WO2019181610A1 - Extracorporeal circulation device and evaluation unit - Google Patents

Extracorporeal circulation device and evaluation unit Download PDF

Info

Publication number
WO2019181610A1
WO2019181610A1 PCT/JP2019/009723 JP2019009723W WO2019181610A1 WO 2019181610 A1 WO2019181610 A1 WO 2019181610A1 JP 2019009723 W JP2019009723 W JP 2019009723W WO 2019181610 A1 WO2019181610 A1 WO 2019181610A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
value
pressure loss
artificial lung
pressure
Prior art date
Application number
PCT/JP2019/009723
Other languages
French (fr)
Japanese (ja)
Inventor
新平 古川
昌和 宮田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2019181610A1 publication Critical patent/WO2019181610A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Definitions

  • the present invention relates to an extracorporeal circulation apparatus including a blood circuit, a pump, and an artificial lung, and an evaluation unit used for the extracorporeal circulation apparatus.
  • extracorporeal circulation devices have been used to assist in the circulation and breathing of patients' blood during open heart surgery and to temporarily maintain life against suddenly progressing circulatory failure or cardiopulmonary arrest.
  • Patent Document 1 For example, refer to Patent Document 1).
  • a pressure difference between before and after the artificial lung There is a method for measuring the pressure loss value of an artificial lung. In this method, by comparing the measured pressure loss value of the oxygenator with a predetermined threshold value set in advance, a phenomenon that greatly affects the pressure loss in the oxygenator (for example, clogging of a thrombus or the like in the oxygenator) ) Is detected.
  • pressure loss in the extracorporeal circulation device is known to be affected by blood temperature, hematocrit value, and the like. Therefore, even if the pressure loss value shows a stable value within a predetermined threshold, there is actually a phenomenon that causes a large pressure loss, or such a phenomenon actually occurs. Sometimes. However, it is difficult to detect the occurrence of the above phenomenon at an early stage only by comparison with a predetermined threshold value that does not take into account the blood temperature and hematocrit value. In particular, in recent years, the use of extracorporeal circulation devices for long-term circulation applications such as ECMO (Extracorporal membrane oxygenation) has been attracting attention. In the long-term circulation, it is required to replace the artificial lung in a timely manner, and therefore, early detection of a phenomenon that hinders the normal operation of the extracorporeal circulation device is made more important.
  • ECMO Extracorporal membrane oxygenation
  • the present invention has been made in view of the above problems, and an object thereof is to provide an extracorporeal circulation apparatus and an evaluation unit that can quickly and appropriately grasp changes in the operating state of an artificial lung.
  • An extracorporeal circulation apparatus is an extracorporeal circulation apparatus including a blood circuit for circulating blood, a pump, and an artificial lung, and a flow rate detection unit for detecting the blood flow rate, A blood temperature detection unit for detecting temperature, a hematocrit value detection unit for detecting a hematocrit value of the blood, a pre-artificial lung pressure detection unit for detecting the pressure of the blood circuit upstream of the artificial lung, and the artificial lung A post-artificial lung pressure detection unit that detects the pressure of the blood circuit on the downstream side, a blood flow rate detected by the flow rate detection unit, a blood temperature detected by the blood temperature detection unit, and a hematocrit detected by the hematocrit value detection unit Value, the pre-artificial lung pressure value detected by the pre-artificial lung pressure detector, and the post-artificial lung pressure value detected by the post-artificial lung pressure detector, together with the detection time at which the detection was performed And an estimated pressure loss calculation for
  • a measured pressure loss calculation unit for obtaining an actual pressure loss value of the oxygenator based on the pre-artificial lung pressure value and the post-artificial lung pressure value at the predetermined time acquired from the storage unit, and the predetermined time
  • a determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value and the measured pressure loss value at the predetermined time.
  • An evaluation unit includes a blood circuit for circulating blood, a pump, an artificial lung, a flow rate detection unit for detecting the blood flow rate, and a blood temperature detection unit for detecting the blood temperature.
  • a hematocrit value detection unit that detects a hematocrit value of the blood; a pre-artificial lung pressure detection unit that detects a pressure of the blood circuit upstream of the artificial lung; and a blood circuit of the blood circuit downstream of the artificial lung.
  • the hematocrit value detected by the head, the pre-artificial lung pressure value detected by the pre-artificial lung pressure detector, and the post-artificial lung pressure value detected by the post-artificial lung pressure detector were detected.
  • the estimated pressure loss value of the oxygenator is calculated from the specifications of the oxygenator based on the storage unit that stores it together with the departure time, and the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time acquired from the memory unit.
  • An estimated pressure loss calculation unit an actual pressure loss calculation unit that obtains an actual pressure loss value of the artificial lung based on the pre-artificial lung pressure value and the post-artificial lung pressure value at the predetermined time acquired from the storage unit;
  • a determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time.
  • the present invention based on the difference value between the estimated pressure loss value calculated in consideration of the blood flow rate, the blood temperature, and the hematocrit value, and the actually measured pressure loss value obtained from the pre-artificial lung pressure value and the post-artificial lung pressure value.
  • the pressure loss state at a predetermined time can be determined. Therefore, the present invention compares changes in the operating state of the oxygenator compared with the extracorporeal circulation device that detects the operating state of the oxygenator by comparing the measured pressure loss value with a threshold value that does not consider the blood temperature and hematocrit value. It becomes possible to grasp quickly and appropriately.
  • FIG. 1 is a diagram illustrating an overall configuration of an extracorporeal circulation device 1 according to an embodiment.
  • FIG. 2 is a block diagram showing a control system of the extracorporeal circulation apparatus 1.
  • the extracorporeal circulation device 1 includes a blood circuit (extracorporeal circuit) C that circulates blood removed from the patient M outside the body, an artificial lung 10 that exchanges gas between the blood, and a patient.
  • a pump 20 that circulates blood removed from blood, a holder 30 that holds the oxygenator 10 and the pump 20, a gas supply unit 60 that supplies gas to the oxygenator 10, and a bubble detection that detects bubbles in the blood circuit C.
  • Unit 70, clamp 80 that can block the blood flow path of blood circuit C, display 90 that displays predetermined information, and controller 100 that includes control unit 110, operation unit 120, and notification unit 130.
  • the extracorporeal circulation device 1 includes a flow rate detection unit 41 that detects the flow rate of blood flowing through the blood circuit C, a blood temperature detection unit 42 that detects the temperature of blood flowing through the blood circuit C, A hematocrit value detector 43 for detecting the hematocrit value of blood flowing through the blood circuit C; a pre-artificial lung pressure detector 44 a for detecting the pressure of the blood circuit C upstream of the oxygenator 10; and a downstream of the oxygenator 10. And a post-artificial lung pressure detector 44b for detecting the pressure of the blood circuit C.
  • the blood circuit C includes a blood removal catheter C1 for removing blood from the vein of the patient M, a blood delivery catheter C2 for delivering blood toward the artery of the patient M, and a priming step (in order to remove bubbles in the blood circuit C).
  • a switching unit C3 that switches a circuit when moving from the priming step to the extracorporeal blood circulation step, and a tube C4 that communicates the pump 20 and the oxygenator 10.
  • the blood removal catheter C1 has one end communicating with a vein of the patient M and the other end communicating with an inflow port (not shown) of the pump 20.
  • Blood supply catheter C2 has one end communicating with the artery of patient M and the other end communicating with the outflow port (not shown) of artificial lung 10.
  • the blood feeding catheter C2 sends blood that has undergone gas exchange with the oxygenator 10 to the artery of the patient M.
  • the switching unit C3 forms a circulation circuit that does not pass through the body of the patient M during the priming process, and forms a circulation circuit that passes through the body of the patient M during the extracorporeal blood circulation process.
  • FIG. 1 shows a state during the extracorporeal blood circulation step.
  • the oxygenator 10 can be constituted by a known membrane oxygenator, for example.
  • a membrane oxygenator for example, a hollow fiber oxygenator (external perfusion oxygenator) can be used.
  • the pump 20 can be constituted by a known centrifugal pump, for example.
  • a centrifugal pump for example, a closed impeller type pump can be used.
  • the pump 20 is connected to a drive motor 23 that drives the pump 20.
  • the holder 30 can be formed of a metal support member in which a pump holding portion that holds the pump 20 and an artificial lung holding portion that holds the oxygenator 10 are integrally formed.
  • the gas supply unit 60 includes an oxygen cylinder, an air cylinder, a gas blender (not shown) that is airtightly connected to the oxygen cylinder and the air cylinder and supplies a mixed gas of oxygen and air to the oxygenator 10.
  • a gas blender not shown
  • the bubble detector 70 detects bubbles in the blood flowing through the blood feeding catheter C2.
  • the bubble detection unit 70 can be configured by, for example, an ultrasonic transmitter / receiver or an optical transmitter / receiver arranged with the blood transfer catheter C2 interposed therebetween.
  • the clamp 80 is provided on the downstream side of the bubble detection unit 70 and can block the flow path of the blood feeding catheter C2. If a bubble is detected by the bubble detector 70 during extracorporeal circulation of blood, the controller 110 controls the clamp 80 to immediately close the flow path of the blood feeding catheter C2. Thereby, bubbles can be prevented from flowing into the body of the patient M.
  • the flow rate detection unit 41 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the flow rate detector 41 is disposed in a tube C4 that connects the pump 20 and the oxygenator 10. The flow rate detection unit 41 measures the flow rate of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10).
  • the type (structure, etc.) of the flow rate detection unit 41 is not particularly limited as long as the flow rate of the fluid (liquid) can be measured.
  • the flow rate detection unit 41 can be configured by a known ultrasonic flow rate sensor. Further, the position where the flow rate detection unit 41 is disposed is not particularly limited as long as the flow rate of blood flowing through the blood circuit C can be measured.
  • the blood temperature detection unit 42 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the blood temperature detection unit 42 is arranged on the downstream side of the flow rate detection unit 41 arranged in the tube C4 connecting the pump 20 and the artificial lung 10. The blood temperature detector 42 measures the temperature of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10).
  • the type (structure, etc.) of the blood temperature detection unit 42 is not particularly limited as long as the temperature of the fluid (liquid) can be measured.
  • the blood temperature detection unit 42 can be configured by a known temperature sensor including a thermocouple.
  • the location where the blood temperature detection unit 42 is disposed is not particularly limited as long as the temperature of the blood flowing through the blood circuit C can be measured, and may be, for example, the pump head of the pump 20.
  • the hematocrit value detection unit 43 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the blood temperature detection unit 42 is arranged on the downstream side of the blood temperature detection unit 42 arranged in the tube C4 connecting the pump 20 and the artificial lung 10. The hematocrit value detector 43 measures the hematocrit value of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10).
  • the type (structure, etc.) of the hematocrit value detection unit 43 is not particularly limited as long as the hematocrit value of blood can be measured. Further, the position where the hematocrit value detection unit 43 is arranged is not particularly limited as long as the hematocrit value of the blood flowing through the blood circuit C can be measured.
