WO2019180356A1 - Copolymer of ethylene and a 1,3-diene - Google Patents

Copolymer of ethylene and a 1,3-diene Download PDF

Info

Publication number
WO2019180356A1
WO2019180356A1 PCT/FR2019/050598 FR2019050598W WO2019180356A1 WO 2019180356 A1 WO2019180356 A1 WO 2019180356A1 FR 2019050598 W FR2019050598 W FR 2019050598W WO 2019180356 A1 WO2019180356 A1 WO 2019180356A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
ethylene
units
diene
representing
Prior art date
Application number
PCT/FR2019/050598
Other languages
French (fr)
Inventor
Vincent LAFAQUIERE
Emma MORESO
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to US16/981,804 priority Critical patent/US11718692B2/en
Priority to EP19720937.2A priority patent/EP3768737B1/en
Priority to JP2020547361A priority patent/JP2021517194A/en
Priority to CN201980016297.1A priority patent/CN111801361B/en
Publication of WO2019180356A1 publication Critical patent/WO2019180356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/045Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/083Copolymers of ethene with aliphatic polyenes, i.e. containing more than one unsaturated bond

Definitions

  • the field of the invention is that of copolymers of conjugated diene and ethylene, rich in ethylene unit and usable as elastomers in a tire rubber composition.
  • the diene elastomers most widely used in the manufacture of tires are polybutadienes, polyisoprenes, in particular natural rubber, and copolymers of 1,3-butadiene and styrene.
  • the common point to these elastomers is the high molar proportion of diene units in the elastomer, generally well above 50%, which can make them sensitive to oxidation, especially under the action of ozone.
  • elastomers which, on the contrary, are relatively poor in diene units, in particular with a view to reducing their sensitivity to oxidation phenomena.
  • These elastomers are for example described in document WO 2007054223. They are copolymers of 1,3-butadiene and of ethylene containing more than 50 mol% of ethylene unit. These elastomers are referred to as diene elastomers rich in ethylene.
  • Copolymers of ethylene-rich 1,3-butadiene and ethylene are crystalline and their crystallinity increases with the ethylene content.
  • the presence of crystalline portions in the copolymer can be problematic when the copolymer is used in a rubber composition.
  • the melting of the crystalline parts of the copolymer resulting in a decrease in its rigidity, a rubber composition containing such a copolymer and used in a tire also reduces its stiffness when it is brought to temperatures equal to or exceeding the melting temperature of the crystalline parts. , which can be the case during the repeated phases of braking and acceleration of the tire. This dependence of the rigidity as a function of the temperature can therefore lead to uncontrolled fluctuations in the performance of the tire. It is of interest to have diene polymers rich in ethylene units whose crystallinity is reduced or suppressed.
  • the Applicant has developed a catalytic system based on a metallocene and an organomagnesium, such as this is described for example in WO 2007054224, the metallocene being of the following formula:
  • Cp 1 and Cp 2 which are identical or different, being chosen from the group consisting of substituted fluorenyl groups and the unsubstituted fluorenyl group of formula C 13 H 8 ,
  • P being a group bridging the two Cp 1 and Cp 2 groups and representing a ZR 3 R 4 group , Z representing a silicon or carbon atom, R 3 and R 4 , identical or different, each representing an alkyl group comprising 1 to 20 carbon atoms, preferably a methyl, y, integer, being equal to or greater than 0, where x, an integer or not, being equal to or greater than 0,
  • L representing an alkali metal selected from the group consisting of lithium, sodium and potassium
  • N being a molecule of an ether, preferably diethyl ether or tetrahydrofuran.
  • a first object of the invention is a copolymer, preferably elastomeric, of ethylene and 1,3-diene of formula (I) which comprises ethylene units and 1,3-diene units, the ethylene units representing between 50% and 95% by mole of the ethylene units and units of 1,3-diene, and 1,3-diene units of 1,2 and 3,4 configuration representing more than 50% in mole of the units of 1 , 3-diene,
  • formula (I) which comprises ethylene units and 1,3-diene units, the ethylene units representing between 50% and 95% by mole of the ethylene units and units of 1,3-diene, and 1,3-diene units of 1,2 and 3,4 configuration representing more than 50% in mole of the units of 1 , 3-diene
  • R representing a hydrocarbon chain having 3 to 20 carbon atoms.
  • Another subject of the invention is a process for preparing the copolymer according to the invention.
  • the invention also relates to a rubber composition based at least on the elastomer according to the invention and a crosslinking system, and a tire which comprises the rubber composition according to the invention.
  • any range of values designated by the expression "between a and b" represents the range of values greater than “a” and less than “b” (i.e. and b excluded) while any range of values referred to as “from a to b” means the range of values from “a” to "b” (i.e. including the strict limits a and B).
  • the unit rates resulting from the insertion of a monomer into a copolymer are expressed as a mole percent based on all the monomer units of the copolymer.
  • the compounds mentioned in the description may be of fossil origin or biobased. In the latter case, they can be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. In particular, the monomers are concerned.
  • 1,3-diene of formula (I) as defined above and useful for the purposes of the invention being a substituted 1,3-diene 1,3-diene can give rise to units of configuration 1,2 represented by the formula (1), configuration 3,4 represented by the formula (2) and 1.4 configuration whose trans form is represented below by the formula (3).
  • the ethylene unit is a unit of - (CH 2 -CH 2 ) - unit.
  • the copolymer according to the invention is a copolymer of ethylene and 1,3-diene, which implies that the monomer units of the copolymer are units resulting from the polymerization of ethylene and 1,3-diene.
  • the copolymer thus comprises ethylene units and 1,3-diene units.
  • the 1,3-diene useful for the purposes of the invention is a single compound, that is to say only one compound (in English "one") 1, 3-diene of formula (I) or is a mixture of 1,3-dienes of formula (I), the 1,3-dienes of the mixture differing from each other by the group represented by the symbol R.
  • the copolymer of ethylene and 1,3-diene according to the invention has the essential characteristic of comprising between 50% and 95% by moles of ethylene unit.
  • Ethylene units represent between 50% and 95% by mole of the ethylene units and 1,3-diene units.
  • It also has another essential characteristic of comprising units of 1,3-diene which are more than 50 mol% of 1,3-diene units of 1,2- and 3,4-configuration.
  • the 1,3-diene units, whether of the 1,2 or 3,4 configuration represent more than 50 mol% of the 1,3-diene units.
  • the 100 mol% complement of 1,3-diene units in the copolymer consists wholly or partly of 1,3-diene units of 1,4-configuration.
  • preferably more than half of the 1,3-diene units of configuration 1,4 are of 1,4-trans configuration, more preferably all the units of the 1,3 configuration 1,4-diene are of 1,4-trans configuration.
  • the hydrocarbon chain represented by the symbol R may be a linear or branched chain, in which case the symbol R represents a linear or branched chain.
  • the hydrocarbon chain is acyclic, in which case the symbol R represents an acyclic chain.
  • the hydrocarbon chain represented by the symbol R can be saturated or unsaturated, in which case the symbol R represents a saturated or unsaturated chain.
  • the R symbol represents a hydrocarbon chain having 6 to 16 carbon atoms.
  • the ethylene units represent at least 60 mol% of the ethylene units and 1,3-diene units. More preferably, the ethylene units represent from 60 to 90 mol% of the ethylene units and 1,3-diene units.
  • the ethylene units represent at least 70 mol% of the ethylene units and 1,3-diene units. More preferably, the ethylene units represent from 70% to 90% by mole of the ethylene units and 1,3-diene units.
  • the copolymer according to the invention has a glass transition temperature below -35 ° C, in particular between -90 ° C and -35 ° C.
  • the copolymer according to the invention is an elastomer.
  • the copolymer according to the invention may be prepared by a process which comprises the copolymerization of ethylene and 1,3-diene in the presence of a catalyst system based on at least one metallocene of formula (II) and of an organomagnesium of formula (III)
  • Cp 1 and Cp 2 which are identical or different, are chosen from the group consisting of substituted fluorenyl groups and the unsubstituted fluorenyl group of formula C 13 H 8 .
  • R 3 and R 4 which may be identical or different, each representing an alkyl group comprising from 1 at 20 carbon atoms, preferably methyl,
  • x integer or non-integer, being equal to or greater than 0,
  • L representing an alkali metal selected from the group consisting of lithium, sodium and potassium
  • N represents a molecule of an ether, preferably diethyl ether or tetrahydrofuran,
  • R 1 and R 2 identical or different, representing a carbon group.
  • substituted fluorenyl groups mention may be made of those substituted by alkyl radicals having 1 to 6 carbon atoms or by aryl radicals having 6 to 12 carbon atoms.
  • the choice of radicals is also oriented by accessibility to the corresponding molecules that are substituted fluorenes, because these are commercially available or easily synthesizable.
  • substituted fluorenyl groups there may be mentioned more particularly 2,7-ditertiobutyl-fluorenyl and 3,6-ditertiobutyl-fluorenyl groups.
  • the positions 2, 3, 6 and 7 respectively designate the position of the carbon atoms of the rings as shown in the diagram below, the position 9 corresponding to the carbon atom to which the P bridge is attached.
  • the catalytic system may be prepared in a conventional manner by a method analogous to that described in patent application WO 2007054224.
  • the organomagnesium and the metallocene are typically reacted in a hydrocarbon solvent at a temperature ranging from 20 to 80 ° C. for a period of between 5 and 60 minutes.
  • the catalyst system is generally prepared in a hydrocarbon solvent, aliphatic such as methylcyclohexane or aromatic such as toluene.
  • the Catalyst system is used as it is in the synthesis process of the copolymer according to the invention.
  • the metallocene used to prepare the catalyst system may be in the form of crystallized powder or not in the form of single crystals.
  • the metallocene may be in a monomeric or dimer form, these forms depending on the mode of preparation of the metallocene, as for example that is described in the patent application WO 2007054224.
  • the metallocene may be prepared in a traditional manner by a process similar to that described in the patent application WO 2007054224, in particular by reaction under inert and anhydrous conditions of the alkali metal salt of the ligand with a rare earth borohydride in a suitable solvent, such as an ether, such as diethyl ether or tetrahydrofuran or any other solvent known to those skilled in the art.
  • a suitable solvent such as an ether, such as diethyl ether or tetrahydrofuran or any other solvent known to those skilled in the art.
  • the metallocene is separated from the reaction by-products by techniques known to those skilled
  • the synthesis of metallocene and that of the catalytic system take place under anhydrous conditions under an inert atmosphere.
  • the reactions are conducted from solvents and anhydrous compounds under nitrogen or argon anhydrous.
  • the metallocene is of formula (IIa), (Mb), (IIc), (IId) or (Me) in which the symbol Flu has the fluorenyl group of formula C III H 8 .
  • the organomagnesium useful for the purposes of the invention is of formula MgR 1 R 2 in which R 1 and R 2 , which are identical or different, represent a carbon group.
  • carbon group is meant a group which contains one or more carbon atoms.
  • R 1 and R 2 contain 2 to 10 carbon atoms. More preferably, R 1 and R 2 each represent an alkyl.
  • the organomagnesium is advantageously a dialkylmagnesium, better butylethylmagnesium or butyloctylmagnesium, more preferably butyloctylmagnesium.
  • the molar ratio of the organomagnesium compound to the Nd metal constituting the metallocene is preferably in a range from 1 to 100, more preferably is greater than or equal to 1 and less than 10.
  • the range of values from 1 to less than 10 is particularly favorable for obtaining copolymers of high molar masses.
  • the person skilled in the art also adapts the polymerization conditions and the concentrations in each of the reagents (constituents of the catalytic system, monomers) according to the equipment (tools, reactors) used to conduct the polymerization and the different chemical reactions.
  • the copolymerization as well as the handling of the monomers, the catalyst system and the polymerization solvent or solvents are carried out under anhydrous conditions and under an inert atmosphere.
  • the polymerization solvents are typically hydrocarbon, aliphatic or aromatic solvents.
  • the polymerization is preferably carried out in solution, continuously or batchwise.
  • the polymerization solvent may be a hydrocarbon, aromatic or aliphatic solvent.
  • a polymerization solvent mention may be made of toluene and methylcyclohexane.
  • the monomers can be introduced into the reactor containing the polymerization solvent and the catalytic system or conversely the catalytic system can be introduced into the reactor containing the polymerization solvent and the monomers.
  • the copolymerization is typically conducted under anhydrous conditions and in the absence of oxygen, optionally in the presence of an inert gas.
  • the polymerization temperature generally varies in a range from 30 to 150 ° C, preferably from 30 to 120 ° C.
  • the copolymerization is conducted at a constant pressure of ethylene.
  • the polymerization can be stopped by cooling the polymerization medium.
  • the polymer may be recovered according to conventional techniques known to those skilled in the art, for example by precipitation, by evaporation of the solvent under reduced pressure or by stripping with water vapor.
  • the incorporation of 1,3-diene and ethylene in the growing polymer chain is preferably statistical.
  • the copolymer according to the invention is advantageously a random copolymer.
  • copolymer according to the invention in particular when it is elastomeric, can be used in a rubber composition.
  • the rubber composition another object of the invention, has the characteristic of comprising the elastomer according to the invention and a crosslinking system.
  • the crosslinking system may be based on sulfur, sulfur donors, peroxides, bismaleimides or mixtures thereof.
  • the crosslinking system is preferably a vulcanization system, that is to say a system based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • a vulcanization system that is to say a system based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • To this system of vulcanization of base may be added various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid or equivalent compounds, guanidine derivatives (in particular diphenylguanidine), or known vulcanization retarders.
  • the rubber composition comprises a reinforcing filler.
  • the rubber composition may comprise any type of so-called reinforcing filler known for its ability to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica with which is associated in a known manner a coupling agent, or a mixture of these two types of filler.
  • a reinforcing filler typically consists of nanoparticles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm.
  • the level of reinforcing filler is adjusted by those skilled in the art depending on the use of the rubber composition.
  • the rubber composition may further contain other additives known for use in tire rubber compositions, such as plasticizers, antiozonants, antioxidants.
  • the rubber composition according to the invention is typically manufactured in suitable mixers, using two successive preparation phases well known to those skilled in the art: a first phase of work or thermomechanical mixing (so-called “non-productive” phase) at high temperature, up to a maximum temperature of between 130 ° C. and 200 ° C., followed by a second mechanical working phase (“productive" phase) to a lower temperature, typically less than 110 ° C. for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
  • a first phase of work or thermomechanical mixing at high temperature, up to a maximum temperature of between 130 ° C. and 200 ° C.
  • a second mechanical working phase (“productive” phase) to a lower temperature, typically less than 110 ° C. for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
  • the rubber composition according to the invention which can be either in the green state (before crosslinking or vulcanization), or in the fired state (after crosslinking or vulcanization), can be used in a semi-finished tire article.
  • the tire another object of the invention, comprises the rubber composition according to the invention defined in any one of the embodiments of the invention.
  • the polymer is synthesized according to the following procedure:
  • the polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution.
  • the copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
  • the polymer is synthesized according to the following procedure:
  • the polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution.
  • the copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
  • the polymers are synthesized according to the following procedure:
  • the polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution.
  • the copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
  • the spectral characterization and measurements of the ethylene- and 1,3-diene (myrcene) copolymer microstructure are performed by Nuclear Magnetic Resonance (NMR) spectroscopy.
  • Spectrometer For these measurements, a Bruker Avance III HD 400 MHz spectrometer is used, equipped with a Bruker cryo-BBFO z-grad 5 mm probe.
  • the chemical shifts of the characteristic signals of the patterns A, B and C are presented in Table 1.
  • the patterns A, B and C correspond respectively to the configuration units 3,4, 1,2 configuration and 1,4-trans configuration. .
  • the integrated signals for the quantification of the different patterns are:
  • V Ethylene signal at 1.2 ppm corresponding to 4 protons
  • mol% of a unit integral 1H of a pattern * 100 / ⁇ (integrals 1H of each pattern)
  • the measurements are made on an Anton Paar Model MCR301 rheometer in Shear mode with cylindrical test pieces of controlled geometry (thickness between 1.5mm and 3mm and diameter between 22mm and 28mm).
  • the sample is subjected to a sinusoidal shear stress, at a fixed temperature (corresponding to the end of the passage of the glass transition of the elastomer over a temperature sweep at 10 Hz), and over a frequency range from 0.01 Hz to 100Hz.
  • the rigidity value selected as the stiffness of the rubber plateau of the sample is the value of the shear modulus G 'for the frequency at which the loss modulus G' 'reaches its minimum, according to the method described by C. Liu , J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Evaluation of different methods for the determination of the modulus plateau and molecular weight entanglement, Polymer 47 (2006) 4461-4479.
  • the glass transition temperature is measured by means of a differential scanning calorimeter according to ASTM D3418 (1999).
  • ISO 11357-3: 2011 is used to determine the temperature and the heat of fusion and crystallization of polymers used by differential scanning calorimetry (DSC).
  • the reference enthalpy of the polyethylene is 277.1 J / g (according to Handbook of Polymer 4th Edition, J. BRANDRUP, E.H. IMMERGUT, and E. A. GRULKE, 1999)
  • Example 1 control
  • the diene copolymer rich in ethylene and synthesized by polymerization of ethylene and 1,3-butadiene in the presence of the metallocene [Me 2 SiCpFluNd (m-BH 4 ) 2 Li (THF)] presents high crystallinity (31%) which may make it unsuitable for some uses.
  • Example 2 non-compliant
  • the ethylene-rich diene copolymer synthesized in the presence of the metallocene [Me Si (Flu) Nd (m-BH 4 ) Li (THF)] has cyclic units. Although it contains an ethylene level comparable to that of the control, it is not crystalline. Nevertheless, it has a relatively high stiffness that may make it unsuitable for certain uses.
  • diene copolymers rich in ethylene are copolymers of ethylene and myrcene.
  • the copolymer has an ethylene level comparable to that of the copolymers of Examples 1 and 2, but without their disadvantages. Indeed, it has the advantage of both not being crystalline and having a significantly lower rigidity than the copolymer of Example 2.
  • Example 4 the copolymer is much richer in ethylene (85%) than the control copolymer of Example 1 (74%) and yet it is much less crystalline (17%) than the control copolymer (31%) .
  • Example 5 the copolymer has a higher myrcene content than the copolymers of Examples 3 and 4. It is not crystalline and also has a lower rigidity.
  • Examples 3 to 5 illustrate that a variation in the myrcene content in the copolymer makes it possible to improve the compromise ratio of crystallinity rigidity of the ethylene-rich diene polymers with respect to the copolymers of ethylene and 1,3-butadiene.

