WO2019182065A1 - 鋳型用骨材混合物、鋳型、及び鋳型の造型方法 - Google Patents

鋳型用骨材混合物、鋳型、及び鋳型の造型方法 Download PDF

Info

Publication number
WO2019182065A1
WO2019182065A1 PCT/JP2019/011888 JP2019011888W WO2019182065A1 WO 2019182065 A1 WO2019182065 A1 WO 2019182065A1 JP 2019011888 W JP2019011888 W JP 2019011888W WO 2019182065 A1 WO2019182065 A1 WO 2019182065A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
aggregate mixture
water
aggregate
release agent
Prior art date
Application number
PCT/JP2019/011888
Other languages
English (en)
French (fr)
Inventor
知裕 青木
加藤 裕介
弘之 松原
Original Assignee
新東工業株式会社
株式会社テトラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社, 株式会社テトラ filed Critical 新東工業株式会社
Priority to KR1020207025480A priority Critical patent/KR20200130817A/ko
Priority to BR112020017417-3A priority patent/BR112020017417A2/pt
Priority to CN201980016798.XA priority patent/CN111801179A/zh
Priority to US16/981,359 priority patent/US20210001392A1/en
Priority to EP19772610.2A priority patent/EP3769861A4/en
Priority to MX2020009676A priority patent/MX2020009676A/es
Publication of WO2019182065A1 publication Critical patent/WO2019182065A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/14Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for separating the pattern from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/12Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for manufacturing permanent moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/167Mixtures of inorganic and organic binding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2206Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/24Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of oily or fatty substances; of distillation residues therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/26Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of carbohydrates; of distillation residues therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the present disclosure relates to an aggregate mixture for a mold, a mold, and a mold making method.
  • Patent Document 1 includes a bottom plate in which a lower end opening of a hollow cuboid having a rectangular parallelepiped and having a vertically penetrating hollow is closed with a bottom plate, and an injection hole through which the foamed mixture is injected is provided in the bottom plate.
  • a mixture storage means having both the function as an agitation tank for stirring the aggregate, the water-soluble binder, and water, and the function as a press-in cylinder for storing the mixture to press-fit the mixture, and further, There is disclosed a mold making apparatus provided with plug means capable of closing the injection hole.
  • an aggregate mixture containing aggregate, a binder, a foaming agent, water, and the like is agitated and foamed to generate bubbles, and the foamed aggregate mixture is heated to gold.
  • a technique for forming a mold by press-fitting into a mold cavity is known. When removing the molded mold from the mold, a part of the mold may remain in the mold cavity, or the mold may be cracked or chipped. Therefore, in order to suppress such partial remaining, cracking, and chipping, a mold release agent is applied to the cavity surface of the mold before press-filling the aggregate mixture into the mold cavity.
  • a release agent applied to the cavity surface of the mold a release agent mainly composed of a non-reactive silicone such as dimethyl silicone is generally used.
  • the operation of applying the release agent to the mold is performed every time the mold is formed, and this application operation of the release agent is performed every time the mold is simplified (for example, the time required for repeated molding cycles). It was one of the factors that hindered (shortening). In addition, the release agent may scatter in the surrounding environment during application. Therefore, it has been demanded that the work of applying a release agent to the mold when forming the mold is not required or reduced.
  • the aqueous release agent has a chain-like structure having at least one functional group selected from a carboxyl group, a carbonyl group, a silanol group, and a phenol group having a proton donating property that acts on the water-soluble binder.
  • the mold aggregate mixture according to ⁇ 1> which is a structural substance.
  • the content of the aqueous release agent is 2.0 ⁇ 10 ⁇ 7 mol / kg or more to the mold aggregate mixture as an equivalent of the functional group acting on the water-soluble binder.
  • the mold aggregate mixture according to ⁇ 2> which is 0 ⁇ 10 ⁇ 4 mol / kg or less.
  • ⁇ 4> The mold aggregate mixture according to any one of ⁇ 1> to ⁇ 3>, wherein the aqueous release agent has a performance that does not interfere with a foaming action.
  • the water-soluble binder includes at least one selected from an inorganic salt and an organic salt that act on a functional group of the aqueous release agent, and a carbohydrate that forms a glycoside bond with the aqueous release agent.
  • the mold aggregate mixture according to any one of the above items ⁇ 1> to ⁇ 4>.
  • ⁇ 6> The aggregate mixture for a mold according to any one of ⁇ 1> to ⁇ 5>, wherein the aggregate is at least one of natural silica sand and artificial sand.
  • ⁇ 7> The mold aggregate mixture according to any one of ⁇ 1> to ⁇ 6>, wherein the aggregate has a particle size (AFS index) of 40 or more and 120 or less.
  • AFS index particle size
  • a) Foam is produced in the mold aggregate mixture by stirring the aggregate mixture containing mold, water-soluble binder, water-soluble foaming agent, aqueous mold release agent, and water. And a foam aggregate mixture preparation step of preparing a foam aggregate mixture containing bubbles, b) a filling step of filling the foam aggregate mixture into a mold making space in a mold; c) a mold making step of evaporating the moisture of the filled foam aggregate mixture to solidify the foam aggregate mixture and molding a mold; d) taking out the molded mold from the mold molding space; and A method for forming a mold having
  • the present disclosure it is possible to provide a mold aggregate mixture and a mold molding method that do not require or reduce the application of a release agent to a mold when molding a mold. Moreover, the casting_mold
  • process includes not only an independent process but also a process that can be clearly distinguished from other processes as long as the purpose is achieved. Included in this term.
  • An aggregate mixture for molds according to the present embodiment (hereinafter also simply referred to as “aggregate mixture”) includes an aggregate, a water-soluble binder, a water-soluble foaming agent, an aqueous mold release agent, and water. contains.
  • the mold aggregate mixture according to the present embodiment is a composition used as a mold material.
  • template is used to include a core.
  • the aggregate material mixture for mold according to the present embodiment does not require or can reduce the application of a release agent to the mold when forming the mold.
  • the reason for this effect is assumed as follows.
  • the aggregate mixture for molds contains a release agent and the release agent is aqueous, and this aqueous release agent is good when the aggregate mixture containing water is stirred and foamed.
  • the foamed mold aggregate mixture is press-fitted into the mold cavity, and heat is applied to the aggregate mixture from the heated mold to evaporate the water and mold the mold.
  • the foamed aggregate material for mold is filled into the cavity by press-fitting and pressed against the mold. As a result, the aqueous release agent dispersed in the aggregate mixture at the interface portion between the mold and the aggregate mixture is pushed out toward the interface with the mold.
  • the aggregate mixture is heated by being in contact with the heated mold, and the action of the functional group of the aqueous release agent on the water-soluble binder is promoted by these heat and pressure. Then, the chain structure substance which is the main chain of the aqueous release agent is concentrated and immobilized at the interface.
  • the starting point of water evaporation due to heat from the interface with the mold also occurs from the inside of the cavity, and the internal pressure increases due to evaporation. For this reason, the aqueous release agent continues to be pushed out to the interface side with the mold until the molding of the mold is completed, and the chain structure substance of the aqueous release agent concentrates on the interface with the mold.
  • the mold aggregate mixture according to the present embodiment contains an aqueous release agent.
  • aqueous refers to an emulsion that is dispersed in water at room temperature (that is, 20 ° C.), and it is preferable that a mixed solution with pure water of the same volume at 1 atm and 20 ° C. exhibits a uniform appearance.
  • release agent refers to an additive that can improve the mold release performance of the surface of the mold formed by inclusion in the aggregate mixture as compared with the mold formed without inclusion.
  • the aqueous release agent is preferably a substance having a chain structure (referred to herein as a “chain structure substance”).
  • chain structure substance for example, a polymer compound having a carbon chain in which carbon atoms are arranged or a siloxane chain that is a silicone skeleton is represented.
  • An oil component is dispersed in an aqueous emulsion. Many oil components have a defoaming action, but in this embodiment, the water release agent is imparted with a performance that does not hinder the foaming action by appropriately selecting the surfactant contained in the emulsion. be able to. By doing so, stable foaming can be performed, and it becomes easy to control the viscosity of the aggregate mixture at the time of filling the mold within a required range.
  • the water-based mold release agent which has the performance which does not prevent a foaming effect
  • action is demonstrated.
  • [viscosity B] When it is 100 times or less of [viscosity B] (Pa ⁇ s) when foamed by stirring and mixing at 200 rpm for 5 minutes without adding a “release agent”, the aqueous release agent is “foamed” “Performance not hindering action”.
  • [viscosity A] is preferably 10 times or less with respect to [viscosity B], and is preferably closer to 1 time.
  • an aqueous mold release agent has a functional group which acts on a water-soluble binder.
  • the functional group in this embodiment is a functional group having a proton donating property that imparts acidic properties.