  • the pre-artificial lung pressure detection unit 44 a is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the pre-artificial lung pressure detection unit 44 a is disposed on the downstream side of the hematocrit value detection unit 43 disposed on the tube C ⁇ b> 4 connecting the pump 20 and the artificial lung 10. The pre-artificial lung pressure detector 44a measures the pressure of the blood circuit C on the downstream side of the pump 20 (upstream of the artificial lung 10).
  • the type (structure, etc.) of the pre-artificial lung pressure detection unit 44a is not particularly limited as long as the pressure of the fluid (liquid) can be measured.
  • the pre-artificial lung pressure detection unit 44a is preferably arranged on the upstream side of the artificial lung 10 and at a position close to the inflow port (not shown) of the artificial lung 10.
  • the post-artificial lung pressure detection unit 44b is disposed on the downstream side of the artificial lung 10 in the blood circuit C.
  • the post-artificial lung pressure detection unit 44 b measures the pressure of the blood circuit C on the downstream side of the artificial lung 10.
  • the type (structure and the like) of the post-artificial lung pressure detection unit 44b is not particularly limited as long as the pressure of the fluid (liquid) can be measured.
  • the post-artificial pressure detection unit 44b can be configured by a known pressure sensor including a pressure sensitive element and a diaphragm. .
  • the post-artificial lung pressure detection unit 44b is preferably disposed on the downstream side of the oxygenator 10 and at a position close to the outflow port (not shown) of the oxygenator 10.
  • the display 90 displays information used for the operation of the extracorporeal circulation device 1.
  • the display 90 includes the rotation speed of the pump 20, the detection result (measurement result) of the flow rate detection unit 41, the detection result (measurement result) of the blood temperature detection unit 42, the detection result (measurement result) of the hematocrit value detection unit 43, According to the detection result (measurement result) of the pre-artificial pressure detection unit 44a, the detection result (measurement result) of the post-artificial pressure detection unit 44b, an estimated pressure loss value, an actual pressure loss value, a difference value, and a determination unit 115 described later A judgment result or the like can be displayed.
  • the controller 100 determines a control unit 110 that controls the operation of each unit of the extracorporeal circulation device 1, an operation unit 120 that can accept instructions from the user to the extracorporeal circulation device 1, and a determination And a notification unit 130 that notifies the determination result of the pressure loss state by the unit 115.
  • control unit 110 is connected to the pump 20, the flow rate detection unit 41, the blood temperature detection unit 42, the hematocrit value detection unit 43, the pre-artificial lung pressure detection unit 44a, and the post-lung oxygen pressure detection via the bus.
  • the unit 44b, the gas supply unit 60, the bubble detection unit 70, the clamp 80, the display 90, the operation unit 120, and the notification unit 130 are electrically connected.
  • the control unit 110 includes a CPU 111 and a storage unit 112.
  • the CPU 111 executes operation control of each device of the extracorporeal circulation device 1 and various arithmetic processes according to various programs stored in the storage unit 112.
  • the storage unit 112 stores a ROM that stores various programs and data, a RAM that temporarily stores programs and data as a work area, stores various programs and data, or temporarily stores image data obtained by image processing.
  • a hard disk or the like used for storing data is provided.
  • the storage unit 112 includes the blood flow rate detected by the flow rate detection unit 41, the blood temperature detected by the blood temperature detection unit 42, the hematocrit value detected by the hematocrit value detection unit 43, and the pre-artificial lung pressure detection unit 44a.
  • the detected pre-artificial pressure value and the post-artificial pressure detection value detected by the post-artificial pressure detection unit 44b are stored together with the detection time at which the detection was performed.
  • the storage unit 112 stores specification data Dt related to the specification of the oxygenator 10 used in the extracorporeal circulation device 1.
  • specification data Dt a correlation of “blood flow rate—pressure loss” corresponding to each type of the artificial lung 10 (generally, the pressure loss value of the artificial lung 10 increases with an increase in the blood flow rate of the blood circuit C.
  • Data table is included.
  • the estimated pressure loss calculation unit 113 refers to the specification data Dt when calculating the estimated pressure loss value.
  • the control unit 110 functions as an evaluation unit including the estimated pressure loss calculation unit 113, the actually measured pressure loss calculation unit 114, and the determination unit 115 illustrated in FIG. 2 by executing a predetermined program.
  • the estimated pressure loss calculation unit 113 acquires the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time stored in the storage unit 112.
  • the estimated pressure loss calculation unit 113 refers to the specification data Dt stored in the storage unit 112 (see FIG. 2), and based on the blood flow rate, blood temperature, and hematocrit value acquired from the storage unit 112, “ Calculate the “estimated pressure loss value”.
  • the estimated pressure loss value is a theoretical value calculated by considering the blood temperature and the hematocrit value in the pressure loss value determined by the type and flow rate of the oxygenator 10.
  • the specification data Dt of the oxygenator 10 is stored in the storage unit 112 in advance, and the specification data Dt of the oxygenator 10 is referred to (acquired) from the storage unit 112 when calculating the estimated pressure loss value.
  • the control unit 110 is configured so that the specification data Dt of the oxygenator 10 is obtained from other than the storage unit 112 when calculating the estimated pressure loss value (input by a user, input by communication from an external device) Etc.).
  • the actually measured pressure loss calculation unit 114 has a pre-artificial lung pressure value and a post-artificial lung pressure at a predetermined time stored in the storage unit 112 (same time as when the blood flow rate, blood temperature, and hematocrit value were acquired; the same applies hereinafter). Get the value.
  • the actually measured pressure loss calculation unit 114 obtains the “actual pressure loss value” of the oxygenator 10 based on the pre-artificial lung pressure value and the post-artificial lung pressure value acquired from the storage unit 112.
  • the actually measured pressure loss value is a blood pressure difference between the upstream side and the downstream side of the oxygenator 10, that is, the pressure loss value of the oxygenator 10 when the extracorporeal circulation device 1 is operating.
  • the determination unit 115 determines the blood circuit based on the difference value between the estimated pressure loss value at a predetermined time and the actually measured pressure loss value at the predetermined time (the difference between the estimated pressure loss value and the actually measured pressure loss value; hereinafter referred to as “difference value”). Determine the pressure loss state at C.
  • FIG. 3 shows a graph illustrating the relationship between the detection time (blood flow rate, blood temperature, hematocrit value, pre-artificial pressure value, and post-artificial pressure value detection time) and the difference value (absolute value). ing.
  • the determination unit 115 determines that a phenomenon that greatly affects the pressure loss occurs in the oxygenator 10 when the amount of change (inclination: ⁇ p / ⁇ t) of the difference value at an arbitrary time exceeds a predetermined threshold value.
  • the determination unit 115 can easily predict that the artificial lung 10 has clogged blood clots and the like by creating and referring to time-series data as shown in FIG. For example, when the change amount of the difference value is large, the determination unit 115 increases the measured pressure loss value of the oxygenator 10 over time, and the difference between the estimated pressure loss value and the measured pressure loss value gradually increases. Guess that it is in a state of becoming.
  • the oxygenator 10 can be operated before the performance is reduced to the extent that the oxygenator 10 needs to be replaced due to clogging of the thrombus or the like. It can be grasped early that 10 is not in a normal state.
  • the determination unit 115 determines the pressure loss state of the oxygenator 10 based on the difference value between the estimated pressure loss value calculated in consideration of the blood temperature and the hematocrit value and the actually measured pressure loss value. As a result, it is possible to more accurately determine the pressure loss state of the oxygenator 10.
  • the amount of change in the difference value during a predetermined time exceeds a predetermined threshold continuously for a plurality of times (for example, times tn to tn + 1, tn + 1 to tn + 2, tn + 2 to tn + 3).
  • a predetermined threshold value When the difference value changes from tn + 3 to tn + 4 exceeds a predetermined threshold value), it may be determined that the artificial lung 10 is clogged with a thrombus or the like.
  • the amount of change in the difference value exceeds a predetermined threshold only at times tn to tn + 1, it is considered that there is no pressure loss over the long term that requires replacement of the oxygenator 10. In such a case, it is preferable to determine that the oxygenator 10 is operating normally.
  • the determination unit 115 determines that the difference value change amount during a predetermined time intermittently exceeds a predetermined threshold value over a plurality of times (for example, the change in the difference value at times tn to tn + 1). When the amount exceeds the predetermined threshold value, the change amount of the difference value does not exceed the predetermined threshold value at the time tn + 1 to tn + 2, and the change amount of the difference value exceeds the predetermined threshold value at the time tn + 2 to tn + 3) It may be determined that clogging is occurring.
  • the predetermined threshold to be compared with the difference value can be set to an arbitrary value according to the past use record of the extracorporeal circulation device 1. Further, the predetermined threshold value may be stored in advance in the storage unit 112, for example, or may be obtained from the outside of the control unit 110 as necessary.
  • the notification unit 130 notifies the determination result of the pressure loss state by the determination unit 115. For example, when the determination unit 115 determines that the artificial lung 10 is clogged with a thrombus, the notification unit 130 notifies that fact.
  • the notification unit 130 can be configured by a speaker that emits a warning sound or warning sound, a light source that generates warning light, a display that displays a still image or a moving image for warning, or the like.
  • the display 90 provided in the controller 100 may be used as the notification unit 130.
  • the actually measured pressure loss value exceeds a predetermined threshold (for example, a value obtained by adding a pressure loss constant of an artificial lung that changes based on a flow rate to a specific pressure loss constant determined by the specification of the oxygenator) L1.
  • a predetermined threshold for example, a value obtained by adding a pressure loss constant of an artificial lung that changes based on a flow rate to a specific pressure loss constant determined by the specification of the oxygenator
  • L1 a predetermined threshold
  • the pressure loss state in the blood circuit C is determined based on the difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time. Therefore, it is possible to quickly and appropriately grasp the change in the operating state of the oxygenator 10.
  • the configuration of the extracorporeal circulation device (arrangement of each member, type of each member, etc.) is particularly limited as long as it is possible to determine the pressure loss state of the oxygenator based on the detection result obtained by each detection unit.
  • the evaluation unit generally referred to as a data management system is not necessarily integrated into the extracorporeal circulation device, and may be an external communication device or the like.
  • 1 extracorporeal circulation device 10 artificial lung, 20 pumps, 41 Flow rate detector, 42 Blood temperature detector, 43 hematocrit value detector, 44a Artificial lung pre-pressure detection unit, 44b Artificial lung post-pressure detector, 100 controller, 110 Control unit (evaluation unit), 111 CPU, 112 storage unit, 113 Estimated pressure loss calculator, 114 Measured pressure loss calculation unit, 115 judgment part, 130 Notification unit, C blood circuit, M Patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

