WO2019177081A1 - Manufacturing method for sealed battery, and sealed battery - Google Patents

Manufacturing method for sealed battery, and sealed battery Download PDF

Info

Publication number
WO2019177081A1
WO2019177081A1 PCT/JP2019/010460 JP2019010460W WO2019177081A1 WO 2019177081 A1 WO2019177081 A1 WO 2019177081A1 JP 2019010460 W JP2019010460 W JP 2019010460W WO 2019177081 A1 WO2019177081 A1 WO 2019177081A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
melting
lead
sealed battery
electrode lead
Prior art date
Application number
PCT/JP2019/010460
Other languages
French (fr)
Japanese (ja)
Inventor
信也 森
翔太 池田
一路 清水
船見 浩司
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2019177081A1 publication Critical patent/WO2019177081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing a sealed battery and a sealed battery.
  • secondary batteries are expected not only to be used by being incorporated in electronic devices such as personal computers, but also as a power source for supplying power to a vehicle driving motor.
  • a non-aqueous electrolyte secondary battery when an internal short circuit occurs due to mixing of a metal foreign substance into the battery instead of obtaining high energy, there is a possibility that problems such as heat generation of the battery itself may occur.
  • the outer can and the lead connected to one of the positive electrode and the negative electrode of the electrode body are mainly connected by resistance welding.
  • this resistance welding has a problem that spatter is generated inside the battery during the welding process, and metal foreign matter is mixed in the battery, thereby deteriorating the manufacturing quality, safety, and reliability of the battery due to voltage failure. Therefore, in recent years, an energy beam such as a laser beam is irradiated from the outside of the outer can to weld the outer can and the lead to prevent spattering (see, for example, Patent Documents 1 to 3). .
  • Patent Document 4 describes a battery manufacturing method in which an energy beam is irradiated in two stages from the outside of the outer can and the outer can and the cap body are welded.
  • laser light irradiated with the first laser output and the second laser output is used as the pulsed laser light.
  • the first laser output heats the laser irradiation side member of the overlapping member to eliminate organic substances between the overlapping members.
  • the second laser output melts the laser irradiation side member of the overlapping member and welds the plurality of overlapping members.
  • JP 2010-3686 A Japanese Patent Laying-Open No. 2015-162326 Japanese Unexamined Patent Publication No. 2016-207212 Japanese Patent Laid-Open No. 11-245066
  • the solid resin When resin is present between the outer can and lead, if the energy beam is irradiated to the outer can, the solid resin may sublimate or the liquid resin may be vaporized by the heat generated by the irradiation. There is. Due to the sublimation or vaporization of the resin, the volume of the gas may expand at a stretch between the outer can and the lead, and the gas may escape toward the outside of the outer can that is melted by the energy beam. As a result, there is a possibility that the outer can has a hole formed from the inner side to the outer side, and the sealing inside the battery cannot be maintained.
  • a concave hole may be formed on the welded surface with the lead on the inner surface of the outer can, and this hole reduces the weld area between the outer can and the lead. By decreasing, the welding strength may be reduced.
  • Patent Document 4 discloses only eliminating the inconvenience when the electrolyte enters between the overlapping members after the electrolyte is injected into the outer can.
  • the present disclosure aims to prevent generation of a hole penetrating the outer can when the lead is welded to the outer can and to obtain a stable welding strength in the sealed battery manufacturing method and the sealed battery.
  • a method for manufacturing a sealed battery according to the present disclosure includes an electrode body in which at least one positive electrode and at least one negative electrode are wound or stacked with a separator interposed therebetween, and a bottomed cylindrical outer can that houses the electrode body.
  • a sealed battery manufacturing method comprising: a welding step of irradiating an energy beam from the outside of an outer can and welding a lead connected to one of a positive electrode and a negative electrode to the outer can. First irradiation for irradiating a first energy beam that is controlled so that a first melted portion, which is a melting mark, remains inside the outer can at a portion of the outer surface facing the lead through the inner surface of the outer can.
  • a second molten portion that is a melting mark is formed from the outer surface of the outer can to the inside of the lead inside the portion of the outer surface of the outer can where the first molten portion is exposed.
  • Controlled to It has a second irradiation step of irradiating the second energy beam, and a method of manufacturing a sealed battery.
  • a sealed battery according to the present disclosure includes an electrode body in which at least one positive electrode and at least one negative electrode are wound or laminated with a separator interposed therebetween, and a bottomed cylindrical outer can that houses the electrode body.
  • the outer can is made of nickel-plated iron, and the lead connected to one of the positive electrode and the negative electrode and the outer can are welded at a weld formed from the outer surface of the outer can toward the lead.
  • the welded portion includes a first melted portion and a second melted portion that are melt marks, and the first melted portion is formed in the range of 50 to 99% of the thickness of the outer can from the outer surface of the outer can.
  • the second melting portion is formed from the outer surface of the outer can to the inside of the lead, and is a sealed battery that is inside the first melting portion when the welded portion is viewed from the outer side of the outer can.
  • the method for manufacturing a sealed battery and the sealed battery according to the present disclosure it is possible to prevent generation of a hole penetrating the outer can when the lead is welded to the outer can, and to obtain a stable welding strength.
  • FIG. 10 is a bottom view of the sealed battery shown in FIG. 9.
  • the sealed battery is a cylindrical non-aqueous electrolyte secondary battery
  • the sealed battery is not limited to a cylindrical battery, and may be a prismatic battery or the like.
  • the sealed battery is not limited to a non-aqueous electrolyte secondary battery as described below, and is a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery, or a primary battery such as a dry battery or a lithium battery. May be.
  • the electrode body included in the battery is not limited to the winding type as described below, and may be a stacked type in which a plurality of positive electrodes and negative electrodes are alternately stacked via separators.
  • FIG. 1 is a cross-sectional view of the bottom half of a sealed battery 20 manufactured by an exemplary manufacturing method of an embodiment.
  • FIG. 2 is a bottom view of the sealed battery 20.
  • FIG. 3 is an enlarged view of a portion A in FIG.
  • FIG. 4 is an enlarged view of a portion B in FIG. 5 is a cross-sectional view taken along the line CC of FIG.
  • the sealed battery 20 is referred to as a battery 20.
  • the battery 20 includes a wound electrode body 22, a non-aqueous electrolyte (not shown), and an outer can 50.
  • the wound electrode body 22 includes a positive electrode 23, a negative electrode 24, and a separator 25, and the positive electrode 23 and the negative electrode 24 are stacked via the separator 25 and wound in a spiral shape.
  • the one axial side of the electrode body 22 may be referred to as “upper” and the other axial side may be referred to as “lower”.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt such as a lithium salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the positive electrode 23 has a strip-shaped positive electrode current collector 23a, and a positive electrode lead (not shown) is connected to the positive electrode current collector 23a.
  • the positive electrode lead is a conductive member for electrically connecting the positive electrode current collector 23a to a positive electrode terminal (not shown), and is one side (in FIG. 1) of the electrode body 22 in the axial direction ⁇ from the upper end of the electrode group. (Upward).
  • the electrode group means a portion of the electrode body 22 excluding each lead.
  • the positive electrode lead is provided, for example, at a substantially central portion of the electrode body 22 in the radial direction ⁇ .
  • the negative electrode 24 has a strip-shaped negative electrode current collector 24a, and a negative electrode lead 26 is connected to the negative electrode current collector 24a.
  • the negative electrode lead 26 is a conductive member for electrically connecting the negative electrode current collector 24a to the outer can 50 serving as a negative electrode terminal, and the other end in the axial direction ⁇ from the lower end of the winding end side end portion of the electrode group ( It extends in the lower part of FIG.
  • the constituent material of each lead is not particularly limited.
  • the positive electrode lead can be composed of a metal mainly composed of aluminum
  • the negative electrode lead 26 can be composed of a metal mainly composed of nickel or copper or a metal including both nickel and copper.
  • the negative electrode lead 26 may be formed from nickel-plated iron.
  • the negative electrode lead 26 is bent at a substantially right angle so as to face the winding core portion of the electrode body 22 through the insulating plate 30 and is in contact with the inner surface of the bottom plate portion 51.
  • the outer can 50 and the negative electrode lead 26 are welded by the welded portion 54 by sequentially irradiating the first laser beam 40 and the second laser beam 41 toward the bottom plate portion 51 from the outside of the outer can 50.
  • the welded portion 54 refers to a portion formed by melt marks that are melted and solidified by irradiation with the laser beams 40 and 41.
  • the weld 54 is formed from the outer surface of the outer can 50 toward the negative electrode lead 26.
  • the first laser beam 40 corresponds to a first energy beam
  • the second laser beam 41 corresponds to a second energy beam. The weld 54 and the welding process will be described in detail later.
  • the outer can 50 is a container formed by processing a nickel-plated iron material into a bottomed cylindrical shape.
  • the iron used for the outer can 50 can contain dissimilar metals or the like as long as the battery characteristics are not adversely affected.
  • the opening of the outer can 50 is sealed with a sealing body (not shown).
  • the outer can 50 accommodates the electrode body 22 and the nonaqueous electrolyte.
  • An insulating plate 30 is disposed below the electrode body 22.
  • the negative electrode lead 26 passes through the outside of the insulating plate 30, extends to the bottom side of the outer can 50, and is welded to the inner surface of the bottom plate portion 51 of the outer can 50.
  • the thickness of the bottom plate portion 51 that is the bottom portion of the outer can 50 is, for example, 0.2 to 0.5 mm.
  • the electrode body 22 has a winding structure in which a positive electrode 23 and a negative electrode 24 are wound in a spiral shape with a separator 25 interposed therebetween.
  • the positive electrode 23, the negative electrode 24, and the separator 25 are all formed in a band shape, and are wound in a spiral shape to be alternately stacked in the radial direction ⁇ of the electrode body 22.
  • the winding core portion 29 including the winding center axis O of the electrode body 22 is a cylindrical space.
  • the positive electrode 23 has a positive electrode active material layer formed on the positive electrode current collector 23a.
  • the positive electrode active material layer is formed on both surfaces of the positive electrode current collector 23a.
  • a metal foil such as aluminum, a film in which the metal is disposed on the surface layer, or the like is used.
  • a suitable positive electrode current collector 23a is a metal foil that is stable in the potential range of the positive electrode such as a metal mainly composed of aluminum or an aluminum alloy.
