WO2019180924A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2019180924A1
WO2019180924A1 PCT/JP2018/011771 JP2018011771W WO2019180924A1 WO 2019180924 A1 WO2019180924 A1 WO 2019180924A1 JP 2018011771 W JP2018011771 W JP 2018011771W WO 2019180924 A1 WO2019180924 A1 WO 2019180924A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
optical
laser light
laser
Prior art date
Application number
PCT/JP2018/011771
Other languages
English (en)
French (fr)
Inventor
俊行 安藤
鈴木 二郎
英介 原口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP18910714.7A priority Critical patent/EP3754366B1/en
Priority to PCT/JP2018/011771 priority patent/WO2019180924A1/ja
Priority to JP2018529675A priority patent/JP6385631B1/ja
Priority to CN201880091471.4A priority patent/CN111886514B/zh
Publication of WO2019180924A1 publication Critical patent/WO2019180924A1/ja
Priority to US17/008,184 priority patent/US11977158B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a laser radar device.
  • the laser radar device emits oscillation light from the optical antenna into the space, receives the oscillation light reflected or scattered by the object moving in the space with the optical antenna, and based on the result of measuring the Doppler shift of the received oscillation light To measure the moving speed of the object.
  • a laser radar device is used in the wind measurement lidar device described in Patent Document 1. This device aims to dynamically change the measurement distance, which is the distance from the optical antenna to the object, so that the oscillation light emitted from the optical antenna is focused at a position separated by the measurement distance. Some lenses included in the antenna are moved to positions corresponding to the measurement distance.
  • the conventional laser radar apparatus When controlling the condensing distance of oscillation light by moving some lenses provided in the optical antenna in the optical axis direction, it is necessary to adjust the position of the lens with high accuracy. For example, a resolution of 1 ⁇ m unit is required as a typical positioning resolution of a lens. For this reason, the conventional laser radar apparatus has a drive mechanism that mechanically adjusts the position of the lens, and there is a problem that the size or weight of the optical antenna increases.
  • the present invention solves the above-described problems, and a laser radar device capable of dynamically controlling the condensing distance of transmission light without using a drive mechanism that mechanically adjusts the position of a lens provided in an optical antenna.
  • the purpose is to obtain.
  • the laser radar device includes a plurality of laser light sources, a modulation unit, a plurality of optical antennas, a speed calculation unit, and a control unit.
  • the plurality of laser light sources output oscillation light having different wavelengths.
  • the modulation unit modulates the frequency and intensity of the oscillation light output from the laser light source.
  • the plurality of optical antennas emit the oscillating light modulated by the modulation unit as transmission light that is collected at a position separated by a condensing distance, and the transmission light is reflected by an object existing at a destination of the transmission light. The reflected light is received as received light.
  • the speed calculation unit calculates the speed of the object based on the oscillation light output from the laser light source and the reception light received by the optical antenna.
  • the control unit controls a plurality of laser light sources.
  • the plurality of optical antennas are offset-corrected for the deviation of the condensing point depending on the difference in wavelength of the light input to each, and the oscillation light output from the laser light source is Of these, it is emitted from the optical antenna associated with the laser light source.
  • the control unit switches the laser light sources to switch the emission direction of the transmitted light while maintaining the condensing position of the optical antenna, and changes the wavelength of the oscillation light according to the measurement distance to measure the condensing distance Control to fit the distance.
  • the laser radar device switches a plurality of laser light sources having different wavelengths of oscillation light to switch the emission direction of the transmission light while maintaining the converging position of the optical antenna, and according to the measurement distance.
  • the wavelength of the oscillating light and controlling the condensing distance of the transmitted light to match the measurement distance it is possible to control the oscillation light without using a drive mechanism that mechanically adjusts the position of the lens included in the optical antenna.
  • the focusing distance can be dynamically controlled.
  • FIG. 6 is a diagram illustrating transmission characteristics with respect to the wavelength of oscillation light for each input port included in the optical multiplexing unit according to Embodiment 1.
  • FIG. 3A is a cross-sectional view showing an optical system of an optical antenna to which oscillation light from a first laser light source is input.
  • FIG. 3B is a cross-sectional view showing the optical system of the optical antenna to which the oscillation light from the second laser light source is input.
  • FIG. 3C is a cross-sectional view showing an optical system of an optical antenna to which oscillation light from a third laser light source is input.
  • 3 is a flowchart showing the operation of the laser radar device according to the first embodiment.
  • 3 is a flowchart illustrating an operation of a light collection distance control unit in the first embodiment.
  • 3 is a flowchart showing an operation of a direction switching unit in the first embodiment.
  • It is a conceptual diagram which shows the cross section of a diffraction lens.
  • It is a block diagram which shows the structure of the laser radar apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 12A is a block diagram illustrating a hardware configuration that realizes functions of components that perform signal processing in the laser radar device according to the first or second embodiment.
  • FIG. 12B is a block diagram illustrating a hardware configuration that executes software that implements functions of components that perform signal processing in the laser radar device according to Embodiment 1 or Embodiment 2.
  • FIG. 1 is a block diagram showing a configuration of a laser radar apparatus 1 according to Embodiment 1 of the present invention, and shows the laser radar apparatus 1 functioning as an anemometer.
  • a solid line arrow indicates an optical signal transmission path, for example, an optical fiber.
  • a broken arrow indicates an electric signal transmission path.
  • the laser radar device 1 measures the wind speed based on the result of measuring the moving speed of the aerosol in the atmosphere. Aerosols are fine liquid or solid particles in the atmosphere.
  • the laser radar device 1 changes the wavelength of the oscillation light output from the laser device 2 in accordance with the measurement distance corresponding to the position where the wind speed is desired to be measured so that the converging distance of the oscillation light matches the measurement distance. To do.
  • the measurement distance is a distance from the optical antenna device 9 to a position where measurement is desired.
  • the condensing distance of the oscillation light is a distance from the optical antenna device 9 to the condensing position of the oscillation light.
  • the laser radar apparatus 1 can dynamically control the condensing distance of the oscillation light without using a drive mechanism that mechanically moves the lens included in the optical antenna apparatus 9.
  • the laser radar device 1 includes a laser device 2, an optical multiplexing unit 3, an oscillation light branching unit 4, a modulation unit 5, an optical amplifier 6, a circulator 7, an optical antenna device 9, a velocity calculation unit 10, a display unit 11, a control unit 12, and A setting unit 13 is provided.
  • the laser device 2 includes a first laser light source 2a, a second laser light source 2b, and a third laser light source 2c.
  • the optical antenna device 9 includes a first optical antenna 9a, a second optical antenna 9b, and a third optical antenna 9c.
  • the speed calculation unit 10 includes a heterodyne detection unit 10a and a processing unit 10b
  • the control unit 12 includes a condensing distance control unit 12a and a direction switching unit 12b.
  • the laser device 2 switches and switches the laser light source that outputs oscillation light from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c.
  • the oscillation light output from the laser light source is output to the optical multiplexing unit 3.
  • Each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is collectively adjusted to the same temperature by the condensing distance control unit 12a, and the wavelength according to the adjusted temperature.
  • the oscillation light is output.
  • the oscillation light is continuous wave and constant polarization.
  • the condensing distance control unit 12a includes a thermoelectric cooler (hereinafter referred to as TEC), and the TEC performs temperature adjustment.
  • TEC thermoelectric cooler
  • each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is a laser diode (hereinafter referred to as LD) module.
  • the LD module includes, for example, coarse wavelength division multiplexing (hereinafter referred to as CWDM) in which a plurality of distributed feedback laser diodes for wavelength multiplexing optical communication whose wavelength changes linearly with temperature are contained in one package. LD module is used.
  • CWDM coarse wavelength division multiplexing
  • the wavelength of the oscillation light output from the first laser light source 2a is 1520 nm
  • the wavelength of the oscillation light output from the second laser light source 2b is 1540 nm
  • the wavelength of the oscillation light output from the third laser light source 2c is It shall be 1560 nm.
  • the radar light source to be used is switched by the direction switching unit 12b.
  • the oscillation light output from each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is transmitted to the optical multiplexing unit 3 through an optical fiber.
  • the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c may be laser light sources that output oscillation light having different wavelengths with respect to the same temperature. It is not limited to the above-mentioned wavelength value.
  • the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c are not necessarily integrated LD modules, and may be provided in independent laser devices. That is, the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c may be integrated as long as the temperature can be adjusted by the TEC included in the condensing distance control unit 12a. May be provided.
  • the optical multiplexing unit 3 inputs the oscillation light output from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c through an optical fiber, and combines the input oscillation light.
  • the oscillation light combined by the optical multiplexing unit 3 is output to the oscillation light branching unit 4 through the optical fiber.
  • the optical multiplexing unit 3 has a function equivalent to, for example, a wavelength division multiplexing (hereinafter referred to as WDM) optical coupler used in an optical communication device, and includes a first input port and a second input port. , A third input port, and an output port.
  • the first input port, the second input port, and the third input port transmit light having different wavelength bands.
  • the output port transmits light of all wavelengths input to the optical multiplexing unit 3.
  • the optical multiplexing unit 3 combines the input three oscillation lights and outputs them from the output port.
  • FIG. 2 is a diagram showing transmission characteristics with respect to the wavelength of the oscillation light for each input port included in the optical multiplexing unit 3, where the horizontal axis represents the wavelength of the oscillation light, and the vertical axis represents the transmittance of the oscillation light.
  • the transmission characteristic a1 indicates the transmission characteristic for each wavelength of the oscillation light input to the first input port.
  • the transmission characteristic b1 indicates the transmittance characteristic for each wavelength of the oscillation light input to the second input port.
  • the transmission characteristic c1 indicates the transmission characteristic for each wavelength of the oscillation light input to the third input port.
  • the wavelength dependency of the light transmittance is different for each of the first input port, the second input port, and the third input port.
  • the oscillation light with a wavelength of 1520 nm from the first laser light source 2a, the oscillation light with a wavelength of 1540 nm from the second laser light source 2b, and the oscillation light with a wavelength of 1560 nm from the third laser light source 2c transmit light of each wavelength. Input to the input port.
  • a region a2 indicated by oblique lines is a wavelength variable range of oscillation light output from the first laser light source 2a, and is a region of ⁇ 3 nm centered on a wavelength of 1520 nm.
  • a region b2 indicated by oblique lines is a wavelength variable range of oscillation light output from the second laser light source 2b, and is a region of ⁇ 3 nm centered on a wavelength of 1540 nm.
  • a region c2 indicated by oblique lines is a wavelength variable range of oscillation light output from the third laser light source 2c, and is a region of ⁇ 3 nm centered on a wavelength of 1560 nm.
  • the transmittance of light for each wavelength is almost constant in the region a2, the region b2, and the region c2, and the transmission characteristics. Is flat. For this reason, even if the wavelength of the light input into the input port changes in the region a2, the region b2, and the region c2, the intensity of the light transmitted through the input port is maintained.
  • the oscillation light branching unit 4 maintains the polarization of the oscillation light output from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c while maintaining the polarization of the oscillation light output from the optical multiplexing unit 3.
  • the light is branched into transmission light and local oscillation light.
  • the transmission light is transmitted to the modulation unit 5 through the optical fiber, and the local oscillation light is transmitted to the heterodyne detection unit 10a through the optical fiber.
  • the intensity ratio when the oscillation light output from the optical multiplexing unit 3 is branched into the transmission light and the local oscillation light does not depend on the wavelength of the oscillation light.
  • the oscillation light branching unit 4 branches the oscillation light output from the optical multiplexing unit 3 at an equal ratio for all wavelengths.
  • the modulation unit 5 outputs the oscillation light (transmission light) output from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c and input through the optical multiplexing unit 3 and the oscillation light branching unit 4. Modulate frequency and intensity. For example, the modulation unit 5 applies an offset frequency to the transmission light input from the oscillation light branching unit 4 and performs pulse modulation in which the on and off periods are repeated in frequency. When the intensity is modulated by pulse modulation, the oscillation frequency is also modulated. The transmission light modulated by the modulation unit 5 is transmitted to the optical amplifier 6 through the optical fiber.
  • the optical amplifier 6 optically amplifies the amplitude of the transmission light input from the modulation unit 5.
  • the transmission light optically amplified by the optical amplifier 6 is transmitted to the circulator 7 through the optical fiber.
  • the circulator 7 has input / output ports corresponding to three optical fibers between the optical amplifier 6, the optical branching and multiplexing unit 8, and the heterodyne detection unit 10a, and inputs the input light in a predetermined direction. To transmit.
  • the circulator 7 outputs the light input from the left input / output port of FIG. 1 only to the right input / output port, and outputs the light input from the right input / output port only to the lower input / output port. To do.
  • the circulator 7 outputs the transmission light input from the input / output port connected to the optical fiber between the optical amplifier 6 only to the input / output port connected to the optical fiber between the optical branching and multiplexing unit 8.
  • the circulator 7 outputs the received light input from the input / output port connected to the optical fiber between the optical branching and multiplexing unit 8 only to the input / output port connected to the optical fiber between the heterodyne detection unit 10a.
  • the optical branching / multiplexing unit 8 has a function equivalent to, for example, a WDM optical coupler used in an optical communication device.
  • the optical branching / combining unit 8 branches the transmission light transmitted from the circulator 7 and outputs the branched light to the optical antenna device 9, and combines the three received lights input from the optical antenna device 9 to combine the circulator 7. Output to.
  • the optical branching / multiplexing unit 8 has an input / output port connected to the optical fiber between the circulator 7 and an input / output port connected to the optical fiber between the optical antenna device 9.