[Problem] To provide an extracorporeal circulation device and an evaluation unit that make it possible to quickly and aptly ascertain changes in the operating state of an artificial lung. [Solution] An extracorporeal circulation device that has: an estimated pressure loss calculation part 113 that, on the basis of a blood flow rate, a blood temperature, and a hematocrit value acquired from a storage part 112 for a prescribed time, calculates an estimated pressure loss value for an artificial lung 10 from the specifications of the artificial lung; a measured pressure loss calculation part 114 that, on the basis of a pre-artificial-lung pressure value and a post-artificial-lung pressure value acquired from the storage part for the prescribed time, finds a measured pressure loss value for the artificial lung; and a determination part 115 that, on the basis of the difference between the estimated pressure loss value for the prescribed time and the measured pressure loss value for the prescribed time, determines the pressure loss state of a blood circuit.

Description

体外循環装置および評価ユニットExtracorporeal circulation device and evaluation unit
 本発明は、血液回路、ポンプ、および、人工肺を備える体外循環装置、および体外循環装置に用いられる評価ユニットに関する。 The present invention relates to an extracorporeal circulation apparatus including a blood circuit, a pump, and an artificial lung, and an evaluation unit used for the extracorporeal circulation apparatus.
 従来から、心臓疾患の開心術時や、急激に進行する循環不全または心肺停止状態に対して一時的に生命を維持するために、患者の血液の循環および呼吸を補助する体外循環装置が使用されている(例えば、特許文献1を参照)。 Traditionally, extracorporeal circulation devices have been used to assist in the circulation and breathing of patients' blood during open heart surgery and to temporarily maintain life against suddenly progressing circulatory failure or cardiopulmonary arrest. (For example, refer to Patent Document 1).
 体外循環装置が作動している間、体外循環装置に組み込まれた各種デバイス(例えば、人工肺やカニューレ等)が正常に作動しているか否かを検出する方法として、人工肺前後の圧力差(人工肺の圧力損失値)を計測する方法がある。この方法では、計測した人工肺の圧力損失値を予め設定された所定閾値と比較することにより、人工肺で圧力損失に大きな影響を及ぼすような現象(例えば、人工肺内での血栓等の詰まり等)が生じていることを検出する。 As a method of detecting whether various devices (for example, an artificial lung, a cannula, etc.) incorporated in the extracorporeal circulation device are operating normally while the extracorporeal circulation device is operating, a pressure difference between before and after the artificial lung ( There is a method for measuring the pressure loss value of an artificial lung. In this method, by comparing the measured pressure loss value of the oxygenator with a predetermined threshold value set in advance, a phenomenon that greatly affects the pressure loss in the oxygenator (for example, clogging of a thrombus or the like in the oxygenator) ) Is detected.
特表2014-504906号公報Special table 2014-504906 gazette
 他方で、体外循環装置における圧力損失は、血液温度やヘマトクリット値などの影響を受けることが知られている。そのため、圧力損失値が所定閾値内で安定した数値を示していたとしても、実際には大きな圧力損失を生じさせる要因となる現象が潜在的に存在していたり、現にそのような現象が発生したりしていることがある。しかしながら、血液温度やヘマトクリット値を考慮していない所定閾値との比較だけでは、上記のような現象の発生を早期に発見することが困難である。特に、近年はECMO(Extracorporeal membrane oxygenation;体外式肺補助)のように体外循環時間が長い長期循環用途への体外循環装置の使用が注目されている。長期循環においては人工肺の交換などを適時に行うことが求められるため、体外循環装置の正常な作動を妨げる要因となる現象の早期発見がより一層重要とされる。 On the other hand, pressure loss in the extracorporeal circulation device is known to be affected by blood temperature, hematocrit value, and the like. Therefore, even if the pressure loss value shows a stable value within a predetermined threshold, there is actually a phenomenon that causes a large pressure loss, or such a phenomenon actually occurs. Sometimes. However, it is difficult to detect the occurrence of the above phenomenon at an early stage only by comparison with a predetermined threshold value that does not take into account the blood temperature and hematocrit value. In particular, in recent years, the use of extracorporeal circulation devices for long-term circulation applications such as ECMO (Extracorporal membrane oxygenation) has been attracting attention. In the long-term circulation, it is required to replace the artificial lung in a timely manner, and therefore, early detection of a phenomenon that hinders the normal operation of the extracorporeal circulation device is made more important.
 本発明は、上記課題に鑑みてなされたものであり、人工肺の作動状態の変化を早期かつ適切に把握することができる体外循環装置および評価ユニットを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an extracorporeal circulation apparatus and an evaluation unit that can quickly and appropriately grasp changes in the operating state of an artificial lung.
 本発明の一の形態に係る体外循環装置は、血液を流通させる血液回路、ポンプ、および、人工肺を備える体外循環装置であって、前記血液の流量を検出する流量検出部と、前記血液の温度を検出する血液温度検出部と、前記血液のヘマトクリット値を検出するヘマトクリット値検出部と、前記人工肺の上流側で前記血液回路の圧力を検出する人工肺前圧力検出部と、前記人工肺の下流側で前記血液回路の圧力を検出する人工肺後圧力検出部と、前記流量検出部が検出した血液流量、前記血液温度検出部が検出した血液温度、前記ヘマトクリット値検出部が検出したヘマトクリット値、前記人工肺前圧力検出部が検出した人工肺前圧力値、および前記人工肺後圧力検出部が検出した人工肺後圧力値を、検出が実施された検出時刻とともに記憶する記憶部と、前記記憶部から取得した所定時刻における前記血液流量、前記血液温度、および前記ヘマトクリット値に基づいて前記人工肺の仕様から前記人工肺の推定圧力損失値を算出する推定圧力損失計算部と、前記記憶部から取得した前記所定時刻における前記人工肺前圧力値および前記人工肺後圧力値に基づいて、前記人工肺の実測圧力損失値を求める実測圧力損失計算部と、前記所定時刻における前記推定圧力損失値と前記所定時刻における前記実測圧力損失値の差分値に基づいて前記血液回路における圧力損失状態を判断する判断部と、を有する。 An extracorporeal circulation apparatus according to an aspect of the present invention is an extracorporeal circulation apparatus including a blood circuit for circulating blood, a pump, and an artificial lung, and a flow rate detection unit for detecting the blood flow rate, A blood temperature detection unit for detecting temperature, a hematocrit value detection unit for detecting a hematocrit value of the blood, a pre-artificial lung pressure detection unit for detecting the pressure of the blood circuit upstream of the artificial lung, and the artificial lung A post-artificial lung pressure detection unit that detects the pressure of the blood circuit on the downstream side, a blood flow rate detected by the flow rate detection unit, a blood temperature detected by the blood temperature detection unit, and a hematocrit detected by the hematocrit value detection unit Value, the pre-artificial lung pressure value detected by the pre-artificial lung pressure detector, and the post-artificial lung pressure value detected by the post-artificial lung pressure detector, together with the detection time at which the detection was performed And an estimated pressure loss calculation for calculating an estimated pressure loss value of the artificial lung from the specifications of the artificial lung based on the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time acquired from the storage unit. A measured pressure loss calculation unit for obtaining an actual pressure loss value of the oxygenator based on the pre-artificial lung pressure value and the post-artificial lung pressure value at the predetermined time acquired from the storage unit, and the predetermined time And a determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value and the measured pressure loss value at the predetermined time.
 本発明の他の形態に係る評価ユニットは、血液を流通させる血液回路と、ポンプと、人工肺と、前記血液の流量を検出する流量検出部と、前記血液の温度を検出する血液温度検出部と、前記血液のヘマトクリット値を検出するヘマトクリット値検出部と、前記人工肺の上流側で前記血液回路の圧力を検出する人工肺前圧力検出部と、前記人工肺の下流側で前記血液回路の圧力を検出する人工肺後圧力検出部と、を備える体外循環装置に用いる評価ユニットであって、前記流量検出部が検出した血液流量、前記血液温度検出部が検出した血液温度、前記ヘマトクリット値検出部が検出したヘマトクリット値、前記人工肺前圧力検出部が検出した人工肺前圧力値、および前記人工肺後圧力検出部が検出した人工肺後圧力値を、検出が実施された検出時刻とともに記憶する記憶部と、前記記憶部から取得した所定時刻における前記血液流量、前記血液温度、および前記ヘマトクリット値に基づいて前記人工肺の仕様から前記人工肺の推定圧力損失値を算出する推定圧力損失計算部と、前記記憶部から取得した前記所定時刻における前記人工肺前圧力値および前記人工肺後圧力値に基づいて、前記人工肺の実測圧力損失値を求める実測圧力損失計算部と、前記所定時刻における前記推定圧力損失値と前記所定時刻における前記実測圧力損失値の差分値に基づいて前記血液回路における圧力損失状態を判断する判断部と、を有する。 An evaluation unit according to another aspect of the present invention includes a blood circuit for circulating blood, a pump, an artificial lung, a flow rate detection unit for detecting the blood flow rate, and a blood temperature detection unit for detecting the blood temperature. A hematocrit value detection unit that detects a hematocrit value of the blood; a pre-artificial lung pressure detection unit that detects a pressure of the blood circuit upstream of the artificial lung; and a blood circuit of the blood circuit downstream of the artificial lung. A post-artificial lung pressure detection unit for detecting pressure, and an evaluation unit used for an extracorporeal circulation apparatus, wherein the blood flow detected by the flow rate detection unit, the blood temperature detected by the blood temperature detection unit, and the hematocrit value detection The hematocrit value detected by the head, the pre-artificial lung pressure value detected by the pre-artificial lung pressure detector, and the post-artificial lung pressure value detected by the post-artificial lung pressure detector were detected. The estimated pressure loss value of the oxygenator is calculated from the specifications of the oxygenator based on the storage unit that stores it together with the departure time, and the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time acquired from the memory unit. An estimated pressure loss calculation unit; an actual pressure loss calculation unit that obtains an actual pressure loss value of the artificial lung based on the pre-artificial lung pressure value and the post-artificial lung pressure value at the predetermined time acquired from the storage unit; A determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time.
 本発明によれば、血液流量、血液温度、ヘマトクリット値を考慮して算出される推定圧力損失値と、人工肺前圧力値および人工肺後圧力値から求められる実測圧力損失値の差分値に基づいて、所定時刻における圧力損失状態を判断することができる。そのため、本発明は、血液温度やヘマトクリット値が考慮されていない閾値と実測圧力損失値を比較して人工肺の作動状態を検出する体外循環装置と比較して、人工肺の作動状態の変化を早期かつ適切に把握することが可能になる。 According to the present invention, based on the difference value between the estimated pressure loss value calculated in consideration of the blood flow rate, the blood temperature, and the hematocrit value, and the actually measured pressure loss value obtained from the pre-artificial lung pressure value and the post-artificial lung pressure value. Thus, the pressure loss state at a predetermined time can be determined. Therefore, the present invention compares changes in the operating state of the oxygenator compared with the extracorporeal circulation device that detects the operating state of the oxygenator by comparing the measured pressure loss value with a threshold value that does not consider the blood temperature and hematocrit value. It becomes possible to grasp quickly and appropriately.