  • the functional group include a phenol group (—C 6 H 4 —OH), a carboxyl group (carboxy group, —COOH), a carbonyl group (—C ( ⁇ O) —), and a silanol group (—SiH 2 OH).
  • the functional group in this embodiment is not limited to the example of the functional group described above. That is, as the functional group in the present embodiment, any functional group having a proton donating property can be used because it acts on a water-soluble binder.
  • the content of the aqueous release agent is 2.0 x 10 -7 mol in terms of the amount of the functional group in the aggregate mixture, that is, the equivalent of the functional group relative to the aggregate mixture.
  • / Kg or more and 1.0 ⁇ 10 ⁇ 4 mol / kg or less is preferable, and 1.0 ⁇ 10 ⁇ 6 mol / kg or more and 4.0 ⁇ 10 ⁇ 5 mol / kg or less is more preferable.
  • This functional group is added in an appropriate amount than the aqueous release agent.
  • the equivalent of the functional group contained in the aggregate mixture is 2.0 ⁇ 10 ⁇ 7 mol / kg or more, the mold releasability from the mold is further improved.
  • the functional group equivalent is 4.0 ⁇ 10 ⁇ 5 mol / kg or less, stable foaming can be performed, and the viscosity of the aggregate mixture when filling the mold is controlled within the required range. It becomes easy to do.
  • the aggregate in the present embodiment is not particularly limited, and any conventionally known aggregate can be used.
  • aggregates such as silica sand (for example, natural silica sand), alumina sand, olivine sand, chromite sand, zircon sand, and mullite sand can be used.
  • various artificial aggregates may be used.
  • at least natural silica sand and artificial sand are particularly preferable from the viewpoint that a sufficient mold strength can be easily obtained even if the amount of the binder added to the aggregate is reduced and a high aggregate regeneration rate is easily obtained.
  • One is preferred.
  • the aggregate particle size (that is, AFS index) in the present embodiment is preferably AFS; 30 (JIS; 38) or more and AFS; 150 (JIS; 243) or less, and AFS; 40 (JIS; 52) or more and AFS; 120 ( JIS; 184) or less is more preferable.
  • the particle size (that is, AFS index) is AFS; 30 or more, the fluidity is excellent, and the filling property when the mold is formed is improved.
  • AFS is 150 or less, air permeability as a mold is kept good.
  • AFS is 40 or more, the aggregate is fine, the transferability of a finely shaped mold is improved, and the mold strength is also increased.
  • the AFS is 120 or less, the sand is rough to some extent, the handling property is improved, and the regeneration can be easily performed.
  • a particle size represents the particle size index measured by the particle size test method of the foundry sand described in JIS Z 2601-1993 appendix 2.
  • the shape of the aggregate in the present embodiment is not particularly limited, and may be any shape such as a round shape, a rounded corner shape, a polygonal shape, and a pointed square shape.
  • a round shape is particularly preferred from the viewpoints of excellent fluidity, improved filling properties when molding a mold, and good air permeability as a mold.
  • Water-soluble binder The water-soluble binder is contained in order to impart a caking force to the aggregate from the viewpoint of favorably maintaining the shape of the mold at room temperature and the temperature range of the molten metal to be poured.
  • water-soluble means that it is soluble in water at normal temperature (that is, 20 ° C.), and it is preferable that a mixed solution with pure water of the same volume at 1 atm 20 ° C. shows a uniform appearance.
  • water-soluble binder in the present embodiment examples include sodium silicate (so-called water glass), potassium silicate (so-called potassium silicate), ammonium silicate, orthophosphate, pyrophosphate, trimetaphosphate, and polymetaphosphate.
  • sodium silicate sodium silicate
  • potassium silicate potassium silicate
  • ammonium silicate orthophosphate
  • pyrophosphate pyrophosphate
  • trimetaphosphate polymetaphosphate
  • polymetaphosphate examples include inorganic salts and organic salts such as salts, colloidal silica, colloidal alumina, and alkyl silicate that act on the functional group of the aqueous release agent.
  • sodium silicate sodium silicate
  • potassium silicate sodium silicate
  • potassium silicate sodium silicate
  • potassium silicate sodium silicate
  • potassium silicate sodium silicate (so-called potassium silicate) are more preferable.
  • Sodium silicate (so-called water glass) preferably has a molar ratio (that is, a molecular ratio of SiO 2 ⁇ Na 2 O) of 1.2 or more and 3.8 or less, and more preferably a molar ratio of 2.0 or more and 3. Those of 3 or less are more preferable.
  • a molar ratio that is, a molecular ratio of SiO 2 ⁇ Na 2 O
  • Those of 3 or less are more preferable.
  • the molar ratio is not less than the above lower limit, there is an advantage that the deterioration of the water glass can be suppressed even during long-term storage at a low temperature.
  • the viscosity of the binder is easily adjusted when the molar ratio is not more than the above upper limit.
  • a water-soluble binder the water-soluble binder which has a foamability mentioned later can also be used.
  • a water-soluble binder may use only 1 type from what was enumerated above, for example, and may use 2 or more types together.
  • the content of the water-soluble binder in the aggregate is preferably set according to the type of binder and aggregate used, but is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0. More preferably, the content is 1% by mass or more and 10% by mass or less.
  • Water-soluble foaming agent when forming a casting mold using the aggregate mixture according to the present embodiment, it is preferable to use a water-soluble foaming agent and mix with aggregate, water-soluble binder, etc., and stir to cause foaming. That is, it is preferable to mold a mold after preparing a foamed aggregate mixture to improve fluidity.
  • water-soluble means that it is soluble in water at normal temperature (that is, 20 ° C.), and it is preferable that a mixed solution with pure water of the same volume at 1 atm 20 ° C. shows a uniform appearance.
  • the water-soluble foaming agent preferably further has a function as a binder (that is, a water-soluble binder having foamability).
  • the water-soluble binder is an organic salt that has foamability and acts with the functional group of the aqueous release agent, and the aqueous release agent.
  • a water-soluble binder that is a carbohydrate that forms a glycosidic bond with the mold is preferred.
  • the water-soluble binder having foaming properties include surfactants (specifically, anionic surfactants, nonionic surfactants, amphoteric surfactants, etc.), polyvinyl alcohol or derivatives thereof, saponins, starches.
  • saccharides include, for example, cellulose and fructose as polysaccharides, acarbose and the like as tetrasaccharides, raffinose and maltotriose as trisaccharides, and maltose, sucralose and trehalose as disaccharides.
  • monosaccharides include glucose, fructose, and other oligosaccharides.
  • anionic surfactant examples include fatty acid sodium, monoalkyl sulfate, linear alkylbenzene sulfonate sodium, sodium lauryl sulfate, and sodium ether sulfate.
  • Nonionic surfactants include polyoxyethylene alkyl ethers, fatty acid sorbitan esters, and alkyl polyglucosides.
  • Amphoteric surfactants include cocamidopropyl betaine, cocamidopropyl hydroxysultain, and lauryl dimethylaminoacetic acid betaine.
  • water-soluble foaming agent for example, only one kind from those listed above may be used, or two or more kinds may be used in combination.
  • the content of the water-soluble foaming agent in the present embodiment with respect to the aggregate is preferably set according to the type of foaming agent and aggregate used.
  • the total content of the anionic surfactant, nonionic surfactant, and amphoteric surfactant is preferably 0.001% by mass to 0.1% by mass and more preferably 0.005% by mass to 0% with respect to the aggregate. .05% by mass or less is more preferable.
  • the total content of polyvinyl alcohol and derivatives thereof, saponin, starch and derivatives thereof, and other sugars is preferably 0.1% by mass or more and 20.0% by mass or less, more preferably 0.2% by mass or more and 5% by mass with respect to the aggregate. The mass% or less is more preferable.
  • the mold aggregate mixture according to the present embodiment contains water.
  • the content of water in the present embodiment relative to the aggregate is preferably set depending on the type of binder and aggregate used, but is preferably 0.5% by mass or more and 10.0% by mass or less, and more preferably 1.5%. More preferably, it is at least 7.5% by mass.
  • compositions [Other compositions] Moreover, conventionally well-known compositions, such as a catalyst and an oxidation accelerator, can be added to the aggregate material for molds concerning this embodiment besides the above.
  • the production of an aggregate mixture for molds according to this embodiment is performed by mixing the various components described above.
  • the order of addition and the kneading method are not particularly limited.
  • a kneading apparatus for kneading the above components is not particularly limited, and a conventionally known kneading apparatus is used.
  • a rotating / revolving mixer, an Eirich intensive mixer, a Shinto Simpson mix muller, or the like is used.
  • the molding of the mold using the mold aggregate mixture according to the present embodiment may be a molding by a molding machine or a molding by hand.
  • the above components may be mixed, stirred and foamed to form a foamed aggregate mixture, which is then press-fitted into a heated mold making space (so-called cavity) in a mold making mold for filling and molding.
  • a heated mold making space space (so-called cavity) in a mold making mold for filling and molding.
  • a mold by a molding method including the following steps a) to d). a) Aggregate, water-soluble binder, water-soluble foaming agent, water-based mold release agent, and aggregate mixture containing water are agitated to cause foaming in the aggregate mixture, and foamed aggregate containing bubbles B) a foam aggregate mixture preparation step for preparing a mixture; b) a filling step for filling the foam aggregate mixture in a mold forming space (so-called cavity) in a mold; c) evaporating moisture of the filled foam aggregate mixture; Mold molding step of solidifying the foam aggregate mixture and molding a mold d) Step of taking out the molded mold from the mold molding space
