实施例中的各步骤。
需要说明的是,本公开实施例提供的用户设备1200能够实现前述实施例中用户设备实现的各个过程,为避免重复,这里不再赘述。
对应上述实施例提供的传输模式确定方法,本实施例提供了一种网络侧设备,本公开实施例提供的网络侧设备能够实现上述实施例中网络侧设备实现的各个过程。
请参阅图13,图13是本公开实施例应用的网络侧设备的结构示意图,能够实现第三实施例至第四实施例中传输模式确定方法的细节,并达到相同的效果。如图13所示,网络侧设备1300包括:处理器1301、收发机1302、存储器1303、用户接口1304和总线接口,其中:
在本公开一具体实施例中,网络侧设备1300还包括:存储在存储器上1303并可在处理器1301上运行的计算机程序,计算机程序被处理器1301执行时实现如下步骤:
接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
其中,所述期望传输模式包括以下参数中的至少一种及其取值:
接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
在接收用户设备发送的变更信息之后,基于所述变更信息确定反馈信息;
向所述用户设备发送所述反馈信息,以使所述用户设备将当前传输模式设置为所述反馈信息指示的传输模式。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述反馈信息用于指示是否同意所述期望传输模式;或,
所述反馈信息用于指示目标传输模式。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述基于所述变更信息确定反馈信息,包括:
根据所述变更信息和传输模式影响因素确定所述反馈信息。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述传输模式影响因素包括以下因素中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述期望传输模式与服务小区关联;或,
与服务小区的目标带宽部分BWP关联。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
接收用户设备发送的以下信息中的至少一种:
用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述反馈信息通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
在所述反馈信息通过唤醒信号发送时,所述唤醒信号的相关信息与传输模式之间具有预设对应关系,以使用户设备根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述唤醒信号的相关信息包括以下至少一种:
所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
本公开实施例的网络侧设备中,网络侧设备接收用户设备发送的请求变更传输模式的变更信息,以便网络侧设备基于该变更信息确定用户设备当前可以执行的传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能
在本公开另一具体实施例中,网络侧设备1300还包括:存储在存储器上1303并可在处理器1301上运行的计算机程序,计算机程序被处理器1301执行时实现如下步骤:
向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
在向用户设备发送目标传输模式之前,根据传输模式影响因素确定目标传输模式。
可选的,存储器1303存储的计算机程序被处理器1301执行时,还可实现如下步骤:
所述目标传输模式通过以下信令或信号的一种发送:
物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
本公开实施例的网络侧设备中,网络侧设备在确定用户设备需要进行传输模式变更时,主动向用户设备发送目标传输模式,以使用户设备将当前传输模式设置为该目标传输模式,这样可以准确地对用户设备的传输模式进行变更,既减少了用户设备耗费不必要的电量,达到节能省电的效果,又保证了***的数据传输性能。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1304还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1301负责管理总线架构和通常的处理,存储器1303可以存储处理器1301在执行操作时所使用的数据。
网络侧设备1300能够实现前述实施例中网络侧设备实现的各个过程,并到达相同的技术效果,为避免重复,这里不再赘述。
对应上述实施例提供的传输模式确定方法,本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中传输模式确定方法实施例的各个过程,且能达到相同的技术效果,或者,该计算机程序被处理器执行时实现上述实施例中传输模式确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory, 简称RAM)、磁碟或者光盘等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、***、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、 程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,本公开可以有各种更改和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (43)

