WO2019177131A1 - エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法 - Google Patents

エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2019177131A1
WO2019177131A1 PCT/JP2019/010715 JP2019010715W WO2019177131A1 WO 2019177131 A1 WO2019177131 A1 WO 2019177131A1 JP 2019010715 W JP2019010715 W JP 2019010715W WO 2019177131 A1 WO2019177131 A1 WO 2019177131A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
prepreg
fiber
ether
Prior art date
Application number
PCT/JP2019/010715
Other languages
English (en)
French (fr)
Inventor
優 小澤
紘典 河本
貴也 鈴木
広明 桑原
金子 徹
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018050277A external-priority patent/JP7315304B2/ja
Priority claimed from JP2018050276A external-priority patent/JP7190258B2/ja
Priority claimed from JP2018140958A external-priority patent/JP7224800B2/ja
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US16/981,096 priority Critical patent/US20200407548A1/en
Priority to AU2019233463A priority patent/AU2019233463A1/en
Priority to CA3094280A priority patent/CA3094280A1/en
Priority to EP19767338.7A priority patent/EP3766912A4/en
Publication of WO2019177131A1 publication Critical patent/WO2019177131A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms

Definitions

  • the present invention relates to an epoxy resin composition, a prepreg, a fiber reinforced composite material, and a production method thereof. More specifically, an epoxy resin composition having a high modulus of elasticity and water absorption resistance, a high physical property at the time of water absorption and a high handling property of the cured resin; a prepreg produced using the epoxy resin composition; the epoxy resin composition
  • the present invention relates to a fiber reinforced composite material manufactured using a product.
  • Fiber reinforced composite materials are lightweight, high-strength, and high-rigidity, so they are widely used in sports and leisure applications such as fishing rods and golf shafts, and industrial applications such as automobiles and aircraft. Used in the field.
  • a molding method of a composite material using a thermosetting resin as a matrix resin there is a method of molding a prepreg (intermediate base material) formed in a sheet shape by impregnating a fiber reinforced base material in advance with a resin.
  • Other molding methods include a resin transfer molding (RTM) method in which a fiber reinforced base material placed in a mold is impregnated with a liquid resin composition and cured to obtain a fiber reinforced composite material.
  • RTM resin transfer molding
  • FRP For the production of FRP, a method of using an intermediate material (prepreg) obtained by impregnating a resin in a fiber-reinforced base layer made of long fibers such as reinforcing fibers is suitably used.
  • a molded article made of FRP can be obtained by shaping the prepreg after cutting it into a desired shape and curing it by heating and pressing.
  • a prepreg using an epoxy resin can obtain a molded article having high mechanical properties.
  • a prepreg using an epoxy resin has a long molding time.
  • a molded product obtained by curing a prepreg using an epoxy resin has insufficient water absorption resistance, and mechanical characteristics such as heat resistance and impact resistance characteristics may be deteriorated during water absorption.
  • Patent Document 1 In press molding capable of short-time molding, high temperature and high pressure conditions of 100 to 150 ° C. and 1 to 15 MPa are generally used (Patent Document 1). This high temperature and high pressure condition can shorten the curing time of the resin constituting the prepreg. Moreover, the gas contained in a prepreg can be discharged
  • the resin flows out from the shear edge portion violently (hereinafter, the phenomenon that the resin flows out from the prepreg due to heating and pressurization in the molding process is also referred to as “resin flow”). Therefore, the obtained FRP has poor appearance such as unimpregnated portions (resin withering) of the resin composition and fiber meandering, and poor performance due to these.
  • Patent Document 2 describes a method of using a high-viscosity epoxy resin or adding a thermoplastic resin to an epoxy resin as a method of suppressing the resin flow.
  • a high-viscosity epoxy resin is used, the resin viscosity at room temperature (25 ° C.) also increases. For this reason, handling of the prepreg is remarkably low, such as difficulty in laminating work.
  • Patent Documents 3 to 5 describe prepregs for high cycle press molding that improve the handleability of the prepreg at room temperature and suppress the resin flow without lowering the Tg and the curing rate.
  • the resin used for the prepreg described in Patent Documents 3 to 5 is obtained by increasing the resin viscosity by dissolving a thermoplastic resin in a liquid epoxy resin.
  • the resin viscosity at the time of manufacturing the prepreg also increases, the impregnation property of the resin into the fiber reinforced base layer is lowered, and a void may be generated in the molded FRP.
  • Patent Documents 1 to 6 nothing is mentioned about the water absorption resistance of the obtained FRP.
  • Patent Document 7 describes a method of imparting toughness to a thermosetting resin by dissolving a thermoplastic resin in the thermosetting resin. According to this method, a certain degree of toughness can be imparted to the thermosetting resin. However, in order to impart high toughness, a large amount of thermoplastic resin must be dissolved in the thermosetting resin. A thermosetting resin in which a large amount of thermoplastic resin is dissolved has a remarkably high viscosity, and it becomes difficult to impregnate a sufficient amount of resin inside the reinforcing fiber base made of carbon fibers. An FRP produced using such a prepreg has many defects such as voids.
  • Patent Documents 8 to 10 describe prepregs in which thermoplastic resin fine particles are localized on the surface of the prepreg. These prepregs have low initial tackiness because the particle-shaped thermoplastic resin is localized on the surface. Moreover, since the curing reaction with the curing agent present in the surface layer proceeds, the storage stability is poor, and the tackiness and draping properties deteriorate with time. Further, FRP produced using such a prepreg in which the curing reaction has progressed contains many voids and other defects, and the mechanical properties of the FRP structure are significantly reduced.
  • the composition of the matrix resin used in the RTM molding method mainly includes an epoxy resin and a curing agent, and optionally includes other additives.
  • an aromatic polyamine in order to obtain a cured product or a fiber-reinforced composite material having high mechanical properties.
  • the curing agent may be used in a state dissolved in the epoxy resin in order to prevent the curing agent from being filtered off when the reinforcing fiber substrate is impregnated with the resin composition.
  • the curing agent since the curing agent is present in the epoxy resin in a dissolved state, the reaction between the epoxy resin and the curing agent is relatively likely to occur, and the pot life of the resin composition is shortened. Therefore, as described in Patent Document 11, a hindered amine-based curing agent having low reactivity is often used.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, to produce a cured resin product having excellent characteristics, to have a high impregnation property to a fiber reinforced base material, and to be excellent in handleability. Is to provide.
  • a further object of the present invention is to prepare a prepreg produced using this epoxy resin composition, and a fiber reinforced composite material (hereinafter abbreviated as “FRP”). In some cases, it may be abbreviated as “CFRP”).
  • the epoxy resin composition that achieves the object of the present invention is the epoxy resin [1] described below.
  • An epoxy resin composition comprising an epoxy resin [A] represented by the following chemical formula (1).
  • R 1 to R 4 each independently represents one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a halogen atom; Is —CH 2 —, —O—, —S—, —CO—, —C ( ⁇ O) O—, —O—C ( ⁇ O) —, —NHCO—, —CONH—, —SO 2 —. Represents one selected.
  • the invention described in [1] above is an epoxy resin composition including a predetermined epoxy resin [A].
  • preferred epoxy resin compositions of the present invention are roughly classified into the following three [2], [6] and [9].
  • An epoxy resin composition comprising:
  • R 1 to R 4 each independently represents one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a halogen atom; Is —CH 2 —, —O—, —S—, —CO—, —C ( ⁇ O) O—, —O—C ( ⁇ O) —, —NHCO—, —CONH—, —SO 2 —. Represents one selected.
  • the invention described in [2] is an epoxy resin composition obtained by mixing a predetermined epoxy resin [A] and a predetermined curing agent [B].
  • the curing agent [B] has a predetermined three-dimensional structure.
  • the curing agent [B] is a curing agent composed of an aromatic polyamine, and is a curing agent composed of an aromatic polyamine having an aliphatic substituent at least at one position in the ortho position relative to the amino group.
  • Epoxy resin composition is a curing agent composed of an aromatic polyamine, and is a curing agent composed of an aromatic polyamine having an aliphatic substituent at least at one position in the ortho position relative to the amino group.
  • R 1 to R 4 each independently represents one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a halogen atom
  • X represents Selected from —CH 2 —, —O—, —S—, —CO—, —C ( ⁇ O) O—, —O—C ( ⁇ O) —, —NHCO—, —CONH—, —SO 2 —.
  • the invention described in [6] is an epoxy resin composition formed by mixing a predetermined epoxy resin [A] and a predetermined epoxy resin [C].
  • the epoxy resin [C] is characterized in that two or more glycidyl ethers are bonded per aromatic ring.
  • An epoxy resin [A] represented by the following chemical formula (1); An epoxy resin [D] having an epoxy equivalent of 110 g / eq or less; An epoxy resin composition comprising:
  • R 1 to R 4 each independently represents one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a halogen atom; Is —CH 2 —, —O—, —S—, —CO—, —C ( ⁇ O) O—, —O—C ( ⁇ O) —, —NHCO—, —CONH—, —SO 2 —. Represents one selected.
  • the invention described in [9] is an epoxy resin composition obtained by mixing a predetermined epoxy resin [A] and an epoxy resin [D] having an epoxy equivalent of 110 g / eq or less.
  • the content of the epoxy resin [A] is 20 to 95% by mass with respect to the total amount of the epoxy resin, and the content of the epoxy resin [D] is 5 to 80% by mass with respect to the total amount of the epoxy resin.
  • the epoxy resin composition according to any one of [9] to [11].
  • a method for producing a prepreg comprising impregnating a reinforcing fiber base material with the epoxy resin composition according to any one of [1] to [13].
  • a fiber reinforced composite material comprising a cured resin obtained by curing the epoxy resin composition according to any one of [1] to [13], and a fiber reinforced base material.
  • [18] A method for producing a fiber-reinforced composite material, wherein a fiber-reinforced base material and the epoxy resin composition according to any one of [1] to [13] are combined and cured.
  • a process for producing a fiber-reinforced composite material characterized by laminating the prepreg according to [14] or [15] and heating at a pressure of 0.05 to 2 MPa and a temperature of 150 to 210 ° C. for 1 to 8 hours .
  • the epoxy resin composition of the present invention can produce a cured resin having excellent characteristics. Moreover, since the epoxy resin composition of the present invention has high impregnation properties and handling properties with respect to the fiber reinforced substrate, it is possible to produce FRP having excellent characteristics.
  • Epoxy resin composition of the present invention comprises at least an epoxy resin [A]. By including the epoxy resin [A], a cured product having excellent bending elastic modulus can be obtained. And by using such an epoxy resin composition, it is possible to obtain a fiber-reinforced composite material having excellent compression characteristics, impact resistance, and toughness.
  • the preferable epoxy resin composition of this invention is divided roughly into three as described below. ⁇ Epoxy resin composition (I) ⁇ Epoxy resin composition (II) -Epoxy resin composition (III)
  • Any epoxy resin composition of the present invention may contain a thermosetting resin, a thermoplastic resin, a curing agent, and other additives in addition to the epoxy resin [A] and the essential components of each resin composition. good.
  • Epoxy resin composition (I) The epoxy resin composition (I) comprises at least an epoxy resin [A] and an aromatic polyamine having an aliphatic substituent, an aromatic substituent, or a halogen atom substituent at least at one position ortho to the amino group And a curing agent [B].
  • the viscosity at 100 ° C. of the epoxy resin composition (I) of the present invention is preferably 0.1 to 500 Pa ⁇ s, more preferably 1 to 100 Pa ⁇ s.
  • it is less than 0.1 Pa ⁇ s, the resin easily flows out from the prepreg.
  • it exceeds 500 Pa ⁇ s an unimpregnated portion tends to occur in the prepreg. As a result, voids and the like are easily formed in the obtained fiber-reinforced composite material.
  • the cured resin obtained by curing the epoxy resin composition (I) of the present invention preferably has a glass transition temperature of 150 ° C. or higher at the time of water absorption, more preferably 170 to 400 ° C. When it is less than 150 ° C., the heat resistance is insufficient.
  • the cured resin obtained by curing the epoxy resin composition (I) of the present invention preferably has a flexural modulus of 3.0 GPa or more as measured by JIS K7171 method, and is preferably 3.5 to 30 GPa. More preferably, it is 4.0 to 20 GPa. When it is less than 3.0 GPa, the properties of the obtained fiber-reinforced composite material are likely to be deteriorated.
  • Epoxy resin [A] All of the epoxy resin compositions of the present invention contain an epoxy resin [A] represented by the following chemical formula (1).
  • R 1 to R 4 each independently represents one selected from the group consisting of a hydrogen atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a halogen atom; Is —CH 2 —, —O—, —S—, —CO—, —C ( ⁇ O) O—, —O—C ( ⁇ O) —, —NHCO—, —CONH—, —SO 2 —. Represents one selected.
  • R 1 to R 4 are an aliphatic hydrocarbon group or an alicyclic hydrocarbon group, the number of carbon atoms is preferably 1 to 4.
  • the epoxy resin [A] two aromatic rings are bonded via an X group, and a diglycidyl group is bonded to each aromatic ring.
  • the X group and the diglycidyl group are bonded at the para position, and in the other one aromatic ring, the X group and the diglycidyl group are bonded at the meta position.
  • the present inventors presume that due to the special three-dimensional structure of the cured resin resulting from this structure, the elastic modulus and heat resistance of the cured resin are increased.
  • Examples of the epoxy resin [A] include compounds represented by the following chemical formulas (2) to (4).
  • Such an epoxy resin [A] may be synthesized by any method. For example, an aromatic diamine compound as a raw material and an epihalohydrin such as epichlorohydrin are reacted to form a tetrahalohydrin body. Then, it is obtained by cyclization using an alkaline compound. More specifically, it can be synthesized by the method of Examples described later.
  • aromatic diamine As an aromatic diamine as a raw material, two aromatic rings having an amino group are linked by an ether bond, and one amino group is located in the para position and the other amino group is located in the ortho position with respect to the ether bond. Furthermore, it may be an aromatic diamine in which at least one substituent other than a hydrogen atom is bonded to the ortho position with respect to the amino group of at least one aromatic ring.
  • aromatic diamines for example, when the number of substituents is 1, 3,4'-diamino-3'-methyldiphenyl ether, 3,4'-diamino-3'-ethyldiphenyl ether, 3,4'- Diamino-3'-isopropyldiphenyl ether, 3,4'-diamino-3'-tert-butyldiphenyl ether, 3,4'-diamino-3'-fluorodiphenyl ether, 3,4'-diamino-3'-chlorodiphenyl ether, 3 , 4′-diamino-2-methyldiphenyl ether, 3,4′-diamino-2-ethyldiphenyl ether, 3,4′-diamino-2-isopropyldiphenyl ether, 3,4′-diamino-2-tert-butylphenyl ether, 3,4′-diamino-4-methyldip
  • aromatic diamine having 2 substituents examples include 3,4'-diamino-3 ', 5'-dimethylphenyl ether, 3,4'-diamino-3', 5'-diethylphenyl ether, 3,4 '-Diamino-3', 5'-diisopropylphenyl ether, 3,4'-diamino-3 ', 5'-di-tert-butylphenyl ether, 3,4'-diamino-3'-ethyl-5'- Methyl phenyl ether, 3,4'-diamino-2,3'-dimethylphenyl ether, 3,4'-diamino-3'-ethyl-2-methylphenyl ether, 3,4'-diamino-3'-isopropyl- 2-methylphenyl ether, 3,4'-diamino-2-methyl-3'-tert-butylphenyl ether, 3,4'-d
  • aromatic diamine having 3 substituents examples include 3,4'-diamino-2,3 ', 5'-trimethylphenyl ether, 3,4'-diamino-3', 5'-diethyl-2-methyl.
  • epihalohydrin examples include epichlorohydrin, epibromohydrin, epifluorohydrin, and the like. Among these, epichlorohydrin and epibromohydrin are particularly preferable from the viewpoints of reactivity and handling.
  • the mass ratio of aromatic diamine to epihalohydrin is preferably 1: 1 to 1:20, more preferably 1: 3 to 1:10.
  • Solvents used during the reaction include alcohol solvents such as ethanol and n-butanol, ketone solvents such as methyl isobutyl ketone and methyl ethyl ketone, aprotic polar solvents such as acetonitrile and N, N-dimethylformamide, toluene and xylene, etc.
  • Aromatic hydrocarbon solvents are exemplified. In particular, alcohol solvents such as ethanol and n-butanol, and aromatic hydrocarbon solvents such as toluene and xylene are preferred.
  • the amount of the solvent used is preferably 1 to 10 times by mass with respect to the aromatic diamine.
  • the acid catalyst both Bronsted acid and Lewis acid can be preferably used. Particularly, Bronsted acid is preferably ethanol, water, or acetic acid.
  • Lewis acid is preferably titanium tetrachloride, lanthanum nitrate hexahydrate, or three. A boron fluoride diethyl ether complex is preferred.
  • the reaction time is preferably 0.1 to 180 hours, more preferably 0.5 to 24 hours.
  • the reaction temperature is preferably 20 to 100 ° C, more preferably 40 to 80 ° C.
  • phase transfer catalysts include quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide, benzyltriethylammonium chloride, tetrabutylammonium hydrogen sulfate, phosphonium compounds such as tributylhexadecylphosphonium bromide, tributyldodecylphosphonium bromide, Examples are crown ethers such as 18-crown-6-ether.
  • the epoxy resin [A] used in the present invention preferably has a viscosity at 50 ° C. of less than 50 Pa ⁇ s, more preferably less than 10 Pa ⁇ s, still more preferably less than 5.0 Pa ⁇ s, It is particularly preferred that it is less than 2.0 Pa ⁇ s.
  • the epoxy resin [A] is preferably tetraglycidyl-3,4'-diaminodiphenyl ether.
  • R 1 to R 4 are hydrogen atoms, it is preferable because formation of a special three-dimensional structure of the cured resin product is difficult to be inhibited.
  • X is preferably —O— because the compound can be easily synthesized.
  • the ratio of the epoxy resin [A] to the total amount of the epoxy resin is preferably 20 to 100% by mass, and more preferably 40 to 100% by mass. More preferably, the content is 55 to 100% by mass. If it is less than 20% by mass, the heat resistance and elastic modulus of the resulting cured resin may be reduced. As a result, various physical properties of the obtained CFRP may deteriorate.
  • the epoxy resin composition (I) of the present invention is a curing agent comprising an aromatic polyamine, and is any one of at least one aliphatic substituent, aromatic substituent and halogen atom in the ortho position relative to the amino group.
  • R 1 to R 4 are each independently a hydrogen atom, an aliphatic substituent having 1 to 6 carbon atoms, an aromatic substituent, or a halogen atom, and at least one substitution The group is any one of an aliphatic substituent having 1 to 6 carbon atoms, an aromatic substituent, and a halogen atom.
  • X represents —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —S—, —O—, —SO 2 —, —CO—, —CONH—, —NHCO—, — One of C ( ⁇ O) — and —O—C ( ⁇ O) —.
  • R 5 to R 8 are each independently a hydrogen atom, an aliphatic substituent, an aromatic substituent or a halogen atom, and at least one substituent has 1 to 6 aliphatic substituents, aromatic substituents, or halogen atoms.
  • the one substituent is preferably an aliphatic substituent having 1 to 6 carbon atoms.
  • the aliphatic substituent preferably has 1 to 6 carbon atoms.
  • Aliphatic substituents include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, cyclohexyl, etc. Is exemplified.
  • aromatic substituent include a phenyl group and a naphthyl group.
  • the curing agent [B] cures the epoxy resin [A] and improves the elastic modulus and water absorption resistance of the cured resin. Therefore, by using the epoxy resin [A] and the curing agent [B] in combination, the water absorption resistance can be improved while maintaining the heat resistance and the high elastic modulus.
  • the curing agent [B] may be a polyamine having the above-described structure. Specifically, 4,4′-diaminodiphenylmethane and its derivatives represented by the following chemical formulas (7) to (10); Examples thereof include phenylenediamines and derivatives thereof represented by 11) and (12).
  • the content of the curing agent [B] in the epoxy resin composition (I) of the present invention is 20 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin [A] contained in the epoxy resin composition (I).
  • the amount is preferably 30 to 80 parts by mass. When the amount is less than 20 parts by mass, the epoxy resin composition (I) is not sufficiently cured, and the physical properties of the cured resin product are easily lowered. When it exceeds 100 mass parts, hardening of epoxy resin composition (I) becomes inadequate, and it is easy to reduce the mechanical physical property of resin cured material.
  • the epoxy resin composition (I) of the present invention essentially comprises the epoxy resin [A] and the curing agent [B], but may contain other epoxy resins.
  • epoxy resins conventionally known epoxy resins can be used. Specifically, those exemplified below can be used. Among these, an epoxy resin containing an aromatic group is preferable, and an epoxy resin containing either a glycidylamine structure or a glycidyl ether structure is preferable. Moreover, an alicyclic epoxy resin can also be used suitably.
  • Examples of the epoxy resin containing a glycidylamine structure include tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol, N, N, O— Examples include triglycidyl-3-methyl-4-aminophenol and various isomers of triglycidylaminocresol.
  • Examples of the epoxy resin containing a glycidyl ether structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • these epoxy resins may have a non-reactive substituent in the aromatic ring structure or the like, if necessary.
  • non-reactive substituents include alkyl groups such as methyl, ethyl, and isopropyl, aromatic groups such as phenyl, alkoxyl groups, aralkyl groups, and halogen groups such as chlorine and bromine.
  • the epoxy resin composition (I) of the present invention may contain other curing agents.
  • Other curing agents include latent curing agents such as dicyandiamide, aliphatic polyamines, various isomers of aromatic amine curing agents (excluding the above curing agent [B]), aminobenzoic acid esters, and acid anhydrides. Things are listed.
  • Dicyandiamide is preferable because of excellent storage stability of the prepreg.
  • the aliphatic polyamines include 4,4′-diaminodicyclohexylmethane, isophoronediamine, m-xylylenediamine and the like.
  • Aromatic polyamines are preferred because they are excellent in heat resistance and various mechanical properties. Examples of aromatic polyamines include diaminodiphenyl sulfones, diaminodiphenylmethanes, and toluenediamine derivatives.
  • Aromatic diamine compounds such as 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, and derivatives having these non-reactive substituents are cured products having high heat resistance. Is particularly preferable. Furthermore, 3,3′-diaminodiphenylsulfone is more preferable because the cured resin obtained has high heat resistance and elastic modulus.
  • the non-reactive substituent include alkyl groups such as methyl, ethyl and isopropyl, aromatic groups such as phenyl, alkoxyl groups, aralkyl groups, and halogen groups such as chlorine and bromine.
  • polystyrene resin As aminobenzoic acid esters, trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used.
  • Composite materials cured with these curing agents have lower heat resistance but higher tensile elongation than composite materials cured with various isomers of diaminodiphenylsulfone.
  • acid anhydrides include 1,2,3,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and 4-methylhexahydrophthalic anhydride.
  • the total amount of the curing agent contained in the epoxy resin composition (I) is an amount suitable for curing all the epoxy resins blended in the epoxy resin composition, and depends on the type of epoxy resin and curing agent used. It is adjusted accordingly.
  • the amount is preferably 25 to 65 parts by mass, more preferably 35 to 55 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • the epoxy resin composition (I) of the present invention may contain a thermoplastic resin.
  • the thermoplastic resin include an epoxy resin-soluble thermoplastic resin and an epoxy resin-insoluble thermoplastic resin.
  • the epoxy resin-soluble thermoplastic resin adjusts the viscosity of the epoxy resin composition and improves the impact resistance of the obtained FRP.
  • the epoxy resin-soluble thermoplastic resin is a thermoplastic resin that can be partially or wholly dissolved in the epoxy resin at a temperature at which FRP is molded or at a temperature lower than that.