  • the aqueous mold release agent present on the mold surface greatly affects the mold release from the mold, as described above, the filling density of the aqueous mold release agent on the surface is increased. The mold releasability by the agent is exhibited better. Moreover, since the filling density of the aqueous release agent on the surface is increased, it is effective for reducing the amount of the aqueous release agent added.
  • the solid content that is, aggregate, water-soluble viscosity in the cross section and the surface of the central portion of the mold. It can be determined by visually checking the degree of clogging of the binder, the water-soluble foaming agent, and the aqueous release agent.
  • the aggregate mixture is preferably foamed until it becomes a whipped cream in order to improve the filling property into the mold making space and to improve the filling density.
  • the viscosity of the foamed aggregate mixture (that is, the aggregate mixture for casting after stirring) is preferably 0.5 Pa ⁇ s or more and 10 Pa ⁇ s or less, and the viscosity is further 0.5 Pa ⁇ s. More preferably, it is 8 Pa ⁇ s or less.
  • the viscosity of the foamed aggregate mixture (that is, the cast aggregate mixture after stirring) is measured as follows.
  • the foamed aggregate mixture is put into a cylindrical container with an inner diameter of 42 mm having pores with a diameter of 6 mm at the bottom, and then a cylindrical weight having a weight of 1 kg and a diameter of 40 mm is mounted in the cylindrical container. By applying pressure with the weight of the weight, the foamed aggregate mixture is discharged from the pores of the cylindrical container. At this time, the time required for the weight to move by 50 mm is measured, and the viscosity of the foamed aggregate mixture is determined by the following mathematical formula. In addition, the temperature at the time of viscosity measurement shall be 20 degreeC.
  • the foamed aggregate mixture can be filled into the mold forming space (so-called cavity) by direct pressurization with a piston in the cylinder, filling by supplying compressed air into the cylinder, pumping with a screw or the like, and pouring. and so on.
  • direct filling with a piston and filling with compressed air are preferred from the filling speed and filling stability by uniform pressurization to the foam aggregate mixture.
  • the evaporation of the moisture in the foamed aggregate mixture filled in the mold making space is caused by, for example, heat from the heated mold, flow of heated air to the mold making space (so-called cavity), and this It is performed by a method such as a combination of both.
  • the mold manufactured using the aggregate mixture for mold according to the present embodiment is used for casting various metals or alloys.
  • the material of the molten metal used for casting include the following.
  • the following pouring temperature represents the temperature at which the following materials dissolve to an appropriate level for pouring.
  • Aluminum or aluminum alloy (pouring temperature: 670 ° C to 700 ° C, for example)
  • Iron or iron alloy (pouring temperature: 1300 ° C to 1400 ° C, for example)
  • Bronze pour temperature: eg 1100 ° C to 1250 ° C
  • Brass Purouring temperature: 950 ° C to 1100 ° C, for example)
  • Casting is performed, for example, by pouring a molten metal made of the materials listed above into a space between a core as a mold and a mold, and then cooling to remove the mold.
  • part means “part by mass” unless otherwise specified.
  • Example A1> The material having the composition shown in Table 1 was stirred and mixed at about 200 rpm for about 5 minutes using a mixer (manufactured by Aikosha Seisakusho Ltd.) and foamed to prepare a foamed aggregate mixture.
  • the amount of the aqueous release agent (LC-9 prototype) was 0.05 part by mass, and the equivalent of the functional group to the aggregate mixture was 1.0 ⁇ 10 ⁇ 6 mol / kg.
  • this foamed aggregate mixture was pressurized and filled at a cylinder surface pressure of 0.4 MPa into a cavity with a capacity of about 80 cm 3 in a bending test mold heated to 220 ° C. without applying a release agent. (Filling step). Next, the foamed aggregate mixture filled in the heated mold was allowed to stand for 2 minutes, the moisture was evaporated by the heat of the mold, and the foamed aggregate mixture was solidified (solidification step). Thereafter, the core as a mold was taken out from the mold cavity.
  • the mold (that is, the core) could be removed without remaining in the mold cavity and without causing cracks and chipping of the mold.
  • a bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. The bending strength was measured in accordance with JACT test method SM-1 and bending strength test method. As a result, a strength of 3.5 MPa was obtained. If the bending strength of the mold is 2 MPa or more, it is strong enough to handle the mold and can be used sufficiently as a mold.
  • Example A2 Example A1 except that the amount of the aqueous release agent (LC-9 prototype) was 0.5 parts by mass, that is, the functional group equivalent to the aggregate mixture was changed to 1.0 ⁇ 10 ⁇ 5 mol / kg. Similarly, a core as a mold was obtained. The mold (that is, the core) could be removed without remaining in the mold cavity and without causing cracks and chipping of the mold. A bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 3.0 MPa was obtained.
  • Example A3 Example A1 except that the amount of the aqueous release agent (LC-9 prototype) was 0.01 parts by mass, that is, the functional group equivalent to the aggregate mixture was changed to 2.0 ⁇ 10 ⁇ 7 mol / kg. Similarly, a core as a mold was obtained. The mold (that is, the core) could be removed without remaining in the mold cavity and without causing cracks and chipping of the mold. A bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 3.2 MPa was obtained.
  • Example A4> instead of the aqueous release agent (LC-9 trial manufacture), the trial liquid 8 (manufactured by Tetra Co., Ltd.) having a different chain structure is used, and the amount is 0.1 parts by mass, that is, the equivalent of functional groups to the aggregate mixture A core as a template was obtained in the same manner as in Example A1, except that the value was changed to 3.0 ⁇ 10 ⁇ 5 mol / kg.
  • the mold that is, the core
  • a bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 3.0 MPa was obtained.
  • this foamed aggregate mixture was pressurized and filled at a cylinder surface pressure of 0.4 MPa into a cavity with a capacity of about 80 cm 3 in a bending test mold heated to 220 ° C. without applying a release agent. (Filling step). Next, the foamed aggregate mixture filled in the heated mold was allowed to stand for 2 minutes, the moisture was evaporated by the heat of the mold, and the foamed aggregate mixture was solidified (solidification step). Thereafter, the core as a mold was taken out from the mold cavity.
  • the mold (that is, the core) partially remained in the cavity of the mold, and because the mold was cracked and chipped, a bending test piece could not be produced.
  • Example B1> The material having the composition shown in Table 3 was stirred and mixed at about 200 rpm for about 5 minutes using a mixer (manufactured by Aikosha Seisakusho Co., Ltd.) and foamed to prepare a foamed aggregate mixture.
  • the amount of the aqueous release agent (LC-9 prototype) was 0.05 part by mass, and the equivalent of the functional group to the aggregate mixture was 1.0 ⁇ 10 ⁇ 6 mol / kg.
  • this foamed aggregate mixture was pressurized and filled at a cylinder surface pressure of 0.4 MPa into a cavity with a capacity of about 80 cm 3 in a bending test mold heated to 220 ° C. without applying a release agent. (Filling step). Next, the foamed aggregate mixture filled in the heated mold was allowed to stand for 2 minutes, the moisture was evaporated by the heat of the mold, and the foamed aggregate mixture was solidified (solidification step). Thereafter, the core as a mold was taken out from the mold cavity.
  • the mold (that is, the core) could be removed without remaining in the mold cavity and without causing cracks and chipping of the mold.
  • a bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 3.2 MPa was obtained.
  • Example B2 The amount of the aqueous release agent (LC-9 trial manufacture (manufactured by Tetra Co., Ltd.)) was changed to 0.5 parts by mass, that is, the functional group equivalent to the aggregate mixture was changed to 1.0 ⁇ 10 ⁇ 5 mol / kg. Obtained a core as a mold in the same manner as in Example B1. The mold (that is, the core) could be removed without remaining in the mold cavity and without causing cracks and chipping of the mold. A bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 2.8 MPa was obtained.
  • LC-9 trial manufacture manufactured by Tetra Co., Ltd.
  • the mold that is, the core
  • a bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 3.3 MPa was obtained.
  • Example B4> instead of the aqueous release agent (LC-9 trial manufacture), the trial liquid 8 (manufactured by Tetra Co., Ltd.) having a different chain structure is used, and the amount is 0.1 parts by mass, that is, the equivalent of functional groups to the aggregate mixture
  • a core as a template was obtained in the same manner as in Example B1, except that was changed to 3.0 ⁇ 10 ⁇ 5 mol / kg.
  • the mold that is, the core
  • a bending test piece was prepared from this mold, and the bending strength was measured after 60 minutes. As a result, a strength of 4.1 MPa was obtained.
  • this foamed aggregate mixture was pressurized and filled at a cylinder surface pressure of 0.4 MPa into a cavity with a capacity of about 80 cm 3 in a bending test mold heated to 220 ° C. without applying a release agent. (Filling step). Next, the foamed aggregate mixture filled in the heated mold was allowed to stand for 2 minutes, the moisture was evaporated by the heat of the mold, and the foamed aggregate mixture was solidified (solidification step). Thereafter, the core as a mold was taken out from the mold cavity.
  • the mold (that is, the core) partially remained in the cavity of the mold, and because the mold was cracked and chipped, a bending test piece could not be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