実施形態に係る体外循環装置の全体構成を示す模式図である。It is a mimetic diagram showing the whole extracorporeal circulation device composition concerning an embodiment. 実施形態に係る体外循環装置の制御系統を示すブロック図である。It is a block diagram which shows the control system of the extracorporeal circulation apparatus which concerns on embodiment. 推定圧力損失値と実測圧力損失値の差分値の変化を説明するための概略図である。It is the schematic for demonstrating the change of the difference value of an estimated pressure loss value and an actual measurement pressure loss value. 実測圧力損失値の変化を説明するための概略図である。It is the schematic for demonstrating the change of measured pressure loss value.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the technical scope and terms used in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 図1は、実施形態に係る体外循環装置1の全体構成を示す図である。図2は、体外循環装置1の制御系統を示すブロック図である。 FIG. 1 is a diagram illustrating an overall configuration of an extracorporeal circulation device 1 according to an embodiment. FIG. 2 is a block diagram showing a control system of the extracorporeal circulation apparatus 1.
 体外循環装置1は、図1に示すように、患者Mから脱血した血液を体外で循環させる血液回路(体外循環回路)Cと、血液との間でガス交換を行う人工肺10と、患者から脱血した血液を循環させるポンプ20と、人工肺10およびポンプ20を保持するホルダ30と、人工肺10にガスの供給を行うガス供給部60と、血液回路Cにおける気泡を検出する気泡検出部70と、血液回路Cの血液の流路を閉塞可能なクランプ80と、所定の情報を表示するディスプレイ90と、制御部110、操作部120、および報知部130を備えるコントローラ100と、を有する。 As shown in FIG. 1, the extracorporeal circulation device 1 includes a blood circuit (extracorporeal circuit) C that circulates blood removed from the patient M outside the body, an artificial lung 10 that exchanges gas between the blood, and a patient. A pump 20 that circulates blood removed from blood, a holder 30 that holds the oxygenator 10 and the pump 20, a gas supply unit 60 that supplies gas to the oxygenator 10, and a bubble detection that detects bubbles in the blood circuit C. Unit 70, clamp 80 that can block the blood flow path of blood circuit C, display 90 that displays predetermined information, and controller 100 that includes control unit 110, operation unit 120, and notification unit 130. .
 また、体外循環装置1は、図1に示すように、血液回路Cを流れる血液の流量を検出する流量検出部41と、血液回路Cを流れる血液の温度を検出する血液温度検出部42と、血液回路Cを流れる血液のヘマトクリット値を検出するヘマトクリット値検出部43と、人工肺10の上流側で血液回路Cの圧力を検出する人工肺前圧力検出部44aと、人工肺10の下流側で血液回路Cの圧力を検出する人工肺後圧力検出部44bと、を有する。 In addition, as shown in FIG. 1, the extracorporeal circulation device 1 includes a flow rate detection unit 41 that detects the flow rate of blood flowing through the blood circuit C, a blood temperature detection unit 42 that detects the temperature of blood flowing through the blood circuit C, A hematocrit value detector 43 for detecting the hematocrit value of blood flowing through the blood circuit C; a pre-artificial lung pressure detector 44 a for detecting the pressure of the blood circuit C upstream of the oxygenator 10; and a downstream of the oxygenator 10. And a post-artificial lung pressure detector 44b for detecting the pressure of the blood circuit C.
 以下、体外循環装置1の各部の構成について説明する。 Hereinafter, the configuration of each part of the extracorporeal circulation apparatus 1 will be described.
 (血液回路)
 血液回路Cは、患者Mの静脈から脱血を行う脱血カテーテルC1と、患者Mの動脈に向けて送血を行う送血カテーテルC2と、プライミング工程(血液回路C内の気泡を除去するためのプライミング工程)から血液の体外循環工程に移行する際に回路を切り替える切り替え部C3と、ポンプ20と人工肺10を連通させるチューブC4と、を備えている。
(Blood circuit)
The blood circuit C includes a blood removal catheter C1 for removing blood from the vein of the patient M, a blood delivery catheter C2 for delivering blood toward the artery of the patient M, and a priming step (in order to remove bubbles in the blood circuit C). A switching unit C3 that switches a circuit when moving from the priming step to the extracorporeal blood circulation step, and a tube C4 that communicates the pump 20 and the oxygenator 10.
 脱血カテーテルC1は、一端が患者Mの静脈に連通しており、他端がポンプ20の流入ポート(図示省略)に連通している。 The blood removal catheter C1 has one end communicating with a vein of the patient M and the other end communicating with an inflow port (not shown) of the pump 20.
 送血カテーテルC2は、一端が患者Mの動脈に連通しており、他端が人工肺10の流出ポート(図示省略)に連通している。送血カテーテルC2は、人工肺10との間でガス交換を行った血液を患者Mの動脈に送る。 Blood supply catheter C2 has one end communicating with the artery of patient M and the other end communicating with the outflow port (not shown) of artificial lung 10. The blood feeding catheter C2 sends blood that has undergone gas exchange with the oxygenator 10 to the artery of the patient M.
 切り替え部C3は、プライミング工程の際は患者Mの体内を通らない循環回路を形成し、血液の体外循環工程の際は患者Mの体内を通る循環回路を形成する。なお、図1には、血液の体外循環工程時の様子を示している。 The switching unit C3 forms a circulation circuit that does not pass through the body of the patient M during the priming process, and forms a circulation circuit that passes through the body of the patient M during the extracorporeal blood circulation process. FIG. 1 shows a state during the extracorporeal blood circulation step.
 (人工肺)
 人工肺10は、例えば、公知の膜型人工肺によって構成することができる。膜型人工肺としては、例えば、中空糸型人工肺(外部潅流型人工肺)を利用することができる。
(Artificial lung)
The oxygenator 10 can be constituted by a known membrane oxygenator, for example. As the membrane oxygenator, for example, a hollow fiber oxygenator (external perfusion oxygenator) can be used.
 (ポンプ)
 ポンプ20は、例えば、公知の遠心ポンプによって構成することができる。遠心ポンプとしては、例えば、クローズドインペラ型のポンプを利用することができる。なお、ポンプ20は、ポンプ20を駆動するドライブモータ23と接続される。
(pump)
The pump 20 can be constituted by a known centrifugal pump, for example. As the centrifugal pump, for example, a closed impeller type pump can be used. The pump 20 is connected to a drive motor 23 that drives the pump 20.
 (ホルダ)
 ホルダ30は、例えば、ポンプ20を保持するポンプ保持部と、人工肺10を保持する人工肺保持部とが一体的に形成された金属製の支持部材で構成することができる。
(holder)
For example, the holder 30 can be formed of a metal support member in which a pump holding portion that holds the pump 20 and an artificial lung holding portion that holds the oxygenator 10 are integrally formed.
 (ガス供給部)
 ガス供給部60は、酸素ボンベと、空気ボンベと、酸素ボンベおよび空気ボンベに気密に連結されるとともに酸素と空気の混合ガスを人工肺10に供給するガスブレンダ(いずれも図示省略)と、を有する。
(Gas supply part)
The gas supply unit 60 includes an oxygen cylinder, an air cylinder, a gas blender (not shown) that is airtightly connected to the oxygen cylinder and the air cylinder and supplies a mixed gas of oxygen and air to the oxygenator 10. Have.
 (気泡検出部)
 気泡検出部70は、送血カテーテルC2を流れる血液中の気泡を検出する。気泡検出部70は、例えば、送血カテーテルC2を挟んで配置される超音波送受信器や、光送受信器によって構成することができる。
(Bubble detector)
The bubble detector 70 detects bubbles in the blood flowing through the blood feeding catheter C2. The bubble detection unit 70 can be configured by, for example, an ultrasonic transmitter / receiver or an optical transmitter / receiver arranged with the blood transfer catheter C2 interposed therebetween.
 (クランプ)
 クランプ80は、気泡検出部70よりも下流側に設けられており、送血カテーテルC2の流路を閉塞することができる。仮に、血液の体外循環中に、気泡検出部70によって気泡が検出された場合には、制御部110は、クランプ80を制御して、送血カテーテルC2の流路をただちに閉塞する。これによって、気泡が患者Mの体内に流入するのを防止することができる。
(Clamp)
The clamp 80 is provided on the downstream side of the bubble detection unit 70 and can block the flow path of the blood feeding catheter C2. If a bubble is detected by the bubble detector 70 during extracorporeal circulation of blood, the controller 110 controls the clamp 80 to immediately close the flow path of the blood feeding catheter C2. Thereby, bubbles can be prevented from flowing into the body of the patient M.
 (流量検出部)
 流量検出部41は、血液回路C内におけるポンプ20と人工肺10との間に配置している。具体的には、流量検出部41は、ポンプ20と人工肺10とを接続するチューブC4に配置している。流量検出部41は、ポンプ20の下流(人工肺10の上流)側でチューブC4を流れる血液の流量を計測する。流量検出部41の種類(構造等)は、流体(液体)の流量を計測可能な限り特に限定されないが、例えば、公知の超音波型流量センサで構成することができる。また、流量検出部41を配置する箇所は、血液回路Cを流れる血液の流量を計測可能な限り、特に限定されない。
(Flow rate detector)
The flow rate detection unit 41 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the flow rate detector 41 is disposed in a tube C4 that connects the pump 20 and the oxygenator 10. The flow rate detection unit 41 measures the flow rate of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10). The type (structure, etc.) of the flow rate detection unit 41 is not particularly limited as long as the flow rate of the fluid (liquid) can be measured. For example, the flow rate detection unit 41 can be configured by a known ultrasonic flow rate sensor. Further, the position where the flow rate detection unit 41 is disposed is not particularly limited as long as the flow rate of blood flowing through the blood circuit C can be measured.
 (血液温度検出部)
 血液温度検出部42は、血液回路C内におけるポンプ20と人工肺10との間に配置している。具体的には、血液温度検出部42は、ポンプ20と人工肺10とを接続するチューブC4に配置された流量検出部41の下流側に配置している。血液温度検出部42は、ポンプ20の下流(人工肺10の上流)側でチューブC4を流れる血液の温度を計測する。血液温度検出部42の種類(構造等)は、流体(液体)の温度を計測可能な限り特に限定されないが、例えば、熱電対等を備える公知の温度センサで構成することができる。また、血液温度検出部42を配置する箇所は、血液回路Cを流れる血液の温度を計測可能な限り特に限定されず、例えば、ポンプ20のポンプヘッド等であってもよい。
(Blood temperature detector)
The blood temperature detection unit 42 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the blood temperature detection unit 42 is arranged on the downstream side of the flow rate detection unit 41 arranged in the tube C4 connecting the pump 20 and the artificial lung 10. The blood temperature detector 42 measures the temperature of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10). The type (structure, etc.) of the blood temperature detection unit 42 is not particularly limited as long as the temperature of the fluid (liquid) can be measured. For example, the blood temperature detection unit 42 can be configured by a known temperature sensor including a thermocouple. The location where the blood temperature detection unit 42 is disposed is not particularly limited as long as the temperature of the blood flowing through the blood circuit C can be measured, and may be, for example, the pump head of the pump 20.
 (ヘマトクリット値検出部)
 ヘマトクリット値検出部43は、血液回路C内におけるポンプ20と人工肺10との間に配置している。具体的には、血液温度検出部42は、ポンプ20と人工肺10とを接続するチューブC4に配置された血液温度検出部42の下流側に配置している。ヘマトクリット値検出部43は、ポンプ20の下流(人工肺10の上流)側でチューブC4を流れる血液のヘマトクリット値を計測する。ヘマトクリット値検出部43の種類(構造等)は、血液のヘマトクリット値を計測可能な限り特に限定されない。また、ヘマトクリット値検出部43を配置する箇所は、血液回路Cを流れる血液のヘマトクリット値を計測可能な限り、特に限定されない。
(Hematocrit value detector)
The hematocrit value detection unit 43 is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the blood temperature detection unit 42 is arranged on the downstream side of the blood temperature detection unit 42 arranged in the tube C4 connecting the pump 20 and the artificial lung 10. The hematocrit value detector 43 measures the hematocrit value of blood flowing through the tube C4 on the downstream side of the pump 20 (upstream of the artificial lung 10). The type (structure, etc.) of the hematocrit value detection unit 43 is not particularly limited as long as the hematocrit value of blood can be measured. Further, the position where the hematocrit value detection unit 43 is arranged is not particularly limited as long as the hematocrit value of the blood flowing through the blood circuit C can be measured.