  • a part of the epoxy resin is dissolved when 10 parts by mass of a thermoplastic resin having an average particle size of 20 to 50 ⁇ m is mixed with 100 parts by mass of the epoxy resin and stirred at 190 ° C. for 1 hour. Disappears or the particle size (particle diameter) changes by 10% or more.
  • the epoxy resin-insoluble thermoplastic resin refers to a thermoplastic resin that does not substantially dissolve in the epoxy resin at a temperature at which FRP is molded or at a temperature lower than that. That is, when 100 parts by mass of an epoxy resin is mixed with 10 parts by mass of a thermoplastic resin having an average particle diameter of 20 to 50 ⁇ m and stirred at 190 ° C. for 1 hour, the particle size does not change by 10% or more. It refers to a plastic resin.
  • the temperature for molding FRP is 100 to 190 ° C.
  • the particle diameter is measured visually with a microscope, and the average particle diameter means the average value of the particle diameters of 100 particles selected at random.
  • the epoxy resin-soluble thermoplastic resin When the epoxy resin-soluble thermoplastic resin is not completely dissolved, it is dissolved in the epoxy resin by heating in the curing process of the epoxy resin, and the viscosity of the epoxy resin composition can be increased. Thereby, it is possible to prevent the flow of the epoxy resin composition (a phenomenon in which the resin composition flows out from the prepreg) due to a decrease in viscosity in the curing process.
  • the epoxy resin-soluble thermoplastic resin is preferably a resin that dissolves in an epoxy resin at 190 ° C. in an amount of 80% by mass or more.
  • the epoxy resin-soluble thermoplastic resin include polyethersulfone, polysulfone, polyetherimide, and polycarbonate. These may be used alone or in combination of two or more.
  • the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition is particularly preferably polyethersulfone or polysulfone having a weight average molecular weight (Mw) in the range of 8000 to 100,000 as measured by gel permeation chromatography. When the weight average molecular weight (Mw) is less than 8000, the impact resistance of the obtained FRP becomes insufficient, and when it is more than 100,000, the viscosity is remarkably increased and the handling property may be remarkably deteriorated.
  • the molecular weight distribution of the epoxy resin-soluble thermoplastic resin is preferably uniform.
  • the polydispersity (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably in the range of 1 to 10, and preferably in the range of 1.1 to 5. More preferred.
  • the epoxy resin-soluble thermoplastic resin preferably has a reactive group having reactivity with the epoxy resin or a functional group that forms a hydrogen bond.
  • Such an epoxy resin-soluble thermoplastic resin can improve the dissolution stability during the curing process of the epoxy resin.
  • toughness, chemical resistance, heat resistance, and moist heat resistance can be imparted to the FRP obtained after curing.
  • a hydroxyl group, a carboxylic acid group, an imino group, an amino group and the like are preferable.
  • Use of a hydroxyl-terminated polyethersulfone is more preferred because the resulting FRP is particularly excellent in impact resistance, fracture toughness and solvent resistance.
  • the content of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition (I) is appropriately adjusted according to the viscosity. From the viewpoint of workability of the prepreg, 5 to 90 parts by weight are preferable, 5 to 40 parts by weight are more preferable, and 15 to 35 parts by weight with respect to 100 parts by weight of the epoxy resin contained in the epoxy resin composition (I). Is more preferable. If the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance. When the content of the epoxy resin-soluble thermoplastic resin is high, the viscosity is remarkably increased, and the prepreg handling property may be remarkably deteriorated.
  • the epoxy resin-soluble thermoplastic resin preferably contains a reactive aromatic oligomer having an amine end group (hereinafter also simply referred to as “aromatic oligomer”).
  • the epoxy resin composition has a high molecular weight due to a curing reaction between the epoxy resin and the curing agent during heat curing.
  • the aromatic oligomer dissolved in the epoxy resin composition causes reaction-induced phase separation.
  • a two-phase structure of a resin in which the cured epoxy resin and the aromatic oligomer are co-continuous is formed in the matrix resin.
  • the aromatic oligomer since the aromatic oligomer has an amine terminal group, a reaction with an epoxy resin also occurs. Since the phases in this co-continuous two-phase structure are firmly bonded to each other, the solvent resistance is also improved.
  • This co-continuous structure absorbs external impact on FRP and suppresses crack propagation.
  • FRP produced using a prepreg containing a reactive aromatic oligomer having an amine end group has high impact resistance and fracture toughness.
  • a known polysulfone having an amine end group and a polyether sulfone having an amine end group can be used.
  • the amine end group is preferably a primary amine (—NH 2 ) end group.
  • the aromatic oligomer blended in the epoxy resin composition preferably has a weight average molecular weight of 8000 to 40,000 as measured by gel permeation chromatography.
  • weight average molecular weight is less than 8000, the effect of improving the toughness of the matrix resin is low.
  • weight average molecular weight exceeds 40000, the viscosity of the resin composition becomes too high, and processing problems such as difficulty in impregnating the resin composition in the reinforcing fiber layer tend to occur.
  • the form of the epoxy resin-soluble thermoplastic resin is not particularly limited, but is preferably particulate.
  • the particulate epoxy resin-soluble thermoplastic resin can be uniformly blended in the resin composition. Moreover, the moldability of the obtained prepreg is high.
  • the average particle size of the epoxy resin-soluble thermoplastic resin is preferably 1 to 50 ⁇ m, and particularly preferably 3 to 30 ⁇ m. When it is less than 1 ⁇ m, the viscosity of the epoxy resin composition is remarkably increased. Therefore, it may be difficult to add a sufficient amount of the epoxy resin-soluble thermoplastic resin to the epoxy resin composition. When exceeding 50 micrometers, when processing an epoxy resin composition into a sheet form, it may become difficult to obtain a sheet of uniform thickness. Moreover, since the melt
  • the epoxy resin composition may contain an epoxy resin-insoluble thermoplastic resin in addition to the epoxy resin-soluble thermoplastic resin.
  • Part of epoxy resin-insoluble thermoplastic resin and epoxy resin-soluble thermoplastic resin is dispersed in the FRP matrix resin (Hereinafter, the dispersed particles are also referred to as “interlayer particles”).
  • the interlayer particles suppress the propagation of the impact received by the FRP. As a result, the impact resistance of the obtained FRP is improved.
  • epoxy resin insoluble thermoplastic resins include polyamide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyester, polyamideimide, polyimide, polyetherketone, polyetheretherketone, polyethylene naphthalate, polyethernitrile, and polybenzimidazole. .
  • polyamide, polyamideimide, and polyimide are preferable because of high toughness and heat resistance.
  • Polyamide and polyimide are particularly excellent in improving toughness against FRP. These may be used alone or in combination of two or more. Moreover, these copolymers can also be used.
  • amorphous polyimide in particular, amorphous polyimide, nylon 6 (registered trademark) (polyamide obtained by ring-opening polycondensation reaction of caprolactam), nylon 11 (polyamide obtained by ring-opening polycondensation reaction of undecane lactam), nylon 12 (lauryl lactam) Polyamide obtained by a ring-opening polycondensation reaction), nylon 1010 (polyamide obtained by copolyreaction of sebacic acid and 1,10-decanediamine), amorphous nylon (also called transparent nylon, polymer crystal)
  • the heat resistance of the resulting FRP can be particularly improved by using a polyamide such as nylon which does not cause crystallization or has a very slow polymer crystallization rate.
  • the content of the epoxy resin-insoluble thermoplastic resin in the epoxy resin composition is appropriately adjusted according to the viscosity of the epoxy resin composition.
  • the amount is preferably 5 to 50 parts by weight, more preferably 10 to 45 parts by weight, and more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the epoxy resin contained in the epoxy resin composition. More preferably, it is 40 parts by mass.
  • the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance.
  • it exceeds 50 mass parts the impregnation property of an epoxy resin composition, the drape property of the prepreg obtained, etc. may be reduced.
  • the preferable average particle diameter and form of the epoxy resin-insoluble thermoplastic resin are the same as those of the epoxy resin-soluble thermoplastic resin.
  • conductive particles In the epoxy resin composition of the present invention, conductive particles, a flame retardant, an inorganic filler, and an internal release agent may be blended.
  • the conductive particles include conductive polymer particles such as polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaphthene particles and polyethylenedioxythiophene particles; carbon particles; carbon fiber particles; metal particles; inorganic materials or organic materials
  • conductive polymer particles such as polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaphthene particles and polyethylenedioxythiophene particles
  • covered the core material which consists of material with a conductive substance are illustrated.
  • flame retardants include phosphorus flame retardants.
  • the phosphorus-based flame retardant is not particularly limited as long as it contains a phosphorus atom in the molecule, and examples thereof include organic phosphorus compounds such as phosphate esters, condensed phosphate esters, phosphazene compounds, and polyphosphates, and red phosphorus. It is done.
  • inorganic fillers examples include aluminum borate, calcium carbonate, silicon carbonate, silicon nitride, potassium titanate, basic magnesium sulfate, zinc oxide, graphite, calcium sulfate, magnesium borate, magnesium oxide, silicate mineral Is mentioned.
  • silicate mineral examples include THIXOTROPIC AGENT DT 5039 (manufactured by Huntsman Japan Co., Ltd.).
  • the internal mold release agent examples include metal soaps, vegetable waxes such as polyethylene wax and carbana wax, fatty acid ester type mold release agents, silicone oil, animal waxes, and fluorine type nonionic surfactants.
  • the compounding amount of these internal mold release agents is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the epoxy resin. Within this range, the effect of releasing from the mold is suitably exhibited.
  • Epoxy resin composition (II) includes at least an epoxy resin [A] and an aromatic epoxy resin having a glycidyl ether group, the epoxy resin having a glycidyl ether number / aromatic ring number of 2 or more [C]. Become.
  • the preferred viscosity at 100 ° C. of the epoxy resin composition (II) of the present invention is as described in the epoxy resin composition (I).
  • the cured resin obtained by curing the epoxy resin composition (II) of the present invention preferably has a glass transition temperature of 150 ° C. or higher, more preferably 170 to 400 ° C. When it is less than 150 ° C., the heat resistance is insufficient.
  • the flexural modulus measured by the JIS K7171 method of the cured resin obtained by curing the epoxy resin composition (II) of the present invention is as described in the epoxy resin composition (I).
  • Epoxy resin [A] The epoxy resin [A] contained in the epoxy resin composition (II) of the present invention is as described in the epoxy resin composition (I).
  • the ratio of the epoxy resin [A] to the total amount of the epoxy resin is preferably 20 to 95% by mass, and more preferably 40 to 60% by mass. More preferably, the content is 55 to 90% by mass. If it is less than 20% by mass, the heat resistance and elastic modulus of the resulting cured resin may be reduced. When it exceeds 95 mass%, the viscosity of an epoxy resin composition is high, and the impregnation property to a reinforced fiber base material tends to fall. As a result, in any case, various physical properties of the obtained CFRP may deteriorate.
  • Epoxy resin [C] The epoxy resin composition (II) of the present invention is an aromatic epoxy resin having a glycidyl ether group, and includes an epoxy resin [C] having a glycidyl ether number / aromatic ring number of 2 or more.
  • the number of glycidyl ethers / aromatic rings is preferably 2.
  • a condensed ring structure such as a naphthalene ring or an anthracene ring is regarded as one aromatic ring.
  • the epoxy resin [C] decreases the viscosity of the epoxy resin [A], improves the resin impregnation property at the time of preparing the prepreg, and improves the elastic modulus of the cured resin. Therefore, by using the epoxy resin [A] and the epoxy resin [C] in combination, various physical properties of the FRP can be improved while maintaining heat resistance and high elastic modulus.
  • the epoxy resin [C] is not particularly limited as long as it is an epoxy resin having 2 or more glycidyl ethers / aromatic rings, but glycidyl ether type epoxy such as o-hydroquinone, resorcinol, p-hydroquinone and derivatives thereof. It is preferable to use a resin, and it is particularly preferable to use resorcinol and its derivatives.
  • the mass ratio of the epoxy resin [A] and the epoxy resin [C] is preferably 2: 8 to 9: 1, and is 4: 6 to 9: 1. More preferably, it is more preferably 6: 4 to 8: 2.
  • the epoxy resin composition (II) which has a viscosity suitable for preparation of a prepreg can be produced, and resin cured material with a high crosslinking density can be obtained.
  • the epoxy resin [C] is a viscosity reducing agent that lowers the viscosity of the epoxy resin [A].
  • the epoxy resin composition (II) of the present invention essentially comprises the above two types of epoxy resins, but may contain other epoxy resins. Other epoxy resins are as described in the epoxy resin composition (I).
  • the ratio of the epoxy resin [A] and the epoxy resin [C] to the total epoxy resin amount is preferably 50% by mass or more, and 70% by mass or more. It is more preferable.
  • Amine-based curing agent A known amine-based curing agent is used for the epoxy resin composition (II) of the present invention.
  • the epoxy resin composition (II) of this invention may contain this hardening
  • the epoxy resin composition (II) that does not contain a curing agent is mixed with the curing agent before or during curing.
  • amine curing agents examples include latent curing agents such as dicyandiamide, aliphatic polyamines, various isomers of aromatic amine curing agents, aminobenzoic acid esters, and acid anhydrides.
  • Dicyandiamide is preferable because of excellent storage stability of the prepreg.
  • Aliphatic polyamines are preferred because of their high reactivity and the ability to cure at low temperatures. Examples of the aliphatic polyamines include 4,4′-diaminodicyclohexylmethane, isophoronediamine, m-xylylenediamine and the like. Aromatic polyamines are preferred because they are excellent in heat resistance and various mechanical properties. Examples of aromatic polyamines include diaminodiphenyl sulfones, diaminodiphenylmethanes, and toluenediamine derivatives.
  • Aromatic diamine compounds such as 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylmethane and their non-reactive substituent derivatives are cured with good heat resistance. It is particularly preferable from the viewpoint of providing a product.
  • the non-reactive substituent is the same as the non-reactive substituent described in the description of the epoxy resin.
  • 4,4′-methylenebis (2,6-diethylaniline), 4,4 ′ Hindered amine compounds such as -methylenebis (2-ethyl-6-methylaniline) and 4,4'-methylenebis (2-isopropyl-6-methylaniline) are also preferably used.
  • aminobenzoic acid esters trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used.
  • Composite materials cured using these are inferior in heat resistance to various isomers of diaminodiphenylsulfone, but are excellent in tensile elongation.
  • acid anhydrides include 1,2,3,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and 4-methylhexahydrophthalic anhydride.
  • the amount of the curing agent contained in the epoxy resin composition (II) is an amount suitable for at least curing the epoxy resin blended in the epoxy resin composition (II). What is necessary is just to adjust the quantity of a hardening
  • the amount of the curing agent is appropriately adjusted in consideration of the presence and addition amount of other curing agents and curing accelerators, the chemical reaction stoichiometry with the epoxy resin, the curing rate of the composition, and the like.
  • the curing agent is preferably blended in an amount of 30 to 100 parts by mass, and more preferably 30 to 70 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the prepreg.
  • the epoxy resin composition (II) of the present invention essentially comprises the above-mentioned epoxy resin [A] and epoxy resin [C], but may contain other optional components. Other optional components are as described in 1-1-3 above.
  • Epoxy resin composition (III) The epoxy resin composition (III) comprises at least an epoxy resin [A] and an epoxy resin [D] having an epoxy equivalent of 110 g / eq or less.
  • the preferred viscosity at 100 ° C. of the epoxy resin composition (III) of the present invention is as described in the epoxy resin composition (I).
  • the cured resin obtained by curing the epoxy resin composition (III) of the present invention preferably has a glass transition temperature of 150 ° C. or higher, more preferably 170 to 400 ° C. When it is less than 150 ° C., the heat resistance is insufficient.
  • the flexural modulus measured by the JIS K7171 method of the cured resin obtained by curing the epoxy resin composition (III) of the present invention is as described in the epoxy resin composition (I).
  • Epoxy resin [A] The epoxy resin [A] contained in the epoxy resin composition (III) of the present invention is as described in the epoxy resin composition (I).
  • the ratio of the epoxy resin [A] to the total amount of the epoxy resin is preferably 20 to 95% by mass, and more preferably 40 to 60% by mass. More preferably, the content is 55 to 90% by mass. If it is less than 20% by mass, the heat resistance and elastic modulus of the resulting cured resin may be reduced. When it exceeds 95 mass%, the viscosity of an epoxy resin composition is high, and the impregnation property to a reinforced fiber base material tends to fall. As a result, in any case, various physical properties of the obtained CFRP may deteriorate.
  • Epoxy resin [D] The epoxy resin composition (III) of the present invention contains an epoxy resin [D] having an epoxy equivalent of 110 g / eq or less.
  • the epoxy resin [D] decreases the viscosity of the epoxy resin [A], improves the resin impregnation property at the time of preparing the prepreg, and improves the elastic modulus of the cured resin. Therefore, by using the epoxy resin [A] and the epoxy resin [D] in combination, various physical properties of the FRP can be improved while maintaining heat resistance and high elastic modulus.
  • the epoxy resin [D] is not particularly limited as long as the epoxy resin has an epoxy equivalent of 110 g / eq or less, but triglycidylaminophenol, tetraglycidyl-m-xylylenediamine, tetraglycidylbis (aminomethyl) cyclohexane, and It is preferable to use a glycidylamine type epoxy resin such as these derivatives, and it is more preferable to use an epoxy resin containing an aromatic group such as triglycidylaminophenol or tetraglycidyl-m-xylylenediamine. It is preferable to use a trifunctional epoxy resin such as glycidylaminophenol and its derivatives.
  • the ratio of the epoxy resin [D] to the total amount of the epoxy resin is preferably 5 to 80% by mass, and more preferably 5 to 60% by mass. More preferably, it is 10 to 45% by mass.
  • the viscosity of the epoxy resin composition is high, and the impregnation property to the fiber reinforced base material is likely to be lowered.
  • it exceeds 80 mass% the heat resistance and elastic modulus of the obtained resin cured product may decrease. As a result, in any case, various physical properties of the obtained CFRP may deteriorate.
  • the mass ratio of the epoxy resin [A] and the epoxy resin [D] is preferably 20:80 to 98: 2, and 50:50 to 95: 5. More preferably, it is more preferably 60:40 to 80:20. By blending at this ratio, an epoxy resin composition having a viscosity suitable for the production of a prepreg can be produced, and a cured product having good prepreg handling properties and high heat resistance and elastic modulus can be obtained.
  • the epoxy resin composition (III) of the present invention essentially comprises the above two types of epoxy resins, but may contain other epoxy resins and curing agents. Other epoxy resins and curing agents are as described in the epoxy resin compositions (I) and (II).
  • the epoxy resin composition (III) of the present invention essentially comprises the above-mentioned epoxy resin [A] and epoxy resin [D], but may contain other optional components. Other optional components are as described in 1-1-3 above.
  • the epoxy resin composition of the present invention comprises an epoxy resin [A]; a curing agent [B], an epoxy resin [C], or an epoxy resin [D]; , A curing agent, and other components.
  • the order of mixing is not limited.
  • the state of the epoxy resin composition may be a one-component state in which the respective components are uniformly mixed, or a slurry state in which some components are dispersed as a solid.
  • the method for producing the epoxy resin composition is not particularly limited, and any conventionally known method may be used.
  • the mixing temperature include a range of 40 to 120 ° C. When the temperature exceeds 120 ° C., the curing reaction partially proceeds and the impregnation property into the fiber-reinforced base layer is lowered, or the resulting epoxy resin composition and the storage stability of the prepreg produced using the epoxy resin composition are reduced. It may decrease. When the temperature is lower than 40 ° C., the viscosity of the epoxy resin composition is high, and mixing may be substantially difficult.
  • the temperature is preferably 50 to 100 ° C, more preferably 50 to 90 ° C.
  • a conventionally well-known thing can be used as a mixing machine apparatus.
  • Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a Banbury mixer, a mixing container equipped with a stirring blade, a horizontal mixing tank, and the like.
  • Mixing of each component can be performed in air
  • an atmosphere in which temperature and humidity are controlled is preferable.
  • the prepreg of the present invention comprises a fiber reinforced base material and the epoxy resin composition of the present invention impregnated in the fiber reinforced base material, preferably any one of the epoxy resin compositions (I) to (III) ( Hereinafter, it is also referred to as “the present epoxy resin composition”.
  • the prepreg of the present invention is a prepreg in which the epoxy resin composition is impregnated on a part or the whole of the fiber reinforced base material.
  • the content of the epoxy resin composition in the entire prepreg is preferably 15 to 60% by mass based on the total mass of the prepreg.
  • the resin content is less than 15% by mass, voids or the like are generated in the obtained fiber-reinforced composite material, and the mechanical properties may be lowered.
  • the resin content exceeds 60% by mass, the reinforcing effect by the reinforcing fibers becomes insufficient, and the mechanical properties relative to mass may be substantially low.
  • the resin content is preferably 20 to 55% by mass, and more preferably 25 to 50% by mass.
  • Fiber reinforced substrate The fiber reinforced substrate used in the present invention is not particularly limited.
  • carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, polyester fiber, ceramic fiber, alumina fiber, boron fiber, metal fiber, Mineral fiber, rock fiber, slug fiber, etc. are mentioned.
  • carbon fibers are preferable.
  • Carbon fiber is more preferable in that it has a good specific strength and specific elastic modulus, and a lightweight and high-strength fiber-reinforced composite material can be obtained.
  • Polyacrylonitrile (PAN) -based carbon fibers are particularly preferable in terms of excellent tensile strength.
  • the tensile elastic modulus is preferably 100 to 600 GPa, more preferably 200 to 500 GPa, and particularly preferably 230 to 450 GPa.
  • the tensile strength is preferably 2000 MPa to 10,000 MPa, and more preferably 3000 to 8000 MPa.
  • the diameter of the carbon fiber is preferably 4 to 20 ⁇ m, more preferably 5 to 10 ⁇ m.
  • the reinforcing fiber bundle is preferably a reinforcing fiber bundle in which 0.01 to 10% by mass of the sizing agent is adhered to the mass of the reinforcing fiber to which the sizing agent is adhered. It is more preferable that the adhesion amount is 0.1 to 2.0% by mass. There exists a tendency for the adhesiveness of a reinforced fiber and matrix resin to become strong, so that there is much adhesion amount of a sizing agent. On the other hand, the interlaminar toughness of the composite material obtained with a lower adhesion amount tends to be excellent.
  • the most preferable amount of the sizing agent is 1.0 to 2.0% by mass from the viewpoint of adhesion between the reinforcing fiber and the matrix resin, and 0.1 to 1.% from the viewpoint of interlayer toughness of the resulting composite material. 0% by mass.
  • the reinforcing fiber is used in the form of a sheet.
  • the reinforcing fiber sheet for example, a sheet in which a large number of reinforcing fibers are aligned in one direction, bi-directional woven fabrics such as plain weave and twill weave, multiaxial woven fabric, non-woven fabric, mat, knit, braid, paper made of reinforcing fibers Can be mentioned.