  • the transmission light input from the circulator 7 to the optical branching / multiplexing unit 8 is branched and output to different input / output ports according to the wavelength.
  • the transmission light of the wavelength output from the first laser light source 2a is branched and output to the input / output port connected to the first optical antenna 9a by the optical branching / multiplexing unit 8.
  • the transmission light having the wavelength output from the second laser light source 2b is branched and output to the input / output port connected to the second optical antenna 9b by the optical branching / multiplexing unit 8.
  • the transmitted light having the wavelength output from the third laser light source 2c is branched and output to the input / output port connected to the third optical antenna 9c by the optical branching / multiplexing unit 8.
  • the optical branching / multiplexing unit 8 combines the three received lights input from the first optical antenna 9 a, the second optical antenna 9 b, and the third optical antenna 9 c and serves as an input / output port connected to the circulator 7. Output.
  • the characteristics of the light transmittance with respect to the wavelength for each input / output port in the optical branching / multiplexing unit 8 are the same as the characteristics of the optical multiplexing unit 3 shown in FIG.
  • the transmission characteristic a1 illustrated in FIG. 2 is a transmission characteristic for each wavelength of light input to the input / output port connected to the first optical antenna 9a.
  • the transmission characteristic b1 is a transmission characteristic for each wavelength of light input to the input / output port connected to the second optical antenna 9b.
  • the transmission characteristic c1 is a transmission characteristic for each wavelength of light input to the input / output port connected to the third optical antenna 9c.
  • the input / output port connected to the circulator 7 transmits light regardless of the wavelength. That is, the input / output port connected to the circulator 7 can transmit light of all wavelengths input from the optical antenna device 9.
  • the optical multiplexing unit 3 and the optical branching / multiplexing unit 8 may be WDM optical couplers that function equally.
  • the optical antenna device 9 emits transmission light that is condensed at a position away from the optical antenna by a condensing distance, and uses reflected light, which is reflected from the object existing at the transmission light emission destination, as reception light. Receive.
  • the optical antenna device 9 includes, for example, a first optical antenna 9a, a second optical antenna 9b, and a third optical antenna 9c.
  • Each of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c has a fiber collimator formed of a transmissive lens so as to emit transmission light in different directions. It is configured.
  • the reception light received by each of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c propagates the optical fiber through which the transmission light has been transmitted in the opposite direction to the transmission light.
  • the transmitted light having the wavelength output by the laser light source 2c is emitted from the third optical antenna 9c.
  • the laser radar device 1 can switch the emission direction of the transmission light by switching the laser light source that outputs the transmission light. For example, when the laser light source that outputs transmission light is switched from the first laser light source 2a to the second laser light source 2b, the optical antenna that emits transmission light is changed from the first optical antenna 9a to the second optical antenna 9b. The direction of emission of the transmitted light is switched. When the laser light source that outputs the transmission light is switched from the second laser light source 2b to the third laser light source 2c, the optical antenna that emits the transmission light is switched from the second optical antenna 9b to the third optical antenna 9c. Instead, the emission direction of the transmitted light is switched.
  • FIG. 3A is a cross-sectional view showing the optical system of the optical antenna to which the oscillation light from the first laser light source 2a is inputted, and the position of the output end 90 of the optical fiber, the arrangement of the optical components of the optical antenna, and the oscillation light
  • the locus A of the light beam is described.
  • FIG. 3B is a cross-sectional view showing the optical system of the optical antenna to which the oscillation light from the second laser light source 2b is inputted.
  • the position of the optical fiber emission end 90, the arrangement of optical components of the optical antenna, and the oscillation light Ray trajectories A and B are described.
  • 3C is a cross-sectional view showing the optical system of the optical antenna to which the oscillation light from the third laser light source 2c is input, and the position of the output end 90 of the optical fiber, the arrangement of the optical components of the optical antenna, and the oscillation light
  • the ray trajectories A and C are described. 3A, 3B, and 3B, the position of the output end 90 of the optical fiber is offset.
  • the transmission light emitted from the emission end 90 of the optical fiber is transmitted while being refracted in the order of the lens 91, the lens 92, and the lens 93, thereby having a constant beam diameter and an expansion angle. It is converted into light and emitted into space.
  • the lens 91, the lens 92, and the lens 93 have wavelength dispersion of the refractive index of the glass that constitutes them.
  • transmission light having different wavelengths is input from the optical fiber, the transmission light is condensed at different condensing distances. It has the characteristic to do.
  • the distance between the output end 90 of the optical fiber and the lens 91 is adjusted so that the locus A of the light beam of the transmission light is emitted as parallel light.
  • the transmitted light is emitted so as to be condensed, and when the distance between the output end 90 of the optical fiber and the lens 91 is decreased, the transmitted light is diverged. Is released as follows.
  • the transmission light emitted from the optical antenna The locus is a divergent locus B.
  • the optical antenna inputs the oscillation light output from the second laser light source 2b and the output end 90 of the optical fiber is offset from the position shown in FIG. 3B to the position shown in FIG. 3C (left side position), The light beam of the transmission light changes from a divergent locus B to a parallel light locus C.
  • the optical antenna has an offset position of the output end 90 of the optical fiber that makes the transmitted light parallel.
  • FIG. 4 is a graph showing the relationship between the wavelength of oscillation light input to the optical antenna device 9 and the offset position of the output end of the optical fiber. As shown in FIG. 4, the same condensing position is maintained with respect to the wavelength of the oscillation light input to the optical antenna device 9, and between the wavelength of the oscillation light and the offset position of the output end of the optical fiber. , There is a relationship of straight line D. The relationship of the straight line D can be calculated in advance from, for example, the wavelength of the oscillation light, the optical system component of the optical antenna device 9, and its position, and the relationship of the calculation results can be tabulated.
  • FIG. 5 is a graph showing the relationship between the wavelength of the oscillation light input to the optical antenna device 9 and the focusing distance.
  • the laser radar device 1 can be designed so that the wavelength of the oscillation light input to the optical antenna device 9 and the condensing distance of the light of that wavelength are in a relationship of a straight line E. is there. Therefore, by changing the wavelength of the oscillation light output from each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c at the same rate of change, the condensing distance can be increased at the same rate. Change.
  • the TEC included in the condensing distance control unit 12a adjusts the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c, thereby changing the wavelength of the oscillation light output from them. Change at the same rate of change. Thereby, the condensing distance of the transmission light emitted from each of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c can be changed at the same rate.
  • the laser radar device 1 controls the condensing distance of the transmission light by using the characteristic that the condensing distance of the transmission light emitted from the optical antenna changes when the wavelength of the transmission light input to the optical antenna changes. is doing. As a result, the laser radar device 1 can dynamically control the focusing distance without using a drive mechanism that mechanically adjusts the position of the lens provided in the optical antenna.
  • the NA Numerical Aperture
  • the transmission light emitted from the optical antenna is 0.1
  • the diameter of the beam is assumed to be 60 mm.
  • the optical system of the optical antenna is initially adjusted so that the condensing distance of the transmission light is 1900 m.
  • the laser radar device 1 changes the condensing distance of the transmission light emitted from the optical antenna from ⁇ to 970 m by changing the wavelength of the oscillation light output from the laser light source within a range of ⁇ 3 nm from the reference wavelength. It becomes possible to change arbitrarily between.
  • the optical multiplexing unit 3 and the optical branching / multiplexing unit 8 change the wavelength of oscillation light output from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c within a range of ⁇ 3 nm. Even so, the light transmittance of the port to which the oscillation light is input is not changed.
  • the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c laser light sources having a characteristic that the wavelength of oscillation light changes according to temperature are used.
  • the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c are controlled at a constant temperature so that the wavelength of the oscillation light is stabilized at a predetermined value.
  • the laser radar device 1 uses the TEC included in the condensing distance control unit 12a, and the temperature of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is the wavelength of the oscillation light to be output.
  • the temperature is controlled so as to correspond to.
  • the speed calculation unit 10 calculates the speed of the object based on the oscillation light (transmission light) output from the laser device 2 and the reception light received by the optical antenna device 9. For example, when the laser radar device 1 functions as an anemometer, the object whose velocity is calculated is an aerosol.
  • the velocity calculation unit 10 calculates the velocity of the aerosol at the emission destination of the transmission light using the local oscillation light input from the oscillation light branching unit 4 and the reception light input from the circulator 7, and transmits based on the calculation result. The wind direction and wind speed distribution at the light emission destination is obtained.
  • the heterodyne detection unit 10a has a photoelectric conversion unit (not shown), and local oscillation light and reception light are combined and input to this photoelectric conversion unit.
  • a photodiode is used for the photoelectric conversion unit.
  • the heterodyne detection unit 10a uses the combined signal of the local oscillation light and the reception light converted into the electrical signal by the photoelectric conversion unit, and the light intensity that vibrates at the difference frequency between the local oscillation light and the reception light is converted into the electrical signal.
  • the converted beat signal is generated and output to the processing unit 10b.
  • the processing unit 10b performs analog-to-digital conversion on the beat signal input from the heterodyne detection unit 10a at a preset sampling rate, and divides the beat signal converted into a digital signal into lengths corresponding to the pulse width of the transmission light. A plurality of beat signal sequences are generated. The plurality of beat signal sequences are stored in a storage area of a memory (not shown) by the processing unit 10b. The process of dividing the beat signal for each pulse width of the transmission light is called “reception gate processing”. Further, the processing unit 10b determines and determines the processing content including the beat signal break length in the reception gate processing based on the information indicating the measurement distance set by the setting unit 13.
  • the processing unit 10b performs fast Fourier transform on each of a plurality of beat signal sequences obtained by performing reception gate processing on the beat signal, and calculates a peak value, a spectrum value, and an SN ratio of the power spectrum for each beat signal sequence.
  • Each of the plurality of beat signal sequences corresponds to return light (received light) that is affected by the velocity of the object measured at different measurement distances in order of distance from the short distance to the long distance.
  • the frequency of the return light is shifted by the Doppler frequency in proportion to the speed of the object.
  • the processing unit 10b calculates a Doppler frequency proportional to the wind speed measured at an arbitrary measurement distance using the beat signal sequence, and calculates the wind speed using the calculated Doppler frequency.
  • the processing unit 10b stores the measurement distance corresponding to the direction of the transmission light emission destination set by the setting unit 13 and the calculated value of the calculated wind speed in the memory. Since each of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c is directed in different directions, the processing unit 10b can calculate the wind speed in three directions.
  • the processing unit 10b analyzes the wind direction and wind speed distribution in the distance direction by vector calculation using the information stored in the memory. The analysis result of the wind direction and wind speed distribution by the processing unit 10 b is transmitted to the display unit 11.
  • the processing unit 10b may set the measurement distance and the measurement direction in the control unit 12.
  • the display unit 11 is realized by a display device such as a liquid crystal monitor, and displays the processing result input from the speed calculation unit 10.
  • the processing result is an analysis result of the wind direction and wind speed distribution by the speed calculation unit 10.
  • the control unit 12 changes the wavelength of the oscillation light output from the laser device 2 according to the measurement distance, controls the condensing distance of the transmission light emitted from the optical antenna device 9, and is emitted from the optical antenna device 9. The direction of emission of transmitted light is controlled.
  • the condensing distance control unit 12a changes the wavelength of the oscillation light output from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c based on the measurement distance set by the setting unit 13. Thus, the condensing distance of the transmission light emitted from the optical antenna device 9 is controlled.
  • the condensing distance control unit 12a has a TEC that controls the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c, and changes the temperature to an arbitrary temperature using the TEC. be able to. For example, data in which the relationship between the condensing distance of the transmission light and the wavelength of the transmission light and the relationship between the wavelength of the transmission light and the temperature of the laser light source are tabulated are set in the condensing distance control unit 12a.
  • the condensing distance control unit 12 a refers to the data stored in the table, and the transmission distance becomes the measurement distance set by the setting unit 13.
  • the temperature of the laser light source corresponding to the wavelength of light is specified.
  • the condensing distance control part 12a performs temperature control of the laser light source which made the specified temperature the target using TEC.
  • the direction switching unit 12 b switches the directivity direction of the transmission light emitted from the optical antenna device 9 in response to the switching request set by the setting unit 13. For example, the direction switching unit 12b transmits from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c so that the measurement direction specified in the switching request is the direction of transmission light. A laser light source that emits light is selected and driven.
  • the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c are supported and fixed so that the transmitted light emitted is directed in different directions.
  • the transmission light output from the first laser light source 2a is emitted from an optical antenna associated in advance among the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the transmission light output from the second laser light source 2b is the first laser light source 2a and the third laser light source 2c among the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c. Is emitted from an optical antenna other than the optical antenna associated with.
