WO2019179209A1 - 一种投影光源及其投影*** - Google Patents

一种投影光源及其投影*** Download PDF

Info

Publication number
WO2019179209A1
WO2019179209A1 PCT/CN2019/070264 CN2019070264W WO2019179209A1 WO 2019179209 A1 WO2019179209 A1 WO 2019179209A1 CN 2019070264 W CN2019070264 W CN 2019070264W WO 2019179209 A1 WO2019179209 A1 WO 2019179209A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
mirror
beam splitter
reference line
color wheel
Prior art date
Application number
PCT/CN2019/070264
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
赖泓基
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2019179209A1 publication Critical patent/WO2019179209A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • Embodiments of the present invention relate to the field of projection display technologies, and in particular, to a projection light source and a projection system thereof.
  • a laser is a high-intensity, directional, light source that emits a monochromatic coherent beam.
  • laser has been gradually used as a projection light source in the field of projection display technology.
  • the projection system using laser as a projection light source has a long service life, rich colors and high brightness.
  • the projection light source of the projection system mostly adopts a blue laser to excite the phosphor, wherein the blue light is directly provided by the blue laser, and the green light is excited by the blue laser to generate the green fluorescent green phosphor through the green filter segment. After filtering out, the yellow fluorescence generated by the blue laser excited by the blue laser is filtered through the red filter section. In this method, since the red light is filtered by the yellow fluorescent light, the color purity of the red light is not high, and the color gamut of the projection light source is not high.
  • Embodiments of the present invention are directed to a projection light source and a projection system thereof, which can enhance the color gamut of a projection light source without affecting the brightness of the projection light source, and at the same time, make the projection light source compact in structure, and the volume is not increased by the red laser light source. And it has increased dramatically.
  • a technical solution adopted by the embodiment of the present invention is to provide a projection light source, including:
  • a blue laser light source a red laser light source, a rotating fluorescent color wheel, a collecting lens, a first beam splitter, and a red laser mirror;
  • the working surface of the rotating fluorescent color wheel is provided with an annular fluorescent layer and an annular reflective diffusion layer, and the annular fluorescent layer and the annular reflective diffusion layer are disposed adjacent to each other;
  • the blue laser light source, the red laser light source, the condensing lens, the first beam splitter, and the red laser mirror are all disposed on a side of the working surface of the rotating fluorescent color wheel, and
  • the annular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first beam splitter and the blue laser light source are located at a first reference line,
  • the red laser mirror and the first beam splitter are located on a second reference line
  • the red laser source is disposed off-axis such that the red laser beam emitted by the red laser source forms a first off-axis angle a with the first reference line.
  • first reference line and the second reference line are perpendicular to each other;
  • the first off-axis angle a satisfies a formula Where d is the distance from the center loop line of the annular reflective diffusion layer to the first reference line, and f is the focal length of the concentrating lens.
  • the angle between the first beam splitter and the first reference line is 45°;
  • the red laser mirror is disposed on a side of the first beam splitter away from the rotating fluorescent color wheel;
  • the annular fluorescent layer comprises: a blue laser transmitting region, a yellow phosphor region, and a green phosphor region;
  • the projection light source further includes: a first mirror, a second mirror, and a second beam splitter;
  • the second beam splitter is disposed on one side of a working surface of the rotating fluorescent color wheel
  • the first mirror and the second mirror are disposed on the other side of the working surface of the rotating fluorescent color wheel, and
  • the first mirror, the annular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first beam splitter and the blue laser light source are located at a first reference line,
  • the red laser mirror, the first beam splitter and the second beam splitter are located on a second reference line
  • the second beam splitter and the second mirror are located on a third reference line
  • the second mirror and the first mirror are located at a fourth reference line.
  • first reference line, the second reference line, the third reference line, and the fourth reference line are rectangular;
  • the second mirror and the second beam splitter are parallel to the first beam splitter, and the second mirror, the first beam splitter and the second beam splitter are both perpendicular to the first mirror.
  • the annular fluorescent layer comprises: a blue laser reflective region, a yellow phosphor region, and a green phosphor region;
  • the projection light source further includes: a blue laser mirror;
  • the blue laser light source is disposed off-axis such that the blue laser beam emitted by the blue laser source forms a second off-axis angle c with the first reference line.
  • the second off-axis angle c satisfies a formula Wherein d 2 is a distance from an edge of the annular fluorescent layer to the first reference line, and f is a focal length of the collecting lens.
  • the annular fluorescent layer comprises: a blue laser reflective scattering region, a yellow phosphor region, and a green phosphor region;
  • the first beam splitter includes: a first reflective segment, a second reflective segment, and a transmissive segment;
  • the transmissive section is disposed between the first reflective segment and the second reflective segment;
  • the transmissive section is for transmitting blue and red light and reflecting other color beams.
  • the length of the transmissive section is not less than the blue spot diameter, and the smaller the length of the transmissive section, the smaller the blue loss.
  • the projection light source further includes:
  • the working surface of the rotating filter color wheel is provided with an annular filter layer, and the annular filter layer of the rotating filter color wheel is located at the second reference line.
  • a projection system including:
  • a display chip, a projection lens, and the projection light source described above are examples of the projection light source described above.
  • the embodiment of the present invention provides a projection light source and a projection system thereof, the projection light source includes: a blue laser light source, a red laser light source, and a rotating fluorescent color. a wheel, a concentrating lens, a first beam splitter, and a red laser mirror.
  • the working surface of the rotating fluorescent color wheel is provided with an annular fluorescent layer and a circular reflective diffusion layer, and the annular fluorescent layer and the annular reflective diffusion layer are disposed adjacent to each other; wherein, the blue The laser light source, the red laser light source, the collecting lens, the first beam splitter and the red laser mirror are all disposed on the working surface side of the rotating fluorescent color wheel, and the circular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first The beam splitter and the blue laser source are located on the first reference line, the red laser mirror and the first beam splitter are located on the second reference line, and the red laser source is off-axis, so that the red laser beam emitted by the red laser source and the first reference The line forms a first off-axis angle a.
  • the above embodiment improves the color purity of the red light by adding a red laser light source instead of filtering the yellow light in the projection light source, improves the color gamut of the projection light source, and does not affect the brightness of the projection light source, thereby ensuring the brightness of the projection light source and Color gamut; at the same time, by setting a circular reflection diffusion layer in the projection light source, and setting the red laser light source off-axis, so that the red laser light source can be disposed on the same side as the blue laser light source, and the rotating fluorescent color wheel and the blue laser can be reasonably utilized.
  • the space between the light sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • FIG. 1 is a schematic structural view of a projection light source according to Embodiment 1 of the present invention.
  • FIG. 2 is a light path diagram of a projection light source according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a rotating fluorescent color wheel according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a projection light source according to Embodiment 2 of the present invention.
  • FIG. 5 is a light path diagram of a projection light source according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of a rotating fluorescent color wheel according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a projection light source according to Embodiment 3 of the present invention.
  • FIG. 8 is an optical path diagram of a projection light source according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural view of a rotating fluorescent color wheel according to Embodiment 3 of the present invention.
  • FIG. 1 to FIG. 9 where 1 is a projection light source, 11 is a blue laser light source, 12 is a red laser light source, 21 is a rotating fluorescent color wheel, 211 is a ring reflection diffusion layer, 212 is a circular fluorescent layer, and 2121 is a green fluorescent color.
  • 2122 is a yellow phosphor area
  • 2123 is a blue laser transmission area
  • 2124 is a blue laser reflection area
  • 2125 is a blue laser reflection scattering area
  • 213 is a first driving device
  • 22 is a rotating filter color wheel.
  • 221 is an annular filter layer
  • 222 is a second driving device
  • 31 is a collecting lens
  • 41 is a first beam splitter
  • 411 is a first reflecting section
  • 412 is a second reflecting section
  • 413 is a transmitting section
  • 42 is a second
  • 51 is a red laser mirror
  • 52 is a first mirror
  • 53 is a second mirror
  • 54 is a blue laser mirror.
  • the projection light source 1 is applied to a projection system, and includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, and a rotary filter. a color wheel 22, a collecting lens 31, a first beam splitter 41, a second beam splitter 42, a red laser mirror 51, a first mirror 52, and a second mirror 53, and the blue laser source 11, Red laser light source 12, rotating fluorescent color wheel 21, rotating filter color wheel 22, collecting lens 31, first beam splitter 41, second beam splitter 42, red laser mirror 51, first mirror 52 and second reflection
  • the mirrors 53 are all disposed on the same horizontal plane.
  • the blue laser light source 11 is configured to emit a blue laser beam, and includes a plurality of blue laser light emitting chips (not shown), a first light combining device (not shown), and a first collimating lens group (not shown) Show).
  • each blue laser light emitting chip is configured to emit a corresponding blue laser light to the first light combining device
  • the first light combining device is configured to receive the corresponding blue laser light and direct the plurality of blue laser light toward the first collimating lens
  • the group exits, and the first collimating lens group is used to emit the received plurality of blue laser beams in the same direction to form a parallel blue laser beam.
  • the first light combining device described above includes a plurality of blue light mirrors.
  • Each of the blue mirrors is disposed in front of a corresponding blue laser light emitting chip, and each of the blue light beams is configured to emit the blue laser light emitted from the corresponding blue laser light emitting chip toward the first collimating lens group.
  • the blue laser source 11 can also be a blue laser light emitting chip.
  • the red laser source 12 is used to emit a red laser beam, and includes a plurality of red laser light emitting chips (not shown), a second light combining device (not shown), and a second collimating lens group (not shown).
  • each red laser light emitting chip is configured to emit a corresponding red laser light to the second light combining device
  • the second light combining device is configured to receive the corresponding red laser light and emit the plurality of red laser light toward the second collimating lens group
  • the two collimating lens groups are used to emit the received plurality of red laser beams in the same direction to form a parallel red laser beam.
  • the second light combining device includes a plurality of red light reflecting mirrors.
  • each of the red light reflectors is disposed in front of a corresponding red laser light emitting chip, and each of the red light mirrors is configured to emit the red laser light emitted from the corresponding red laser light emitting chip toward the first collimating lens group.
  • the red laser source 12 can also be a red laser light emitting chip.
  • the rotating fluorescent color wheel 21 includes an annular reflective diffusion layer 211 , an annular fluorescent layer 212 , and a first driving device 213 .
  • the annular reflective diffusion layer 211 and the annular fluorescent layer 212 are coaxially disposed on the working surface P1 of the rotating fluorescent color wheel 21, and the inner diameter of the annular reflective diffusion layer 211 is consistent with the outer diameter of the annular fluorescent layer 212, that is, the annular reflective diffusion layer 211 and The annular fluorescent layer 212 is disposed adjacent to each other and the annular reflective diffusion layer 211 is located on the outer ring side of the working surface P1 of the rotating fluorescent color wheel 21, and the annular fluorescent layer 212 is located on the inner ring side of the working surface P1 of the rotating fluorescent color wheel 21.
  • the inner diameter of the annular reflective diffusion layer 211 may also be larger than the outer diameter of the annular fluorescent layer 212, that is, there is a gap between the annular reflective diffusion layer 211 and the annular fluorescent layer 212.
  • the working surface P1 of the rotating fluorescent color wheel 21 faces the blue laser light source 11 and the red laser light source 12 for receiving the surfaces of the blue laser beam and the red laser beam.
  • the annular reflective diffusion layer 211 is configured to receive the red laser beam emitted by the red laser source 12 and diffusely reflect the received red laser beam to eliminate speckle of the red laser beam.
  • the annular fluorescent layer 212 is then used to receive the blue laser beam emitted by the blue laser source 11.
  • the annular fluorescent layer 212 includes a green phosphor region 2121, a yellow phosphor region 2122, and a blue laser transmissive region 2123, the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser transmission.
  • the region 2123 is circumferentially disposed along the annular fluorescent layer 212, and the regions of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser transmitting region 2123 are the same.
  • the area of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser transmissive region 2123 may be unequally set according to actual needs.
  • the green phosphor region 2121 When the blue laser beam is incident on the green phosphor region 2121 of the annular fluorescent layer 212, the green phosphor region 2121 absorbs the blue laser beam and is stimulated to reflect green fluorescence;
  • the yellow phosphor region 2122 absorbs the blue laser beam and is stimulated to reflect yellow fluorescence
  • the blue laser transmitting region 2123 transmits the blue laser beam.