 (人工肺前圧力検出部)
 人工肺前圧力検出部44aは、血液回路C内におけるポンプ20と人工肺10との間に配置している。具体的には、人工肺前圧力検出部44aは、ポンプ20と人工肺10とを接続するチューブC4に配置されたヘマトクリット値検出部43の下流側に配置している。人工肺前圧力検出部44aは、ポンプ20の下流(人工肺10の上流)側で血液回路Cの圧力を計測する。人工肺前圧力検出部44aの種類(構造等)は、流体(液体)の圧力を計測可能な限り特に限定されないが、例えば、感圧素子やダイヤフラムを備える公知の圧力センサで構成することができる。なお、人工肺前圧力検出部44aは、人工肺10の上流側であって、かつ、人工肺10の流入ポート(図示省略)と近接した位置に配置することが好ましい。
(Pre-artificial lung pressure detector)
The pre-artificial lung pressure detection unit 44 a is disposed between the pump 20 and the artificial lung 10 in the blood circuit C. Specifically, the pre-artificial lung pressure detection unit 44 a is disposed on the downstream side of the hematocrit value detection unit 43 disposed on the tube C <b> 4 connecting the pump 20 and the artificial lung 10. The pre-artificial lung pressure detector 44a measures the pressure of the blood circuit C on the downstream side of the pump 20 (upstream of the artificial lung 10). The type (structure, etc.) of the pre-artificial lung pressure detection unit 44a is not particularly limited as long as the pressure of the fluid (liquid) can be measured. For example, it can be configured by a known pressure sensor including a pressure sensitive element and a diaphragm. . Note that the pre-artificial lung pressure detection unit 44a is preferably arranged on the upstream side of the artificial lung 10 and at a position close to the inflow port (not shown) of the artificial lung 10.
 (人工肺後圧力検出部)
 人工肺後圧力検出部44bは、血液回路C内における人工肺10の下流側に配置している。人工肺後圧力検出部44bは、人工肺10の下流側で血液回路Cの圧力を計測する。人工肺後圧力検出部44bの種類(構造等)は、流体(液体)の圧力を計測可能な限り特に限定されないが、例えば、感圧素子やダイヤフラムを備える公知の圧力センサで構成することができる。なお、人工肺後圧力検出部44bは、人工肺10の下流側であって、かつ、人工肺10の流出ポート(図示省略)と近接した位置に配置することが好ましい。
(Post-artificial lung pressure detector)
The post-artificial lung pressure detection unit 44b is disposed on the downstream side of the artificial lung 10 in the blood circuit C. The post-artificial lung pressure detection unit 44 b measures the pressure of the blood circuit C on the downstream side of the artificial lung 10. The type (structure and the like) of the post-artificial lung pressure detection unit 44b is not particularly limited as long as the pressure of the fluid (liquid) can be measured. For example, the post-artificial pressure detection unit 44b can be configured by a known pressure sensor including a pressure sensitive element and a diaphragm. . The post-artificial lung pressure detection unit 44b is preferably disposed on the downstream side of the oxygenator 10 and at a position close to the outflow port (not shown) of the oxygenator 10.
 (ディスプレイ)
 ディスプレイ90は、体外循環装置1の操作に供する情報を表示する。例えば、ディスプレイ90は、ポンプ20の回転数、流量検出部41の検出結果(計測結果)、血液温度検出部42の検出結果(計測結果)、ヘマトクリット値検出部43の検出結果(計測結果)、人工肺前圧力検出部44aの検出結果(計測結果)、人工肺後圧力検出部44bの検出結果(計測結果)、後述する推定圧力損失値、実測圧力損失値、差分値、および判断部115による判断結果等を表示することができる。
(display)
The display 90 displays information used for the operation of the extracorporeal circulation device 1. For example, the display 90 includes the rotation speed of the pump 20, the detection result (measurement result) of the flow rate detection unit 41, the detection result (measurement result) of the blood temperature detection unit 42, the detection result (measurement result) of the hematocrit value detection unit 43, According to the detection result (measurement result) of the pre-artificial pressure detection unit 44a, the detection result (measurement result) of the post-artificial pressure detection unit 44b, an estimated pressure loss value, an actual pressure loss value, a difference value, and a determination unit 115 described later A judgment result or the like can be displayed.
 (コントローラ)
 コントローラ100は、図1および図2に示すように、体外循環装置1の各部の動作を制御する制御部110と、使用者からの体外循環装置1に対する指示を受付可能な操作部120と、判断部115による圧力損失状態の判断結果を報知する報知部130と、を有する。
(controller)
As shown in FIG. 1 and FIG. 2, the controller 100 determines a control unit 110 that controls the operation of each unit of the extracorporeal circulation device 1, an operation unit 120 that can accept instructions from the user to the extracorporeal circulation device 1, and a determination And a notification unit 130 that notifies the determination result of the pressure loss state by the unit 115.
 制御部110は、図2に示すように、バスを介して、ポンプ20、流量検出部41、血液温度検出部42、ヘマトクリット値検出部43、人工肺前圧力検出部44a、人工肺後圧力検出部44b、ガス供給部60、気泡検出部70、クランプ80、ディスプレイ90、操作部120、報知部130と電気的に接続している。 As shown in FIG. 2, the control unit 110 is connected to the pump 20, the flow rate detection unit 41, the blood temperature detection unit 42, the hematocrit value detection unit 43, the pre-artificial lung pressure detection unit 44a, and the post-lung oxygen pressure detection via the bus. The unit 44b, the gas supply unit 60, the bubble detection unit 70, the clamp 80, the display 90, the operation unit 120, and the notification unit 130 are electrically connected.
 制御部110は、CPU111と記憶部112を備えている。CPU111は、記憶部112に記憶されている各種プログラムに従って、体外循環装置1の各デバイスの動作制御や各種の演算処理などを実行する。 The control unit 110 includes a CPU 111 and a storage unit 112. The CPU 111 executes operation control of each device of the extracorporeal circulation device 1 and various arithmetic processes according to various programs stored in the storage unit 112.
 記憶部112は、各種のプログラムやデータを格納するROM、作業領域として一時的にプログラムやデータを記憶するRAM、各種のプログラムやデータを格納し、または画像処理により得られた画像データ等を一時的に保存するために使用されるハードディスク等を備える。 The storage unit 112 stores a ROM that stores various programs and data, a RAM that temporarily stores programs and data as a work area, stores various programs and data, or temporarily stores image data obtained by image processing. A hard disk or the like used for storing data is provided.
 本実施形態では、記憶部112は、流量検出部41が検出した血液流量、血液温度検出部42が検出した血液温度、ヘマトクリット値検出部43が検出したヘマトクリット値、人工肺前圧力検出部44aが検出した人工肺前圧力値、および人工肺後圧力検出部44bが検出した人工肺後圧力値を、検出が実施された検出時刻とともに記憶する。 In the present embodiment, the storage unit 112 includes the blood flow rate detected by the flow rate detection unit 41, the blood temperature detected by the blood temperature detection unit 42, the hematocrit value detected by the hematocrit value detection unit 43, and the pre-artificial lung pressure detection unit 44a. The detected pre-artificial pressure value and the post-artificial pressure detection value detected by the post-artificial pressure detection unit 44b are stored together with the detection time at which the detection was performed.
 また、記憶部112は、体外循環装置1に使用される人工肺10の仕様に関する仕様データDtを記憶している。仕様データDtには、人工肺10の種類毎に応じた「血液流量-圧力損失」の相関関係(一般的に、人工肺10の圧力損失値は、血液回路Cの血液流量の増加に伴って増加する関係にある)に関するデータテーブルが含まれている。後述するように、推定圧力損失計算部113は、推定圧力損失値を算出する際、上記の仕様データDtを参照する。 In addition, the storage unit 112 stores specification data Dt related to the specification of the oxygenator 10 used in the extracorporeal circulation device 1. In the specification data Dt, a correlation of “blood flow rate—pressure loss” corresponding to each type of the artificial lung 10 (generally, the pressure loss value of the artificial lung 10 increases with an increase in the blood flow rate of the blood circuit C. Data table is included. As will be described later, the estimated pressure loss calculation unit 113 refers to the specification data Dt when calculating the estimated pressure loss value.
 次に、体外循環装置1の作動状態の検出方法について説明する。 Next, a method for detecting the operating state of the extracorporeal circulation device 1 will be described.
 制御部110は、所定のプログラムを実行することにより、図2に示す推定圧力損失計算部113、実測圧力損失計算部114、および判断部115を備える評価ユニットとして機能する。 The control unit 110 functions as an evaluation unit including the estimated pressure loss calculation unit 113, the actually measured pressure loss calculation unit 114, and the determination unit 115 illustrated in FIG. 2 by executing a predetermined program.
 推定圧力損失計算部113は、記憶部112に記憶された所定時刻における血液流量、血液温度、およびヘマトクリット値を取得する。また、推定圧力損失計算部113は、記憶部112に記憶された仕様データDtを参照しつつ(図2を参照)、記憶部112から取得した血液流量、血液温度、およびヘマトクリット値に基づいて「推定圧力損失値」を算出する。推定圧力損失値は、人工肺10の種類および流量により決定される圧力損失値に、血液温度およびヘマトクリット値を考慮して算出される理論値である。 The estimated pressure loss calculation unit 113 acquires the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time stored in the storage unit 112. In addition, the estimated pressure loss calculation unit 113 refers to the specification data Dt stored in the storage unit 112 (see FIG. 2), and based on the blood flow rate, blood temperature, and hematocrit value acquired from the storage unit 112, “ Calculate the “estimated pressure loss value”. The estimated pressure loss value is a theoretical value calculated by considering the blood temperature and the hematocrit value in the pressure loss value determined by the type and flow rate of the oxygenator 10.
 なお、本実施形態では、人工肺10の仕様データDtを記憶部112に予め記憶しておき、推定圧力損失値を計算する際に記憶部112から人工肺10の仕様データDtを参照(取得)するように制御部110を構成しているが、人工肺10の仕様データDtは、推定圧力損失値を計算する際に記憶部112以外から取得(使用者による入力、外部装置からの通信による入力等)するようにしてもよい。 In the present embodiment, the specification data Dt of the oxygenator 10 is stored in the storage unit 112 in advance, and the specification data Dt of the oxygenator 10 is referred to (acquired) from the storage unit 112 when calculating the estimated pressure loss value. The control unit 110 is configured so that the specification data Dt of the oxygenator 10 is obtained from other than the storage unit 112 when calculating the estimated pressure loss value (input by a user, input by communication from an external device) Etc.).
 実測圧力損失計算部114は、記憶部112に記憶された所定時刻(血液流量、血液温度、およびヘマトクリット値を取得した時刻と同時刻。以下同様。)における人工肺前圧力値および人工肺後圧力値を取得する。また、実測圧力損失計算部114は、記憶部112から取得した人工肺前圧力値および人工肺後圧力値に基づいて人工肺10の「実測圧力損失値」を求める。実測圧力損失値は、人工肺10の上流側および下流側における血液の圧力差、つまり、体外循環装置1を作動している状態での人工肺10の圧力損失値である。 The actually measured pressure loss calculation unit 114 has a pre-artificial lung pressure value and a post-artificial lung pressure at a predetermined time stored in the storage unit 112 (same time as when the blood flow rate, blood temperature, and hematocrit value were acquired; the same applies hereinafter). Get the value. The actually measured pressure loss calculation unit 114 obtains the “actual pressure loss value” of the oxygenator 10 based on the pre-artificial lung pressure value and the post-artificial lung pressure value acquired from the storage unit 112. The actually measured pressure loss value is a blood pressure difference between the upstream side and the downstream side of the oxygenator 10, that is, the pressure loss value of the oxygenator 10 when the extracorporeal circulation device 1 is operating.