  • the transmission light output from the third laser light source 2c is the first laser light source 2a and the second optical antenna among the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c. It is emitted from an optical antenna other than the optical antenna associated with the laser light source 2b. Accordingly, the direction switching unit 12b switches the laser light source that emits the transmission light among the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c, thereby emitting the light from the optical antenna device 9. The direction of the transmitted light is switched.
  • the setting unit 13 receives inputs of the measurement distance and the measurement direction, sets the received measurement distance in the light collection distance control unit 12a, and sets the measurement direction in the direction switching unit 12b.
  • a wind direction anemometer user inputs a position and direction in which wind speed measurement is desired using an input device (not shown).
  • the setting unit 13 specifies a measurement distance that is a distance between the position input using the input device and the position of the optical antenna device 9 and sets information indicating the specified measurement distance in the control unit 12.
  • the setting unit 13 specifies a measurement direction that is a direction input using the input device, and sets information indicating the specified measurement direction in the control unit 12.
  • the setting unit 13 periodically receives the position and direction from a device outside the laser radar device 1, and sets information indicating the measurement distance and measurement direction specified from the received position and direction in the control unit 12. May be. Information indicating the measurement distance is also set by the setting unit 13 in the processing unit 10b.
  • FIG. 6 is a flowchart showing the operation of the laser radar device 1.
  • the setting unit 13 sets the measurement distance received from the user in the light collection distance control unit 12a, and sets the measurement direction in the direction switching unit 12b. Furthermore, the setting unit 13 sets the measurement distance in the processing unit 10b. Based on the information indicating the measurement distance set by the setting unit 13, the processing unit 10 b determines and determines the processing content including the length of the beat signal break in the reception gate processing.
  • the condensing distance control unit 12a changes the wavelength of the oscillation light output from the laser device 2 in accordance with the measurement distance set by the setting unit 13, so that the condensing distance of the transmission light matches the measurement distance.
  • the condensing distance control unit 12a refers to the data in which the relationship between the condensing distance of the transmission light and the wavelength of the transmission light and the relationship between the wavelength of the transmission light and the temperature of the laser light source are tabulated.
  • the temperature of the laser light source corresponding to the wavelength of the transmission light whose focusing distance is the measurement distance is specified.
  • the condensing distance control part 12a performs temperature control of the laser light source which made the specified temperature the target using TEC. Thereby, the wavelength of the oscillation light output from the laser device 2 changes according to the measurement distance.
  • the direction switching unit 12b selects and selects a laser light source to be used from the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c according to the measurement direction set by the setting unit 13.
  • the laser light source thus produced is driven (step ST2).
  • the direction switching unit 12b includes the first laser light source 2a, the second laser light source 2b, and the third laser light source so that the measurement direction specified by the switching request input from the setting unit 13 is the direction of transmission light.
  • a laser light source that emits transmission light is selected from the laser light source 2c and driven.
  • the laser light source driven by the control unit 12 outputs continuous wave and constant polarization oscillation light.
  • the oscillation light output from the laser light source is transmitted to the oscillation light branching section 4 through the optical multiplexing section 3.
  • the oscillation light branching unit 4 branches the oscillation light transmitted from the optical multiplexing unit 3 into transmission light and local oscillation light while maintaining the polarization state.
  • the transmission light is transmitted to the modulation unit 5, and the local oscillation light is transmitted to the speed calculation unit 10.
  • the modulation unit 5 modulates the frequency and intensity of the transmission light transmitted from the oscillation light branching unit 4.
  • the transmission light modulated by the modulation unit 5 is optically amplified by the optical amplifier 6 and transmitted to the optical branching / combining unit 8 by the circulator 7.
  • the optical branching / multiplexing unit 8 transmits the transmission light transmitted from the circulator 7 to the optical antenna device 9.
  • the optical antenna device 9 emits transmission light from the optical antenna. Since the condensing distance of the transmission light is controlled by the condensing distance control unit 12a so as to match the measurement distance, the transmission light is condensed at the measurement distance.
  • the transmission light emitted from the optical antenna device 9 is backscattered by the object in the observation space, and is Doppler frequency shifted according to the moving speed of the object.
  • the optical antenna device 9 receives backscattered light, that is, received light that is transmitted light reflected by an object. Since the transmission light is controlled to be condensed at the measurement distance, the intensity of the transmission light is highest at a position away from the optical antenna device 9 by the measurement distance. As a result, even if transmission light is reflected by objects at various positions to become reception light, the ratio of reception light reflected at positions separated by a measurement distance is the largest. For this reason, the SN ratio of the received light reflected at the position separated by the measurement distance is increased.
  • the received light received by the optical antenna device 9 is transmitted to the optical branching / multiplexing unit 8, and the optical branching / multiplexing unit 8 is transmitted to the circulator 7.
  • the circulator 7 transmits the received light to the speed calculation unit 10.
  • the speed calculation unit 10 calculates the speed of the object based on the oscillation light output from the laser light source selected in step ST2 and the received light received by the optical antenna device 9 (step ST3).
  • the heterodyne detection unit 10 a performs heterodyne detection using the local oscillation light input from the oscillation light branching unit 4 and the reception light input from the circulator 7. For example, the heterodyne detection unit 10a generates a beat signal having a frequency difference between the local oscillation light and the reception light by optically combining the local oscillation light and the reception light and performing photoelectric conversion.
  • the processing unit 10b performs frequency analysis on the beat signal generated by the heterodyne detection unit 10a, and calculates the wind speed in the emission direction of the transmission light at the measurement position. Information indicating the wind speed calculated by the processing unit 10b is stored in a memory included in the laser radar device 1.
  • the wind speed measurement using the laser radar device 1 has a wider range of use and is more convenient if it can measure not only the wind speed in one direction but also the three-dimensional wind speed.
  • the three-dimensional wind speed can be obtained by a three-point positioning method.
  • the direction switching unit 12b sequentially switches the optical antenna that emits the transmission light by switching the laser light source to be used, and the speed calculation unit 10 calculates the wind speed in three different directions near the measurement position.
  • the speed calculation unit 10 can estimate the three-dimensional wind speed distribution of the wind speed by vector calculation using the wind speeds in three directions, and can further calculate the wind speed distribution for each measurement distance.
  • FIG. 7 is a flowchart showing the operation of the condensing distance control unit 12a, and shows detailed processing in step ST1 of FIG.
  • the collection distance control unit 12a matches the collection distance of the transmission light emitted from the optical antenna with the measurement distance set from the setting unit 13.
  • the wavelength of the transmission light is determined (step ST2a).
  • the condensing distance control unit 12a refers to the data in which the relationship between the condensing distance of the transmission light and the wavelength of the transmission light and the relationship between the wavelength of the transmission light and the temperature of the laser light source are tabulated.
  • the wavelength of the transmitted light is determined so that the condensing distance becomes the measurement distance.
  • the condensing distance control unit 12a determines the temperature T at which the laser light source outputs the transmission light having the determined wavelength (step ST3a). For example, the condensing distance control unit 12a determines the temperature T at which the laser light source outputs the light having the wavelength determined in step ST2a by referring to the table data.
  • the condensing distance control unit 12a uses the TEC so that the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c are the temperatures T determined in step ST3a. Adjust (step ST4a). Of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c adjusted to the temperature T, the laser light source corresponding to the optical antenna that emits the transmission light is determined in step ST2a. Outputs oscillation light of wavelength. Thereby, the condensing distance of the transmission light emitted from the optical antenna is controlled so as to coincide with the measurement distance set by the setting unit 13.
  • the condensing distance control unit 12a determines whether or not a new measurement distance is set from the setting unit 13 (step ST5a). Here, if a new measurement distance is not set (step ST5a; NO), the condensing distance control unit 12a returns to the process of step ST4a, and the first laser light source 2a, the second laser light source 2b, and the third The temperatures of the laser light sources 2c are maintained at the temperature T in a lump.
  • step ST5a When a new measurement distance is set from the setting unit 13 (step ST5a; YES), the light collection distance control unit 12a returns to the process of step ST2a, and sets the newly set measurement distance and the transmission light collection distance.
  • the above-described series of processing is repeated so that.
  • the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c are collectively controlled.
  • the wavelength is controlled to match the distance.
  • FIG. 8 is a flowchart showing the operation of the direction switching unit 12b, and shows detailed processing in step ST2 of FIG.
  • the direction switching unit 12b determines an optical antenna whose transmission light emission direction matches the measurement direction set from the setting unit 13 (step ST2b).
  • each of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c emits transmission light in different directions.
  • the setting unit 13 selects a measurement direction from three directions in which these optical antennas emit transmission light, and sets the selected measurement direction in the direction switching unit 12b.
  • the measurement direction may be selected by the user using the input device.
  • the direction switching unit 12b selects and drives a laser light source corresponding to the optical antenna determined in step ST2b among the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c (step ST3b). ). For example, when the laser light source associated with the optical antenna determined in step ST2b among the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is the third laser light source 2c, The direction switching unit 12b selects this laser light source.
  • the laser radar device 1 determines the optical antenna to be used based on the directivity direction of the transmission light emitted from the optical antenna and the measurement direction set by the setting unit 13, and the laser associated with the determined optical antenna By driving the light source, the emission direction of the transmission light can be switched.
  • the emission ends of the optical fibers in the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c are the first laser light source 2a, the second laser light source 2b, and the third laser light source.
  • the transmission light is arranged at an offset position where the transmission light is collected at an equal distance.
  • measurement can be performed under the same condensing distance and with the same light transmittance of the optical multiplexing unit 3 and the optical branching / multiplexing unit 8.
  • measurement equivalent to a configuration in which optical path scanning is mechanically performed can be realized without using a mechanical scanning mechanism.
  • a diffractive lens having wavelength dispersion characteristics may be used for the optical system provided in the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • a diffractive lens having wavelength dispersion characteristics may be used for the optical system provided in the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • FIG. 9 is a conceptual diagram showing a cross section of the diffractive lens 91A.
  • the diffractive lens 91A is used in place of the lens 91 provided in the optical system of the optical antenna shown in FIGS. 3A, 3B, and 3C.
  • a curve indicated by a broken line in FIG. 9 is the surface of the lens 91 described for comparison with the surface of the diffractive lens 91A.
  • the surface of the diffractive lens 91A has a shape having a plurality of steps as shown in FIG. 9 in order to diffract incident light. As for these level
  • a lens effect is produced by configuring the diffractive lens 91A so that the stepped surface is an integral multiple of the wavelength of the incident light.
  • the diffractive lens 91A Since the diffractive lens 91A produces a lens effect due to the minute structure of the wavelength order of incident light, the optical system of the optical antenna can be reduced in size.
  • the diffractive lens 91A has a large wavelength dispersion characteristic, and the condensing distance of the emitted light changes according to the wavelength of the incident light.
  • the wavelength dispersion characteristic of the condensing distance can be increased. Therefore, in the diffractive lens 91A, as compared with the lens 91, the condensing distance of the outgoing light is changed with respect to the change in wavelength of the incident light. The variable range becomes large.
  • the diffractive lens 91A is not limited to the shape shown in FIG.
  • An independent diffractive lens may be used or a plurality of diffractive lenses may be used as long as the variable distance of the condensed distance of the outgoing light can be increased with respect to the wavelength of the incident light.
  • the laser radar device 1 has been described as having three pairs of laser light sources and optical antennas. However, four or more pairs may be provided, or two pairs may be provided.
  • at least three pairs of laser light sources and optical antennas are required.
  • one pair or two pairs can be measured.
  • the optical antenna does not require a driving mechanism for mechanically moving the lens, and an increase in the weight and size of the optical antenna can be suppressed.
  • the TEC included in the first laser light source 2a, the second laser light source 2b, the third laser light source 2c, and the focusing distance control unit 12a may be realized by a laser module in which these are integrated.
  • the laser radar device 1 switches the emission direction of the transmission light while maintaining the condensing position of the optical antenna by switching a plurality of laser light sources having different wavelengths of oscillation light.
  • the wavelength of the oscillation light is changed according to the measurement distance, and control is performed so that the collection distance of the transmission light matches the measurement distance.
  • the laser radar apparatus 1 can dynamically control the condensing distance of the oscillation light without using a drive mechanism that mechanically adjusts the position of the lens included in the optical antenna.
  • the drive mechanism which moves a lens mechanically is unnecessary, it is possible to suppress the increase in the weight and dimension of the optical antenna device 9.
  • the laser radar apparatus 1 includes a setting unit 13 that receives a measurement distance and sets the received measurement distance in the control unit 12.
  • the control unit 12 performs control so that the condensing distance of the transmission light matches the measurement distance set from the setting unit 13. With this configuration, the user uses the setting unit 13 to set the measurement distance in the control unit 12.
  • each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c outputs oscillation light having a wavelength according to temperature.
  • the control unit 12 adjusts the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c to change the wavelength of the oscillation light.