骨材と、水溶性粘結剤と、水溶性発泡剤と、水性離型剤と、水と、を含有する鋳型用骨材混合物。

Description

鋳型用骨材混合物、鋳型、及び鋳型の造型方法
 本開示は、鋳型用骨材混合物、鋳型、及び鋳型の造型方法に関する。
 従来から、粒子状の骨材、水溶性バインダ、及び水を攪拌して得た発泡状の混合物を、加熱された金型のキャビティに圧入方式によって充填して鋳型を造型する鋳型造型装置が用いられている。
 この鋳型造型装置として、例えば特許文献1には、直方体を成すとともに上下に貫通する中空を有する中空直方体の下端開口部を底板で閉鎖しかつこの底板に前記発泡混合物を射出する射出孔を透設して、前記骨材、水溶性バインダ、及び水を攪拌する攪拌槽としての機能と、前記混合物を圧入すべくこれを収納する圧入筒としての機能と、を併せ持つ混合物収納手段を設け、さらに、前記射出孔を閉鎖可能な栓手段を設けた鋳型造型装置が開示されている。
  〔特許文献1〕再表2005-89984号公報
 特許文献1に記載されるように、骨材、粘結剤、発泡剤及び水等を含む骨材混合物を攪拌し発泡させて気泡を生じさせ、この発泡状の骨材混合物を加熱された金型のキャビティに圧入充填して鋳型を造型する技術が知られている。なお、造型された鋳型を金型から取り外す際に、鋳型が金型のキャビティに一部残存したり、鋳型に割れや欠けが生じることがある。そこで、こうした一部残存、割れ、及び欠け等の抑制のため、骨材混合物の金型キャビティへの圧入充填前に、金型のキャビティ面に離型剤を塗布することが行なわれている。なお、金型のキャビティ面に塗布する離型剤としては、ジメチルシリコーン等の非反応型シリコーン系を主成分とする離型剤が一般に用いられている。
 ただし、金型へ離型剤を塗布する作業は鋳型を造型する毎に毎回実施されており、この離型剤の毎回の塗布作業が、鋳型造型の簡易化(例えば繰り返しの造型サイクルにおける時間の短縮化)を阻む一因となっていた。また、塗布の際に離型剤が周囲環境中に飛散することがあった。
 そのため、鋳型を造型する際の金型への離型剤塗布の作業を必要としない又は低減することが求められていた。
 本開示は、鋳型を造型する際の金型への離型剤塗布を必要としないか又は低減することができる鋳型用骨材混合物、及び鋳型の造型方法を提供することを目的とする。
 また、離型性に優れた鋳型を提供することを目的とする。
 前記課題は、以下の手段により解決される。
<1> 骨材と、水溶性粘結剤と、水溶性発泡剤と、水性離型剤と、水と、を含有する鋳型用骨材混合物。
<2> 前記水性離型剤が、前記水溶性粘結剤に作用するプロトン供与性を有する、カルボキシル基、カルボニル基、シラノール基、及びフェノール基から選択される少なくとも一つの官能基を有する鎖状構造物質である前記<1>に記載の鋳型用骨材混合物。
<3> 前記水性離型剤の含有量が、前記水溶性粘結剤に作用する前記官能基の当量として、前記鋳型用骨材混合物に対し2.0×10-7mol/kg以上1.0×10-4mol/kg以下である前記<2>に記載の鋳型用骨材混合物。
<4> 前記水性離型剤が、発泡作用を妨げない性能を有する前記<1>~<3>のいずれか一に記載の鋳型用骨材混合物。
<5> 前記水溶性粘結剤が、前記水性離型剤の有する官能基と作用する無機塩及び有機塩、並びに前記水性離型剤とグリコシド結合を形成する炭水化物から選択される少なくとも一つを含む前記<1>~<4>のいずれか一に記載の鋳型用骨材混合物。
<6> 前記骨材が、天然珪砂及び人工砂の少なくとも一方である前記<1>~<5>のいずれか一に記載の鋳型用骨材混合物。
<7> 前記骨材の粒度(AFS指数)が40以上120以下である前記<1>~<6>のいずれか一に記載の鋳型用骨材混合物。
<8> 前記水溶性発泡剤が界面活性剤である前記<1>~<7>のいずれか一に記載の鋳型用骨材混合物。
<9> 発泡による気泡を含有する前記<1>~<8>のいずれか一に記載の鋳型用骨材混合物。
<10> 骨材と、水溶性粘結剤と、水溶性発泡剤と、水性離型剤と、を含有する鋳型。
<11> a)骨材、水溶性粘結剤、水溶性発泡剤、水性離型剤、及び水を含有する鋳型用骨材混合物を攪拌することにより該鋳型用骨材混合物中で発泡を生じさせ、気泡を含む発泡骨材混合物を調製する発泡骨材混合物調製工程と、
 b)前記発泡骨材混合物を金型における鋳型造型用の空間に充填する充填工程と、
 c)充填した前記発泡骨材混合物の水分を蒸発させて前記発泡骨材混合物を固化させ、鋳型を造型する鋳型造型工程と、
 d)造型された前記鋳型を前記鋳型造型用の空間から取り出す取出工程と、
 を有する鋳型の造型方法。
 本開示によれば、鋳型を造型する際の金型への離型剤塗布を必要としないか又は低減することができる鋳型用骨材混合物、及び鋳型の造型方法を提供することができる。
 また、離型性に優れた鋳型を提供することができる。
 以下、本開示における実施形態について詳細に説明する。
 なお、本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
 本実施形態に係る鋳型用骨材混合物(以下単に「骨材混合物」とも称す)は、骨材と、水溶性粘結剤と、水溶性発泡剤と、水性離型剤と、水と、を含有する。
 本実施形態に係る鋳型用骨材混合物は、鋳型の材料として用いられる組成物である。なお、本明細書において鋳型とは中子を含む意味で用いる。
 本実施形態に係る鋳型用骨材混合物は、前記の構成を備えることにより、鋳型を造型する際の金型への離型剤塗布を必要としないか又は低減することができる。
 この効果が奏される理由は以下のように推察される
 本実施形態に係る鋳型用骨材混合物は、離型剤が含有されていると共にその離型剤が水性であり、水を含む骨材混合物を攪拌し発泡させる際にこの水性離型剤が良好に分散される。この発泡された鋳型用骨材混合物が金型のキャビティに圧入され、加熱されている金型から骨材混合物に熱が与えられて水分が蒸発し、鋳型が造型される。なお、発泡した鋳型用骨材混合物は、圧入によりキャビティ内に充填され、金型へ押し付けられる。これにより、金型と骨材混合物の界面部分において骨材混合物中に分散している水性離型剤が、金型との界面側に押し出される。さらに界面部分では、加熱した金型と接することで骨材混合物に熱が与えられ、これらの熱と圧力により水性離型剤が有する官能基の水溶性粘結剤への作用が促進される。そして、水性離型剤の主鎖である鎖状構造物質が界面にて集中し固定化される。また、金型との界面からの熱による水分の蒸発の起点がキャビティ内部方向からも起こり、蒸発により内圧が上昇する。そのため水性離型剤が金型との界面側に、鋳型の造型が終わるまで押し出され続けて、金型との界面には水性離型剤の鎖状構造物質が集中する。このような仕組みで、鋳型を金型から取り外す際に鋳型に含まれる離型剤によって良好な離型性能が発揮され、金型への離型剤塗布の作業を必要としないか又は低減することができるものと考えられる。
 そして、金型への離型剤塗布の作業を必要としないか又は低減することができるため、鋳型造型の簡易化(例えば繰り返しの造型サイクルにおける時間の短縮化)を達成することができる。
 さらに、離型剤を金型へ塗布する際に生じる該離型剤の飛散が低減される。また、骨材混合物中に含有される水性離型剤は、上記の通り水に良好に分散していることから骨材混合物の外に飛散し難い状態となっている。これらにより、離型剤の周囲環境への飛散も抑制されるものと考えられる。
 次いで、本実施形態に係る鋳型用骨材混合物を構成する各成分について詳細に説明する。
 〔水性離型剤〕
 本実施形態に係る鋳型用骨材混合物は、水性離型剤を含有する。
 ここで、「水性」とは、常温(つまり20℃)で水に分散するエマルションであることを指し、1気圧20℃で同容量の純水との混合液が均一な外観を示すことが好ましい。
 また、「離型剤」とは、骨材混合物に含有させて造型した鋳型の表面の離型性能を、含有させずに造型した鋳型よりも向上させ得る添加物を指す。
 -鎖状構造物質-
 水性離型剤は、鎖状構造を有する物質(本明細書において「鎖状構造物質」と称す)であることが好ましい。鎖状構造物質としては、例えば炭素原子が並ぶ炭素鎖やシリコーンの骨格であるシロキサン鎖を有する高分子化合物を表す。
 ・発泡作用を妨げない性能
 水性のエマルションには、油成分が分散している。なお、油成分は消泡作用を有するものが多いが、本実施形態ではエマルションに含まれる界面活性剤を適切に選択する等の方法により、水性離型剤に発泡作用を妨げない性能を付与することができる。こうすることで、安定した発泡を行うことができ、金型に充填する際の骨材混合物の粘度を求められる範囲に制御し易くなる。
 ここで、発泡作用を妨げない性能を有する水性離型剤について説明する。骨材の一種であるフラタリーサンド100質量部、水溶性粘結剤の一種であるポリビニルアルコール1.0質量部、水溶性発泡剤の一種である陰イオン界面活性剤0.03質量部、及び水5.0質量部に対し、さらに「水性離型剤」1.0質量部を加えて200rpmで5分間攪拌混合して発泡させた際の〔粘度A〕(Pa・s)が、「水性離型剤」を加えずに200rpmで5分間攪拌混合して発泡させた際の〔粘度B〕(Pa・s)に対して、100倍以下である場合に、その水性離型剤を「発泡作用を妨げない性能」を有するものとする。
 なお、〔粘度A〕は〔粘度B〕に対して、さらに10倍以下であることが好ましく、1倍に近いほど好ましい。
 ・官能基
 水性離型剤は、水溶性粘結剤に作用する官能基を有することが好ましい。ここで、前記官能基について説明する。本実施形態における前記官能基は、酸性の性質を付与するプロトン供与性を有する官能基である。前記官能基の例としては、フェノール基(-C-OH)、カルボキシル基(カルボキシ基、-COOH)、カルボニル基(-C(=O)-)、及びシラノール基(-SiHOH)がある。ただし、本実施形態における官能基は、前記に記した官能基の例に限定されるものではない。つまり、本実施形態における官能基としては、プロトン供与性を有するものであれば、水溶性粘結剤に作用するものであるため、用いることができる。
 ・骨材混合物に含まれる官能基の当量
 水性離型剤の含有量は、骨材混合物中における前記官能基の量、つまり骨材混合物に対する前記官能基の当量で2.0×10-7mol/kg以上1.0×10-4mol/kg以下であることが好ましく、1.0×10-6mol/kg以上4.0×10-5mol/kg以下がより好ましい。この官能基は水性離型剤より然るべき量で加えられるものである。
 骨材混合物中に含まれる官能基の当量が2.0×10-7mol/kg以上であることで、鋳型の金型からの離型性がより向上する。一方、官能基の当量が4.0×10-5mol/kg以下であることで、安定した発泡を行うことができ、金型に充填する際の骨材混合物の粘度を求められる範囲に制御し易くなる。
 〔骨材〕
 本実施形態における骨材としては、特に限定されず従来公知のいかなるものも用いることができる。例えば、珪砂(例えば天然珪砂)、アルミナ砂、オリビン砂、クロマイト砂、ジルコン砂、及びムライト砂等の骨材が挙げられる。更には、各種の人工骨材(いわゆる人工砂)を用いてもよい。
 これらの中でも、骨材に対し粘結剤の添加量を低減しても十分な鋳型強度が得られ易く且つ高い骨材再生率が得られ易いとの観点で、特に天然珪砂及び人工砂の少なくとも一方が好ましい。
 本実施形態における骨材の粒度(つまりAFS指数)としては、AFS;30(JIS;38)以上AFS;150(JIS;243)以下が好ましく、AFS;40(JIS;52)以上AFS;120(JIS;184)以下がより好ましい。