  • a unidirectionally aligned sheet, a bi-directional woven fabric, or a multiaxial woven fabric base material formed in the form of a sheet of reinforcing fibers as a continuous fiber because a fiber-reinforced composite material having more excellent mechanical properties can be obtained.
  • the thickness of the sheet-like fiber reinforced substrate is preferably 0.01 to 3 mm, more preferably 0.1 to 1.5 mm.
  • Production method of prepreg The production method of the prepreg of the present invention is not particularly limited, and any conventionally known method can be adopted. Specifically, a hot melt method or a solvent method can be suitably employed.
  • a resin composition is applied to a release paper in the form of a thin film to form a resin composition film, and the resin composition film is laminated on a fiber reinforced substrate and heated under pressure. This is a method of impregnating the fiber reinforced substrate layer with the resin composition.
  • the method for making the resin composition into a resin composition film is not particularly limited, and any conventionally known method can be used. Specifically, a resin composition film is obtained by casting and casting a resin composition on a support such as release paper or film using a die extrusion, applicator, reverse roll coater, comma coater, etc. Can do.
  • the resin temperature at the time of producing the film is appropriately determined according to the composition and viscosity of the resin composition. Specifically, the same temperature conditions as the mixing temperature in the aforementioned method for producing an epoxy resin composition are preferably used.
  • the impregnation of the resin composition into the fiber-reinforced base layer may be performed once or may be performed in multiple steps.
  • the solvent method is a method in which the epoxy resin composition is made into a varnish using an appropriate solvent, and this varnish is impregnated into the fiber reinforced substrate layer.
  • the prepreg of the present invention can be preferably produced by a hot melt method that does not use a solvent.
  • the impregnation temperature when the epoxy resin composition film is impregnated into the fiber-reinforced base layer by the hot melt method is preferably in the range of 50 to 120 ° C.
  • the impregnation temperature is less than 50 ° C., the viscosity of the epoxy resin composition is high, and the fiber-reinforced base layer may not be sufficiently impregnated.
  • the impregnation temperature exceeds 120 ° C., the curing reaction of the epoxy resin composition proceeds, and the storage stability of the resulting prepreg may be lowered, or the drapeability may be lowered.
  • the impregnation temperature is more preferably 60 to 110 ° C, and particularly preferably 70 to 100 ° C.
  • the impregnation pressure at the time of impregnating the epoxy resin composition film into the fiber reinforced base layer by the hot melt method is appropriately determined in consideration of the viscosity, resin flow, etc. of the resin composition.
  • the specific impregnation pressure is 0.01 to 250 (N / cm), preferably 0.1 to 200 (N / cm).
  • a fiber reinforced composite material is obtained by compounding and curing a fiber reinforced base material and a resin composition obtained by blending the epoxy resin composition of the present invention with various curing agents and thermoplastic resins. ) Can be obtained.
  • the method for compounding with the fiber reinforced substrate is not particularly limited, and the fiber reinforced substrate and the resin composition may be compounded in advance as in the prepreg of the present invention.
  • resin transfer molding method RTM method
  • they may be combined at the time of molding, such as a hand lay-up method, a filament winding method, or a pultrusion method.
  • a fiber reinforced composite material can be obtained by curing by heating and pressing under specific conditions.
  • methods for producing FRP using the prepreg of the present invention include known molding methods such as autoclave molding, press molding, and RTM.
  • an autoclave molding method is preferably used.
  • a prepreg and a film bag are sequentially laid on the lower mold of the mold, the prepreg is sealed between the lower mold and the film bag, and the space formed by the lower mold and the film bag is evacuated.
  • it is a molding method in which heating and pressurization are performed by an autoclave molding apparatus.
  • the molding conditions are preferably set at a heating rate of 1 to 50 ° C./min, and heated and pressurized at 0.2 to 0.7 MPa and 130 to 180 ° C. for 10 to 30 minutes.
  • the press molding method is preferably used as the method for producing the FRP of the present invention.
  • the production of FRP by the press molding method is carried out by heating and pressurizing a prepreg of the present invention or a preform formed by laminating the prepreg of the present invention using a mold.
  • the mold is preferably heated to the curing temperature in advance.
  • the temperature of the mold during press molding is preferably 150 to 210 ° C.
  • the molding temperature is 150 ° C. or higher, the curing reaction can be sufficiently caused, and FRP can be obtained with high productivity.
  • the molding temperature is 210 ° C. or lower, the resin viscosity does not become too low, and the excessive flow of the resin in the mold can be suppressed. As a result, since the outflow of resin from the mold and the meandering of the fibers can be suppressed, a high quality FRP can be obtained.
  • the pressure during molding is 0.05 to 2 MPa, and preferably 0.2 to 2 MPa.
  • the pressure is 0.05 MPa or more, an appropriate flow of the resin can be obtained, and appearance defects and generation of voids can be prevented. Further, since the prepreg is sufficiently adhered to the mold, an FRP having a good appearance can be manufactured. If the pressure is 2 MPa or less, the resin does not flow more than necessary, and thus the appearance failure of the obtained FRP is unlikely to occur. Moreover, since the load more than necessary is not applied to the mold, the mold is hardly deformed.
  • the molding time is preferably 1 to 8 hours.
  • Resin transfer molding method From the viewpoint of efficiently obtaining a fiber reinforced composite material having a complicated shape, it is also preferable to use the RTM method.
  • the RTM method means a method of obtaining a fiber reinforced composite material by impregnating and curing a liquid epoxy resin composition on a fiber reinforced substrate disposed in a mold.
  • the mold used for the RTM method may be a closed mold made of a rigid material, or an open mold of a rigid material and a flexible film (bag) can be used.
  • the fiber reinforced substrate can be placed between an open mold of rigid material and a flexible film.
  • the rigid material various existing materials such as metals such as steel and aluminum, fiber reinforced plastic (FRP), wood, and plaster are used.
  • FRP fiber reinforced plastic
  • the flexible film material polyamide, polyimide, polyester, fluororesin, silicone resin, or the like is used.
  • the fiber reinforced base material is impregnated with the epoxy resin composition, and then heat-cured.
  • the mold temperature at the time of heat curing is usually selected to be higher than the mold temperature at the time of injection of the epoxy resin composition.
  • the mold temperature during heat curing is preferably 80 to 200 ° C.
  • the heat curing time is preferably 1 minute to 20 hours.
  • post-curing may be performed by heating the obtained fiber-reinforced composite material at a higher temperature.
  • the post-curing temperature is preferably 150 to 200 ° C., and the time is preferably 1 minute to 4 hours.
  • the impregnation pressure when the fiber reinforced base material is impregnated with the epoxy resin composition by the RTM method is appropriately determined in consideration of the viscosity and resin flow of the resin composition.
  • a specific impregnation pressure is 0.001 to 10 (MPa), and preferably 0.01 to 1 (MPa).
  • the viscosity of the epoxy resin composition is preferably less than 5000 mPa ⁇ s, more preferably 1 to 1000 mPa ⁇ s at 100 ° C.
  • Epoxy resin Tetraglycidyl-3,4′-diaminodiphenyl ether (synthesized by the method of Synthesis Example 1, hereinafter abbreviated as “3,4′-TGDDE”)
  • Epoxy resin [C] Resorcinol diglycidyl ether (EX-201 (product name) manufactured by Nagase ChemteX Corporation, number of glycidyl ethers / number of aromatic rings 2, hereinafter abbreviated as “Resorcinol-DG”) Abbreviated)
  • Curing agent [B] ⁇ 4,4'-diamino-3,3'-diisopropyl-5,5'-dimethyldiphenylmethane (Lonza Corporation Lonacure M-MIPA (product name), hereinafter abbreviated as "M-MIAP”) ⁇ 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Kumiai Chemical Co., Ltd., hereinafter abbreviated as “MED-J”) Diethyltoluenediamine (manufactured by Huntsman Aradure 5200 (product name), hereinafter abbreviated as “DETDA”)
  • DDM 4,4′-diaminodiphenylmethane
  • DDM 3,3′-diaminodiphenyl sulfone
  • Polyamide 12 (TR-55 (product name), manufactured by M Chemie Japan Co., Ltd., average particle size 20 ⁇ m, hereinafter abbreviated as “PA12”)
  • Carbon fiber strand Carbon fiber strand
  • Carbon fiber 1 Carbon fiber 1: “TENAX (registered trademark)” IMS65 E23 830tex (carbon fiber strand, tensile strength 5.8 GPa, tensile elastic modulus 290 GPa, sizing agent adhesion amount 1.2 mass%, manufactured by Teijin Ltd.)
  • Carbon fiber 2 “TENAX (registered trademark)” IMS65 E22 830tex (carbon fiber strand, tensile strength 5.8 GPa, tensile elastic modulus 290 GPa, sizing agent adhesion amount 0.5 mass%, manufactured by Teijin Ltd.)
  • Carbon fiber multilayer fabric Carbon fiber multiaxial woven fabric 1: carbon fiber 1 laminated and stitched at an angle of [+ 45/90 / ⁇ 45 / 0] (total carbon fiber basis weight of woven fabric 760 g / m 2 )
  • Carbon fiber multiaxial fabric 2 carbon fiber 1 laminated and stitched at an angle of [ ⁇ 45 /
  • the glass transition temperature was measured according to the SACMA 18R-94 method.
  • the dimension of the resin test piece was prepared as 50 mm ⁇ 6 mm ⁇ 2 mm.
  • a pressure cooker HASPEST PC-422R8, manufactured by Espec Corp.
  • the resin test piece prepared under the conditions of 121 ° C. and 24 hours was subjected to water absorption treatment.
  • a dynamic viscoelasticity measuring device Rheogel-E400 manufactured by UBM with a measurement frequency of 1 Hz, a heating rate of 5 ° C./min, and a strain of 0.0167%, the distance between chucks is 30 mm, and the rubber elastic region starts from 50 ° C.
  • the glass transition temperature was measured according to the SACMA 18R-94 method.
  • the dimension of the resin test piece was prepared as 50 mm ⁇ 6 mm ⁇ 2 mm.
  • a dynamic viscoelasticity measuring device Rheogel-E400 manufactured by UBM with a measurement frequency of 1 Hz, a heating rate of 5 ° C./min, and a strain of 0.0167%, the distance between chucks is 30 mm, and the rubber elastic region starts from 50 ° C.
  • the storage elastic modulus E ′ was measured up to.
  • Log E ′ was plotted against temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region of log E ′ and the approximate straight line of the region where E ′ transitions was recorded as the glass transition temperature (Tg).
  • Resin bending strength and resin bending elastic modulus Tests were conducted in accordance with JIS K7171 method. In that case, the dimension of the resin test piece was prepared as 80 mm ⁇ 10 mm ⁇ h 4 mm. The distance L between the fulcrums was 16 ⁇ h (thickness), a bending test was performed at a test speed of 2 m / min, and bending strength and bending elastic modulus were measured.
  • Tack Property Tack property of the prepreg was measured by the following method using a tacking test apparatus TAC-II (RHESCA CO., LTD.).
  • TAC-II tacking test apparatus
  • the prepreg obtained in (2-1) was set on a test stage held at 27 ° C., and an initial load of 100 gf was applied with a ⁇ 5 tack probe held at 27 ° C. to 10 mm / sec. The maximum load at the time of drawing at the test speed was determined.
  • a tack probe test was performed on the prepreg immediately after production and the prepreg stored at a temperature of 26.7 ° C. and a humidity of 65% for 10 days. The evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • The load immediately after production is 200 gf or more, and the tack retention after storage for 10 days is 50% or more and less than 100%.
  • The load immediately after production is 200 gf or more and the tack retention after 10 days storage is less than 50%.
  • the prepreg drapeability was evaluated by the following test in accordance with ASTM D1388.
  • the prepreg obtained in (2-1) was cut in a 90 ° direction with respect to the 0 ° fiber direction, and the draping property (flexibility rigidity, mg * cm) against an inclination of an inclination angle of 41.5 ° was evaluated.
  • This evaluation was performed immediately after manufacturing the prepreg and after storage for a predetermined period at a temperature of 26.7 ° C. and a humidity of 65%.
  • the evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • Drapability after 20 days is the same as immediately after production.
  • X Drapability after 20 days has decreased by 50% or more compared to immediately after production
  • Impregnation property The impregnation property of the resin to the fiber substrate was evaluated by the water absorption rate of the prepreg. The lower the water absorption of the obtained prepreg, the higher the resin impregnation property.
  • the prepreg obtained in (2-1) was cut into a square having a side of 100 mm, and the mass (W1) was measured. Thereafter, the prepreg was submerged in a desiccator. The inside of the desiccator was decompressed to 10 kPa or less to replace the air and water inside the prepreg. The prepreg was taken out of the water, the surface water was wiped off, and the mass (W2) of the prepreg was measured.
  • the OHC specimen prepared at 121 ° C. for 24 hours was subjected to water absorption treatment.
  • the test was performed according to SACMA SRM3, and the porous compressive strength was calculated from the maximum point load. The measurement was performed at 121 ° C.
  • the prepreg obtained in (2-1) was cut into a square having a side of 300 mm and laminated to obtain a laminated body having a laminated structure [+ 45 / ⁇ 45] 2S .
  • the measurement sample was molded for 2 hours under the condition of 180 ° C. under a pressure of 0.59 MPa using a normal vacuum autoclave molding method.
  • the obtained molded product was cut into a size of 25 mm wide ⁇ 230 mm long, measured according to SACMA SRM7, and IPS strength and elastic modulus were calculated from the maximum point load.
  • the specimen was subjected to measurement of the dimensions of each test piece, and the impact test was performed using a falling weight impact tester (Dynatop, manufactured by Instron) and applied impact energy of 30.5 J. After the impact, the damaged area of the specimen was measured with an ultrasonic flaw detector (Scratch Kramer SDS3600, HIS3 / HF). After the impact, the strength test of the specimen was performed by applying one strain gauge to each of the left and right sides of the specimen at 25.4 mm from the top and 25.4 mm from the side. After affixing the gauge, the crosshead speed of the testing machine (manufactured by Shimadzu Corporation) was 1.27 mm / min, and a load was applied until the specimen was broken.
  • a double cantilever interlaminar fracture toughness test method (DCB method) is used, and after a 12.7 mm pre-crack (initial crack) is generated from the tip of the release sheet, a test to further develop the crack Went. The test was terminated when the crack growth length reached 127 mm from the tip of the pre-crack.
  • the crack propagation length was measured from both end faces of the test piece using a microscope, and GIc was calculated by measuring the load and crack opening displacement.
  • Interlaminar fracture toughness mode II (3-6)
  • the prepreg obtained in (2-1) was cut to a predetermined size and then laminated to produce two laminates in which 10 layers were laminated in the 0 ° direction.
  • a release sheet was sandwiched between two laminates, and both were combined to obtain a prepreg laminate having a laminate configuration [0] 20 .
  • molding was performed for 2 hours at 180 ° C. under a pressure of 0.59 MPa.
  • the obtained molded product (fiber reinforced composite material) was cut into a dimension of width 12.7 mm ⁇ length 330.2 mm to obtain a test piece of interlaminar fracture toughness mode II (GIIc).
  • a GIIc test was performed using this test piece.
  • an ENF test end notched flexure test in which a three-point bending load is applied was performed.
  • the distance between fulcrums was 101.6 mm.
  • Epoxy resin composition (I) [Examples 1 to 8, Comparative Examples 1 to 6]
  • the components described in Table 1 were mixed using a stirrer to obtain an epoxy resin composition.
  • Table 1 shows various physical properties of the cured resin obtained by curing the obtained epoxy resin composition.
  • 3,4′-TGDDE which is an epoxy resin having the structure of Chemical Formula 1
  • the same curing agent is used, which is higher than when an epoxy resin not having the structure of Chemical Formula 1 is used.
  • the flexural modulus was shown.
  • Examples 1 to 6 satisfying the epoxy resin composition (I) of the present invention exhibited high DMA-wet-Tg of 175 ° C. or higher and high elastic modulus of 3.5 GPa or higher.
  • Examples 9 to 16, Comparative Examples 7 to 12 The components described in Table 2 were mixed using a stirrer to obtain an epoxy resin composition. Using carbon fiber 1 as the reinforcing fiber, a prepreg was prepared using each of the obtained epoxy resin compositions. Table 2 shows various physical properties of CFRP produced using the obtained prepreg. When 3,4′-TGDDE, which is an epoxy resin having the structure of Chemical Formula 1, is used as the epoxy resin, the same curing agent is used, which is higher than when an epoxy resin not having the structure of Chemical Formula 1 is used. OHC was indicated. Further, Examples 9 to 16 satisfying the epoxy resin composition (I) of the present invention exhibited high hot-wet OHC of 200 MPa or more.
  • Examples 17 to 20 The components described in Table 3 were mixed using a stirrer to obtain an epoxy resin composition. A prepreg was prepared using carbon fiber 2 as the reinforcing fiber and each of the obtained epoxy resin compositions. Table 3 shows various physical properties of CFRP produced using the obtained prepreg. Examples 17 to 20 showed a high hot-wet OHC of 200 MPa or more.
  • Epoxy resin composition (II) [Examples 21 to 29, Comparative Examples 13 to 16]
  • the components listed in Table 4 were mixed using a stirrer to obtain an epoxy resin composition.
  • Table 4 shows various physical properties of the cured resin obtained by curing the obtained epoxy resin composition.
  • 3,4′-TGDDE which is an epoxy resin having the structure of Chemical Formula 1
  • the same curing agent is used, which is higher than when an epoxy resin not having the structure of Chemical Formula 1 is used.
  • the resin flexural modulus was shown.
  • Examples 21 to 26 satisfying the epoxy resin composition (II) of the present invention have a low viscosity of 130 Pa ⁇ s or less at 100 ° C., a high bending strength of 180 MPa or more, a high bending elastic modulus of 4.3 GPa or more, 170 A high Tg of at least ° C. was exhibited.
  • a prepreg was prepared using each epoxy resin composition obtained above and carbon fiber 1.
  • Table 4 shows various handling properties of the obtained prepreg. Examples 21 to 26 showed good results in all evaluations of storage stability, molding voids, tackiness, and drapeability.
  • Table 4 shows various physical properties of CFRP produced using the obtained prepreg.
  • 3,4′-TGDDE which is an epoxy resin having the structure of Chemical Formula 1
  • the same curing agent is used, which is higher than when an epoxy resin not having the structure of Chemical Formula 1 is used.
  • G1c and G2c are shown.
  • Examples 21 to 26 satisfying the epoxy resin composition (II) of the present invention had a high OHC of 320 MPa or more, a high IPSS of 120 MPa or more, a high IPSM of 5.7 GPa or more, a high CAI of 310 MPa or more, 4.0 cm. 2 or lower CAI damage area, 620J / m 2 or more high GIc, showed 2200J / m 2 or more high GIIC.
  • Comparative Examples 13 to 16 used TGDDM without using epoxy resin [A], but the resin physical properties of CFRP were low.
  • Examples 30 to 33 The components described in Table 5 were mixed using a stirrer to obtain an epoxy resin composition. Table 5 shows various physical properties of the cured resin obtained by curing the obtained epoxy resin composition. Examples 30 to 33 exhibited a low viscosity of 130 Pa ⁇ s or less at 100 ° C., a high bending strength of 180 MPa or more, a high bending elastic modulus of 4.3 GPa or more, and a high Tg of 190 ° C. or more.
  • a prepreg was prepared using each epoxy resin composition and carbon fiber 2 obtained above.
  • Table 5 shows various handling properties of the obtained prepreg. Examples 30 to 33 showed good results in any of the evaluations of storage stability, molding void, tackiness, and drapeability.
  • Table 5 shows various physical properties of CFRP produced using the obtained prepreg.
  • Examples 30 to 33 are a high OHC of 320 MPa or more, a high IPSS of 120 MPa or more, a high IPSM of 5.7 GPa or more, a high CAI of 310 MPa or more, a low CAI damage area of 4.0 cm 2 or less, a 660 J / m 2 or more.
  • Epoxy resin composition (III) [Examples 34 to 38, Comparative Examples 17 to 19]
  • the components described in Table 6 were mixed using a stirrer to obtain an epoxy resin composition.
  • Table 6 shows various physical properties of the cured resin obtained by curing the obtained epoxy resin composition.
  • 3,4′-TGDDE which is an epoxy resin having the structure of Chemical Formula 1
  • the same curing agent is used, which is higher than when an epoxy resin not having the structure of Chemical Formula 1 is used.
  • the resin flexural modulus was shown.
  • Examples 34 to 37 satisfying the epoxy resin composition (III) of the present invention exhibited a high Tg of 210 ° C. or higher and a high elastic modulus of 4.3 GPa or higher.
  • Examples 39 to 44, Comparative Examples 20 to 23 The components described in Table 7 were mixed using a stirrer to obtain an epoxy resin composition. Using carbon fiber 1 as the reinforcing fiber, a prepreg was prepared using each of the obtained epoxy resin compositions. Table 7 shows various physical properties of CFRP produced using the obtained prepreg. When 3,4′-TGDDE, which is an epoxy resin having the structure of Chemical Formula 1, is used as the epoxy resin, the same curing agent is used, and compared with the case of using an epoxy resin not having the structure of Chemical Formula 1, more CFRP The physical properties were shown.
  • 3,4′-TGDDE which is an epoxy resin having the structure of Chemical Formula 1
  • the same curing agent is used, and compared with the case of using an epoxy resin not having the structure of Chemical Formula 1, more CFRP The physical properties were shown.
  • the present invention epoxy resin composition Examples 39-42 which satisfy (III) is 330MPa or more high CAI, 550J / m 2 or more high G1c, 2100J / m 2 or more high G2c, a more high OHC 335MPa Indicated.
  • the prepreg was easy to handle.
  • Example 39 compared with Examples 40 and 41, since there was less epoxy resin [B], there was no problem, but the handling property was inferior.
  • Example 45 to 48 The components described in Table 8 were mixed using a stirrer to obtain an epoxy resin composition.
  • a prepreg was prepared using carbon fiber 2 as the reinforcing fiber and each of the obtained epoxy resin compositions.
  • Table 8 shows various physical properties of CFRP produced using the obtained prepreg. Examples 45-48 showed 330MPa or more high CAI, 550J / m 2 or more high G1c, 2100J / m 2 or more high G2c, a more high OHC 335MPa
  • Examples 49 to 52, Comparative Example 24 The components described in Table 9 were mixed using a stirrer to obtain an epoxy resin composition. Next, the carbon fiber multiaxial fabric 1 and the carbon fiber multiaxial fabric 2 are cut into 300 ⁇ 300 mm, and three carbon fiber multiaxial fabrics 1 are formed on a 500 ⁇ 500 mm release-treated aluminum plate. Three shaft fabrics 2, 3 in total, were laminated to form a laminate. Further, peel cross Release Ply C (manufactured by AIRTECH), which is a base material having a releasability function, and resin diffusion base material Resin Flow 90HT (manufactured by AIRTECH) were laminated on the laminate.
  • peel cross Release Ply C manufactured by AIRTECH
  • resin diffusion base material Resin Flow 90HT manufactured by AIRTECH
  • a hose for forming a resin inlet and a resin outlet was disposed, the whole was covered with a nylon bag film, sealed with a sealant tape, and the inside was evacuated.
  • the aluminum plate was heated to 120 ° C., and the pressure in the bag was reduced to 5 torr or less, and then the epoxy resin composition was heated to 100 ° C. and injected into the vacuum system through the resin injection port.
  • the injected epoxy resin composition was filled in the bag, and the temperature was raised to 180 ° C. while the laminate was impregnated, and kept at 180 ° C. for 2 hours to obtain a carbon fiber composite material.
  • the volume content of carbon fibers was 54%.
  • the resulting composite material molding was cut to a size of width 38.1 mm ⁇ length 304.8 mm, drilled with a diameter of 6.35 mm in the center of the test piece, and tested for perforated compressive strength (OHC) test. I got a piece.
  • the test was performed according to SACMA SRM3, and the results of calculating the porous compressive strength from the maximum point load are shown in Table 9. Examples 49 to 52 all exhibited higher OHC physical properties than Comparative Example 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明により、テトラグリシジル-3,4'-ジアミノジフェニルエーテルと、 アミノ基に対するオルト位の少なくとも1箇所に所定の置換基を有する芳香族ポリアミンから成る硬化剤、グリシジルエーテル基を有する所定の芳香族エポキシ樹脂、又は所定のエポキシ当量であるエポキシ樹脂と、 を含んで成るエポキシ樹脂組成物が提供される。