  • the control unit collectively adjusts each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c to the same temperature, whereby the first laser light source 2a, the second laser light source 2b, The laser light source 2b and the third laser light source 2c output oscillation light having a wavelength corresponding to the adjusted temperature.
  • the laser radar apparatus 1 can adjust the condensing distance of three transmission lights simultaneously.
  • the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c include a diffractive lens 91A.
  • the oscillation light outputted from each of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c is emitted through the diffraction lens 91A.
  • the variable width of the condensing distance of the transmission light emitted from the optical antenna device 9 can be increased.
  • FIG. FIG. 10 is a block diagram showing a configuration of a laser radar apparatus 1A according to Embodiment 2 of the present invention, and shows the laser radar apparatus 1A functioning as an anemometer.
  • a solid line arrow indicates an optical signal transmission path, for example, an optical fiber.
  • a broken arrow indicates an electric signal transmission path.
  • the laser radar apparatus 1A changes the wavelength of the oscillation light output from the laser apparatus 2 in accordance with the measurement distance corresponding to the position where the wind velocity is desired to be measured, so that the condensing distance of the oscillation light matches the measurement distance. To do.
  • the laser radar device 1A includes a laser device 2, an optical multiplexing unit 3, an oscillation light branching unit 4, a modulation unit 5, an optical amplifier 6, a circulator 7, an optical antenna device 9A, a speed calculation unit 10, a display unit 11, a control unit 12A, and A setting unit 13 is provided.
  • the laser device 2 includes a first laser light source 2a, a second laser light source 2b, and a third laser light source 2c.
  • the optical antenna device 9A includes a first optical antenna 9a, a second optical antenna 9b, a third optical antenna 9c, a temperature sensor 9d, and an atmospheric pressure sensor 9e.
  • the speed calculation unit 10 includes a heterodyne detection unit 10a and a processing unit 10b
  • the control unit 12A includes a condensing distance control unit 12a1 and a direction switching unit 12b.
  • the optical antenna device 9A collects and emits the transmission light and receives the reception light which is the transmission light reflected by the object existing at the transmission light emission destination.
  • the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c are configured to include a collimator lens having wavelength dispersion characteristics.
  • a collimator lens the refractive index of the glass constituting the lens and the refractive index of the atmosphere depend on temperature, and the lens shape changes due to linear expansion.
  • the focal length of the collimator lens changes depending on the temperatures of the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the atmospheric pressure of the atmosphere changes and the refractive index of the atmosphere changes, so that the focal length of the collimator lens also changes depending on the atmospheric pressure.
  • the laser radar device 1A measures the temperature and atmospheric pressure of the optical antenna device 9A, and controls the wavelength of the transmission light based on the refractive index of the collimator lens corresponding to the measured temperature and atmospheric pressure, thereby condensing the transmission light. The distance can be controlled to match the target measurement position.
  • the temperature sensor 9d measures the temperatures inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the temperature sensor 9d measures the temperature of a collimator lens provided inside the optical antenna.
  • the atmospheric pressure sensor 9e measures the atmospheric pressure inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the atmospheric pressure sensor 9e measures the atmospheric pressure in the space in which the oscillation light emitted from the emission end of the optical fiber is emitted through the collimator lens inside the optical antenna.
  • air pressure sensor 9e measured is output to 12 A of control parts.
  • the control unit 12A includes a collimator lens according to the temperature and the atmospheric pressure inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c measured by the temperature sensor 9d and the atmospheric pressure sensor 9e.
  • the wavelength of the transmission light is controlled based on the refractive index.
  • the condensing distance control unit 12a1 controls the wavelength of the transmission light according to the temperature and atmospheric pressure inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the condensing distance control unit 12a1 includes an optical path difference of the transmission light corresponding to a change in the refractive index of the collimator lens according to the temperature and pressure of the optical antenna and a change in the wavelength of the oscillation light according to the temperature of the laser light source. Changes are preset. For example, as the change in the optical path difference of the transmission light corresponding to the change in the refractive index of the collimator lens according to the temperature and the atmospheric pressure of the optical antenna, the change in the optical path difference of the transmission light with respect to the measured values of the temperature sensor 9d and the atmospheric pressure sensor 9e. Measure or calculate in advance. This measured value or calculated value is set in the condensing distance control unit 12a1.
  • the change in the optical path difference of the transmission light corresponding to the change in the wavelength of the oscillation light according to the temperature of the laser light source is the temperature of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c.
  • the change in the optical path difference of the transmitted light with respect to is measured or calculated in advance. This measured value or calculated value is set in the condensing distance control unit 12a1.
  • the data indicating the change in the optical path difference of the transmission light according to the temperature and pressure inside the optical antenna and the temperature of the laser light source can be expressed by a mathematical expression or a table. Hereinafter, it is assumed that these data are set in the focusing distance control unit 12a1 in the form of table data.
  • the light collection distance control unit 12a1 refers to the table data, and the light collection distance of the transmission light is the measurement distance.
  • the temperature of the laser light source corresponding to the wavelength of the transmitted light that matches is specified.
  • the condensing distance control unit 12a1 controls the temperature of the laser light source to the specified temperature to change the wavelength of the oscillation light output from the laser device 2, so that the condensing distance of the transmission light matches the measurement distance. To control.
  • FIG. 11 is a flowchart showing the operation of the laser radar apparatus 1A.
  • the processing from step ST2c to step ST3c in FIG. 11 is the same as that from step ST2 to step ST3 in FIG.
  • the temperature sensor 9d measures the temperatures inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the atmospheric pressure sensor 9e measures the atmospheric pressure inside the first optical antenna 9a, the second optical antenna 9b, and the third optical antenna 9c.
  • the temperature sensor 9d and the atmospheric pressure sensor 9e output an electric signal of a measured value to the control unit 12A through an electric signal transmission path.
  • the condensing distance control unit 12a1 changes the wavelength of the oscillation light according to the temperature and atmospheric pressure inside the optical antenna and the measurement distance set by the setting unit 13 so that the condensing distance matches the measurement distance.
  • Control step ST1c).
  • the condensing distance control unit 12a1 transmits the light antenna emits with reference to the table data based on the temperature measurement information measured by the temperature sensor 9d and the atmospheric pressure measurement information measured by the atmospheric pressure sensor 9e. Find the optical path difference of light.
  • the condensing distance control unit 12a1 refers to the table data based on the measurement distance set by the setting unit 13, and the condensing distance becomes the measurement distance in consideration of the optical path difference of the obtained transmission light.
  • the temperature of the laser light source corresponding to the wavelength of light is specified.
  • the condensing distance control unit 12a1 uses the TEC to perform temperature control of the laser light source targeting the specified temperature. Thereby, the wavelength of the oscillation light output from the laser apparatus 2 changes according to the measurement distance.
  • the optical antenna device 9A may be configured to include either the temperature sensor 9d or the atmospheric pressure sensor 9e.
  • the condensing distance control unit 12a1 is set with table data indicating changes in the optical path difference of the transmission light according to the temperature or atmospheric pressure inside the optical antenna and changes in the wavelength of the transmission light according to the temperature of the laser light source.
  • the condensing distance control unit 12a1 refers to the table data based on the measurement distance set by the setting unit 13, and obtains the optical path difference of the transmission light.
  • the condensing distance control unit 12a1 specifies the temperature of the laser light source in which the condensing distance becomes the measurement distance in consideration of the obtained optical path difference of the transmission light, and the temperature of the laser light source is set so as to become the specified temperature. Control.
  • the temperature sensor 9d and the atmospheric pressure sensor 9e may measure the temperature and atmospheric pressure of the entire optical antenna device 9A.
  • the condensing distance control unit 12a1 collectively collects the temperatures of the first laser light source 2a, the second laser light source 2b, and the third laser light source 2c. Control.
  • the condensing distance control unit 12a1 corresponds to each of these optical antennas. Control the temperature of each laser source.
  • the laser radar device 1A includes the temperature sensor 9d that measures the temperature inside the optical antenna. Based on the temperature measured by the temperature sensor 9d, the control unit 12A performs control so that the light collection distance matches the measurement distance.
  • the laser radar device 1A includes an atmospheric pressure sensor 9e that measures the atmospheric pressure inside the optical antenna. The control unit 12A performs control so that the light collection distance matches the measurement distance based on the atmospheric pressure measured by the atmospheric pressure sensor 9e. Even if the refractive index of the collimator lens included in the optical antenna changes due to the temperature and pressure inside the optical antenna, the control unit 12A can reduce the influence of the change in the focusing distance according to the temperature and pressure inside the optical antenna. As described above, the wavelength of the transmission light is changed. As a result, the laser radar device 1A can control the condensing distance of the transmission light so as to match the target measurement position.
  • the condensing distance control unit in the first and second embodiments emits light from the optical antenna by changing the wavelength of the oscillation light output from the laser light source according to the measurement distance set from the setting unit 13.
  • the condensing distance of the transmitted light is controlled to match the measurement distance.
  • the measurement distance set by the setting unit 13 does not need to be completely matched with the distance to the position where measurement is desired. If the measurement accuracy (for example, the SN ratio of the measurement result) of the object at the position where measurement is desired is within an allowable range, the transmission light may be condensed near the position where measurement is desired.
  • the condensing distance control unit in the first and second embodiments changes the wavelength of the oscillation light output from the laser light source by changing the temperature of the laser light source.
  • the present invention is not limited to this. Absent.
  • the wavelength of the oscillation light output from the laser light source may be changed by physically applying pressure to the element of the laser light source.
  • Embodiment 3 The functions of the speed calculation unit 10 and the control unit 12 in the laser radar device 1 are realized by a processing circuit. That is, the laser radar device 1 includes a processing circuit for executing the processing from step ST1 to step ST3 shown in FIG. Similarly, the functions of the velocity calculation unit 10 and the control unit 12A in the laser radar device 1A are realized by a processing circuit, and this processing circuit is for executing the processing from step ST1c to step ST4c shown in FIG. Is. These processing circuits may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in a memory.
  • CPU Central Processing Unit
  • FIG. 12A is a block diagram showing a hardware configuration for realizing the function of the component that performs signal processing in the laser radar device 1 or the laser radar device 1A.
  • FIG. 12B is a block diagram illustrating a hardware configuration for executing software that implements functions of components that perform signal processing in the laser radar device 1 or the laser radar device 1A.
  • the component which performs a signal process is the speed calculation part 10 and the control part 12 in the laser radar apparatus 1, and is the speed calculation part 10 and the control part 12A in the laser radar apparatus 1A.
  • the display device 100 is the display unit 11 shown in FIGS. 1 and 10, and displays, for example, the analysis result of the wind direction and wind speed distribution by the speed calculation unit 10.
  • the input device 101 is a device that accepts input from a user, and is realized by a touch panel, hardware keys, a mouse, and the like.
  • the setting unit 13 receives input of information using the input device 101, specifies a measurement distance and a measurement direction based on the received information, and sets the specified measurement distance and measurement direction in the control unit 12.
  • the processing circuit 102 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated), or the like. Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the functions of the velocity calculation unit 10 and the control unit 12 in the laser radar device 1 may be realized by separate processing circuits, or these functions may be realized by a single processing circuit. Further, the functions of the velocity calculation unit 10 and the control unit 12A in the laser radar device 1A may be realized by separate processing circuits, or these functions may be realized by a single processing circuit.
  • the functions of the speed calculation unit 10 and the control unit 12 in the laser radar device 1 are realized by software, firmware, or a combination of software and firmware.
  • the functions of A of the velocity calculation unit 10 and the control unit 12 in the laser radar apparatus 1A are also realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 104.
  • the processor 103 reads out and executes the program stored in the memory 104, thereby realizing the functions of the speed calculation unit 10 and the control unit 12 in the laser radar device 1.
  • the laser radar device 1 includes a memory 104 for storing a program that, when executed by the processor 103, results from the processing from step ST1 to step ST3 shown in FIG.
  • 1 A of laser radar apparatuses are provided with the memory 104 for memorize
  • These programs cause the computer to execute the procedures or methods of the speed calculation unit 10 and the control unit 12.
  • the memory 104 may be a computer-readable storage medium that stores a program for causing a computer to function as the speed calculation unit 10 and the control unit 12. The same applies to the laser radar apparatus 1A.
  • the memory 104 may be, for example, a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or a volatile memory such as an EEPROM (Electrically-EPROM).
  • a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or a volatile memory such as an EEPROM (Electrically-EPROM).
  • a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or a volatile memory such as an EEPROM (Electrically-EPROM).
  • Part of the functions of the speed calculation unit 10 and the control unit 12 may be realized by dedicated hardware, and part of the functions may be realized by software or firmware.
  • the speed calculation unit 10 realizes the function by a processing circuit that is dedicated hardware
  • the control unit 12 realizes the function by the processor 103 reading and executing a program stored in the memory 104. Good.
  • the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
  • the laser radar apparatus can dynamically control the condensing distance of the oscillation light without using a driving mechanism that mechanically adjusts the position of the lens included in the optical antenna, It can be used for the anemometer installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