Abstract

The invention relates to a copolymer of ethylene and a 1,3-diene of formula CH2=CR-CH=CH2, in which the ethylene units represent between 50 mole % and 95 mole % of the ethylene units and the 1,3-diene units, and the 1,3-diene units of configuration1,2 and 3,4 represent more than 50 mole % of the 1,3-diene units, the symbol R representing a hydrocarbonated chain having between 3 and 20 carbon atoms. Such a copolymer presents an improved compromise between the rate of crystallinity and the rigidity and allows the broadening of the field of application of ethylene-enriched diene copolymers into rubber compositions.

Description

Copolymère d'éthylène et d'un 1,3-diène  Copolymer of ethylene and a 1,3-diene
Le domaine de l'invention est celui des copolymères de diène conjugué et d'éthylène, riches en unité éthylène et utilisables en tant qu'élastomères dans une composition de caoutchouc pour pneumatique. The field of the invention is that of copolymers of conjugated diene and ethylene, rich in ethylene unit and usable as elastomers in a tire rubber composition.
Les élastomères diéniques les plus largement utilisés dans la confection des pneumatiques sont les polybutadiènes, les polyisoprènes, en particulier le caoutchouc naturel, et les copolymères de 1,3-butadiène et de styrène. Le point commun à ces élastomères est la forte proportion molaire d'unités diéniques dans l'élastomère, généralement très supérieure à 50%, ce qui peut les rendre sensibles à l'oxydation, notamment sous l'action de l'ozone. The diene elastomers most widely used in the manufacture of tires are polybutadienes, polyisoprenes, in particular natural rubber, and copolymers of 1,3-butadiene and styrene. The common point to these elastomers is the high molar proportion of diene units in the elastomer, generally well above 50%, which can make them sensitive to oxidation, especially under the action of ozone.
La Demanderesse a décrit des élastomères qui a contrario sont relativement pauvres en unités diéniques, notamment en vue de réduire leur sensibilité aux phénomènes d'oxydation. Ces élastomères sont par exemple décrits dans le document WO 2007054223. Ce sont des copolymères de 1,3-butadiène et d'éthylène contenant plus de 50% en mole d'unité éthylène. Ces élastomères sont qualifiés d'élastomères diéniques riches en éthylène. The Applicant has described elastomers which, on the contrary, are relatively poor in diene units, in particular with a view to reducing their sensitivity to oxidation phenomena. These elastomers are for example described in document WO 2007054223. They are copolymers of 1,3-butadiene and of ethylene containing more than 50 mol% of ethylene unit. These elastomers are referred to as diene elastomers rich in ethylene.
Les copolymères de 1,3-butadiène et d'éthylène riches en éthylène sont cristallins et voient leur cristallinité augmenter avec le taux d'éthylène. La présence de parties cristallines dans le copolymère peut être problématique lorsqu'on utilise le copolymère dans une composition de caoutchouc. La fusion des parties cristallines du copolymère entraînant une baisse de sa rigidité, une composition de caoutchouc contenant un tel copolymère et utilisée dans un pneumatique voit aussi sa rigidité diminuer lorsqu'elle est portée à des températures égalant ou dépassant la température de fusion des parties cristallines, ce qui peut être le cas pendant les phases répétées de freinage et d'accélération du pneumatique. Cette dépendance de la rigidité en fonction de la température peut donc entraîner des fluctuations non maîtrisées des performances du pneumatique. Il est d'intérêt de disposer de polymères diéniques riches en unités éthylène dont la cristallinité est réduite, voire supprimée. Copolymers of ethylene-rich 1,3-butadiene and ethylene are crystalline and their crystallinity increases with the ethylene content. The presence of crystalline portions in the copolymer can be problematic when the copolymer is used in a rubber composition. The melting of the crystalline parts of the copolymer resulting in a decrease in its rigidity, a rubber composition containing such a copolymer and used in a tire also reduces its stiffness when it is brought to temperatures equal to or exceeding the melting temperature of the crystalline parts. , which can be the case during the repeated phases of braking and acceleration of the tire. This dependence of the rigidity as a function of the temperature can therefore lead to uncontrolled fluctuations in the performance of the tire. It is of interest to have diene polymers rich in ethylene units whose crystallinity is reduced or suppressed.
Dans le document WO 2007054224, la Demanderesse a décrit des copolymères diéniques riches en éthylène qui présentent une cristallinité réduite. Ces copolymères sont des copolymères de 1,3-butadiène et d'éthylène qui contiennent en outre des motifs cycliques hydrocarbonés saturés à 6 membres. Néanmoins, ces copolymères introduits dans une composition de caoutchouc peuvent conférer une rigidité trop élevée à la composition de caoutchouc. La rigidité élevée de la composition de caoutchouc est imputée à une rigidité également élevée de l'élastomère. Une rigidité élevée d'une composition de caoutchouc peut être problématique, car elle peut, elle aussi, rendre la composition de caoutchouc inappropriée pour certaines applications. Pour produire ces copolymères d'éthylène et de 1,3-butadiène riches en éthylène et comportant des motifs cycliques hydrocarbonés saturés à 6 membres, la Demanderesse a mis au point un système catalytique à base d'un métallocène et d'un organomagnésien, comme cela est décrit par exemple dans le document WO 2007054224, le métallocène étant de formule suivante :
Figure imgf000003_0001
In WO 2007054224, the Applicant has described diene copolymers rich in ethylene which have reduced crystallinity. These copolymers are copolymers of 1,3-butadiene and ethylene which additionally contain 6-membered saturated hydrocarbon cyclic units. Nevertheless, these copolymers introduced into a rubber composition can impart too high rigidity to the rubber composition. The high rigidity of the rubber composition is attributed to an equally high rigidity of the elastomer. High rigidity of a rubber composition can be problematic because it can also render the rubber composition unsuitable for certain applications. To produce these copolymers of ethylene and 1,3-butadiene rich in ethylene and having saturated 6-membered hydrocarbon cyclic units, the Applicant has developed a catalytic system based on a metallocene and an organomagnesium, such as this is described for example in WO 2007054224, the metallocene being of the following formula:
Figure imgf000003_0001
Cp1 et Cp2, identiques ou différents, étant choisis dans le groupe constitué par les groupes fluorényles substitués et le groupe fluorényle non substitué de formule C13H8, P étant un groupe pontant les deux groupes Cp1 et Cp2 et représentant un groupe ZR3R4, Z représentant un atome de silicium ou de carbone, R3 et R4, identiques ou différents, représentant chacun un groupe alkyle comprenant de 1 à 20 atomes de carbone, de préférence un méthyle, y, nombre entier, étant égal ou supérieur à 0, x, nombre entier ou non, étant égal ou supérieur à 0, L représentant un métal alcalin choisi dans le groupe constitué par le lithium, le sodium et le potassium, N représentant une molécule d'un éther, de préférence diéthyléther ou tétrahydrofuranne. Cp 1 and Cp 2 , which are identical or different, being chosen from the group consisting of substituted fluorenyl groups and the unsubstituted fluorenyl group of formula C 13 H 8 , P being a group bridging the two Cp 1 and Cp 2 groups and representing a ZR 3 R 4 group , Z representing a silicon or carbon atom, R 3 and R 4 , identical or different, each representing an alkyl group comprising 1 to 20 carbon atoms, preferably a methyl, y, integer, being equal to or greater than 0, where x, an integer or not, being equal to or greater than 0, L representing an alkali metal selected from the group consisting of lithium, sodium and potassium, N being a molecule of an ether, preferably diethyl ether or tetrahydrofuran.
Poursuivant son but de synthétiser des élastomères diéniques riches en éthylène, la Demanderesse a découvert un nouveau polymère qui permet de résoudre les problèmes mentionnés. Continuing its goal of synthesizing diene elastomers rich in ethylene, the Applicant has discovered a new polymer that solves the problems mentioned.
Ainsi un premier objet de l'invention est un copolymère, de préférence élastomère, d'éthylène et de 1,3-diène de formule (I) qui comprend des unités éthylène et des unités du 1,3-diène, les unités éthylène représentant entre 50% et 95% en moles des unités éthylène et des unités du 1,3-diène, et les unités du 1,3-diène de configuration 1,2 et 3,4 représentant plus de 50% en mole des unités du 1,3-diène,Thus a first object of the invention is a copolymer, preferably elastomeric, of ethylene and 1,3-diene of formula (I) which comprises ethylene units and 1,3-diene units, the ethylene units representing between 50% and 95% by mole of the ethylene units and units of 1,3-diene, and 1,3-diene units of 1,2 and 3,4 configuration representing more than 50% in mole of the units of 1 , 3-diene,
Figure imgf000003_0002
Figure imgf000003_0002
le symbole R représentant une chaîne hydrocarbonée ayant 3 à 20 atomes de carbone. the symbol R representing a hydrocarbon chain having 3 to 20 carbon atoms.
Un autre objet de l'invention est un procédé de préparation du copolymère conforme à l'invention. Another subject of the invention is a process for preparing the copolymer according to the invention.
L'invention concerne aussi une composition de caoutchouc à base au moins de l'élastomère conforme à l'invention et d'un système de réticulation, ainsi qu'un pneumatique qui comprend la composition de caoutchouc conforme à l'invention. The invention also relates to a rubber composition based at least on the elastomer according to the invention and a crosslinking system, and a tire which comprises the rubber composition according to the invention.
I. DESCRIPTION DETAILLEE DE L'INVENTION I. DETAILED DESCRIPTION OF THE INVENTION
Dans la présente description, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs supérieur à "a" et inférieur à "b" (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de "a" jusqu'à "b" (c'est-à-dire incluant les bornes strictes a et b). In the present description, any range of values designated by the expression "between a and b" represents the range of values greater than "a" and less than "b" (i.e. and b excluded) while any range of values referred to as "from a to b" means the range of values from "a" to "b" (i.e. including the strict limits a and B).
Par l'expression « à base de » utilisée pour définir les constituants d'un système catalytique ou d'une composition, on entend le mélange de ces constituants, ou le produit de la réaction d'une partie ou de la totalité de ces constituants entre eux. By the expression "based on" used to define the constituents of a catalytic system or a composition is meant the mixing of these constituents, or the product of the reaction of part or all of these constituents. between them.
Sauf indication contraire, les taux des unités résultant de l'insertion d'un monomère dans un copolymère sont exprimés en pourcentage molaire par rapport à la totalité des unités monomères du copolymère. Unless otherwise indicated, the unit rates resulting from the insertion of a monomer into a copolymer are expressed as a mole percent based on all the monomer units of the copolymer.