  1. 一种传输模式确定方法,应用于用户设备,包括:
    向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
    其中,所述期望传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  2. 根据权利要求1所述的方法,其中,在向网络侧设备发送变更信息之后,还包括:
    接收所述网络侧设备发送的反馈信息;
    将当前传输模式设置为所述反馈信息指示的传输模式。
  3. 根据权利要求2所述的方法,其中,所述反馈信息用于指示是否同意所述期望传输模式;或,
    所述反馈信息用于指示目标传输模式。
  4. 根据权利要求3所述的方法,其中,所述将当前传输模式设置为所述反馈信息指示的传输模式,包括:
    在所述反馈信息指示同意所述期望传输模式时,将当前传输模式设置为所述期望传输模式;
    在所述反馈信息指示不同意所述期望传输模式时,维持当前传输模式不变;
    在所述反馈信息指示目标传输模式时,将当前传输模式设置为所述目标传输模式。
  5. 根据权利要求1所述的方法,其中,在向网络侧设备发送变更信息之前,还包括:
    根据传输模式影响因素确定所述期望传输模式。
  6. 根据权利要求2所述的方法,还包括:
    在接收到所述反馈信息后,基于所述反馈信息指示的传输模式向所述网络侧设备上报信道相关参数;
    其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
  7. 根据权利要求2所述的方法,其中,在将当前传输模式设置为所述反馈信息指示的传输模式之后,还包括:
    若所述网络侧设备发送的调度信令对应的传输模式与所述反馈信息指示的传输模式不同,则忽略所述网络侧设备发送的调度信令;
    其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
  8. 根据权利要求5所述的方法,其中,所述传输模式影响因素包括以下因素中的至少一种:
    用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
  9. 根据权利要求1至8任一项所述的方法,其中,所述期望传输模式与服务小区关联;或,
    与服务小区的目标带宽部分BWP关联。
  10. 根据权利要求1所述的方法,还包括:
    向网络侧设备发送以下信息中的至少一种:
    用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
  11. 根据权利要求2所述的方法,其中,所述反馈信息通过以下信令或信号的一种发送:
    物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
  12. 根据权利要求11所述的方法,其中,所述将当前传输模式设置为所述反馈信息指示的传输模式,包括:
    在所述反馈信息通过唤醒信号发送时,根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式,所述预设对应关系包括唤醒信号的相关信息与传输模式之间的对应关系;
    将当前传输模式设置为所述反馈信息指示的传输模式。
  13. 根据权利要求12所述的方法,其中,所述唤醒信号的相关信息包括 以下至少一种:
    所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
  14. 一种传输模式确定方法,应用于用户设备,包括:
    接收网络侧设备发送的目标传输模式;
    将当前传输模式设置为所述目标传输模式。
  15. 根据权利要求14所述的方法,还包括:
    基于所述目标传输模式向所述网络侧设备上报信道相关参数;
    其中,所述信道相关参数包括以下参数中的至少一种:信道质量指示CQI、秩指示RI、预编码矩阵指示PMI、以及层指示LI。
  16. 根据权利要求14所述的方法,还包括:
    若所述网络侧设备发送的调度信令对应的传输模式与所述目标传输模式不同,则忽略所述网络侧设备发送的调度信令;
    其中,所述调度信令包括调度下行数据的信令或调度上行数据的信令。
  17. 根据权利要求14至16任一项所述的方法,其中,所述目标传输模式通过以下信令或信号的一种发送:
    物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
  18. 根据权利要求14所述的方法,其中,所述目标传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  19. 一种传输模式确定方法,应用于网络侧设备,包括:
    接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
    其中,所述期望传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  20. 根据权利要求19所述的方法,其中,在接收用户设备发送的变更信 息之后,还包括:
    基于所述变更信息确定反馈信息;
    向所述用户设备发送所述反馈信息,以使所述用户设备将当前传输模式设置为所述反馈信息指示的传输模式。
  21. 根据权利要求20所述的方法,其中,所述反馈信息用于指示是否同意所述期望传输模式;或,
    所述反馈信息用于指示目标传输模式。
  22. 根据权利要求20所述的方法,其中,所述基于所述变更信息确定反馈信息,包括:
    根据所述变更信息和传输模式影响因素确定所述反馈信息。
  23. 根据权利要求22所述的方法,其中,所述传输模式影响因素包括以下因素中的至少一种:
    用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
  24. 根据权利要求20至23任一项所述的方法,其中,所述期望传输模式与服务小区关联;或,
    与服务小区的目标带宽部分BWP关联。
  25. 根据权利要求20所述的方法,还包括:
    接收用户设备发送的以下信息中的至少一种:
    用户设备的剩余电量、用户设备的发热指标、上行业务的属性、下行业务的属性。
  26. 根据权利要求20所述的方法,其中,所述反馈信息通过以下信令或信号的一种发送:
    物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
  27. 根据权利要求26所述的方法,其中,在所述反馈信息通过唤醒信号发送时,所述唤醒信号的相关信息与传输模式之间具有预设对应关系,以使用户设备根据所述唤醒信号的相关信息和预设对应关系确定所述反馈信息指示的传输模式。
  28. 根据权利要求27所述的方法,其中,所述唤醒信号的相关信息包括以下至少一种:
    所述唤醒信号的序列的正交覆盖编码、所述唤醒信号的序列循环移位、所述唤醒信号的序列的根序列、所述唤醒信号的序列的加扰序列。
  29. 一种传输模式确定方法,应用于网络侧设备,包括:
    向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
  30. 根据权利要求29所述的方法,其中,在向用户设备发送目标传输模式之前,还包括:
    根据传输模式影响因素确定目标传输模式。
  31. 根据权利要求30所述的方法,其中,所述目标传输模式通过以下信令或信号的一种发送:
    物理层信令、介质访问控制MAC信令、无线资源控制RRC信令、以及唤醒信号WUS。
  32. 根据权利要求29所述的方法,其中,所述目标传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  33. 一种用户设备,包括:
    第一发送模块,用于向网络侧设备发送变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
    其中,所述期望传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  34. 一种用户设备,包括:
    第一接收模块,用于接收网络侧设备发送的目标传输模式;
    传输模式设置模块,用于将当前传输模式设置为所述目标传输模式。
  35. 根据权利要求34所述的用户设备,其中,所述目标传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  36. 一种网络侧设备,包括:
    第二接收模块,用于接收用户设备发送的变更信息,所述变更信息用于指示所述用户设备的期望传输模式;
    其中,所述期望传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  37. 一种网络侧设备,包括:
    第二发送模块,用于向用户设备发送目标传输模式,以使所述用户设备将当前传输模式设置为所述目标传输模式。
  38. 根据权利要求37所述的网络侧设备,其中,所述目标传输模式包括以下参数中的至少一种及其取值:
    接收天线数、发送天线数、接收天线端口数、发送天线端口数、接收通道数、发送通道数、最大下行层数、以及最大上行层数。
  39. 一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至13中任一项所述的方法的步骤。
  40. 一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求14至18中任一项所述的方法的步骤。
  41. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求19至28中任一项所述的方法的步骤。
  42. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求29至32中任一项所述的方法的步骤。
  43. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任 一项所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求14至18中任一项所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求19至28中任一项所述的方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求29至32中任一项所述的方法的步骤。
PCT/CN2019/077794 2018-03-30 2019-03-12 传输模式确定方法及设备 WO2019184700A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207029792A KR102356640B1 (ko) 2018-03-30 2019-03-12 전송 모드 확정 방법 및 기기
EP19777738.6A EP3780764A4 (en) 2018-03-30 2019-03-12 METHOD AND DEVICE FOR DETERMINING THE TRANSMISSION MODE
JP2020552719A JP7308858B2 (ja) 2018-03-30 2019-03-12 伝送モード決定方法及び機器
US17/033,275 US11438843B2 (en) 2018-03-30 2020-09-25 Transmission mode determination methods and devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276377.8 2018-03-30
CN201810276377.8A CN110324884B (zh) 2018-03-30 2018-03-30 传输模式确定方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/033,275 Continuation US11438843B2 (en) 2018-03-30 2020-09-25 Transmission mode determination methods and devices