レーザレーダ装置(1)が、発振光の波長が互いに異なる複数のレーザ光源(2a~2c)を切り換えることにより、光アンテナ(9a~9c)の集光位置を保持したまま送信光の放出方向を切り換え、かつ測定距離に応じて発振光の波長を変化させて送信光の集光距離が測定距離に合うように制御する。

Description

レーザレーダ装置
 この発明は、レーザレーダ装置に関する。
 レーザレーダ装置は、光アンテナから空間に発振光を放出して、空間を移動する物体で反射または散乱された発振光を光アンテナで受信し、受信した発振光のドップラーシフトを測定した結果に基づいて物体の移動速度を測定する。例えば、特許文献1に記載された風計測ライダー装置には、レーザレーダ装置が用いられている。この装置は、光アンテナから対象物までの距離である測定距離を動的に変化させることを目的として、光アンテナから放出された発振光が測定距離だけ離れた位置で集光するように、光アンテナが備える一部のレンズを、測定距離に応じた位置に移動させている。
特開2010-133861号公報
 光アンテナが備える一部のレンズを光軸方向に移動させて発振光の集光距離を制御する場合、レンズの位置を高精度に調整する必要がある。例えば、レンズの典型的な位置決め分解能として1μm単位の分解能が要求される。このため、従来のレーザレーダ装置は、レンズの位置を機械的に調整する駆動機構を光アンテナが備えており、光アンテナの寸法または重量が増大するという課題があった。
 この発明は上記課題を解決するものであり、光アンテナが備えるレンズの位置を機械的に調整する駆動機構を用いずに、送信光の集光距離を動的に制御することができるレーザレーダ装置を得ることを目的とする。
 この発明に係るレーザレーダ装置は、複数のレーザ光源、変調部、複数の光アンテナ、速度算出部および制御部を備える。複数のレーザ光源は、互いに異なる波長の発振光を出力する。変調部は、レーザ光源から出力された発振光の周波数および強度を変調する。複数の光アンテナは、変調部によって変調された発振光を、集光距離だけ離れた位置で集光する送信光として放出し、送信光の放出先に存在する対象物で送信光が反射された反射光を、受信光として受信する。速度算出部は、レーザ光源から出力された発振光と光アンテナによって受信された受信光とに基づいて対象物の速度を算出する。制御部は、複数のレーザ光源を制御する。この構成において、複数の光アンテナは、各々に入力される光の波長の差異に依存した集光点のずれがオフセット補正されており、レーザ光源から出力された発振光は、複数の光アンテナのうち、当該レーザ光源に対応付けられた光アンテナから放出される。制御部は、複数のレーザ光源を切り換えることにより、光アンテナの集光位置を保持したまま送信光の放出方向を切り換え、かつ測定距離に応じて発振光の波長を変化させて集光距離が測定距離に合うように制御する。
 この発明によれば、レーザレーダ装置が、発振光の波長が互いに異なる複数のレーザ光源を切り換えることにより、光アンテナの集光位置を保持したまま送信光の放出方向を切り換え、かつ測定距離に応じて発振光の波長を変化させて送信光の集光距離が測定距離に合うように制御することで、光アンテナが備えるレンズの位置を機械的に調整する駆動機構を用いずに、発振光の集光距離を動的に制御することができる。
この発明の実施の形態1に係るレーザレーダ装置の構成を示すブロック図である。 実施の形態1における光合波部が備える入力ポートごとの発振光の波長に対する透過特性を示す図である。 図3Aは、第1のレーザ光源からの発振光が入力された光アンテナの光学系を示す断面図である。図3Bは、第2のレーザ光源からの発振光が入力された光アンテナの光学系を示す断面図である。図3Cは、第3のレーザ光源からの発振光が入力された光アンテナの光学系を示す断面図である。 光アンテナ装置に入力された発振光の波長と光ファイバの出力端のオフセット位置との関係を示すグラフである。 光アンテナ装置に入力された発振光の波長と集光距離との関係を示すグラフである。 実施の形態1に係るレーザレーダ装置の動作を示すフローチャートである。 実施の形態1における集光距離制御部の動作を示すフローチャートである。 実施の形態1における方向切換部の動作を示すフローチャートである。 回折レンズの断面を示す概念図である。 この発明の実施の形態2に係るレーザレーダ装置の構成を示すブロック図である。 実施の形態2に係るレーザレーダ装置の動作を示すフローチャートである。 図12Aは、実施の形態1または実施の形態2に係るレーザレーダ装置において信号処理を行う構成要素の機能を実現するハードウェア構成を示すブロック図である。図12Bは、実施の形態1または実施の形態2に係るレーザレーダ装置において信号処理を行う構成要素の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るレーザレーダ装置1の構成を示すブロック図であり、風向風速計として機能するレーザレーダ装置1を示している。図1において、実線の矢印は光信号の伝送路を示しており、例えば、光ファイバである。また、破線の矢印は電気信号の伝送路を示している。レーザレーダ装置1は、大気中のエアロゾルの移動速度を測定した結果に基づいて風速を計測する。エアロゾルとは、大気中の微小な液体または固体の粒子である。
 レーザレーダ装置1は、風速の測定を行いたい位置に対応する測定距離に応じてレーザ装置2が出力する発振光の波長を変化させて、発振光の集光距離が測定距離に合うように制御する。測定距離とは、光アンテナ装置9から測定を行いたい位置までの距離である。発振光の集光距離とは、光アンテナ装置9から発振光の集光位置までの距離である。これにより、レーザレーダ装置1は、光アンテナ装置9が備えるレンズを機械的に移動させる駆動機構を用いなくても、発振光の集光距離を動的に制御することができる。
 レーザレーダ装置1は、レーザ装置2、光合波部3、発振光分岐部4、変調部5、光増幅器6、サーキュレータ7、光アンテナ装置9、速度算出部10、表示部11、制御部12および設定部13を備える。レーザ装置2は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cを備えている。光アンテナ装置9は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cを備えている。速度算出部10は、ヘテロダイン検出部10aおよび処理部10bを備えており、制御部12は、集光距離制御部12aおよび方向切換部12bを備えている。
 レーザ装置2は、制御部12からの制御信号に基づいて、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから、発振光を出力するレーザ光源を切り換え、切り換えたレーザ光源から出力された発振光を光合波部3に出力する。第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれは、集光距離制御部12aによって一括して同一の温度に調整されて、調整された温度に応じた波長の発振光を出力する。発振光は連続発振かつ定偏光である。例えば、集光距離制御部12aは、熱電クーラー(以下、TECと記載する)を備えており、TECが温度調整を行う。
 以降では、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれがレーザダイオード(以下、LDと記載する)モジュールであるものとして説明する。LDモジュールには、例えば、波長が温度に対して線形で変化する波長多重光通信用の複数の分布帰還形のレーザダイオードが1つのパッケージに収められた、粗波長分割多重(以下、CWDMと記載する)用LDモジュールが使用される。
 第1のレーザ光源2aが出力する発振光の波長は1520nmであり、第2のレーザ光源2bが出力する発振光の波長は1540nmであり、第3のレーザ光源2cが出力する発振光の波長は1560nmであるものとする。第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのうち、使用するレーダ光源は、方向切換部12bによって切り換えられる。また、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれから出力された発振光は、光ファイバを通って光合波部3に伝送される。
 第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cは、同一の温度に対して互いに異なる波長の発振光を出力するレーザ光源であればよく、発振光の波長は、前述した波長の値に限定されるものではない。第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cは必ずしも一体のLDモジュールである必要はなく、それぞれが独立したレーザ装置に備えられてもよい。すなわち、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cは、集光距離制御部12aが備えるTECによって温度調整が可能であれば、一体であってもよく、別個に設けられてもよい。
 光合波部3は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから出力された発振光を、光ファイバを通して入力し、入力した発振光を合波する。光合波部3によって合波された発振光は、光ファイバを通して発振光分岐部4に出力される。
 光合波部3は、例えば、光通信器に用いられている波長分割多重(以下、WDMと記載する)光カプラと同等の機能を有しており、第1の入力ポート、第2の入力ポート、第3の入力ポート、および出力ポートを備える。第1の入力ポート、第2の入力ポートおよび第3の入力ポートは、互いに異なる波長帯域の光を透過する。出力ポートは、光合波部3に入力された全ての波長の光を透過する。
 第1の入力ポート、第2の入力ポートおよび第3の入力ポートには、光ファイバを通して伝送されてきた、第1のレーザ光源2aからの発振光、第2のレーザ光源2bからの発振光、および第3のレーザ光源2cからの発振光が入力される。光合波部3は、入力した3つの発振光を合波して出力ポートから出力する。
 図2は、光合波部3が備える入力ポートごとの発振光の波長に対する透過特性を示す図であり、横軸は発振光の波長、縦軸は発振光の透過率である。透過特性a1は、第1の入力ポートに入力された発振光の波長ごとの透過率の特性を示している。透過特性b1は、第2の入力ポートに入力された発振光の波長ごとの透過率の特性を示している。透過特性c1は、第3の入力ポートに入力された発振光の波長ごとの透過率の特性を示している。
 第1の入力ポート、第2の入力ポートおよび第3の入力ポートのそれぞれで光の透過率の波長依存性が異なる。第1のレーザ光源2aからの波長1520nmの発振光、第2のレーザ光源2bからの波長1540nmの発振光および第3のレーザ光源2cからの波長1560nmの発振光は、それぞれの波長の光を透過する入力ポートに入力される。
 図2において、斜線で示す領域a2は、第1のレーザ光源2aが出力する発振光の波長可変範囲であり、波長1520nmを中心とした±3nmの領域である。斜線で示す領域b2は、第2のレーザ光源2bが出力する発振光の波長可変範囲であって、波長1540nmを中心とした±3nmの領域である。斜線で示す領域c2は、第3のレーザ光源2cが出力する発振光の波長可変範囲であり、波長1560nmを中心とした±3nmの領域である。第1の入力ポート、第2の入力ポートおよび第3の入力ポートのそれぞれでは、図2に示すように、領域a2、領域b2および領域c2において波長ごとの光の透過率がほぼ一定で透過特性が平坦になっている。このため、入力ポートに入力される光の波長が領域a2、領域b2および領域c2で変化しても、入力ポートを透過する光の強度は維持される。
 図1の説明に戻る。
 発振光分岐部4は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから出力された発振光の偏光を維持しつつ光合波部3から出力された発振光を、送信光と局部発振光とに分岐する。送信光は、光ファイバを通して変調部5に伝送され、局部発振光は、光ファイバを通してヘテロダイン検出部10aに伝送される。光合波部3から出力された発振光を送信光と局部発振光とに分岐するときの強度の割合は、発振光の波長に依存しない。すなわち、発振光分岐部4は、光合波部3から出力された発振光を、全ての波長について等しい割合で分岐する。
 変調部5は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから出力され、光合波部3と発振光分岐部4とを通して入力した発振光(送信光)の周波数および強度を変調する。例えば、変調部5は、発振光分岐部4から入力した送信光に対してオフセット周波数を付与し、かつ周波数的にオンとオフの期間を繰り返したパルス変調を行う。パルス変調によって強度が変調されると、発振周波数も変調される。変調部5によって変調された送信光は、光ファイバを通して光増幅器6に伝送される。
 光増幅器6は、変調部5から入力した送信光の振幅を光増幅する。光増幅器6によって光増幅された送信光は、光ファイバを通してサーキュレータ7に伝送される。
 サーキュレータ7は、光増幅器6、光分岐合波部8およびヘテロダイン検出部10aのそれぞれとの間の3つの光ファイバに対応した入出力ポートを有しており、入力した光を決められた方向に伝送する。サーキュレータ7は、図1の左方向の入出力ポートから入力した光を右方向の入出力ポートのみに出力し、右方向の入出力ポートから入力された光を下方向の入出力ポートのみに出力する。
 例えば、サーキュレータ7は、光増幅器6との間の光ファイバにつながる入出力ポートから入力した送信光を、光分岐合波部8との間の光ファイバにつながる入出力ポートのみに出力する。サーキュレータ7は、光分岐合波部8との間の光ファイバにつながる入出力ポートから入力した受信光を、ヘテロダイン検出部10aとの間の光ファイバにつながる入出力ポートのみに出力する。
 光分岐合波部8は、例えば、光通信器に用いられているWDM光カプラと同等の機能を有している。光分岐合波部8は、サーキュレータ7から伝送されてきた送信光を分岐して光アンテナ装置9に向けて出力するとともに、光アンテナ装置9から入力した3つの受信光を合波してサーキュレータ7に向けて出力する。光分岐合波部8は、サーキュレータ7との間の光ファイバにつながる入出力ポートと、光アンテナ装置9との間の光ファイバにつながる入出力ポートを有している。
 サーキュレータ7から光分岐合波部8に入力された送信光は、その波長に応じて異なる入出力ポートに分岐されて出力される。例えば、第1のレーザ光源2aが出力した波長の送信光は、光分岐合波部8によって第1の光アンテナ9aにつながる入出力ポートに分岐されて出力される。同様に、第2のレーザ光源2bが出力した波長の送信光は、光分岐合波部8によって第2の光アンテナ9bにつながる入出力ポートに分岐されて出力される。第3のレーザ光源2cが出力した波長の送信光は、光分岐合波部8によって第3の光アンテナ9cにつながる入出力ポートに分岐されて出力される。
 また、光分岐合波部8は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cから入力した3つの受信光を合波してサーキュレータ7につながる入出力ポートに出力する。
 光分岐合波部8における入出力ポートごとの波長に対する光の透過率の特性は、図2に示した光合波部3の特性と同様である。図2に示した透過特性a1は、第1の光アンテナ9aにつながる入出力ポートに入力された光の波長ごとの透過率の特性となる。透過特性b1は、第2の光アンテナ9bにつながる入出力ポートに入力された光の波長ごとの透過率の特性となる。透過特性c1は、第3の光アンテナ9cにつながる入出力ポートに入力された光の波長ごとの透過率の特性となる。サーキュレータ7につながる入出力ポートは波長に依らずに光を透過する。すなわち、サーキュレータ7につながる入出力ポートでは光アンテナ装置9から入力した全ての波長の光を透過可能である。
 光合波部3と光分岐合波部8とには、同等に機能するWDM光カプラを用いてもよい。
 光アンテナ装置9は、光アンテナから集光距離だけ離れた位置で集光する送信光を放出し、送信光の放出先に存在する対象物で送信光が反射された反射光を、受信光として受信する。光アンテナ装置9は、例えば、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cを備えて構成される。
 第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれは、透過型のレンズで構成されたファイバコリメータを有しており、互いに異なる方向に送信光を放出するように構成されている。
 第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれによって受信された受信光は、送信光が伝送されてきた光ファイバを、送信光とは逆方向に伝搬させて光分岐合波部8に伝送される。
 第1のレーザ光源2aが出力する波長の送信光は第1の光アンテナ9aから放出され、第2のレーザ光源2bが出力する波長の送信光は第2の光アンテナ9bから放出され、第3のレーザ光源2cが出力する波長の送信光は第3の光アンテナ9cから放出される。
 第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれは、互いに異なる方向に送信光を放出する。このため、レーザレーダ装置1は、送信光を出力するレーザ光源を切り換えることで、送信光の放出方向を切り換えることができる。例えば、送信光を出力するレーザ光源が第1のレーザ光源2aから第2のレーザ光源2bに切りかわると、送信光を放出する光アンテナが第1の光アンテナ9aから第2の光アンテナ9bに切りかわり、送信光の放出方向が切りかわる。送信光を出力するレーザ光源が第2のレーザ光源2bから第3のレーザ光源2cに切りかわった場合、送信光を放出する光アンテナが第2の光アンテナ9bから第3の光アンテナ9cに切りかわって、送信光の放出方向が切りかわる。
 ここで、光アンテナの光学系について詳細に説明する。
 図3Aは、第1のレーザ光源2aからの発振光が入力された光アンテナの光学系を示す断面図であって、光ファイバの出射端90の位置、光アンテナの光学部品の配置と発振光の光線の軌跡Aが記載されている。図3Bは、第2のレーザ光源2bからの発振光が入力された光アンテナの光学系を示す断面図であり、光ファイバの出射端90の位置、光アンテナの光学部品の配置と発振光の光線の軌跡A,Bが記載されている。図3Cは、第3のレーザ光源2cからの発振光が入力された光アンテナの光学系を示す断面図であって、光ファイバの出射端90の位置、光アンテナの光学部品の配置と発振光の光線の軌跡A,Cが記載されている。図3A、図3Bおよび図3Bにおいて、光ファイバの出射端90の位置はオフセットされている。
 図3Aに示すように、光ファイバの出射端90から出射された送信光は、レンズ91、レンズ92およびレンズ93の順に屈折しながら透過することにより、一定のビーム径と拡がり角とを有した光線に変換されて空間に放出される。レンズ91、レンズ92およびレンズ93は、これらを構成するガラスの屈折率が波長分散を有することで、光ファイバから異なる波長の送信光を入力すると、これらの送信光を異なる集光距離で集光する特性を有する。図3Aに示した光アンテナでは、送信光の光線の軌跡Aが平行光で放出されるように光ファイバの出射端90とレンズ91との間隔が調整されている。光ファイバの出射端90とレンズ91との間隔を増加させると、送信光は集光するように放出され、光ファイバの出射端90とレンズ91との間隔を減少させると、送信光は発散するように放出される。
 第2のレーザ光源2bから出力された発振光が、第1のレーザ光源2aから出力される発振光の波長に比べて長い場合、図3Bに示すように、光アンテナから放出される送信光の軌跡は、発散状の軌跡Bとなる。光アンテナが、第2のレーザ光源2bから出力された発振光を入力した状態で、光ファイバの出射端90を図3Bに示す位置から図3Cに示す位置(左側の位置)にオフセットさせると、送信光の光線は、発散状の軌跡Bから平行光の軌跡Cになる。このように、光アンテナには、送信光を平行光にする光ファイバの出射端90のオフセット位置が存在する。