Les composés mentionnés dans la description peuvent être d'origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les monomères. The compounds mentioned in the description may be of fossil origin or biobased. In the latter case, they can be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. In particular, the monomers are concerned.
Le 1,3-diène de formule (I) comme définie plus haut et utile aux besoins de l'invention étant un 1,3 diène substitué, le 1,3-diène peut donner lieu à des unités de configuration 1,2 représentée par la formule (1), de configuration 3,4 représentée par la formule (2) et de configuration 1,4 dont la forme trans est représentée ci-après par la formule (3). The 1,3-diene of formula (I) as defined above and useful for the purposes of the invention being a substituted 1,3-diene, 1,3-diene can give rise to units of configuration 1,2 represented by the formula (1), configuration 3,4 represented by the formula (2) and 1.4 configuration whose trans form is represented below by the formula (3).
Figure imgf000004_0001
Figure imgf000004_0001
Comme cela est également bien connu, l'unité éthylène est une unité de motif -(CH2-CH2)-. As is also well known, the ethylene unit is a unit of - (CH 2 -CH 2 ) - unit.
Le copolymère conforme à l'invention est un copolymère d'éthylène et du 1,3-diène, ce qui implique que les unités monomères du copolymère sont des unités résultant de la polymérisation de l'éthylène et du 1,3-diène. Le copolymère comprend donc des unités éthylène et des unités du 1,3-diène. Selon l'un quelconque des modes de réalisation de l'invention, le 1,3-diène utile aux besoins de l'invention est un seul composé, c'est-à-dire un seul (en anglais « one ») 1,3-diène de formule (I) ou est un mélange de 1,3-diènes de formule (I), les 1,3-diènes du mélange se différenciant les uns des autres par le groupe représenté par le symbole R. The copolymer according to the invention is a copolymer of ethylene and 1,3-diene, which implies that the monomer units of the copolymer are units resulting from the polymerization of ethylene and 1,3-diene. The copolymer thus comprises ethylene units and 1,3-diene units. According to any of the embodiments of the invention, the 1,3-diene useful for the purposes of the invention is a single compound, that is to say only one compound (in English "one") 1, 3-diene of formula (I) or is a mixture of 1,3-dienes of formula (I), the 1,3-dienes of the mixture differing from each other by the group represented by the symbol R.
Le copolymère d'éthylène et du 1,3-diène conforme à l'invention a pour caractéristique essentielle de comprendre entre 50% et 95% en moles d'unité éthylène. Autrement dit, les unités éthylène représentent entre 50% et 95% en moles des unités éthylène et des unités du 1,3-diène. Il a également pour autre caractéristique essentielle de comprendre des unités du 1,3-diène qui sont à plus de 50% en mole des unités du 1,3-diène de configuration 1,2 et 3,4. En d'autre terme, les unités du 1,3-diène qu'elles soient de configuration 1,2 ou 3,4 représentent plus de 50% en mole des unités du 1,3-diène. Le complément à 100% en mole des unités du 1,3-diène dans le copolymère est constitué tout ou partie d'unités du 1,3- diène de configuration 1,4. Selon l'un quelconque des modes de réalisation de l'invention, préférentiellement plus de la moitié des unités du 1,3-diène de configuration 1,4 sont de configuration 1,4-trans, plus préférentiellement toutes les unités du 1,3-diène de configuration 1,4 sont de configuration 1,4-trans. The copolymer of ethylene and 1,3-diene according to the invention has the essential characteristic of comprising between 50% and 95% by moles of ethylene unit. In other words, Ethylene units represent between 50% and 95% by mole of the ethylene units and 1,3-diene units. It also has another essential characteristic of comprising units of 1,3-diene which are more than 50 mol% of 1,3-diene units of 1,2- and 3,4-configuration. In other words, the 1,3-diene units, whether of the 1,2 or 3,4 configuration, represent more than 50 mol% of the 1,3-diene units. The 100 mol% complement of 1,3-diene units in the copolymer consists wholly or partly of 1,3-diene units of 1,4-configuration. According to any one of the embodiments of the invention, preferably more than half of the 1,3-diene units of configuration 1,4 are of 1,4-trans configuration, more preferably all the units of the 1,3 configuration 1,4-diene are of 1,4-trans configuration.
Dans la formule (I) du 1,3-diène utile aux besoins de l'invention, la chaîne hydrocarbonée représentée par le symbole R peut être une chaîne linéaire ou ramifiée, auquel cas le symbole R représente une chaîne linéaire ou ramifiée. De préférence, la chaîne hydrocarbonée est acyclique, auquel cas le symbole R représente une chaîne acyclique. Dans la formule (I), la chaîne hydrocarbonée représentée par le symbole R peut être saturée ou insaturée, auquel cas le symbole R représente une chaîne saturée ou insaturée. De préférence, le symbole R représente une chaîne hydrocarbonée ayant 6 à 16 atomes de carbone. In the formula (I) of 1,3-diene useful for the purposes of the invention, the hydrocarbon chain represented by the symbol R may be a linear or branched chain, in which case the symbol R represents a linear or branched chain. Preferably, the hydrocarbon chain is acyclic, in which case the symbol R represents an acyclic chain. In formula (I), the hydrocarbon chain represented by the symbol R can be saturated or unsaturated, in which case the symbol R represents a saturated or unsaturated chain. Preferably, the R symbol represents a hydrocarbon chain having 6 to 16 carbon atoms.
Selon un mode de réalisation préférentiel de l'invention, dans le copolymère conforme à l'invention, les unités éthylène représentent au moins 60% en mole des unités éthylène et des unités du 1,3-diène. De manière plus préférentielle, les unités éthylène représentent de 60 à 90% en mole des unités éthylène et des unités du 1,3-diène. According to a preferred embodiment of the invention, in the copolymer according to the invention, the ethylene units represent at least 60 mol% of the ethylene units and 1,3-diene units. More preferably, the ethylene units represent from 60 to 90 mol% of the ethylene units and 1,3-diene units.
Selon un mode de réalisation plus préférentiel de l'invention, dans le copolymère conforme à l'invention, les unités éthylène représentent au moins 70% en mole des unités éthylène et des unités du 1,3-diène. De manière plus préférentielle, les unités éthylène représentent de 70% à 90% en mole des unités éthylène et des unités du 1,3-diène. According to a more preferred embodiment of the invention, in the copolymer according to the invention, the ethylene units represent at least 70 mol% of the ethylene units and 1,3-diene units. More preferably, the ethylene units represent from 70% to 90% by mole of the ethylene units and 1,3-diene units.
De préférence, le copolymère conforme à l'invention a une température de transition vitreuse inférieure à -35°C, en particulier comprise entre -90°C et -35°C. Preferably, the copolymer according to the invention has a glass transition temperature below -35 ° C, in particular between -90 ° C and -35 ° C.
De manière plus préférentielle, le copolymère conforme à l'invention est un élastomère. More preferably, the copolymer according to the invention is an elastomer.
Le copolymère conforme à l'invention peut être préparé par un procédé qui comprend la copolymérisation d'éthylène et du 1,3-diène en présence d'un système catalytique à base au moins d'un métallocène de formule (II) et d'un organomagnésien de formule (III) The copolymer according to the invention may be prepared by a process which comprises the copolymerization of ethylene and 1,3-diene in the presence of a catalyst system based on at least one metallocene of formula (II) and of an organomagnesium of formula (III)
Figure imgf000005_0001
Cp1 et Cp2, identiques ou différents, étant choisis dans le groupe constitué par les groupes fluorényles substitués et le groupe fluorényle non substitué de formule CI3H8.
Figure imgf000005_0001
Cp 1 and Cp 2 , which are identical or different, are chosen from the group consisting of substituted fluorenyl groups and the unsubstituted fluorenyl group of formula C 13 H 8 .
P étant un groupe pontant les deux groupes Cp1 et Cp2 et représentant un groupe ZR3R4, Z représentant un atome de silicium ou de carbone, R3 et R4, identiques ou différents, représentant chacun un groupe alkyle comprenant de 1 à 20 atomes de carbone, de préférence un méthyle, P being a group bridging the two groups Cp 1 and Cp 2 and representing a group ZR 3 R 4 , Z representing a silicon or carbon atom, R 3 and R 4 , which may be identical or different, each representing an alkyl group comprising from 1 at 20 carbon atoms, preferably methyl,
y, nombre entier, étant égal ou supérieur à 0,  y, integer, being equal to or greater than 0,
x, nombre entier ou non, étant égal ou supérieur à 0,  x, integer or non-integer, being equal to or greater than 0,
L représentant un métal alcalin choisi dans le groupe constitué par le lithium, le sodium et le potassium,  L representing an alkali metal selected from the group consisting of lithium, sodium and potassium,
N représentant une molécule d'un éther, de préférence diéthyléther ou tétrahydrofuranne,  N represents a molecule of an ether, preferably diethyl ether or tetrahydrofuran,
R1 et R2, identiques ou différents, représentant un groupe carboné. R 1 and R 2 , identical or different, representing a carbon group.
A titre de groupes fluorényles substitués, on peut citer ceux substitués par des radicaux alkyles ayant 1 à 6 atomes de carbone ou par des radicaux aryles ayant 6 à 12 atomes de carbone. Le choix des radicaux est aussi orienté par l'accessibilité aux molécules correspondantes que sont les fluorènes substitués, parce que ces derniers sont disponibles commercialement ou facilement synthétisables. As substituted fluorenyl groups, mention may be made of those substituted by alkyl radicals having 1 to 6 carbon atoms or by aryl radicals having 6 to 12 carbon atoms. The choice of radicals is also oriented by accessibility to the corresponding molecules that are substituted fluorenes, because these are commercially available or easily synthesizable.
A titre de groupes fluorényles substitués, on peut citer plus particulièrement les groupes 2,7 - ditertiobutyle-fluorényle et 3,6-ditertiobutyle-fluorényle. Les positions 2, 3, 6 et 7 désignent respectivement la position des atomes de carbone des cycles comme cela est représenté dans le schéma ci-après, la position 9 correspondant à l'atome de carbone auquel est attaché le pont P. As substituted fluorenyl groups, there may be mentioned more particularly 2,7-ditertiobutyl-fluorenyl and 3,6-ditertiobutyl-fluorenyl groups. The positions 2, 3, 6 and 7 respectively designate the position of the carbon atoms of the rings as shown in the diagram below, the position 9 corresponding to the carbon atom to which the P bridge is attached.
Figure imgf000006_0001
Figure imgf000006_0001