 粒度(つまりAFS指数)がAFS;30以上であることにより、流動性に優れ、鋳型を造型する際の充填性が向上する。一方、AFS;150以下であることにより鋳型として通気性が良好に保たれる。特に、AFS;40以上であると、骨材が細かく、微細な形状の金型の転写性が向上し、かつ鋳型強度も高められる。一方、AFS120以下であると、砂がある程度粗くハンドリング性が向上し、再生も容易に行うことができる。
 尚、本明細書において、粒度とはJIS Z 2601-1993付属書2に記載される鋳物砂の粒度試験方法にて測定された粒度指数を表す。
 本実施形態における骨材の形状としては、特に限定されるものではなく、丸型、角丸型、多角型、及び尖扁角型等、いかなる形状であってもよい。なお、流動性に優れ鋳型を造型する際の充填性が向上し、また鋳型として通気性が良好に保たれるとの観点から、特に丸型が好ましい。
 〔水溶性粘結剤〕
 水溶性粘結剤は、常温及び注湯される溶湯の温度域において鋳型の形状を良好に保持させるとの観点で、骨材に粘結力を付与するために含有される。
 なお、水溶性とは常温(つまり20℃)で水に可溶性であることを指し、1気圧20℃で同容量の純水との混合液が均一な外観を示すことが好ましい。
 本実施形態における水溶性粘結剤としては、例えば珪酸ナトリウム(所謂水ガラス)、珪酸カリウム(所謂珪酸カリ)、珪酸アンモニウム、オルソりん酸塩、ピロりん酸塩、トリメタりん酸塩、ポリメタりん酸塩、コロイダルシリカ、コロイダルアルミナ、およびアルキルシリケート等の、水性離型剤の有する官能基と作用する無機塩および有機塩が挙げられる。
 これらの中でも、珪酸ナトリウム(所謂水ガラス)、および珪酸カリウム(所謂珪酸カリ)がより好ましい。
 なお、珪酸ナトリウム(所謂水ガラス)としてはモル比(つまりSiO・NaOの分子比)が1.2以上3.8以下のものが好ましく、更にはモル比が2.0以上3.3以下のものがより好ましい。前記モル比が上記下限値以上であることにより低温での長期保管においても水ガラスの変質が抑制できるとの利点がある。一方、前記モル比が上記上限値以下であることにより粘結剤の粘度を調整し易いとの利点がある。
 また、水溶性粘結剤としては、後述する、発泡性を有する水溶性粘結剤を用いることもできる。
 なお、水溶性粘結剤は、例えば上記に列挙されたものの中から1種のみを用いても、2種以上を併用してもよい。
 本実施形態における水溶性粘結剤の骨材に対する含有量は、用いる粘結剤及び骨材の種類によってそれぞれ設定することが好ましいが、0.1質量%以上20質量%以下が好ましく、更に0.1質量%以上10質量%以下がより好ましい。
 〔水溶性発泡剤〕
 また、本実施形態に係る骨材混合物を用いて鋳型を造型するに際しては、水溶性発泡剤を用いて骨材、水溶性粘結剤等と共に混合し攪拌して発泡を生じさせることが好ましい。つまり、発泡した骨材混合物を調製して流動性を向上した上で、鋳型を造型することが好ましい。
 なお、水溶性とは常温(つまり20℃)で水に可溶性であることを指し、1気圧20℃で同容量の純水との混合液が均一な外観を示すことが好ましい。
 上記水溶性発泡剤としては、さらに粘結剤としての機能を併せ持つこと(つまり発泡性を有する水溶性粘結剤)が好ましい。また、骨材混合物における上記の発泡をより効率的に生じさせる観点から、発泡性を有し、且つ水性離型剤の有する官能基と作用する有機塩である水溶性粘結剤、および水性離型剤とグリコシド結合を形成する炭水化物である水溶性粘結剤が好ましい。
 発泡性を有する水溶性粘結剤としては、例えば界面活性剤(具体的には、陰イオン界面活性剤、非イオン界面活性剤、両性界面活性剤等)、ポリビニルアルコールもしくはその誘導体、サポニン、澱粉もしくはその誘導体、及びその他の糖類等が挙げられる。なお、その他の糖類としては、例えば、多糖類としてセルロース、及びフルクトース等が、四糖類としてアカルボース等が、三糖類としてラフィノース、及びマルトトリオース等が、二糖類としてマルトース、スクラトース、及びトレハロース等が、単糖類としてブドウ糖、果糖、及びその他オリゴ糖等が挙げられる。
 陰イオン界面活性剤としては、脂肪酸ナトリウム、モノアルキル硫酸塩、直鎖アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、及びエーテル硫酸ナトリウムなどがある。非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、及びアルキルポリグルコシドなどがある。両性界面活性剤としては、コカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン、及びラウリルジメチルアミノ酢酸ベタインなどがある。
 水溶性発泡剤は、例えば上記に列挙されたものの中から1種のみを用いても、2種以上を併用してもよい。
 本実施形態における水溶性発泡剤の骨材に対する含有量は、用いる発泡剤及び骨材の種類によってそれぞれ設定することが好ましい。
 陰イオン界面活性剤、非イオン界面活性剤、及び両性界面活性剤の総含有量は、骨材に対し0.001質量%以上0.1質量%以下が好ましく、更に0.005質量%以上0.05質量%以下がより好ましい。
 ポリビニルアルコール及びその誘導体、サポニン、澱粉及びその誘導体、並びにその他の糖類の総含有量は、骨材に対し0.1質量%以上20.0質量%以下が好ましく、更に0.2質量%以上5質量%以下がより好ましい。
 〔水〕
 本実施形態に係る鋳型用骨材混合物は、水を含有する。
 本実施形態における水の骨材に対する含有量は、用いる粘結剤及び骨材の種類によってそれぞれ設定することが好ましいが、0.5質量%以上10.0質量%以下が好ましく、更に1.5質量%以上7.5質量%以下がより好ましい。
 〔その他の組成物〕
 また、本実施形態に係る鋳型用骨材混合物には、上記のほかにも、触媒、及び酸化促進剤等、従来公知の組成物を添加することができる。
 〔混練方法〕
 本実施形態に係る鋳型用骨材混合物の作製は、上述した各種成分を混合することにより行われる。添加の順番や混練の方法は特に限定されるものではない。
 上記各成分を混練する際の混練装置としては、特に限定されることなく従来公知の混練装置が用いられる。例えば、自転・公転ミキサー、アイリッヒ・インテンシブ・ミキサー、新東シンプソン・ミックスマラー等が用いられる。
 〔鋳型の造型方法〕
 本実施形態に係る鋳型用骨材混合物を用いた鋳型の造型は、造型機による造型であっても、また手込めによる造型であってもよい。
 ただし、上記各成分を混合し攪拌して発泡させて発泡状の骨材混合物を作り、鋳型造型用の金型における加熱した鋳型造型用空間(所謂キャビティ)へ圧入して充填し造型することが好ましい。また、圧入の際に射出により充填することがより好ましい。
 より具体的には、以下のa)~d)の工程を含む造型方法によって鋳型を造型することが好ましい。
 a)骨材、水溶性粘結剤、水溶性発泡剤、水性離型剤、及び水を含む骨材混合物を攪拌することにより該骨材混合物中で発泡を生じさせ、気泡を含む発泡骨材混合物を調製する発泡骨材混合物調製工程
 b)前記発泡骨材混合物を金型における鋳型造型用の空間(所謂キャビティ)に充填する充填工程
 c)充填した前記発泡骨材混合物の水分を蒸発させて前記発泡骨材混合物を固化させ、鋳型を造型する鋳型造型工程
 d)造型された鋳型を前記鋳型造型用の空間から取り出す取出工程
 高温に加熱された金型の鋳型造型用空間に圧入充填された発泡骨材混合物では、攪拌により発泡骨材混合物中に分散した気泡と、加熱された金型の熱により発泡骨材混合物中の水分から発生する水蒸気と、が鋳型の中心部に集まる現象が起きる。そのため、中心部においては骨材、水溶性粘結剤、水溶性発泡剤、及び水性離型剤の充填密度(つまり固形分の密度)が低い鋳型となり、逆に表面は骨材、水溶性粘結剤、水溶性発泡剤、及び水性離型剤の充填密度(つまり固形分の密度)が高い鋳型となる。
 鋳型の金型からの離型性には、鋳型表面に存在する水性離型剤が大きく影響するため、上記の通り表面における水性離型剤の充填密度が高くなる本実施形態では、水性離型剤による離型性がより良好に発揮される。また、表面における水性離型剤の充填密度が高くなるため、水性離型剤の添加量を低減することにも有効である。
 なお、鋳型において、中心部の固形分の密度が表面部の固形分の密度より小さいか否かを確認するには、鋳型の中心部の断面及び表面における固形分(つまり骨材、水溶性粘結剤、水溶性発泡剤、及び水性離型剤)の詰まり具合を目視で確認することで判別できる。
 骨材混合物は鋳型造型用空間への充填性を向上させるため、及び上記充填密度の向上のために、ホイップクリーム状となるまで発泡しておくことが好ましい。より具体的には、前記発泡骨材混合物(つまり攪拌後の鋳型用骨材混合物)の粘度が0.5Pa・s以上10Pa・s以下であることが好ましく、該粘度は更に0.5Pa・s以上8Pa・s以下がより好ましい。
 なお、発泡骨材混合物(つまり攪拌後の鋳型用骨材混合物)の粘度の測定は以下のようにして行われる。
 -測定方法-
 底部に直径6mmの細孔を有する内径42mmの円筒容器に発泡骨材混合物を投入し、次に前記円筒容器内に重量1kg、直径40mmの円柱状のおもりを装着する。前記おもりの自重で加圧することで、前記円筒容器の細孔より発泡骨材混合物が排出される。この時、前記おもりが50mm移動するのに要した時間を計測し、下記数式にて発泡骨材混合物の粘度を求める。なお、粘度測定時の温度は20℃とする。
 式 μ=πDt/128L
 μ:粘度[Pa・s]
 D:底部細孔の直径[m]
 P:おもりの加圧力[Pa]
 t:おもりが50mm移動するのに要した時間[s]
 L:おもりの移動距離(=50mm)
 L:底部細孔の板厚[m]
 S:円柱状おもりの底部の面積と円筒の内部の中空領域(つまり内径部分)の断面積との平均値[m
 また、発泡骨材混合物の鋳型造型用空間(所謂キャビティ)への充填方法としては、シリンダ内におけるピストンによる直接加圧、シリンダ内に圧縮空気を供給することによる充填、スクリュー等による圧送、及び流し込みなどがある。ただし、充填スピードや発泡骨材混合物への均一加圧による充填安定性から、ピストンによる直接加圧及び圧縮空気による充填が好ましい。
 鋳型造型用空間(所謂キャビティ)に充填した発泡骨材混合物の水分の蒸発は、例えば加熱された金型からの熱、鋳型造型用空間(所謂キャビティ)への加熱された空気の流動、及びこの両者の併用等の方法によって行われる。
 〔鋳型を用いた鋳物の製造〕
 本実施形態に係る鋳型用骨材混合物を用いて製造された鋳型は、各種金属又は合金の鋳造に用いられる。鋳造に用いられる溶湯の材料としては、例えば以下のものが挙げられる。なお、下記注湯温度とは、下記の材料が、注湯するのに適当な程度に溶解する温度を表す。
 アルミニウム又はアルミニウム合金(注湯温度:例えば670℃~700℃)
 鉄又は鉄合金(注湯温度:例えば1300℃~1400℃)
 青銅(注湯温度:例えば1100℃~1250℃)
 黄銅(注湯温度:例えば950℃~1100℃)
 鋳造は、例えば、上記に列挙するような材料による溶湯を、鋳型としての中子と金型との間の空間に注湯し、その後冷却して鋳型を除去することにより行われる。
 以下、実施例によって本開示をより詳細に説明するが、本開示は以下の実施例に限定されるものではない。なお、以下において「部」とは、特に断りのない限り「質量部」を表す。
<実施例A1>
 表1に示す組成の材料を、混合機(愛工舎製作所製、卓上ミキサ)を用いて約200rpmで約5分間攪拌混合して発泡させて、発泡骨材混合物を調製した。
 水性離型剤(LC-9試作)の量は0.05質量部であり、骨材混合物に対する官能基の当量は1.0×10-6mol/kgであった。
Figure JPOXMLDOC01-appb-T000001