Publications (1)

Publication Number Publication Date
WO2019184700A1 true WO2019184700A1 (zh) 2019-10-03

Family

ID=68060931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077794 WO2019184700A1 (zh) 2018-03-30 2019-03-12 传输模式确定方法及设备

Country Status (6)

Country Link
US (1) US11438843B2 (zh)
EP (1) EP3780764A4 (zh)
JP (1) JP7308858B2 (zh)
KR (1) KR102356640B1 (zh)
CN (1) CN110324884B (zh)
WO (1) WO2019184700A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530886A (ja) * 2018-06-15 2021-11-11 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法、ネットワークデバイス及び端末デバイス
US20220377672A1 (en) * 2021-05-24 2022-11-24 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11638217B2 (en) * 2019-10-09 2023-04-25 Qualcomm Incorporated SRS antenna switching for multiple receive antennas
CN113556805B (zh) * 2020-04-26 2022-09-27 荣耀终端有限公司 减少功耗的方法及终端
CN114868429A (zh) * 2020-07-24 2022-08-05 中兴通讯股份有限公司 用于与天线端口和面板切换相关联的上行传输的方法
CN114079878B (zh) * 2020-08-14 2023-05-23 维沃移动通信有限公司 数据传输方法、装置及通信设备
CN114389651B (zh) * 2020-10-21 2023-06-23 华为技术有限公司 调度数据传输的方法和通信装置
CN114866202A (zh) * 2021-02-03 2022-08-05 展讯通信(上海)有限公司 Csi反馈方法及装置、存储介质、终端、网络设备
CN115441986A (zh) * 2021-06-04 2022-12-06 华为技术有限公司 一种传输信息的方法及其装置
CN115515177A (zh) * 2021-06-07 2022-12-23 维沃移动通信有限公司 业务数据传输方法、装置、通信设备、存储介质及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811079A (zh) * 2012-08-08 2012-12-05 华为技术有限公司 一种实现多天线发射的方法和终端
CN106376016A (zh) * 2015-07-20 2017-02-01 北京三星通信技术研究有限公司 一种终端的传输模式间切换方法、装置及***
CN107046714A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种数据传输方法、装置和***

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341290A (ja) * 1999-05-27 2000-12-08 Canon Inc 通信装置及びその制御方法
JP4267956B2 (ja) * 2002-04-18 2009-05-27 セイコーインスツル株式会社 無線データ通信カード、電子機器、基地局システム、及び無線データ通信システム
JP4734210B2 (ja) * 2006-10-04 2011-07-27 富士通株式会社 無線通信方法
CN101355791A (zh) 2007-07-24 2009-01-28 华为技术有限公司 边缘移动终端的传输方式控制方法及***
JP2010109429A (ja) * 2008-10-28 2010-05-13 Kyocera Corp 基地局装置、無線通信端末、無線通信システムおよび無線通信方法
JP2010109405A (ja) * 2008-10-28 2010-05-13 Kyocera Corp 基地局装置、無線通信端末、無線通信システムおよび無線通信方法
CN101989873B (zh) * 2009-08-07 2014-03-19 电信科学技术研究院 上行控制信道的传输方法及装置
KR101225928B1 (ko) * 2009-09-08 2013-01-24 엘지전자 주식회사 무선 통신 시스템에서 전송 파워 제어 방법 및 장치
ES2590345T3 (es) * 2010-02-19 2016-11-21 Lg Electronics Inc. Dispositivo de terminal para controlar la potencia de transmisión de enlace ascendente y procedimiento para este
JP5482325B2 (ja) * 2010-03-12 2014-05-07 富士通モバイルコミュニケーションズ株式会社 無線通信装置
JP5291663B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
CN101938336B (zh) * 2010-08-13 2016-05-11 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和***
JP5356339B2 (ja) 2010-09-03 2013-12-04 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
JP2013058876A (ja) * 2011-09-07 2013-03-28 Sharp Corp 移動局装置、基地局装置、制御信号生成装置、通信システム、送信方法、制御信号生成方法及び送信プログラム
CN102420644B (zh) * 2011-11-04 2014-08-20 电信科学技术研究院 一种基于用户专属参考信号的发送方法、接收方法和设备
CN103138821B (zh) * 2011-11-30 2017-02-08 华为技术有限公司 一种数据传输方法、装置及***
US8897731B2 (en) * 2012-03-02 2014-11-25 Apple Inc. Methods and apparatus for adaptive receiver diversity in a wireless network
CN102664660B (zh) * 2012-04-12 2014-12-10 电信科学技术研究院 一种传输方式的选择方法和设备
EP2757731B1 (en) * 2013-01-21 2015-02-18 Fujitsu Limited MIMO Wireless Communication System
JP2014150501A (ja) * 2013-02-04 2014-08-21 Sharp Corp 移動端末装置
JP6216988B2 (ja) * 2013-02-25 2017-10-25 シャープ株式会社 移動局装置、集積回路、通信方法及び通信プログラム
US9655088B2 (en) * 2013-04-17 2017-05-16 Qualcomm Incorporated Utilizing unused uplink sequence shifts for signaling
US9578601B2 (en) * 2013-11-12 2017-02-21 Qualcomm Incorporated Methods and apparatus for reducing modem power based on a present state of charge of battery
JP2016184797A (ja) * 2015-03-25 2016-10-20 Necプラットフォームズ株式会社 無線lan通信装置、通信方法及びプログラム
US10231179B2 (en) * 2015-08-06 2019-03-12 Qualcomm Incorporated Access point standby power optimization across an arbitrary number of associated clients
EP3340713B1 (en) * 2015-08-21 2023-01-18 LG Electronics Inc. Data transmission method and device in wireless communication system
US20180262259A1 (en) * 2015-08-27 2018-09-13 Ntt Docomo, Inc. User apparatus, base station, signal reception method, and indication method
CN106452683B (zh) * 2016-12-07 2019-04-30 中国联合网络通信集团有限公司 一种lte-a***中不同传输模式的切换方法和基站
US10673601B2 (en) * 2017-07-27 2020-06-02 Qualcomm Incorporated Techniques and apparatuses for bandwidth part management
CN107493597B (zh) * 2017-09-30 2020-06-02 北京小米移动软件有限公司 降低移动终端功耗的方法、装置及***
JP2021510463A (ja) * 2017-11-16 2021-04-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法、端末装置及びネットワーク装置
KR20200111758A (ko) * 2018-03-06 2020-09-29 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 응답 정보 처리 방법, 장치 및 저장 매체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811079A (zh) * 2012-08-08 2012-12-05 华为技术有限公司 一种实现多天线发射的方法和终端
CN106376016A (zh) * 2015-07-20 2017-02-01 北京三星通信技术研究有限公司 一种终端的传输模式间切换方法、装置及***
CN107046714A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种数据传输方法、装置和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780764A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530886A (ja) * 2018-06-15 2021-11-11 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法、ネットワークデバイス及び端末デバイス
JP7220728B2 (ja) 2018-06-15 2023-02-10 オッポ広東移動通信有限公司 無線通信方法、ネットワークデバイス及び端末デバイス
US20220377672A1 (en) * 2021-05-24 2022-11-24 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication
US11683761B2 (en) * 2021-05-24 2023-06-20 Qualcomm Incorporated At least partial disablement of transmission port based on thermal condition and associated capability indication