Le système catalytique peut être préparé de façon traditionnelle par un procédé analogue à celui décrit dans la demande de brevet WO 2007054224. Par exemple on fait réagir dans un solvant hydrocarboné l'organomagnésien et le métallocène typiquement à une température allant de 20 à 80°C pendant une durée comprise entre 5 et 60 minutes. Le système catalytique est généralement préparé dans un solvant hydrocarboné, aliphatique comme le méthylcyclohexane ou aromatique comme le toluène. Généralement après sa synthèse, le système catalytique est utilisé en l'état dans le procédé de synthèse du copolymère conforme à l'invention. The catalytic system may be prepared in a conventional manner by a method analogous to that described in patent application WO 2007054224. For example, the organomagnesium and the metallocene are typically reacted in a hydrocarbon solvent at a temperature ranging from 20 to 80 ° C. for a period of between 5 and 60 minutes. The catalyst system is generally prepared in a hydrocarbon solvent, aliphatic such as methylcyclohexane or aromatic such as toluene. Generally after its synthesis, the Catalyst system is used as it is in the synthesis process of the copolymer according to the invention.
Le métallocène utilisé pour préparer le système catalytique peut se trouver sous la forme de poudre cristallisée on non, ou encore sous la forme de monocristaux. Le métallocène peut se présenter sous une forme monomère ou dimère, ces formes dépendant du mode de préparation du métallocène, comme par exemple cela est décrit dans la demande de brevet WO 2007054224. Le métallocène peut être préparé de façon traditionnelle par un procédé analogue à celui décrit dans la demande de brevet WO 2007054224, notamment par réaction dans des conditions inertes et anhydres du sel d'un métal alcalin du ligand avec un borohydrure de terre rare dans un solvant adapté, tel un éther, comme le diéthyléther ou le tétrahydrofuranne ou tout autre solvant connu de l'homme de l'art. Après réaction, le métallocène est séparé des sous-produits de réaction par les techniques connues de l'homme de l'art, telles que la filtration ou la précipitation dans un second solvant. Le métallocène est au final séché et isolé sous forme solide. The metallocene used to prepare the catalyst system may be in the form of crystallized powder or not in the form of single crystals. The metallocene may be in a monomeric or dimer form, these forms depending on the mode of preparation of the metallocene, as for example that is described in the patent application WO 2007054224. The metallocene may be prepared in a traditional manner by a process similar to that described in the patent application WO 2007054224, in particular by reaction under inert and anhydrous conditions of the alkali metal salt of the ligand with a rare earth borohydride in a suitable solvent, such as an ether, such as diethyl ether or tetrahydrofuran or any other solvent known to those skilled in the art. After reaction, the metallocene is separated from the reaction by-products by techniques known to those skilled in the art, such as filtration or precipitation in a second solvent. The metallocene is finally dried and isolated in solid form.
Comme toute synthèse faite en présence de composé organométallique, la synthèse du métallocène et celle du système catalytique ont lieu dans des conditions anhydres sous atmosphère inerte. Typiquement, les réactions sont conduites à partir de solvants et de composés anhydres sous azote ou argon anhydre. Like any synthesis made in the presence of organometallic compound, the synthesis of metallocene and that of the catalytic system take place under anhydrous conditions under an inert atmosphere. Typically, the reactions are conducted from solvents and anhydrous compounds under nitrogen or argon anhydrous.
De préférence, le métallocène est de formule (lia), (Mb), (Ile), (lld) ou (Me) dans lesquelles le symbole Flu présente le groupe fluorényle de formule CI3H8.Preferably, the metallocene is of formula (IIa), (Mb), (IIc), (IId) or (Me) in which the symbol Flu has the fluorenyl group of formula C III H 8 .
Figure imgf000007_0001
Figure imgf000007_0001
L'organomagnésien utile aux besoins de l'invention est de formule MgR1R2 dans laquelle R1 et R2, identiques ou différents, représentent un groupe carboné. On entend par groupe carboné un groupe qui contient un ou plusieurs atomes de carbone. De préférence, R1 et R2 contiennent 2 à 10 atomes de carbone. De manière plus préférentielle, R1 et R2 représentent chacun un alkyle. L'organomagnésien est avantageusement un dialkylmagnésien, mieux le butyléthylmagnésium ou le butyloctylmagnésium, encore mieux le butyloctylmagnésium. The organomagnesium useful for the purposes of the invention is of formula MgR 1 R 2 in which R 1 and R 2 , which are identical or different, represent a carbon group. By carbon group is meant a group which contains one or more carbon atoms. Preferably, R 1 and R 2 contain 2 to 10 carbon atoms. More preferably, R 1 and R 2 each represent an alkyl. The organomagnesium is advantageously a dialkylmagnesium, better butylethylmagnesium or butyloctylmagnesium, more preferably butyloctylmagnesium.
Selon l'un quelconque des modes de réalisation de l'invention, le rapport molaire de l'organomagnésien sur le métal Nd constituant le métallocène est de préférence compris dans un domaine allant de 1 à 100, de manière plus préférentielle est supérieur ou égal à 1 et inférieur à 10. La plage de valeurs allant de 1 à moins de 10 est notamment plus favorable pour l'obtention de copolymères de masses molaires élevées. L'homme du métier adapte aussi les conditions de polymérisation et les concentrations en chacun des réactifs (constituants du système catalytique, monomères) selon le matériel (outils, réacteurs) utilisé pour conduire la polymérisation et les différentes réactions chimiques. Comme cela est connu de l'homme du métier, la copolymérisation ainsi que la manipulation des monomères, du système catalytique et du ou des solvants de polymérisation se font dans des conditions anhydres et sous atmosphère inerte. Les solvants de polymérisation sont typiquement des solvants hydrocarbonés, aliphatiques ou aromatiques. According to any of the embodiments of the invention, the molar ratio of the organomagnesium compound to the Nd metal constituting the metallocene is preferably in a range from 1 to 100, more preferably is greater than or equal to 1 and less than 10. The range of values from 1 to less than 10 is particularly favorable for obtaining copolymers of high molar masses. The person skilled in the art also adapts the polymerization conditions and the concentrations in each of the reagents (constituents of the catalytic system, monomers) according to the equipment (tools, reactors) used to conduct the polymerization and the different chemical reactions. As is known to those skilled in the art, the copolymerization as well as the handling of the monomers, the catalyst system and the polymerization solvent or solvents are carried out under anhydrous conditions and under an inert atmosphere. The polymerization solvents are typically hydrocarbon, aliphatic or aromatic solvents.
La polymérisation est conduite de préférence en solution, en continu ou discontinu. Le solvant de polymérisation peut être un solvant hydrocarboné, aromatique ou aliphatique. A titre d'exemple de solvant de polymérisation, on peut citer le toluène et le méthylcyclohexane. Les monomères peuvent être introduits dans le réacteur contenant le solvant de polymérisation et le système catalytique ou inversement le système catalytique peut être introduit dans le réacteur contenant le solvant de polymérisation et les monomères. La copolymérisation est conduite typiquement dans des conditions anhydres et en l'absence d'oxygène, en présence éventuelle d'un gaz inerte. La température de polymérisation varie généralement dans un domaine allant de 30 à 150°C, préférentiellement de 30 à 120°C. De préférence, la copolymérisation est conduite à pression constante d'éthylène. The polymerization is preferably carried out in solution, continuously or batchwise. The polymerization solvent may be a hydrocarbon, aromatic or aliphatic solvent. As an example of a polymerization solvent, mention may be made of toluene and methylcyclohexane. The monomers can be introduced into the reactor containing the polymerization solvent and the catalytic system or conversely the catalytic system can be introduced into the reactor containing the polymerization solvent and the monomers. The copolymerization is typically conducted under anhydrous conditions and in the absence of oxygen, optionally in the presence of an inert gas. The polymerization temperature generally varies in a range from 30 to 150 ° C, preferably from 30 to 120 ° C. Preferably, the copolymerization is conducted at a constant pressure of ethylene.
La polymérisation peut être stoppée par refroidissement du milieu de polymérisation. Le polymère peut être récupéré selon les techniques classiques connues de l'homme du métier comme par exemple par précipitation, par évaporation du solvant sous pression réduite ou par stripping à la vapeur d'eau. The polymerization can be stopped by cooling the polymerization medium. The polymer may be recovered according to conventional techniques known to those skilled in the art, for example by precipitation, by evaporation of the solvent under reduced pressure or by stripping with water vapor.
Selon l'un quelconque des modes de réalisation de l'invention, l'incorporation du 1,3-diène et de l'éthylène dans la chaîne polymère en croissance est préférentiellement statistique. Le copolymère conforme à l'invention est avantageusement un copolymère statistique. According to any of the embodiments of the invention, the incorporation of 1,3-diene and ethylene in the growing polymer chain is preferably statistical. The copolymer according to the invention is advantageously a random copolymer.
Le copolymère conforme à l'invention, en particulier lorsqu'il est élastomère, peut être utilisé dans une composition de caoutchouc. The copolymer according to the invention, in particular when it is elastomeric, can be used in a rubber composition.
La composition de caoutchouc, autre objet de l'invention, a pour caractéristique de comprendre l'élastomère conforme à l'invention et un système de réticulation. The rubber composition, another object of the invention, has the characteristic of comprising the elastomer according to the invention and a crosslinking system.
Le système de réticulation peut être à base de soufre, de donneurs de soufre, de peroxydes, de bismaléimides ou de leurs mélanges. Le système de réticulation est préférentiellement un système de vulcanisation, c'est-à-dire un système à base de soufre (ou d'un agent donneur de soufre) et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base peuvent s'ajouter divers accélérateurs secondaires ou activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique ou composés équivalents, dérivés guanidiques (en particulier diphénylguanidine), ou encore des retardateurs de vulcanisation connus. The crosslinking system may be based on sulfur, sulfur donors, peroxides, bismaleimides or mixtures thereof. The crosslinking system is preferably a vulcanization system, that is to say a system based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator. To this system of vulcanization of base may be added various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid or equivalent compounds, guanidine derivatives (in particular diphenylguanidine), or known vulcanization retarders.