 図4は、光アンテナ装置9に入力された発振光の波長と、光ファイバの出力端のオフセット位置との関係を示すグラフである。図4に示すように、光アンテナ装置9に入力される発振光の波長に対して同一の集光位置が維持される、発振光の波長と光ファイバの出力端のオフセット位置との間には、直線Dの関係がある。直線Dの関係は、例えば発振光の波長と光アンテナ装置9の光学系部品およびその位置とから事前に算出することができ、算出結果の関係をテーブル化することができる。テーブル化された直線Dの関係を用いることにより、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cに互いに異なる波長の光が入力された場合に、これらの光が互いに等しい距離に集光するオフセット位置を設定することができる。このように、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cは、各々に入力される光の波長の差異に依存した集光点のずれが事前にオフセット補正されている。
 図5は、光アンテナ装置9に入力された発振光の波長と集光距離との関係を示すグラフである。図5に示すように、レーザレーダ装置1は、光アンテナ装置9に入力される発振光の波長とその波長の光の集光距離とが直線Eの関係になるように設計することが可能である。このため、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれから出力される発振光の波長を同じ変化率で変化させることで、同じ割合で集光距離が変化する。
 例えば、集光距離制御部12aが備えるTECが、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度を調整することにより、これらが出力する発振光の波長を同じ変化率で変化させる。これにより、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれから放出される送信光の集光距離を同じ割合で変化させることができる。
 レーザレーダ装置1は、光アンテナに入力される送信光の波長が変化すると、光アンテナから放出される送信光の集光距離が変化するという特性を利用して、送信光の集光距離を制御している。これにより、レーザレーダ装置1は、光アンテナが備えるレンズの位置を機械的に調整する駆動機構を用いず、集光距離を動的に制御することが可能である。
 例えば、図3A、図3Bおよび図3Cに示した光アンテナにおいて、光ファイバの出射端90から出射された送信光のNA(Numerical Aperture)が0.1であり、光アンテナから放出された送信光のビームの直径が60mmであるものとする。さらに、光アンテナの光学系は、送信光の集光距離が1900mに初期調整されている。このとき、レーザレーダ装置1は、レーザ光源が出力する発振光の波長を基準の波長から±3nmの範囲で変化させることにより、光アンテナから放出される送信光の集光距離を∞から970mまでの間で任意に変化させることが可能となる。
 また、光合波部3および光分岐合波部8は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから出力される発振光の波長が±3nmの範囲で変化しても、発振光が入力されるポートの光の透過率が変化しないように構成されている。
 第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cには、温度に応じて発振光の波長が変化する特性を有したレーザ光源が使用される。
 第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cは、発振光の波長が事前に決められた値で安定するように一定の温度に制御される。
 レーザレーダ装置1は、集光距離制御部12aが備えるTECを用いて、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度が、出力させたい発振光の波長に対応した温度になるように制御する。
 図1の説明に戻る。
 速度算出部10は、レーザ装置2から出力された発振光(送信光)と光アンテナ装置9によって受信された受信光とに基づいて対象物の速度を算出する。例えば、レーザレーダ装置1が風向風速計として機能する場合、速度が算出される対象物はエアロゾルである。速度算出部10は、発振光分岐部4から入力した局部発振光とサーキュレータ7から入力した受信光とを用いて送信光の放出先にあるエアロゾルの速度を算出し、この算出結果に基づいて送信光の放出先における風向風速分布を求める。
 ヘテロダイン検出部10aは、図示しない光電変換部を有しており、この光電変換部に局部発振光と受信光が合波されて入力される。光電変換部には、例えばフォトダイオードが用いられる。ヘテロダイン検出部10aは、光電変換部によって電気信号に変換された局部発振光と受信光との合波信号を用いて、局部発振光と受信光との差周波数で振動する光強度が電気信号に変換されたビート信号を生成して処理部10bに出力する。
 処理部10bは、事前に設定されたサンプリングレートで、ヘテロダイン検出部10aから入力したビート信号をアナログデジタル変換し、デジタル信号に変換したビート信号を送信光のパルス幅に対応した長さに区切って、複数のビート信号列を生成する。複数のビート信号列は、処理部10bによって、図示しないメモリの記憶領域に格納される。
 ビート信号を送信光のパルス幅ごとに区切る処理を“受信ゲート処理”と呼ぶ。
 さらに、処理部10bは、設定部13から設定された測定距離を示す情報に基づいて、受信ゲート処理におけるビート信号の区切りの長さを含む処理内容を判断し決定する。
 処理部10bは、ビート信号に受信ゲート処理を施して得られた複数のビート信号列のそれぞれに高速フーリエ変換を施し、ビート信号列ごとにパワースペクトルのピーク値、スペクトル値およびSN比を算出する。なお、複数のビート信号列のそれぞれは、時系列順に近距離から遠距離の順となる互いに異なる測定距離で測定された物体の速度に影響を受けた戻り光(受信光)に対応している。戻り光の周波数は、上記物体の速度に比例してドップラー周波数シフトする。例えば、処理部10bは、ビート信号列を用いて任意の測定距離で測定された風速に比例したドップラー周波数を算出し、算出したドップラー周波数を用いて風速を算出する。
 処理部10bは、設定部13から設定された送信光の放出先の方向に対応する測定距離と、算出した風速の算出値とを、上記メモリに格納する。第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれが互いに異なる方向を指向しているので、処理部10bは、3つの方向の風速を算出することができる。処理部10bは、上記メモリに格納した情報を用いたベクトル演算によって距離方向の風向風速分布を分析する。処理部10bによる風向風速分布の分析結果は表示部11に伝送される。
 また、処理部10bが、測定距離および測定方向を制御部12に設定してもよい。
 表示部11は、液晶モニタといった表示装置によって実現されて、速度算出部10から入力した処理結果を表示する。例えば、処理結果は、速度算出部10による風向風速分布の分析結果である。
 制御部12は、レーザ装置2が出力する発振光の波長を測定距離に応じて変化させて、光アンテナ装置9から放出された送信光の集光距離を制御し、光アンテナ装置9から放出された送信光の放出方向を制御する。
 集光距離制御部12aは、設定部13によって設定された測定距離に基づいて、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cが出力する発振光の波長を変化させて、光アンテナ装置9から放出される送信光の集光距離を制御する。
 集光距離制御部12aは、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度を制御するTECを有しており、TECを用いて任意の温度に変化させることができる。例えば、集光距離制御部12aには、送信光の集光距離と送信光の波長との関係および送信光の波長とレーザ光源の温度との関係がテーブル化されたデータが設定されている。集光距離制御部12aは、設定部13から測定距離が設定されると、このテーブル化されたデータを参照して、送信光の集光距離が設定部13によって設定された測定距離となる送信光の波長に対応するレーザ光源の温度を特定する。そして、集光距離制御部12aは、TECを用いて、特定した温度を目標としたレーザ光源の温度制御を行う。
 方向切換部12bは、設定部13から設定された切換要求に応じて、光アンテナ装置9から放出される送信光の指向方向を切り換える。例えば、方向切換部12bは、切換要求で指定された測定方向が送信光の指向方向となるように、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから、送信光を放出させるレーザ光源を選択して駆動させる。
 なお、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cは、放出した送信光が互いに異なる方向を指向するように支持固定されている。
 第1のレーザ光源2aから出力された送信光は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのうち、事前に対応付けられた光アンテナから放出される。第2のレーザ光源2bから出力された送信光は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのうち、第1のレーザ光源2aおよび第3のレーザ光源2cに対応付けられた光アンテナ以外の光アンテナから放出される。同様に、第3のレーザ光源2cから出力された送信光は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのうち、第1のレーザ光源2aおよび第2のレーザ光源2bに対応付けられた光アンテナ以外の光アンテナから放出される。
 従って、方向切換部12bが、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのうち、送信光を放出させるレーザ光源を切り換えることによって、光アンテナ装置9から放出される送信光の指向方向が切りかわる。
 設定部13は、測定距離および測定方向の入力を受け付け、受け付けた測定距離を集光距離制御部12aに設定し、測定方向を方向切換部12bに設定する。例えば、風向風速計の使用者が、図示しない入力装置を用いて風速の測定を行いたい位置および方向を入力する。設定部13は、入力装置を用いて入力された位置と光アンテナ装置9の位置との間の距離である測定距離を特定し、特定した測定距離を示す情報を制御部12に設定する。さらに、設定部13は、入力装置を用いて入力された方向である測定方向を特定し、特定した測定方向を示す情報を制御部12に設定する。なお、設定部13が、レーザレーダ装置1の外部にある装置から位置および方向を定期的に受け付けて、受け付けた位置および方向から特定した測定距離および測定方向を示す情報を制御部12に設定してもよい。
 また、測定距離を示す情報は、設定部13によって処理部10bにも設定される。
 次に動作について説明する。
 図6は、レーザレーダ装置1の動作を示すフローチャートである。
 設定部13が、使用者から受け付けた測定距離を集光距離制御部12aに設定し、測定方向を方向切換部12bに設定する。さらに、設定部13は、測定距離を処理部10bに設定する。処理部10bは、設定部13から設定された測定距離を示す情報に基づいて、受信ゲート処理におけるビート信号の区切りの長さを含む処理内容を判断し決定する。
 集光距離制御部12aは、設定部13から設定された測定距離に応じて、レーザ装置2から出力される発振光の波長を変化させることにより、送信光の集光距離が上記測定距離に合うように制御する(ステップST1)。例えば、集光距離制御部12aは、送信光の集光距離と送信光の波長との関係および送信光の波長とレーザ光源の温度との関係がテーブル化されたデータを参照して、送信光の集光距離が上記測定距離となる送信光の波長に対応するレーザ光源の温度を特定する。そして、集光距離制御部12aは、TECを用いて、特定した温度を目標としたレーザ光源の温度制御を行う。これによって、測定距離に応じて、レーザ装置2から出力される発振光の波長が変化する。
 方向切換部12bは、設定部13から設定された測定方向に応じて、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから使用するレーザ光源を選択して、選択したレーザ光源を駆動させる(ステップST2)。例えば、方向切換部12bは、設定部13から入力した切換要求で指定された測定方向が送信光の指向方向となるように、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから、送信光を放出させるレーザ光源を選択して駆動させる。
 制御部12により駆動されたレーザ光源は、連続発振かつ定偏光の発振光を出力する。レーザ光源から出力された発振光は、光合波部3を通して発振光分岐部4に伝送される。発振光分岐部4は、光合波部3から伝送された発振光について、偏光状態を維持したままで送信光と局部発振光に分岐する。送信光は、変調部5に伝送され、局部発振光は、速度算出部10に伝送される。
 変調部5は、発振光分岐部4から伝送された送信光の周波数および強度を変調する。変調部5によって変調された送信光は、光増幅器6によって光増幅され、サーキュレータ7によって光分岐合波部8に伝送される。光分岐合波部8は、サーキュレータ7から伝送された送信光を光アンテナ装置9に伝送する。光アンテナ装置9は、光アンテナから送信光を放出する。集光距離制御部12aによって送信光の集光距離が上記測定距離に合うように制御されるので、送信光は、測定距離で集光する。
 光アンテナ装置9から放出された送信光は、観測空間の対象物によって後方散乱され、対象物の移動速度に応じてドップラー周波数シフトする。光アンテナ装置9は、後方散乱した光、すなわち、対象物で反射された送信光である受信光を受信する。送信光は、測定距離で集光するように制御されるので、光アンテナ装置9から測定距離だけ離れた位置で送信光の強度が最も高くなる。これにより、様々な位置の物体で送信光が反射されて受信光となっても、測定距離だけ離れた位置で反射されてきた受信光の割合が最も多くなる。このため、測定距離だけ離れた位置で反射されてきた受信光のSN比が高くなる。
 光アンテナ装置9によって受信された受信光は、光分岐合波部8に伝送され、光分岐合波部8は、サーキュレータ7に伝送する。サーキュレータ7は、受信光を速度算出部10に伝送する。速度算出部10は、ステップST2において選択されたレーザ光源から出力された発振光と光アンテナ装置9によって受信された受信光とに基づいて、対象物の速度を算出する(ステップST3)。
 ヘテロダイン検出部10aが、発振光分岐部4から入力した局部発振光およびサーキュレータ7から入力した受信光を用いて、ヘテロダイン検出を行う。例えば、ヘテロダイン検出部10aは、局部発振光と受信光とを光学的に合波して光電変換することによって、局部発振光と受信光との差周波数のビート信号を生成する。処理部10bは、ヘテロダイン検出部10aにより生成されたビート信号を周波数分析し、測定位置における送信光の放出方向の風速を算出する。処理部10bによって算出された風速を示す情報は、レーザレーダ装置1が備えるメモリに格納される。
 レーザレーダ装置1を用いた風速測定は、1つの方向に関する風速だけでなく、3次元風速を測定できた方が、利用範囲が広く利便性が高い。3次元風速は、3点測位法によって得ることができる。例えば、方向切換部12bが、使用するレーザ光源を切り換えることで、送信光を放出する光アンテナを順次切り換え、速度算出部10が、測定位置の近傍で異なる3つの方向についての風速を算出する。速度算出部10は、3方向の風速を用いたベクトル演算で風速の3次元風速分布を推定することができ、さらに測定距離ごとの風速分布を算出することができる。
 次に、送信光の集光距離の制御について詳細に説明する。
 図7は、集光距離制御部12aの動作を示すフローチャートであって、図6のステップST1の詳細な処理を示している。
 集光距離制御部12aは、設定部13から測定距離が設定されると(ステップST1a)、光アンテナから放出される送信光の集光距離と設定部13から設定された測定距離とが一致する送信光の波長を決定する(ステップST2a)。
 例えば、集光距離制御部12aは、送信光の集光距離と送信光の波長との関係および送信光の波長とレーザ光源の温度との関係がテーブル化されたデータを参照して、送信光の集光距離が上記測定距離となる送信光の波長を決定する。
 次に、集光距離制御部12aは、決定した波長の送信光をレーザ光源が出力する温度Tを決定する(ステップST3a)。例えば、集光距離制御部12aは、上記テーブルデータを参照することにより、ステップST2aで決定した波長の光をレーザ光源が出力する温度Tを決定する。
 集光距離制御部12aは、TECを用いて、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれの温度がステップST3aで決定した温度Tになるように温度調整する(ステップST4a)。温度Tに温度調整された第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのうち、送信光を放出する光アンテナに対応するレーザ光源が、ステップST2aで決定された波長の発振光を出力する。これにより、光アンテナから放出される送信光の集光距離と、設定部13から設定された測定距離とが一致するように制御される。
 この後、集光距離制御部12aは、設定部13から新たな測定距離が設定されたか否かを判定する(ステップST5a)。ここで、新たな測定距離が設定されなければ(ステップST5a;NO)、集光距離制御部12aは、ステップST4aの処理に戻り、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれの温度を一括して温度Tに維持する。
 設定部13から新たな測定距離が設定された場合(ステップST5a;YES)、集光距離制御部12aは、ステップST2aの処理に戻り、新たに設定された測定距離と送信光の集光距離とが一致するように、前述した一連の処理を繰り返す。
 このように第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれの温度が一括して制御されるので、送信光の波長が、送信光の集光距離と測定距離とが一致する波長に制御される。
 次に、送信光の放出方向の切り換え処理について詳細に説明する。
 図8は、方向切換部12bの動作を示すフローチャートであって、図6のステップST2の詳細な処理を示している。
 方向切換部12bは、設定部13から測定方向が設定されると(ステップST1b)、送信光の放出方向が設定部13から設定された測定方向に一致する光アンテナを決定する(ステップST2b)。前述したように、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれは、互いに異なる方向に送信光を放出する。設定部13は、これらの光アンテナが送信光を放出する3つの方向から測定方向を選択して、選択した測定方向を方向切換部12bに設定する。測定方向の選択は、使用者が入力装置を用いて設定部13に指定してもよい。
 方向切換部12bは、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのうち、ステップST2bで決定した光アンテナに対応するレーザ光源を選択して駆動させる(ステップST3b)。例えば、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのうち、ステップST2bで決定した光アンテナに対応付けられたレーザ光源が第3のレーザ光源2cである場合、方向切換部12bは、このレーザ光源を選択する。レーザレーダ装置1は、光アンテナから放出される送信光の指向方向と設定部13から設定された測定方向とに基づいて、使用する光アンテナを決定し、決定した光アンテナに対応付けられたレーザ光源を駆動させることで、送信光の放出方向を切り換えることができる。
 なお、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9c内の光ファイバの出射端は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cに順次切り換えられて、光アンテナに入力される発振光の波長が変化しても、送信光が等しい距離で集光するオフセット位置に配置されている。これにより、レーザ光源が切り換えられて発振光の光路が切りかわっても、同一の集光距離で、かつ光合波部3および光分岐合波部8の光の透過率が同一の条件で測定が可能となり、機械的に光路走査する構成と同等の測定を、機械走査機構を用いずに実現できる。