 判断部115は、所定時刻における推定圧力損失値と所定時刻における実測圧力損失値の差分値(推定圧力損失値と実測圧力損失値の差。以下、「差分値」とする)に基づいて血液回路Cにおける圧力損失状態を判断する。 The determination unit 115 determines the blood circuit based on the difference value between the estimated pressure loss value at a predetermined time and the actually measured pressure loss value at the predetermined time (the difference between the estimated pressure loss value and the actually measured pressure loss value; hereinafter referred to as “difference value”). Determine the pressure loss state at C.
 図3を参照して、判断部115による判断方法について説明する。図3には、検出時刻(血液流量、血液温度、ヘマトクリット値、人工肺前圧力値、および人工肺後圧力値を検出した時刻)と差分値(絶対値)との関係を例示したグラフを示している。 With reference to FIG. 3, a determination method by the determination unit 115 will be described. FIG. 3 shows a graph illustrating the relationship between the detection time (blood flow rate, blood temperature, hematocrit value, pre-artificial pressure value, and post-artificial pressure value detection time) and the difference value (absolute value). ing.
 判断部115は、差分値の任意の時間における変化量(傾き:Δp/Δt)が所定閾値を超える場合、人工肺10において圧力損失に大きな影響を与える現象が生じているものと判断する。判断部115は、図3に示すような時系列のデータを作成および参照することにより、人工肺10に血栓の詰まり等が発生してしたことを容易に予想することができる。例えば、判断部115は、差分値の変化量が大きい場合、人工肺10の実測圧力損失値が時間の経過とともに大きくなり、推定圧力損失値と実測圧力損失値との間の差が徐々に大きくなりつつある状態であることを推測する。このように、差分値の変化量に着目して人工肺10の作動状態を判断することにより、血栓の詰まり等により人工肺10の交換が必要になる程の性能低下が生じる前に、人工肺10が正常な状態でないことを早期に把握することができる。 The determination unit 115 determines that a phenomenon that greatly affects the pressure loss occurs in the oxygenator 10 when the amount of change (inclination: Δp / Δt) of the difference value at an arbitrary time exceeds a predetermined threshold value. The determination unit 115 can easily predict that the artificial lung 10 has clogged blood clots and the like by creating and referring to time-series data as shown in FIG. For example, when the change amount of the difference value is large, the determination unit 115 increases the measured pressure loss value of the oxygenator 10 over time, and the difference between the estimated pressure loss value and the measured pressure loss value gradually increases. Guess that it is in a state of becoming. In this way, by determining the operating state of the oxygenator 10 by paying attention to the amount of change in the difference value, the oxygenator 10 can be operated before the performance is reduced to the extent that the oxygenator 10 needs to be replaced due to clogging of the thrombus or the like. It can be grasped early that 10 is not in a normal state.
 また、判断部115は、血液温度およびヘマトクリット値を考慮して算出した推定圧力損失値と実測圧力損失値の差分値に基づいて人工肺10の圧力損失状態を判断するため、血液温度およびヘマトクリット値を考慮する分、人工肺10の圧力損失状態をより正確に判断することが可能になる。 The determination unit 115 determines the pressure loss state of the oxygenator 10 based on the difference value between the estimated pressure loss value calculated in consideration of the blood temperature and the hematocrit value and the actually measured pressure loss value. As a result, it is possible to more accurately determine the pressure loss state of the oxygenator 10.
 なお、判断部115は、例えば、所定時間の間での差分値の変化量が、複数回に亘って連続的に所定閾値を超える場合(例えば、時刻tn~tn+1、tn+1~tn+2、tn+2~tn+3、tn+3~tn+4で差分値の変化量が所定閾値を超えるような場合)に、人工肺10に血栓等の詰まりが生じているものと判断するようにしてもよい。例えば、時刻tn~tn+1だけで差分値の変化量が所定閾値を超えるような場合には、人工肺10を交換する必要がある程の圧力損失が長期に亘って生じていないとも考えられるため、そのような場合には、人工肺10が正常に作動していると判断することが好ましい。 Note that, for example, when the amount of change in the difference value during a predetermined time exceeds a predetermined threshold continuously for a plurality of times (for example, times tn to tn + 1, tn + 1 to tn + 2, tn + 2 to tn + 3). When the difference value changes from tn + 3 to tn + 4 exceeds a predetermined threshold value), it may be determined that the artificial lung 10 is clogged with a thrombus or the like. For example, if the amount of change in the difference value exceeds a predetermined threshold only at times tn to tn + 1, it is considered that there is no pressure loss over the long term that requires replacement of the oxygenator 10. In such a case, it is preferable to determine that the oxygenator 10 is operating normally.
 また、別の例として、判断部115は、所定時間の間での差分値の変化量が、複数回に亘って断続的に所定閾値を超える場合(例えば、時刻tn~tn+1で差分値の変化量が所定閾値を越え、時刻tn+1~tn+2では差分値の変化量が所定閾値を越えず、時刻tn+2~tn+3で差分値の変化量が所定閾値を超えるような場合)に、人工肺10に血栓等の詰まりが生じているものと判断するようにしてもよい。 As another example, the determination unit 115 determines that the difference value change amount during a predetermined time intermittently exceeds a predetermined threshold value over a plurality of times (for example, the change in the difference value at times tn to tn + 1). When the amount exceeds the predetermined threshold value, the change amount of the difference value does not exceed the predetermined threshold value at the time tn + 1 to tn + 2, and the change amount of the difference value exceeds the predetermined threshold value at the time tn + 2 to tn + 3) It may be determined that clogging is occurring.
 なお、差分値の比較対象となる所定閾値は、体外循環装置1の過去の使用実績等に応じて任意の値に設定することができる。また、所定閾値は、例えば、記憶部112に予め記憶させておいてもよいし、必要に応じて制御部110の外部から入手するようにしてもよい。 It should be noted that the predetermined threshold to be compared with the difference value can be set to an arbitrary value according to the past use record of the extracorporeal circulation device 1. Further, the predetermined threshold value may be stored in advance in the storage unit 112, for example, or may be obtained from the outside of the control unit 110 as necessary.
 報知部130は、判断部115による圧力損失状態の判断結果を報知する。例えば、報知部130は、判断部115により人工肺10に血栓の詰まり等が生じていると判断された場合、その旨を報知する。報知部130は、警告音や警告音声を発するスピーカ、警告用の光を発生する光源、警告用の静止画や動画を表示するディスプレイ等で構成することが可能である。例えば、コントローラ100が備えるディスプレイ90を報知部130として利用してもよい。 The notification unit 130 notifies the determination result of the pressure loss state by the determination unit 115. For example, when the determination unit 115 determines that the artificial lung 10 is clogged with a thrombus, the notification unit 130 notifies that fact. The notification unit 130 can be configured by a speaker that emits a warning sound or warning sound, a light source that generates warning light, a display that displays a still image or a moving image for warning, or the like. For example, the display 90 provided in the controller 100 may be used as the notification unit 130.
 ここで、人工肺の実測圧力損失値の時系列のデータ(図4を参照)に基づいて人工肺の圧力損失状態を判断する方法の一例を説明する。この例では、実測圧力損失値が所定閾値(例えば、人工肺の仕様により決定される固有の圧力損失定数に、流量に基づいて変化する人工肺の圧力損失定数を加えた値)L1を超えた場合に、人工肺に血栓等の詰まりが生じているものと判断する。このような判断方法では、実測圧力損失値が所定閾値L1を超えた時点で初めて、人工肺の圧力損失が大きくなる要因となる血栓の詰まり等が発生しているものと判断される。そのため、例えば、人工肺の圧力損失が大きくなるような兆候を早期に発見することが難しい。また、仮に、人工肺に圧力損失に影響を与える何らかの現象が生じているにも関わらず、血液温度およびヘマトクリット値の影響で圧力損失が所定閾値L1を下回っている状態であることも考えられるため、血栓の詰まり等が実際に発生している状態であったとしても、そのような状態で人工肺が作動していることを看過してしまう可能性がある。これに対して、本実施形態に係る体外循環装置1では、前述したように、所定時刻における推定圧力損失値と所定時刻における実測圧力損失値の差分値に基づいて血液回路Cにおける圧力損失状態を判断するため、人工肺10の作動状態の変化を早期かつ適切に把握することが可能となる。 Here, an example of a method for determining the pressure loss state of the oxygenator based on the time series data of the actually measured pressure loss value of the oxygenator (see FIG. 4) will be described. In this example, the actually measured pressure loss value exceeds a predetermined threshold (for example, a value obtained by adding a pressure loss constant of an artificial lung that changes based on a flow rate to a specific pressure loss constant determined by the specification of the oxygenator) L1. In this case, it is determined that the artificial lung is clogged with thrombus. In such a determination method, it is determined that clogging of a thrombus or the like that causes an increase in the pressure loss of the artificial lung occurs only when the actually measured pressure loss value exceeds the predetermined threshold L1. Therefore, for example, it is difficult to detect signs that increase the pressure loss of the oxygenator at an early stage. In addition, it is considered that the pressure loss is below the predetermined threshold L1 due to the influence of the blood temperature and the hematocrit value even though some phenomenon that affects the pressure loss occurs in the oxygenator. Even if clot clogging or the like actually occurs, it may be overlooked that the oxygenator is operating in such a state. On the other hand, in the extracorporeal circulation device 1 according to the present embodiment, as described above, the pressure loss state in the blood circuit C is determined based on the difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time. Therefore, it is possible to quickly and appropriately grasp the change in the operating state of the oxygenator 10.
 以上、実施形態を通じて本発明に係る体外循環装置を説明したが、本発明は説明した各構成のみに限定されるものでなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As mentioned above, although the extracorporeal circulation apparatus based on this invention was demonstrated through embodiment, this invention is not limited only to each structure demonstrated, It is possible to change suitably based on description of a claim. .
 例えば、体外循環装置の構成(各部材等の配置、各部材の種類等)は、各検出部により得られる検出結果に基づいて人工肺の圧力損失状態を判断することが可能な限り特に限定されず、適宜変更することが可能である。例えば、一般的にデータマネジメントシステムと称される評価ユニットは、体外循環装置に一体的に組み込まれたものである必要は無く、外部通信機器等であってもよい。 For example, the configuration of the extracorporeal circulation device (arrangement of each member, type of each member, etc.) is particularly limited as long as it is possible to determine the pressure loss state of the oxygenator based on the detection result obtained by each detection unit. However, it can be changed as appropriate. For example, the evaluation unit generally referred to as a data management system is not necessarily integrated into the extracorporeal circulation device, and may be an external communication device or the like.
 本出願は、2018年3月20日に出願された日本国特許出願第2018-053206号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2018-053206 filed on Mar. 20, 2018, the disclosure of which is incorporated by reference in its entirety.
1 体外循環装置、
10 人工肺、
20 ポンプ、
41 流量検出部、
42 血液温度検出部、
43 ヘマトクリット値検出部、
44a 人工肺前圧力検出部、
44b 人工肺後圧力検出部、
100 コントローラ、
110 制御部(評価ユニット)、
111 CPU、
112 記憶部、
113 推定圧力損失計算部、
114 実測圧力損失計算部、
115 判断部、
130 報知部、
C 血液回路、
M 患者。
1 extracorporeal circulation device,
10 artificial lung,
20 pumps,
41 Flow rate detector,
42 Blood temperature detector,
43 hematocrit value detector,
44a Artificial lung pre-pressure detection unit,
44b Artificial lung post-pressure detector,
100 controller,
110 Control unit (evaluation unit),
111 CPU,
112 storage unit,
113 Estimated pressure loss calculator,
114 Measured pressure loss calculation unit,
115 judgment part,
130 Notification unit,
C blood circuit,
M Patient.