Selon un mode de réalisation préférentiel de l'invention, la composition de caoutchouc comprend une charge renforçante. La composition de caoutchouc peut comprendre tout type de charge dite renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage, ou encore un mélange de ces deux types de charge. Une telle charge renforçante consiste typiquement en des nanoparticules dont la taille moyenne (en masse) est inférieure au micromètre, généralement inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 nm. Le taux de charge renforçante est ajustée par l'homme du métier en fonction de l'usage de la composition de caoutchouc. According to a preferred embodiment of the invention, the rubber composition comprises a reinforcing filler. The rubber composition may comprise any type of so-called reinforcing filler known for its ability to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica with which is associated in a known manner a coupling agent, or a mixture of these two types of filler. Such a reinforcing filler typically consists of nanoparticles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm. The level of reinforcing filler is adjusted by those skilled in the art depending on the use of the rubber composition.
La composition de caoutchouc peut contenir en outre d'autres additifs connus pour être utilisés dans des compositions de caoutchouc pour pneumatiques, tels que des plastifiants, des anti-ozonants, des antioxydants. The rubber composition may further contain other additives known for use in tire rubber compositions, such as plasticizers, antiozonants, antioxidants.
La composition de caoutchouc conforme à l'invention est typiquement fabriquée dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermomécanique (phase dite « non-productive ») à haute température, jusqu'à une température maximale comprise entre 130°C et 200°C, suivie d'une seconde phase de travail mécanique (phase dite « productive ») jusqu'à une plus basse température, typiquement inférieure à 110°C, par exemple entre 40°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation. The rubber composition according to the invention is typically manufactured in suitable mixers, using two successive preparation phases well known to those skilled in the art: a first phase of work or thermomechanical mixing (so-called "non-productive" phase) at high temperature, up to a maximum temperature of between 130 ° C. and 200 ° C., followed by a second mechanical working phase ("productive" phase) to a lower temperature, typically less than 110 ° C. for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
La composition de caoutchouc conforme à l'invention, pouvant être soit à l'état cru (avant réticulation ou vulcanisation), soit à l'état cuit (après réticulation ou vulcanisation), peut être utilisée dans un article semi-fini pour pneumatique. The rubber composition according to the invention, which can be either in the green state (before crosslinking or vulcanization), or in the fired state (after crosslinking or vulcanization), can be used in a semi-finished tire article.
Le pneumatique, autre objet de l'invention, comprend la composition de caoutchouc conforme à l'invention définie sous l'un quelconque des modes de réalisation de l'invention. The tire, another object of the invention, comprises the rubber composition according to the invention defined in any one of the embodiments of the invention.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif. II. EXEMPLES DE REALISATION DE L'INVENTION The aforementioned features of the present invention, as well as others, will be better understood on reading the following description of several embodiments of the invention, given by way of illustration and not limitation. II. EXAMPLES OF CARRYING OUT THE INVENTION
1) Synthèse des polymères : 1) Synthesis of the polymers:
Dans la synthèse de copolymères conformes à l'invention, le 1,3-diène utilisé (myrcène) est un 1,3-diène de formule (I) dans lequel R est un groupe hydrocarboné ayant 6 atomes de carbone de formule CH2-CH2-CH=CMe2. In the synthesis of copolymers according to the invention, the 1,3-diene used (myrcene) is a 1,3-diene of formula (I) in which R is a hydrocarbon group having 6 carbon atoms of formula CH 2 -CH 2 -CH = CMe 2 .
Tous les réactifs sont obtenus commercialement excepté les métallocènes [{Me2SiFlu2Nd(m- BH4)2Li(THF)}] et [Me2SiCpFluNd(m-BH4)2Li(THF)] qui sont préparés selon les modes opératoires décrit dans les demandes de brevet WO 2007054224 et WO 2007054223. All reagents are commercially obtained except metallocenes [{Me 2 SiFlu2Nd (m- BH 4) 2 Li (THF)}] and [Me2SiCpFluNd (m-BH 4) 2 Li (THF)] which are prepared according to the procedures described in patent applications WO 2007054224 and WO 2007054223.
Le butyloctylmagnésium BOMAG (20% dans l'heptane, C = 0,88 mol L 1) provient de Chemtura et est stocké dans un tube de Schlenk sous atmosphère inerte. L'éthylène, de qualité N35, provient de la société Air Liquide et est utilisé sans purification préalable. Le myrcène (pureté >95%) est obtenu chez Sigma-Aldrich. BOMAG butyloctylmagnesium (20% in heptane, C = 0.88 mol L 1 ) comes from Chemtura and is stored in a Schlenk tube under an inert atmosphere. Ethylene, grade N35, comes from Air Liquide and is used without prior purification. Myrcene (purity> 95%) is obtained from Sigma-Aldrich.
1.1- Synthèse témoin : exemple 1 1.1- Control synthesis: Example 1
Le polymère est synthétisé selon le mode opératoire suivant : The polymer is synthesized according to the following procedure:
Dans un réacteur en verre de 500 ml contenant 300 ml de toluène, on ajoute le co catalyseur, le butyloctylmagnésium (BOMAG) puis le métallocène [Me2SiCpFluNd(m- BH4)2Li(THF)]. La durée d'alkylation est de 10 minutes, la température de réaction est de 20 °C. Les quantités respectives des constituants du système catalytique figurent dans le tableau 2. Ensuite, les monomères sont ajoutés selon les proportions respectives indiquées dans le tableau 2, l'éthylène (Eth) et le 1,3-butadiène (Bde) étant sous la forme d'un mélange gazeux. La polymérisation est conduite à 80°C et à une pression d'éthylène constante de 4 bars. In a 500 ml glass reactor containing 300 ml of toluene, the co-catalyst, butyloctylmagnesium (BOMAG) and then the metallocene [Me 2 SiCpFluNd (m-BH 4 ) 2 Li (THF)] are added. The alkylation time is 10 minutes, the reaction temperature is 20 ° C. The respective amounts of the components of the catalyst system are shown in Table 2. Next, the monomers are added in the respective proportions shown in Table 2, ethylene (Eth) and 1,3-butadiene (Bde) being in the form of a gaseous mixture. The polymerization is carried out at 80 ° C. and at a constant ethylene pressure of 4 bars.
La réaction de polymérisation est stoppée par refroidissement, dégazage du réacteur et ajout de 10 mL d'éthanol. Un anti-oxydant est ajouté à la solution de polymère. Le copolymère est récupéré par séchage en étuve sous vide jusqu'à masse constante. La masse pesée permet de déterminer l'activité catalytique moyenne du système catalytique exprimée en kilogramme de polymère synthétisé par mole de métal néodyme et par heure (kg/mol. h).  The polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution. The copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
1.2 - Exemple non conforme à l'invention : exemple 2 1.2 - Example not in accordance with the invention: Example 2
Le polymère est synthétisé selon le mode opératoire suivant : The polymer is synthesized according to the following procedure:
Dans un réacteur en verre de 500 ml contenant 300 ml de méthylcyclohexane, on ajoute le co-catalyseur, le butyloctylmagnésium (BOMAG) puis le métallocène [Me2Si(Flu)2Nd(m- BH4)2Ü(THF)]. La durée d'alkylation est de 10 minutes, la température de réaction est de 20 °C. Les quantités respectives des constituants du système catalytique figurent dans le tableau 2. Ensuite, les monomères sont ajoutés selon les proportions respectives indiquées dans le tableau 2, l'éthylène (Eth) et le 1,3-butadiène (Bde) étant sous la forme d'un mélange gazeux. La polymérisation est conduite à 80°C et à une pression d'éthylène constante de 4 bars. La réaction de polymérisation est stoppée par refroidissement, dégazage du réacteur et ajout de 10 mL d'éthanol. Un anti-oxydant est ajouté à la solution de polymère. Le copolymère est récupéré par séchage en étuve sous vide jusqu'à masse constante. La masse pesée permet de déterminer l'activité catalytique moyenne du système catalytique exprimée en kilogramme de polymère synthétisé par mole de métal néodyme et par heure (kg/mol. h). In a 500 ml glass reactor containing 300 ml of methylcyclohexane, the cocatalyst, butyloctylmagnesium (BOMAG) and then the metallocene [Me 2 Si (Flu) 2 Nd (m-BH 4 ) 2 O (THF)] are added. The alkylation time is 10 minutes, the reaction temperature is 20 ° C. The respective amounts of the components of the catalyst system are shown in Table 2. Next, the monomers are added in the respective proportions shown in Table 2, ethylene (Eth) and 1,3-butadiene (Bde) being in the form of a gaseous mixture. The polymerization is carried out at 80 ° C. and at a constant ethylene pressure of 4 bars. The polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution. The copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
1.3- Exemples conformes à l'invention : exemples 3 à 5 1.3-Examples in Accordance with the Invention: Examples 3 to 5
Les polymères sont synthétisés selon le mode opératoire suivant : The polymers are synthesized according to the following procedure:
Dans un réacteur en verre de 500 ml contenant 300 ml de méthylcyclohexane, on ajoute le co-catalyseur, le butyloctylmagnésium (BOMAG) puis le métallocène [Me2Si(Flu)2Nd(m- BH4)2Li(THF)]. La durée d'alkylation est de 10 minutes, la température de réaction est de 20 °C. Les quantités respectives des constituants du système catalytique figurent dans le tableau 2. Ensuite, le myrcène est ajouté dans le réacteur avant l'injection de l'éthylène gazeux. La polymérisation est conduite à 80°C et à une pression d'éthylène constante de 4 bars. In a glass reactor of 500 ml containing 300 ml of methylcyclohexane, the cocatalyst is added, butyloctylmagnesium (BOMAG) and then the metallocene [Me 2 Si (Flu) 2 Nd (m- BH 4) 2 Li (THF)] . The alkylation time is 10 minutes, the reaction temperature is 20 ° C. The respective amounts of the components of the catalyst system are shown in Table 2. Thereafter, the myrcene is added to the reactor prior to the injection of ethylene gas. The polymerization is carried out at 80 ° C. and at a constant ethylene pressure of 4 bars.
La réaction de polymérisation est stoppée par refroidissement, dégazage du réacteur et ajout de 10 mL d'éthanol. Un anti-oxydant est ajouté à la solution de polymère. Le copolymère est récupéré par séchage en étuve sous vide jusqu'à masse constante. La masse pesée permet de déterminer l'activité catalytique moyenne du système catalytique exprimée en kilogramme de polymère synthétisé par mole de métal néodyme et par heure (kg/mol. h).  The polymerization reaction is stopped by cooling, degassing the reactor and adding 10 ml of ethanol. An antioxidant is added to the polymer solution. The copolymer is recovered by drying in a vacuum oven to a constant mass. The weighed mass makes it possible to determine the average catalytic activity of the catalytic system expressed in kilogram of polymer synthesized per mole of neodymium metal and per hour (kg / mol.h).
Les caractéristiques des polymères figurent dans les tableaux 3 et 4. The characteristics of the polymers are shown in Tables 3 and 4.
2) Détermination de la microstructure des polymères : 2) Determination of the microstructure of the polymers:
La caractérisation spectrale et les mesures de la microstructure de copolymère d'éthylène- et du 1,3-diène (myrcène) sont réalisées par spectroscopie de Résonance Magnétique Nucléaire (RMN).  The spectral characterization and measurements of the ethylene- and 1,3-diene (myrcene) copolymer microstructure are performed by Nuclear Magnetic Resonance (NMR) spectroscopy.
Spectromètre : Pour ces mesures, un spectromètre Bruker Avance III HD 400 MHz est utilisé, équipé d'une sonde Bruker cryo-BBFO z-grad 5 mm. Spectrometer: For these measurements, a Bruker Avance III HD 400 MHz spectrometer is used, equipped with a Bruker cryo-BBFO z-grad 5 mm probe.