Description

エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
 本発明は、エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法に関する。更に詳述すれば、樹脂硬化物の弾性率および耐吸水性、吸水時の物性が高いとともに、取扱性が高いエポキシ樹脂組成物;該エポキシ樹脂組成物を用いて作製するプリプレグ;該エポキシ樹脂組成物を用いて作製する繊維強化複合材料に関する。
 繊維強化複合材料(以下、「FRP」ということもある。)は、軽量かつ高強度、高剛性であるため、釣り竿やゴルフシャフト等のスポーツ・レジャー用途、自動車や航空機等の産業用途等の幅広い分野で用いられている。熱硬化性樹脂をマトリックス樹脂とする複合材料の成形方法としては、予め樹脂を繊維強化基材に含浸させてシート状に形成したプリプレグ(中間基材)を成型する方法がある。その他の成型法としては、型内に配置した繊維強化基材に液状の樹脂組成物を含浸、硬化して繊維強化複合材料を得るレジン・トランスファー・モールディング(RTM)法等がある。
 FRPの製造には、強化繊維等の長繊維からなる繊維強化基材層に樹脂を含浸した中間材料(プリプレグ)を使用する方法が好適に用いられる。プリプレグを所望の形状に切断した後に賦形し、加熱加圧硬化させることによりFRPからなる成形品を得ることができる。
 航空機分野では、耐熱性や耐衝撃特性等の高い力学特性が要求される。一般にエポキシ樹脂を用いるプリプレグは、高い力学特性を有する成形体を得ることができる。しかし、エポキシ樹脂を用いるプリプレグは成形時間が長い。また、エポキシ樹脂を用いるプリプレグを硬化して得られる成形体は、耐吸水性が不十分であり、吸水時に耐熱性や耐衝撃特性等の力学特性が低下する場合があった。
 短時間成形が可能なプレス成形では、通常、100~150℃、1~15MPaの高温高圧条件が用いられる(特許文献1)。この高温高圧条件は、プリプレグを構成する樹脂の硬化時間を短縮できる。また、金型内においてプリプレグを構成する樹脂を適度に流動させることにより、プリプレグ内に含まれるガスを排出することができる。しかし、高温高圧条件でプレス成形する場合、プリプレグを構成する樹脂の温度が上昇して樹脂粘度が著しく低下する。その結果、金型の構造によっては、シアエッジ部からの樹脂の流出が激しく生じる(以下、成形工程における加熱及び加圧により、プリプレグ内から樹脂が流出する現象を「樹脂フロー」ともいう)。そのため、得られるFRPは、樹脂組成物の未含浸部分(樹脂枯れ)や繊維蛇行のような外観不良、及びこれらに起因する性能不良が生じる。
 特許文献2には、樹脂フローを抑制する方法として、高粘度のエポキシ樹脂を用いたり、エポキシ樹脂に熱可塑性樹脂を添加したりする方法が記載されている。しかし、高粘度のエポキシ樹脂を用いる場合、常温(25℃)における樹脂粘度も高くなる。そのため、積層作業が困難になる等、プリプレグの取扱性が著しく低い。
 特許文献3~5には、常温時におけるプリプレグの取扱性を改善し、Tg及び硬化速度を低下させることなく、樹脂フローを抑制したハイサイクルプレス成形用のプリプレグが記載されている。特許文献3~5に記載のプリプレグに用いられる樹脂は、液状エポキシ樹脂に熱可塑樹脂を溶解させ、樹脂粘度を上昇させたものである。しかし、プリプレグ製造時における樹脂粘度も高くなるため、繊維強化基材層内への樹脂の含浸性が低下し、成形後のFRPにボイドを生じる場合がある。
 航空機分野では、耐熱性、耐衝撃特性等の力学特性が高いことが必要であり、耐衝撃性、層間靭性を改良することを目的として種々の方法が提案されている。特に、層間にマトリックス樹脂とは異なる材料を配置し、破壊エネルギーを吸収させる手法が多く提案されている(特許文献6)。しかし、樹脂の硬化時間は一般に120分以上かかり、短時間成形を行うことが困難である。
 また、特許文献1~6においては、得られるFRPの耐吸水性については何も言及されていない。
 耐衝撃性を改善する方法としては、特許文献7~10に記載の方法が従来知られている。
 特許文献7には、熱硬化性樹脂に熱可塑性樹脂を溶解させることにより、熱硬化性樹脂に靱性を付与させる方法が記載されている。この方法によれば、熱硬化性樹脂に対してある程度の靱性を付与させることができる。しかし、高い靱性を付与させるためには、熱硬化性樹脂に多量の熱可塑性樹脂を溶解させなければならない。多量の熱可塑性樹脂が溶解している熱硬化性樹脂は、粘度が著しく高くなり、炭素繊維からなる強化繊維基材内部に、十分な量の樹脂を含浸させることが困難となる。この様なプリプレグを用いて作製されるFRPは、ボイド等の多くの欠陥を内在する。その結果、FRP構造体の圧縮性能及び損傷許容性などにマイナスの影響を及ぼす。
 特許文献8~10には、プリプレグ表面に熱可塑性樹脂微粒子を局在化させたプリプレグが記載されている。これらのプリプレグは、表面に粒子形状の熱可塑性樹脂が局在しているため、初期のタック性が低い。また、表層に内在する硬化剤との硬化反応が進行するため、保存安定性が悪く、経時的にタック性やドレープ性が低下する。さらに、この様な硬化反応の進行してしまったプリプレグを用いて作製されるFRPは、多くのボイド等の欠陥が内在し、FRP構造体の機械物性が著しく低下する。
 また、近年では、繊維強化複合材料を製造するための工程が少なく、オートクレーブのような高価な設備を必要としない、低コストで生産性の優れた製造方法であるRTM成形法が注目されている。RTM成形法に用いるマトリックス樹脂の組成としては、主としてエポキシ樹脂と硬化剤とを含み、場合により他の添加剤を含む。RTM成形法においては、高い力学物性を有する硬化物や繊維強化複合材料を得るために、芳香族ポリアミンを利用することが一般的である。
 RTM成形法に利用するエポキシ樹脂組成物においては、強化繊維基材への樹脂組成物含浸時に硬化剤が濾別されることを防ぐため、硬化剤はエポキシ樹脂へ溶解した状態で使用することが多い。この時、エポキシ樹脂へ硬化剤が溶解した状態で存在するため、エポキシ樹脂と硬化剤の反応が比較的起こり易く、樹脂組成物のポットライフが短くなるという問題点があった。そのため、特許文献11に記載の様に、反応性の低いヒンダードアミン系の硬化剤が使用されることが多い。しかしながら、ヒンダードアミン系硬化剤を用いた場合、3,3’-ジアミノジフェニルスルホンのようなプリプレグに頻繁に用いられる硬化剤を利用した場合と比較し、得られる硬化物や繊維強化複合材料の力学物性が低くなる傾向にあった。
 
国際公開第2004/48435号 特開2005-213352号 特開2009-292976号 特開2009-292977号 特開2010-248379号 特開2011-190430号 特開昭60-243113号 特開平07-41575号 特開平07-41576号 特開平07-41577号 特開2014-148572号
 本発明の目的は、上記従来技術の問題点を解決し、優れた特性の樹脂硬化物を製造することができ、且つ繊維強化基材への含浸性が高く、取扱性に優れるエポキシ樹脂組成物を提供することにある。また、本発明の更なる目的は、このエポキシ樹脂組成物を使用して作製するプリプレグ、及び繊維強化複合材料(以下、「FRP」と略記する場合があり、特に繊維強化基材が炭素繊維である場合は「CFRP」と略記する場合がある)を提供することにある。
 本発明者らは、上記課題を解決すべく検討した結果、所定のエポキシ樹脂と硬化剤との組み合わせから成るエポキシ樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の課題を達成するエポキシ樹脂組成物は、以下に記載の〔1〕のエポキシ樹脂である。
 〔1〕 下記化学式(1)で示されるエポキシ樹脂[A]を含んで成ることを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
 
 ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。
 上記〔1〕に記載の発明は、所定のエポキシ樹脂[A]を含むエポキシ樹脂組成物である。
 さらに、本発明の好ましいエポキシ樹脂組成物は、以下に記載の〔2〕、〔6〕、〔9〕の3つに大別される。
 〔2〕 下記化学式(1)で示されるエポキシ樹脂[A]と、
 芳香族ポリアミンから成る硬化剤であって、アミノ基に対するオルト位の少なくとも1箇所に脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかの置換基を有する芳香族ポリアミンから成る硬化剤[B]と、
を含んで成ることを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
 
 ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。
 上記〔2〕に記載の発明は、所定のエポキシ樹脂[A]に、さらに所定の硬化剤[B]とが混合して成るエポキシ樹脂組成物である。硬化剤[B]は所定の立体構造を有していることを特徴とする。
 〔3〕 硬化剤[B]が芳香族ポリアミンから成る硬化剤であって、アミノ基に対するオルト位の少なくとも1箇所に脂肪族置換基を有する芳香族ポリアミンから成る硬化剤である〔2〕に記載のエポキシ樹脂組成物。
 〔4〕 硬化剤[B]が4,4’-ジアミノジフェニルメタン誘導体である〔2〕または〔3〕に記載のエポキシ樹脂組成物。
 〔5〕 硬化剤[B]がフェニレンジアミン誘導体である〔2〕又は〔3〕に記載のエポキシ樹脂組成物。
 
 〔6〕 下記化学式(1)で示されるエポキシ樹脂[A]と、
 グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2以上のエポキシ樹脂[C]と、
を含んで成ることを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 
 ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれる1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。
 上記〔6〕に記載の発明は、所定のエポキシ樹脂[A]と、さらに所定のエポキシ樹脂[C]とが混合して成るエポキシ樹脂組成物である。エポキシ樹脂[C]は、芳香環1個あたりに2個以上のグリシジルエーテルが結合していることを特徴とする。
 〔7〕 前記エポキシ樹脂[C]がジグリシジルレゾルシノールである〔6〕に記載のエポキシ樹脂組成物。
 〔8〕 前記エポキシ樹脂[A]と、前記エポキシ樹脂[C]と、の質量比が、2:8 ~ 9:1である〔6〕又は〔7〕に記載のエポキシ樹脂組成物。
 
 〔9〕 下記化学式(1)で示されるエポキシ樹脂[A]と、
 エポキシ当量が110g/eq以下であるエポキシ樹脂[D]と、
を含んで成ることを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
 
 ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。
 上記〔9〕に記載の発明は、所定のエポキシ樹脂[A]と、さらにエポキシ当量が110g/eq以下であるエポキシ樹脂[D]とが混合して成るエポキシ樹脂組成物である。
 〔10〕 前記エポキシ樹脂[D]が3官能エポキシ樹脂である〔9〕に記載のエポキシ樹脂組成物。
 〔11〕 前記エポキシ樹脂[D]がトリグリシジルアミノフェノール誘導体である〔9〕に記載のエポキシ樹脂組成物。
 〔12〕 前記エポキシ樹脂[A]の含有量がエポキシ樹脂の総量に対して20~95質量%であり、前記エポキシ樹脂[D]の含有量がエポキシ樹脂の総量に対して5~80質量%である〔9〕乃至〔11〕の何れかに記載のエポキシ樹脂組成物。
 〔13〕 前記エポキシ樹脂[A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである〔1〕乃至〔12〕の何れかに記載のエポキシ樹脂組成物。
 
 〔14〕 繊維強化基材と、
 前記繊維強化基材内に含浸された〔1〕乃至〔13〕の何れかに記載のエポキシ樹脂組成物と、
から成ることを特徴とするプリプレグ。
 〔15〕 前記強化繊維基材が炭素繊維から成る強化繊維基材である〔14〕に記載のプリプレグ。
 〔16〕 〔1〕乃至〔13〕の何れかに記載のエポキシ樹脂組成物を強化繊維基材内に含浸させることを特徴とするプリプレグの製造方法。
 〔17〕 〔1〕乃至〔13〕の何れかに記載のエポキシ樹脂組成物を硬化して成る樹脂硬化物と、繊維強化基材と、を含んで構成される繊維強化複合材料。
 〔18〕 繊維強化基材と、〔1〕乃至〔13〕の何れかに記載のエポキシ樹脂組成物を複合化して硬化させる繊維強化複合材料の製造方法。
 〔19〕 〔14〕又は〔15〕に記載のプリプレグを硬化する繊維強化複合材料の製造方法。
 〔20〕 〔14〕又は〔15〕に記載のプリプレグを積層して、圧力0.05~2MPa、温度150~210℃で1~8時間加熱することを特徴とする繊維強化複合材料の製造方法。
 
 本発明のエポキシ樹脂組成物は、優れた特性を有する樹脂硬化物を製造することができる。また、本発明のエポキシ樹脂組成物は繊維強化基材に対する含浸性や取扱性が高いため、優れた特性を有するFRPを作製することができる。
 