 
 次いで、この発泡骨材混合物を、離型剤を塗布していない220℃に加熱された曲げ試験用の金型における、容量約80cmのキャビティに、シリンダ面圧0.4MPaで加圧充填した(充填工程)。
 次いで、加熱された金型に充填された発泡骨材混合物を2分間放置して、金型の熱により水分を蒸発させ、発泡骨材混合物を固化させた(固化工程)。
 その後、金型のキャビティから鋳型としての中子を取り出した。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。なお、曲げ強さの測定はJACT試験法SM-1、曲げ強さ試験法に準拠して行った。その結果、3.5MPaの強度がそれぞれ得られた。なお、鋳型の曲げ強さで2MPa以上あれば鋳型の取り扱いには問題ない強度であり、鋳型として充分使用できる強度である。
<実施例A2>
 水性離型剤(LC-9試作)の量を0.5質量部とし、つまり骨材混合物に対する官能基の当量を1.0×10-5mol/kgに変更した以外は、実施例A1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.0MPaの強度がそれぞれ得られた。
<実施例A3>
 水性離型剤(LC-9試作)の量を0.01質量部とし、つまり骨材混合物に対する官能基の当量を2.0×10-7mol/kgに変更した以外は、実施例A1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.2MPaの強度がそれぞれ得られた。
<実施例A4>
 水性離型剤(LC-9試作)の代わりに鎖状構造の異なる試作液8(株式会社テトラ製)を用い、且つその量を0.1質量部とし、つまり骨材混合物に対する官能基の当量を3.0×10-5mol/kgに変更した以外は、実施例A1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.0MPaの強度がそれぞれ得られた。
<比較例A1>
 表2に示す組成の材料を、混合機(愛工舎製作所製、卓上ミキサ)を用いて約200rpmで約5分間攪拌混合して発泡させて、発泡骨材混合物を調製した。
Figure JPOXMLDOC01-appb-T000002