Expériences : Les expériences 1H sont enregistrées à l'aide d'une impulsion radiofréquence avec un angle de basculement de 30°, le nombre de répétitions est de 128 avec un délai de recyclage de 5 secondes. Les expériences RMN de corrélation 1H- 13C HSQ.C (Heteronuclear Single Quantum Cohérence) et HMBC (Heteronuclear Multiple-Bond Corrélation) sont enregistrées avec un nombre de répétition de 128 et un nombre d'incréments de 128. Les expériences sont réalisées à 25 °C. Préparation de l'échantillon : 25 mg d'échantillon sont solubilisés dans 1 mL de chloroforme deutéré (CDCI3). Experiments: The 1H experiments are recorded using a radiofrequency pulse with a tilt angle of 30 °, the number of repetitions is 128 with a recycle time of 5 seconds. 1H-13C HSQ.C (Heteronuclear Single Quantum Coherence) and HMBC (Heteronuclear Multiple-Bond Correlation) NMR experiments are recorded with a repetition number of 128 and a number of increments of 128. The experiments are performed at 25 ° C. Preparation of the sample: 25 mg of sample are solubilized in 1 mL of deuterated chloroform (CDCl3).
Calibration de l'échantillon : Les axes des déplacements chimiques 1H et 13C sont calibrés par rapport à l'impureté protonée du solvant (CHCI3) à diH = 7,2 ppm et d13C = 77 ppm. Calibration of the sample: The axes of the chemical shifts 1 H and 13 C are calibrated with respect to the protonated impurity of the solvent (CHCI 3 ) at di H = 7.2 ppm and d 13C = 77 ppm.
Attribution spectrale : Les signaux des formes d'insertion du 1,3-diène A, B et C (schéma 1) ont été observés sur les différents spectres enregistrés. D'après S. Georges et al., (S. Georges, M. Bria, P. Zinck and M. Visseaux, Polymer 55 (2014) 3869-3878), le signal du groupement -CH= n°8" caractéristique de la forme C présente des déplacements chimiques 1H et 13C identiques au groupement -CH= n°3. Spectral allocation: The signals of the insertion forms of 1,3-diene A, B and C (scheme 1) were observed on the various recorded spectra. According to S. Georges et al. (S. Georges, M. Bria, P. Zinck and M. Visseaux, Polymer 55 (2014) 3869-3878), the signal of the group -CH = # 8 "characteristic of Form C exhibits 1 H and 13 C chemical shifts identical to the group -CH = n ° 3.
Les déplacements chimiques des signaux caractéristiques des motifs A, B et C sont présentés dans le tableau 1. Les motifs A, B et C correspondent respectivement aux unités de configuration 3,4 , de configuration 1,2 et de configuration 1,4-trans. The chemical shifts of the characteristic signals of the patterns A, B and C are presented in Table 1. The patterns A, B and C correspond respectively to the configuration units 3,4, 1,2 configuration and 1,4-trans configuration. .
Tableau 1 : Attribution des signaux 1H et 13C de copolymères Ethylène-Myrcène Table 1: Assignment of the 1 H and 13 C signals of Ethylene-Myrcene Copolymers
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000013_0001
Les quantifications ont été effectuées à partir de l'intégration des spectres RMN 1D 1H à l'aide du logiciel Topspin.
Figure imgf000013_0001
The quantifications were made from the integration of the NMR spectra 1D 1H using the Topspin software.
Les signaux intégrés pour la quantification des différents motifs sont :  The integrated signals for the quantification of the different patterns are:
V Ethylène : signal à 1.2 ppm correspondant à 4 protons V Ethylene: signal at 1.2 ppm corresponding to 4 protons
V Myrcène total : signal n°l (1.59 ppm) correspondant à 6 protons V Total Myrcene: Signal No. 1 (1.59 ppm) corresponding to 6 protons
V Forme A : signal n°7 (4.67 ppm) correspondant à 2 protons V Form A: Signal No. 7 (4.67 ppm) corresponding to 2 protons
V Forme B : signal n°8' (5.54 ppm) correspondant à 1 protons  V Form B: Signal No. 8 '(5.54 ppm) corresponding to 1 proton
La quantification de la microstructure est réalisée en pourcentage molaire (% molaire) comme suit : % molaire d'un motif = intégrale 1H d'un motif * 100 / å (intégrales 1H de chaque motif) The quantification of the microstructure is carried out in molar percentage (mol%) as follows: mol% of a unit = integral 1H of a pattern * 100 / å (integrals 1H of each pattern)
3) Détermination de la rigidité des polymères (à cru): 3) Determination of the stiffness of polymers (raw):
Les mesures sont réalisées sur un rhéomètre Anton Paar modèle MCR301 en mode Cisaillement avec des éprouvettes cylindriques de géométrie maîtrisée (épaisseur comprise entre 1,5mm et 3mm et diamètre compris entre 22mm et 28mm). L'échantillon est soumis à une sollicitation sinusoïdale en cisaillement, à une température fixe (correspondant à la fin du passage de la transition vitreuse de l'élastomère sur un balayage en température à 10Hz), et sur une plage fréquentielle allant de 0.01Hz à 100Hz. La valeur de rigidité retenue comme étant la rigidité du plateau caoutchoutique de l'échantillon est la valeur du module de cisaillement G' pour la fréquence à laquelle le module de perte G'' atteint son minimum, conformément à la méthode décrite par C. Liu, J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Evaluation of different methods for the détermination of the plateau modulus and the entanglement molecular weight, Polymer 47 (2006) 4461-4479.  The measurements are made on an Anton Paar Model MCR301 rheometer in Shear mode with cylindrical test pieces of controlled geometry (thickness between 1.5mm and 3mm and diameter between 22mm and 28mm). The sample is subjected to a sinusoidal shear stress, at a fixed temperature (corresponding to the end of the passage of the glass transition of the elastomer over a temperature sweep at 10 Hz), and over a frequency range from 0.01 Hz to 100Hz. The rigidity value selected as the stiffness of the rubber plateau of the sample is the value of the shear modulus G 'for the frequency at which the loss modulus G' 'reaches its minimum, according to the method described by C. Liu , J. He, E. van Ruymbeke, R. Keunings, C. Bailly, Evaluation of different methods for the determination of the modulus plateau and molecular weight entanglement, Polymer 47 (2006) 4461-4479.
4) Détermination de la température de transition vitreuse des polymères : 4) Determination of the glass transition temperature of the polymers:
La température de transition vitreuse est mesurée au moyen d'un calorimètre différentiel ("Diffe rential Scanning Calorimeter") selon la norme ASTM D3418 (1999).  The glass transition temperature is measured by means of a differential scanning calorimeter according to ASTM D3418 (1999).
5) Détermination du taux de cristallinité des polymères : 5) Determination of the degree of crystallinity of the polymers:
La norme ISO 11357-3 :2011 est utilisée pour déterminer la température et l'enthalpie de fusion et de cristallisation des polymères utilisés par analyse calorimétrique différentielle (DSC). L'enthalpie de référence du polyéthylène est de 277,1 J/g (d'après Handbook of Polymer 4th Edition, J. BRANDRUP, E. H. IMMERGUT, and E. A. GRULKE, 1999)  ISO 11357-3: 2011 is used to determine the temperature and the heat of fusion and crystallization of polymers used by differential scanning calorimetry (DSC). The reference enthalpy of the polyethylene is 277.1 J / g (according to Handbook of Polymer 4th Edition, J. BRANDRUP, E.H. IMMERGUT, and E. A. GRULKE, 1999)
6) Résultats : 6) Results:
Dans l'exemple 1 (témoin), le copolymère diénique riche en éthylène et synthétisé par polymérisation de l'éthylène et du 1,3-butadiène en présence du métallocène [Me2SiCpFluNd(m-BH4)2Li(THF)] présente une forte cristallinité (31%) qui peut le rendre inapproprié pour certaines utilisations. Dans l'exemple 2 (non conforme), le copolymère diénique riche en éthylène synthétisé en présence du métallocène [Me Si(Flu) Nd(m-BH4) Li(THF)] présente des motifs cycliques. Bien qu'il contienne un taux d'éthylène comparable à celui du témoin, il n'est pas cristallin. Néanmoins, il a une rigidité relativement élevée qui peut le rendre inapproprié pour certaines utilisations. In Example 1 (control), the diene copolymer rich in ethylene and synthesized by polymerization of ethylene and 1,3-butadiene in the presence of the metallocene [Me 2 SiCpFluNd (m-BH 4 ) 2 Li (THF)] presents high crystallinity (31%) which may make it unsuitable for some uses. In Example 2 (non-compliant), the ethylene-rich diene copolymer synthesized in the presence of the metallocene [Me Si (Flu) Nd (m-BH 4 ) Li (THF)] has cyclic units. Although it contains an ethylene level comparable to that of the control, it is not crystalline. Nevertheless, it has a relatively high stiffness that may make it unsuitable for certain uses.
Dans les exemples 3 à 5 (conformes), les copolymères diéniques riches en éthylène sont des copolymères d'éthylène et de myrcène. Dans l'exemple 3, le copolymère a un taux d'éthylène comparable à celui des copolymères des exemples 1 et 2, mais sans présenter leurs inconvénients. En effet, il a l'avantage à la fois de ne pas être cristallin et d'avoir une rigidité significativement plus basse que le copolymère de l'exemple 2.  In Examples 3 to 5 (in accordance), diene copolymers rich in ethylene are copolymers of ethylene and myrcene. In Example 3, the copolymer has an ethylene level comparable to that of the copolymers of Examples 1 and 2, but without their disadvantages. Indeed, it has the advantage of both not being crystalline and having a significantly lower rigidity than the copolymer of Example 2.
Dans l'exemple 4, le copolymère est bien plus riche en éthylène (85%) que le copolymère témoin de l'exemple 1 (74%) et pourtant il est bien moins cristallin (17%) que le copolymère témoin (31%).  In Example 4, the copolymer is much richer in ethylene (85%) than the control copolymer of Example 1 (74%) and yet it is much less crystalline (17%) than the control copolymer (31%) .
Dans l'exemple 5, le copolymère a un taux de myrcène plus élevé que les copolymères des exemples 3 et 4. Il n'est pas cristallin et présente aussi une rigidité plus faible. Les exemples 3 à 5 illustrent qu'une variation du taux de myrcène dans le copolymère permet d'améliorer le compromis taux de cristallinité rigidité des polymères diéniques riches en éthylène par rapport aux copolymères d'éthylène et de 1,3-butadiène.  In Example 5, the copolymer has a higher myrcene content than the copolymers of Examples 3 and 4. It is not crystalline and also has a lower rigidity. Examples 3 to 5 illustrate that a variation in the myrcene content in the copolymer makes it possible to improve the compromise ratio of crystallinity rigidity of the ethylene-rich diene polymers with respect to the copolymers of ethylene and 1,3-butadiene.
En résumé, le remplacement du 1,3-butadiène par un 1,3-diène de formule CH =CR-CH=CH , R représentant une chaîne hydrocarbonée ayant 3 à 20 atomes de carbone, comme le myrcène, permet de synthétiser des polymères diéniques riches en éthylène avec un compromis amélioré entre le taux de cristallinité et la rigidité et d'élargir le champ d'application des copolymères diéniques riches en éthylène dans des compositions de caoutchouc. In summary, the replacement of 1,3-butadiene by a 1,3-diene of formula CH = CR-CH = CH, R representing a hydrocarbon chain having 3 to 20 carbon atoms, such as myrcene, makes it possible to synthesize polymers. ethylene-rich dienes with improved compromise between crystallinity and rigidity and broadening the scope of ethylene-rich diene copolymers in rubber compositions.
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0001