Claims (5)

  1.  血液を流通させる血液回路、ポンプ、および、人工肺を備える体外循環装置であって、
     前記血液の流量を検出する流量検出部と、
     前記血液の温度を検出する血液温度検出部と、
     前記血液のヘマトクリット値を検出するヘマトクリット値検出部と、
     前記人工肺の上流側で前記血液回路の圧力を検出する人工肺前圧力検出部と、
     前記人工肺の下流側で前記血液回路の圧力を検出する人工肺後圧力検出部と、
     前記流量検出部が検出した血液流量、前記血液温度検出部が検出した血液温度、前記ヘマトクリット値検出部が検出したヘマトクリット値、前記人工肺前圧力検出部が検出した人工肺前圧力値、および前記人工肺後圧力検出部が検出した人工肺後圧力値を、検出が実施された検出時刻とともに記憶する記憶部と、
     前記記憶部から取得した所定時刻における前記血液流量、前記血液温度、および前記ヘマトクリット値に基づいて前記人工肺の仕様から前記人工肺の推定圧力損失値を算出する推定圧力損失計算部と、
     前記記憶部から取得した前記所定時刻における前記人工肺前圧力値および前記人工肺後圧力値に基づいて、前記人工肺の実測圧力損失値を求める実測圧力損失計算部と、
     前記所定時刻における前記推定圧力損失値と前記所定時刻における前記実測圧力損失値の差分値に基づいて前記血液回路における圧力損失状態を判断する判断部と、を有する体外循環装置。
    An extracorporeal circulation device comprising a blood circuit for circulating blood, a pump, and an oxygenator,
    A flow rate detection unit for detecting the blood flow rate;
    A blood temperature detector for detecting the temperature of the blood;
    A hematocrit value detection unit for detecting the hematocrit value of the blood;
    A pre-artificial lung pressure detector that detects the pressure of the blood circuit upstream of the oxygenator;
    A post-artificial lung pressure detector that detects the pressure of the blood circuit downstream of the oxygenator;
    Blood flow detected by the flow rate detection unit, blood temperature detected by the blood temperature detection unit, hematocrit value detected by the hematocrit value detection unit, pre-artificial lung pressure value detected by the pre-artificial lung pressure detection unit, and A storage unit for storing the post-artificial lung pressure value detected by the post-artificial lung pressure detection unit together with a detection time at which the detection was performed;
    An estimated pressure loss calculation unit that calculates an estimated pressure loss value of the oxygenator from the specifications of the oxygenator based on the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time acquired from the storage unit;
    Based on the pre-artificial lung pressure value and the post-artificial pressure value at the predetermined time acquired from the storage unit, an actual pressure loss calculation unit that calculates an actual pressure loss value of the oxygenator;
    An extracorporeal circulation apparatus comprising: a determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time.
  2.  前記判断部は、所定時間の間での前記差分値の変化量が所定閾値を超える場合に、前記人工肺において圧力損失に大きな影響を与える現象が生じているものと判断する、請求項1に記載の体外循環装置。 2. The determination unit according to claim 1, wherein when the amount of change in the difference value during a predetermined time exceeds a predetermined threshold, the determination unit determines that a phenomenon that greatly affects pressure loss occurs in the artificial lung. The extracorporeal circulation device described.
  3.  前記判断部は、所定時間の間での前記差分値の変化量が、複数回に亘って連続的に所定閾値を超える場合に、前記現象が生じているものと判断する、請求項2に記載の体外循環装置。 The said judgment part judges that the said phenomenon has arisen when the variation | change_quantity of the said difference value during predetermined time exceeds a predetermined threshold continuously over multiple times. Extracorporeal circulation device.
  4.  前記判断部による圧力損失状態の判断結果を報知する報知部を有する請求項1~3のいずれか1項に記載の体外循環装置。 The extracorporeal circulation apparatus according to any one of claims 1 to 3, further comprising a notification unit that notifies a determination result of the pressure loss state by the determination unit.
  5.  血液を流通させる血液回路と、
     ポンプと、
     人工肺と、
     前記血液の流量を検出する流量検出部と、
     前記血液の温度を検出する血液温度検出部と、
     前記血液のヘマトクリット値を検出するヘマトクリット値検出部と、
     前記人工肺の上流側で前記血液回路の圧力を検出する人工肺前圧力検出部と、
     前記人工肺の下流側で前記血液回路の圧力を検出する人工肺後圧力検出部と、を備える体外循環装置に用いる評価ユニットであって、
     前記流量検出部が検出した血液流量、前記血液温度検出部が検出した血液温度、前記ヘマトクリット値検出部が検出したヘマトクリット値、前記人工肺前圧力検出部が検出した人工肺前圧力値、および前記人工肺後圧力検出部が検出した人工肺後圧力値を、検出が実施された検出時刻とともに記憶する記憶部と、
     前記記憶部から取得した所定時刻における前記血液流量、前記血液温度、および前記ヘマトクリット値に基づいて前記人工肺の仕様から前記人工肺の推定圧力損失値を算出する推定圧力損失計算部と、
     前記記憶部から取得した前記所定時刻における前記人工肺前圧力値および前記人工肺後圧力値に基づいて、前記人工肺の実測圧力損失値を求める実測圧力損失計算部と、
     前記所定時刻における前記推定圧力損失値と前記所定時刻における前記実測圧力損失値の差分値に基づいて前記血液回路における圧力損失状態を判断する判断部と、を有する評価ユニット。
    A blood circuit for circulating blood;
    A pump,
    An artificial lung,
    A flow rate detection unit for detecting the blood flow rate;
    A blood temperature detector for detecting the temperature of the blood;
    A hematocrit value detection unit for detecting the hematocrit value of the blood;
    A pre-artificial lung pressure detector that detects the pressure of the blood circuit upstream of the oxygenator;
    An evaluation unit for use in an extracorporeal circulation device comprising a post-artificial lung pressure detection unit for detecting the pressure of the blood circuit downstream of the artificial lung,
    Blood flow detected by the flow rate detection unit, blood temperature detected by the blood temperature detection unit, hematocrit value detected by the hematocrit value detection unit, pre-artificial lung pressure value detected by the pre-artificial lung pressure detection unit, and A storage unit for storing the post-artificial lung pressure value detected by the post-artificial lung pressure detection unit together with a detection time at which the detection was performed;
    An estimated pressure loss calculation unit that calculates an estimated pressure loss value of the oxygenator from the specifications of the oxygenator based on the blood flow rate, the blood temperature, and the hematocrit value at a predetermined time acquired from the storage unit;
    Based on the pre-artificial lung pressure value and the post-artificial pressure value at the predetermined time acquired from the storage unit, an actual pressure loss calculation unit that calculates an actual pressure loss value of the oxygenator;
    An evaluation unit comprising: a determination unit that determines a pressure loss state in the blood circuit based on a difference value between the estimated pressure loss value at the predetermined time and the actually measured pressure loss value at the predetermined time.
PCT/JP2019/009723 2018-03-20 2019-03-11 Extracorporeal circulation device and evaluation unit WO2019181610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-053206 2018-03-20
JP2018053206A JP2021087461A (en) 2018-03-20 2018-03-20 Extracorporeal circulation device and evaluation unit