  • the first driving device 213 is configured to drive the rotation of the rotating fluorescent color wheel 21, which is disposed on the other surface of the working surface P1 of the rotating fluorescent color wheel 21, preferably, the first driving device 213 is disposed at the middle of the surface, so that The first driving device 213 can smoothly drive the rotating fluorescent color wheel 21 to rotate.
  • the first driving device 213 can be a motor or the like.
  • the rotary filter color wheel 22 includes an annular filter layer 221 and a second driving device 222.
  • the annular filter layer 221 is disposed on the working surface P2 of the rotating filter color wheel 22, and is disposed coaxially with the rotating filter color wheel 22, and the area thereof is smaller than the area of the working surface P2 of the rotating filter color wheel 22.
  • the annular filter layer 221 is for receiving a red laser beam, a blue laser beam, yellow fluorescence, and green fluorescence.
  • the working surface P2 of the rotating filter color wheel 22 is a surface for receiving a blue laser beam, a red laser beam, a yellow fluorescent wave, and a green fluorescent light.
  • the annular filter layer 221 includes a red filter segment (not shown), a blue filter segment (not shown), and a green filter segment (not shown), the red filter segment, the blue filter.
  • the light segment and the green filter segment are circumferentially disposed along the annular filter layer 221, and the area of the red filter segment, the blue filter segment, and the green filter segment is the green phosphor region 2121 and the yellow phosphor region 2122. It corresponds to the area of the area of the blue laser transmission region 2123.
  • the red filter segment transmits the red laser beam and is capable of filtering the yellow fluorescent yellow band to transmit Red light in which the green fluorescent, blue laser beam, and yellow fluorescent yellow light band are filtered out;
  • the blue filter segment of the annular filter layer 221 When the blue laser beam, the red laser beam, the yellow fluorescence, and the green fluorescence are incident on the blue filter segment of the annular filter layer 221, the blue filter segment transmits a blue laser beam, wherein the green fluorescent, red color laser The beam and yellow fluorescence are filtered out;
  • the green filter segment When the blue laser beam, the red laser beam, the yellow fluorescence, and the green fluorescence are incident on the green filter segment of the annular filter layer 221, the green filter segment transmits green fluorescence, wherein the blue laser beam, the red color laser beam, and The yellow fluorescence is filtered out.
  • the second driving device 222 is configured to drive the rotating filter color wheel 22 to rotate, and is disposed on the other surface of the working surface P2 of the opposite rotating filter color wheel 22. Preferably, the second driving device 222 is disposed at a middle portion of the surface. In order to enable the second driving device 222 to smoothly drive the rotary filter color wheel 22 to rotate.
  • the second driving device 222 can be a motor or the like.
  • the second driving device 222 rotates synchronously with the first driving device 213 to correspond to the green phosphor region 2121 of the rotating fluorescent color wheel 21 and the green filter segment of the rotating filter color wheel 22, so that the green phosphor region is
  • the green fluorescence reflected by the 2121 can pass through the green filter segment;
  • the yellow phosphor region 2122 of the rotating fluorescent color wheel 21 corresponds to the red filter segment of the rotating filter color wheel 22, so that the yellow fluorescent light reflected from the yellow phosphor region 2122
  • the blue laser transmission region 2123 of the rotating fluorescent color wheel 21 can correspond to the blue color filter segment of the rotary filter color wheel 22 so that the blue laser beam transmitted from the blue laser transmission region 2123 can pass. Blue filter section.
  • the collecting lens 31 may be a lenticular lens for collecting light.
  • the first beam splitter 41 and the second beam splitter 42 are planar half-reflex lens structures.
  • the first beam splitter 41 is capable of transmitting the blue laser beam and the red laser beam, and reflects the green fluorescence and the yellow fluorescence;
  • the second beam splitter 42 is capable of reflecting the blue laser beam, transmitting the red laser beam, the yellow fluorescence, and the green fluorescence.
  • the red laser mirror 51, the first mirror 52, and the second mirror 53 are plane mirrors.
  • the red laser mirror 51 is used to reflect the red laser beam
  • the first mirror 52 and the second mirror 53 are used to reflect the blue laser beam.
  • the red laser mirror 51, the first mirror 52, and the second mirror 53 may also be curved mirrors or curved mirrors and the like.
  • the blue laser light source 11, the red laser light source 12, the collecting lens 31, the first beam splitter 41, the second beam splitter 42 and the red laser mirror 51 are all disposed on the working surface P1 side of the rotating fluorescent color wheel 21.
  • the first mirror 52 and the second mirror 53 are both disposed on the other side of the working surface P1 of the rotating fluorescent color wheel 21 (the side away from the working surface P1), and
  • the first mirror 52, the annular fluorescent layer 212 of the rotating fluorescent color wheel 21, the collecting lens 31, the first beam splitter 41, and the blue laser light source 11 are sequentially located on the first reference line S1, that is, the first mirror 52,
  • the central axis of the annular fluorescent layer 212, the collecting lens 31, the first dichroic mirror 41, and the blue laser light source 11 of the rotating fluorescent color wheel 21 coincides with the first reference line S1;
  • the annular filter layer 221 of the red laser mirror 51, the first beam splitter 41, the second beam splitter 42 and the rotating filter color wheel 22 is sequentially located on the second reference line S2, that is, the red laser mirror 51 and the first beam splitter.
  • a central axis of the annular filter layer 221 of the mirror 41, the second dichroic mirror 42 and the rotating filter color wheel 22 coincides with the second reference line S2;
  • the second beam splitter 42 and the second mirror 53 are sequentially located on the third reference line S3, that is, the central axes of the second beam splitter 42 and the second mirror 53 coincide with the third reference line S3;
  • the second mirror 53 and the first mirror 52 are sequentially located on the fourth reference line S4, that is, the central axes of the second mirror 53 and the first mirror 52 are coincident with the fourth reference line S4;
  • the red laser source 12 is disposed off-axis such that the red laser beam emitted therefrom forms a first off-axis angle a with the first reference line S1, and the first off-axis angle a satisfies the formula.
  • d is the distance from the center loop of the annular reflective diffusion layer 211 to the first reference line S1
  • f is the focal length of the collecting lens 31.
  • the red laser source 12 is disposed off-axis and the annular reflective diffusion layer 211 is disposed to reflect the red laser beam emitted by the red laser source 12, so that the red laser source can be disposed on the same side as the blue laser source, and the rotating fluorescent color wheel is utilized reasonably.
  • the space between the blue laser sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • the first reference line S1, the second reference line S2, the third reference line S3, and the fourth reference line S4 are located in the same plane and are perpendicular to each other and have a rectangular shape.
  • the first beam splitter 41 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the blue laser light source 11, the working surface P1 of the rotating fluorescent color wheel 21 is perpendicular to the first reference line S1, and the blue laser light source 11
  • the emitted blue laser beam coincides with the first reference line S1
  • the first beam splitter 41 has an angle of 45° with the first reference line S1, so that the first surface P3 of the first beam splitter 41 faces the rotating fluorescent color wheel.
  • the working surface P1 of 21 faces the blue laser light source 11 for transmitting the blue laser beam emitted from the blue laser light source 11 to the annular fluorescent layer 212 of the rotating fluorescent color wheel 21.
  • the collecting lens 31 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the first surface P3 of the first beam splitter 41, which is perpendicular to the first reference line S1 for the operation of the incident fluorescent color wheel 21.
  • the light beam of the surface P1 and the light beam emitted from the working surface P1 of the rotating fluorescent color wheel 21 are condensed so that the light beams can be accurately concentrated to the target position;
  • the first mirror 52 is located on the other side of the working surface P1 of the rotating fluorescent color wheel 21 and is perpendicular to the first beam splitter 41, that is, the reflecting surface of the first mirror 52 faces the rotating fluorescent color wheel 21. For reflecting the blue laser beam transmitted by the blue laser transmitting region 2123 of the rotating fluorescent color wheel 21 to change the direction of the blue laser beam;
  • the reflecting surface of the second mirror 53 faces the reflecting surface of the first mirror 52, and the second mirror 53 is parallel to the first beam splitter 41, perpendicular to the first mirror 52, which is used to reflect the first
  • the blue laser beam reflected by the mirror 52 changes the direction of the blue laser beam again;
  • the second beam splitter 42 is parallel to the first beam splitter 41 and the second mirror 53, perpendicular to the first mirror 52, and its side faces the reflective surface of the second mirror 53 and the rotation of the filter wheel 22
  • the surface P2 is directed toward the first surface P3 of the first beam splitter 41 for reflecting the blue laser beam reflected by the second reflecting surface 53 to the annular filter layer 221 of the rotating filter color wheel 22, and is also used for a yellow fluorescent and green fluorescent, transmissive red laser beam reflected by a beam splitter 41 is transmitted to the annular filter layer 221 of the rotating filter color wheel 22;
  • the reflecting surface of the red laser mirror 51 faces the second surface P4 of the first dichroic mirror 41 (the first dichroic mirror 41 is away from the side of the rotating fluorescent color wheel 21), and the normal to the second reference of the red laser mirror 51 Line S2 forms an angle b, which satisfies the formula It is used to reflect the red laser beam transmitted by the first beam splitter 41 to the first beam splitter 41, and is transmitted to the second beam splitter 42 via the first beam splitter 41, and then transmitted to the rotating filter color through the second beam splitter 42.
  • the annular filter layer 221 of the wheel 22 is subjected to a filtering process;
  • the red laser light source 12 is located on a side away from the reflective surface of the red laser mirror 51, and forms a first off-axis angle a with the first reference line S1, so that the red laser light source can utilize the space reasonably, and the structure is compact, even if the red laser light source is added.
  • the volume of the projection light source also does not increase significantly.
  • the blue laser light source 11 emits a blue laser beam, which is transmitted through the first beam splitter 41 to the collecting lens 31, and then through the collecting lens 31.
  • the annular fluorescent layer 212 is condensed to the rotating fluorescent color wheel 21, and if the blue laser beam is concentrated to the green phosphor region 2121 of the annular fluorescent layer 212, it is absorbed by the green phosphor region 2121 and reflects green fluorescence, and the green fluorescent light is It is reflected to the condensing lens 31 and condensed to the first beam splitter 41 via the condensing lens 31, and then reflected by the first beam splitter 41 to the second beam splitter 42 and then transmitted to the rotating filter wheel 22 via the second beam splitter 42.
  • the annular filter layer 221 performs a filtering process; if the blue laser beam converges to the yellow phosphor region 2122 of the annular fluorescent layer 212, it is absorbed by the yellow phosphor region 2122 and reflects yellow fluorescence, which is reflected to
  • the condensing lens 31 is condensed by the condensing lens 31 to the first dichroic mirror 41, and then reflected by the first dichroic mirror 41 to the second dichroic mirror 42 and then transmitted to the ring of the rotating filter color wheel 22 via the second dichroic mirror 42.
  • the filter layer 221 is subjected to a filter treatment;
  • the blue laser beam is concentrated to the blue laser transmitting region 2123 of the annular fluorescent layer 212, it is transmitted to the first mirror 52 via the blue laser transmitting region 2123, and then reflected to the second mirror 53 via the first mirror 52.
  • the second mirror 53 is reflected to the second beam splitter 42 and then transmitted to the annular filter layer 221 of the rotating filter wheel 22 via the second beam splitter 42 for filtering processing.
  • the red laser source 12 emits a red laser.
  • the red laser beam is incident on the condensing lens 31 off-axis, and is concentrated by the condensing lens 31 to the annular reflective diffusion layer 211 of the rotating fluorescent color wheel 21, and then diffused and reflected by the annular reflective diffusion layer 211 to the collecting lens 31.
  • the direction of the red laser beam is changed, and then concentrated by the collecting lens 31 to the red laser mirror 51, reflected by the red laser mirror 51 to the first beam splitter 41, and then transmitted to the second beam splitter 42 via the first beam splitter 41. Then, it is transmitted to the annular filter layer 221 of the rotary filter color wheel 22 via the second dichroic mirror 42 to perform a filtering process.
  • red, blue and green light with higher color purity are obtained, and the obtained red, blue and green light can be combined to obtain white light with higher color gamut.
  • the embodiment of the present invention provides a projection light source and a projection system thereof, the projection light source includes: a blue laser light source, a red laser light source, and a rotating fluorescent color. a wheel, a concentrating lens, a first beam splitter, and a red laser mirror.
  • the working surface of the rotating fluorescent color wheel is provided with an annular fluorescent layer and a circular reflective diffusion layer, and the annular fluorescent layer and the annular reflective diffusion layer are disposed adjacent to each other; wherein, the blue The laser light source, the red laser light source, the collecting lens, the first beam splitter and the red laser mirror are all disposed on the working surface side of the rotating fluorescent color wheel, and the circular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first The beam splitter and the blue laser source are located on the first reference line, the red laser mirror and the first beam splitter are located on the second reference line, and the red laser source is off-axis, so that the red laser beam emitted by the red laser source and the first reference The line forms a first off-axis angle a.
  • the above embodiment improves the color purity of the red light by adding a red laser light source instead of filtering the yellow light in the projection light source, improves the color gamut of the projection light source, and does not affect the brightness of the projection light source, thereby ensuring the brightness of the projection light source and Color gamut; at the same time, by setting a circular reflection diffusion layer in the projection light source, and setting the red laser light source off-axis, so that the red laser light source can be disposed on the same side as the blue laser light source, and the rotating fluorescent color wheel and the blue laser can be reasonably utilized.
  • the space between the light sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • FIG. 4 is a schematic structural diagram of a projection light source according to an embodiment of the present invention.
  • the projection light source 1 is applied to a projection system.
  • the projection light source 1 is substantially the same as the projection light source described in the first embodiment. For example, I will not repeat them here.
  • the projection light source 1 includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, a rotating filter color wheel 22, a collecting lens 31, and a first beam splitting.
  • a mirror 41, a red laser mirror 51, and a blue laser mirror 54 are provided.
  • the annular fluorescent layer 212 of the rotating fluorescent color wheel 21 includes a green phosphor region 2121, a yellow phosphor region 2122, and a blue laser reflecting region 2124, and the green phosphor region 2121 and the yellow phosphor region.
  • the 2122 and blue laser reflection regions 2124 are circumferentially disposed along the annular fluorescent layer 212, and the areas of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser reflection region 2124 are the same.
  • the area of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser reflective region 2124 may be unequally set according to actual needs.
  • the green phosphor region 2121 When the blue laser beam is incident on the green phosphor region 2121 of the annular fluorescent layer 212, the green phosphor region 2121 absorbs the blue laser beam and is stimulated to reflect green fluorescence;
  • the yellow phosphor region 2122 absorbs the blue laser beam and is stimulated to reflect yellow fluorescence
  • the blue laser reflection region 2124 reflects the blue laser beam so that the blue laser beam can be reflected to the blue laser reflection.
  • the mirror 54 to change the direction of the blue laser beam, can reduce the use of optical components and make the structure compact.
  • the blue laser mirror 54 is a planar mirror for reflecting a blue laser beam.
  • the blue laser mirror 54 can also be a curved mirror or a curved mirror or the like.
  • the blue laser light source 11, the red laser light source 12, the condensing lens 31, the first beam splitter 41, the red laser mirror 51, and the blue laser mirror 54 are all disposed on the working surface P1 of the rotating fluorescent color wheel 21. Side and,
  • the annular fluorescent layer 212, the collecting lens 31, and the first dichroic mirror 41 of the rotating fluorescent color wheel 21 are sequentially located on the first reference line S1, that is, the annular fluorescent layer 212 of the rotating fluorescent color wheel 21, the collecting lens 31, and the first The central axis of the beam splitter 41 coincides with the first reference line S1;
  • the circular filter layer 221 of the red laser mirror 51, the first beam splitter 41, and the rotating filter color wheel 22 is sequentially located on the second reference line S2, that is, the red laser mirror 51, the first beam splitter 41, and the rotating filter.
  • the central axis of the annular filter layer 221 of the color wheel 22 coincides with the second reference line S2;
  • the blue laser mirror 54 is located on the second surface P4 side of the first beam splitter 41, not located on the first reference line S1 and the second reference line S2;
  • the blue laser light source 11 is disposed off-axis such that the blue laser beam emitted therefrom forms a second off-axis angle c with the first reference line S1, and the second off-axis angle c satisfies the formula Wherein d 2 is the distance from the edge of the annular fluorescent layer 212 to the first reference line S1, and f is the focal length of the collecting lens;
  • the red laser source 12 is also disposed off-axis such that the red laser beam emitted therefrom forms a first off-axis angle a with the first reference line S1, and the first off-axis angle a satisfies the formula Where d is the distance from the center loop of the annular reflective diffusion layer 211 to the first reference line S1, and f is the focal length of the collecting lens 31.
  • the red laser source 12 is disposed off-axis and the annular reflective diffusion layer 211 is disposed to reflect the red laser beam emitted by the red laser source 12, so that the red laser source can be disposed on the same side as the blue laser source, and the rotating fluorescent color wheel is utilized reasonably.
  • the space between the blue laser sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • the first reference line S1 and the second reference line S2 are located in the same plane and are perpendicular to each other.
  • the first beam splitter 41 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the blue laser light source 11 and the red laser light source 12, and the working surface P1 of the rotating fluorescent color wheel 21 is perpendicular to the first reference line S1.
  • the blue laser beam emitted from the blue laser source 11 forms a second off-axis angle c with the first reference line S1
  • the red laser beam emitted from the red laser source 12 forms a first off-axis angle a with the first reference line S1.
  • a splitting mirror 41 is at an angle of 45° with the first reference line S1 such that the first surface P3 of the first beam splitter 41 faces the working surface P1 of the rotating fluorescent color wheel 21, and the first surface P3 is also oriented toward the rotating filter.
  • the working surface P2 of the color wheel 22, the second surface P4 faces the blue laser light source 11 and the red laser light source 12, and the second surface P4 also faces the red laser mirror 51 and the blue laser mirror 54, the first The dichroic mirror 41 is configured to transmit the red laser beam emitted from the red laser source 12 to the annular reflection diffusion layer 211 of the rotating fluorescent color wheel 21, and transmit the red laser beam reflected from the red laser mirror 51 to the ring of the rotating filter color wheel 22.
  • Filter layer 221 also used to The green fluorescent light reflected by the green fluorescent powder region 2121 and the yellow fluorescent light reflected by the yellow fluorescent powder region 2122 are reflected to the annular filter layer 221 of the rotating filter color wheel 22, and transmitted through the blue laser reflecting region 2124.
  • a blue laser beam, and a blue laser beam reflected by the blue laser mirror 54 is transmitted to the annular filter layer 221 of the rotating filter color wheel 22;
  • the collecting lens 31 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the first surface P3 of the first beam splitter 41, which is perpendicular to the first reference line S1 for the operation of the incident fluorescent color wheel 21.
  • the light beam of the surface P1 and the light beam emitted from the working surface P1 of the rotating fluorescent color wheel 21 are condensed so that the light beams can be accurately concentrated to the target position;
  • the reflecting surface of the red laser mirror 51 faces the second surface P4 of the first dichroic mirror 41 (the first dichroic mirror 41 is away from the side of the rotating fluorescent color wheel 21), and the normal to the second reference of the red laser mirror 51 Line S2 forms an angle b, which satisfies the formula
  • the red laser beam for diffusing and reflecting the annular reflective diffusion layer 211 of the rotating fluorescent color wheel 21 is reflected to the first beam splitter 41;
  • the reflecting surface of the blue laser mirror 54 faces the second surface P4 of the first beam splitter 41 (the first beam splitter 41 is away from the side of the rotating fluorescent color wheel 21), adjacent to the red laser mirror 51, and the blue
  • the normal line of the laser mirror 54 forms an angle b' (not shown) with the second reference line S2, and the angle b' satisfies the formula It is used to reflect the blue laser beam transmitted by the first dichroic mirror 41 to the first dichroic mirror 41 to change the direction of the blue laser beam.
  • the use of optical components is reduced and the optical components are concentrated on one side, making the structure more compact.
  • the blue laser light source 11 emits a blue laser beam, which is off-axis incident on the collecting lens 31, and is concentrated to the rotating fluorescent color via the collecting lens 31.
  • the condensing lens 31 is condensed by the condensing lens 31 to the first beam splitter 41, and then reflected by the first beam splitter 41 to the annular filter layer 221 of the rotating filter color wheel 22 for filtering; if the blue laser beam is concentrated to When the yellow phosphor region 2122 of the annular fluorescent layer 212 is absorbed by the yellow phosphor region 2122 and reflects yellow fluorescence, the yellow fluorescent light is reflected to the collecting lens 31 and concentrated by the collecting lens 31 to the first beam splitter 41, and then The annular filter layer 221 reflected by the first dichroic mirror 41 to the rotating filter color wheel 22 performs a filtering process; if the blue laser beam is concentrated to the blue laser reflecting region 2124 of the annular fluorescent layer 212, via the blue laser Reflection zone 2124 reflection
  • the condensing lens 31 is condensed to the first beam splitter 41 via the condensing lens 31, transmitted to the blue laser mirror 54 via the first beam splitter 41, and reflected to the first beam splitter 41 via
  • the first beam splitter 41 transmits the annular filter layer 221 of the rotating filter color wheel 22 to filter processing; meanwhile, the red laser source 12 emits a red laser beam, and the red laser beam is off-axis incident to the first beam splitter. 41, transmitted to the collecting lens 31 via the first dichroic mirror 41, concentrated to the annular reflective diffusion layer 211 of the rotating fluorescent color wheel 21 via the collecting lens 31, and diffused and reflected by the annular reflective diffusion layer 211 to the collecting lens 31, The direction of the red laser beam is changed, and then concentrated by the collecting lens 31 to the red laser mirror 51, reflected by the red laser mirror 51 to the first beam splitter 41, and then transmitted to the rotating filter wheel 22 via the first beam splitter 41.
  • the annular filter layer 221 is subjected to a filter treatment.
  • red, blue and green light with higher color purity are obtained, and the obtained red, blue and green light can be combined to obtain white light with higher color gamut.
  • the embodiment of the present invention provides a projection light source and a projection system thereof, the projection light source includes: a blue laser light source, a red laser light source, and a rotating fluorescent color. a wheel, a concentrating lens, a first beam splitter, and a red laser mirror.
  • the working surface of the rotating fluorescent color wheel is provided with an annular fluorescent layer and a circular reflective diffusion layer, and the annular fluorescent layer and the annular reflective diffusion layer are disposed adjacent to each other; wherein, the blue The laser light source, the red laser light source, the collecting lens, the first beam splitter and the red laser mirror are all disposed on the working surface side of the rotating fluorescent color wheel, and the circular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first The beam splitter and the blue laser source are located on the first reference line, the red laser mirror and the first beam splitter are located on the second reference line, and the red laser source is off-axis, so that the red laser beam emitted by the red laser source and the first reference The line forms a first off-axis angle a.
  • the above embodiment improves the color purity of the red light by adding a red laser light source instead of filtering the yellow light in the projection light source, improves the color gamut of the projection light source, and does not affect the brightness of the projection light source, thereby ensuring the brightness of the projection light source and Color gamut; at the same time, by setting a circular reflection diffusion layer in the projection light source, and setting the red laser light source off-axis, so that the red laser light source can be disposed on the same side as the blue laser light source, and the rotating fluorescent color wheel and the blue laser can be reasonably utilized.
  • the space between the light sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • FIG. 7 is a schematic structural diagram of a projection light source according to an embodiment of the present invention.
  • the projection light source 1 is applied to a projection system.
  • the projection light source 1 is substantially the same as the projection light source described in the first embodiment. For example, I will not repeat them here.
  • the projection light source 1 includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, a rotating filter color wheel 22, a collecting lens 31, and a first beam splitting.
  • the mirror 41 and the red laser mirror 51 includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, a rotating filter color wheel 22, a collecting lens 31, and a first beam splitting.
  • the mirror 41 and the red laser mirror 51 includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, a rotating filter color wheel 22, a collecting lens 31, and a first beam splitting.
  • the mirror 41 and the red laser mirror 51 includes: a blue laser light source 11, a red laser light source 12, a rotating fluorescent color wheel 21, a rotating filter color wheel 22, a collecting lens 31, and a first beam splitting.
  • the annular fluorescent layer 212 of the rotating fluorescent color wheel 21 includes a green phosphor region 2121, a yellow phosphor region 2122, and a blue laser reflective scattering region 2125.
  • the region 2122 and the blue laser reflective scattering region 2125 are circumferentially disposed along the annular fluorescent layer 212, and the regions of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser reflective scattering region 2125 are the same.
  • the area of the green phosphor region 2121, the yellow phosphor region 2122, and the blue laser reflective scattering region 2125 can be unequally set according to actual needs.