Claims

Revendications claims
1. Copolymère d'éthylène et d'un 1,3-diène de formule (I) qui comprend des unités éthylène et des unités du 1,3-diène, les unités éthylène représentant entre 50% et 95% en moles des unités éthylène et des unités du 1,3-diène, et les unités du 1,3-diène de configuration 1,2 et 3,4 représentant plus de 50% en mole des unités du 1,3-diène, 1. Copolymer of ethylene and a 1,3-diene of formula (I) which comprises ethylene units and 1,3-diene units, the ethylene units representing between 50% and 95% by moles of ethylene units and 1,3-diene units, and 1,3-diene units of 1,2- and 3,4-configuration representing more than 50 mol% of the 1,3-diene units,
CH2=CR-CH=CH2 (I) CH 2 = CR-CH = CH 2 (I)
le symbole R représentant une chaîne hydrocarbonée ayant 3 à 20 atomes de carbone.  the symbol R representing a hydrocarbon chain having 3 to 20 carbon atoms.
2. Copolymère selon la revendication 1 dans lequel les unités éthylène représentent au moins 60% en mole des unités éthylène et des unités du 1,3-diène. 2. Copolymer according to claim 1 wherein the ethylene units represent at least 60 mol% of the ethylene units and 1,3-diene units.
3. Copolymère selon la revendication 1 ou 2 dans lequel les unités éthylène représentent de 60 à 90% en mole des unités éthylène et des unités du 1,3-diène. 3. Copolymer according to claim 1 or 2 wherein the ethylene units represent from 60 to 90 mol% of the ethylene units and 1,3-diene units.
4. Copolymère selon l'une quelconque des revendications 1 à 3 dans lequel les unités éthylène représentent au moins 70% en mole des unités éthylène et des unités du 1,3- diène. 4. Copolymer according to any one of claims 1 to 3 wherein the ethylene units represent at least 70 mol% of the ethylene units and 1,3-diene units.
5. Copolymère selon l'une quelconque des revendications 1 à 4 dans lequel les unités éthylène représentent de 70% à 90% en mole des unités éthylène et des unités du 1,3- diène. 5. Copolymer according to any one of claims 1 to 4 wherein the ethylene units represent from 70% to 90% by mole of the ethylene units and 1,3-diene units.
6. Copolymère selon l'une quelconque des revendications 1 à 5 dans lequel le symbole R représente une chaîne hydrocarboné ayant 6 à 16 atomes de carbone. 6. Copolymer according to any one of claims 1 to 5 wherein the symbol R represents a hydrocarbon chain having 6 to 16 carbon atoms.
7. Copolymère selon l'une quelconque des revendications 1 à 6 dans lequel le symbole R représente une chaîne acyclique. 7. Copolymer according to any one of claims 1 to 6 wherein the symbol R represents an acyclic chain.
8. Copolymère selon l'une quelconque des revendications 1 à 7 dans lequel le symbole R représente une chaîne linéaire ou ramifiée. 8. Copolymer according to any one of claims 1 to 7 wherein the symbol R represents a linear or branched chain.
9. Copolymère selon l'une quelconque des revendications 1 à 8 dans lequel le symbole R représente une chaîne saturée ou insaturée. 9. Copolymer according to any one of claims 1 to 8 wherein the symbol R represents a saturated or unsaturated chain.
10. Copolymère selon l'une quelconque des revendications 1 à 9, lequel copolymère a une température de transition vitreuse inférieure à -35°C. 10. Copolymer according to any one of claims 1 to 9, which copolymer has a glass transition temperature below -35 ° C.
11. Copolymère selon l'une quelconque des revendications 1 à 10, lequel copolymère a une température de transition vitreuse comprise entre -90°C et -35°C. 11. Copolymer according to any one of claims 1 to 10, which copolymer has a glass transition temperature between -90 ° C and -35 ° C.
12. Copolymère selon l'une quelconque des revendications 1 à 11, lequel copolymère est un copolymère statistique. 12. Copolymer according to any one of claims 1 to 11, which copolymer is a random copolymer.
13. Copolymère selon l'une quelconque des revendications 1 à 12, lequel copolymère est un élastomère. 13. Copolymer according to any one of claims 1 to 12, which copolymer is an elastomer.
14. Procédé de préparation d'un copolymère défini à l'une quelconque des revendications 1 à 13, qui comprend la polymérisation d'éthylène et du 1,3-diène en présence d'un système catalytique à base au moins d'un métallocène de formule (II) et d'un organomagnésien de formule (III)
Figure imgf000019_0001
14. Process for preparing a copolymer defined in any one of claims 1 to 13, which comprises the polymerization of ethylene and 1,3-diene in the presence of a catalytic system based on at least one metallocene. of formula (II) and an organomagnesium of formula (III)
Figure imgf000019_0001
Cp1 et Cp2, identiques ou différents, étant choisis dans le groupe constitué par les groupes fluorényles substitués et le groupe fluorényle non substitué de formule CI3H8. Cp 1 and Cp 2 , which are identical or different, are chosen from the group consisting of substituted fluorenyl groups and the unsubstituted fluorenyl group of formula C 13 H 8 .
P étant un groupe pontant les deux groupes Cp1 et Cp2 et représentant un groupe ZR3R4, Z représentant un atome de silicium ou de carbone, R3 et R4, identiques ou différents, représentant chacun un groupe alkyle comprenant de 1 à 20 atomes de carbone, de préférence un méthyle, P being a group bridging the two groups Cp 1 and Cp 2 and representing a group ZR 3 R 4 , Z representing a silicon or carbon atom, R 3 and R 4 , which may be identical or different, each representing an alkyl group comprising from 1 at 20 carbon atoms, preferably methyl,
y, nombre entier, étant égal ou supérieur à 0,  y, integer, being equal to or greater than 0,
x, nombre entier ou non, étant égal ou supérieur à 0,  x, integer or non-integer, being equal to or greater than 0,
L représentant un métal alcalin choisi dans le groupe constitué par le lithium, le sodium et le potassium,  L representing an alkali metal selected from the group consisting of lithium, sodium and potassium,
N représentant une molécule d'un éther, de préférence diéthyléther ou tétrahydrofuranne,  N represents a molecule of an ether, preferably diethyl ether or tetrahydrofuran,
R1 et R2, identiques ou différents, représentant un groupe carboné. R 1 and R 2 , identical or different, representing a carbon group.
15. Procédé selon la revendication 14 dans lequel le métallocène est de formule (lia), (Mb),The process according to claim 14 wherein the metallocene is of formula (IIa), (Mb),
(Ile), (lld) ou (Ile) (Island), (lld) or (Island)
Figure imgf000019_0002
Figure imgf000019_0002
le symbole Flu présentant le groupe fluorényle de formule CI3H8. the symbol Flu having the fluorenyl group of formula C 13 H 8 .
16. Procédé selon l'une quelconque des revendications 14 à 15 dans lequel R1 et R2 contiennent 2 à 10 atomes de carbone. 16. The process according to any one of claims 14 to 15 wherein R 1 and R 2 contain 2 to 10 carbon atoms.
17. Procédé selon l'une quelconque des revendications 14 à 16 dans lequel R1 et R2 représentent chacun un alkyle. 17. The process of any one of claims 14 to 16 wherein R 1 and R 2 are each alkyl.
18. Procédé selon l'une quelconque des revendications 14 à 17 dans lequel l'organomagnésien est un dialkylmagnésien, de préférence le butyléthylmagnésium ou le butyloctylmagnésium, de manière plus préférentielle le butyloctylmagnésium. 18. Process according to any one of claims 14 to 17 wherein the organomagnesium is a dialkylmagnesium, preferably butylethylmagnesium or butyloctylmagnesium, more preferably butyloctylmagnesium.
19. Composition de caoutchouc à base au moins d'un copolymère défini à la revendication 13 et d'un système de réticulation. 19. A rubber composition based on at least one copolymer defined in claim 13 and a crosslinking system.
20. Composition de caoutchouc selon la revendication 19, laquelle comprend une charge renforçante. 20. The rubber composition of claim 19 which comprises a reinforcing filler.
21. Pneumatique qui comprend une composition de caoutchouc définie à l'une quelconque des revendications 19 à 20. A tire which comprises a rubber composition defined in any one of claims 19 to 20.
PCT/FR2019/050598 2018-03-19 2019-03-18 Copolymer of ethylene and a 1,3-diene WO2019180356A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/981,804 US11718692B2 (en) 2018-03-19 2019-03-18 Copolymer of ethylene and a 1,3-diene
EP19720937.2A EP3768737B1 (en) 2018-03-19 2019-03-18 Ethylene and 1,3-diene copolymer
JP2020547361A JP2021517194A (en) 2018-03-19 2019-03-18 Copolymer of ethylene and 1,3-diene
CN201980016297.1A CN111801361B (en) 2018-03-19 2019-03-18 Copolymers of ethylene and 1, 3-diene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1852305 2018-03-19
FR1852305A FR3078973B1 (en) 2018-03-19 2018-03-19 COPOLYMER OF ETHYLENE AND A 1,3-DIENE