 
 次いで、この発泡骨材混合物を、離型剤を塗布していない220℃に加熱された曲げ試験用の金型における、容量約80cmのキャビティに、シリンダ面圧0.4MPaで加圧充填した(充填工程)。
 次いで、加熱された金型に充填された発泡骨材混合物を2分間放置して、金型の熱により水分を蒸発させ、発泡骨材混合物を固化させた(固化工程)。
 その後、金型のキャビティから鋳型としての中子を取り出した。
 鋳型(つまり中子)は金型のキャビティに一部残存し、また鋳型の割れ及び欠けが生じたため、曲げ試験片を作製することが出来なかった。
<比較例A2>
 発泡骨材混合物の金型への加圧充填前に、金型のキャビティにジメチルシリコーン系離型剤を塗布したこと以外は、比較例A1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.5MPaの強度がそれぞれ得られた。
 ただし、金型への離型剤塗布の作業を行っている分、鋳型の造型1サイクルに要する時間は、実施例A1の場合に比べて10%増であった。
<実施例B1>
 表3に示す組成の材料を、混合機(愛工舎製作所製、卓上ミキサ)を用いて約200rpmで約5分間攪拌混合して発泡させて、発泡骨材混合物を調製した。
 水性離型剤(LC-9試作)の量は0.05質量部であり、骨材混合物に対する官能基の当量は1.0×10-6mol/kgであった。
Figure JPOXMLDOC01-appb-T000003

 
 次いで、この発泡骨材混合物を、離型剤を塗布していない220℃に加熱された曲げ試験用の金型における、容量約80cmのキャビティに、シリンダ面圧0.4MPaで加圧充填した(充填工程)。
 次いで、加熱された金型に充填された発泡骨材混合物を2分間放置して、金型の熱により水分を蒸発させ、発泡骨材混合物を固化させた(固化工程)。
 その後、金型のキャビティから鋳型としての中子を取り出した。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.2MPaの強度がそれぞれ得られた。
<実施例B2>
 水性離型剤(LC-9試作(株式会社テトラ製))の量を0.5質量部とし、つまり骨材混合物に対する官能基の当量を1.0×10-5mol/kgに変更した以外は、実施例B1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、2.8MPaの強度がそれぞれ得られた。
<実施例B3>
 水性離型剤(LC-9試作(株式会社テトラ製))の量を0.01質量部とし、つまり骨材混合物に対する官能基の当量を2.0×10-7mol/kgに変更した以外は、実施例B1と同様にして鋳型としての中子得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.3MPaの強度がそれぞれ得られた。
<実施例B4>
 水性離型剤(LC-9試作)の代わりに鎖状構造の異なる試作液8(株式会社テトラ製)を用い、且つその量を0.1質量部とし、つまり骨材混合物に対する官能基の当量を3.0×10-5mol/kgに変更した以外は、実施例B1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、4.1MPaの強度がそれぞれ得られた。
<比較例B1>
 表4に示す組成の材料を、混合機(愛工舎製作所製、卓上ミキサ)を用いて約200rpmで約5分間攪拌混合して発泡させて、発泡骨材混合物を調製した。
Figure JPOXMLDOC01-appb-T000004