 以下、本発明のエポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法の詳細について説明する。
1. エポキシ樹脂組成物
 本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂[A]を含んで成る。エポキシ樹脂[A]を含むことで、曲げ弾性率に優れた硬化物を得ることができる。そして、このようなエポキシ樹脂組成物を用いることで、圧縮特性、耐衝撃性、靭性に優れた繊維強化複合材料を得ることができる。
 本発明の好ましいエポキシ樹脂組成物は、以下に記載の3つに大別される。
 ・エポキシ樹脂組成物(I)
 ・エポキシ樹脂組成物(II)
 ・エポキシ樹脂組成物(III)
 本発明の何れのエポキシ樹脂組成物も、エポキシ樹脂[A]およびそれぞれの樹脂組成物の必須成分の他に、熱硬化性樹脂、熱可塑性樹脂、硬化剤、その他の添加剤を含んでいても良い。
1-1. エポキシ樹脂組成物(I)
 エポキシ樹脂組成物(I)は、少なくともエポキシ樹脂[A]と、アミノ基に対するオルト位の少なくとも1箇所に脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかの置換基を有する芳香族ポリアミンから成る硬化剤[B]とを含んで成る。
 本発明のエポキシ樹脂組成物(I)は、100℃における粘度が、0.1~500Pa・sであることが好ましく、1~100Pa・sであることがより好ましい。0.1Pa・s未満である場合、プリプレグから樹脂が流出し易くなる。500Pa・sを超える場合、プリプレグに未含浸部分が生じ易くなる。その結果、得られる繊維強化複合材料においてボイド等が形成され易くなる。
 本発明のエポキシ樹脂組成物(I)を硬化させて得られる樹脂硬化物は、吸水時におけるガラス転移温度が150℃以上であることが好ましく、170~400℃であることがより好ましい。150℃未満である場合、耐熱性が不十分である。
 本発明のエポキシ樹脂組成物(I)を硬化させて得られる樹脂硬化物は、JIS K7171法で測定する曲げ弾性率が3.0GPa以上であることが好ましく、3.5~30GPaであることがより好ましく、4.0~20GPaであることが更に好ましい。3.0GPa未満である場合、得られる繊維強化複合材料の特性が低下し易い。
1-1-1. エポキシ樹脂[A]
 本発明のエポキシ樹脂組成物はいずれも、下記化学式(1)で示されるエポキシ樹脂[A]を含む。
Figure JPOXMLDOC01-appb-C000009
 
 ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。
 R~Rが、脂肪族炭化水素基又は脂環式炭化水素基である場合、その炭素数は1~4であることが好ましい。
 エポキシ樹脂[A]は2つの芳香環がX基を介して結合しており、各芳香環にはジグリシジル基がそれぞれ結合している。そのうち、1つの芳香環においてはX基とジグリシジル基とがパラ位で結合しており、他の1つの芳香環においてはX基とジグリシジル基とがメタ位で結合している。この構造により生じる樹脂硬化物の特殊な立体構造に起因して、樹脂硬化物の弾性率及び耐熱性が高くなると本発明者らは推定している。
 このようなエポキシ樹脂[A]としては、以下の化学式(2)~(4)の化合物が例示される。
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 このようなエポキシ樹脂[A]は、どのような方法で合成しても良いが、例えば、原料である芳香族ジアミン化合物とエピクロロヒドリンなどのエピハロヒドリンとを反応させてテトラハロヒドリン体を得た後、次いでアルカリ性化合物を用いて環化反応することにより得られる。より具体的には、後述の実施例の方法で合成することができる。
 原料である芳香族ジアミンとしては、アミノ基を有する2つの芳香環がエーテル結合により連結しており、エーテル結合に対して一方のアミノ基がパラ位、もう一方のアミノ基がオルト位に位置しており、さらに、少なくとも1つの芳香環のアミノ基に対するオルト位に水素原子以外の置換基が少なくとも1つ結合している芳香族ジアミンであればよい。
 このような芳香族ジアミンとしては、 例えば、置換基数が1の場合は、3,4’-ジアミノ-3’-メチルジフェニルエーテル、3,4’-ジアミノ-3’-エチルジフェニルエーテル、3,4’-ジアミノ-3’-イソプロピルジフェニルエーテル、3,4’-ジアミノ-3’-tert-ブチルジフェニルエーテル、3,4’-ジアミノ-3’-フルオロジフェニルエーテル、3,4’-ジアミノ-3’-クロロジフェニルエーテル、3,4’-ジアミノ-2-メチルジフェニルエーテル、3,4’-ジアミノ-2-エチルジフェニルエーテル、3,4’-ジアミノ-2-イソプロピルジフェニルエーテル、3,4’-ジアミノ-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-4-メチルジフェニルエーテル、3,4’-ジアミノ-4-エチルジフェニルエーテル、3,4’-ジアミノ-4-イソプロピルジフェニルエーテル、3,4’-ジアミノ-4-tert-ブチルフェニルエーテルが挙げられる。
 また、置換基数が2の芳香族ジアミンとしては、3,4’-ジアミノ-3’,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジイソプロピルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-5’-メチルフェニルエーテル、3,4’-ジアミノ-2,3’-ジメチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-2-メチルフェニルエーテル、3,4’-ジアミノ-3’-イソプロピル-2-メチルフェニルエーテル、3,4’-ジアミノ-2-メチル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-2-メチルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-2-メチルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’-メチルフェニルエーテル、3,4’-ジアミノ-2,3’-ジエチルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’-イソプロピルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’-フルオロフェニルエーテル、3,4’-ジアミノ-3’-クロロ-2-エチルフェニルエーテル、3,4’-ジアミノ-2-イソプロピル-3’-メチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-2-イソプロピルフェニルエーテル、3,4’-ジアミノ-2,3’-ジイソプロピルフェニルエーテル、3,4’-ジアミノ-2-イソプロピル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-2-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-2-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’-メチル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-イソプロピル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-2、3’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,4-ジメチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-4-メチルフェニルエーテル、3,4’-ジアミノ-3’-イソプロピル-4-メチルフェニルエーテル、3,4’-ジアミノ-4-メチル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-4-メチルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-4-メチルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’-メチルフェニルエーテル、3,4’-ジアミノ-3’,4-ジエチルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’-イソプロピルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’-フルオロフェニルエーテル、3,4’-ジアミノ-3’-クロロ-4-エチルフェニルエーテル、3,4’-ジアミノ-4-イソプロピル-3’-メチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-4-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’,4-ジイソプロピルフェニルエーテル、3,4’-ジアミノ-4-イソプロピル-3’-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-4-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-4-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’-メチル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-イソプロピル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,4-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-フルオロ-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-クロロ-4-tert-ブチルフェニルエーテルが挙げられる。
 また、置換基数が3の芳香族ジアミンとしては、3,4’-ジアミノ-2,3’,5’-トリメチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-2-メチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジイソプロピル-2-メチルフェニルエーテル、3,4’-ジアミノ-2-メチル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-2,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-2,3’,5’-トリエチルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’,5’-ジイソプロピルフェニルエーテル、3,4’-ジアミノ-2-エチル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-2,3’-ジエチル-5’-メチルフェニルエーテル、3,4’-ジアミノ-2-イソプロピル-3’,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-2-イソプロピルフェニルエーテル、3,4’-ジアミノ-2,3’,5’-トリイソプロピルフェニルエーテル、3,4’-ジアミノ-2-イソプロピル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-2-イソプロピル-5’-メチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジメチル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジイソプロピル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-2,3’,5’-トリ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-5’-メチル-2-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,4,5’-トリメチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-4-メチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジイソプロピル-4-メチルフェニルエーテル、3,4’-ジアミノ-4-メチル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-4,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-3’,4,5’-トリエチルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’,5’-ジイソプロピルフェニルエーテル、3,4’-ジアミノ-4-エチル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,4-ジエチル-5’-メチルフェニルエーテル、3,4’-ジアミノ-4-イソプロピル-3’,5’-ジメチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-4-イソプロピルフェニルエーテル、3,4’-ジアミノ-3’,4,5’-トリイソプロピルフェニルエーテル、3,4’-ジアミノ-4-イソプロピル-3’,5’-ジ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-4-イソプロピル-5’-メチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジメチル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジエチル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,5’-ジイソプロピル-4-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’,4,5’-トリ-tert-ブチルフェニルエーテル、3,4’-ジアミノ-3’-エチル-5’-メチル-4-tert-ブチルフェニルエーテルが挙げられる。
 エピハロヒドリンとしては、例えば、エピクロロヒドリン、エピブロモヒドリン、エピフルオロヒドリンなどが挙げられる。これらの中でも、反応性や取扱性の観点から、エピクロロヒドリンおよびエピブロモヒドリンが特に好ましい。
 芳香族ジアミンとエピハロヒドリンとの質量比は1:1~1:20が好ましく、1:3~1:10がより好ましい。反応時に用いる溶媒としては、エタノールやn-ブタノールなどのアルコール系溶媒、メチルイソブチルケトンやメチルエチルケトンなどのケトン系溶媒、アセトニトリルやN,N-ジメチルホルムアミドなどの非プロトン性極性溶媒、トルエンやキシレンなどの芳香族炭化水素系溶媒が例示される。特に、エタノールやn-ブタノールなどのアルコール系溶媒、トルエンやキシレンなどの芳香族炭化水素系溶媒が好ましい。溶媒の使用量は芳香族ジアミンに対して1~10質量倍であることが好ましい。酸触媒としてはブレンステッド酸とルイス酸のいずれも好適に用いることができ、特にブレンステッド酸としてはエタノールや水、酢酸が好ましく、ルイス酸としては四塩化チタンや硝酸ランタン六水和物、三フッ化ホウ素ジエチルエーテル錯体が好ましい。
 反応時間は、0.1~180時間であることが好ましく、0.5~24時間がより好ましい。反応温度は、20~100℃であることが好ましく、40~80℃がより好ましい。
 環化反応時に用いるアルカリ性化合物としては水酸化ナトリウムや水酸化カリウムが例示される。アルカリ性化合物は固体として添加しても水溶液として添加してもよい。
 環化反応時には相間移動触媒を用いてもよい。相間移動触媒としては塩化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、塩化ベンジルトリエチルアンモニウム、硫酸水素テトラブチルアンモニウムなどの第四級アンモニウム塩、臭化トリブチルヘキサデシルホスホニウム、臭化トリブチルドデシルホスホニウムなどのホスホニウム化合物、18-クラウン-6-エーテルなどのクラウンエーテル類が例示される。
 本発明において用いるエポキシ樹脂[A]は、50℃における粘度が50Pa・s未満であることが好ましく、10Pa・s未満であることがより好ましく、5.0Pa・s未満であることが更に好ましく、2.0Pa・s未満であることが特に好ましい。
 エポキシ樹脂[A]としては、テトラグリシジル-3,4’-ジアミノジフェニルエーテルであることが好ましい。R~Rが水素原子である場合、樹脂硬化物の特殊な立体構造形成が阻害され難いため好ましい。また、当該化合物の合成が容易になるため、Xが-O-であることが好ましい。
 本発明のエポキシ樹脂組成物(I)における、エポキシ樹脂の総量に対する、エポキシ樹脂[A]が占める割合は、20~100質量%であることが好ましく、40~100質量%であることがより好ましく、55~100質量%であることが更に好ましい。20質量%未満の場合、得られる樹脂硬化物の耐熱性及び弾性率が低下する場合がある。その結果、得られるCFRPの各種物性が低下する場合がある。
1-1-2. 硬化剤[B]
 本発明のエポキシ樹脂組成物(I)は、芳香族ポリアミンから成る硬化剤であって、アミノ基に対するオルト位に少なくとも1つの脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかの置換基を有する芳香族ポリアミンから成る硬化剤[B]を含む。即ち、硬化剤[B]は下記化学式(5)や(6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000013
 
 但し、化学式(5)中、R~Rはそれぞれ独立に、水素原子、炭素数1~6の脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかであり、かつ少なくとも1つの置換基は炭素数1~6の脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかである。Xは-CH-、-CH(CH)-、-C(CH-、-S-、-O-、-SO-、-CO-、-CONH-、-NHCO-、-C(=O)-、-O-C(=O)-のいずれかである。
Figure JPOXMLDOC01-appb-C000014
 
 但し、化学式(6)中、R~Rはそれぞれ独立に、水素原子、脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかであり、かつ少なくとも1つの置換基は炭素数1~6の脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかである。当該1つの置換基は、炭素数1~6の脂肪族置換基であることが好ましい。
 なお、化学式(5)、(6)において、脂肪族置換基の炭素数は1~6が好ましい。
 脂肪族置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、シクロヘキシル基などが例示される。
 芳香族置換基としては、フェニル基、ナフチル基などが例示される。
 硬化剤[B]は、エポキシ樹脂[A]を硬化させるとともに、樹脂硬化物の弾性率や耐吸水性を向上させる。そのため、エポキシ樹脂[A]と硬化剤[B]とを組み合わせて用いることにより、耐熱性及び高弾性率を維持しつつ、耐吸水性を向上できる。
 硬化剤[B]としては、上述の構造を有するポリアミンであれば良いが、具体的には4,4’-ジアミノジフェニルメタンや下記化学式(7)~(10)で示されるその誘導体;下記化学式(11)および(12)で示されるフェニレンジアミン及びその誘導体が例示される。
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
 本発明のエポキシ樹脂組成物(I)における硬化剤[B]の含有量は、エポキシ樹脂組成物(I)に含まれるエポキシ樹脂[A]100質量部に対して20~100質量部であることが好ましく、30~80質量部であることがより好ましい。20質量部未満である場合、エポキシ樹脂組成物(I)の硬化が不十分となり、樹脂硬化物の物性を低下させ易い。100質量部を超える場合、エポキシ樹脂組成物(I)の硬化が不十分となり、樹脂硬化物の機械物性を低下させ易い。
1-1-3. その他の任意成分
 本発明のエポキシ樹脂組成物(I)は、上記のエポキシ樹脂[A]、及び硬化剤[B]を必須とするが、その他のエポキシ樹脂を含んでいても良い。
 その他のエポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。具体的には、以下に例示されるものを用いることができる。これらの中でも芳香族基を含有するエポキシ樹脂が好ましく、グリシジルアミン構造、グリシジルエーテル構造のいずれかを含有するエポキシ樹脂が好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。
 グリシジルアミン構造を含有するエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-3-メチル-4-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体などが例示される。
 グリシジルエーテル構造を含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。
 また、これらのエポキシ樹脂は、必要に応じて、芳香族環構造などに、非反応性置換基を有していても良い。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基やフェニルなどの芳香族基やアルコキシル基、アラルキル基、塩素や臭素などの如くハロゲン基などが例示される。
 本発明のエポキシ樹脂組成物(I)は、その他の硬化剤を含んでいても良い。
 その他の硬化剤としては、ジシアンジアミドなどの潜在性硬化剤、脂肪族ポリアミン類、芳香族アミン系硬化剤の各種異性体(上記の硬化剤[B]を除く)、アミノ安息香酸エステル類、酸無水物類が挙げられる。
 ジシアンジアミドは、プリプレグの保存安定性に優れるため好ましい。
 脂肪族ポリアミン類としては4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン、m-キシリレンジアミン等が例示される。
 芳香族ポリアミンは耐熱性や各種力学特性に優れるため好ましい。芳香族ポリアミン類としてはジアミノジフェニルスルホン類、ジアミノジフェニルメタン類、トルエンジアミン誘導体が例示される。4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミン化合物及びこれらの非反応性置換基を有する誘導体は、耐熱性が高い硬化物を得ることができるため、特に好ましい。さらに、3,3’-ジアミノジフェニルスルホンは、得られる樹脂硬化物の耐熱性や弾性率が高いため更に好ましい。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基、フェニルなどの芳香族基、アルコキシル基、アラルキル基、塩素や臭素などのようなハロゲン基が例示される。
 アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好ましく用いられる。これら硬化剤を用いて硬化させた複合材料は、ジアミノジフェニルスルホンの各種異性体を用いて硬化させた複合材料と比較して、耐熱性は低いが、引張伸度が高い。
 酸無水物類としては、1,2,3,6-テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸などが挙げられる。これら硬化剤を用いた場合、未硬化樹脂組成物のポットライフが長く、電気的特性、化学的特性、機械的特性などに比較的バランスがとれた硬化物が得られる。そのため、複合材料の用途に応じて硬化剤は適宜選択される。
 エポキシ樹脂組成物(I)に含まれる硬化剤の総量は、エポキシ樹脂組成物中に配合されている全てのエポキシ樹脂を硬化させるのに適した量であり、用いるエポキシ樹脂や硬化剤の種類に応じて適宜調節される。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂量100質量部に対して25~65質量部であることが好ましく、35~55質量部であることがより好ましい。
 本発明のエポキシ樹脂組成物(I)は、熱可塑性樹脂を含んでいても良い。熱可塑性樹脂としては、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが挙げられる。
 エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物の粘度を調整するとともに、得られるFRPの耐衝撃性を向上させる。
 エポキシ樹脂可溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に一部又は全部が溶解し得る熱可塑性樹脂である。ここで、エポキシ樹脂に一部が溶解するとは、エポキシ樹脂100質量部に対して、平均粒子径が20~50μmの熱可塑性樹脂10質量部を混合して190℃で1時間撹拌した際に粒子が消失するか、粒子の大きさ(粒子径)が10%以上変化することを意味する。
 一方、エポキシ樹脂不溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に実質的に溶解しない熱可塑性樹脂をいう。即ち、エポキシ樹脂100質量部に対して、平均粒子径が20~50μmの熱可塑性樹脂10質量部を混合して190℃で1時間撹拌した際に、粒子の大きさが10%以上変化しない熱可塑性樹脂をいう。なお、一般的に、FRPを成形する温度は100~190℃である。また、粒子径は、顕微鏡によって目視で測定され、平均粒子径とは、無作為に選択した100個の粒子の粒子径の平均値を意味する。
 エポキシ樹脂可溶性熱可塑性樹脂が完全に溶解していない場合は、エポキシ樹脂の硬化過程で加熱されることによりエポキシ樹脂に溶解し、エポキシ樹脂組成物の粘度を増加させることができる。これにより、硬化過程における粘度低下に起因するエポキシ樹脂組成物のフロー(プリプレグ内から樹脂組成物が流出する現象)を防止することができる。
 エポキシ樹脂可溶性熱可塑性樹脂は、190℃でエポキシ樹脂に80質量%以上溶解する樹脂が好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂の具体的例としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネート等が挙げられる。これらは、単独で用いても、2種以上を併用しても良い。エポキシ樹脂組成物に含まれるエポキシ樹脂可溶性熱可塑性樹脂は、ゲル浸透クロマトグラフィーにより測定される重量平均分子量(Mw)が8000~100000の範囲のポリエーテルスルホン、ポリスルホンが特に好ましい。重量平均分子量(Mw)が8000よりも小さいと、得られるFRPの耐衝撃性が不十分となり、また100000よりも大きいと粘度が著しく高くなり取扱性が著しく悪化する場合がある。エポキシ樹脂可溶性熱可塑性樹脂の分子量分布は均一であることが好ましい。特に、重量平均分子量(Mw)と数平均分子量(Mn)の比である多分散度(Mw/Mn)が1~10の範囲であることが好ましく、1.1~5の範囲であることがより好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂と反応性を有する反応基又は水素結合を形成する官能基を有していることが好ましい。このようなエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂の硬化過程中における溶解安定性を向上させることができる。また、硬化後に得られるFRPに靭性、耐薬品性、耐熱性及び耐湿熱性を付与することができる。
 エポキシ樹脂との反応性を有する反応基としては、水酸基、カルボン酸基、イミノ基、アミノ基などが好ましい。水酸基末端のポリエーテルスルホンを用いると、得られるFRPの耐衝撃性、破壊靭性及び耐溶剤性が特に優れるためより好ましい。
 エポキシ樹脂組成物(I)に含まれるエポキシ樹脂可溶性熱可塑性樹脂の含有量は、粘度に応じて適宜調整される。プリプレグの加工性の観点から、エポキシ樹脂組成物(I)に含有されるエポキシ樹脂100質量部に対して、5~90質量部が好ましく、5~40質量部がより好ましく、15~35質量部がさらに好ましい。5質量部未満の場合は、得られるFRPの耐衝撃性が不十分となる場合がある。エポキシ樹脂可溶性熱可塑性樹脂の含有量が高くなると、粘度が著しく高くなり、プリプレグの取扱性が著しく悪化する場合がある。
 エポキシ樹脂可溶性熱可塑性樹脂には、アミン末端基を有する反応性芳香族オリゴマー(以下、単に「芳香族オリゴマー」ともいう)を含むことが好ましい。
 エポキシ樹脂組成物は、加熱硬化時にエポキシ樹脂と硬化剤との硬化反応により高分子量化する。高分子量化により二相域が拡大することによって、エポキシ樹脂組成物に溶解していた芳香族オリゴマーは、反応誘起型の相分離を引き起こす。この相分離により、硬化後のエポキシ樹脂と、芳香族オリゴマーと、が共連続となる樹脂の二相構造をマトリックス樹脂内に形成する。また、芳香族オリゴマーはアミン末端基を有していることから、エポキシ樹脂との反応も生じる。この共連続の二相構造における各相は互いに強固に結合しているため、耐溶剤性も向上している。
 この共連続の構造は、FRPに対する外部からの衝撃を吸収してクラック伝播を抑制する。その結果、アミン末端基を有する反応性芳香族オリゴマーを含むプリプレグを用いて作製されるFRPは、高い耐衝撃性及び破壊靭性を有する。
 この芳香族オリゴマーとしては、公知のアミン末端基を有するポリスルホン、アミン末端基を有するポリエーテルスルホンを用いることができる。アミン末端基は第一級アミン(-NH)末端基であることが好ましい。
 エポキシ樹脂組成物に配合される芳香族オリゴマーは、ゲル浸透クロマトグラフィーにより測定される重量平均分子量が8000~40000であることが好ましい。重量平均分子量が8000未満である場合、マトリクス樹脂の靱性向上効果が低い。また、重量平均分子量が40000を超える場合、樹脂組成物の粘度が高くなり過ぎて、強化繊維層内に樹脂組成物が含浸しにくくなる等の加工上の問題点が発生しやすくなる。
 芳香族オリゴマーとしては、「Virantage DAMS VW-30500 RP(登録商標)」(Solvay Specialty Polymers社製)のような市販品を好ましく用いることができる。
 エポキシ樹脂可溶性熱可塑性樹脂の形態は、特に限定されないが、粒子状であることが好ましい。粒子状のエポキシ樹脂可溶性熱可塑性樹脂は、樹脂組成物中に均一に配合することができる。また、得られるプリプレグの成形性が高い。
 エポキシ樹脂可溶性熱可塑性樹脂の平均粒子径は、1~50μmであることが好ましく、3~30μmであることが特に好ましい。1μm未満である場合、エポキシ樹脂組成物の粘度が著しく増粘する。そのため、エポキシ樹脂組成物に十分な量のエポキシ樹脂可溶性熱可塑性樹脂を添加することが困難となる場合がある。50μmを超える場合、エポキシ樹脂組成物をシート状に加工する際、均質な厚みのシートが得られ難くなる場合がある。また、エポキシ樹脂への溶解速度が遅くなり、得られるFRPが不均一となるため、好ましくない。
 エポキシ樹脂組成物には、エポキシ樹脂可溶性熱可塑性樹脂の他に、エポキシ樹脂不溶性熱可塑性樹脂を含有しても良い。エポキシ樹脂不溶性熱可塑性樹脂やエポキシ樹脂可溶性熱可塑性樹脂の一部(硬化後のマトリクス樹脂において溶解せずに残存したエポキシ樹脂可溶性熱可塑性樹脂)は、その粒子がFRPのマトリクス樹脂中に分散する状態となる(以下、この分散している粒子を「層間粒子」ともいう)。この層間粒子は、FRPが受ける衝撃の伝播を抑制する。その結果、得られるFRPの耐衝撃性が向上する。
 エポキシ樹脂不溶性熱可塑性樹脂としては、ポリアミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンナフタレート、ポリエーテルニトリル、ポリベンズイミダゾールが例示される。これらの中でも、ポリアミド、ポリアミドイミド、ポリイミドは、靭性及び耐熱性が高いため好ましい。ポリアミドやポリイミドは、FRPに対する靭性向上効果が特に優れている。これらは、単独で用いてもよいし、2種以上を併用しても良い。また、これらの共重合体を用いることもできる。
 特に、非晶性ポリイミドや、ナイロン6(登録商標)(カプロラクタムの開環重縮合反応により得られるポリアミド)、ナイロン11(ウンデカンラクタムの開環重縮合反応により得られるポリアミド)、ナイロン12(ラウリルラクタムの開環重縮合反応により得られるポリアミド)、ナイロン1010(セバシン酸と1,10-デカンジアミンとの共重反応により得られるポリアミド)、非晶性のナイロン(透明ナイロンとも呼ばれ、ポリマーの結晶化が起こらないか、ポリマーの結晶化速度が極めて遅いナイロン)のようなポリアミドを使用することにより、得られるFRPの耐熱性を特に向上させることができる。
 エポキシ樹脂組成物中のエポキシ樹脂不溶性熱可塑性樹脂の含有量は、エポキシ樹脂組成物の粘度に応じて適宜調整される。プリプレグの加工性の観点から、エポキシ樹脂組成物に含有されるエポキシ樹脂100質量部に対して、5~50質量部であることが好ましく、10~45質量部であることがより好ましく、20~40質量部であることがさらに好ましい。5質量部未満の場合、得られるFRPの耐衝撃性が不十分になる場合がある。50質量部を超える場合、エポキシ樹脂組成物の含浸性や、得られるプリプレグのドレープ性などを低下させる場合がある。
 エポキシ樹脂不溶性熱可塑性樹脂の好ましい平均粒子径や形態は、エポキシ樹脂可溶性熱可塑性樹脂と同様である。
 本発明のエポキシ樹脂組成物には、導電性粒子や難燃剤、無機系充填剤、内部離型剤が配合されてもよい。
 導電性粒子としては、ポリアセチレン粒子、ポリアニリン粒子、ポリピロール粒子、ポリチオフェン粒子、ポリイソチアナフテン粒子及びポリエチレンジオキシチオフェン粒子等の導電性ポリマー粒子;カーボン粒子;炭素繊維粒子;金属粒子;無機材料又は有機材料から成るコア材を導電性物質で被覆した粒子が例示される。
 難燃剤としては、リン系難燃剤が例示される。リン系難燃剤としては、分子中にリン原子を含むものであれば特に限定されず、例えば、リン酸エステル、縮合リン酸エステル、ホスファゼン化合物、ポリリン酸塩などの有機リン化合物や赤リンが挙げられる。
 無機系充填材としては、例えば、ホウ酸アルミニウム、炭酸カルシウム、炭酸ケイ素、窒化ケイ素、チタン酸カリウム、塩基性硫酸マグネシウム、酸化亜鉛、グラファイト、硫酸カルシウム、ホウ酸マグネシウム、酸化マグネシウム、ケイ酸塩鉱物が挙げられる。特に、ケイ酸塩鉱物を用いることが好ましい。ケイ酸塩鉱物の市販品としては、THIXOTROPIC AGENT DT 5039(ハンツマン・ジャパン株式会社 製)が挙げられる。
 内部離型剤としては、例えば、金属石鹸類、ポリエチレンワックスやカルバナワックス等の植物ワックス、脂肪酸エステル系離型剤、シリコンオイル、動物ワックス、フッ素系非イオン界面活性剤を挙げることができる。これら内部離型剤の配合量は、前記エポキシ樹脂100質量部に対して、0.1~5質量部であることが好ましく、0.2~2質量部であることがさらに好ましい。この範囲内においては、金型からの離型効果が好適に発揮される。
 内部離型剤の市販品としては、“MOLD WIZ(登録商標)” INT1846(AXEL PLASTICS RESEARCH LABORATORIES INC.製)、Licowax S、Licowax P、Licowax OP、Licowax PE190、Licowax PED(クラリアントジャパン社製)、ステアリルステアレート(SL-900A;理研ビタミン(株)製が挙げられる。
 
1-2. エポキシ樹脂組成物(II)
 エポキシ樹脂組成物(II)は、少なくともエポキシ樹脂[A]と、グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2以上のエポキシ樹脂[C]とを含んで成る。
 本発明のエポキシ樹脂組成物(II)の100℃における好ましい粘度は、エポキシ樹脂組成物(I)において説明したとおりである。
 本発明のエポキシ樹脂組成物(II)を硬化させて得られる樹脂硬化物は、ガラス転移温度が150℃以上であることが好ましく、170~400℃であることがより好ましい。150℃未満である場合は耐熱性が不十分である。
 本発明のエポキシ樹脂組成物(II)を硬化させて得られる樹脂硬化物の、JIS K7171法で測定する曲げ弾性率は、エポキシ樹脂組成物(I)において説明したとおりである。
1-2-1. エポキシ樹脂[A]
 本発明のエポキシ樹脂組成物(II)に含まれるエポキシ樹脂[A]は、エポキシ樹脂組成物(I)において説明したとおりである。
 本発明のエポキシ樹脂組成物(II)における、エポキシ樹脂の総量に対する、エポキシ樹脂[A]が占める割合は、20~95質量%であることが好ましく、40~60質量%であることがより好ましく、55~90質量%であることが更に好ましい。20質量%未満の場合、得られる樹脂硬化物の耐熱性及び弾性率が低下する場合がある。95質量%を超える場合、エポキシ樹脂組成物の粘度が高く、強化繊維基材への含浸性が低下し易い。その結果、何れの場合も、得られるCFRPの各種物性が低下する場合がある。
1-2-2. エポキシ樹脂[C]
 本発明のエポキシ樹脂組成物(II)は、グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2以上のエポキシ樹脂[C]を含む。グリシジルエーテル個数/芳香環個数は2であることが好ましい。なお、本発明において、ナフタレン環やアントラセン環など縮環構造は1つの芳香環とみなす。
 エポキシ樹脂[C]は、エポキシ樹脂[A]の粘度を低下させて、プリプレグ作製時の樹脂含浸性を向上させるとともに、樹脂硬化物の弾性率を向上させる。そのため、エポキシ樹脂[A]とエポキシ樹脂[C]とを組み合わせて用いることにより、耐熱性及び高弾性率を維持しつつ、FRPの各種物性を向上できる。
 エポキシ樹脂[C]としては、グリシジルエーテル個数/芳香環個数が2以上のエポキシ樹脂であれば特に限定されないが、o-ハイドロキノン、レゾルシノール、p-ハイドロキノン及びこれらの誘導体のようなグリシジルエーテル型のエポキシ樹脂を用いることが好ましく、特にレゾルシノール及びその誘導体を用いることが好ましい。
 本発明のエポキシ樹脂組成物(II)における、エポキシ樹脂[A]とエポキシ樹脂[C]との質量比は、2:8 ~ 9:1であることが好ましく、4:6 ~ 9:1であることがより好ましく、6:4 ~ 8:2であることが更に好ましい。この比率で配合することにより、プリプレグの作製に適した粘度を有するエポキシ樹脂組成物(II)を作製でき、かつ架橋密度が高い樹脂硬化物を得ることができる。
 エポキシ樹脂[C]は、エポキシ樹脂[A]の粘度を低下させる減粘剤であり、エポキシ樹脂[A]及び後述のアミン系硬化剤と組み合わせて用いることにより、架橋密度が高い樹脂硬化物を与える。
 本発明のエポキシ樹脂組成物(II)は、上記2種類のエポキシ樹脂を必須とするが、その他のエポキシ樹脂を含んでいても良い。その他のエポキシ樹脂は、エポキシ樹脂組成物(I)において説明したとおりである。
 本発明のエポキシ樹脂組成物(II)における、全エポキシ樹脂量に対する、エポキシ樹脂[A]及びエポキシ樹脂[C]が占める割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
1-2-3. アミン系硬化剤
 本発明のエポキシ樹脂組成物(II)は、公知のアミン系硬化剤が用いられる。なお、本発明のエポキシ樹脂組成物(II)は、この硬化剤を予め含有していても良いし、含有していなくてもよい。硬化剤を含有していないエポキシ樹脂組成物(II)は、硬化前又は硬化時において、硬化剤と混合可能な状態とされる。
 アミン系硬化剤としては、例えば、ジシアンジアミドなどの潜在性硬化剤、脂肪族ポリアミン類、芳香族アミン系硬化剤の各種異性体、アミノ安息香酸エステル類、酸無水物類が挙げられる。
 ジシアンジアミドは、プリプレグの保存安定性に優れるため好ましい。
 脂肪族ポリアミン類は反応性が高く、低温での硬化反応が可能となるため好ましい。脂肪族ポリアミン類としては4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン、m-キシリレンジアミン等が例示される。
 芳香族ポリアミンは耐熱性や各種力学特性に優れるため好ましい。芳香族ポリアミン類としてはジアミノジフェニルスルホン類、ジアミノジフェニルメタン類、トルエンジアミン誘導体が例示される。4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミン化合物及びそれらの非反応性置換基を有する誘導体は、耐熱性の良好な硬化物を与えるという観点から特に好ましい。ここで、非反応性置換基は、エポキシ樹脂の説明において述べた非反応性置換基と同様である。また、未硬化のエポキシ樹脂組成物の保存安定性を向上させるとともに樹脂硬化物の吸水特性を優れたものとするため、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、4,4’-メチレンビス(2-イソプロピル-6-メチルアニリン)などのヒンダードアミン系化合物も好適に用いられる。
 アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好ましく用いられる。これらを用いて硬化させた複合材料は、ジアミノジフェニルスルホンの各種異性体と比較して耐熱性は劣るが、引張伸度に優れる。
 酸無水物類としては、1,2,3,6-テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸などが挙げられる。これら硬化剤を用いた場合、未硬化樹脂組成物のポットライフが長く、電気的特性、化学的特性、機械的特性などに比較的バランスがとれた硬化物が得られる。そのため、複合材料の用途に応じて、使用する硬化剤の種類は適宜選択される。
 エポキシ樹脂組成物(II)に含まれる硬化剤の量は、少なくともエポキシ樹脂組成物(II)に配合されているエポキシ樹脂を硬化させるのに適する量である。硬化剤の量は、用いるエポキシ樹脂及び硬化剤の種類に応じて適宜調節すればよい。硬化剤の量は、他の硬化剤や硬化促進剤の有無と添加量、エポキシ樹脂との化学反応量論及び組成物の硬化速度などを考慮して、適宜調整する。プリプレグに含まれるエポキシ樹脂100質量部に対して、硬化剤を30~100質量部配合することが好ましく、30~70質量部配合することがより好ましい。
1-2-4. その他の任意成分
 本発明のエポキシ樹脂組成物(II)は、上記のエポキシ樹脂[A]及びエポキシ樹脂[C]を必須とするが、その他の任意成分を含んでいても良い。その他の任意成分は、上記1-1-3で説明したとおりである。
 
1-3. エポキシ樹脂組成物(III)
 エポキシ樹脂組成物(III)は、少なくともエポキシ樹脂[A]と、エポキシ当量が110g/eq以下であるエポキシ樹脂[D]とを含んで成る。
 本発明のエポキシ樹脂組成物(III)の100℃における好ましい粘度は、エポキシ樹脂組成物(I)において説明したとおりである。
 本発明のエポキシ樹脂組成物(III)を硬化させて得られる樹脂硬化物は、ガラス転移温度が150℃以上であることが好ましく、170~400℃であることがより好ましい。150℃未満である場合は耐熱性が不十分である。
 本発明のエポキシ樹脂組成物(III)を硬化させて得られる樹脂硬化物の、JIS K7171法で測定する曲げ弾性率は、エポキシ樹脂組成物(I)において説明したとおりである。
1-3-1. エポキシ樹脂[A]
 本発明のエポキシ樹脂組成物(III)に含まれるエポキシ樹脂[A]は、エポキシ樹脂組成物(I)において説明したとおりである。
 本発明のエポキシ樹脂組成物(III)における、エポキシ樹脂の総量に対する、エポキシ樹脂[A]が占める割合は、20~95質量%であることが好ましく、40~60質量%であることがより好ましく、55~90質量%であることが更に好ましい。20質量%未満の場合、得られる樹脂硬化物の耐熱性及び弾性率が低下する場合がある。95質量%を超える場合、エポキシ樹脂組成物の粘度が高く、強化繊維基材への含浸性が低下し易い。その結果、何れの場合も、得られるCFRPの各種物性が低下する場合がある。
1-3-2. エポキシ樹脂[D]
 本発明のエポキシ樹脂組成物(III)は、エポキシ当量が110g/eq以下であるエポキシ樹脂[D]を含む。
 エポキシ樹脂[D]は、エポキシ樹脂[A]の粘度を低下させて、プリプレグ作製時の樹脂含浸性を向上させるとともに、樹脂硬化物の弾性率を向上させる。そのため、エポキシ樹脂[A]とエポキシ樹脂[D]とを組み合わせて用いることにより、耐熱性及び高弾性率を維持しつつ、FRPの各種物性を向上できる。
 エポキシ樹脂[D]としては、エポキシ当量が110g/eq以下のエポキシ樹脂であれば特に限定されないが、トリグリシジルアミノフェノール、テトラグリシジル-m-キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサン、及びこれらの誘導体のようなグリシジルアミン型のエポキシ樹脂を用いることが好ましく、トリグリシジルアミノフェノール、テトラグリシジル-m-キシリレンジアミンのような芳香基を含有するエポキシ樹脂を用いることがより好ましく、特にトリグリシジルアミノフェノール及びその誘導体のような3官能のエポキシ樹脂を用いることが好ましい。
 本発明のエポキシ樹脂組成物(III)における、エポキシ樹脂の総量に対する、エポキシ樹脂[D]が占める割合は、5~80質量%であることが好ましく、5~60質量%であることがより好ましく、10~45質量%であることが更に好ましい。5質量%未満である場合、エポキシ樹脂組成物の粘度が高く、繊維強化基材への含浸性が低下し易い。80質量%を超える場合、得られる樹脂硬化物の耐熱性及び弾性率が低下する場合がある。その結果、何れの場合も、得られるCFRPの各種物性が低下する場合がある。
 本発明のエポキシ樹脂組成物(III)における、エポキシ樹脂[A]とエポキシ樹脂[D]との質量比は、20:80 ~ 98:2であることが好ましく、50:50 ~ 95:5であることがより好ましく、60:40 ~ 80:20であることが更に好ましい。この比率で配合することにより、プリプレグの作製に適した粘度を有するエポキシ樹脂組成物を作製でき、プリプレグの取扱い性が良好かつ耐熱性及び弾性率が高い硬化物を得ることができる。
 本発明のエポキシ樹脂組成物(III)は、上記2種類のエポキシ樹脂を必須とするが、その他のエポキシ樹脂や硬化剤を含んでいても良い。その他のエポキシ樹脂や硬化剤は、エポキシ樹脂組成物(I)や(II)において説明したとおりである。
1-3-3. その他の任意成分
 本発明のエポキシ樹脂組成物(III)は、上記のエポキシ樹脂[A]及びエポキシ樹脂[D]を必須とするが、その他の任意成分を含んでいても良い。その他の任意成分は、上記1-1-3で説明したとおりである。
 
1-4. エポキシ樹脂組成物の製造方法
 本発明のエポキシ樹脂組成物は、エポキシ樹脂[A]と;硬化剤[B]、エポキシ樹脂[C]、又はエポキシ樹脂[D]と;必要に応じて熱可塑性樹脂、硬化剤、その他の成分と、を混合することにより製造できる。これらの混合の順序は問わない。
 また、エポキシ樹脂組成物の状態としては、各成分が均一に混和した一液の状態でもよく、一部の成分が固体として分散したスラリーの状態でもよい。
 エポキシ樹脂組成物の製造方法は、特に限定されるものではなく、従来公知のいずれの方法を用いてもよい。混合温度としては、40~120℃の範囲が例示できる。120℃を超える場合、部分的に硬化反応が進行して繊維強化基材層内への含浸性が低下したり、得られるエポキシ樹脂組成物及びそれを用いて製造されるプリプレグの保存安定性が低下したりする場合がある。40℃未満である場合、エポキシ樹脂組成物の粘度が高く、実質的に混合が困難となる場合がある。好ましくは50~100℃であり、さらに好ましくは50~90℃の範囲である。
 混合機械装置としては、従来公知のものを用いることができる。具体的な例としては、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を備えた混合容器、横型混合槽などが挙げられる。各成分の混合は、大気中又は不活性ガス雰囲気下で行うことができる。大気中で混合が行われる場合は、温度、湿度が管理された雰囲気が好ましい。特に限定されるものではないが、例えば、30℃以下の一定温度に管理された温度や、相対湿度50%RH以下の低湿度雰囲気で混合することが好ましい。
 