Publications (1)

Publication Number Publication Date
WO2019181610A1 true WO2019181610A1 (en) 2019-09-26

Family

ID=67987611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009723 WO2019181610A1 (en) 2018-03-20 2019-03-11 Extracorporeal circulation device and evaluation unit

Country Status (2)

Country Link
JP (1) JP2021087461A (en)
WO (1) WO2019181610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050136A1 (en) * 2018-09-06 2020-03-12 テルモ株式会社 Extracorporeal circulation management device, extracorporeal circulation device, and extracorporeal circulation management program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303597A (en) * 1988-05-31 1989-12-07 Matsushita Electric Ind Co Ltd Abnormality detecting device
JP2011030826A (en) * 2009-08-03 2011-02-17 Fujifilm Corp Endoscope apparatus
JP2011045450A (en) * 2009-08-25 2011-03-10 Hiroshima Univ Blood viscosity estimation method, blood viscosity ratio estimation method, blood viscosity monitoring device, and blood viscosity ratio monitoring device
WO2016035714A1 (en) * 2014-09-02 2016-03-10 テルモ株式会社 Extracorporeal circulation device and method for controlling same
WO2016092913A1 (en) * 2014-12-12 2016-06-16 テルモ株式会社 Extracorporeal circulation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303597A (en) * 1988-05-31 1989-12-07 Matsushita Electric Ind Co Ltd Abnormality detecting device
JP2011030826A (en) * 2009-08-03 2011-02-17 Fujifilm Corp Endoscope apparatus
JP2011045450A (en) * 2009-08-25 2011-03-10 Hiroshima Univ Blood viscosity estimation method, blood viscosity ratio estimation method, blood viscosity monitoring device, and blood viscosity ratio monitoring device
WO2016035714A1 (en) * 2014-09-02 2016-03-10 テルモ株式会社 Extracorporeal circulation device and method for controlling same
WO2016092913A1 (en) * 2014-12-12 2016-06-16 テルモ株式会社 Extracorporeal circulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050136A1 (en) * 2018-09-06 2020-03-12 テルモ株式会社 Extracorporeal circulation management device, extracorporeal circulation device, and extracorporeal circulation management program

Also Published As

Publication number Publication date
JP2021087461A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US10391224B2 (en) Pressure sensing extracorporeal circulation device
TWI450738B (en) Blood-purifying device
US10786617B2 (en) Blood circulation system
JP6946318B2 (en) Methods and systems for detecting obstruction in the blood circuit of a dialysis system
JP2018126523A5 (en)
JP4304080B2 (en) Procedures and equipment for determining hematocrit and / or blood volume
CN110312567B (en) System and method for estimating dialyzer flow rate using measured dialyzer pressure
JP6640095B2 (en) Extracorporeal circulation device
WO2019181610A1 (en) Extracorporeal circulation device and evaluation unit
JP6296815B2 (en) Extracorporeal circulation device and control method for extracorporeal circulation device
JP5997368B2 (en) Circulation device and control method thereof
US20170326288A1 (en) Medical reservoir level sensor
JP4311242B2 (en) Dialysis machine
JP7236436B2 (en) Measuring system and computing unit
JP6324797B2 (en) Extracorporeal circulation device and control method for extracorporeal circulation device
JP7468276B2 (en) BLOOD FLOW MEASURING METHOD, DIALYSIS APPARATUS, AND PROGRAM
US20230211057A1 (en) Method of monitoring blood circulation, dialysis device, and non-transitory computer-readable storage medium
JP6138643B2 (en) Extracorporeal circulation device
CN117563072A (en) Blood flow monitoring system, method, medium and equipment for ECMO
JP2020049177A (en) Pressure estimation system for use in artificial lung device
JP2020103832A (en) Blood purifying device
JP2006304836A (en) System for measuring blood removal pressure, and method
WO2014128764A1 (en) Circulation device, control device, and information processing method
JPH0654903A (en) Biological information control ultrafilter during dialysis
JP2006034883A (en) System and method for actual bloodstream measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP