WO2019179101A1 - 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管 - Google Patents

一种基于导流板的垂直起降型喉道偏移式气动矢量喷管 Download PDF

Info

Publication number
WO2019179101A1
WO2019179101A1 PCT/CN2018/112397 CN2018112397W WO2019179101A1 WO 2019179101 A1 WO2019179101 A1 WO 2019179101A1 CN 2018112397 W CN2018112397 W CN 2018112397W WO 2019179101 A1 WO2019179101 A1 WO 2019179101A1
Authority
WO
WIPO (PCT)
Prior art keywords
throat
vertical take
mode
knife
nozzle
Prior art date
Application number
PCT/CN2018/112397
Other languages
English (en)
French (fr)
Inventor
黄帅
徐惊雷
汪阳生
陈匡世
许保成
林泳辰
汪丰
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2019179101A1 publication Critical patent/WO2019179101A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/002Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/11Varying effective area of jet pipe or nozzle by means of pivoted eyelids

Definitions

  • the invention relates to a vertical take-off type throat offset type pneumatic vector nozzle based on a deflector, belonging to the technical field of thrust vector and vertical takeoff and landing aviation engine nozzle.
  • thrust vector aeroengines With the development of science and technology and the improvement of actual demand, future aircraft will increasingly use thrust vector aeroengines.
  • the core of the thrust vector aero engine to achieve the thrust vector function is the thrust vector nozzle.
  • the traditional mechanical thrust vector nozzle has a complicated structure, poor reliability and troublesome maintenance. Therefore, it is urgent to develop a thrust vector nozzle with simple structure, light weight and good maintenance.
  • the fluid thrust vector nozzle has gradually become a research focus and research hotspot in various countries with its simple structure and light weight, and will enter engineering applications in the near future.
  • how to give more functions to the fluid thrust vector nozzle under the premise of changing the nozzle structure as little as possible becomes one of the new research directions of the thrust vector nozzle.
  • the throat offset pneumatic vector nozzle is a new type of fluid thrust vector nozzle which has been developed in recent years. It is favored by more and more because of its simple structure, light weight and good vector performance.
  • the common throat offset pneumatic vector nozzle is a double throat structure, and the second throat area is slightly larger than the area of a throat.
  • the throat offset pneumatic vector nozzle can be divided into an active active type and an adaptive passive type, wherein the active active type generating thrust vector air source is mostly an external compressor, a gas cylinder or an aviation source.
  • the bleed air in the high-pressure parts of the engine (mostly the compressor) is characterized by a small change in the thrust vector angle with the nozzle drop ratio, but the thrust loss is greater for the entire aeroengine;
  • the adaptive passive type is
  • the adaptive bypass channel is set to introduce the high-pressure airflow at the nozzle inlet position to the specified position of the nozzle, adaptively generate disturbance and finally realize the thrust vector, which overcomes the shortcomings of the active active type and affects the thrust of the aeroengine. Smaller, vector angles are also more stable.
  • the common throat offset pneumatic vector nozzle can only produce a single direction vector angle of about 20°, which is commonly used for the control of the pitch direction of the aircraft. But for a vertical takeoff and landing aircraft, a vector angle of around 20° is not enough. Therefore, it is necessary to use the throat offset pneumatic vector nozzle to achieve vertical takeoff and landing, and the original structure should be properly improved.
  • the invention utilizes the profile features of the throat-displacement pneumatic vector nozzle and the front expansion section (cavity) of the second throat, and specially designs the deflector to skillfully combine the thrust vector technology and the vertical take-off and landing technology. It has an efficient and reliable vertical take-off and landing capability and broadens its application under the premise that the thrust vector performance is not affected.
  • the present invention provides a vertical take-off type throat offset type pneumatic vector nozzle based on a deflector, which has a specially designed "knife" shaped deflector structure.
  • the deflection achieves an efficient and reliable vertical take-off and landing function, which greatly expands its application range.
  • a vertical take-off type throat offset type pneumatic vector nozzle based on a deflector comprising a nozzle inlet connected in sequence in a flat flight mode, a straight section at the front of a throat, and a convergent section at the front of a throat , a throat, a front section of the second throat, a converging section of the front of the second throat, and a second throat;
  • the fixing portion of the second throat front expansion converging section ie, the combination of the second throat front expansion section and the second throat front convergence section
  • the fixing portion of the second throat front expansion converging section is disposed at a lower portion of the throat lower wall surface and a "knife” shaped deflector that rotates around the rotating shaft on the rear side of the fixing portion, and the head of the "knife” shaped deflector in the flat flying mode is closely closed to the inner wall surface of the fixed portion, and the "knives” shaped deflector
  • the inner surface and the upper side wall surface form a flow passage of the front portion of the second throat;
  • the "knife-knife"-shaped guide vane When switching from the flat flight mode to the vertical take-off and landing mode, the "knife-knife"-shaped guide vane rotates around the rotating shaft to the upper wall surface of the converging head of the tangential point of the second throat, and is guided by a "chopper” shaped guide vane.
  • the rotation of the rotating shaft not exceeding 90° realizes the downward flow of the airflow flowing horizontally through a throat without being less than 90°, thereby switching the flat flight mode to the vertical take-off mode.
  • the outer profile of the "knife” shaped baffle includes five segments of AB, BC, CD, DE, and AE that are sequentially connected, and the AB and AE segments constitute the tip of the "knife” shaped baffle.
  • the CD and DE segments form the tail profile of the "chopper" shaped deflector;
  • the AE section adopts the inner profile line of the lower wall surface of the convergent section of the front part of the second throat in the flat flight mode.
  • the position corresponding to the upper wall surface of the nozzle is symmetrical, and the AB, BC and CD sections constitute the vertical takeoff and landing mode.
  • Part of the nozzle circulation passage; the AB section (especially near the point A) is related to the airtightness of the nozzle in the flat flight state, without considering the factors such as sharp point thermal ablation and sharp point strength,
  • the angle between AB and AE at point A is preferably an acute angle. The smaller the angle is, the better the aerodynamic performance is.
  • the AB segment is generally straight, and the AB segment is fixed and fixed in the flight mode.
  • the inner wall surface of the portion is fitted; the CD segment and the trailing edge profile of the fixed portion form a discharge port for the nozzle airflow in the vertical take-off and landing mode.
  • the CD segment is straight, and the CD in the vertical take-off mode is The angle between the segment and the horizontal backward vector direction is 90°-100°; the BC segment is a smooth transition curve connecting the AB segment and the CD segment.
  • the design of the DE segment must meet the following two conditions: (1) In the pipe flat flight mode, the nozzle outlet airflow does not occur in the DE section, and the initial, unfavorable and obvious low head vector is generated.
  • the airflow of the side circulation channel on the "knife” shaped deflector flows through
  • the Coanda flow occurs on the DE section. Therefore, the final result of the DE segment is obtained according to the optimized design.
  • the initial angle between the point E side of the DE segment and the horizontal direction is greater than 45°, and the point D of the DE segment is a continuous smooth convex curve.
  • the Coanda effect surface is constructed.
  • the position of the rotating shaft of the "knife" shaped guide vane is important for the exit direction of the airflow in the vertical take-off and landing mode, and the position of the rotating shaft also indirectly affects the flow of air under a vertical throat mode and mode switching after flowing through a throat.
  • the flow area that is, it is possible to influence the position of the nozzle throat (the minimum position of the flow area).
  • the rotating shaft is located downstream of the second throat in the level flight mode, and the height of the throat is Hth1, and the horizontal distance x between the rotating shaft and the second throat is preferably 15% ⁇ Hth1 ⁇ x ⁇ 55% ⁇ Hth1; in the vertical direction, the axis of rotation is below the cusp of the lower side of the nozzle of the nozzle in the flight mode, ie, the point E, and the vertical distance y of the axis of the lower side of the second throat is taken
  • the value range is 25% x Hth1 ⁇ y ⁇ 60% x Hth1.
  • the rotation angle of the "knife” shaped deflector is also affected.
  • the rotation from the flat flying mode to the vertical lifting mode the rotation of the "knife” shaped deflector
  • the angle ⁇ satisfies 45° ⁇ ⁇ ⁇ 90°, and 55° ⁇ ⁇ ⁇ 70° is a preferred range.
  • the cusp head of the "knife" shaped deflector in the vertical take-off and landing mode touches the upper wall of the convergent converging section of the front of the second throat.
  • the position of the second throat is 25%-35% of the cavity length (the length of the cavity, that is, the length of the convergence section of the front of the second throat in the flat flight mode), that is, the contact is located in the convergence section of the front of the second throat. Near the turning point.
  • the nozzle throat (the minimum flow area) is always at the throat during the vertical take-off mode and modal switching process of the nozzle.
  • the sum of the minimum areas of the flow passages on the upper and lower sides of the "knife" shaped deflector during the modal switching is always greater than the area of the throat, so as to minimize the sum of the minimum areas of the upper and lower flow passages during the switching process. Maintaining a throat area of 1.05-1.2 times is optimal, thereby achieving stable nozzle flow.
  • the amount of gas injection near the cusp of the lower side of the throat should be adjusted with the degree of rotation, and finally the uniform changes of key parameters such as thrust and lift during the modal switching of the nozzle are realized.
  • the gas injection volume should be at a maximum during the 5-15% phase of the phalanx mode to the vertical takeoff and landing mode switching rotation and 85%-95% of the vertical hoisting mode to the leveling mode switching rotation process. status.
  • the present invention provides a baffle-based vertical take-off and descending throat offset pneumatic vector nozzle, which has the following advantages over the prior art:
  • the invention makes the nozzle have an efficient and reliable vertical take-off and landing capability under the premise that the thrust vector performance is not affected, and broadens its application occasion;
  • the rotation angle of the "knife" shaped baffle of the present invention is 55 ° ⁇ ⁇ ⁇ 70 °, and the rotation angle and the rotation range are smaller than the configuration with a larger rotation angle, so the rotation process Short switching time;
  • FIG. 1 is a schematic structural view of a vertical take-off type throat offset type pneumatic vector nozzle based on a deflector according to the present invention
  • FIG. 2 is a schematic structural view of a "knife" shaped deflector in the present invention
  • the figure includes: 1, nozzle inlet, 2, straight section of the front of the throat, 3, a convergent section of the front of the throat, 4, a throat, 5, 2 front section of the throat, 6, " Chopper-shaped guide vane, 7, two throat front convergence section, 8, shaft, 9, two throat.
  • a vertical-elevation-type throat-shifting pneumatic vector nozzle based on a baffle includes a nozzle inlet 1, a throat front, and the like in a flat flight mode. , a throat convergence section 3, a throat 4, a second throat front expansion section 5, a second throat front convergence section 7, and a second throat 9;
  • a lower portion of the converging section of the front portion of the second throat is disposed with a fixing portion that is in contact with the lower wall surface of the throat 4 and a "knife” shaped deflector 6 that is rotatable about the rotating shaft 8 on the rear side of the fixing portion.
  • the head of the "knife” shaped baffle 6 is closely closed to the inner wall surface of the fixed portion, and the inner surface of the "knife” shaped baffle 6 and the upper wall of the convergent converging section of the front portion of the second throat are a flow passage that forms a second throat;
  • the "knife” shaped baffle 6 When switching from the level flight mode to the vertical take-off mode, the "knife” shaped baffle 6 rotates clockwise around the rotating shaft 8 to the upper surface of the cusp head and the convergent converging section of the front of the second throat, through the "knife” shape.
  • the deflector 6 does not rotate more than 90°, and the downward flow of the airflow flowing horizontally through the throat 4 is not less than 90°, thereby achieving the switching of the flat flight mode to the vertical take-off mode.
  • the "knife" shaped baffle 6 is placed substantially horizontally.
  • the throat offset pneumatic vector nozzle has only one nozzle outlet, that is, the second throat 9.
  • the inner flow passage of the nozzle is a typical double-throat configuration of the throat offset type pneumatic vector nozzle, and the vector angle is realized by gas injection in a sensitive portion (mostly near a throat) in the flow field in the nozzle. It can be generated from external compressors, cylinders or high-pressure components from aeronautical engines (mostly compressors), or it can be introduced from the nozzle inlet through a specially designed bypass passage, how to make the throat through gas injection.
  • the vector of the offset-type pneumatic vector nozzle has been matured and will not be described here.
  • the "knife-knife"-shaped baffle 6 rotates clockwise around the rotating shaft until the cusp head of the "knife” shaped baffle contacts the upper wall surface of the nozzle and completely closes the upper flow path of the nozzle.
  • the airflow passage of the nozzle changes from the original horizontal direction to the airflow flowing through the throat, and can only be ejected from the lower outlet of the nozzle under the blocking action of the deflector, generating a thrust directly above or above.
  • the vector that is, the preferred range of the thrust vector angle ⁇ in the vertical take-off and landing mode is 90° ⁇ ⁇ ⁇ 110°.
  • the determination of the outer profile of the baffle can be determined by the five lines AB, BC, CD, DE and AE.
  • the curve AE selects the inner profile line of the lower wall surface of the convergent section of the second front part of the throat in the level flight mode, and is generally symmetrical with the corresponding position on the upper wall surface of the nozzle.
  • Lines AB, BC, and CD are part of the nozzle flow path in the vertical take-off and landing mode.
  • Line AB (especially near point A) is related to the problem of air tightness under the condition that the nozzle is flying flat. Without considering the factors such as cusp thermal ablation and cusp strength, AB and AE are clamped near point A.
  • the angle should be an acute angle, and the sharper the better, and the line AB can be a straight line; if considering the above factors, it should be properly rounded, the specific rounding size and position are determined by the actual engineering requirements and material properties.
  • the line CD and the channel on the trailing edge profile of the non-rotating part of the lower wall of the nozzle determine the direction in which the nozzle airflow is ejected in the vertical take-off and landing mode, which will obviously affect the vector angle in this mode.
  • the line CD can be a straight line.
  • the angle between the line CD and the horizontally backward vector direction is preferably about 90°-100°, and about 95° is optimal.
  • the curve BC is a smooth transition curve of the connecting lines AB and CD.
  • the design of the line DE needs to meet the following two conditions at the same time: (1) The nozzle outlet airflow does not flow along the nozzle in the non-vector state of the nozzle, resulting in an initial, unfavorable head vector, that is, near the point E of the line DE. Coanda flow; (2) "Chopper” shaped baffle in the process of flat flight to vertical takeoff or vertical to vertical flight mode switching 40% -60%, from the upper side of the nozzle flow channel flow When the upper side expansion converging section is ejected obliquely downward, it can flow on the part of the line DE (especially the side of the AE curve close to the point E). Therefore, the final optimal design result of the line DE is obtained according to the optimization. Generally, the initial angle between the point E of the line DE and the horizontal direction of the line DE is greater than 45°, and the point D of the line DE is a continuous smooth convex curve.
  • the Coanda Effect surface is constructed.
  • the position of the rotating shaft is important for the exit direction of the airflow in the vertical take-off and landing mode, and the position of the rotating shaft also indirectly affects the airflow through the vertical take-off and landing mode and modal switching.
  • the flow area behind a throat may have an effect on the position of the nozzle throat.
  • the preferred position of the rotating shaft is as follows: in the horizontal direction, the rotating shaft is in the flat flight mode, and the downstream of the second throat of the nozzle is suitable, and the range from the rotation axis to the second throat is preferably 15% ⁇ Hth1 ⁇ x ⁇ 55% ⁇ Hth1; in the vertical direction, the rotation axis is below the cusp below the lower throat of the nozzle in the flight mode, and the distance between the rotation axis and the lower cusp of the second throat is better. % ⁇ Hth1 ⁇ y ⁇ 60% ⁇ Hth1.
  • the angle of rotation of the "knife” shaped deflector is also affected.
  • the head of the "knife” shaped deflector touches the upper wall of the convergent converging section of the front of the nozzle.
  • the rotation angle ⁇ satisfies 45° ⁇ ⁇ ⁇ 90°, and 55° ⁇ ⁇ ⁇ 70° is a preferred range.
  • the position touched by the head of the "knife" shaped baffle is 25% to 35% after the convergence of the front part of the second throat.
  • the position, that is, the contact is near the turning point of the expansion convergence section.
  • the nozzle throat is always at a throat during the vertical take-off mode and modal switching, that is, the modal switching process.
  • the sum of the minimum areas of the upper and lower flow passages of the middle nozzle is always greater than the area of the throat so that the sum of the minimum areas of the upper and lower flow passages during the switching process is maintained as much as 1.05-1.2 times the throat area. It is optimal to achieve stable nozzle flow.
  • the airflow flows through a throat and then turns downward (or obliquely downward).
  • the side wall of the flow passage adjacent to the outlet is preferably parallel or slightly tapered, and the axis angle will obviously affect
  • the direction of the airflow ejected from the nozzle is such that the angle between the axis and the horizontally rearward vector direction is preferably about 90°-100°, and about 95° is optimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,包括:二喉道(9)前部扩张收敛段的下壁面处布置有固定部以及固定部后侧可绕转轴(8)转动的"菜刀"形导流片(6),平飞模态下"菜刀"形导流片(6)的头部与固定部的内壁面贴紧封闭,"菜刀"形导流片(6)的内表面与上侧壁面形成二喉道(9)前部的流通通道;垂直起降模态下"菜刀"形导流片(6)转动至其尖点头部触及二喉道(9)前部扩张收敛段的上壁面,通过"菜刀"形导流片(6)不超过90°的转动实现水平流过一喉道(4)的气流不小于90°的向下转向,进而实现平飞模态与垂直起降模态的相互切换。上述基于导流板的垂直起降型喉道偏移式气动矢量喷管使得矢量喷管在推力矢量性能不受影响的前提下具有了高效、可靠的垂直起降能力,拓宽了它的应用场合。

Description

一种基于导流板的垂直起降型喉道偏移式气动矢量喷管 技术领域
本发明涉及一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,属于推力矢量和垂直起降航空发动机喷管技术领域。
背景技术
随着科学技术的发展和实际需求的提高,未来飞行器将越来越多地使用推力矢量航空发动机。推力矢量航空发动机实现推力矢量功能的核心是推力矢量喷管。传统机械式推力矢量喷管结构复杂,可靠性差,维护麻烦,因此开发一种结构简单、重量轻、维护性好的推力矢量喷管迫在眉睫。
当下,流体推力矢量喷管逐渐以其结构简单、重量轻的特点成为各国的研究重点和研究热点,并将在不远的未来进入工程应用。同时,如何在尽可能少改变喷管结构的前提下为流体推力矢量喷管赋予更多的功能成为推力矢量喷管新的领域研究方向之一。
而喉道偏移式气动矢量喷管是近年来兴起的一种新型流体推力矢量喷管,凭借结构简单,重量轻、矢量性能好等的特点,受到越来越多的青睐。常见的喉道偏移式气动矢量喷管为双喉道结构,以二喉道面积略微比一喉道面积大最为常见。一般可以将喉道偏移式气动矢量喷管分为主动有源型和自适应无源型,其中主动有源型产生推力矢量气源的来源多为外置的压缩器、气瓶或者从航空发动机高压部件(多为压气机)中引气,其特点时推力矢量角随喷管工作落压比变化小,但对整台航空发动机来说推力损失较大;而自适应无源型则是设置自适应旁路通道将喷管入口位置的高压气流引至喷管的指定位置注入,自适应产生扰动并最终实现推力矢量,其克服了主动有源型的缺点,对航空发动机整机推力影响较小,矢量角也较为稳定。
常见的喉道偏移式气动矢量喷管仅仅能产生约20°左右的单一方向矢量角,常见用于飞行器俯仰方向的控制。但是对于垂直起降飞行器来说20°左右的矢量角是远远不够的。因此要利用喉道偏移式气动矢量喷管实现垂直起降,要对其原有结构进行适当改进。本发明利用喉道偏移式气动矢量喷管二喉道前部扩张收敛段(凹腔)的型面特征,特殊设计了导流板,巧妙地将推力矢量技术和垂直起降技术融合起来,在推力矢量性能不受影响的前提下帮助其具有了高效、可靠的垂直起降能力,拓宽了它的应用场合。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,通过特殊设计的“菜刀”形导流片结构的偏转实现高效、可靠的垂直起降功能,大大拓宽其应用范围。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,包括平飞模态下依次连通的喷管进口、一喉道前部等直段、一喉道前部收敛段、一喉道、二喉道前部扩张段、二喉道前部收敛段、二喉道;
其中,所述二喉道前部扩张收敛段(即二喉道前部扩张段、二喉道前部收敛段的结合)的下壁面处布置有与一喉道下壁面相接的固定部以及固定部后侧可绕转轴转动的“菜刀”形导流片,平飞模态下“菜刀”形导流片的头部与固定部的内壁面贴紧封闭,“菜刀”形导流片的内表面与上侧壁面形成二喉道前部的流通通道;
由平飞模态切换至垂直起降模态时“菜刀”形导流片绕转轴转动至其尖点头部触及二喉道前部扩张收敛段的上壁面,通过“菜刀”形导流片绕转轴不超过90°的转动实现水平流过一喉道的气流不小于90°的向下转向,进而实现平飞模态至垂直起降模态的切换。
一般来说,所述“菜刀”形导流片的外部型线包括依次衔接的AB、BC、CD、DE、AE五段,且AB、AE段构成“菜刀”形导流片的头部尖点附近型线,CD、DE段构成“菜刀”形导流片的尾部型线;
其中,AE段选用平飞模态下二喉道前部扩张收敛段下壁面的内型线,一般情况下与喷管上壁面对应位置对称,且AB、BC、CD段则构成垂直起降模态下喷管流通通道的一部分;AB段(特别是A点附近)关系到喷管平飞状态下气密性的问题,在不考虑尖点热烧蚀、尖点强度等因素的情况下,AB与AE在点A附近的夹角以锐角为宜,单从气动性能上来说夹角越小越好,且一般来说AB段为直线即可,平飞模态下AB段前部与固定部的内壁面相贴合;CD段与固定部的后缘型面之间构成垂直起降模态下喷管气流的喷出口,一般来说CD段为直线即可,垂直起降模态下CD段与水平向后的矢量方向的夹角为90°-100°为宜;BC段为连接AB段与CD段的光滑过渡曲线,DE段的设计需同时满足以下两个条件:(1)喷管平飞模态下喷管出口气流在DE段不会发生附壁流动产生初始的、不利的、明显的低头矢量,即在线DE的点E附近不会附壁流动;(2)“菜刀”形导流板在模态切换中的某个阶段,“菜刀”形导流板上侧流通通道的气流流经上侧扩张收敛段 斜向下喷出的时候会在DE段上发生附壁流动。因此DE段最终结果根据优化设计得到,一般来说,平飞状态下DE段的点E一侧与水平方向的初始夹角大于45°,DE段的点D一侧为由连续光滑外凸曲线构成的科恩达效应曲面。
“菜刀”形导流片转动的转轴位置对于垂直起降模态下气流的出口方向是重要的,同时转轴的位置还间接影响垂直起降模态和模态切换下气流流过一喉道后的流通面积,即有可能对喷管喉道位置(流通面积最小位置)产生影响。一般情况下,水平方向上,转轴位于平飞模态下二喉道的下游,记一喉道高度为Hth1,转轴与二喉道的水平距离x的优选取值范围为15%×Hth1≤x≤55%×Hth1;竖直方向上,转轴位于平飞模态下喷管二喉道下侧尖点(即E点)以下,转轴与二喉道下侧尖点的竖直距离y的取值范围为25%×Hth1≤y≤60%×Hth1。
进一步的,根据转轴位置的不同,“菜刀”形导流片的转动角度也会受到影响,一般来说,自平飞模态切换至垂直起降模态,“菜刀”形导流片的转动角度θ满足45°≤θ≤90°,以55°≤θ≤70°为较优范围。具体来说,在考虑实际导流片转动过程中不能有机械运动干涉的前提下,垂直起降模态下“菜刀”形导流片的尖点头部触及二喉道前部扩张收敛段上壁面距离二喉道25%-35%凹腔长度(凹腔长度,即平飞模态下二喉道前部扩张收敛段的长度)的位置,即触点位于二喉道前部扩张收敛段的转折处附近。
进一步的,为实现喷管垂直起降模态下喷管内流的稳定和顺畅,应保证喷管在垂直起降模态和模态切换过程中喷管喉道(流通面积最小)始终处于一喉道处,即所述模态切换过程中“菜刀”形导流片的上下两侧流动通道的最小面积之和始终大于一喉道面积,以切换过程中上下两个流动通道的最小面积之和保持在1.05-1.2倍的一喉道面积为最佳,从而实现喷管流量的稳定。
作为本发明的进一步改进,在平飞模态至垂直起降模态过程及垂直起降模态至平飞模态切换过程中,特别在“菜刀”形导流片头部与喷管下壁面距离较近时,应在一喉道下侧尖点附近向主流注入次流进行流动控制。注入的气体可以来自外置的压缩器、气瓶或者从航空发动机高压部件(多为压气机)中引气,也可以通过自适应旁路通道将喷管入口(即涡轮出口)的气流注入,即同时可以满足主动有源型和自适应无源型两种喉道偏移式气动矢量喷管的需要。通过一喉道下侧尖点附近向主流注入次流,改变了流场内的流动结构,流过一喉道的气流会有贴近喷管上壁面流动的趋势,从而减弱了“菜刀”形导流片与喷管下壁面固定部所夹通道开度较小时喷管产生的总推力矢量向上偏的问 题。一般来说,这种矢量方向反向跳转的现象会发生在平飞模态至垂直起降模态切换转动的0-30%阶段和垂直起降模态至平飞模态切换转动过程中的70%-100%过程中,一喉道下侧尖点附近注气量的多少应随着转动的程度来一起调节,最终实现喷管模态切换过程中推力和升力等关键参数的均匀变化,一般来说在平飞模态至垂直起降模态切换转动的5-15%阶段和垂直起降模态至平飞模态切换转动过程中的85%-95%过程中注气量应处于最大状态。
有益效果:本发明提供的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,相对于现有技术,具有以下优点:
(1)本发明使得喷管在推力矢量性能不受影响的前提下具有了高效、可靠的垂直起降能力,拓宽了它的应用场合;
(2)垂直起降模态下只有一个出口通道,气流流动稳定性更好,升力效率可达90%-95%,较其他构型的垂直起降喷管性能更加优异,且模态切换的过程中主要性能参数变化连续,迟滞性较小;
(3)一般来说,本发明“菜刀”形导流片转动角度为55°≤θ≤70°,相比转动角度更大的构型来说转动角度和转动范围较小,因此转动过程的切换时间较短;
(4)本构型喷管大多数型线以直线为主,设计简单,便于结合实际工程实用进行改进和快速优化设计。
附图说明
图1为本发明一种基于导流板的垂直起降型喉道偏移式气动矢量喷管的结构示意图;
图2为本发明中“菜刀”形导流片的结构示意图;
图中包括:1、喷管进口,2、一喉道前部等直段,3、一喉道前部收敛段,4、一喉道,5、二喉道前部扩张段,6、“菜刀”形导流片,7、二喉道前部收敛段,8、转轴,9、二喉道。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,包括平飞模态下依次连通的喷管进口1、一喉道前部等直段2、一喉道前部收敛段3、一喉道4、二喉道前部扩张段5、二喉道前部收敛段7、二喉道9;
其中,所述二喉道前部扩张收敛段的下壁面处布置有与一喉道4下壁面相接的固定部以及固定部后侧可绕转轴8转动的“菜刀”形导流片6,平飞模态下“菜刀”形导流片6的头部与固定部的内壁面贴紧封闭,“菜刀”形导流片6的内表面与二喉道前部扩张收敛段的上壁面之间形成二喉道的流通通道;
由平飞模态切换至垂直起降模态时“菜刀”形导流片6绕转轴8顺时针转动至其尖点头部触及二喉道前部扩张收敛段的上壁面,通过“菜刀”形导流片6不超过90°的转动,实现水平流过一喉道4的气流不小于90°的向下转向,进而实现平飞模态至垂直起降模态的切换。
平飞模态下,“菜刀”形导流片6基本呈水平放置,此时喉道偏移式气动矢量喷管仅有一个喷管出口,即二喉道9。此时,喷管内流道为典型的双喉道构型的喉道偏移式气动矢量喷管,通过在喷管内流场中敏感部位(多为一喉道附近)的注气实现矢量角的产生,其气源可以来自外置的压缩器、气瓶或者从航空发动机高压部件(多为压气机),也可以通过特殊设计的旁路通道从喷管入口引入,具体如何通过注气使喉道偏移式气动矢量喷管产生矢量已经较为成熟,在此不作赘述。
垂直起降模态下,“菜刀”形的导流片6绕转轴顺时针转动至“菜刀”形导流片的尖点头部与喷管上壁面接触、完全关闭喷管上部流道为止。此时,喷管的气流流通通道由原本的水平向后变为流过一喉道的气流在导流片的阻挡作用下只能从喷管下部出口喷出,产生正上方或后上方的推力矢量,即垂直起降模态下推力矢量角α的优选范围为90°≤α≤110°。
作为实现垂直起降的核心部件,“菜刀”形导流片的位置和设计是非常重要的。如图2所示,导流片外部型线的确定可以由AB、BC、CD、DE和AE五根线综合确定。其中,曲线AE选用平飞模态下喉道二前部扩张收敛段下壁面的内型线,一般情况下与喷管上壁面对应位置对称。线AB、BC、CD为垂直起降模态下喷管流通通道的一部分。
线AB(特别是A点附近)关系到喷管平飞状态下气密性的问题,在不考虑尖点热烧蚀、尖点强度等因素的情况下,AB与AE在点A附近的夹角以锐角为宜,且越尖锐越好,且线AB可以为直线;若考虑以上因素,则应适当倒圆,具体倒圆尺寸和位置以实际工程需求和材料属性决定。线CD与喷管下壁面不转动部分后缘型面所夹通道决定垂直起降模态下喷管气流喷出的方向,会明显影响此模态下的矢量角。一般来说,线CD可以为直线,垂直起降模态下,线CD与水平向后的矢量方向的夹角为90°-100° 左右为宜,以95°左右为最佳。曲线BC为连接线AB和CD的光滑过渡曲线。
线DE的设计需同时满足以下两个条件:(1)喷管平飞非矢量状态下喷管出口气流不会附壁流动产生初始的、不利的低头矢量,即在线DE的点E附近不会附壁流动;(2)“菜刀”形导流板在平飞至垂直起降或垂直起降至平飞的模态切换40%-60%过程中,从喷管上侧流通通道的气流流经而上侧扩张收敛段斜向下喷出的时候能在部分线DE上(特别是AE曲线贴近点E一侧)的位置附壁流动。因此线DE最终最优设计结果根据优化得到,一般来说,平飞状态下线DE的点E一端与水平方向的初始夹角大于45°,线DE的点D附近为由连续光滑外凸曲线构成的科恩达效应(Coanda Effect)曲面。
作为实现垂直起降功能的重要部件之一,转轴的位置对于垂直起降模态下气流的出口方向是重要的,同时转轴的位置还间接影响垂直起降模态和模态切换下气流流过一喉道后的流通面积,即有可能对喷管喉道位置产生影响。因此,一般情况下,转轴的优选位置如下:水平方向上,转轴处于平飞模态下喷管二喉道下游为宜,转轴到二喉道距离较优的取值范围x为15%×Hth1≤x≤55%×Hth1;竖直方向上,转轴处于平飞模态下喷管二喉道下侧尖点以下,转轴到二喉道下侧尖点距离较优的取值范围y为25%×Hth1≤y≤60%×Hth1。
根据转轴位置的不同,“菜刀”形导流片的转动角度也会受到影响。一般来说,“菜刀”形导流片自平飞模态初始位置转动到垂直起降模态时“菜刀”形导流片头部触及到喷管二喉道前部扩张收敛段上壁面时的最终位置时转动角度θ满足45°≤θ≤90°,以55°≤θ≤70°为较优范围。具体来说,在考虑实际导流片转动过程中不能有机械运动干涉的前提下,“菜刀”形导流片头部触及到的位置在二喉道前部扩张收敛段后25%到35%的位置,即触点处于扩张收敛段转折处附近。
为实现喷管垂直起降模态下喷管内流的稳定和顺畅,应保证喷管在垂直起降模态和模态切换过程中喷管喉道始终处于一喉道处,即模态切换过程中喷管的上下两个流动通道的最小面积之和要始终大于一喉道面积,以在切换过程中上下两个流动通道的最小面积之和尽可能保持在1.05-1.2倍的一喉道面积为最佳,从而实现喷管流量的稳定。
在垂直起降模态下,气流流过一喉道后转向向下(或斜向下)喷出,其临近出口的流通通道侧壁以平行或微量渐缩为宜,其轴线角度将明显影响该模态下喷管喷出的气流方向,因此其轴线与水平向后的矢量方向的夹角为90°-100°左右为宜,以95°左右为最佳。
本发明实现俯仰方向控制的原理、注气位置、注气角度等与常规喉道偏移式气动矢量喷管一致,在此不再赘述。同时,本发明适用范围同时满足主动有源型和自适应无源型的喉道偏移式气动矢量喷管。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,包括平飞模态下依次连通的喷管进口(1)、一喉道前部等直段(2)、一喉道前部收敛段(3)、一喉道(4)、二喉道前部扩张段(5)、二喉道前部收敛段(7)、二喉道(9);
    其中,所述二喉道前部扩张收敛段的下壁面处设置有与一喉道(4)下壁面相接的固定部以及固定部后侧可绕转轴(8)转动的“菜刀”形导流片(6),平飞模态下“菜刀”形导流片(6)的头部与固定部的内壁面贴紧封闭,“菜刀”形导流片(6)的内表面与二喉道前部扩张收敛段的上壁面之间形成二喉道前部的流通通道;
    由平飞模态切换至垂直起降模态时“菜刀”形导流片(6)绕转轴(8)顺时针转动至其尖点头部触及二喉道前部扩张收敛段的上壁面,通过“菜刀”形导流片(6)绕转轴(8)不超过90°的转动,实现水平流过一喉道(4)的气流不小于90°的向下转向,进而实现平飞模态至垂直起降模态的切换。
  2. 根据权利要求1所述的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,所述“菜刀”形导流片(6)的外部型线包括依次衔接的AB、BC、CD、DE、AE五段,且AB、AE段构成“菜刀”形导流片(6)的头部型线,CD、DE段构成“菜刀”形导流片(6)的尾部型线;
    其中,AE段选用平飞模态下二喉道前部扩张收敛段下壁面的内型线,AB段与AE段在点A处的夹角小于90°,且AB段为直线;CD段与固定部的后缘型面之间构成垂直起降模态下喷管气流的喷出口,CD段为直线,垂直起降模态下CD段与水平向后的矢量方向的夹角为90°-100°;BC段为连接AB段与CD段的光滑过渡曲线,DE段的设计需同时满足以下两个条件:(1)喷管平飞模态下喷管出口气流在DE段不会附壁流动;(2)“菜刀”形导流板在模态切换过程中,“菜刀”形导流板上侧流通通道的气流流经上侧扩张收敛段斜向下喷出的时候会在DE段上发生附壁流动;平飞状态下DE段的点E一侧与水平方向的初始夹角大于45°,DE段的点D一侧为由连续光滑外凸曲线构成的科恩达效应曲面。
  3. 根据权利要求1所述的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,水平方向上,转轴(8)位于平飞模态下二喉道(9)的下游,记一喉道(4)的高度为Hth1,则转轴(8)与二喉道(9)的水平距离x的取值范围为15%×Hth1≤x≤55%×Hth1;竖直方向上,转轴(8)位于平飞模态下二喉道下侧尖点以下,转轴(8)与二喉道下侧尖点的竖直距离y的取值范围为25%×Hth1≤y≤60%×Hth1。
  4. 根据权利要求1所述的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,自平飞模态切换至垂直起降模态,“菜刀”形导流片(6)的转动角度θ满足45°≤θ≤90°,且垂直起降模态下“菜刀”形导流片(6)的尖点头部触及二喉道前部扩张收敛段上壁面距离二喉道(9)25%-35%凹腔长度的位置。
  5. 根据权利要求1所述的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,所述模态切换过程中“菜刀”形导流片(6)的上下两侧流动通道的最小面积之和始终大于一喉道(4)面积,且二者之和为1.05-1.2倍的一喉道(4)面积。
  6. 根据权利要求1所述的一种基于导流板的垂直起降型喉道偏移式气动矢量喷管,其特征在于,在平飞模态切换至垂直起降模态的0-30%阶段和垂直起降模态切换至平飞模态的70%-100%阶段,在一喉道下侧尖点处向主气流注入次流来进行流动控制。
PCT/CN2018/112397 2018-03-22 2018-10-29 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管 WO2019179101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810240317.0A CN108590884B (zh) 2018-03-22 2018-03-22 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管
CN201810240317.0 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019179101A1 true WO2019179101A1 (zh) 2019-09-26

Family

ID=63627054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112397 WO2019179101A1 (zh) 2018-03-22 2018-10-29 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管

Country Status (2)

Country Link
CN (1) CN108590884B (zh)
WO (1) WO2019179101A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108590884B (zh) * 2018-03-22 2020-01-17 南京航空航天大学 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管
CN109723570B (zh) * 2018-12-24 2021-11-09 南京航空航天大学 具有非对称后体型面的喉道偏移式气动矢量喷管
CN109723571B (zh) * 2018-12-27 2021-02-26 南京航空航天大学 一种梯形截面的喉道偏移式气动矢量喷管及装备有该矢量喷管的飞行器
CN112177794B (zh) * 2020-08-21 2022-01-04 南京航空航天大学 一种喉道偏移式气动矢量喷管及其设计方法
CN112228242B (zh) * 2020-09-17 2021-12-14 南京航空航天大学 具有短距/垂直起降功能的机械-气动复合式矢量喷管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792587A (en) * 1972-07-17 1974-02-19 Gen Electric Exhaust vectoring means
US20030183723A1 (en) * 2002-04-01 2003-10-02 Lockheed Martin Corporation Propulsion system for a vertical and short takeoff and landing aircraft
CN103939235A (zh) * 2014-04-25 2014-07-23 西北工业大学 一种用于短距垂直起降发动机的旋转式推力矢量喷管
CN104863749A (zh) * 2015-03-27 2015-08-26 南京航空航天大学 具有反推功能的旁路式无源双喉道矢量喷管
CN105134407A (zh) * 2015-08-20 2015-12-09 南京航空航天大学 具有垂直起降功能的喉道偏移式气动矢量喷管及控制方法
CN108590884A (zh) * 2018-03-22 2018-09-28 南京航空航天大学 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792587A (en) * 1972-07-17 1974-02-19 Gen Electric Exhaust vectoring means
US20030183723A1 (en) * 2002-04-01 2003-10-02 Lockheed Martin Corporation Propulsion system for a vertical and short takeoff and landing aircraft
CN103939235A (zh) * 2014-04-25 2014-07-23 西北工业大学 一种用于短距垂直起降发动机的旋转式推力矢量喷管
CN104863749A (zh) * 2015-03-27 2015-08-26 南京航空航天大学 具有反推功能的旁路式无源双喉道矢量喷管
CN105134407A (zh) * 2015-08-20 2015-12-09 南京航空航天大学 具有垂直起降功能的喉道偏移式气动矢量喷管及控制方法
CN108590884A (zh) * 2018-03-22 2018-09-28 南京航空航天大学 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管

Also Published As

Publication number Publication date
CN108590884A (zh) 2018-09-28
CN108590884B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2019179101A1 (zh) 一种基于导流板的垂直起降型喉道偏移式气动矢量喷管
CN110284994B (zh) 一种基于喉道偏移式气动矢量喷管的并联式推力矢量排气***
US9181899B2 (en) Variable slope exhaust nozzle
WO2020134005A1 (zh) 具有非对称后体型面的喉道偏移式气动矢量喷管
US20070092372A1 (en) Variable geometry inlet guide vane
US20090320487A1 (en) Systems and methods for reducing noise from jet engine exhaust
CN110657043B (zh) 一种机械扰动式喉道偏移式气动矢量喷管
US20120011825A1 (en) Gas turbine engine with noise attenuating variable area fan nozzle
CN109779780B (zh) 一种平行四边形截面的喉道偏移式气动矢量喷管
JP2003148246A (ja) ガスタービンエンジンの空気流に生じる歪み損失を減少させるための方法及び装置
CN110185500A (zh) 涡轮叶片的v型气膜孔和涡轮叶片
CN106837600A (zh) 基于流体振荡器原理的喉道偏移式气动矢量喷管
WO2019179102A1 (zh) 一种基于平移运动的短距起降型喉道偏移式气动矢量喷管
CN106014684A (zh) 一种改善tbcc用sern的组合流动控制方法及结构
CN110671231B (zh) 一种具有前置扰流片的喉道偏移式气动矢量喷管
CN113107611B (zh) 基于双喉道气动矢量喷管的涡轮叶片尾缘冷却结构及其尾迹控制方法
CN105464838B (zh) 用于被动推力导向和羽流偏转的方法和装置
CN113090334A (zh) 一种用于涡轮叶片的前后孔分流式气膜喷射结构
CN117028059A (zh) 基于变循环发动机的分开排气喉道偏移式气动矢量喷管
CN107143383B (zh) 一种涡轮动叶压力面及顶部复合角气膜孔布局结构
CN114087087B (zh) 一种多原理多模态气动矢量喷管及控制方法
CN110529191A (zh) 一种用于改善涡轮冷却效果的冷却结构
JP4420147B2 (ja) プラグノズルジェットエンジン
CN109723571A (zh) 一种梯形截面的喉道偏移式气动矢量喷管及装备有该矢量喷管的飞行器
CN112709637B (zh) 提高航空发动机短舱进气道抗侧风能力的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910972

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18910972

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18910972

Country of ref document: EP

Kind code of ref document: A1