 さらに、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cが備える光学系には、波長分散特性を有する回折レンズを用いてもよい。回折レンズを通して送信光を放出することにより、波長の変化に対する送信光の集光距離の可変幅を大きくすることができる。
 図9は、回折レンズ91Aの断面を示す概念図である。回折レンズ91Aは、図3A、図3Bおよび図3Cに示した光アンテナの光学系が備えるレンズ91の代わりに使用される。図9において破線で示すカーブは、回折レンズ91Aの表面と比較するために記載した上記レンズ91の表面である。回折レンズ91Aの表面は、入射光を回折するために、図9に示すような複数の段差を有する形状で構成されている。これらの段差は、フレネルレンズのように外周側ほど段差面の間隔が狭くなっている。回折レンズ91Aを段差面が入射光の波長の整数倍となるように構成することでレンズ効果を生じる。
 回折レンズ91Aは、入射光の波長オーダーの微少な構造によってレンズ効果を生じるため、光アンテナの光学系の小型化が可能である。また、回折レンズ91Aは、大きな波長分散特性を有しており、入射光の波長に応じて出射光の集光距離が変化する。
 上記レンズ91を回折レンズ91Aに置き換えることによって集光距離の波長分散特性を大きくできるので、回折レンズ91Aでは、レンズ91に比べて、入射光の波長の変化に対して出射光の集光距離の可変範囲が大きくなる。
 なお、回折レンズ91Aは、図9に示した形状に限定されるものではない。
 入射光の波長に対して出射光の集光距離の可変距離を大きくすることができれば、独立した回折レンズを用いてもよいし、回折レンズを複数用いてもよい。
 これまで、レーザレーダ装置1がレーザ光源と光アンテナのペアを3ペア備える構成を示したが、4つ以上のペアを設けてもよく、あるいは2つのペアであってもよい。例えば、3次元風速を測定するためには、レーザ光源と光アンテナのペアが最低3つ必要であるが、1次元または2次元の風速測定であれば1ペアまたは2ペアで測定が可能である。この場合であっても、光アンテナが、レンズを機械的に移動させる駆動機構が不要であり、光アンテナの重量および寸法の増大を抑制できる。
 また、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cと、集光距離制御部12aが備えるTECは、これらが一体となったレーザモジュールで実現してもよい。
 以上のように、実施の形態1に係るレーザレーダ装置1は、発振光の波長が互いに異なる複数のレーザ光源を切り換えることにより、光アンテナの集光位置を保持したまま送信光の放出方向を切り換え、かつ測定距離に応じて発振光の波長を変化させて送信光の集光距離が測定距離に合うように制御する。これにより、レーザレーダ装置1は、光アンテナが備えるレンズの位置を機械的に調整する駆動機構を用いずに、発振光の集光距離を動的に制御することができる。なお、レンズを機械的に移動させる駆動機構が不要であるため、光アンテナ装置9の重量および寸法の増加を抑制することが可能である。
 実施の形態1に係るレーザレーダ装置1は、測定距離を受け付け、受け付けた測定距離を制御部12に設定する設定部13を備える。制御部12は、送信光の集光距離が、設定部13から設定された測定距離に合うように制御する。この構成を有することで、使用者は、設定部13を用いて測定距離を制御部12に設定する。
 実施の形態1に係るレーザレーダ装置1において、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれは、温度に応じた波長の発振光を出力する。制御部12は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度を調整して発振光の波長を変化させる。例えば、制御部は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれを一括して同一の温度に調整することで、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cから、調整した温度に応じた波長の発振光を出力させる。これにより、レーザレーダ装置1は、3つの送信光の集光距離を同時に調整することができる。
 実施の形態1に係るレーザレーダ装置1において、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cは、回折レンズ91Aを備える。第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cのそれぞれから出力された発振光は、回折レンズ91Aを通って放出される。この構成とすることで、光アンテナ装置9から放出される送信光の集光距離の可変幅を大きくすることができる。
実施の形態2.
 図10は、この発明の実施の形態2に係るレーザレーダ装置1Aの構成を示すブロック図であり、風向風速計として機能するレーザレーダ装置1Aを示している。図10において、実線の矢印は光信号の伝送路を示しており、例えば、光ファイバである。また、破線の矢印は電気信号の伝送路を示している。また、図1と同一の構成要素には同一の符号を付して説明を省略する。レーザレーダ装置1Aは、風速の測定を行いたい位置に対応する測定距離に応じてレーザ装置2が出力する発振光の波長を変化させて、発振光の集光距離が測定距離に合うように制御する。
 レーザレーダ装置1Aは、レーザ装置2、光合波部3、発振光分岐部4、変調部5、光増幅器6、サーキュレータ7、光アンテナ装置9A、速度算出部10、表示部11、制御部12Aおよび設定部13を備える。レーザ装置2は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cを備える。光アンテナ装置9Aは、第1の光アンテナ9a、第2の光アンテナ9b、第3の光アンテナ9c、温度センサ9dおよび気圧センサ9eを備える。速度算出部10は、ヘテロダイン検出部10aおよび処理部10bを備え、制御部12Aは、集光距離制御部12a1および方向切換部12bを備える。
 光アンテナ装置9Aは、送信光を集光して放出するとともに、送信光の放出先に存在する対象物で反射された送信光である受信光を受信する。第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cは、波長分散特性を有するコリメータレンズを備えて構成される。コリメータレンズにおいて、このレンズを構成するガラスの屈折率と大気の屈折率とが温度に依存し、レンズ形状が線膨張で変化する。
 コリメータレンズの焦点距離は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの温度に依存して変化する。また、雰囲気の大気圧が変化して大気の屈折率が変化することで、コリメータレンズの焦点距離も大気圧に依存して変化する。レーザレーダ装置1Aは、光アンテナ装置9Aの温度と気圧を測定して、測定した温度と気圧に応じたコリメータレンズの屈折率に基づいて送信光の波長を制御することにより、送信光の集光距離が目標とする測定位置に合うように制御することができる。
 温度センサ9dは、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の温度を測定する。例えば、温度センサ9dは、光アンテナの内部に設けられたコリメータレンズの温度を測定する。気圧センサ9eは、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の気圧を測定する。例えば、気圧センサ9eは、光アンテナの内部において、光ファイバの出射端から出射された発振光がコリメータレンズを通って放出されるまでに伝搬する空間の気圧を測定する。
 なお、温度センサ9dおよび気圧センサ9eのそれぞれが測定した測定値の電気信号は制御部12Aに出力される。
 制御部12Aは、温度センサ9dおよび気圧センサ9eのそれぞれによって測定された第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の温度および気圧に応じたコリメータレンズの屈折率に基づいて、送信光の波長を制御する。
 集光距離制御部12a1は、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の温度および気圧に応じて送信光の波長を制御する。
 集光距離制御部12a1には、光アンテナの温度および気圧に応じたコリメータレンズの屈折率の変化と、レーザ光源の温度に応じた発振光の波長の変化とに対応する、送信光の光路差の変化が事前に設定されている。
 例えば、光アンテナの温度および気圧に応じたコリメータレンズの屈折率の変化に対応した送信光の光路差の変化としては、温度センサ9dと気圧センサ9eの測定値に対する送信光の光路差の変化を事前に計測または算出する。この計測値または算出値が集光距離制御部12a1に設定される。
 また、レーザ光源の温度に応じた発振光の波長の変化に対応した送信光の光路差の変化としては、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度に対する送信光の光路差の変化を事前に計測または算出する。この計測値または算出値が集光距離制御部12a1に設定される。
 光アンテナの内部の温度および気圧、およびレーザ光源の温度に応じた送信光の光路差の変化を示すデータは、数式またはテーブルで表すことができる。以下、これらのデータが、テーブルデータの形式で集光距離制御部12a1に設定されているものとする。
 集光距離制御部12a1は、設定部13から測定距離が設定され、温度センサ9dおよび気圧センサ9eの測定値が入力されると、上記テーブルデータを参照し、送信光の集光距離が測定距離に合う送信光の波長に対応したレーザ光源の温度を特定する。集光距離制御部12a1は、特定した温度にレーザ光源の温度を制御してレーザ装置2から出力される発振光の波長を変化させることによって、送信光の集光距離が上記測定距離に合うように制御する。
 次に動作について説明する。
 図11は、レーザレーダ装置1Aの動作を示すフローチャートである。
 図11のステップST2cからステップST3cまでの処理は、図6のステップST2からステップST3までと同一であるので説明を省略する。温度センサ9dが、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の温度を測定する。気圧センサ9eが、第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cの内部の気圧を測定する。温度センサ9dおよび気圧センサ9eは、電気信号の伝送路を通して測定値の電気信号を制御部12Aに出力する。
 集光距離制御部12a1は、光アンテナの内部の温度および気圧と設定部13から設定された測定距離とに応じて発振光の波長を変化させることで、集光距離が測定距離に合うように制御する(ステップST1c)。
 例えば、集光距離制御部12a1は、温度センサ9dが測定した温度の測定情報と、気圧センサ9eが測定した気圧の測定情報とに基づいて、上記テーブルデータを参照して光アンテナが放出する送信光の光路差を求める。そして、集光距離制御部12a1は、設定部13から設定された測定距離に基づいて上記テーブルデータを参照し、求めた送信光の光路差を考慮して集光距離が測定距離となる、送信光の波長に対応するレーザ光源の温度を特定する。続いて、集光距離制御部12a1は、TECを用いて、特定した温度を目標としたレーザ光源の温度制御を行う。これにより、測定距離に応じて、レーザ装置2から出力される発振光の波長が変化する。
 なお、光アンテナ装置9Aが温度センサ9dおよび気圧センサ9eの両方を備えた場合を説明したが、光アンテナ装置9Aは、温度センサ9dおよび気圧センサ9eのいずれか一方を備えた構成であってもよい。例えば、集光距離制御部12a1には、光アンテナの内部の温度または気圧に応じた送信光の光路差の変化とレーザ光源の温度に応じた送信光の波長の変化を示すテーブルデータが設定される。集光距離制御部12a1は、設定部13から設定された測定距離に基づいて上記テーブルデータを参照して、送信光の光路差を求める。この後、集光距離制御部12a1は、求めた送信光の光路差を考慮して集光距離が上記測定距離となるレーザ光源の温度を特定し、特定した温度となるようにレーザ光源を温度制御する。
 さらに、温度センサ9dおよび気圧センサ9eは、光アンテナ装置9A全体の雰囲気の温度および気圧を測定してもよい。光アンテナ装置9A全体の雰囲気の温度および気圧を測定する場合、集光距離制御部12a1は、第1のレーザ光源2a、第2のレーザ光源2bおよび第3のレーザ光源2cの温度を一括して制御する。第1の光アンテナ9a、第2の光アンテナ9bおよび第3の光アンテナ9cのそれぞれの内部の温度および気圧を測定する場合、集光距離制御部12a1は、これらの光アンテナのそれぞれに対応したレーザ光源ごとの温度を制御する。
 以上のように、実施の形態2に係るレーザレーダ装置1Aは、光アンテナの内部の温度を測定する温度センサ9dを備える。制御部12Aは、温度センサ9dによって測定された温度に基づいて集光距離が測定距離に合うように制御する。
 また、レーザレーダ装置1Aは、光アンテナの内部の気圧を測定する気圧センサ9eを備える。制御部12Aは、気圧センサ9eによって測定された気圧に基づいて集光距離が測定距離に合うように制御する。制御部12Aは、光アンテナの内部の温度および気圧によって光アンテナが備えるコリメータレンズの屈折率が変化しても、光アンテナの内部の温度および気圧に応じた集光距離の変化の影響が低減されるように、送信光の波長を変化させる。これにより、レーザレーダ装置1Aは、送信光の集光距離を目標とする測定位置に合うように制御することができる。
 実施の形態1および実施の形態2における集光距離制御部が、設定部13から設定された測定距離に応じて、レーザ光源から出力される発振光の波長を変化させることにより、光アンテナから放出される送信光の集光距離を上記測定距離に合うように制御する。
 この場合、設定部13から設定された上記測定距離は、測定を行いたい位置までの距離に完全に一致させる必要はない。測定を行いたい位置における対象物の測定精度(例えば、測定結果のSN比)が許容範囲であれば、測定を行いたい位置の近傍に送信光を集光させてもよい。
 実施の形態1および実施の形態2における集光距離制御部が、レーザ光源の温度を変化させることにより、レーザ光源から出力される発振光の波長を変化させたが、これに限定されるものではない。例えば、レーザ光源の素子に物理的に圧力を加えることで、レーザ光源から出力される発振光の波長を変化させてもよい。
実施の形態3.
 レーザレーダ装置1における、速度算出部10および制御部12の機能は、処理回路により実現される。すなわち、レーザレーダ装置1は、図6に示したステップST1からステップST3までの処理を実行するための処理回路を備える。同様に、レーザレーダ装置1Aにおける、速度算出部10および制御部12Aの機能は、処理回路により実現され、この処理回路は、図11に示したステップST1cからステップST4cまでの処理を実行するためのものである。これらの処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
 図12Aは、レーザレーダ装置1またはレーザレーダ装置1Aにおいて信号処理を行う構成要素の機能を実現するハードウェア構成を示すブロック図である。図12Bは、レーザレーダ装置1またはレーザレーダ装置1Aにおいて信号処理を行う構成要素の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図12Aおよび図12Bにおいて、信号処理を行う構成要素は、レーザレーダ装置1では、速度算出部10および制御部12であり、レーザレーダ装置1Aでは、速度算出部10および制御部12Aである。
 表示装置100は、図1および図10に示した表示部11であり、例えば、速度算出部10による風向風速分布の分析結果を表示する。入力装置101は、使用者からの入力を受け付ける装置であり、タッチパネル、ハードウェアキーおよびマウスなどによって実現される。設定部13は、入力装置101を用いた情報の入力を受け付け、受け付けた情報に基づいて測定距離および測定方向を特定して、特定した測定距離および測定方向を制御部12に設定する。
 上記処理回路が図12Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)またはこれらを組み合わせたものが該当する。
 レーザレーダ装置1における、速度算出部10および制御部12の機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
 また、レーザレーダ装置1Aにおける、速度算出部10および制御部12Aの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
 上記処理回路が図12Bに示すプロセッサ103である場合、レーザレーダ装置1における、速度算出部10および制御部12の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。
 レーザレーダ装置1Aにおける、速度算出部10および制御部12のAの機能についても、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。
 プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することで、レーザレーダ装置1における速度算出部10および制御部12の機能を実現する。
 すなわち、レーザレーダ装置1は、プロセッサ103によって実行されるときに、図6に示したステップST1からステップST3までの処理が結果的に実行されるプログラムを記憶するためのメモリ104を備える。
 同様に、レーザレーダ装置1Aは、プロセッサ103によって実行されるときに、図11に示したステップST1cからステップST4cまでの処理が結果的に実行されるプログラムを記憶するためのメモリ104を備える。これらのプログラムは、速度算出部10および制御部12の手順または方法をコンピュータに実行させる。メモリ104は、コンピュータを速度算出部10および制御部12として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。これは、レーザレーダ装置1Aにおいても同様である。
 メモリ104には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
 速度算出部10および制御部12の機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。
 例えば、速度算出部10は、専用のハードウェアである処理回路で機能を実現し、制御部12は、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。これは、レーザレーダ装置1Aにおける速度算出部10および制御部12Aにおいても同様である。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 この発明に係るレーザレーダ装置は、光アンテナが備えるレンズの位置を機械的に調整する駆動機構を用いずに発振光の集光距離を動的に制御することができるので、例えば、移動体に搭載される風向風速計に利用可能である。
 1,1A レーザレーダ装置、2 レーザ装置、2a 第1のレーザ光源、2b 第2のレーザ光源、2c 第3のレーザ光源、3 光合波部、4 発振光分岐部、5 変調部、6 光増幅器、7 サーキュレータ、8 光分岐合波部、9,9A 光アンテナ装置、9a 第1の光アンテナ、9b 第2の光アンテナ、9c 第3の光アンテナ、9d 温度センサ、9e 気圧センサ、10 速度算出部、10a ヘテロダイン検出部、10b 処理部、11 表示部、12,12A 制御部、12a,12a1 集光距離制御部、12b 方向切換部、13 設定部、90 出射端、91 レンズ、91A 回折レンズ、92 レンズ、93 レンズ、100 表示装置、101 入力装置、102 処理回路、103 プロセッサ、104 メモリ。