  • the green phosphor region 2121 When the blue laser beam is incident on the green phosphor region 2121 of the annular fluorescent layer 212, the green phosphor region 2121 absorbs the blue laser beam and is stimulated to reflect green fluorescence;
  • the yellow phosphor region 2122 absorbs the blue laser beam and is stimulated to reflect yellow fluorescence
  • the blue laser reflection scattering region 2125 scatters and reflects the blue laser beam to eliminate the blue laser beam speckle and expand the blue color.
  • the angle of reflection of the laser beam enables the blue laser beam to be reflected to the first reflective segment 411 and the second reflective segment 412, reducing the use of the mirror, making the structure more compact and reducing the volume of the projected light source to some extent.
  • the first beam splitter 41 includes a first reflective segment 411, a second reflective segment 412, and a transmissive segment 413 disposed between the first reflective segment 411 and the second reflective segment 412.
  • the first reflective segment 411 and the second reflective segment 412 are used for reflecting the blue laser beam, the yellow fluorescent light and the green fluorescent light
  • the transmitting segment 413 is for transmitting the blue laser beam and the red laser beam, reflecting the yellow fluorescent light and the green fluorescent light, so
  • the length of the transmission section 413 is not less than the spot diameter of the blue laser beam, so that the transmission section 413 can completely transmit the blue laser beam, and the smaller the length of the transmission section 413, the smaller the blue loss.
  • the blue laser light source 11, the red laser light source 12, the condensing lens 31, the first beam splitter 41, and the red laser mirror 51 are all disposed on the working surface P1 side of the rotating fluorescent color wheel 21, and
  • the annular fluorescent layer 212, the collecting lens 31, the first dichroic mirror 41, and the blue laser light source 11 of the rotating fluorescent color wheel 21 are sequentially located on the first reference line S1, that is, the annular fluorescent layer 212 of the rotating fluorescent color wheel 21,
  • the central axes of the optical lens 31, the first dichroic mirror 41, and the blue laser light source 11 are coincident with the first reference line S1;
  • the circular filter layer 221 of the red laser mirror 51, the first beam splitter 41, and the rotating filter color wheel 22 is sequentially located on the second reference line S2, that is, the red laser mirror 51, the first beam splitter 41, and the rotating filter.
  • the central axis of the annular filter layer 221 of the color wheel 22 coincides with the second reference line S2;
  • the red laser source 12 is disposed off-axis such that the red laser beam emitted therefrom forms a first off-axis angle a with the first reference line S1, and the first off-axis angle a satisfies the formula Where d is the distance from the center loop of the annular reflective diffusion layer 211 to the first reference line S1, and f is the focal length of the collecting lens 31.
  • the red laser source 12 is disposed off-axis and the annular reflective diffusion layer 211 is disposed to reflect the red laser beam emitted by the red laser source 12, so that the red laser source can be disposed on the same side as the blue laser source, and the rotating fluorescent color wheel is utilized reasonably.
  • the space between the blue laser sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • the first reference line S1 and the second reference line S2 are located in the same plane and are perpendicular to each other.
  • the first beam splitter 41 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the blue laser light source 11, the working surface P1 of the rotating fluorescent color wheel 21 is perpendicular to the first reference line S1, and the blue laser light source 11
  • the emitted blue laser beam coincides with the first reference line S1
  • the first beam splitter 41 has an angle of 45° with the first reference line S1, so that the first surface P3 of the first beam splitter 41 faces the rotating fluorescent color wheel.
  • the transmissive section 413 of the first dichroic mirror 41 is configured to transmit the blue laser beam emitted from the blue laser source 11 to the annular fluorescent layer 212 of the rotating fluorescent color wheel 21, the first reflecting section 411, the second reflecting section 412, and The transmissive section 413 reflects the green fluorescent light reflected by the green fluorescent powder area 2121 of the annular fluorescent layer 212 and the yellow fluorescent light reflected by the yellow fluorescent powder area 2122 to the annular filter layer 221 of the rotating filter color wheel 22; the first reflecting section 411 and The second reflective segment 412 will blue the annular fluorescent layer 212
  • the blue laser beam scattered and reflected by the light reflection scattering region 2125 is reflected to the annular filter layer 221 of the rotating filter color wheel 22; the first beam splitter 41 is also used to transmit the red laser beam and
  • the collecting lens 31 is located between the working surface P1 of the rotating fluorescent color wheel 21 and the first surface P3 of the first beam splitter 41, which is perpendicular to the first reference line S1 for the operation of the incident fluorescent color wheel 21.
  • the light beam of the surface P1 and the light beam emitted from the working surface P1 of the rotating fluorescent color wheel 21 are condensed so that the light beams can be accurately concentrated to the target position;
  • the reflecting surface of the red laser mirror 51 faces the second surface P4 of the first dichroic mirror 41 (the first dichroic mirror 41 is away from the side of the rotating fluorescent color wheel 21), and the normal to the second reference of the red laser mirror 51 Line S2 forms an angle b, which satisfies the formula It is used to reflect the red laser beam transmitted by the first beam splitter 41 to the first beam splitter 41, and is transmitted to the annular filter layer 221 of the rotating filter color wheel 22 via the first beam splitter 41 for filtering processing;
  • the red laser light source 12 is located on a side away from the reflective surface of the red laser mirror 51, and forms a first off-axis angle a with the first reference line S1, so that the red laser light source can utilize the space reasonably, and the structure is compact, even if the red laser light source is added.
  • the volume of the projection light source also does not increase significantly.
  • the use of the mirror is reduced, the volume of the projection light source is reduced to some extent, and at the same time, the structure is made more compact by concentrating the optical elements on one side.
  • the blue laser light source 11 emits a blue laser beam, which is transmitted through the transmission section 413 of the first beam splitter 41 to the collecting lens 31, and then The condensing lens 31 converges to the annular fluorescent layer 212 of the rotating fluorescent color wheel 21. If the blue laser beam converges to the green phosphor region 2121 of the annular fluorescent layer 212, it is absorbed by the green phosphor region 2121 and reflects green fluorescence.
  • the green fluorescence is reflected to the collecting lens 31 and concentrated by the collecting lens 31 to the first beam splitter 41, and then reflected by the first beam splitter 41 to the annular filter layer 221 of the rotating filter wheel 22 for filtering treatment; If the blue laser beam is concentrated to the yellow phosphor region 2122 of the annular fluorescent layer 212, it is absorbed by the yellow phosphor region 2122 and reflects yellow fluorescence, which is reflected to the collecting lens 31 and concentrated by the collecting lens 31.
  • the scattering region 2125 is The color laser reflective scattering region 2125 is scatter-reflected to the first reflecting segment 411 of the first beam splitter 41 and the second reflecting segment 412 is reflected to the annular filter layer 221 of the rotating filter color wheel 22 for filtering treatment to reduce the blue laser light.
  • the light beam is lost from the transmission section 413. At this time, the smaller the length of the transmission section 413 is, the smaller the loss of the blue laser beam is.
  • the red laser source 12 emits a red laser beam, and the red laser beam is off-axis incident to the poly
  • the optical lens 31 is condensed to the annular reflective diffusion layer 211 of the rotating fluorescent color wheel 21 via the collecting lens 31, and then diffused and reflected by the annular reflective diffusion layer 211 to the collecting lens 31 to change the direction of the red laser beam, and then condensed.
  • the lens 31 is condensed to the red laser mirror 51, reflected by the red laser mirror 51 to the first beam splitter 41, transmitted to the second beam splitter 42 via the first beam splitter 41, and transmitted to the rotary filter via the second beam splitter 42.
  • the annular filter layer 221 of the color wheel 22 is subjected to a filter process.
  • red, blue and green light with higher color purity are obtained, and the obtained red, blue and green light can be combined to obtain white light with higher color gamut.
  • the embodiment of the present invention provides a projection light source and a projection system thereof, the projection light source includes: a blue laser light source, a red laser light source, and a rotating fluorescent color. a wheel, a concentrating lens, a first beam splitter, and a red laser mirror.
  • the working surface of the rotating fluorescent color wheel is provided with an annular fluorescent layer and a circular reflective diffusion layer, and the annular fluorescent layer and the annular reflective diffusion layer are disposed adjacent to each other; wherein, the blue The laser light source, the red laser light source, the collecting lens, the first beam splitter and the red laser mirror are all disposed on the working surface side of the rotating fluorescent color wheel, and the circular fluorescent layer of the rotating fluorescent color wheel, the collecting lens, the first The beam splitter and the blue laser source are located on the first reference line, the red laser mirror and the first beam splitter are located on the second reference line, and the red laser source is off-axis, so that the red laser beam emitted by the red laser source and the first reference The line forms a first off-axis angle a.
  • the above embodiment improves the color purity of the red light by adding a red laser light source instead of filtering the yellow light in the projection light source, improves the color gamut of the projection light source, and does not affect the brightness of the projection light source, thereby ensuring the brightness of the projection light source and Color gamut; at the same time, by setting a circular reflection diffusion layer in the projection light source, and setting the red laser light source off-axis, so that the red laser light source can be disposed on the same side as the blue laser light source, and the rotating fluorescent color wheel and the blue laser can be reasonably utilized.
  • the space between the light sources makes the projection light source compact and the volume is not greatly increased by the addition of the red laser source.
  • Embodiments of the present invention also provide a projection system including the projection light source 1, the display chip, and the projection lens described in the above embodiments.
  • the projection system further includes a housing, a square bar or a fly-eye lens, a prism set, or a freeform lens group.
  • the outer casing forms a accommodating cavity
  • the projection light source 1, the outer casing, the square rod or the fly-eye lens, the prism group or the free-form lens group, and the display chip are installed in the accommodating cavity of the outer casing;
  • the outer casing is further provided with an opening, the opening The accommodating cavity is in communication with an outer space of the outer casing, and the projection lens is mounted to the opening.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影光源(1)及其投影***,包括:蓝色激光光源(11)、红色激光光源(12)、旋转荧光色轮(21)、聚光透镜(31)、第一分光镜(41)和红色激光反射镜(51);旋转荧光色轮(21)的工作面(P1)相邻设置有环形荧光层(212)和环形反射扩散层(211);蓝色激光光源(11)、红色激光光源(12)、聚光透镜(31)、第一分光镜(41)和红色激光反射镜(51)均设置于旋转荧光色轮(21)的工作面(P1)一侧,旋转荧光色轮(21)的环形荧光层(212)、聚光透镜(31)、第一分光镜(41)和蓝色激光光源(11)位于第一基准线(S1),红色激光反射镜(51)和第一分光镜(41)位于第二基准线(S2),红色激光光源(12)偏轴设置,其出射的红色激光光束与第一基准线(S1)形成第一偏轴角a,从而能够在不影响投影光源(1)亮度的情况下提升投影光源(1)的色域,同时,使得投影光源(1)结构紧凑。

Description

一种投影光源及其投影*** 技术领域
本发明实施方式涉及投影显示技术领域,特别是涉及一种投影光源及其投影***。
背景技术
激光是一种高亮度、方向性强、能够发出单色相干光束的光源。近年来,因为激光的诸多优点,使得激光作为投影光源被逐渐应用于投影显示技术领域,由激光作为投影光源的投影***使用寿命长、颜色丰富且画面亮度高。
现有技术中,投影***的投影光源大多采用蓝色激光激发荧光粉的方案,其中,蓝光由蓝色激光直接提供,绿光由蓝色激光激发绿色荧光粉产生的绿色荧光经绿色滤光段滤出,红光由蓝色激光激发黄色荧光粉产生的黄色荧光经红色滤光段滤出。该种方式中,由于红光通过黄色荧光滤出,使得红光的色纯度不高,进而导致投影光源的色域不高,若强行通过滤除更多的黄光来提升红光的色纯度,会降低投影***的红光段效率,拖低投影光源的亮度,使得色域和亮度两者无法兼顾。于是,如何在不影响投影光源亮度的情况下提高色域成为亟待解决的问题。
发明内容
本发明实施方式旨在提供一种投影光源及其投影***,能够在不影响投影光源的亮度的情况下提升投影光源的色域,同时,使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
为解决上述技术问题,本发明实施方式采用的一个技术方案是:提供一种投影光源,包括:
蓝色激光光源、红色激光光源、旋转荧光色轮、聚光透镜、第一分光镜以及红色激光反射镜;
所述旋转荧光色轮的工作面设置环形荧光层和环形反射扩散层,所 述环形荧光层和所述环形反射扩散层相邻设置;
所述蓝色激光光源、红色激光光源、聚光透镜、第一分光镜和红色激光反射镜均设置于所述旋转荧光色轮的工作面一侧,并且,
所述旋转荧光色轮的环形荧光层、所述聚光透镜、所述第一分光镜以及所述蓝色激光光源位于第一基准线,
所述红色激光反射镜以及所述第一分光镜位于第二基准线,
所述红色激光光源偏轴设置,以使所述红色激光光源出射的红色激光光束与所述第一基准线形成第一偏轴角a。
可选地,所述第一基准线和所述第二基准线相互垂直;
所述第一偏轴角a满足公式
Figure PCTCN2019070264-appb-000001
其中,d为所述环形反射扩散层中心环线到所述第一基准线的距离,f为所述聚光透镜的焦距。
可选地,所述第一分光镜与所述第一基准线的夹角为45°;
所述红色激光反射镜设置于所述第一分光镜远离所述旋转荧光色轮一侧;
所述红色激光反射镜的法线与所述第二基准线的夹角b满足公式
Figure PCTCN2019070264-appb-000002
可选地,所述环形荧光层包括:蓝色激光透射区、黄色荧光粉区和绿色荧光粉区;
所述投影光源还包括:第一反射镜、第二反射镜和第二分光镜;
所述第二分光镜设置于所述旋转荧光色轮的工作面的一侧,
所述第一反射镜和所述第二反射镜设置于所述旋转荧光色轮的工作面的另一侧,并且,
所述第一反射镜、所述旋转荧光色轮的环形荧光层、所述聚光透镜、所述第一分光镜以及所述蓝色激光光源位于第一基准线,
所述红色激光反射镜、所述第一分光镜以及所述第二分光镜位于第二基准线,
所述第二分光镜以及所述第二反射镜位于第三基准线,
所述第二反射镜以及所述第一反射镜位于第四基准线。
可选地,所述第一基准线、第二基准线、第三基准线和第四基准线 呈矩形;
所述第二反射镜和第二分光镜平行于所述第一分光镜,并且所述第二反射镜、第一分光镜和第二分光镜均垂直于所述第一反射镜。
可选地,所述环形荧光层包括:蓝色激光反射区、黄色荧光粉区和绿色荧光粉区;
所述投影光源还包括:蓝色激光反射镜;
所述蓝色激光光源偏轴设置,以使所述蓝色激光光源出射的蓝色激光光束与所述第一基准线形成第二偏轴角c。
可选地,所述第二偏轴角c满足公式
Figure PCTCN2019070264-appb-000003
其中,d 2为所述环形荧光层的边线到所述第一基准线的距离,f为所述聚光透镜的焦距。
可选地,所述环形荧光层包括:蓝色激光反射散射区、黄色荧光粉区和绿色荧光粉区;
所述第一分光镜包括:第一反射段、第二反射段和透射段;
所述透射段设置于所述第一反射段和第二反射段之间;
所述透射段用于透射蓝光和红光,并反射其他颜色光束。
可选地,所述透射段的长度不小于蓝光光斑直径,并且,所述透射段的长度越小蓝光损耗越小。
可选地,所述投影光源还包括:
旋转滤光色轮;
所述旋转滤光色轮的工作面设置环形滤光层,所述旋转滤光色轮的环形滤光层位于所述第二基准线。
为解决上述技术问题,本发明实施方式采用的另一个技术方案是:提供一种投影***,包括:
显示芯片、投影镜头以及以上所述的投影光源。
本发明实施方式的有益效果是:区别于现有技术的情况下,本发明实施方式提供一种投影光源及其投影***,所述投影光源包括:蓝色激光光源、红色激光光源、旋转荧光色轮、聚光透镜、第一分光镜以及红 色激光反射镜,旋转荧光色轮的工作面设置环形荧光层和环形反射扩散层,并且环形荧光层和环形反射扩散层相邻设置;其中,蓝色激光光源、红色激光光源、聚光透镜、第一分光镜和红色激光反射镜均设置于旋转荧光色轮的工作面一侧,并且,旋转荧光色轮的环形荧光层、聚光透镜、第一分光镜以及蓝色激光光源位于第一基准线,红色激光反射镜以及第一分光镜位于第二基准线,红色激光光源则偏轴设置,以使红色激光光源出射的红色激光光束与第一基准线形成第一偏轴角a。上述实施方式通过在投影光源中增加红色激光光源替代滤除黄光的方式来提升红光的色纯度,提升了投影光源的色域的同时能够不影响投影光源亮度,保证了投影光源的亮度和色域;同时,通过在投影光源中设置环形反射扩散层,并将红色激光光源偏轴设置,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例一提供的一种投影光源的结构示意图;
图2是本发明实施例一提供的一种投影光源的光路图;
图3是本发明实施例一提供的旋转荧光色轮的结构示意图;
图4是本发明实施例二提供的一种投影光源的结构示意图;
图5是本发明实施例二提供的一种投影光源的光路图;
图6是本发明实施例二提供的旋转荧光色轮的结构示意图;
图7是本发明实施例三提供的一种投影光源的结构示意图;
图8是本发明实施例三提供的一种投影光源的光路图;
图9是本发明实施例三提供的旋转荧光色轮的结构示意图。
请参阅图1至图9,1为投影光源,11为蓝色激光光源,12为红色 激光光源,21为旋转荧光色轮,211为环形反射扩散层,212为环形荧光层,2121为绿色荧光粉区,2122为黄色荧光粉区,2123为蓝色激光透射区,2124为蓝色激光反射区,2125为蓝色激光反射散射区,213为第一驱动装置,22为旋转滤光色轮,221为环形滤光层,222为第二驱动装置,31为聚光透镜,41为第一分光镜,411为第一反射段,412为第二反射段,413为透射段,42为第二分光镜,51为红色激光反射镜,52为第一反射镜,53为第二反射镜,54为蓝色激光反射镜。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例一
请参阅图1,是本发明实施方式提供的一种投影光源的结构示意图,该投影光源1应用于投影***,包括:蓝色激光光源11、红色激光光源12、旋转荧光色轮21、旋转滤光色轮22、聚光透镜31、第一分光镜41、第二分光镜42、红色激光反射镜51、第一反射镜52和第二反射镜53,并且,所述蓝色激光光源11、红色激光光源12、旋转荧光色轮21、旋转滤光色轮22、聚光透镜31、第一分光镜41、第二分光镜42、红色激 光反射镜51、第一反射镜52和第二反射镜53均设置于同一水平面上。
具体地,蓝色激光光源11用于出射蓝色激光光束,包括多个蓝色激光发光芯片(图未示)、第一合光装置(图未示)以及第一准直透镜组(图未示)。其中,每个蓝色激光发光芯片用于向第一合光装置出射对应的蓝色激光,第一合光装置用于接收对应的蓝色激光并将多束蓝色激光朝第一准直透镜组出射,第一准直透镜组用于将所接收的多束蓝色激光朝同一个方向出射,形成一束平行的蓝色激光光束。上述第一合光装置包括多个蓝光反射镜。其中,每个蓝光反射镜设置于一个对应的蓝色激光发光芯片的前方,每个蓝光反射镜用于将对应的蓝色激光发光芯片出射的蓝色激光朝第一准直透镜组出射。当然,在一些可替代实施方式中,蓝色激光光源11也可以为一个蓝色激光发光芯片。
红色激光光源12用于出射红色激光光束,包括多个红色激光发光芯片(图未示)、第二合光装置(图未示)以及第二准直透镜组(图未示)。其中,每个红色激光发光芯片用于向第二合光装置出射对应的红色激光,第二合光装置用于接收对应的红色激光并将多束红色激光朝第二准直透镜组出射,第二准直透镜组用于将所接收的多束红色激光朝同一个方向出射,形成一束平行的红色激光光束。上述第二合光装置包括多个红光反射镜。其中,每个红光反射镜设置于一个对应的红色激光发光芯片的前方,每个红光反射镜用于将对应的红色激光发光芯片出射的红色激光朝第一准直透镜组出射。当然,在一些可替代实施方式中,红色激光光源12也可以为一个红色激光发光芯片。
请参阅图1至图3,旋转荧光色轮21包括:环形反射扩散层211、环形荧光层212和第一驱动装置213。
环形反射扩散层211和环形荧光层212共轴设置于旋转荧光色轮21的工作面P1上,且环形反射扩散层211的内径与环形荧光层212的外径一致,即环形反射扩散层211和环形荧光层212相邻设置并且所述环形反射扩散层211位于旋转荧光色轮21的工作面P1的外环侧,环形荧光层212位于旋转荧光色轮21的工作面P1的内环侧。
当然,在一些可替代实施方式中,环形反射扩散层211的内径还可 以大于环形荧光层212的外径,即环形反射扩散层211和环形荧光层212之间存在间隙。
其中,所述旋转荧光色轮21的工作面P1即朝向蓝色激光光源11和红色激光光源12,用于接收蓝色激光光束和红色激光光束的表面。
进一步地,环形反射扩散层211用于接收红色激光光源12出射的红色激光光束,并将所接收的红色激光光束扩散反射,以消除红色激光光束的散斑。
环形荧光层212则用于接收蓝色激光光源11出射的蓝色激光光束。具体地,请参阅图3,环形荧光层212包括绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光透射区2123,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光透射区2123沿环形荧光层212周向设置,并且绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光透射区2123的区域面积相同。
当然,在一些实施方式中,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光透射区2123的区域面积可以根据实际需要进行不等比例设置。
当蓝色激光光束入射至环形荧光层212的绿色荧光粉区2121时,绿色荧光粉区2121吸收所述蓝色激光光束并受激反射出绿色荧光;
当蓝色激光光束入射至环形荧光层212的黄色荧光粉区2122时,黄色荧光粉区2122吸收所述蓝色激光光束并受激反射出黄色荧光;
当蓝色激光光束入射至环形荧光层212的蓝色激光透射区2123时,蓝色激光透射区2123透射所述蓝色激光光束。
第一驱动装置213用于驱动旋转荧光色轮21转动,其设置于相对旋转荧光色轮21工作面P1的另一表面上,优选地,第一驱动装置213设置于该表面的中部,以使得第一驱动装置213能够平稳地驱动该旋转荧光色轮21转动。该第一驱动装置213可以为马达等。
旋转滤光色轮22包括:环形滤光层221和第二驱动装置222。
环形滤光层221设置于旋转滤光色轮22的工作面P2上,与所述旋转滤光色轮22共轴设置,其面积小于所述旋转滤光色轮22的工作面P2 的面积,该环形滤光层221用于接收红色激光光束、蓝色激光光束、黄色荧光和绿色荧光。
其中,所述旋转滤光色轮22的工作面P2即用于接收蓝色激光光束、红色激光光束、黄色荧光和绿色荧光的表面。
具体地,环形滤光层221包括红色滤光段(图未示)、蓝色滤光段(图未示)和绿色滤光段(图未示),所述红色滤光段、蓝色滤光段和绿色滤光段沿环形滤光层221周向设置,并且红色滤光段、蓝色滤光段和绿色滤光段的区域面积与所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光透射区2123的区域面积对应。
当蓝色激光光束、红色激光光束、黄色荧光和绿色荧光入射至环形滤光层221的红色滤光段时,该红色滤光段透射红色激光光束,并且能够过滤黄色荧光的黄光波段以透射红光,其中,绿色荧光、蓝色激光光束以及黄色荧光的黄光波段被滤除;
当蓝色激光光束、红色激光光束、黄色荧光和绿色荧光入射至环形滤光层221的蓝色滤光段时,该蓝色滤光段透射蓝色激光光束,其中,绿色荧光、红色色激光光束以及黄色荧光被滤除;
当蓝色激光光束、红色激光光束、黄色荧光和绿色荧光入射至环形滤光层221的绿色滤光段时,该绿色滤光段透射绿色荧光,其中,蓝色激光光束、红色色激光光束以及黄色荧光被滤除。
第二驱动装置222用于驱动旋转滤光色轮22转动,其设置于相对旋转滤光色轮22工作面P2的另一表面上,优选地,第二驱动装置222设置于该表面的中部,以使得第二驱动装置222能够平稳地驱动该旋转滤光色轮22转动。该第二驱动装置222可以为马达等。
优选地,第二驱动装置222与第一驱动装置213同步转动,以使旋转荧光色轮21的绿色荧光粉区2121与旋转滤光色轮22的绿色滤光段对应,使得从绿色荧光粉区2121反射出的绿色荧光能够通过绿色滤光段;旋转荧光色轮21的黄色荧光粉区2122与旋转滤光色轮22的红色滤光段对应,使得从黄色荧光粉区2122反射出的黄色荧光能够通过红色滤光段;旋转荧光色轮21的蓝色激光透射区2123与旋转滤光色轮22 的蓝色滤光段对应,使得从蓝色激光透射区2123透射的蓝色激光光束能够通过蓝色滤光段。
聚光透镜31可以为双面凸透镜,用于汇聚光线。
第一分光镜41和第二分光镜42为平面半反半透镜结构。其中,第一分光镜41能够透射蓝色激光光束和红色激光光束,并反射绿色荧光和黄色荧光;第二分光镜42则能够反射蓝色激光光束,透射红色激光光束、黄色荧光和绿色荧光。
红色激光反射镜51、第一反射镜52和第二反射镜53为平面反射镜。其中,红色激光反射镜51用于反射红色激光光束,所述第一反射镜52和第二反射镜53则用于反射蓝色激光光束。
当然,在一些可替代实施方式中,红色激光反射镜51、第一反射镜52和第二反射镜53还可以为弧形反射镜或者曲面反射镜等等。
进一步地,蓝色激光光源11、红色激光光源12、聚光透镜31、第一分光镜41、第二分光镜42和红色激光反射镜51均设置于旋转荧光色轮21的工作面P1一侧,第一反射镜52和第二反射镜53均设置于旋转荧光色轮21的工作面P1另一侧(远离所述工作面P1的一侧),并且,
第一反射镜52、旋转荧光色轮21的环形荧光层212、聚光透镜31、第一分光镜41以及蓝色激光光源11依次位于第一基准线S1,即所述第一反射镜52、旋转荧光色轮21的环形荧光层212、聚光透镜31、第一分光镜41以及蓝色激光光源11的中心轴线与所述第一基准线S1重合;
红色激光反射镜51、第一分光镜41、第二分光镜42和旋转滤光色轮22的环形滤光层221依次位于第二基准线S2,即所述红色激光反射镜51、第一分光镜41、第二分光镜42和旋转滤光色轮22的环形滤光层221的中心轴线与所述第二基准线S2重合;
第二分光镜42以及第二反射镜53依次位于第三基准线S3,即所述第二分光镜42以及第二反射镜53的中心轴线与所述第三基准线S3重合;
第二反射镜53以及第一反射镜52依次位于第四基准线S4,即所述第二反射镜53以及第一反射镜52的中心轴线与所述第四基准线S4重 合;
而红色激光光源12则偏轴设置,以使其所出射的红色激光光束与第一基准线S1形成第一偏轴角a,该第一偏轴角a满足公式
Figure PCTCN2019070264-appb-000004
其中,d为环形反射扩散层211的中心环线到第一基准线S1的距离,f为聚光透镜31的焦距。将红色激光光源12偏轴设置并设置环形反射扩散层211反射所述红色激光光源12出射的红色激光光束,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,更使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
其中,第一基准线S1、第二基准线S2、第三基准线S3和第四基准线S4位于同一平面内并且相互垂直,呈矩形。
具体地,第一分光镜41位于旋转荧光色轮21的工作面P1和蓝色激光光源11之间,所述旋转荧光色轮21的工作面P1垂直于第一基准线S1,蓝色激光光源11出射的蓝色激光光束与第一基准线S1重合,第一分光镜41则与第一基准线S1的夹角为45°,使得第一分光镜41的第一表面P3朝向旋转荧光色轮21的工作面P1,第二表面P4朝向蓝色激光光源11,所述第一分光镜41用于将蓝色激光光源11出射的蓝色激光光束透射至旋转荧光色轮21的环形荧光层212,并将环形荧光层212绿色荧光粉区2121反射出的绿色荧光和黄色荧光粉区2122反射出的黄色荧光反射,还用于透射环形反射扩散层211扩散反射的红色激光光束;
聚光透镜31则位于旋转荧光色轮21的工作面P1和第一分光镜41的第一表面P3之间,其垂直于第一基准线S1,用于对入射至旋转荧光色轮21的工作面P1的光束以及从旋转荧光色轮21的工作面P1出射的光束进行聚光处理,使得各光束能够准确汇聚至目标位置;
第一反射镜52则位于旋转荧光色轮21的工作面P1的另一侧并与所述第一分光镜41垂直,即所述第一反射镜52的反射面朝向所述旋转荧光色轮21,用于反射旋转荧光色轮21的蓝色激光透射区2123所透射的蓝色激光光束,以改变蓝色激光光束的方向;
第二反射镜53的反射面朝向第一反射镜52的反射面,并且第二反 射镜53平行于所述第一分光镜41,垂直于所述第一反射镜52,其用于反射第一反射镜52反射的蓝色激光光束,再次改变蓝色激光光束的方向;
第二分光镜42则平行于所述第一分光镜41和第二反射镜53,垂直于第一反射镜52,其一面朝向第二反射镜53的反射面和旋转滤光色轮22的工作面P2,一面朝向第一分光镜41的第一表面P3,用于将第二反射面53反射的蓝色激光光束反射至旋转滤光色轮22的环形滤光层221,还用于将第一分光镜41反射的黄色荧光和绿色荧光、透射的红色激光光束透射至旋转滤光色轮22的环形滤光层221;
红色激光反射镜51的反射面朝向第一分光镜41的第二表面P4(第一分光镜41远离旋转荧光色轮21一侧),并且所述红色激光反射镜51的法线与第二基准线S2形成夹角b,该夹角b满足公式
Figure PCTCN2019070264-appb-000005
其用于将第一分光镜41透射的红色激光光束反射至第一分光镜41,并经第一分光镜41透射至第二分光镜42,再经第二分光镜42透射至旋转滤光色轮22的环形滤光层221进行滤光处理;
红色激光光源12则位于远离红色激光反射镜51的反射面的一侧,与第一基准线S1形成第一偏轴角a,使得红色激光光源能够合理利用空间,结构紧凑,即使增加红色激光光源投影光源的体积也不会大幅增加。
综上所述,可以理解的是,请参阅图2,蓝色激光光源11出射蓝色激光光束,该蓝色激光光束经第一分光镜41透射至聚光透镜31,再经聚光透镜31汇聚至旋转荧光色轮21的环形荧光层212,若该蓝色激光光束汇聚至环形荧光层212的绿色荧光粉区2121时,被绿色荧光粉区2121吸收并反射出绿色荧光,该绿色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至第二分光镜42,再经由第二分光镜42透射至旋转滤光色轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的黄色荧光粉区2122时,被黄色荧光粉区2122吸收并反射出黄色荧光,该黄色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至第二分光镜42,再经由第二分光镜42透射至旋转滤光色 轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的蓝色激光透射区2123时,经由蓝色激光透射区2123透射至第一反射镜52,再经第一反射镜52反射至第二反射镜53,再经由第二反射镜53反射至第二分光镜42,再经由第二分光镜42透射至旋转滤光色轮22的环形滤光层221进行滤光处理;同时,红色激光光源12出射红色激光光束,该红色激光光束偏轴入射至聚光透镜31,经由聚光透镜31汇聚至旋转荧光色轮21的环形反射扩散层211,再经环形反射扩散层211扩散反射至聚光透镜31,以改变红色激光光束的方向,再经聚光透镜31汇聚至红色激光反射镜51,经红色激光反射镜51反射至第一分光镜41,再经第一分光镜41透射至第二分光镜42,再经由第二分光镜42透射至旋转滤光色轮22的环形滤光层221进行滤光处理。
经环形滤光层221滤光处理后得到色纯度较高的红光、蓝光和绿光,所得到的红光、蓝光和绿光合光后能够得到色域较高的白光。
本发明实施方式的有益效果是:区别于现有技术的情况下,本发明实施方式提供一种投影光源及其投影***,所述投影光源包括:蓝色激光光源、红色激光光源、旋转荧光色轮、聚光透镜、第一分光镜以及红色激光反射镜,旋转荧光色轮的工作面设置环形荧光层和环形反射扩散层,并且环形荧光层和环形反射扩散层相邻设置;其中,蓝色激光光源、红色激光光源、聚光透镜、第一分光镜和红色激光反射镜均设置于旋转荧光色轮的工作面一侧,并且,旋转荧光色轮的环形荧光层、聚光透镜、第一分光镜以及蓝色激光光源位于第一基准线,红色激光反射镜以及第一分光镜位于第二基准线,红色激光光源则偏轴设置,以使红色激光光源出射的红色激光光束与第一基准线形成第一偏轴角a。上述实施方式通过在投影光源中增加红色激光光源替代滤除黄光的方式来提升红光的色纯度,提升了投影光源的色域的同时能够不影响投影光源亮度,保证了投影光源的亮度和色域;同时,通过在投影光源中设置环形反射扩散层,并将红色激光光源偏轴设置,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
实施例二
请参阅图4,是本发明实施方式提供的一种投影光源的结构示意图,该投影光源1应用于投影***,该投影光源1与实施例一所述的投影光源基本相同,相同内容可参见实施例一,在此不再一一赘述。
其区别特征在于,本发明实施方式中所述的投影光源1包括:蓝色激光光源11、红色激光光源12、旋转荧光色轮21、旋转滤光色轮22、聚光透镜31、第一分光镜41、红色激光反射镜51和蓝色激光反射镜54。
具体地,请参阅图6,旋转荧光色轮21的环形荧光层212包括绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射区2124,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射区2124沿环形荧光层212周向设置,并且绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射区2124的区域面积相同。
当然,在一些实施方式中,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射区2124的区域面积可以根据实际需要进行不等比例设置。
当蓝色激光光束入射至环形荧光层212的绿色荧光粉区2121时,绿色荧光粉区2121吸收所述蓝色激光光束并受激反射出绿色荧光;
当蓝色激光光束入射至环形荧光层212的黄色荧光粉区2122时,黄色荧光粉区2122吸收所述蓝色激光光束并受激反射出黄色荧光;
当蓝色激光光束入射至环形荧光层212的蓝色激光反射区2124时,蓝色激光反射区2124反射所述蓝色激光光束,以使所述蓝色激光光束能够被反射至蓝色激光反射镜54,以改变蓝色激光光束的方向,能够减少光学元件的使用并使得结构紧凑。
蓝色激光反射镜54为平面反射镜,用于反射蓝色激光光束。
当然,在一些可替代实施方式中,蓝色激光反射镜54还可以为弧形反射镜或者曲面反射镜等等。
进一步地,蓝色激光光源11、红色激光光源12、聚光透镜31、第一分光镜41、红色激光反射镜51和蓝色激光反射镜54均设置于旋转荧光色轮21的工作面P1一侧,并且,
旋转荧光色轮21的环形荧光层212、聚光透镜31以及第一分光镜41依次位于第一基准线S1,即所述旋转荧光色轮21的环形荧光层212、聚光透镜31以及第一分光镜41的中心轴线与所述第一基准线S1重合;
红色激光反射镜51、第一分光镜41和旋转滤光色轮22的环形滤光层221依次位于第二基准线S2,即所述红色激光反射镜51、第一分光镜41和旋转滤光色轮22的环形滤光层221的中心轴线与所述第二基准线S2重合;
蓝色激光反射镜54位于第一分光镜41的第二表面P4一侧,不位于第一基准线S1和第二基准线S2;
蓝色激光光源11则偏轴设置,以使其所出射的蓝色激光光束与第一基准线S1形成第二偏轴角c,该第二偏轴角c满足公式
Figure PCTCN2019070264-appb-000006
其中,d 2为环形荧光层212的边线到第一基准线S1的距离,f为所述聚光透镜的焦距;
红色激光光源12也偏轴设置,以使其所出射的红色激光光束与第一基准线S1形成第一偏轴角a,该第一偏轴角a满足公式
Figure PCTCN2019070264-appb-000007
其中,d为环形反射扩散层211的中心环线到第一基准线S1的距离,f为聚光透镜31的焦距。将红色激光光源12偏轴设置并设置环形反射扩散层211反射所述红色激光光源12出射的红色激光光束,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,更使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
其中,第一基准线S1和第二基准线S2位于同一平面内并且相互垂直。
具体地,第一分光镜41位于旋转荧光色轮21的工作面P1以及蓝色激光光源11和红色激光光源12之间,所述旋转荧光色轮21的工作面P1垂直于第一基准线S1,蓝色激光光源11出射的蓝色激光光束与第一基准线S1形成第二偏轴角c,红色激光光源12出射的红色激光光束与第一基准线S1形成第一偏轴角a,第一分光镜41则与第一基准线S1的夹角为45°,使得第一分光镜41的第一表面P3朝向旋转荧光色轮 21的工作面P1,并且该第一表面P3还朝向旋转滤光色轮22的工作面P2,第二表面P4朝向蓝色激光光源11和红色激光光源12,并且该第二表面P4还朝向红色激光反射镜51和蓝色激光反射镜54,所述第一分光镜41用于将红色激光光源12出射的红色激光光束透射至旋转荧光色轮21的环形反射扩散层211,并透射红色激光反射镜51反射的红色激光光束至旋转滤光色轮22的环形滤光层221;还用于将环形荧光层212绿色荧光粉区2121反射出的绿色荧光和黄色荧光粉区2122反射出的黄色荧光反射至旋转滤光色轮22的环形滤光层221,并透射蓝色激光反射区2124反射的蓝色激光光束,以及将蓝色激光反射镜54反射的蓝色激光光束透射至旋转滤光色轮22的环形滤光层221;
聚光透镜31则位于旋转荧光色轮21的工作面P1和第一分光镜41的第一表面P3之间,其垂直于第一基准线S1,用于对入射至旋转荧光色轮21的工作面P1的光束以及从旋转荧光色轮21的工作面P1出射的光束进行聚光处理,使得各光束能够准确汇聚至目标位置;
红色激光反射镜51的反射面朝向第一分光镜41的第二表面P4(第一分光镜41远离旋转荧光色轮21一侧),并且所述红色激光反射镜51的法线与第二基准线S2形成夹角b,该夹角b满足公式
Figure PCTCN2019070264-appb-000008
其用于将旋转荧光色轮21的环形反射扩散层211扩散反射的红色激光光束反射至第一分光镜41;
蓝色激光反射镜54的反射面朝向第一分光镜41的第二表面P4(第一分光镜41远离旋转荧光色轮21一侧),与红色激光反射镜51相邻,并且所述蓝色激光反射镜54的法线与第二基准线S2形成夹角b′(图未示),该夹角b′满足公式
Figure PCTCN2019070264-appb-000009
其用于将第一分光镜41透射的蓝色激光光束反射至第一分光镜41,以改变蓝色激光光束的方向。
通过本发明实施方式,减少了光学元件的使用,并将光学元件集中于一侧,使得结构更为紧凑。
综上所述,可以理解的是,请参阅图5,蓝色激光光源11出射蓝色激光光束,该蓝色激光光束偏轴入射至聚光透镜31,经由聚光透镜31汇聚至旋转荧光色轮21的环形荧光层212,若该蓝色激光光束汇聚至环 形荧光层212的绿色荧光粉区2121时,被绿色荧光粉区2121吸收并反射出绿色荧光,该绿色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至至旋转滤光色轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的黄色荧光粉区2122时,被黄色荧光粉区2122吸收并反射出黄色荧光,该黄色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至旋转滤光色轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的蓝色激光反射区2124时,经由蓝色激光反射区2124反射至聚光透镜31,再经由聚光透镜31汇聚至第一分光镜41,经由第一分光镜41透射至蓝色激光反射镜54,并经由该蓝色激光反射镜54反射至第一分光镜41,最后由第一分光镜41透射至旋转滤光色轮22的环形滤光层221进行滤光处理;同时,红色激光光源12出射红色激光光束,该红色激光光束偏轴入射至第一分光镜41,经由第一分光镜41透射至聚光透镜31,经由聚光透镜31汇聚至旋转荧光色轮21的环形反射扩散层211,再经环形反射扩散层211扩散反射至聚光透镜31,以改变红色激光光束的方向,再经聚光透镜31汇聚至红色激光反射镜51,经红色激光反射镜51反射至第一分光镜41,再经第一分光镜41透射至旋转滤光色轮22的环形滤光层221进行滤光处理。
经环形滤光层221滤光处理后得到色纯度较高的红光、蓝光和绿光,所得到的红光、蓝光和绿光合光后能够得到色域较高的白光。
本发明实施方式的有益效果是:区别于现有技术的情况下,本发明实施方式提供一种投影光源及其投影***,所述投影光源包括:蓝色激光光源、红色激光光源、旋转荧光色轮、聚光透镜、第一分光镜以及红色激光反射镜,旋转荧光色轮的工作面设置环形荧光层和环形反射扩散层,并且环形荧光层和环形反射扩散层相邻设置;其中,蓝色激光光源、红色激光光源、聚光透镜、第一分光镜和红色激光反射镜均设置于旋转荧光色轮的工作面一侧,并且,旋转荧光色轮的环形荧光层、聚光透镜、第一分光镜以及蓝色激光光源位于第一基准线,红色激光反射镜以及第 一分光镜位于第二基准线,红色激光光源则偏轴设置,以使红色激光光源出射的红色激光光束与第一基准线形成第一偏轴角a。上述实施方式通过在投影光源中增加红色激光光源替代滤除黄光的方式来提升红光的色纯度,提升了投影光源的色域的同时能够不影响投影光源亮度,保证了投影光源的亮度和色域;同时,通过在投影光源中设置环形反射扩散层,并将红色激光光源偏轴设置,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
实施例三
请参阅图7,是本发明实施方式提供的一种投影光源的结构示意图,该投影光源1应用于投影***,该投影光源1与实施例一所述的投影光源基本相同,相同内容可参见实施例一,在此不再一一赘述。
其区别特征在于,本发明实施方式中所述的投影光源1包括:蓝色激光光源11、红色激光光源12、旋转荧光色轮21、旋转滤光色轮22、聚光透镜31、第一分光镜41和红色激光反射镜51。
具体地,请参阅图9,旋转荧光色轮21的环形荧光层212包括绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射散射区2125,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射散射区2125沿环形荧光层212周向设置,并且绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射散射区2125的区域面积相同。
当然,在一些实施方式中,所述绿色荧光粉区2121、黄色荧光粉区2122和蓝色激光反射散射区2125的区域面积可以根据实际需要进行不等比例设置。
当蓝色激光光束入射至环形荧光层212的绿色荧光粉区2121时,绿色荧光粉区2121吸收所述蓝色激光光束并受激反射出绿色荧光;
当蓝色激光光束入射至环形荧光层212的黄色荧光粉区2122时,黄色荧光粉区2122吸收所述蓝色激光光束并受激反射出黄色荧光;
当蓝色激光光束入射至环形荧光层212的蓝色激光反射散射区2125时,蓝色激光反射散射区2125散射反射所述蓝色激光光束,以消除蓝 色激光光束散斑,并扩大蓝色激光光束的反射角度,使得蓝色激光光束能够被反射至第一反射段411和第二反射段412,减少反射镜的使用,使得结构更为紧凑,且一定程度上减少投影光源的体积。
第一分光镜41包括第一反射段411、第二反射段412和透射段413,该透射段413设置于第一反射段411和第二反射段412之间。其中,第一反射段411和第二反射段412用于反射蓝色激光光束、黄色荧光和绿色荧光;透射段413用于透射蓝色激光光束和红色激光光束,反射黄色荧光和绿色荧光,故透射段413的长度不小于蓝色激光光束的光斑直径,以使所述透射段413能够完全将蓝色激光光束透射,该透射段413的长度越小蓝光损耗越小。
进一步地,蓝色激光光源11、红色激光光源12、聚光透镜31、第一分光镜41和红色激光反射镜51均设置于旋转荧光色轮21的工作面P1一侧,并且,
旋转荧光色轮21的环形荧光层212、聚光透镜31、第一分光镜41以及蓝色激光光源11依次位于第一基准线S1,即所述旋转荧光色轮21的环形荧光层212、聚光透镜31、第一分光镜41以及蓝色激光光源11的中心轴线与所述第一基准线S1重合;
红色激光反射镜51、第一分光镜41和旋转滤光色轮22的环形滤光层221依次位于第二基准线S2,即所述红色激光反射镜51、第一分光镜41和旋转滤光色轮22的环形滤光层221的中心轴线与所述第二基准线S2重合;
红色激光光源12则偏轴设置,以使其所出射的红色激光光束与第一基准线S1形成第一偏轴角a,该第一偏轴角a满足公式
Figure PCTCN2019070264-appb-000010
其中,d为环形反射扩散层211的中心环线到第一基准线S1的距离,f为聚光透镜31的焦距。将红色激光光源12偏轴设置并设置环形反射扩散层211反射所述红色激光光源12出射的红色激光光束,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,更使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
其中,第一基准线S1和第二基准线S2位于同一平面内并且相互垂直。
具体地,第一分光镜41位于旋转荧光色轮21的工作面P1和蓝色激光光源11之间,所述旋转荧光色轮21的工作面P1垂直于第一基准线S1,蓝色激光光源11出射的蓝色激光光束与第一基准线S1重合,第一分光镜41则与第一基准线S1的夹角为45°,使得第一分光镜41的第一表面P3朝向旋转荧光色轮21的工作面P1,并且该第一表面P3还朝向旋转滤光色轮22的工作面P2,第二表面P4朝向蓝色激光光源11,并且该第二表面P4还朝向红色激光反射镜51,所述第一分光镜41的透射段413用于将蓝色激光光源11出射的蓝色激光光束透射至旋转荧光色轮21的环形荧光层212,第一反射段411、第二反射段412和透射段413将环形荧光层212绿色荧光粉区2121反射出的绿色荧光和黄色荧光粉区2122反射出的黄色荧光反射至旋转滤光色轮22的环形滤光层221;第一反射段411和第二反射段412将环形荧光层212的蓝色激光反射散射区2125散射反射的蓝色激光光束反射至旋转滤光色轮22的环形滤光层221;第一分光镜41还用于透射环形反射扩散层211扩散反射的红色激光光束以及红色激光反射单元51反射的红色激光光束;
聚光透镜31则位于旋转荧光色轮21的工作面P1和第一分光镜41的第一表面P3之间,其垂直于第一基准线S1,用于对入射至旋转荧光色轮21的工作面P1的光束以及从旋转荧光色轮21的工作面P1出射的光束进行聚光处理,使得各光束能够准确汇聚至目标位置;
红色激光反射镜51的反射面朝向第一分光镜41的第二表面P4(第一分光镜41远离旋转荧光色轮21一侧),并且所述红色激光反射镜51的法线与第二基准线S2形成夹角b,该夹角b满足公式
Figure PCTCN2019070264-appb-000011
其用于将第一分光镜41透射的红色激光光束反射至第一分光镜41,并经第一分光镜41透射至旋转滤光色轮22的环形滤光层221进行滤光处理;
红色激光光源12则位于远离红色激光反射镜51的反射面的一侧,与第一基准线S1形成第一偏轴角a,使得红色激光光源能够合理利用空间,结构紧凑,即使增加红色激光光源投影光源的体积也不会大幅增加。
通过本发明实施方式,减少了反射镜的使用,一定程度上减小投影光源的体积,同时,通过将光学元件集中于一侧,使得结构更为紧凑。
综上所述,可以理解的是,请参阅图8,蓝色激光光源11出射蓝色激光光束,该蓝色激光光束经第一分光镜41的透射段413透射至聚光透镜31,再经聚光透镜31汇聚至旋转荧光色轮21的环形荧光层212,若该蓝色激光光束汇聚至环形荧光层212的绿色荧光粉区2121时,被绿色荧光粉区2121吸收并反射出绿色荧光,该绿色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至旋转滤光色轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的黄色荧光粉区2122时,被黄色荧光粉区2122吸收并反射出黄色荧光,该黄色荧光被反射至聚光透镜31并经聚光透镜31汇聚至第一分光镜41,再经第一分光镜41反射至旋转滤光色轮22的环形滤光层221进行滤光处理;若该蓝色激光光束汇聚至环形荧光层212的蓝色激光反射散射区2125时,经由蓝色激光反射散射区2125散射反射至第一分光镜41的第一反射段411和第二反射段412反射至旋转滤光色轮22的环形滤光层221进行滤光处理,以减少蓝色激光光束从透射段413损耗的情况,此时,该透射段413的长度越小,蓝色激光光束的损耗越小;同时,红色激光光源12出射红色激光光束,该红色激光光束偏轴入射至聚光透镜31,经由聚光透镜31汇聚至旋转荧光色轮21的环形反射扩散层211,再经环形反射扩散层211扩散反射至聚光透镜31,以改变红色激光光束的方向,再经聚光透镜31汇聚至红色激光反射镜51,经红色激光反射镜51反射至第一分光镜41,再经第一分光镜41透射至第二分光镜42,再经由第二分光镜42透射至旋转滤光色轮22的环形滤光层221进行滤光处理。
经环形滤光层221滤光处理后得到色纯度较高的红光、蓝光和绿光,所得到的红光、蓝光和绿光合光后能够得到色域较高的白光。
本发明实施方式的有益效果是:区别于现有技术的情况下,本发明实施方式提供一种投影光源及其投影***,所述投影光源包括:蓝色激光光源、红色激光光源、旋转荧光色轮、聚光透镜、第一分光镜以及红 色激光反射镜,旋转荧光色轮的工作面设置环形荧光层和环形反射扩散层,并且环形荧光层和环形反射扩散层相邻设置;其中,蓝色激光光源、红色激光光源、聚光透镜、第一分光镜和红色激光反射镜均设置于旋转荧光色轮的工作面一侧,并且,旋转荧光色轮的环形荧光层、聚光透镜、第一分光镜以及蓝色激光光源位于第一基准线,红色激光反射镜以及第一分光镜位于第二基准线,红色激光光源则偏轴设置,以使红色激光光源出射的红色激光光束与第一基准线形成第一偏轴角a。上述实施方式通过在投影光源中增加红色激光光源替代滤除黄光的方式来提升红光的色纯度,提升了投影光源的色域的同时能够不影响投影光源亮度,保证了投影光源的亮度和色域;同时,通过在投影光源中设置环形反射扩散层,并将红色激光光源偏轴设置,使得红色激光光源能与蓝色激光光源设置于同一侧,合理利用旋转荧光色轮和蓝色激光光源之间的空间,使得投影光源结构紧凑,体积不会因增加红色激光光源而大幅增加。
实施例四
本发明实施方式还提供一种投影***,该投影***包括以上实施例所述的投影光源1、显示芯片和投影镜头。
在一些实施方式中,所述投影***还包括外壳、方棒或者复眼透镜、棱镜组或者自由曲面透镜组。其中,外壳形成容置腔,投影光源1、外壳、方棒或者复眼透镜、棱镜组或者自由曲面透镜组以及显示芯片安装于外壳的容置腔内;外壳还设有一开口,该开口将外壳的容置腔与外壳的外部空间相连通,投影镜头安装于该开口。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种投影光源,其特征在于,包括:
    蓝色激光光源(11)、红色激光光源(12)、旋转荧光色轮(21)、聚光透镜(31)、第一分光镜(41)以及红色激光反射镜(51);
    所述旋转荧光色轮(21)的工作面设置环形荧光层(212)和环形反射扩散层(211),所述环形荧光层(212)和所述环形反射扩散层(211)相邻设置;
    所述蓝色激光光源(11)、红色激光光源(12)、聚光透镜(31)、第一分光镜(41)和红色激光反射镜(51)均设置于所述旋转荧光色轮(21)的工作面一侧,并且,
    所述旋转荧光色轮(21)的环形荧光层(212)、所述聚光透镜(31)、所述第一分光镜(41)以及所述蓝色激光光源(11)位于第一基准线(S1),
    所述红色激光反射镜(51)以及所述第一分光镜(41)位于第二基准线(S2),
    所述红色激光光源(12)偏轴设置,以使所述红色激光光源(12)出射的红色激光光束与所述第一基准线(S1)形成第一偏轴角a。
  2. 根据权利要求1所述的投影光源,其特征在于,
    所述第一基准线(S1)和所述第二基准线(S2)相互垂直;
    所述第一偏轴角a满足公式
    Figure PCTCN2019070264-appb-100001
    其中,d为所述环形反射扩散层中心环线到所述第一基准线(S1)的距离,f为所述聚光透镜的焦距。
  3. 根据权利要求2所述的投影光源,其特征在于,
    所述第一分光镜(41)与所述第一基准线(S1)的夹角为45°;
    所述红色激光反射镜(51)设置于所述第一分光镜(41)远离所述旋转荧光色轮(21)一侧;
    所述红色激光反射镜(51)的法线与所述第二基准线(S2)的夹角 b满足公式
    Figure PCTCN2019070264-appb-100002
  4. 根据权利要求1-3任一项所述的投影光源,其特征在于,
    所述环形荧光层(212)包括:蓝色激光透射区(2123)、黄色荧光粉区(2122)和绿色荧光粉区(2121);
    所述投影光源(1)还包括:第一反射镜(52)、第二反射镜(53)和第二分光镜(42);
    所述第二分光镜(42)设置于所述旋转荧光色轮(21)的工作面的一侧,
    所述第一反射镜(52)和所述第二反射镜(53)设置于所述旋转荧光色轮(21)的工作面的另一侧,并且,
    所述第一反射镜(52)、所述旋转荧光色轮(21)的环形荧光层(212)、所述聚光透镜(31)、所述第一分光镜(41)以及所述蓝色激光光源(11)位于第一基准线(S1),
    所述红色激光反射镜(51)、所述第一分光镜(41)以及所述第二分光镜(42)位于第二基准线(S2),
    所述第二分光镜(42)以及所述第二反射镜(53)位于第三基准线(S3),
    所述第二反射镜(53)以及所述第一反射镜(52)位于第四基准线(S4)。
  5. 根据权利要求4所述的投影光源,其特征在于,
    所述第一基准线(S1)、第二基准线(S2)、第三基准线(S3)和第四基准线(S4)呈矩形;
    所述第二反射镜(53)和第二分光镜(42)平行于所述第一分光镜(41),并且所述第二反射镜(53)、第一分光镜(41)和第二分光镜(42)均垂直于所述第一反射镜(52)。
  6. 根据权利要求1-3任一项所述的投影光源,其特征在于,
    所述环形荧光层(212)包括:蓝色激光反射区(2124)、黄色荧光粉区(2122)和绿色荧光粉区(2121);
    所述投影光源(1)还包括:蓝色激光反射镜(54);
    所述蓝色激光光源(11)偏轴设置,以使所述蓝色激光光源(11)出射的蓝色激光光束与所述第一基准线(S1)形成第二偏轴角c。
  7. 根据权利要求6所述的投影光源,其特征在于,
    所述第二偏轴角c满足公式
    Figure PCTCN2019070264-appb-100003
    其中,d 2为所述环形荧光层的边线到所述第一基准线(S1)的距离,f为所述聚光透镜的焦距。
  8. 根据权利1-3任一项所述的投影光源,其特征在于,
    所述环形荧光层(212)包括:蓝色激光反射散射区(2125)、黄色荧光粉区(2122)和绿色荧光粉区(2121);
    所述第一分光镜(41)包括:第一反射段(411)、第二反射段(412)和透射段(413);
    所述透射段(413)设置于所述第一反射段(411)和第二反射段(412)之间;
    所述透射段(413)用于透射蓝光和红光,并反射其他颜色光束。
  9. 根据权利要求8所述的投影光源,其特征在于,所述透射段(413)的长度不小于蓝光光斑直径,并且,所述透射段(413)的长度越小蓝光损耗越小。
  10. 根据权利要求1-9任一项所述的投影光源,其特征在于,所述投影光源(1)还包括:
    旋转滤光色轮(22);
    所述旋转滤光色轮(22)的工作面设置环形滤光层(221),所述旋转滤光色轮(22)的环形滤光层(221)位于所述第二基准线(S2)。
  11. 一种投影***,其特征在于,包括:显示芯片、投影镜头以及如权利要求1-10任一项所述的投影光源。
PCT/CN2019/070264 2018-03-23 2019-01-03 一种投影光源及其投影*** WO2019179209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810245714.7A CN108663881B (zh) 2018-03-23 2018-03-23 一种投影光源及其投影***
CN201810245714.7 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019179209A1 true WO2019179209A1 (zh) 2019-09-26

Family

ID=63782430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070264 WO2019179209A1 (zh) 2018-03-23 2019-01-03 一种投影光源及其投影***

Country Status (2)

Country Link
CN (1) CN108663881B (zh)
WO (1) WO2019179209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663881B (zh) * 2018-03-23 2020-06-02 广景视睿科技(深圳)有限公司 一种投影光源及其投影***
CN111258160B (zh) * 2018-11-30 2022-07-08 青岛海信激光显示股份有限公司 激光荧光投影***、方法及装置、电子设备、存储介质
CN109672816B (zh) 2019-01-04 2021-03-09 多普光电科技有限公司 矩阵图像采集***和矩阵图像投影***
CN112015036A (zh) * 2019-05-30 2020-12-01 台达电子工业股份有限公司 光源***
CN112087609A (zh) * 2019-06-12 2020-12-15 扬明光学股份有限公司 投影装置及其制造方法
CN110568706A (zh) 2019-08-22 2019-12-13 苏州佳世达光电有限公司 投影机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540678A (zh) * 2010-12-14 2012-07-04 卡西欧计算机株式会社 光源装置及投影仪
KR20120103072A (ko) * 2011-03-09 2012-09-19 엘지전자 주식회사 광원 장치 및 그 제조 방법
CN104765238A (zh) * 2014-01-03 2015-07-08 深圳市亿思达科技集团有限公司 一种双激光光源***
CN206610072U (zh) * 2017-03-14 2017-11-03 深圳市光峰光电技术有限公司 光源装置及投影***
CN107797372A (zh) * 2017-11-17 2018-03-13 四川长虹电器股份有限公司 一种双色激光光源光学引擎***
CN108663881A (zh) * 2018-03-23 2018-10-16 广景视睿科技(深圳)有限公司 一种投影光源及其投影***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025107A (ja) * 2003-07-02 2005-01-27 Nec Viewtechnology Ltd プロジェクタ
JP5581874B2 (ja) * 2010-07-28 2014-09-03 船井電機株式会社 プロジェクタ用光学装置
TW201441665A (zh) * 2013-04-16 2014-11-01 Hon Hai Prec Ind Co Ltd 雷射投影裝置
CN104765240B (zh) * 2014-01-03 2019-02-19 深圳市亿思达科技集团有限公司 一种双激光光源***
CN207067642U (zh) * 2017-05-26 2018-03-02 深圳市光峰光电技术有限公司 光源***及投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540678A (zh) * 2010-12-14 2012-07-04 卡西欧计算机株式会社 光源装置及投影仪
KR20120103072A (ko) * 2011-03-09 2012-09-19 엘지전자 주식회사 광원 장치 및 그 제조 방법
CN104765238A (zh) * 2014-01-03 2015-07-08 深圳市亿思达科技集团有限公司 一种双激光光源***
CN206610072U (zh) * 2017-03-14 2017-11-03 深圳市光峰光电技术有限公司 光源装置及投影***
CN107797372A (zh) * 2017-11-17 2018-03-13 四川长虹电器股份有限公司 一种双色激光光源光学引擎***
CN108663881A (zh) * 2018-03-23 2018-10-16 广景视睿科技(深圳)有限公司 一种投影光源及其投影***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备
CN116430662B (zh) * 2023-06-13 2023-08-15 宜宾市极米光电有限公司 一种光源***及投影设备

Also Published As

Publication number Publication date
CN108663881A (zh) 2018-10-16
CN108663881B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2019179209A1 (zh) 一种投影光源及其投影***
EP3598230B1 (en) Light source device and projection system
EP2741139B1 (en) Illumination optical system for beam projector
EP2875284B1 (en) Phosphor-based lamps for projection display
TWI503578B (zh) 光源模組與投影裝置
CN102289141B (zh) 照明装置和图像显示设备
CN103189794A (zh) 照明设备以及使用其的投影型显示设备
EP3514623A1 (en) Illumination system and projection apparatus
CN112987469B (zh) 光源装置及图像投影装置
WO2019134260A1 (zh) 色轮组件、光源装置及投影***
CN110412817B (zh) 投影装置以及照明***
JP2019028361A (ja) 照明装置およびプロジェクター
WO2019153990A1 (zh) 一种投影***及其激光照明光源
CN113359379B (zh) 光源组件及投影设备
EP2889685A1 (en) Wavelength converter, optical system and light source unit incorporating wavelength converter, and projection device incorporating light source unit
CN111077720A (zh) 光源***及显示设备
CN107436529B (zh) 一种光源装置以及投影显示装置
US11675259B2 (en) Light source system and corresponding projector system
CN111522191B (zh) 光源装置以及投影型影像显示装置
JP2020160434A (ja) 光源装置、画像投射装置及び光源光学系
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
JP7330787B2 (ja) 光源装置およびこれを備える画像投射装置
WO2020135300A1 (zh) 光源***及投影装置
CN114585968A (zh) 光源装置、图像投影装置和光源光学***
CN116893565A (zh) 光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19771531

Country of ref document: EP

Kind code of ref document: A1