2. プリプレグ
 本発明のプリプレグは、繊維強化基材と、前記繊維強化基材内に含浸された上述の本発明のエポキシ樹脂組成物、好ましくはエポキシ樹脂組成物(I)~(III)の何れか(以下、「本エポキシ樹脂組成物」ともいう)と、から成る。
 本発明のプリプレグは、繊維強化基材の一部又は全体に本エポキシ樹脂組成物が含浸されたプリプレグである。プリプレグ全体における本エポキシ樹脂組成物の含有率は、プリプレグの全質量を基準として、15~60質量%であることが好ましい。樹脂含有率が15質量%未満である場合、得られる繊維強化複合材料に空隙などが発生し、機械物性を低下させる場合がある。樹脂含有率が60質量%を超える場合、強化繊維による補強効果が不十分となり、実質的に質量対比機械物性が低いものになる場合がある。樹脂含有率は、20~55質量%であることが好ましく、25~50質量%であることがより好ましい。
2-1. 繊維強化基材
 本発明で用いる繊維強化基材としては、特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などが挙げられる。
 これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。比強度、比弾性率が良好で、軽量かつ高強度の繊維強化複合材料が得られる点で、炭素繊維がより好ましい。引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維が特に好ましい。
 強化繊維にPAN系炭素繊維を用いる場合、その引張弾性率は、100~600GPaであることが好ましく、200~500GPaであることがより好ましく、230~450GPaであることが特に好ましい。また、引張強度は、2000MPa~10000MPaであることが好ましく、3000~8000MPaであることがより好ましい。炭素繊維の直径は、4~20μmが好ましく、5~10μmがより好ましい。このような炭素繊維を用いることにより、得られる繊維強化複合材料の機械的性質を向上できる。
 本発明において、サイジング剤が付着した強化繊維の質量に対して、サイジング剤が0.01~10質量%付着した強化繊維束であることが好ましく、0.05~3.0質量%の付着量であることがより好ましく、0.1~2.0質量%の付着量であることが特に好ましい。サイジング剤の付着量が多い方が、強化繊維とマトリクス樹脂の接着性が強くなる傾向がある。一方、付着量が低い方が得られる複合材料の層間靱性が優れる傾向にある。最も好ましいサイジング剤の付着量は、強化繊維とマトリクス樹脂の接着性の観点からは1.0~2.0質量%であり、得られる複合材料の層間靱性の観点からは0.1~1.0質量%である。
 強化繊維はシート状に形成して用いることが好ましい。強化繊維シートとしては、例えば、多数本の強化繊維を一方向に引き揃えたシートや、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙を挙げることができる。これらの中でも、強化繊維を連続繊維としてシート状に形成した一方向引揃えシートや二方向織物、多軸織物基材を用いると、より機械物性に優れた繊維強化複合材料が得られるため好ましい。シート状の繊維強化基材の厚さは、0.01~3mmが好ましく、0.1~1.5mmがより好ましい。
2-2. プリプレグの製造方法
 本発明のプリプレグの製造方法は、特に制限がなく、従来公知のいかなる方法も採用できる。具体的には、ホットメルト法や溶剤法が好適に採用できる。
 ホットメルト法は、離型紙の上に、樹脂組成物を薄いフィルム状に塗布して樹脂組成物フィルムを形成し、繊維強化基材に該樹脂組成物フィルムを積層して加圧下で加熱することにより樹脂組成物を繊維強化基材層内に含浸させる方法である。
 樹脂組成物を樹脂組成物フィルムにする方法としては、特に限定されるものではなく、従来公知のいずれの方法を用いることもできる。具体的には、ダイ押し出し、アプリケーター、リバースロールコーター、コンマコーターなどを用いて、離型紙やフィルムなどの支持体上に樹脂組成物を流延、キャストをすることにより樹脂組成物フィルムを得ることができる。フィルムを製造する際の樹脂温度は、樹脂組成物の組成や粘度に応じて適宜決定する。具体的には、前述のエポキシ樹脂組成物の製造方法における混合温度と同じ温度条件が好適に用いられる。樹脂組成物の繊維強化基材層内への含浸は1回で行っても良いし、複数回に分けて行っても良い。
 溶剤法は、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを繊維強化基材層内に含浸させる方法である。
 本発明のプリプレグは、これらの従来法の中でも、溶剤を用いないホットメルト法により好適に製造することができる。
 エポキシ樹脂組成物フィルムをホットメルト法で繊維強化基材層内に含浸させる場合の含浸温度は、50~120℃の範囲が好ましい。含浸温度が50℃未満の場合、エポキシ樹脂組成物の粘度が高く、繊維強化基材層内へ十分に含浸しない場合がある。含浸温度が120℃を超える場合、エポキシ樹脂組成物の硬化反応が進行し、得られるプリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。含浸温度は、60~110℃がより好ましく、70~100℃が特に好ましい。
 エポキシ樹脂組成物フィルムをホットメルト法で繊維強化基材層内に含浸させる際の含浸圧力は、その樹脂組成物の粘度・樹脂フローなどを勘案し、適宜決定する。
 具体的な含浸圧力は、0.01~250(N/cm)であり、0.1~200(N/cm)であることが好ましい。
 
3. 繊維強化複合材料
 繊維強化基材と、本発明のエポキシ樹脂組成物に各種硬化剤や熱可塑性樹脂を配合して成る樹脂組成物と、を複合化して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。繊維強化基材と複合化する方法としては、特に制限はなく、本発明のプリプレグのように繊維強化基材と樹脂組成物を予め複合化してもよく、例えば、レジントランスファー成形法(RTM法)、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法などのように成形時に複合化してもよい。
 繊維強化基材と、本発明のエポキシ樹脂組成物とを複合化した後、特定の条件で加熱加圧して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。本発明のプリプレグを用いて、FRPを製造する方法としては、オートクレーブ成形やプレス成形法、RTM法等の公知の成形法が挙げられる。
3-1. オートクレーブ成形法
 本発明のFRPの製造方法としては、オートクレーブ成形法が好ましく用いられる。オートクレーブ成形法は、金型の下型にプリプレグ及びフィルムバッグを順次敷設し、該プリプレグを下型とフィルムバッグとの間に密封し、下型とフィルムバッグとにより形成される空間を真空にするとともに、オートクレーブ成形装置で、加熱と加圧をする成形方法である。成形時の条件は、昇温速度を1~50℃/分とし、0.2~0.7MPa、130~180℃で10~30分間、加熱及び加圧することが好ましい。
3-2. プレス成形法
 本発明のFRPの製造方法としては、プレス成形法が好ましく用いられる。プレス成形法によるFRPの製造は、本発明のプリプレグ又は本発明のプリプレグを積層して形成したプリフォームを、金型を用いて加熱加圧することにより行う。金型は、予め硬化温度に加熱しておくことが好ましい。
 プレス成形時の金型の温度は、150~210℃が好ましい。成形温度が150℃以上であれば、十分に硬化反応を起こすことができ、高い生産性でFRPを得ることができる。また、成形温度が210℃以下であれば、樹脂粘度が低くなり過ぎることがなく、金型内における樹脂の過剰な流動を抑えることができる。その結果、金型からの樹脂の流出や繊維の蛇行を抑制できるため、高品質のFRPが得られる。
 成形時の圧力は、0.05~2MPaであり、0.2~2MPaが好ましい。圧力が0.05MPa以上であれば、樹脂の適度な流動が得られ、外観不良やボイドの発生を防ぐことができる。また、プリプレグが十分に金型に密着するため、良好な外観のFRPを製造することができる。圧力が2MPa以下であれば、樹脂を必要以上に流動させることがないため、得られるFRPの外観不良が生じ難い。また、金型に必要以上の負荷をかけることがないため、金型の変形等が生じ難い。
 成形時間は1~8時間が好ましい。
3-3. レジントランスファー成形法(RTM法)
 複雑形状の繊維強化複合材料を効率よく得られるという観点から、RTM法を用いることも好ましい。ここで、RTM法とは型内に配置した繊維強化基材に液状のエポキシ樹脂組成物を含浸、硬化して繊維強化複合材料を得る方法を意味する。
 本発明において、RTM法に用いる型は、剛性材料からなるクローズドモールドを用いてもよく、剛性材料のオープンモールドと可撓性のフィルム(バッグ)を用いることも可能である。後者の場合、繊維強化基材は、剛性材料のオープンモールドと可撓性フィルムの間に設置することができる。剛性材料としては、スチールやアルミニウムなどの金属、繊維強化プラスチック(FRP)、木材、石膏など既存の各種のものが用いられる。可撓性のフィルムの材料には、ポリアミド、ポリイミド、ポリエステル、フッ素樹脂、シリコーン樹脂などが用いられる。
 RTM法において、剛性材料のクローズドモールドを用いる場合は、加圧して型締めし、エポキシ樹脂組成物を加圧して注入することが通常行われる。このとき、注入口とは別に吸引口を設け、真空ポンプに接続して吸引することも可能である。吸引を行い、特別な加圧手段を用いることなく大気圧のみでエポキシ樹脂組成物を注入することも可能である。この方法は、複数の吸引口を設けることにより大型の部材を製造することができるため、好適に用いることができる。
 RTM法において、剛性材料のオープンモールドと可撓性フィルムを用いる場合は、吸引を行い、特別な加圧手段を用いることなく大気圧のみでエポキシ樹脂を注入してもよい。大気圧のみでの注入で良好な含浸を実現するためには、樹脂拡散媒体を用いることが有効である。さらに、繊維強化基材の設置に先立って、剛性材料の表面にゲルコートを塗布することが好ましく行われる。
 RTM法において、繊維強化基材にエポキシ樹脂組成物を含浸した後、加熱硬化が行われる。加熱硬化時の型温は、通常、エポキシ樹脂組成物の注入時における型温より高い温度が選ばれる。加熱硬化時の型温は80~200℃であることが好ましい。加熱硬化の時間は1分~20時間が好ましい。加熱硬化が完了した後、脱型して繊維強化複合材料を取り出す。その後、得られた繊維強化複合材料をより高い温度で加熱して後硬化を行ってもよい。後硬化の温度は150~200℃が好ましく、時間は1分~4時間が好ましい。
 エポキシ樹脂組成物をRTM法で繊維強化基材に含浸させる際の含浸圧力は、その樹脂組成物の粘度・樹脂フローなどを勘案し、適宜決定する。
 具体的な含浸圧力は、0.001~10(MPa)であり、0.01~1(MPa)であることが好ましい。RTM法を用いて繊維強化複合材料を得る場合、エポキシ樹脂組成物の粘度は、100℃における粘度が、5000mPa・s未満であることが好ましく、1~1000mPa・sであることがより好ましい。
 
 以下、実施例によって本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。本実施例、比較例において使用する成分や試験方法を以下に記載する。
 〔成分〕
 (エポキシ樹脂)
 エポキシ樹脂[A]
・テトラグリシジル-3,4’-ジアミノジフェニルエーテル(合成例1の方法で合成、以下「3,4’-TGDDE」と略記する)
 エポキシ樹脂[C]
・レゾルシノールジグリシジルエーテル(ナガセケムテックス社製 EX-201(製品名)、グリシジルエーテル個数/芳香環個数=2、以下「Resorcinol-DG」と略記する)
と略記する)
 エポキシ樹脂[D]
・トリグリシジル-p-アミノフェノール(ハンツマン社製 Araldite MY0510(製品名)、エポキシ当量=97g/eq、以下「TG-pAP」と略記する)
・トリグリシジル-m-アミノフェノール(ハンツマン社製 Araldite MY0600(製品名)、グリシジルエーテル個数/芳香環個数=1、エポキシ当量=106g/eq、以下「TG-mAP」と略記する)
 その他エポキシ樹脂
・テトラグリシジル-4,4’-ジアミノジフェニルメタン(ハンツマン社製 Araldite MY721(製品名)、エポキシ当量=112g/eq、以下「TGDDM」と略記する)
・テトラグリシジル-4,4’-ジアミノジフェニルエーテル (合成例2の方法で合成、エポキシ当量=112g/eq、以下「4,4’-TGDDE」と略記する)
・ビスフェノールA-ジグリシジルエーテル(三菱化学社製 jER825(製品名)、グリシジルエーテル個数/芳香環個数=1、エポキシ当量=176g/eq、以下「DGEBA」と略記する)
・N,N-ジグリシジルアニリン(日本化薬株式会社製 GAN(製品名)、グリシジルエーテル個数/芳香環個数=0、エポキシ当量=117g/eq、以下「GAN」と略記する)
・ジグリシジル-o-トルイジン(日本化薬株式会社製 GOT(製品名)、グリシジルエーテル個数/芳香環個数=0、エポキシ当量=130g/eq、以下「GOT」と略記する)
(硬化剤)
 硬化剤[B]
・4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン(ロンザ社製 Lonzacure M-MIPA(製品名)、以下「M-MIAP」と略記する)
・4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン(クミアイ化学社製、以下「MED-J」と略記する)
・ジエチルトルエンジアミン(ハンツマン社製 Aradure5200(製品名)、以下「DETDA」と略記する)
 その他の硬化剤
・4,4’-ジアミノジフェニルメタン(東京化成工業株式会社製、以下「DDM」と略記する)
・3,3’-ジアミノジフェニルスルホン(小西化学工業株式会社製、以下「3,3’-DDS」と略記する)
 (エポキシ樹脂不溶熱可塑性樹脂)
・ポリアミド12(エムスケミージャパン社製 TR-55(製品名)、平均粒子径20μm、以下「PA12」と略記する)
 (エポキシ樹脂可溶熱可塑性樹脂)
・ポリエーテルスルホン(住友化学工業株式会社製 スミカエクセルPES-5003P(製品名)、平均粒子径20μm、以下「PES」と略記する)
 (炭素繊維ストランド)
・炭素繊維1:“テナックス(登録商標)”IMS65 E23 830tex(炭素繊維ストランド、引張強度 5.8GPa、引張弾性率 290GPa、サイジング剤付着量 1.2質量%、帝人(株)製)
・炭素繊維2:“テナックス(登録商標)”IMS65 E22 830tex(炭素繊維ストランド、引張強度 5.8GPa、引張弾性率 290GPa、サイジング剤付着量 0.5質量%、帝人(株)製)
 (炭素繊維多層織物)
・炭素繊維多軸織物1:炭素繊維1を[+45/90/-45/0]の角度で4枚積層しステッチしたもの、(織物基材の炭素繊維総目付 760g/m
・炭素繊維多軸織物2:炭素繊維1を[-45/90/+45/0]の角度で4枚積層しステッチしたもの、(織物基材の炭素繊維総目付 760g/m
 (エポキシ樹脂の合成例)
 〔合成例1〕 3,4’-TGDDEの合成
 温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110.2g(12.0mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1000gに溶解させた3,4’-ジアミノジフェニルエーテル200.2g(1.0mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液500.0g(6.0mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、400gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が361.7g(収率85.2%)得られた。主生成物である3,4’-TGDDEの純度は、84%(HPLC面積%)であった。
 〔合成例2〕 4,4’-TGDDEの合成
 温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110.2g(12.0mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1000gに溶解させた。4,4’-ジアミノジフェニルエーテル200.2g(1.0mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-4,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液500.0g(6.0mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、400gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が377.8g(収率89.0%)得られた。主生成物である4,4’-TGDDEの純度は、87%(HPLC面積%)であった。
[評価方法]
 (1) 樹脂硬化物の物性
 (1-1) エポキシ樹脂組成物の調製
(実施例1-8、49-52、比較例1-6、24)
 表1、9に記載する割合でエポキシ樹脂に硬化剤を添加し、撹拌機を用いて80℃で30分間混合し、エポキシ樹脂組成物を調製した。なお、表1に記載の組成においては、エポキシ樹脂のグリシジル基と硬化剤のアミノ基は当量となる。
(実施例9-33、39-48、比較例7-16、20-23)
 各表に記載する割合で、攪拌機を用いてエポキシ樹脂に溶解性熱可塑性樹脂を120℃で溶解させた。その後、80℃まで降温し、硬化剤および非溶解性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物を調製した。なお、表に記載の組成においては、エポキシ樹脂のグリシジル基と硬化剤のアミノ基は当量となる。
(実施例34-38、比較例17-19)
 表6に記載する割合でエポキシ樹脂に硬化剤を添加し、撹拌機を用いて40℃で30分間混合し、エポキシ樹脂組成物を調製した。なお、表6に記載の組成においては、エポキシ樹脂のグリシジル基と硬化剤のアミノ基は当量となる。
 
 (1-2) 樹脂硬化物の作成
 (1-1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、4mm厚のシリコン樹脂製スペーサーにより厚み4mmになるように設定したシリコン樹脂製モールド中に注入した。180℃の温度で2時間硬化させ、厚さ4mmの樹脂硬化物を得た。
 (1-3) DMA-wet-Tg
 SACMA 18R-94法に準じて、ガラス転移温度を測定した。
 樹脂試験片の寸法は50mm×6mm×2mmで準備した。プレッシャークッカー(エスペック社製、HASTEST PC-422R8)を用い、121℃、24時間の条件にて準備した樹脂試験片の吸水処理を行った。UBM社製動的粘弾性測定装置Rheogel-E400を用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.0167%の条件で、チャック間の距離を30mmとし、50℃からゴム弾性領域まで、吸水処理した樹脂試験片の貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の平坦領域の近似直線と、E’が転移する領域の近似直線との交点から求められる温度をガラス転移温度(Tg)として記録した。
 (1-4) DMA-Tg
 SACMA 18R-94法に準じて、ガラス転移温度を測定した。
 樹脂試験片の寸法は50mm×6mm×2mmで準備した。UBM社製動的粘弾性測定装置Rheogel-E400を用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.0167%の条件で、チャック間の距離を30mmとし、50℃からゴム弾性領域まで貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の平坦領域の近似直線と、E’が転移する領域の近似直線との交点から求められる温度をガラス転移温度(Tg)として記録した。
 (1-5) 樹脂曲げ強度及び樹脂曲げ弾性率
 JIS K7171法に準じて、試験を実施した。その際の、樹脂試験片の寸法は80mm×10mm×h4mmで準備した。支点間距離Lは、16×h(厚み)、試験速度2m/minで曲げ試験を行い、曲げ強度と曲げ弾性率を測定した。
 (1-6) 粘度
 ティー・エイ・インスツルメント社製レオメーターARES-RDAを用い、直径25mmのパラレルプレートを用い、パラレルプレート間のエポキシ樹脂組成物の厚さを0.5mmとし、角速度10ラジアン/秒の条件で昇温速度2℃/分で180℃まで(1-1)で調整したエポキシ樹脂組成物の粘度測定を行い、温度-粘度曲線から100℃における粘度を測定した。
 
 (2) プリプレグ取扱性
 (2-1) プリプレグの作製
 リバースロールコーターを用いて、離型紙上に、(1-1)で得られたエポキシ樹脂組成物を塗布して50g/m目付の樹脂フィルムを作製した。次に、単位面積当たりの繊維質量が190g/mとなるように炭素繊維を一方向に整列させてシート状の強化繊維基材層を作製した。この強化繊維基材層の両面に上記樹脂フィルムを積重し、温度95℃、圧力0.2MPaの条件で加熱加圧して、炭素繊維含有率が65質量%の一方向プリプレグを作製した。
 (2-2) 保存安定性
 (2-1)で得られたプリプレグを温度26.7℃、湿度65%に10日間保存した後に、プリプレグをカットし、金型に積層することにより評価した。評価結果は以下の基準(○~×)で表した。
○:金型へ積層しても十分追従し、製造直後とほとんど変わらない取扱性。
×:プリプレグの硬化反応が進行し、タック・ドレープ性が著しく低下しており、金型へ積層することが困難な状況。
 (2-3) 成形ボイド
 (2-1)で得られたプリプレグを温度26.7℃、湿度65%に10日間保存した後に、プリプレグを150mm×150mmにカットし、積層構成[0]10で積層し、積層体をコンパクション処理(真空パックで積層体を保管)を施し、温度23℃の環境下で保管した。
 積層32日後に通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。試験片を切り出し、断面研磨を行い、ボイドの有無を顕微鏡により観察を行った。
 ○:ボイド無
 ×:ボイド有
 (2-4) タック性
 プリプレグのタック性は、タッキング試験装置 TAC-II(RHESCA CO., LTD.)を用いて以下の方法により測定した。試験方法として、27℃に保持された試験ステージに(2-1)で得られたプリプレグをセットし、27℃に保持されたφ5のタックプローブで初期荷重100gfの荷重をかけて、10mm/secの試験速度で引き抜いた際の最大の荷重を求めた。
 製造直後のプリプレグと、温度26.7℃、湿度65%に10日間保存したプリプレグに、それぞれタックプローブ試験を実施した。評価結果は以下の基準(○~×)で表した。
○:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が50%以上100%未満
×:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が50%未満
 (2-5) ドレープ性
 プリプレグのドレープ性は、ASTM D1388に準拠して、以下の試験により評価した。(2-1)で得られたプリプレグを0°繊維方向に対し90°方向にカットし、傾斜角度 41.5°の傾斜に対するドレープ性(flexural rigidity, mg*cm)を評価した。この評価は、プリプレグの製造直後と、温度26.7℃、湿度65%で所定の期間保存した後とに、それぞれ実施した。評価結果は以下の基準(○~×)で表した。
○:20日間経過時のドレープ性は製造直後と変わらない。
×:20日間経過時のドレープ性が製造直後と比較して50%以上低下
 (2-6) 含浸性
 繊維基材への樹脂の含浸性をプリプレグの吸水率により評価した。得られたプリプレグの吸水率が低い方が樹脂の含浸性が高い。
 (2-1)で得られたプリプレグを一辺が100mmの正方形にカットし、質量(W1)を測定した。その後、デシケーター中で、プリプレグを水中に沈めた。デシケーター内を、10kPa以下に減圧し、プリプレグ内部の空気と水を置換させた。プリプレグを水中から取り出し、表面の水を拭き取り、プリプレグの質量(W2)を測定した。これらの測定値から下記式
   吸水率(%)=[(W2-W1)/W1]×100
     W1:プリプレグの質量(g)
     W2:吸水後のプリプレグの質量(g)
を用いて吸水率を算出した。評価結果は以下の基準(○~×)で表した。
○:吸水率が10%未満。
×:吸水率が10%以上
 