Claims (7)

  1.  互いに異なる波長の発振光を出力する複数のレーザ光源と、
     前記レーザ光源から出力された発振光の周波数および強度を変調する変調部と、
     前記変調部によって変調された発振光を、集光距離だけ離れた位置で集光する送信光として放出し、前記送信光の放出先に存在する対象物で前記送信光が反射された反射光を、受信光として受信する複数の光アンテナと、
     前記レーザ光源から出力された発振光と前記光アンテナによって受信された前記受信光とに基づいて前記対象物の速度を算出する速度算出部と、
     複数の前記レーザ光源を制御する制御部とを備え、
     複数の前記光アンテナは、各々に入力される光の波長の差異に依存した集光点のずれがオフセット補正されており、
     前記レーザ光源から出力された発振光は、複数の前記光アンテナのうち、当該レーザ光源に対応付けられた前記光アンテナから放出され、
     前記制御部は、複数の前記レーザ光源を切り換えることにより、前記光アンテナの集光位置を保持したまま前記送信光の放出方向を切り換え、かつ測定距離に応じて発振光の波長を変化させて前記集光距離が前記測定距離に合うように制御すること
     を特徴とするレーザレーダ装置。
  2.  前記測定距離の設定を受け付け、受け付けた前記測定距離を前記制御部に設定する設定部を備え、
     前記制御部は、前記集光距離が前記設定部から設定された前記測定距離に合うように制御すること
     を特徴とする請求項1記載のレーザレーダ装置。
  3.  複数の前記レーザ光源は、温度に応じた波長の発振光を出力し、
     前記制御部は、前記レーザ光源の温度を調整して発振光の波長を変化させること
     を特徴とする請求項1記載のレーザレーダ装置。
  4.  前記制御部は、複数の前記レーザ光源を一括して同一の温度に調整すること
     を特徴とする請求項3記載のレーザレーダ装置。
  5.  前記光アンテナは、回折レンズを備え、
     前記レーザ光源から出力された発振光は、前記回折レンズを通って放出されること
     を特徴とする請求項1記載のレーザレーダ装置。
  6.  前記光アンテナの内部の温度を測定する温度センサを備え、
     前記制御部は、前記温度センサによって測定された温度に基づいて前記集光距離が前記測定距離に合うように制御すること
     を特徴とする請求項1記載のレーザレーダ装置。
  7.  前記光アンテナの内部の気圧を測定する気圧センサを備え、
     前記制御部は、前記気圧センサによって測定された気圧に基づいて前記集光距離が前記測定距離に合うように制御すること
     を特徴とする請求項1または請求項6記載のレーザレーダ装置。
PCT/JP2018/011771 2018-03-23 2018-03-23 レーザレーダ装置 WO2019180924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18910714.7A EP3754366B1 (en) 2018-03-23 2018-03-23 Laser radar device
PCT/JP2018/011771 WO2019180924A1 (ja) 2018-03-23 2018-03-23 レーザレーダ装置
JP2018529675A JP6385631B1 (ja) 2018-03-23 2018-03-23 レーザレーダ装置
CN201880091471.4A CN111886514B (zh) 2018-03-23 2018-03-23 激光雷达装置
US17/008,184 US11977158B2 (en) 2018-03-23 2020-08-31 Laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011771 WO2019180924A1 (ja) 2018-03-23 2018-03-23 レーザレーダ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/008,184 Continuation US11977158B2 (en) 2018-03-23 2020-08-31 Laser radar device

Publications (1)

Publication Number Publication Date
WO2019180924A1 true WO2019180924A1 (ja) 2019-09-26

Family

ID=63444300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011771 WO2019180924A1 (ja) 2018-03-23 2018-03-23 レーザレーダ装置

Country Status (5)

Country Link
US (1) US11977158B2 (ja)
EP (1) EP3754366B1 (ja)
JP (1) JP6385631B1 (ja)
CN (1) CN111886514B (ja)
WO (1) WO2019180924A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180760A1 (ja) * 2021-02-26 2022-09-01 三菱電機株式会社 ライダ装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661411A (zh) * 2019-03-29 2021-11-16 我们科技有限责任公司 用于调频连续波光检测和测距的可切换相干像素阵列
CN112068147B (zh) * 2020-10-15 2024-06-21 联合微电子中心有限责任公司 用于目标检测的集成芯片和电子装置
US11105904B1 (en) 2020-10-30 2021-08-31 Aeva, Inc. Techniques for mitigating lag-angle effects for LIDARs scans
CN112731421B (zh) * 2020-12-24 2023-08-04 深圳煜炜光学科技有限公司 一种激光雷达***及其光强切换方法
CN113721221A (zh) * 2021-08-31 2021-11-30 深圳市镭神智能***有限公司 一种调频连续波激光雷达
CN116165682B (zh) * 2023-03-14 2023-09-26 兰州大学 一种轻便型大气监测激光雷达***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010453A (ja) * 1996-06-27 1998-01-16 Minolta Co Ltd レーザビーム光学装置
JP2005127818A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 内燃機関のガス流動計測装置
JP2007315758A (ja) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp コヒーレントライダ装置
JP2010133861A (ja) 2008-12-05 2010-06-17 Japan Aerospace Exploration Agency 航空機搭載用風計測ライダー装置
WO2015087842A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2015087564A1 (ja) * 2013-12-10 2015-06-18 三菱電機株式会社 レーザレーダ装置
US20150185246A1 (en) * 2011-12-23 2015-07-02 Optical Air Data Systems, Llc Laser Doppler Velocimeter With Intelligent Optical Device
JP2017122673A (ja) * 2016-01-08 2017-07-13 富士通株式会社 レーザ距離測定装置、測定方法及び測定プログラム
WO2018061106A1 (ja) * 2016-09-28 2018-04-05 三菱電機株式会社 レーザレーダ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313861A (ja) 1988-06-14 1989-12-19 Sanyo Electric Co Ltd 有機電解質二次電池
JP2000174370A (ja) * 1998-12-03 2000-06-23 Sony Corp レーザ光走査装置、焦点制御装置、検査装置および走査装置
US7369587B2 (en) * 2004-02-21 2008-05-06 Finisar Corp Temperature control for coarse wavelength division multiplexing systems
US8508723B2 (en) * 2011-02-14 2013-08-13 Optical Air Data Systems, Llc Laser wind velocimeter with multiple radiation sources
WO2016092705A1 (ja) * 2014-12-12 2016-06-16 三菱電機株式会社 レーザレーダ装置
ES2792871T3 (es) 2014-12-19 2020-11-12 Windar Photonics As LIDAR basado en SMEM
WO2017054036A1 (en) * 2015-09-28 2017-04-06 Baraja Pty Ltd Spatial profiling system and method
JP1741370S (ja) 2022-11-02 2023-04-10 リハビリ用ロボットハンド

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010453A (ja) * 1996-06-27 1998-01-16 Minolta Co Ltd レーザビーム光学装置
JP2005127818A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 内燃機関のガス流動計測装置
JP2007315758A (ja) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp コヒーレントライダ装置
JP2010133861A (ja) 2008-12-05 2010-06-17 Japan Aerospace Exploration Agency 航空機搭載用風計測ライダー装置
US20150185246A1 (en) * 2011-12-23 2015-07-02 Optical Air Data Systems, Llc Laser Doppler Velocimeter With Intelligent Optical Device
WO2015087842A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2015087564A1 (ja) * 2013-12-10 2015-06-18 三菱電機株式会社 レーザレーダ装置
JP2017122673A (ja) * 2016-01-08 2017-07-13 富士通株式会社 レーザ距離測定装置、測定方法及び測定プログラム
WO2018061106A1 (ja) * 2016-09-28 2018-04-05 三菱電機株式会社 レーザレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754366A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180760A1 (ja) * 2021-02-26 2022-09-01 三菱電機株式会社 ライダ装置

Also Published As

Publication number Publication date
CN111886514B (zh) 2024-06-07
CN111886514A (zh) 2020-11-03
JP6385631B1 (ja) 2018-09-05
US20200400822A1 (en) 2020-12-24
EP3754366A4 (en) 2021-03-03
US11977158B2 (en) 2024-05-07
EP3754366A1 (en) 2020-12-23
EP3754366B1 (en) 2023-03-22
JPWO2019180924A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6385631B1 (ja) レーザレーダ装置
CN110646776B (zh) 紧凑光学封装中具有单个mems扫描器的芯片级lidar
US11486986B2 (en) LIDAR system with solid state spectral scanning
JP5086104B2 (ja) レーザレーダシステム、及びチャープされた電磁波を提供するシステム及び方法
US20160202090A1 (en) Method and apparatus for remote sensing using optical orbital angular momentum (oam) -based spectroscopy for detecting lateral motion of a remote object
WO2022062105A1 (zh) 一种阵列式相干测距芯片及其***
US7684024B2 (en) Swept-angle SPR measurement system
JP6222409B1 (ja) レーザレーダ装置
US11579264B2 (en) Optoelectronic sensor, method and vehicle
JP2004521355A (ja) 光学的距離測定装置
CN212515027U (zh) 一种阵列式相干测距芯片及其***
CN110729628B (zh) 一种活塞相位控制***及方法
CN110907917B (zh) 具有集成环形器的激光雷达***
CN111077508B (zh) 多光子芯片激光雷达***架构
US20210026014A1 (en) Apparatus and method for ascertaining a distance to an object
CN114114202A (zh) 激光发射装置、包括其的激光雷达及探测方法
JP2006329797A (ja) 光波距離計
CN111007533A (zh) 激光雷达光谱分析仪
WO2021116764A1 (en) Frequency shifter for heterodyne interferometry measurements and device for heterodyne interferometry measurements having such a frequency shifter
CN111886513A (zh) 激光雷达装置
EP3786661A1 (en) A phase difference measurement device for optical phased arrays
WO2018061106A1 (ja) レーザレーダ装置
JP7066075B1 (ja) 光測定装置
JP2022013729A (ja) 向上したsn比を有するライダー装置
WO2019178136A1 (en) Spectral-temporal lidar

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18910714.7

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018910714

Country of ref document: EP

Effective date: 20200918