Also Published As

Publication number Publication date
US11438843B2 (en) 2022-09-06
JP7308858B2 (ja) 2023-07-14
KR20200131892A (ko) 2020-11-24
CN110324884A (zh) 2019-10-11
JP2021519023A (ja) 2021-08-05
KR102356640B1 (ko) 2022-02-08
CN110324884B (zh) 2021-04-06
US20210014794A1 (en) 2021-01-14
EP3780764A4 (en) 2021-04-28
EP3780764A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019184700A1 (zh) 传输模式确定方法及设备
WO2020034857A1 (zh) Csi报告配置方法、终端设备和网络设备
WO2020221210A1 (zh) 部分带宽切换方法、装置、服务节点、用户终端和介质
CN110719623B (zh) 配置方法和设备
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
EP2695315B1 (en) Techniques to control paging for fixed devices
US20220095220A1 (en) Communication method and apparatus
WO2020029942A1 (zh) 波束测量的方法和装置
WO2021032029A1 (zh) 侧行链路信道状态信息传输的方法和通信装置
WO2019184696A1 (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
WO2016107330A1 (en) Transmission control methods and transmission control apparatus
WO2020221154A1 (zh) Srs功率控制方法和设备
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
WO2021062836A1 (zh) 功率调整方法及装置
EP4195567A1 (en) Signal transmission method and apparatus, and storage medium
WO2022206578A1 (zh) 发送信道状态信息报告的方法和装置
WO2023208190A1 (zh) 信息确定方法及装置
WO2022041284A1 (zh) 一种通信方法及装置
WO2023185987A1 (zh) 传输处理方法、网络设备、终端、装置及存储介质
WO2023207839A1 (zh) 一种信息处理方法、装置、网络设备及终端
WO2024022517A1 (zh) 发送节能信号的方法、配置方法、装置及设备
WO2021057147A1 (zh) 一种信号传输方法和装置
WO2020220351A1 (zh) 一种通信方法及设备
WO2019196917A9 (zh) 一种激活频域资源的方法、设备及***
CN117440528A (zh) 优先级配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552719

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207029792

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019777738

Country of ref document: EP