Publications (1)

Publication Number Publication Date
WO2019180356A1 true WO2019180356A1 (en) 2019-09-26

Family

ID=62143392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050598 WO2019180356A1 (en) 2018-03-19 2019-03-18 Copolymer of ethylene and a 1,3-diene

Country Status (6)

Country Link
US (1) US11718692B2 (en)
EP (1) EP3768737B1 (en)
JP (1) JP2021517194A (en)
CN (1) CN111801361B (en)
FR (1) FR3078973B1 (en)
WO (1) WO2019180356A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100815A1 (en) * 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin rubber composition
FR3104487A1 (en) * 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin ELASTOMERIC LAMINATE
FR3128219A1 (en) 2021-10-18 2023-04-21 Compagnie Generale Des Etablissements Michelin Process for the preparation of a rubber composition.
WO2023247201A1 (en) * 2022-06-23 2023-12-28 Compagnie Generale Des Etablissements Michelin Ethylene-rich diene polymers having a polyvinylpyridine block, and method for the synthesis thereof
WO2023247200A1 (en) * 2022-06-23 2023-12-28 Compagnie Generale Des Etablissements Michelin Ethylene-rich diene polymers having a polyvinylpyridine block and their use in engine lubricant compositions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104596B1 (en) * 2019-12-17 2021-11-12 Michelin & Cie RUBBER COMPOSITION
FR3120631B1 (en) * 2021-03-11 2023-02-24 Michelin & Cie Rubber composition
FR3120632B1 (en) * 2021-03-11 2023-02-10 Michelin & Cie ELASTOMER COMPOSITION
FR3120565B1 (en) * 2021-03-11 2023-02-10 Michelin & Cie ELASTOMER LAMINATE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480599A (en) * 1965-09-28 1969-11-25 Goodrich Co B F Unsaturated interpolymers of linear aliphatic heptadienes and/or heptatrienes and alpha-olefins
FR2179772A1 (en) * 1972-03-29 1973-11-23 Du Pont
US5837791A (en) * 1994-07-06 1998-11-17 Mitsui Petrochemical Industries, Ltd. Unsaturated copolymer of ethylene and process for preparing the same
WO2007054223A2 (en) 2005-11-09 2007-05-18 Societe De Technologie Michelin Borohydride metallocene complex of a lanthanide, catalytic system including said complex, polymerisation method using same and ethylene/butadiene copolymer obtained using said method
WO2007054224A2 (en) 2005-11-09 2007-05-18 Societe De Technologie Michelin Borohydride metallocene complex of a lanthanide, catalytic system including said complex, polymerisation method using same and ethylene/butadiene copolymer obtained using said method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114589B (en) * 2012-03-01 2019-08-06 住友橡胶工业株式会社 The manufacturing method of branching conjugated diolefin polymer
JP5952788B2 (en) * 2012-10-04 2016-07-13 住友ゴム工業株式会社 Branched conjugated diene copolymer, rubber composition and pneumatic tire
CN107903349A (en) * 2017-11-23 2018-04-13 大连理工大学 Functional rare earth EP rubbers and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480599A (en) * 1965-09-28 1969-11-25 Goodrich Co B F Unsaturated interpolymers of linear aliphatic heptadienes and/or heptatrienes and alpha-olefins
FR2179772A1 (en) * 1972-03-29 1973-11-23 Du Pont
US5837791A (en) * 1994-07-06 1998-11-17 Mitsui Petrochemical Industries, Ltd. Unsaturated copolymer of ethylene and process for preparing the same
WO2007054223A2 (en) 2005-11-09 2007-05-18 Societe De Technologie Michelin Borohydride metallocene complex of a lanthanide, catalytic system including said complex, polymerisation method using same and ethylene/butadiene copolymer obtained using said method
WO2007054224A2 (en) 2005-11-09 2007-05-18 Societe De Technologie Michelin Borohydride metallocene complex of a lanthanide, catalytic system including said complex, polymerisation method using same and ethylene/butadiene copolymer obtained using said method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C. LIU; J. HE; E. VAN RUYMBEKE; R. KEUNINGS; C. BAILLY: "Evaluation of différent methods for the détermination of the plateau modulus and the entanglement molecular weight", POLYMER, vol. 47, 2006, pages 4461 - 4479, XP028060362, DOI: doi:10.1016/j.polymer.2006.04.054
J. BRANDRUP; E. H. IMMERGUT; E. A. GRULKE: "Handbook of Polymer", 1999
LAUR, EVA; WELLE, ALEXANDRE; VANTOMME, AURELIEN; BRUSSON, JEAN-MICHEL; CARPENTIER, JEAN-FRANCOIS; KIRILLOV, EVGUENI: "Stereoselective copolymerization of styrene with terpenes catalyzed by an Ansa-lanthanidocene catalyst: access to new syndiotactic polystyrene-based materials", CATALYSTS, vol. 7, no. 12, 27 November 2017 (2017-11-27), pages 361/1 - 361/12, XP002787178, ISSN: 2073-4344, DOI: 10.3390/catal7120361 *
S. GEORGES; M. BRIA; P. ZINCK; M. VISSEAUX, POLYMER, vol. 55, 2014, pages 3869 - 3878

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100815A1 (en) * 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin rubber composition
WO2021053296A1 (en) * 2019-09-18 2021-03-25 Compagnie Generale Des Etablissements Michelin Rubber composition
FR3104487A1 (en) * 2019-12-17 2021-06-18 Compagnie Generale Des Etablissements Michelin ELASTOMERIC LAMINATE
WO2021123569A1 (en) * 2019-12-17 2021-06-24 Compagnie Generale Des Etablissements Michelin Elastomer laminate
US11731401B2 (en) 2019-12-17 2023-08-22 Compagnie Generale Des Etablissements Michelin Elastomer laminate
FR3128219A1 (en) 2021-10-18 2023-04-21 Compagnie Generale Des Etablissements Michelin Process for the preparation of a rubber composition.
WO2023067265A1 (en) 2021-10-18 2023-04-27 Compagnie Generale Des Etablissements Michelin Method for preparing a rubber composition
WO2023247201A1 (en) * 2022-06-23 2023-12-28 Compagnie Generale Des Etablissements Michelin Ethylene-rich diene polymers having a polyvinylpyridine block, and method for the synthesis thereof
WO2023247200A1 (en) * 2022-06-23 2023-12-28 Compagnie Generale Des Etablissements Michelin Ethylene-rich diene polymers having a polyvinylpyridine block and their use in engine lubricant compositions
FR3137096A1 (en) * 2022-06-23 2023-12-29 Compagnie Generale Des Etablissements Michelin ethylene-rich diene polymers having a polyvinylpyridine block and their method of synthesis.
FR3137095A1 (en) * 2022-06-23 2023-12-29 Compagnie Generale Des Etablissements Michelin ethylene-rich diene polymers having a polyvinylpyridine block and their use in engine lubricating compositions

Also Published As

Publication number Publication date
FR3078973B1 (en) 2020-04-03
EP3768737B1 (en) 2022-05-04
EP3768737A1 (en) 2021-01-27
FR3078973A1 (en) 2019-09-20
CN111801361A (en) 2020-10-20
US11718692B2 (en) 2023-08-08
CN111801361B (en) 2023-10-17
US20210054118A1 (en) 2021-02-25
JP2021517194A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
EP3768737B1 (en) Ethylene and 1,3-diene copolymer
EP3551471B1 (en) Terpolymers of ethylene, 1,3-butadiene or isoprene, and of an aromatic alpha-monoolefin
FR3100815A1 (en) rubber composition
FR3044662A1 (en) PREFORMED CATALYTIC SYSTEM COMPRISING RARE EARTH METALLOCENE
EP3768736B1 (en) Ethylene and myrcene copolymer
EP3864057B1 (en) Copolymer of ethylene and beta-farnesene
WO2021053051A1 (en) Terpolymer of ethylene and 1,3-dienes
WO2020070442A1 (en) Method for synthesising a copolymer of ethylene and myrcene
EP3861035B1 (en) Method for synthesising a copolymer of ethylene and 1,3-diene
EP3898267B1 (en) Copolymers of conjugated diene and of ethylene
WO2021023924A1 (en) Ethylene-rich diene block polymer having a random block and a polyethylene block
WO2020128196A1 (en) TERPOLYMERS OF ETHYLENE, 1,3-BUTADIENE AND AN AROMATIC α-MONOOLEFIN
EP3802638A1 (en) Ethylene and isoprene copolymer
EP4251667A1 (en) Ethylene-rich diene triblock polymer having a statistical block and two terminal polyethylene blocks
EP4251668A1 (en) Synthesis of block polymers based on 1,3-diene and ethylene
FR3136772A1 (en) Rubber composition comprising a highly saturated diene elastomer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19720937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019720937

Country of ref document: EP

Effective date: 20201019