 
 次いで、この発泡骨材混合物を、離型剤を塗布していない220℃に加熱された曲げ試験用の金型における、容量約80cmのキャビティに、シリンダ面圧0.4MPaで加圧充填した(充填工程)。
 次いで、加熱された金型に充填された発泡骨材混合物を2分間放置して、金型の熱により水分を蒸発させ、発泡骨材混合物を固化させた(固化工程)。
 その後、金型のキャビティから鋳型としての中子を取り出した。
 鋳型(つまり中子)は金型のキャビティに一部残存し、また鋳型の割れ及び欠けが生じたため、曲げ試験片を作製することが出来なかった。
<比較例B2>
 発泡骨材混合物の金型への加圧充填前に、金型のキャビティにジメチルシリコーン系離型剤を塗布したこと以外は、比較例B1と同様にして鋳型としての中子を得た。
 鋳型(つまり中子)は金型のキャビティに残存すること無く、また鋳型の割れ及び欠けが生じること無く、取り出すことが出来た。
 この鋳型から曲げ試験片を作製し、60分経過後に曲げ強さを測定した。その結果、3.0MPaの強度がそれぞれ得られた。
 ただし、金型への離型剤塗布の作業を行っている分、鋳型の造型1サイクルに要する時間は、実施例B1の場合に比べて10%増であった。
 なお、表1~表4に示す各材料の詳細は以下の通りである。
(水性離型剤)
 ・メーカー:株式会社テトラ、製品名:LC-9試作
  成分:特殊シリコーン水分散液
  (官能基:カルボニル基、鎖状構造:シロキサン鎖)
  分散液中の官能基の当量:2.0×10-3mol/kg
 ・メーカー:株式会社テトラ、製品名:試作液8
  成分:特殊ワックス水分散液
  (官能基:カルボニル基、鎖状構造:炭素鎖)
  分散液中の官能基の当量:3.0×10-2mol/kg
(骨材)
 ・天然珪砂(フラタリーサンド、ケープフラタリー・シリカ・マインズ社)
 ・人工骨材(エスパール#60、山川産業社)
(水溶性粘結剤)
 ・ポリビニルアルコール(メーカー:クラレ、製品名:PVA105)
 ・珪酸ナトリウム(水ガラス、モル比2.0、富士化学株式会社製、1号)
(水溶性発泡剤)
 ・陰イオン界面活性剤(エーテルサルフェートNa塩、日油株式会社)
 なお、日本出願2018-55302の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  骨材と、
     水溶性粘結剤と、
     水溶性発泡剤と、
     水性離型剤と、
     水と、
     を含有する鋳型用骨材混合物。
  2.  前記水性離型剤が、前記水溶性粘結剤に作用するプロトン供与性を有する、カルボキシル基、カルボニル基、シラノール基、及びフェノール基から選択される少なくとも一つの官能基を有する鎖状構造物質である請求項1に記載の鋳型用骨材混合物。
  3.  前記水性離型剤の含有量が、前記水溶性粘結剤に作用する前記官能基の当量として、前記鋳型用骨材混合物に対し2.0×10-7mol/kg以上1.0×10-4mol/kg以下である請求項2に記載の鋳型用骨材混合物。
  4.  前記水性離型剤が、発泡作用を妨げない性能を有する請求項1~請求項3のいずれか一項に記載の鋳型用骨材混合物。
  5.  前記水溶性粘結剤が、前記水性離型剤の有する官能基と作用する無機塩及び有機塩、並びに前記水性離型剤とグリコシド結合を形成する炭水化物から選択される少なくとも一つを含む請求項1~請求項4のいずれか一項に記載の鋳型用骨材混合物。
  6.  前記骨材が、天然珪砂及び人工砂の少なくとも一方である請求項1~請求項5のいずれか一項に記載の鋳型用骨材混合物。
  7.  前記骨材の粒度(AFS指数)が40以上120以下である請求項1~請求項6のいずれか一項に記載の鋳型用骨材混合物。
  8.  前記水溶性発泡剤が界面活性剤である請求項1~請求項7のいずれか一項に記載の鋳型用骨材混合物。
  9.  発泡による気泡を含有する請求項1~請求項8のいずれか一項に記載の鋳型用骨材混合物。
  10.  骨材と、
     水溶性粘結剤と、
     水溶性発泡剤と、
     水性離型剤と、
     を含有する鋳型。
  11.  a)骨材、水溶性粘結剤、水溶性発泡剤、水性離型剤、及び水を含有する鋳型用骨材混合物を攪拌することにより該鋳型用骨材混合物中で発泡を生じさせ、気泡を含む発泡骨材混合物を調製する発泡骨材混合物調製工程と、
     b)前記発泡骨材混合物を金型における鋳型造型用の空間に充填する充填工程と、
     c)充填した前記発泡骨材混合物の水分を蒸発させて前記発泡骨材混合物を固化させ、鋳型を造型する鋳型造型工程と、
     d)造型された前記鋳型を前記鋳型造型用の空間から取り出す取出工程と、
     を有する鋳型の造型方法。
PCT/JP2019/011888 2018-03-22 2019-03-20 鋳型用骨材混合物、鋳型、及び鋳型の造型方法 WO2019182065A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207025480A KR20200130817A (ko) 2018-03-22 2019-03-20 주형용 골재 혼합물, 주형, 및 주형의 조형 방법
BR112020017417-3A BR112020017417A2 (pt) 2018-03-22 2019-03-20 Mistura de agregado para molde, molde e método para modelar molde
CN201980016798.XA CN111801179A (zh) 2018-03-22 2019-03-20 铸模用骨料混合物、铸模以及铸模的造型方法
US16/981,359 US20210001392A1 (en) 2018-03-22 2019-03-20 Aggregate mixture for mold, mold, and method for shaping mold
EP19772610.2A EP3769861A4 (en) 2018-03-22 2019-03-20 Aggregate mixture for mold, mold, and method for shaping mold
MX2020009676A MX2020009676A (es) 2018-03-22 2019-03-20 Mezcla agregada para moldes, molde, y metodo para formar un molde.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055302A JP7036302B2 (ja) 2018-03-22 2018-03-22 鋳型用骨材混合物、鋳型、及び鋳型の造型方法
JP2018-055302 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182065A1 true WO2019182065A1 (ja) 2019-09-26

Family

ID=67987317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011888 WO2019182065A1 (ja) 2018-03-22 2019-03-20 鋳型用骨材混合物、鋳型、及び鋳型の造型方法

Country Status (8)

Country Link
US (1) US20210001392A1 (ja)
EP (1) EP3769861A4 (ja)
JP (1) JP7036302B2 (ja)
KR (1) KR20200130817A (ja)
CN (1) CN111801179A (ja)
BR (1) BR112020017417A2 (ja)
MX (1) MX2020009676A (ja)
WO (1) WO2019182065A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115038752A (zh) * 2020-02-07 2022-09-09 积水化学工业株式会社 树脂组合物、及成型体的制造方法
JP7456587B1 (ja) 2023-08-23 2024-03-27 株式会社浅沼技研 鋳型及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292939A (ja) * 1993-04-12 1994-10-21 Tetra:Kk 生型造型用離型剤原液
WO2005089984A1 (ja) 2004-03-23 2005-09-29 Sintokogio, Ltd. 鋳型造型装置およびそれに使用する金型装置
WO2014077203A1 (ja) * 2012-11-19 2014-05-22 新東工業株式会社 鋳型用砂、砂鋳型の造型方法、および金属鋳造用中子
WO2015064506A1 (ja) * 2013-10-28 2015-05-07 トヨタ自動車株式会社 水ガラス含有砂型造型用離型剤
JP2017136600A (ja) * 2016-02-01 2017-08-10 トヨタ自動車株式会社 水ガラス含有砂型の造型方法
JP2017217660A (ja) * 2016-06-06 2017-12-14 新東工業株式会社 鋳型用粘結剤組成物、鋳型用骨材混合物、鋳型、及び鋳型の造型方法
JP2018055302A (ja) 2016-09-28 2018-04-05 株式会社日立製作所 仮想オフィスを用いた資産管理方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9710858A (pt) * 1996-06-25 1999-08-17 Borden Chem Inc Agente de liga-Æo para nÚcleos e moldes
WO2006003945A1 (ja) * 2004-07-02 2006-01-12 Sintokogio, Ltd. 鋳型造型方法およびその鋳型
JP4767044B2 (ja) * 2005-03-18 2011-09-07 株式会社きもと ヘテロポリ酸、ヘテロポリ酸からなる酸触媒、及びヘテロポリ酸の製造方法
DE102007051850A1 (de) * 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
JP5734818B2 (ja) * 2011-11-28 2015-06-17 トヨタ自動車株式会社 砂型造型方法及び砂型
DE102013106276A1 (de) * 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss
WO2015194550A1 (ja) * 2014-06-20 2015-12-23 旭有機材工業株式会社 鋳型の製造方法及び鋳型
CN109641265B (zh) * 2016-08-31 2021-06-11 旭有机材株式会社 铸模的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292939A (ja) * 1993-04-12 1994-10-21 Tetra:Kk 生型造型用離型剤原液
WO2005089984A1 (ja) 2004-03-23 2005-09-29 Sintokogio, Ltd. 鋳型造型装置およびそれに使用する金型装置
WO2014077203A1 (ja) * 2012-11-19 2014-05-22 新東工業株式会社 鋳型用砂、砂鋳型の造型方法、および金属鋳造用中子
WO2015064506A1 (ja) * 2013-10-28 2015-05-07 トヨタ自動車株式会社 水ガラス含有砂型造型用離型剤
JP2017136600A (ja) * 2016-02-01 2017-08-10 トヨタ自動車株式会社 水ガラス含有砂型の造型方法
JP2017217660A (ja) * 2016-06-06 2017-12-14 新東工業株式会社 鋳型用粘結剤組成物、鋳型用骨材混合物、鋳型、及び鋳型の造型方法
JP2018055302A (ja) 2016-09-28 2018-04-05 株式会社日立製作所 仮想オフィスを用いた資産管理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3769861A4

Also Published As

Publication number Publication date
BR112020017417A2 (pt) 2020-12-22
JP7036302B2 (ja) 2022-03-15
EP3769861A1 (en) 2021-01-27
EP3769861A4 (en) 2021-12-29
US20210001392A1 (en) 2021-01-07
CN111801179A (zh) 2020-10-20
KR20200130817A (ko) 2020-11-20
MX2020009676A (es) 2020-10-12
JP2019166540A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP5972393B2 (ja) 鋳型用砂および砂鋳型の造型方法
KR100956707B1 (ko) 주형의 조형방법
KR102586742B1 (ko) 주형용 점결제 조성물, 주형용 골재 혼합물, 및 주형
WO2019182065A1 (ja) 鋳型用骨材混合物、鋳型、及び鋳型の造型方法
EP4232220A1 (en) Composition, core and mould for casting and moulding processes
US11110510B2 (en) Expandable aggregate mixture for molds, mold, and method for manufacturing mold
JP2023153624A (ja) 中子の製造方法
JP2021049550A (ja) 砂鋳型造型用添加剤、砂鋳型造型用砂組成物、砂鋳型の製造方法及び砂鋳型
JP7092000B2 (ja) 中子形成用組成物及び崩壊性中子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017417

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019772610

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019772610

Country of ref document: EP

Effective date: 20201022

ENP Entry into the national phase

Ref document number: 112020017417

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200826