 (3) CFRP物性
 (3-1) OHC
 (2-1)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅38.1mm × 長さ304.8mmの寸法に切断し、試験片中心に直径6.35mmの穴あけ加工を施し、有孔圧縮強度(OHC)試験の試験片を得た。
 試験は、SACMA SRM3に則って実施し、最大点荷重から有孔圧縮強度を算出した。
 (3-2) Hot-wet OHC
 (2-1)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅38.1mm × 長さ304.8mmの寸法に切断し、試験片中心に直径6.35mmの穴あけ加工を施し、有孔圧縮強度(OHC)試験の試験片を得た。プレッシャークッカー(エスペック社製、HASTEST PC-422R8)を用い、121℃、24時間の条件にて準備したOHC試験片の吸水処理を行った。
 試験は、SACMA SRM3に則って実施し、最大点荷重から有孔圧縮強度を算出した。なお、測定は121℃で行った。
 (3-3) 面内せん断強度(IPSS)および面内せん断弾性率(IPSM)
 (2-1)で得られたプリプレグを一辺が300mmの正方形にカット、積層し、積層構成[+45/-45]2Sの積層体を得た。
 測定試料は、通常の真空オートクレーブ成形法を用いて、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅25mm × 長さ230mmの寸法に切断し、SACMA SRM7に則って測定し、最大点荷重からIPS強度、弾性率を算出した。
 (3-4) 衝撃後圧縮強度(CAI)
 (2-1)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmの寸法に切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。供試体(サンプル)は各試験片の寸法測定後、衝撃試験は落錘型衝撃試験機(インストロン社製 Dynatup)を用いて、30.5Jの衝撃エネルギーを与えた。衝撃後、供試体の損傷面積は、超音波探傷試験機(クラウトクレーマー社製 SDS3600、HIS3/HF)にて測定した。衝撃後、供試体の強度試験は、供試体の上から25.4mmでサイドから25.4mmの位置に、歪みゲージを左右各1本ずつ貼付し、同様に表裏に合計4本/体の歪みゲージを貼付けた後、試験機(島津製作所製オートグラフ)のクロスヘッド速度を1.27mm/minとし、供試体の破断まで荷重を負荷した。
 (3-5) 層間破壊靭性モードI(GIc)
 (2-1)で得られたプリプレグを一辺が360mmの正方形にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(FRP)を幅12.7mm × 長さ330.2mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。
 GIcの試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、離型シートの先端から12.7mmの予亀裂(初期クラック)を発生させた後に、さらに亀裂を進展させる試験を行った。予亀裂の先端から、亀裂進展長さが127mmに到達した時点で試験を終了させた。試験片引張試験機のクロスヘッドスピードは12.7mm/分とし、n=5で測定を行った。
 亀裂進展長さは顕微鏡を用いて試験片の両端面から測定し、荷重、及び亀裂開口変位を計測することにより、GIc算出した。
 (3-6) 層間破壊靭性モードII(GIIc)
 (2-1)で得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを形成させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(繊維強化複合材料)を幅12.7mm × 長さ330.2mmの寸法に切断し、層間破壊靭性モードII(GIIc)の試験片を得た。この試験片を用いて、GIIc試験を行った。
 GIIc試験方法として、3点曲げ荷重を負荷するENF試験(end notched flexure test)を行った。支点間距離は101.6mmとした。厚さ25μmのPTFEシートにより作製したシートの先端が、支点から38.1mmとなるように試験片を配置し、この試験片に2.54mm/分の速度で曲げの負荷を与えて初期クラックを形成させた。
 その後、クラックの先端が、支点から25.4mmの位置になるように試験片を配置し、2.54mm/分の速度で曲げの負荷を与えて試験を行った。同様に3回の試験を実施し、それぞれの曲げ試験の荷重―ストロークから各回のGIIcを算出した後、それらの平均値を算出した。
 クラックの先端は顕微鏡を用いて、試験片の両端面から測定を行った。GIIc試験の測定は、n=5の試験片で測定を行った。
 
 (エポキシ樹脂組成物(I))
〔実施例1~8、比較例1~6〕
 表1に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表1に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、より高い曲げ弾性率を示した。さらに、本発明のエポキシ樹脂組成物(I)を満たす実施例1~6は175℃以上の高DMA-wet-Tgおよび3.5GPa以上の高弾性率を示した。
 〔実施例9~16、比較例7~12〕
 表2に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。強化繊維として炭素繊維1を用い、得られた各エポキシ樹脂組成物を用いてプリプレグを作製した。得られたプリプレグを用いて作製したCFRPの各種物性を表2に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、より高いOHCを示した。さらに、本発明のエポキシ樹脂組成物(I)を満たす実施例9~16は200MPa以上の高Hot-wet OHCを示した。
 〔実施例17~20〕
 表3に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。強化繊維として炭素繊維2を用い、得られた各エポキシ樹脂組成物を用いてプリプレグを作製した。得られたプリプレグを用いて作製したCFRPの各種物性を表3に示した。実施例17~20は200MPa以上の高Hot-wet OHCを示した。
 比較例1~12はエポキシ樹脂[A]を用いずにTGDDMまたは4,4’-TGDDEを用いてエポキシ樹脂組成物を作製したが、各種物性が低くなった。
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
 (エポキシ樹脂組成物(II))
 〔実施例21~29、比較例13~16〕
 表4に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表4に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、より高い樹脂曲げ弾性率を示した。さらに、本発明のエポキシ樹脂組成物(II)を満たす実施例21~26は、100℃において130Pa・s以下の低粘度、180MPa以上の高曲げ強度、4.3GPa以上の高曲げ弾性率、170℃以上の高Tgを示した。
 上記で得られた各エポキシ樹脂組成物と炭素繊維1を用いてプリプレグを作製した。得られたプリプレグの各種取扱い性を表4に示した。実施例21~26は、保存安定性、成形ボイド、タック性、ドレープ性のいずれの評価においても良好な結果を示した。
 得られたプリプレグを用いて作製したCFRPの各種物性を表4に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、より高いG1c、G2cを示した。さらに、本発明のエポキシ樹脂組成物(II)を満たす実施例21~26は、320MPa以上の高OHC、120MPa以上の高IPSS、5.7GPa以上の高IPSM、310MPa以上の高CAI、4.0cm以下の低CAI損傷面積、620J/m以上の高GIc、2200J/m以上の高GIIcを示した。
 比較例13~16は、エポキシ樹脂[A]を用いずに、TGDDMを用いたが、樹脂物性CFRPの物性が低くなった。
Figure JPOXMLDOC01-appb-T000024
 
 〔実施例30~33〕
 表5に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表5に示した。実施例30~33は、100℃において130Pa・s以下の低粘度、180MPa以上の高曲げ強度、4.3GPa以上の高曲げ弾性率、190℃以上の高Tgを示した。
 上記で得られた各エポキシ樹脂組成物と炭素繊維2を用いてプリプレグを作製した。得られたプリプレグの各種取扱い性を表5に示した。実施例30~33は、保存安定性、成形ボイド、タック性、ドレープ性のいずれの評価においても良好な結果を示した。
 得られたプリプレグを用いて作製したCFRPの各種物性を表5に示した。実施例30~33は、320MPa以上の高OHC、120MPa以上の高IPSS、5.7GPa以上の高IPSM、310MPa以上の高CAI、4.0cm以下の低CAI損傷面積、660J/m以上の高GIc、2200J/m以上の高GIIcを示した。
Figure JPOXMLDOC01-appb-T000025
 
 (エポキシ樹脂組成物(III))
 〔実施例34~38、比較例17~19〕
 表6に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表6に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、より高い樹脂曲げ弾性率を示した。さらに、本発明のエポキシ樹脂組成物(III)を満たす実施例34~37は210℃以上の高Tgおよび4.3GPa以上の高弾性率を示した。
 〔実施例39~44、比較例20~23〕
 表7に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。強化繊維として炭素繊維1を用い、得られた各エポキシ樹脂組成物を用いてプリプレグを作製した。得られたプリプレグを用いて作製したCFRPの各種物性を表7に示した。エポキシ樹脂として化学式1の構造を有するエポキシ樹脂である3,4’-TGDDEを用いると、同じ硬化剤を用い、化学式1の構造を有さないエポキシ樹脂を用いた場合と比較して、よりCFRP物性を示した。さらに、本発明のエポキシ樹脂組成物(III)を満たす実施例39~42は330MPa以上の高CAI、550J/m以上の高G1c、2100J/m以上の高G2c、335MPa以上の高OHCを示した。また、実施例6はプリプレグの取扱い性も良かった。実施例39は実施例40、41と比較して、エポキシ樹脂[B]が少ないため、問題はないものの取扱い性に劣った。
 比較例17~23は、エポキシ樹脂[A]を用いずに、TGDDM、4,4’-TGDDEをそれぞれ用いてエポキシ樹脂組成物を作製したが、各種物性が低くなった。
 〔実施例45~48〕
 表8に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。強化繊維として炭素繊維2を用い、得られた各エポキシ樹脂組成物を用いてプリプレグを作製した。得られたプリプレグを用いて作製したCFRPの各種物性を表8に示した。実施例45~48は330MPa以上の高CAI、550J/m以上の高G1c、2100J/m以上の高G2c、335MPa以上の高OHCを示した
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
 〔実施例49~52、比較例24〕
 表9に記載する成分を、攪拌機を用いて混合してエポキシ樹脂組成物を得た。次いで、炭素繊維多軸織物1および炭素繊維多軸織物2を300×300mmにカットし、500×500mmの離型処理したアルミ板の上に、炭素繊維多軸織物1を3枚、炭素繊維多軸織物2を3枚、合計6枚重ねて積層体とした。
 更に積層体の上に、離型性機能を付与した基材であるピールクロスのRelease Ply C(AIRTECH社製)と樹脂拡散基材のResin Flow 90HT(AIRTECH社製)を積層した。 その後、樹脂注入口と樹脂排出口形成のためのホースを配置し、全体をナイロンバッグフィルムで覆い、シーラントテープで密閉し、内部を真空にした。続いてアルミ板を120℃に加温し、バック内を5torr以下に減圧した後、上記エポキシ樹脂組成物を100℃に加熱し、樹脂注入口を通して真空系内へ注入した。
 注入したエポキシ樹脂組成物がバック内に充満し、積層体に含浸した状態で180℃に昇温し、180℃で2時間保持して、炭素繊維複合材料を得た。炭素繊維の体積含有率は54%であった。
 得られた複合材料の成形物を幅38.1mm × 長さ304.8mmの寸法に切断し、試験片の中心に直径6.35mmの穴あけ加工を施し、有孔圧縮強度(OHC)試験の試験片を得た。試験は、SACMA SRM3に則って実施し、最大点荷重から有孔圧縮強度を算出した結果を表9に示した。
 実施例49~52は、いずれも比較例24に比べて高いOHC物性を示した。
Figure JPOXMLDOC01-appb-T000029
 

Claims (20)

  1.  下記化学式(1)
    Figure JPOXMLDOC01-appb-C000001
     
    (ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。)
    で示されるエポキシ樹脂[A]を含んで成ることを特徴とするエポキシ樹脂組成物。
  2.  下記化学式(1)
    Figure JPOXMLDOC01-appb-C000002
     
    (ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。)
    で示されるエポキシ樹脂[A]と、
     芳香族ポリアミンから成る硬化剤であって、アミノ基に対するオルト位の少なくとも1箇所に脂肪族置換基、芳香族置換基、ハロゲン原子のいずれかの置換基を有する芳香族ポリアミンから成る硬化剤[B]と、
    を含んで成ることを特徴とするエポキシ樹脂組成物。
  3.  硬化剤[B]が芳香族ポリアミンから成る硬化剤であって、アミノ基に対するオルト位の少なくとも1箇所に脂肪族置換基を有する芳香族ポリアミンから成る硬化剤である請求項2に記載のエポキシ樹脂組成物。
  4.  硬化剤[B]が4,4’-ジアミノジフェニルメタン誘導体である請求項2又は3に記載のエポキシ樹脂組成物。
  5.  硬化剤[B]がフェニレンジアミン誘導体である請求項2又は3に記載のエポキシ樹脂組成物。
  6.  下記化学式(1)
    Figure JPOXMLDOC01-appb-C000003
     
    (ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれる1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。)
    で示されるエポキシ樹脂[A]と、
     グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2以上のエポキシ樹脂[C]と、
    を含んで成ることを特徴とするエポキシ樹脂組成物。
  7.  前記エポキシ樹脂[C]がジグリシジルレゾルシノールである請求項6に記載のエポキシ樹脂組成物。
  8.  前記エポキシ樹脂[A]と、前記エポキシ樹脂[C]と、の質量比が、2:8 ~ 9:1である請求項6又は7に記載のエポキシ樹脂組成物。
  9.  下記化学式(1)
    Figure JPOXMLDOC01-appb-C000004
     
    (ただし、化(1)中、R~Rは、それぞれ独立に、水素原子、脂肪族炭化水素基、脂環式炭化水素基、ハロゲン原子からなる群から選ばれた1つを表し、Xは-CH-、-O-、-S-、-CO-、-C(=O)O-、-O-C(=O)-、-NHCO-、-CONH-、-SO-から選ばれる1つを表す。)
    で示されるエポキシ樹脂[A]と、
     エポキシ当量が110g/eq以下であるエポキシ樹脂[D]と、
    を含んで成ることを特徴とするエポキシ樹脂組成物。
  10.  前記エポキシ樹脂[D]が3官能エポキシ樹脂である請求項9に記載のエポキシ樹脂組成物。
  11.  前記エポキシ樹脂[D]がトリグリシジルアミノフェノール誘導体である請求項9または10に記載のエポキシ樹脂組成物。
  12.  前記エポキシ樹脂[A]の含有量がエポキシ樹脂の総量に対して20~95質量%であり、前記エポキシ樹脂[D]の含有量がエポキシ樹脂の総量に対して5~80質量%である請求項9乃至11の何れか1項に記載のエポキシ樹脂組成物。
  13.  前記エポキシ樹脂[A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである請求項1乃至12の何れか1項に記載のエポキシ樹脂組成物。
  14.  繊維強化基材と、
     前記繊維強化基材内に含浸された請求項1乃至13の何れか1項に記載のエポキシ樹脂組成物と、
    から成ることを特徴とするプリプレグ。
  15.  前記強化繊維基材が炭素繊維から成る強化繊維基材である請求項14に記載のプリプレグ。
  16.  請求項1乃至13の何れか1項に記載のエポキシ樹脂組成物を強化繊維基材内に含浸させることを特徴とするプリプレグの製造方法。
  17.  請求項1乃至13の何れか1項に記載のエポキシ樹脂組成物を硬化して成る樹脂硬化物と、繊維強化基材と、を含んで構成される繊維強化複合材料。
  18.  繊維強化基材と、請求項1乃至13の何れか1項に記載のエポキシ樹脂組成物を複合化して硬化させる繊維強化複合材料の製造方法。
  19.  請求項14又は15に記載のプリプレグを硬化する繊維強化複合材料の製造方法。
  20.  請求項14又は15に記載のプリプレグを積層して、圧力0.05~2MPa、温度150~210℃で1~8時間加熱することを特徴とする繊維強化複合材料の製造方法。
     
PCT/JP2019/010715 2018-03-16 2019-03-14 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法 WO2019177131A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/981,096 US20200407548A1 (en) 2018-03-16 2019-03-14 Epoxy resin composition, prepreg, fiber reinforced composite material, and production methods therefor
AU2019233463A AU2019233463A1 (en) 2018-03-16 2019-03-14 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
CA3094280A CA3094280A1 (en) 2018-03-16 2019-03-14 Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor
EP19767338.7A EP3766912A4 (en) 2018-03-16 2019-03-14 COMPOSITION OF EPOXIDE RESIN, PRE-IMPREGNATED, COMPOSITE MATERIAL REINFORCED BY FIBERS, AND CORRESPONDING PRODUCTION PROCESSES

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-050277 2018-03-16
JP2018-050278 2018-03-16
JP2018050277A JP7315304B2 (ja) 2018-03-16 2018-03-16 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2018050278 2018-03-16
JP2018-050276 2018-03-16
JP2018050276A JP7190258B2 (ja) 2018-03-16 2018-03-16 エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2018140958A JP7224800B2 (ja) 2018-03-16 2018-07-27 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP2018-140958 2018-07-27

Publications (1)

Publication Number Publication Date
WO2019177131A1 true WO2019177131A1 (ja) 2019-09-19

Family

ID=67906699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010715 WO2019177131A1 (ja) 2018-03-16 2019-03-14 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法

Country Status (1)

Country Link
WO (1) WO2019177131A1 (ja)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243113A (ja) 1984-05-17 1985-12-03 Sumitomo Chem Co Ltd 強靭性に優れたエポキシ樹脂組成物
JPS62183340A (ja) * 1986-02-07 1987-08-11 住友化学工業株式会社 繊維強化複合材料
JPH02169618A (ja) * 1988-12-22 1990-06-29 Sumitomo Chem Co Ltd エポキシ樹脂組成物及びそれを主成分とする繊維強化複合材料
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JP2003026768A (ja) * 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2004048435A1 (ja) 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法
JP2005213352A (ja) 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd プリプレグ用樹脂組成物およびこれを用いたプリプレグ
JP2009292977A (ja) 2008-06-06 2009-12-17 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ及び成形品の製造方法
JP2009292976A (ja) 2008-06-06 2009-12-17 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ及び成形品の製造方法
JP2010248379A (ja) 2009-04-16 2010-11-04 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ、及びそれを用いた成形品の製造方法
JP2011057736A (ja) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd エポキシ樹脂組成物及びそれを用いたプリプレグ
JP2011190430A (ja) 2010-02-19 2011-09-29 Mitsubishi Rayon Co Ltd 熱硬化性樹脂組成物及び繊維強化プリプレグ
WO2011118106A1 (ja) * 2010-03-23 2011-09-29 東レ株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2014148572A (ja) 2013-01-31 2014-08-21 Mitsubishi Rayon Co Ltd プリプレグ、繊維強化複合材料、及びその製造方法
WO2016148175A1 (ja) * 2015-03-17 2016-09-22 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2017008316A (ja) * 2015-06-25 2017-01-12 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
JP2017119813A (ja) * 2015-06-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243113A (ja) 1984-05-17 1985-12-03 Sumitomo Chem Co Ltd 強靭性に優れたエポキシ樹脂組成物
JPS62183340A (ja) * 1986-02-07 1987-08-11 住友化学工業株式会社 繊維強化複合材料
JPH02169618A (ja) * 1988-12-22 1990-06-29 Sumitomo Chem Co Ltd エポキシ樹脂組成物及びそれを主成分とする繊維強化複合材料
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JP2003026768A (ja) * 2001-07-13 2003-01-29 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2004048435A1 (ja) 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法
JP2005213352A (ja) 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd プリプレグ用樹脂組成物およびこれを用いたプリプレグ
JP2009292977A (ja) 2008-06-06 2009-12-17 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ及び成形品の製造方法
JP2009292976A (ja) 2008-06-06 2009-12-17 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ及び成形品の製造方法
JP2010248379A (ja) 2009-04-16 2010-11-04 Mitsubishi Rayon Co Ltd プレス成形用プリプレグ、及びそれを用いた成形品の製造方法
JP2011057736A (ja) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd エポキシ樹脂組成物及びそれを用いたプリプレグ
JP2011190430A (ja) 2010-02-19 2011-09-29 Mitsubishi Rayon Co Ltd 熱硬化性樹脂組成物及び繊維強化プリプレグ
WO2011118106A1 (ja) * 2010-03-23 2011-09-29 東レ株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2014148572A (ja) 2013-01-31 2014-08-21 Mitsubishi Rayon Co Ltd プリプレグ、繊維強化複合材料、及びその製造方法
WO2016148175A1 (ja) * 2015-03-17 2016-09-22 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2017008316A (ja) * 2015-06-25 2017-01-12 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
JP2017119813A (ja) * 2015-06-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器

Similar Documents

Publication Publication Date Title
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
JP7448409B2 (ja) プリプレグ
EP3345949B1 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
WO2019176935A1 (ja) プリプレグ及び炭素繊維強化複合材料
JP7431841B2 (ja) エポキシ樹脂組成物、樹脂硬化物、繊維強化複合材料、及びこれらの製造方法
JP7190258B2 (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2019156981A (ja) プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP7315304B2 (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
TW201945462A (zh) 環氧樹脂組成物、預浸體及纖維強化複合材料,以及此等之製造方法
JP2020023630A (ja) エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
WO2019177131A1 (ja) エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
EP3835336B1 (en) Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production method for these
JP7072466B2 (ja) エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
JP7481160B2 (ja) プリプレグ
JP7224800B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP2023084198A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料および製造方法
JP2020176249A (ja) エポキシ樹脂組成物、プリプレグ、プリプレグの製造方法、及び繊維強化複合材料の製造方法
JP2021195473A (ja) プリプレグ
WO2022186101A1 (ja) 熱硬化性樹脂用硬化剤組成物、エポキシ樹脂組成物および繊維強化複合材料
WO2023145341A1 (ja) 熱硬化性樹脂用硬化剤組成物、エポキシ樹脂組成物および繊維強化複合材料
JP2022137823A (ja) エポキシ樹脂組成物、樹脂硬化物および繊維強化複合材料
JP2023025401A (ja) 繊維強化複合材料およびその製造方法
JP2021107470A (ja) 繊維強化複合材料およびその製造方法
WO2024071090A1 (ja) プリプレグ、及び該プリプレグを用いる繊維強化複合材料の製造方法
JP2020023629A (ja) エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094280

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019233463

Country of ref document: AU

Date of ref document: 20190314

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019767338

Country of ref document: EP