  • the positive electrode active material layer preferably contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode 23 is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and a solvent such as N-methyl-2-pyrrolidone (NMP) on both surfaces of the positive electrode current collector 23a, and then drying. And it is produced by rolling.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material examples include lithium-containing transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • the lithium-containing transition metal oxide is not particularly limited, but has the general formula Li 1 + x MO 2 (wherein ⁇ 0.2 ⁇ x ⁇ 0.2, M includes at least one of Ni, Co, Mn, and Al) It is preferable that it is complex oxide represented by these.
  • Examples of the conductive agent include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite.
  • Examples of the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide (PI), acrylic resin, and polyolefin resin. It is done. These resins may be used in combination with carboxymethylcellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like. These may be used alone or in combination of two or more.
  • the negative electrode 24 has a negative electrode active material layer formed on the negative electrode current collector 24a.
  • the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 24a.
  • a metal foil that is stable in the potential range of a negative electrode such as aluminum or copper, or a film in which the metal is disposed on the surface layer is used.
  • the negative electrode active material layer is formed on both sides of the negative electrode current collector 24a over the entire area excluding a solid portion described later.
  • the negative electrode active material layer preferably contains a negative electrode active material and a binder.
  • the negative electrode active material layer may contain a conductive agent as necessary.
  • the negative electrode 24 is produced, for example, by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, water, and the like to both surfaces of the negative electrode current collector 24a, followed by drying and rolling.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, metals such as Si and Sn, alloys with lithium, or these An alloy, a composite oxide, or the like containing can be used.
  • the binder contained in the negative electrode active material layer for example, the same resin as that of the positive electrode 23 is used.
  • SBR styrene-butadiene rubber
  • CMC styrene-butadiene rubber
  • polyacrylic acid or a salt thereof, polyvinyl alcohol, or the like can be used. These may be used alone or in combination of two or more.
  • the negative electrode 24 is provided with a plain portion where the surface of the negative electrode current collector 24a is exposed.
  • the plain portion is a portion to which the negative electrode lead 26 is connected, and the surface of the negative electrode current collector 24a is not covered with the negative electrode active material layer.
  • the plain portion has a substantially rectangular shape in front view extending long along the axial direction ⁇ which is the width direction of the negative electrode 24, and is formed wider than the negative electrode lead 26.
  • the negative electrode lead 26 is joined to the surface of the negative electrode current collector 24a by, for example, ultrasonic welding. It should be noted that a negative electrode lead different from the negative electrode lead 26 is provided not only at the winding end side end portion of the negative electrode 24 but also at the winding direction intermediate portion and the winding start side end portion, and extends from the electrode group to the bottom plate portion 51 side.
  • the extended negative electrode lead can be overlapped on the negative electrode lead 26 at the winding core and welded to the outer can 50 by laser light irradiation.
  • the plain portion is provided, for example, by intermittent application without applying the negative electrode mixture slurry to a part of the negative electrode current collector 24a.
  • the positive electrode lead is bonded to a plain portion formed on the positive electrode current collector 23a, and a portion protruding upward from the positive electrode current collector 23a is bonded to a positive electrode terminal or a portion connected to the positive electrode terminal.
  • a porous sheet having ion permeability and insulating properties is used as the separator 25 .
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • an olefin resin such as polyethylene and polypropylene is preferable.
  • the weld 54 is formed by melting marks as described above. As shown in FIG. 4, when the welded portion 54 is viewed from the outside (the lower side of FIG. 1) of the bottom plate portion 51 of the outer can 50, the second melting portion 58 is first melted so as to surround the entire circumference. It is inside the portion 56 and exposed on the outer surface of the outer can 50. In this state, the second melting part 58 welds the outer can 50 and the negative electrode lead 26 (FIG. 3). The second melting part 58 is formed deeper than the first melting part 56.
  • the first melting part 56 is formed so as to remain inside the outer can 50.
  • the first melting portion 56 is formed by irradiating the first laser light 40 from the outside of the outer can 50 toward the bottom plate portion 51 in a first irradiation step described later.
  • the second melting part 58 is formed by irradiating the second laser light 41 from the outside of the outer can 50 toward the bottom plate part 51 in the second irradiation process after the first irradiation process, as will be described later.
  • the first melting part 56 has a linear planar shape when viewed from the outside of the bottom plate part 51 of the outer can 50.
  • the second melting part 58 also has a linear shape when viewed from the outside of the bottom plate part 51, and the width w ⁇ b> 2 of the second melting part 58 is smaller than the width w ⁇ b> 1 of the first melting part 56.
  • the second melting part 58 has a higher nickel content (mass%) than the first melting part 56.
  • melting part 58 can be confirmed by observing from the outer side of the armored can 50, for example.
  • the presence of the first melting part 56 and the second melting part 58 can be confirmed by observing, for example, an optical microscope or the like in the thickness direction of the outer can 50 of the melt mark.
  • the spot diameter of the fiber laser can be made very small, for example, about 0.02 mm to 0.05 mm, so that the width of the melt mark formed by the fiber laser can be made very small, about 0.1 mm. For this reason, the power density of the condensing point of a laser beam can be made very high.
  • the second laser light 41 is irradiated so that melt marks formed by the irradiation of the second laser light 41 penetrate the outer can 50 but not the negative electrode lead 26.
  • the spot diameter of the first laser beam 40 when forming the first melting part 56 is larger than the spot diameter of the second laser beam 41.
  • the first laser beam 40 is irradiated so that melt marks formed by the irradiation of the first laser beam 40 do not penetrate the outer can 50 and do not reach the negative electrode lead 26.
  • the irradiation portion of the first laser light 40 is moved on the outer surface of the bottom plate portion 51 of the outer can 50 along one direction (for example, the right side in FIG. 1) along the linear direction, and the first melting is performed.
  • a portion 56 is formed.
  • the second melting part 58 formed by the second laser light 41 is formed inside the first melting part 56 formed by irradiation with the first laser light 40.
  • the battery 20 can be arranged with the bottom plate portion 51 facing upward, and laser light can be irradiated toward the bottom portion. It is also possible to arrange the battery 20 in a state where it is tilted sideways and irradiate the bottom plate portion 51 with laser light.
  • the welding process includes a first irradiation process and a second irradiation process.
  • the first irradiation step and the second irradiation step are performed before injecting the electrolyte into the outer can 50.
  • FIG. 6 is a diagram in which the first laser beam 40 is irradiated in the first irradiation step in the manufacturing method of the embodiment.
  • FIG. 7 is a diagram for irradiating the second laser light 41 in the second irradiation step in the manufacturing method of the embodiment.
  • the electrode body 22 Before performing the first irradiation step, the electrode body 22 is accommodated in the outer can 50 with the negative electrode lead 26 facing the inner surface of the bottom plate portion 51 of the outer can 50.
  • laser light is irradiated in two stages from the outside of the outer can 50 toward the bottom plate portion 51 by the first irradiation process and the second irradiation process.
  • a presser bar 70 is inserted into the outer can 50 from above, and is pressed by the presser bar 70.
  • the negative electrode lead 26 is pressed from above through the insulating plate 30.
  • the outer can 50 and the negative electrode lead 26 are brought into close contact with each other, and in this state, a portion of the outer surface of the bottom plate portion 51 facing the negative electrode lead 26 through the inner surface of the bottom plate portion 51 is first.
  • Irradiation with a first laser beam 40 having an energy amount forms the first melted portion 56.
  • the first melting portion 56 that is a melting mark does not penetrate the outer can 50 at the irradiation position of the first laser light 40, stays inside the outer can 50, and does not reach the negative electrode lead 26.
  • the laser beam 40 is controlled. At this time, it is preferable that the spot diameter of the first laser light 40 is larger than the spot diameter of the second laser light 41 described later.
  • the irradiation part of the 1st laser beam 40 is moved in the outer surface of the bottom plate part 51 of the armored can 50 toward one side (for example, the right side of FIG. 6) along the linear direction.
  • the light source of the laser light is moved so that the battery 20 is relatively moved in a direction orthogonal to the irradiation direction of the laser light.
  • the negative electrode lead 26 is pressed by the presser bar 70 through the insulating plate 30.
  • a hole is provided in the central portion of the insulating plate 30 and the presser bar penetrating the hole directly presses the negative electrode lead 26. May be.
  • the outer canister is pressed by the presser bar 70 in the same manner as in the first irradiation step. 50 and the negative electrode lead 26 are brought into close contact with each other.
  • the second laser beam 41 having the second energy amount is irradiated from the outside toward the bottom plate portion 51 to the inside of the portion where the first melting portion 56 is exposed, and the second melting portion 58 is irradiated.
  • the second laser beam 42 is controlled so that a second melted portion that is a melt mark is formed from the outer surface of the bottom plate portion 51 to the inside of the negative electrode lead 26.
  • the irradiation part of the second laser light 41 is moved on the outer surface of the bottom plate part 51 of the outer can 50 along one of the linear directions (for example, the right side in FIG. 7). 2 to form the melted portion 58.
  • the second melting part 58 is formed so as to melt a part of the outer can 50 and the negative electrode lead 26 in the range inside the melt mark formed by the irradiation of the first laser beam 40.
  • a part of the first melting part 56 is melted and solidified to be changed into the second melting part 58, and the second melting part 58 remains without changing to the second melting part 58 in the first melting part 56. It is formed adjacent to the part.
  • the laser light source is moved so that the battery 20 is relatively moved in the direction orthogonal to the laser light irradiation direction.
  • the outer can 50 and the negative electrode lead 26 are welded by irradiating the first laser beam 40 from the outside of the outer can 50 in a state where the outer can 50 and the negative electrode lead 26 are in close contact with each other by the holding rod 70. It is easy to prevent spatter from occurring inside the battery 20.
  • the second melting part 58 is formed inside the first melting part 56 on the outer surface of the bottom plate part 51, and extends in the inner side (upper side in FIG. 1) direction of the bottom plate part 51 and the second melting part 58. Is located inside the bottom plate portion 51.
  • the first laser beam 40 and the second laser beam 41 are irradiated so that the irradiation unit moves on the outer surface of the bottom plate unit 51 along the same linear direction.
  • the planar shape when viewed from the outside of the bottom plate part 51 of the first melting part 56 and the second melting part 58 is formed in a straight line.
  • the entire second melting portion 58 is surrounded by the first melting portion 56.
  • the irradiation part of a laser beam should just move relatively with respect to the outer surface of the armored can 50, and the armored can 50 may be actually moved among laser light and the armored can 50.
  • the holes penetrating the outer can 50 when welding the negative electrode lead 26 to the outer can 50 in a state before the electrolyte is injected into the outer can 50.
  • production can be prevented and stable welding strength can be obtained.
  • resin is present between the outer can 50 and the negative electrode lead 26 by irradiating the first laser beam 40 forming the first melting portion 56 to the bottom plate portion 51, the resin is sublimated or the like. Vaporize.
  • the second laser beam 41 that forms the second melting portion 58 is irradiated to the inside of the first melting portion 56 in a state where no resin exists between the outer can 50 and the negative electrode lead 26, and the outer can 50 and the negative electrode
  • the lead 26 can be welded. For this reason, generation
  • production can be suppressed and stable welding strength can be obtained. be able to.
  • the welded portion 54 includes the first melted portion 56 and the second melted portion 58 shown in FIGS. 1 and 2, stress corrosion cracking in the bottom plate portion 51 caused by the welded portion 54 occurs. It becomes difficult.
  • FIG. 8 is a diagram of irradiating the first laser beam 40 in another manufacturing method according to the embodiment.
  • the manufacturing method of this example when the first laser beam 40 that forms the first melting portion 56 is irradiated to the outer surface of the bottom plate portion 51 in the first irradiation step, there is a gap between the outer can 50 and the negative electrode lead 26. S1 is opened.
  • the pressing rod is not inserted into the outer can 50 from the upper side, and the negative electrode lead 26 is pressed from the upper side. Do not do.
  • the gap S1 formed between the outer can 50 and the negative electrode lead 26 may be about 0.005 mm to 0.2 mm. Due to the presence of the gap S1, the heat generated by the irradiation of the first laser beam 40 stays in the outer can 50, and the negative electrode lead 26 or the pressing rod that closely contacts the outer can 50 and the negative electrode lead 26. Heat is not absorbed. For this reason, the resin existing between the outer can 50 and the negative electrode lead 26 is efficiently vaporized. After that, as in the manufacturing method shown in FIG. 7, when the second laser beam 41 that forms the second melting portion 58 is irradiated to the bottom plate portion 51, the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70. In this state, the outer can 50 and the negative electrode lead 26 are welded.
  • the laser spot diameter of the first laser beam 40 that forms the first melting part 56 is preferably larger than the laser spot diameter of the second laser beam 41 that forms the second melting part 58. Since the first laser beam 40 is irradiated so that the resin existing between the outer can 50 and the negative electrode lead 26 is vaporized by heat, the resin is vaporized and removed in a region wider than the region where the second melting portion 58 is formed. It is preferable to do. In other words, the second laser light 41 is irradiated to the area where the resin existing between the outer can 50 and the negative electrode lead 26 is removed by the first laser light 40, thereby forming the second melting portion 58, The outer can 50 and the negative electrode lead 26 are welded. Thereby, generation
  • the irradiation depth of the first laser beam 40 and the second laser beam 41 and the irradiation area of the first laser beam 40 can be controlled with high accuracy. Accordingly, the dimensions (thickness, width, length) of the first melting part 56 and the second melting part 58 can be controlled with high accuracy, and the resin existing between the outer can 50 and the negative electrode lead 26 can be efficiently vaporized. Can be removed.
  • melting part 58 at the time of seeing the welding part 54 from the outer side of the armored can 50 should just be linear, and is not limited to linear form. For example, the planar shapes of the first melting part 56 and the second melting part 58 may be curved.
  • Example 1 Although the dimension of the structure of Example 1 is illustrated, this indication is not limited to the following dimensions.
  • the width w ⁇ b> 1 in the short direction when the first melting portion 56 is viewed from the outside of the outer can 50 is the width in the short direction when the second melting portion 58 is viewed from the outside of the outer can 50. It is larger than w2 and not more than 3 times the width w2.
  • the length L1 in the longitudinal direction when the first melting portion 56 is viewed from the outside of the outer can 50 is the length L2 in the longitudinal direction when the second melting portion 58 is viewed from the outside of the outer can 50. It is larger and not more than twice the length L2.
  • the thickness D1 of the first melting portion 56 is 0.5 to 0.99 times the thickness Dc of the outer can 50.
  • the outer can 50 is made of nickel-plated iron, and the nickel plating layer on the outer surface has a thickness of 3.5 ⁇ m.
  • the total thickness of the outer can 50 including the nickel plating layer is 300 ⁇ m.
  • melting part 58 is as follows.
  • Example 1 In the manufacturing method of Example 1, a general facility lubricating oil was applied between the outer can 50 and the negative electrode lead 26 in order to confirm the effect of the embodiment. Thereafter, in the first irradiation step, the first laser beam 40 that forms the first melting portion 56 is emitted from the outside of the outer can 50 in a state where the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70 (FIG. 6). The bottom plate part 51 was irradiated. After that, in the second irradiation step, by irradiating the second laser beam 41 that forms the second melting portion 58 in a state where the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70 (FIG. 7), The outer can 50 and the negative electrode lead 26 were welded.
  • the irradiation conditions of the first laser beam 40 and the second laser beam 41 are as follows. (First laser beam 40) (1) Energy: 1.44J (2) Laser spot diameter: 170 ⁇ m (3) Movement speed: 470 mm / sec (Second laser beam 41) (1) Energy: 0.6J (2) Laser spot diameter: 20 ⁇ m (3) Movement speed: 470 mm / sec
  • melt marks were formed inside the outer can 50 by irradiation with the first laser light 40.
  • the melt mark has a width in the short direction of 170 ⁇ m on the outer surface of the outer can 50, a length in the long direction of 1600 ⁇ m, and a thickness (the length from which the first melting portion 56 is formed from the outer surface of the outer can 50. ) was 270 ⁇ m.
  • the width of the short direction is 80 ⁇ m
  • the length in the long direction is 1000 ⁇ m
  • the thickness (exterior) The length of the second melted portion 58 formed from the outer surface of the can 50 was 350 ⁇ m.
  • Example 2 corresponds to another manufacturing method of the embodiment shown in FIG.
  • the configuration and dimensions of the battery of Example 2 are the same as those of Example 1.
  • general equipment lubricating oil was applied between the outer can 50 and the negative electrode lead 26.
  • a gap is provided between the outer can and the negative electrode lead without causing the presser bar to closely contact the outer can and the negative electrode lead.
  • the first laser beam 40 that forms the first melting part 56 was applied to the bottom plate part 51 from the outside of the outer can 50.
  • the outer can 50 and the negative electrode lead 26 were welded by irradiating 41.
  • the irradiation conditions of the first laser beam 40 and the second laser beam 41 are the same as those in the first embodiment.
  • the second melting portion 58 is formed by irradiating the second laser beam 41 without irradiating the first laser beam 40 forming the first melting portion 56 (FIGS. 6 and 8).
  • a battery in which the outer can and the negative electrode lead were welded was produced.
  • the first melting part was not formed at the bottom of the outer can, and only the second melting part 58 for welding the negative electrode lead and the outer can was formed.
  • the other configurations and dimensions of the battery and the irradiation conditions of the second laser light are the same as those in the first embodiment.
  • Table 1 shows the results of confirming the probability of occurrence of a hole penetrating the outer can 50 using the batteries of Examples 1 and 2 and Comparative Example produced by each of the above manufacturing methods. In the experiment, a plurality of batteries were produced in each of Examples 1 and 2 and Comparative Example, and the probability of occurrence of holes was confirmed.
  • the outer can 50 is formed. It has been confirmed that the probability of occurrence of a hole penetrating through is reduced to 5%.
  • the outer can 50 when a gap is provided between the outer can 50 and the negative electrode lead 26 and the first laser beam 40 that forms the first melting portion 56 is irradiated without being in close contact with each other, the outer can It was confirmed that the probability of occurrence of holes penetrating 50 decreased to 0%.
  • the probability of occurrence of holes penetrating the outer can 50 could be reduced.
  • Example 2 the reason for this is that in Example 2, the heat generated by the irradiation of the first laser beam 40 stays in the outer can 50, and the negative electrode lead 26, or the presser bar that closely contacts the outer can 50 and the negative electrode lead 26. This is because heat is not absorbed by the heat sink. For this reason, in Example 2, the resin existing between the outer can 50 and the negative electrode lead 26 could be efficiently vaporized.
  • FIG. 9 is a cross-sectional view of the bottom half of a battery 20a according to another example of the embodiment. 10 is a bottom view of the battery 20a shown in FIG.
  • a weld group 60 including three linear parallel welds 54 a, 54 b and 54 c for welding the outer can 50 and the negative electrode lead 26 is formed.
  • the welded group 60 including the three welded portions 54a, 54b, and 54c it is easy to ensure the welding strength between the outer can 50 and the negative electrode lead 26.
  • 9 and 10 show a weld group 60 composed of three parallel welds.
  • the number of welds is not limited to three, but two or more than four.
  • a weld of a book may be formed. When forming such a weld locally, it is preferable to use a laser beam of a fiber laser. In this example, other configurations and operations are the same as those in FIGS. 1 to 7.
  • 20 20a sealed battery (battery), 22 electrode body, 23 positive electrode, 23a positive electrode current collector, 24 negative electrode, 24a negative electrode current collector, 25 separator, 26 negative electrode lead, 29 winding core, 30 insulating plate, 40 1st Laser beam, 41, second laser beam, 50 outer can, 51 bottom plate, 54, 54a, 54b, 54c weld, 56 first melt, 58 second melt, 60 weld group, 70 presser bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

This manufacturing method for a sealed battery of a mode of the present disclosure includes a welding step for irradiating energy beams from outside an outer can, and welding a negative electrode lead (26) to an outer can (50). The welding step has: a first irradiation step for irradiating a first energy beam that is controlled so that a first melting part (56), which is a melting mark inside the outer can, stays in the portion of the outside surface of the outer can for which the negative electrode lead (26) opposes the interior side of the outer can across the inside surface; and a second irradiation step, subsequent to the first irradiation step, for irradiating a second energy beam that is controlled to have a second melting part (58), which is a melting mark, formed from the outside surface of the outer can to the interior of the negative electrode lead (26), on the inside of the portion of the outside surface of the outer can at which the first melting part is exposed.

Description

密閉電池の製造方法及び密閉電池Sealed battery manufacturing method and sealed battery
 本開示は、密閉電池の製造方法及び密閉電池に関する。 The present disclosure relates to a method for manufacturing a sealed battery and a sealed battery.
 近年の二次電池は、パソコン等の電子機器に組み込んで用いるだけでなく、車両の走行用のモータに電力を供給する電力源として期待されている。非水電解質二次電池は、高いエネルギーを得られる代わりに、電池内への金属異物などの混入による内部短絡が発生すると、電池自体の発熱等の問題が発生する可能性がある。 Recently, secondary batteries are expected not only to be used by being incorporated in electronic devices such as personal computers, but also as a power source for supplying power to a vehicle driving motor. In the non-aqueous electrolyte secondary battery, when an internal short circuit occurs due to mixing of a metal foreign substance into the battery instead of obtaining high energy, there is a possibility that problems such as heat generation of the battery itself may occur.
 従来、外装缶と、電極体の正極及び負極の一方に接続されたリードとは、主に抵抗溶接によって接続されている。しかしながらこの抵抗溶接は、溶接過程で電池内部でスパッタが発生し、金属異物が電池内に混入することで、電圧不良による電池の製造品質、安全性、及び信頼性が悪化する課題があった。そのため近年では、外装缶の外側からエネルギービーム、例えばレーザ光を照射して、外装缶とリードとを溶接させて、スパッタの発生を防止しているものがある(例えば特許文献1~3参照)。 Conventionally, the outer can and the lead connected to one of the positive electrode and the negative electrode of the electrode body are mainly connected by resistance welding. However, this resistance welding has a problem that spatter is generated inside the battery during the welding process, and metal foreign matter is mixed in the battery, thereby deteriorating the manufacturing quality, safety, and reliability of the battery due to voltage failure. Therefore, in recent years, an energy beam such as a laser beam is irradiated from the outside of the outer can to weld the outer can and the lead to prevent spattering (see, for example, Patent Documents 1 to 3). .
 また、特許文献4には、外装缶の外部から二段階に分けてエネルギービームを照射して、外装缶とキャップ体との溶接を行う電池の製造方法が記載されている。この電池の製造方法では、パルスレーザ光として、第1のレーザ出力及び第2のレーザ出力で照射されるレーザ光を用いる。第1のレーザ出力は、重ね合わせ部材のレーザ照射側部材を加熱し重ね合わせ部材の間の有機物を排除する。第2のレーザ出力は、重ね合わせ部材のレーザ照射側部材を溶融させて複数の重ね合わせ部材を溶接する。 Patent Document 4 describes a battery manufacturing method in which an energy beam is irradiated in two stages from the outside of the outer can and the outer can and the cap body are welded. In this battery manufacturing method, laser light irradiated with the first laser output and the second laser output is used as the pulsed laser light. The first laser output heats the laser irradiation side member of the overlapping member to eliminate organic substances between the overlapping members. The second laser output melts the laser irradiation side member of the overlapping member and welds the plurality of overlapping members.
特開2010-3686号公報JP 2010-3686 A 特開2015-162326号公報Japanese Patent Laying-Open No. 2015-162326 特開2016-207412号公報Japanese Unexamined Patent Publication No. 2016-207212 特開平11-245066号公報Japanese Patent Laid-Open No. 11-245066
 外装缶の外部からエネルギービームを照射して、外装缶にリードを溶接する従来の電池の製造方法では、外装缶にエネルギービームを照射したときに、外装缶に内側から穴が形成される可能性がある。具体的には、外装缶にリードを溶接する直前の状態で、外装缶とリードの間に固体状または液状の樹脂が存在する場合がある。この樹脂は、潤滑油系樹脂、工程内での発塵樹脂、電池構成部材に付着した樹脂などに由来する。外装缶とリードの間に樹脂が存在する場合に、エネルギービームが外装缶に照射されると、その照射により発生した熱で、固体状の樹脂が昇華し、または液状の樹脂が気化する可能性がある。この樹脂の昇華、または気化によって、外装缶とリードとの間で気体の体積が一気に膨張し、エネルギービームにより溶融している外装缶の外側に向けて気体が抜ける可能性がある。これにより、外装缶に内側から外側に通じる穴が形成された状態となり、電池内部の密閉性が保てなくなる可能性がある。外装缶の外側まで穴が通じていない状態でも、外装缶の内面のうち、リードとの溶接面に凹部状の穴が形成される可能性もあり、この穴により外装缶とリードの溶接面積が減少することで、溶接強度が低下する可能性がある。 In the conventional battery manufacturing method in which the energy beam is irradiated from the outside of the outer can and the lead is welded to the outer can, there is a possibility that when the outer can is irradiated with the energy beam, a hole is formed in the outer can from the inside There is. Specifically, there may be a solid or liquid resin between the outer can and the lead just before welding the lead to the outer can. This resin is derived from a lubricating oil-based resin, a dust generating resin in the process, a resin adhering to the battery constituent member, and the like. When resin is present between the outer can and lead, if the energy beam is irradiated to the outer can, the solid resin may sublimate or the liquid resin may be vaporized by the heat generated by the irradiation. There is. Due to the sublimation or vaporization of the resin, the volume of the gas may expand at a stretch between the outer can and the lead, and the gas may escape toward the outside of the outer can that is melted by the energy beam. As a result, there is a possibility that the outer can has a hole formed from the inner side to the outer side, and the sealing inside the battery cannot be maintained. Even in a state where the hole does not reach to the outside of the outer can, a concave hole may be formed on the welded surface with the lead on the inner surface of the outer can, and this hole reduces the weld area between the outer can and the lead. By decreasing, the welding strength may be reduced.
 特許文献4に記載された電池では、外装缶の外部から2段階の連続したエネルギービームを照射し、第1のレーザ出力により、重ね合わせ部材の間の有機物である電解液を排除している。一方、特許文献4には、電解液が外装缶に注入された後、重ね合わせ部材の間に電解液が入り込んだ場合の不都合をなくすことしか開示されていない。 In the battery described in Patent Document 4, the two-stage continuous energy beam is irradiated from the outside of the outer can, and the electrolyte solution that is an organic substance between the overlapping members is excluded by the first laser output. On the other hand, Patent Document 4 discloses only eliminating the inconvenience when the electrolyte enters between the overlapping members after the electrolyte is injected into the outer can.
 本開示は、密閉電池の製造方法及び密閉電池において、外装缶にリードを溶接する際の外装缶を貫通する穴の発生を防ぎ、かつ、安定した溶接強度を得ることを目的とする。 The present disclosure aims to prevent generation of a hole penetrating the outer can when the lead is welded to the outer can and to obtain a stable welding strength in the sealed battery manufacturing method and the sealed battery.
 本開示に係る密閉電池の製造方法は、少なくとも1つの正極と少なくとも1つの負極とがセパレータを介して巻回または積層された電極体と、電極体を収容する有底筒状の外装缶とを含む密閉電池の製造方法であって、外装缶の外部からエネルギービームを照射して、正極及び負極の一方に接続されたリードを外装缶に溶接する溶接工程を備え、溶接工程は、外装缶の外側表面のうち、外装缶の内側表面を介してリードが対向する部分に、外装缶の内部に溶融痕である第1溶融部が留まるように制御された第1エネルギービームを照射する第1照射工程と、第1照射工程後に、外装缶の外側表面のうち第1溶融部が露出している部分の内側に外装缶の外側表面からリードの内部にかけて溶融痕である第2溶融部が形成されるように制御された第2エネルギービームを照射する第2照射工程と、を有する、密閉電池の製造方法である。 A method for manufacturing a sealed battery according to the present disclosure includes an electrode body in which at least one positive electrode and at least one negative electrode are wound or stacked with a separator interposed therebetween, and a bottomed cylindrical outer can that houses the electrode body. A sealed battery manufacturing method comprising: a welding step of irradiating an energy beam from the outside of an outer can and welding a lead connected to one of a positive electrode and a negative electrode to the outer can. First irradiation for irradiating a first energy beam that is controlled so that a first melted portion, which is a melting mark, remains inside the outer can at a portion of the outer surface facing the lead through the inner surface of the outer can. After the step and the first irradiation step, a second molten portion that is a melting mark is formed from the outer surface of the outer can to the inside of the lead inside the portion of the outer surface of the outer can where the first molten portion is exposed. Controlled to It has a second irradiation step of irradiating the second energy beam, and a method of manufacturing a sealed battery.
 本開示に係る密閉電池は、少なくとも1つの正極と少なくとも1つの負極とがセパレータを介して巻回又は積層された電極体と、電極体を収容する有底筒状の外装缶とを備える密閉電池であって、外装缶は、ニッケルめっきされた鉄により形成され、正極及び負極の一方に接続されたリードと外装缶とが、外装缶の外側表面からリードに向けて形成された溶接部で溶接されており、溶接部は、溶融痕である第1溶融部及び第2溶融部を含み、第1溶融部が、外装缶の外側表面から外装缶の厚みの50~99%の範囲に形成され、第2溶融部が、外装缶の外側表面からリードの内部にかけて形成され、外装缶の外側から溶接部を見た場合に、第1溶融部の内側にある、密閉電池である。 A sealed battery according to the present disclosure includes an electrode body in which at least one positive electrode and at least one negative electrode are wound or laminated with a separator interposed therebetween, and a bottomed cylindrical outer can that houses the electrode body. The outer can is made of nickel-plated iron, and the lead connected to one of the positive electrode and the negative electrode and the outer can are welded at a weld formed from the outer surface of the outer can toward the lead. The welded portion includes a first melted portion and a second melted portion that are melt marks, and the first melted portion is formed in the range of 50 to 99% of the thickness of the outer can from the outer surface of the outer can. The second melting portion is formed from the outer surface of the outer can to the inside of the lead, and is a sealed battery that is inside the first melting portion when the welded portion is viewed from the outer side of the outer can.
 本開示に係る密閉電池の製造方法及び密閉電池によれば、外装缶にリードを溶接する際の外装缶を貫通する穴の発生を防ぎ、かつ、安定した溶接強度を得ることができる。 According to the method for manufacturing a sealed battery and the sealed battery according to the present disclosure, it is possible to prevent generation of a hole penetrating the outer can when the lead is welded to the outer can, and to obtain a stable welding strength.
実施形態の一例の製造方法により製造された密閉電池の底面側半部の断面図である。It is sectional drawing of the bottom face side half part of the sealed battery manufactured by the manufacturing method of an example of embodiment. 図1に示す密閉電池の底面部である。It is a bottom face part of the sealed battery shown in FIG. 図1のA部拡大図である。It is the A section enlarged view of FIG. 図2のB部拡大図である。It is the B section enlarged view of FIG. 図3のC-C断面図である。FIG. 4 is a sectional view taken along the line CC of FIG. 3. 実施形態の製造方法において第1エネルギービームを照射する図である。It is a figure which irradiates a 1st energy beam in the manufacturing method of embodiment. 実施形態の製造方法において第2エネルギービームを照射する図である。It is a figure which irradiates a 2nd energy beam in the manufacturing method of embodiment. 実施形態の別例の製造方法において第1エネルギービームを照射する図である。It is a figure which irradiates a 1st energy beam in the manufacturing method of another example of embodiment. 実施形態の別例の密閉電池の底面側半部の断面図である。It is sectional drawing of the bottom face side half part of the sealed battery of another example of embodiment. 図9に示す密閉電池の底面図である。FIG. 10 is a bottom view of the sealed battery shown in FIG. 9.
 以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本開示の理解を容易にするための例示であって、密閉電池の仕様に合わせて適宜変更することができる。また、以下において「略」なる用語は、例えば、完全に同じである場合に加えて、実質的に同じとみなせる場合を含む意味で用いられる。さらに、以下において複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, specific shapes, materials, numerical values, directions, and the like are examples for facilitating understanding of the present disclosure, and can be appropriately changed according to the specifications of the sealed battery. Further, in the following, the term “substantially” is used, for example, in the meaning including the case where it can be considered substantially the same in addition to the case where it is completely the same. Furthermore, when a plurality of embodiments and modifications are included below, it is assumed from the beginning that these characteristic portions are used in appropriate combinations.
 また、以下では、密閉電池が円筒形の非水電解質二次電池である場合を説明するが、密閉電池は、円筒形電池に限定するものではなく、角形電池等であってもよい。また、密閉電池は、以下で説明するような非水電解質二次電池に限定するものではなく、ニッケル水素電池、ニッカド電池等の他の二次電池、または乾電池またはリチウム電池等の一次電池であってもよい。電池が有する電極体は、以下で説明するような巻回型に限定するものではなく、複数の正極と負極がセパレータを介して交互に積層された積層型としてもよい。 In the following, the case where the sealed battery is a cylindrical non-aqueous electrolyte secondary battery will be described. However, the sealed battery is not limited to a cylindrical battery, and may be a prismatic battery or the like. The sealed battery is not limited to a non-aqueous electrolyte secondary battery as described below, and is a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery, or a primary battery such as a dry battery or a lithium battery. May be. The electrode body included in the battery is not limited to the winding type as described below, and may be a stacked type in which a plurality of positive electrodes and negative electrodes are alternately stacked via separators.
 図1は、実施形態の一例の製造方法により製造された密閉電池20の底面側半部の断面図である。図2は、密閉電池20の底面図である。図3は、図1のA部拡大図である。図4は、図2のB部拡大図である。図5は、図3のC-C断面図である。以下では、密閉電池20は、電池20と記載する。 FIG. 1 is a cross-sectional view of the bottom half of a sealed battery 20 manufactured by an exemplary manufacturing method of an embodiment. FIG. 2 is a bottom view of the sealed battery 20. FIG. 3 is an enlarged view of a portion A in FIG. FIG. 4 is an enlarged view of a portion B in FIG. 5 is a cross-sectional view taken along the line CC of FIG. Hereinafter, the sealed battery 20 is referred to as a battery 20.
 図1、図2に例示するように、電池20は、巻回型の電極体22と、非水電解質(図示せず)と、外装缶50とを備える。巻回型の電極体22は、正極23と、負極24と、セパレータ25とを有し、正極23と負極24がセパレータ25を介して積層されるとともに、渦巻状に巻回されている。以下では、電極体22の軸方向一方側を「上」、軸方向他方側を「下」という場合がある。非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩等の電解質塩とを含む。非水電解質は、液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。 As illustrated in FIGS. 1 and 2, the battery 20 includes a wound electrode body 22, a non-aqueous electrolyte (not shown), and an outer can 50. The wound electrode body 22 includes a positive electrode 23, a negative electrode 24, and a separator 25, and the positive electrode 23 and the negative electrode 24 are stacked via the separator 25 and wound in a spiral shape. Hereinafter, the one axial side of the electrode body 22 may be referred to as “upper” and the other axial side may be referred to as “lower”. The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt such as a lithium salt dissolved in the non-aqueous solvent. The nonaqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
 正極23は、帯状の正極集電体23aを有し、正極集電体23aに正極リード(図示せず)が接続される。正極リードは、正極集電体23aを正極端子(図示せず)に電気的に接続するための導電部材であって、電極群の上端から電極体22の軸方向αの一方側(図1の上方)に延出している。ここで、電極群とは電極体22において各リードを除く部分を意味する。正極リードは、例えば電極体22の径方向βの略中央部に設けられている。 The positive electrode 23 has a strip-shaped positive electrode current collector 23a, and a positive electrode lead (not shown) is connected to the positive electrode current collector 23a. The positive electrode lead is a conductive member for electrically connecting the positive electrode current collector 23a to a positive electrode terminal (not shown), and is one side (in FIG. 1) of the electrode body 22 in the axial direction α from the upper end of the electrode group. (Upward). Here, the electrode group means a portion of the electrode body 22 excluding each lead. The positive electrode lead is provided, for example, at a substantially central portion of the electrode body 22 in the radial direction β.
 負極24は、帯状の負極集電体24aを有し、負極集電体24aに負極リード26が接続される。負極リード26は、負極端子となる外装缶50に負極集電体24aを電気的に接続するための導電部材であって、電極群の巻き終わり側端部の下端から軸方向αの他方側(図1の下方)に延出している。 The negative electrode 24 has a strip-shaped negative electrode current collector 24a, and a negative electrode lead 26 is connected to the negative electrode current collector 24a. The negative electrode lead 26 is a conductive member for electrically connecting the negative electrode current collector 24a to the outer can 50 serving as a negative electrode terminal, and the other end in the axial direction α from the lower end of the winding end side end portion of the electrode group ( It extends in the lower part of FIG.
 各リードの構成材料は特に限定されない。正極リードはアルミニウムを主成分とする金属によって、負極リード26はニッケルまたは銅を主成分とする金属によって、または、ニッケル及び銅の両方を含む金属によって、それぞれ構成することができる。負極リード26は、ニッケルめっきされた鉄から形成されてもよい。 The constituent material of each lead is not particularly limited. The positive electrode lead can be composed of a metal mainly composed of aluminum, and the negative electrode lead 26 can be composed of a metal mainly composed of nickel or copper or a metal including both nickel and copper. The negative electrode lead 26 may be formed from nickel-plated iron.
 負極リード26は、絶縁板30を介して電極体22の巻き芯部と対向するように略直角に曲げられて、底板部51の内面に接する。そして、この状態で、外装缶50の外部から底板部51に向けて第1レーザ光40及び第2レーザ光41を順に照射することで、外装缶50と負極リード26とを溶接部54により溶接する。溶接部54は、各レーザ光40、41が照射されて溶融、凝固した溶融痕により形成された部分をいう。溶接部54は、外装缶50の外側表面から負極リード26に向けて形成される。第1レーザ光40は第1エネルギービームに相当し、第2レーザ光41は第2エネルギービームに相当する。溶接部54及び溶接工程については後で詳しく説明する。 The negative electrode lead 26 is bent at a substantially right angle so as to face the winding core portion of the electrode body 22 through the insulating plate 30 and is in contact with the inner surface of the bottom plate portion 51. In this state, the outer can 50 and the negative electrode lead 26 are welded by the welded portion 54 by sequentially irradiating the first laser beam 40 and the second laser beam 41 toward the bottom plate portion 51 from the outside of the outer can 50. To do. The welded portion 54 refers to a portion formed by melt marks that are melted and solidified by irradiation with the laser beams 40 and 41. The weld 54 is formed from the outer surface of the outer can 50 toward the negative electrode lead 26. The first laser beam 40 corresponds to a first energy beam, and the second laser beam 41 corresponds to a second energy beam. The weld 54 and the welding process will be described in detail later.
 外装缶50は、ニッケルめっきされた鉄からなる材料を有底円筒状に加工して形成された容器である。外装缶50に用いられる鉄は電池特性に悪影響を及ぼさない範囲で異種金属等を含むことができる。 The outer can 50 is a container formed by processing a nickel-plated iron material into a bottomed cylindrical shape. The iron used for the outer can 50 can contain dissimilar metals or the like as long as the battery characteristics are not adversely affected.
 外装缶50の開口部は、封口体(図示せず)によって封止される。外装缶50は、電極体22及び非水電解質を収容する。電極体22の下部には、絶縁板30が配置される。負極リード26は絶縁板30の外側を通って、外装缶50の底部側に延び、外装缶50の底板部51の内面に溶接される。外装缶50の底部である底板部51の厚みは、例えば0.2~0.5mmである。 The opening of the outer can 50 is sealed with a sealing body (not shown). The outer can 50 accommodates the electrode body 22 and the nonaqueous electrolyte. An insulating plate 30 is disposed below the electrode body 22. The negative electrode lead 26 passes through the outside of the insulating plate 30, extends to the bottom side of the outer can 50, and is welded to the inner surface of the bottom plate portion 51 of the outer can 50. The thickness of the bottom plate portion 51 that is the bottom portion of the outer can 50 is, for example, 0.2 to 0.5 mm.
 電極体22は、正極23と負極24がセパレータ25を介して渦巻状に巻回されてなる巻回構造を有する。正極23、負極24、及びセパレータ25は、いずれも帯状に形成され、渦巻状に巻回されることで電極体22の径方向βに交互に積層された状態となる。本実施形態では、電極体22の巻中心軸Oを含む巻き芯部29は、円柱状の空間である。 The electrode body 22 has a winding structure in which a positive electrode 23 and a negative electrode 24 are wound in a spiral shape with a separator 25 interposed therebetween. The positive electrode 23, the negative electrode 24, and the separator 25 are all formed in a band shape, and are wound in a spiral shape to be alternately stacked in the radial direction β of the electrode body 22. In the present embodiment, the winding core portion 29 including the winding center axis O of the electrode body 22 is a cylindrical space.
 正極23は、正極集電体23a上に形成された正極活物質層を有する。例えば正極集電体23aの両面に正極活物質層が形成されている。正極集電体23aには、例えばアルミニウムなどの金属の箔、当該金属を表層に配置したフィルム等が用いられる。好適な正極集電体23aは、アルミニウムまたはアルミニウム合金を主成分とする金属などの正極の電位範囲で安定な金属の箔である。 The positive electrode 23 has a positive electrode active material layer formed on the positive electrode current collector 23a. For example, the positive electrode active material layer is formed on both surfaces of the positive electrode current collector 23a. As the positive electrode current collector 23a, for example, a metal foil such as aluminum, a film in which the metal is disposed on the surface layer, or the like is used. A suitable positive electrode current collector 23a is a metal foil that is stable in the potential range of the positive electrode such as a metal mainly composed of aluminum or an aluminum alloy.
 正極活物質層は、正極活物質、導電剤、及び結着剤を含むことが好ましい。正極23は、例えば正極活物質、導電剤、結着剤、及びN-メチル-2-ピロリドン(NMP)等の溶剤を含む正極合剤スラリーを正極集電体23aの両面に塗布した後、乾燥及び圧延することにより作製される。 The positive electrode active material layer preferably contains a positive electrode active material, a conductive agent, and a binder. The positive electrode 23 is formed by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and a solvent such as N-methyl-2-pyrrolidone (NMP) on both surfaces of the positive electrode current collector 23a, and then drying. And it is produced by rolling.
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム含有遷移金属酸化物が例示できる。リチウム含有遷移金属酸化物は、特に限定されないが、一般式Li1+xMO(式中、-0.2<x≦0.2、MはNi、Co、Mn、Alの少なくとも1種を含む)で表される複合酸化物であることが好ましい。 Examples of the positive electrode active material include lithium-containing transition metal oxides containing transition metal elements such as Co, Mn, and Ni. The lithium-containing transition metal oxide is not particularly limited, but has the general formula Li 1 + x MO 2 (wherein −0.2 <x ≦ 0.2, M includes at least one of Ni, Co, Mn, and Al) It is preferable that it is complex oxide represented by these.
 上記導電剤の例としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。上記結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド(PI)、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)またはその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the conductive agent include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite. Examples of the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide (PI), acrylic resin, and polyolefin resin. It is done. These resins may be used in combination with carboxymethylcellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like. These may be used alone or in combination of two or more.
 負極24は、負極集電体24a上に形成された負極活物質層を有する。例えば負極集電体24aの両面に負極活物質層が形成されている。負極集電体24aには、例えばアルミニウムや銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。 The negative electrode 24 has a negative electrode active material layer formed on the negative electrode current collector 24a. For example, the negative electrode active material layer is formed on both surfaces of the negative electrode current collector 24a. For the negative electrode current collector 24a, for example, a metal foil that is stable in the potential range of a negative electrode such as aluminum or copper, or a film in which the metal is disposed on the surface layer is used.
 負極活物質層は、負極集電体24aの両面において、後述の無地部を除く全域に形成されることが好適である。負極活物質層は、負極活物質及び結着剤を含むことが好ましい。負極活物質層は、必要により導電剤を含んでいてもよい。負極24は、例えば負極活物質、結着剤、及び水等を含む負極合剤スラリーを負極集電体24aの両面に塗布した後、乾燥及び圧延することにより作製される。 It is preferable that the negative electrode active material layer is formed on both sides of the negative electrode current collector 24a over the entire area excluding a solid portion described later. The negative electrode active material layer preferably contains a negative electrode active material and a binder. The negative electrode active material layer may contain a conductive agent as necessary. The negative electrode 24 is produced, for example, by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, water, and the like to both surfaces of the negative electrode current collector 24a, followed by drying and rolling.
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、Si、Sn等のリチウムと合金化する金属、またはこれらを含む合金、複合酸化物などを用いることができる。負極活物質層に含まれる結着剤には、例えば正極23の場合と同様の樹脂が用いられる。水系溶媒で負極合剤スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMCまたはその塩、ポリアクリル酸またはその塩、ポリビニルアルコール等を用いることができる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions. For example, carbon materials such as natural graphite and artificial graphite, metals such as Si and Sn, alloys with lithium, or these An alloy, a composite oxide, or the like containing can be used. As the binder contained in the negative electrode active material layer, for example, the same resin as that of the positive electrode 23 is used. When preparing the negative electrode mixture slurry with an aqueous solvent, styrene-butadiene rubber (SBR), CMC or a salt thereof, polyacrylic acid or a salt thereof, polyvinyl alcohol, or the like can be used. These may be used alone or in combination of two or more.
 負極24には、負極集電体24aの表面が露出した無地部が設けられる。無地部は、負極リード26が接続される部分であって、負極集電体24aの表面が負極活物質層に覆われていない部分である。無地部は、負極24の幅方向である軸方向αに沿って長く延びた正面視略矩形形状であり、負極リード26よりも幅広に形成される。 The negative electrode 24 is provided with a plain portion where the surface of the negative electrode current collector 24a is exposed. The plain portion is a portion to which the negative electrode lead 26 is connected, and the surface of the negative electrode current collector 24a is not covered with the negative electrode active material layer. The plain portion has a substantially rectangular shape in front view extending long along the axial direction α which is the width direction of the negative electrode 24, and is formed wider than the negative electrode lead 26.
 負極リード26は、負極集電体24aの表面に例えば超音波溶接等により接合されている。なお、負極24の巻き終わり側端部だけでなく、巻き方向中間部、及び巻き始め側端部等に、負極リード26とは別の負極リードを設けて、電極群から底板部51側に延出させ、その延出させた負極リードを巻き芯部で負極リード26に重ねて、レーザ光の照射により外装缶50と溶接することもできる。負極リードを負極24の複数位置に設けることで、集電性が向上する。無地部は、例えば負極集電体24aの一部に負極合剤スラリーを塗布しない間欠塗布により設けられる。 The negative electrode lead 26 is joined to the surface of the negative electrode current collector 24a by, for example, ultrasonic welding. It should be noted that a negative electrode lead different from the negative electrode lead 26 is provided not only at the winding end side end portion of the negative electrode 24 but also at the winding direction intermediate portion and the winding start side end portion, and extends from the electrode group to the bottom plate portion 51 side. The extended negative electrode lead can be overlapped on the negative electrode lead 26 at the winding core and welded to the outer can 50 by laser light irradiation. By providing the negative electrode lead at a plurality of positions of the negative electrode 24, the current collecting property is improved. The plain portion is provided, for example, by intermittent application without applying the negative electrode mixture slurry to a part of the negative electrode current collector 24a.
 正極リードは、正極集電体23aに形成された無地部に接合され、正極集電体23aから上方に突出した部分が正極端子または正極端子に接続された部分に接合される。 The positive electrode lead is bonded to a plain portion formed on the positive electrode current collector 23a, and a portion protruding upward from the positive electrode current collector 23a is bonded to a positive electrode terminal or a portion connected to the positive electrode terminal.
 セパレータ25には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布などが挙げられる。セパレータ25の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂が好ましい。 As the separator 25, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric. As a material of the separator 25, an olefin resin such as polyethylene and polypropylene is preferable.
 溶接部54は、上記のように溶融痕により形成される。外装缶50の底板部51の外側(図1の下側)から溶接部54を見た場合に、図4に示すように、第2溶融部58は、全周を囲まれるように第1溶融部56の内側にあり、かつ、外装缶50の外側表面に露出する。第2溶融部58は、この状態で、外装缶50と負極リード26(図3)とを溶接している。第2溶融部58は、第1溶融部56より深く形成される。 The weld 54 is formed by melting marks as described above. As shown in FIG. 4, when the welded portion 54 is viewed from the outside (the lower side of FIG. 1) of the bottom plate portion 51 of the outer can 50, the second melting portion 58 is first melted so as to surround the entire circumference. It is inside the portion 56 and exposed on the outer surface of the outer can 50. In this state, the second melting part 58 welds the outer can 50 and the negative electrode lead 26 (FIG. 3). The second melting part 58 is formed deeper than the first melting part 56.
 第1溶融部56は、外装缶50の内部に留まるように形成されている。第1溶融部56は、後述の第1照射工程で、第1レーザ光40を外装缶50の外部から底板部51に向かって照射させることにより形成される。第2溶融部58は、後述のように第1照射工程の後の第2照射工程で第2レーザ光41を外装缶50の外部から底板部51に向かって照射させることにより形成される。 The first melting part 56 is formed so as to remain inside the outer can 50. The first melting portion 56 is formed by irradiating the first laser light 40 from the outside of the outer can 50 toward the bottom plate portion 51 in a first irradiation step described later. The second melting part 58 is formed by irradiating the second laser light 41 from the outside of the outer can 50 toward the bottom plate part 51 in the second irradiation process after the first irradiation process, as will be described later.
 図4に示すように、第1溶融部56は、外装缶50の底板部51の外側から見た場合の平面形状が直線状である。そして、第2溶融部58も、底板部51の外側から見た場合の平面形状が直線状であり、第2溶融部58の幅w2は第1溶融部56の幅w1より小さい。また、第2溶融部58は、第1溶融部56よりニッケルの含有濃度(質量%)が高い。なお、第1溶融部56及び第2溶融部58の存在は、例えば、外装缶50の外側から観察することにより確認できる。これに加えて、第1溶融部56及び第2溶融部58の存在は、例えば溶融痕の外装缶50の厚み方向における断面を光学顕微鏡等により観察することで確認することができる。 As shown in FIG. 4, the first melting part 56 has a linear planar shape when viewed from the outside of the bottom plate part 51 of the outer can 50. The second melting part 58 also has a linear shape when viewed from the outside of the bottom plate part 51, and the width w <b> 2 of the second melting part 58 is smaller than the width w <b> 1 of the first melting part 56. The second melting part 58 has a higher nickel content (mass%) than the first melting part 56. In addition, presence of the 1st fusion | melting part 56 and the 2nd fusion | melting part 58 can be confirmed by observing from the outer side of the armored can 50, for example. In addition, the presence of the first melting part 56 and the second melting part 58 can be confirmed by observing, for example, an optical microscope or the like in the thickness direction of the outer can 50 of the melt mark.
 各レーザ光としては、ファイバーレーザのレーザ光を用いることが好適である。ファイバーレーザのスポット径は、例えば直径が0.02mm~0.05mm程度と非常に小さくすることができるため、そのファイバーレーザにより形成される溶融痕の幅も約0.1mmと非常に小さくできる。このため、レーザ光の集光点のパワー密度を非常に高くできる。第2レーザ光41は、第2レーザ光41の照射により形成された溶融痕が外装缶50を貫通するが、負極リード26を貫通しないように照射する。 It is preferable to use a fiber laser beam as each laser beam. The spot diameter of the fiber laser can be made very small, for example, about 0.02 mm to 0.05 mm, so that the width of the melt mark formed by the fiber laser can be made very small, about 0.1 mm. For this reason, the power density of the condensing point of a laser beam can be made very high. The second laser light 41 is irradiated so that melt marks formed by the irradiation of the second laser light 41 penetrate the outer can 50 but not the negative electrode lead 26.
 第1溶融部56を形成する際の第1レーザ光40のスポット径は、第2レーザ光41のスポット径より大きくすることが好ましい。第1レーザ光40は、第1レーザ光40の照射により形成された溶融痕が外装缶50を貫通せず、負極リード26に達しないように照射する。このとき、例えば、直線方向に沿って一方側(例えば図1の右側)に向かって、第1レーザ光40の照射部を外装缶50の底板部51の外側表面において移動させて、第1溶融部56を形成する。第2レーザ光41によって形成される第2溶融部58は、第1レーザ光40の照射により形成された第1溶融部56の内側に形成される。 It is preferable that the spot diameter of the first laser beam 40 when forming the first melting part 56 is larger than the spot diameter of the second laser beam 41. The first laser beam 40 is irradiated so that melt marks formed by the irradiation of the first laser beam 40 do not penetrate the outer can 50 and do not reach the negative electrode lead 26. At this time, for example, the irradiation portion of the first laser light 40 is moved on the outer surface of the bottom plate portion 51 of the outer can 50 along one direction (for example, the right side in FIG. 1) along the linear direction, and the first melting is performed. A portion 56 is formed. The second melting part 58 formed by the second laser light 41 is formed inside the first melting part 56 formed by irradiation with the first laser light 40.
 また、電池20をレーザ光の照射方向に対し直交する方向に相対的に移動させることで、レーザ光による溶接部54が底板部51の外側から見た場合に線状となりやすい。このとき、電池20は底板部51を上にした状態で配置し、その底部に向けてレーザ光を照射させることができる。電池20を横に傾けた状態で配置し、底板部51に向けてレーザ光を照射させることもできる。 Further, by moving the battery 20 relatively in the direction orthogonal to the laser light irradiation direction, the welded portion 54 by the laser light is likely to be linear when viewed from the outside of the bottom plate portion 51. At this time, the battery 20 can be arranged with the bottom plate portion 51 facing upward, and laser light can be irradiated toward the bottom portion. It is also possible to arrange the battery 20 in a state where it is tilted sideways and irradiate the bottom plate portion 51 with laser light.
 次に、外装缶50の外部からエネルギービームの一例であるレーザ光を照射して、外装缶50と負極リード26とを溶接する溶接工程を含む実施形態の電池の製造方法を説明する。この製造方法において、溶接工程は、第1照射工程と、第2照射工程とを有する。第1照射工程及び第2照射工程は、外装缶50に電解質を注入する前に行う。図6は、実施形態の製造方法において、第1照射工程で第1レーザ光40を照射する図である。図7は、実施形態の製造方法において、第2照射工程で第2レーザ光41を照射する図である。 Next, a battery manufacturing method according to an embodiment including a welding process of welding the outer can 50 and the negative electrode lead 26 by irradiating a laser beam as an example of an energy beam from the outside of the outer can 50 will be described. In this manufacturing method, the welding process includes a first irradiation process and a second irradiation process. The first irradiation step and the second irradiation step are performed before injecting the electrolyte into the outer can 50. FIG. 6 is a diagram in which the first laser beam 40 is irradiated in the first irradiation step in the manufacturing method of the embodiment. FIG. 7 is a diagram for irradiating the second laser light 41 in the second irradiation step in the manufacturing method of the embodiment.
 第1照射工程を行う前には、外装缶50の底板部51の内面に負極リード26を対向させた状態で、外装缶50に電極体22を収容する。そして、この状態で、第1照射工程及び第2照射工程により、外装缶50の外部から底板部51に向けて2段階でレーザ光を照射する。具体的には、図6に示すように、第1溶融部56を形成する第1レーザ光40を照射する前に、外装缶50の内側に上から押さえ棒70を挿入し、押さえ棒70により絶縁板30を介して負極リード26を上側から押圧する。これにより、外装缶50と負極リード26を密着させた状態とし、その状態で、底板部51の外側表面のうち、底板部51の内側表面を介して負極リード26が対向する部分に、第1エネルギー量を有する第1レーザ光40を照射して、第1溶融部56を形成する。このとき、溶融痕である第1溶融部56が、第1レーザ光40の照射位置において外装缶50を貫通せず、外装缶50の内部に留まり、負極リード26に達しないように、第1レーザ光40が制御される。このとき、第1レーザ光40のスポット径は、後述の第2レーザ光41のスポット径より大きくすることが好ましい。また、直線方向に沿って一方側(例えば図6の右側)に向かって、第1レーザ光40の照射部を外装缶50の底板部51の外側表面において移動させる。このとき、電池20をレーザ光の照射方向に対し直交する方向に相対的に移動させるように、レーザ光の光源を移動させる。本実施形態では、押さえ棒70により絶縁板30を介して負極リード26を押圧したが、絶縁板30の中央部に穴を設けて、その穴を貫通した押さえ棒が直接負極リード26を押圧してもよい。 Before performing the first irradiation step, the electrode body 22 is accommodated in the outer can 50 with the negative electrode lead 26 facing the inner surface of the bottom plate portion 51 of the outer can 50. In this state, laser light is irradiated in two stages from the outside of the outer can 50 toward the bottom plate portion 51 by the first irradiation process and the second irradiation process. Specifically, as shown in FIG. 6, before irradiating the first laser beam 40 that forms the first melting portion 56, a presser bar 70 is inserted into the outer can 50 from above, and is pressed by the presser bar 70. The negative electrode lead 26 is pressed from above through the insulating plate 30. As a result, the outer can 50 and the negative electrode lead 26 are brought into close contact with each other, and in this state, a portion of the outer surface of the bottom plate portion 51 facing the negative electrode lead 26 through the inner surface of the bottom plate portion 51 is first. Irradiation with a first laser beam 40 having an energy amount forms the first melted portion 56. At this time, the first melting portion 56 that is a melting mark does not penetrate the outer can 50 at the irradiation position of the first laser light 40, stays inside the outer can 50, and does not reach the negative electrode lead 26. The laser beam 40 is controlled. At this time, it is preferable that the spot diameter of the first laser light 40 is larger than the spot diameter of the second laser light 41 described later. Moreover, the irradiation part of the 1st laser beam 40 is moved in the outer surface of the bottom plate part 51 of the armored can 50 toward one side (for example, the right side of FIG. 6) along the linear direction. At this time, the light source of the laser light is moved so that the battery 20 is relatively moved in a direction orthogonal to the irradiation direction of the laser light. In this embodiment, the negative electrode lead 26 is pressed by the presser bar 70 through the insulating plate 30. However, a hole is provided in the central portion of the insulating plate 30 and the presser bar penetrating the hole directly presses the negative electrode lead 26. May be.
 次いで、第2照射工程では、図7に示すように、第2溶融部58を形成する第2レーザ光41を照射する前に、第1照射工程の場合と同様に、押さえ棒70により外装缶50と負極リード26を密着させた状態とする。そして、その状態で、底板部51に向けて外側から第2エネルギー量を有する第2レーザ光41を第1溶融部56が露出している部分の内側に照射して、第2溶融部58を形成する。このとき、底板部51の外側表面から負極リード26の内部にかけて溶融痕である第2溶融部が形成されるように第2レーザ光42が制御される。このとき、例えば、上記の直線方向に沿って一方側(例えば図7の右側)に向かって、第2レーザ光41の照射部を外装缶50の底板部51の外側表面において移動させて、第2溶融部58を形成する。第2溶融部58は、第1レーザ光40の照射により形成された溶融痕の内側の範囲で、外装缶50と負極リード26の一部を溶融するように形成される。第1溶融部56の一部は溶融、凝固して第2溶融部58に変化しており、第2溶融部58は、第1溶融部56のうち第2溶融部58に変化せずに残った部分に隣接するように形成される。第2照射工程においても、第1照射工程と同様に、電池20をレーザ光の照射方向に対し直交する方向に相対的に移動させるように、レーザ光の光源を移動させる。 Next, in the second irradiation step, as shown in FIG. 7, before the second laser beam 41 for forming the second melting portion 58 is irradiated, the outer canister is pressed by the presser bar 70 in the same manner as in the first irradiation step. 50 and the negative electrode lead 26 are brought into close contact with each other. In this state, the second laser beam 41 having the second energy amount is irradiated from the outside toward the bottom plate portion 51 to the inside of the portion where the first melting portion 56 is exposed, and the second melting portion 58 is irradiated. Form. At this time, the second laser beam 42 is controlled so that a second melted portion that is a melt mark is formed from the outer surface of the bottom plate portion 51 to the inside of the negative electrode lead 26. At this time, for example, the irradiation part of the second laser light 41 is moved on the outer surface of the bottom plate part 51 of the outer can 50 along one of the linear directions (for example, the right side in FIG. 7). 2 to form the melted portion 58. The second melting part 58 is formed so as to melt a part of the outer can 50 and the negative electrode lead 26 in the range inside the melt mark formed by the irradiation of the first laser beam 40. A part of the first melting part 56 is melted and solidified to be changed into the second melting part 58, and the second melting part 58 remains without changing to the second melting part 58 in the first melting part 56. It is formed adjacent to the part. Also in the second irradiation step, similarly to the first irradiation step, the laser light source is moved so that the battery 20 is relatively moved in the direction orthogonal to the laser light irradiation direction.
 上記のように押さえ棒70により外装缶50と負極リード26を密着させた状態で、外装缶50の外側から第1レーザ光40を照射して、外装缶50と負極リード26を溶接するので、電池20の内部にスパッタが発生することを防止しやすい。 As described above, the outer can 50 and the negative electrode lead 26 are welded by irradiating the first laser beam 40 from the outside of the outer can 50 in a state where the outer can 50 and the negative electrode lead 26 are in close contact with each other by the holding rod 70. It is easy to prevent spatter from occurring inside the battery 20.
 第2溶融部58は、底板部51の外側表面の第1溶融部56の内側に形成され、底板部51の内側(図1の上側)方向に延びる第1溶融部56と第2溶融部58との境界は、底板部51の内部に位置する。上記のように第1レーザ光40及び第2レーザ光41は、照射部が底板部51の外側表面上を同一の直線方向に沿って移動するように照射する。これによって、第1溶融部56及び第2溶融部58の底板部51の外側から見た場合の平面形状が直線状に形成される。また、底板部51の外側から見た場合に、第2溶融部58の全部は第1溶融部56により囲まれることが好ましい。なお、レーザ光の照射部は外装缶50の外側表面に対して相対的に移動させればよく、レーザ光及び外装缶50のうち、実際に動かすのは外装缶50でもよい。 The second melting part 58 is formed inside the first melting part 56 on the outer surface of the bottom plate part 51, and extends in the inner side (upper side in FIG. 1) direction of the bottom plate part 51 and the second melting part 58. Is located inside the bottom plate portion 51. As described above, the first laser beam 40 and the second laser beam 41 are irradiated so that the irradiation unit moves on the outer surface of the bottom plate unit 51 along the same linear direction. Thereby, the planar shape when viewed from the outside of the bottom plate part 51 of the first melting part 56 and the second melting part 58 is formed in a straight line. Further, when viewed from the outside of the bottom plate portion 51, it is preferable that the entire second melting portion 58 is surrounded by the first melting portion 56. In addition, the irradiation part of a laser beam should just move relatively with respect to the outer surface of the armored can 50, and the armored can 50 may be actually moved among laser light and the armored can 50.
 上記の実施形態の電池の製造方法及び電池20によれば、外装缶50に電解質が注入される前の状態で、外装缶50に負極リード26を溶接する際の外装缶50を貫通する穴の発生を防ぎ、かつ、安定した溶接強度を得ることができる。具体的には、第1溶融部56を形成する第1レーザ光40を底板部51に照射することで外装缶50と負極リード26の間に樹脂が存在する場合に、その樹脂が昇華等で気化する。これにより、外装缶50と負極リード26の間に樹脂が存在しない状態で、第2溶融部58を形成する第2レーザ光41を第1溶融部56の内側に照射し、外装缶50と負極リード26を溶接することができる。このため、外装缶50を貫通する穴の発生を防ぐことができるとともに、外装缶50において貫通しない凹部の発生を抑制できるので、外装缶50の内面で負極リード26と対向する部分での凹部の発生を抑制でき、安定した溶接強度を得ることができる。
ことができる。
According to the battery manufacturing method and the battery 20 of the above embodiment, the holes penetrating the outer can 50 when welding the negative electrode lead 26 to the outer can 50 in a state before the electrolyte is injected into the outer can 50. Generation | occurrence | production can be prevented and stable welding strength can be obtained. Specifically, when resin is present between the outer can 50 and the negative electrode lead 26 by irradiating the first laser beam 40 forming the first melting portion 56 to the bottom plate portion 51, the resin is sublimated or the like. Vaporize. Thus, the second laser beam 41 that forms the second melting portion 58 is irradiated to the inside of the first melting portion 56 in a state where no resin exists between the outer can 50 and the negative electrode lead 26, and the outer can 50 and the negative electrode The lead 26 can be welded. For this reason, generation | occurrence | production of the hole which penetrates the armored can 50 can be prevented, and generation | occurrence | production of the recessed part which does not penetrate in the armored can 50 can be suppressed, Therefore The recessed part in the part which opposes the negative electrode lead 26 in the inner surface of the exterior can 50 Generation | occurrence | production can be suppressed and stable welding strength can be obtained.
be able to.
 さらに、上記の電池20は、溶接部54が図1、図2に示す第1溶融部56と第2溶融部58を含むため、溶接部54に起因する底板部51での応力腐食割れが生じにくくなる。 Further, in the battery 20 described above, since the welded portion 54 includes the first melted portion 56 and the second melted portion 58 shown in FIGS. 1 and 2, stress corrosion cracking in the bottom plate portion 51 caused by the welded portion 54 occurs. It becomes difficult.
 図8は、実施形態の別例の製造方法において第1レーザ光40を照射する図である。本例の製造方法では、第1照射工程で第1溶融部56を形成する第1レーザ光40を底板部51の外側表面に照射する際に、外装缶50と負極リード26との間に隙間S1をあけている。このときには、図6に示した製造方法の場合と異なり、第1レーザ光40を照射する際に、外装缶50の内側には、上から押さえ棒を挿入せず、負極リード26を上側から押圧することは行わない。 FIG. 8 is a diagram of irradiating the first laser beam 40 in another manufacturing method according to the embodiment. In the manufacturing method of this example, when the first laser beam 40 that forms the first melting portion 56 is irradiated to the outer surface of the bottom plate portion 51 in the first irradiation step, there is a gap between the outer can 50 and the negative electrode lead 26. S1 is opened. At this time, unlike the manufacturing method shown in FIG. 6, when the first laser beam 40 is irradiated, the pressing rod is not inserted into the outer can 50 from the upper side, and the negative electrode lead 26 is pressed from the upper side. Do not do.
 外装缶50と負極リード26の間に形成する隙間S1は、0.005mm~0.2mm程度あればよい。隙間S1が存在することにより、第1レーザ光40が照射されたことで発せられた熱が外装缶50の中に留まり、負極リード26や、外装缶50と負極リード26を密着させる押さえ棒に熱が吸収されることがない。このため、外装缶50と負極リード26の間に存在する樹脂が効率よく気化する。その後、図7に示した製造方法と同様に、第2溶融部58を形成する第2レーザ光41を底板部51に照射する際には、押さえ棒70によって外装缶50と負極リード26を密着させ、その状態で外装缶50と負極リード26を溶接する。 The gap S1 formed between the outer can 50 and the negative electrode lead 26 may be about 0.005 mm to 0.2 mm. Due to the presence of the gap S1, the heat generated by the irradiation of the first laser beam 40 stays in the outer can 50, and the negative electrode lead 26 or the pressing rod that closely contacts the outer can 50 and the negative electrode lead 26. Heat is not absorbed. For this reason, the resin existing between the outer can 50 and the negative electrode lead 26 is efficiently vaporized. After that, as in the manufacturing method shown in FIG. 7, when the second laser beam 41 that forms the second melting portion 58 is irradiated to the bottom plate portion 51, the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70. In this state, the outer can 50 and the negative electrode lead 26 are welded.
 また、第1溶融部56を形成する第1レーザ光40のレーザスポット径は、第2溶融部58を形成する第2レーザ光41のレーザスポット径より大きいほうが良い。第1レーザ光40は、外装缶50と負極リード26の間に存在する樹脂を熱によって気化させるために照射するので、第2溶融部58を形成する領域よりも広い領域で樹脂を気化し除去することが好ましい。言い換えると、第2レーザ光41は、第1レーザ光40によって外装缶50と負極リード26の間に存在する樹脂を除去された領域に照射されることで、第2溶融部58を形成し、外装缶50と負極リード26とを溶接する。これにより、外装缶50を貫通する穴の発生を防ぐことができ、かつ安定した溶接強度を得ることができる。 Also, the laser spot diameter of the first laser beam 40 that forms the first melting part 56 is preferably larger than the laser spot diameter of the second laser beam 41 that forms the second melting part 58. Since the first laser beam 40 is irradiated so that the resin existing between the outer can 50 and the negative electrode lead 26 is vaporized by heat, the resin is vaporized and removed in a region wider than the region where the second melting portion 58 is formed. It is preferable to do. In other words, the second laser light 41 is irradiated to the area where the resin existing between the outer can 50 and the negative electrode lead 26 is removed by the first laser light 40, thereby forming the second melting portion 58, The outer can 50 and the negative electrode lead 26 are welded. Thereby, generation | occurrence | production of the hole which penetrates the armored can 50 can be prevented, and stable welding strength can be obtained.
 また、各レーザ光としてファイバーレーザを用いた場合には、第1レーザ光40及び第2レーザ光41の照射深度と、第1レーザ光40の照射面積とを精度よく制御できる。これにより、第1溶融部56及び第2溶融部58の寸法(厚み、幅、長さ)を精度よく制御できるとともに、外装缶50と負極リード26の間に存在する樹脂を効率的に気化し除去できる。なお、外装缶50の外側から溶接部54を見た場合における第1溶融部56及び第2溶融部58の平面形状は線状であればよく、直線状に限定するものではない。例えば、第1溶融部56及び第2溶融部58の平面形状は、曲線状としてもよい。 Further, when a fiber laser is used as each laser beam, the irradiation depth of the first laser beam 40 and the second laser beam 41 and the irradiation area of the first laser beam 40 can be controlled with high accuracy. Accordingly, the dimensions (thickness, width, length) of the first melting part 56 and the second melting part 58 can be controlled with high accuracy, and the resin existing between the outer can 50 and the negative electrode lead 26 can be efficiently vaporized. Can be removed. In addition, the planar shape of the 1st fusion | melting part 56 and the 2nd fusion | melting part 58 at the time of seeing the welding part 54 from the outer side of the armored can 50 should just be linear, and is not limited to linear form. For example, the planar shapes of the first melting part 56 and the second melting part 58 may be curved.
 次に、上記の実施形態の効果を確認するために行った実験結果を説明する。実験には、以下の実施例1、2及び比較例の電池の製造方法のそれぞれで作製された電池を用いた。 Next, the results of experiments conducted to confirm the effects of the above embodiment will be described. In the experiment, batteries manufactured by the following battery manufacturing methods of Examples 1 and 2 and Comparative Example were used.
[実施例1]
 実施例1の構成の寸法を例示するが、本開示は以下の寸法に限定されるものではない。図4を参照して、第1溶融部56を外装缶50の外側から見た場合の短尺方向の幅w1が、第2溶融部58を外装缶50の外側から見た場合の短尺方向の幅w2より大きく、かつ、幅w2の3倍以下である。また、第1溶融部56を外装缶50の外側から見た場合の長尺方向の長さL1は、第2溶融部58を外装缶50の外側から見た場合の長尺方向の長さL2より大きく、かつ、長さL2の2倍以下である。また、図3を参照して、第1溶融部56の厚みD1は、外装缶50の厚みDcの0.5~0.99倍である。
[Example 1]
Although the dimension of the structure of Example 1 is illustrated, this indication is not limited to the following dimensions. With reference to FIG. 4, the width w <b> 1 in the short direction when the first melting portion 56 is viewed from the outside of the outer can 50 is the width in the short direction when the second melting portion 58 is viewed from the outside of the outer can 50. It is larger than w2 and not more than 3 times the width w2. The length L1 in the longitudinal direction when the first melting portion 56 is viewed from the outside of the outer can 50 is the length L2 in the longitudinal direction when the second melting portion 58 is viewed from the outside of the outer can 50. It is larger and not more than twice the length L2. Referring to FIG. 3, the thickness D1 of the first melting portion 56 is 0.5 to 0.99 times the thickness Dc of the outer can 50.
 より具体的な寸法として、外装缶50はニッケルめっきした鉄からなり、外側表面のニッケルめっき層は厚みが3.5μmである。また、外装缶50のニッケルめっき層を含む総厚みは、300μmである。さらに、溶接部54の第1溶融部56及び第2溶融部58の寸法は以下の通りである。
(第1溶融部56)
(1)外装缶50の外側から見た場合の短尺方向の幅w1:170μm
(2)外装缶50の外側から見た場合の長尺方向の長さL1:1600μm
(3)厚み(外装缶50の外側表面から第1溶融部56の形成された長さ)D1:270μm
(第2溶融部58)
(1)外装缶50の外側から見た場合の短尺方向の幅w2:80μm
(2)外装缶50の外側から見た場合の長尺方向の長さL2:1000μm
(3)厚み(外装缶50の外側表面から負極リード26の内部における末端までの長さ)D2:350μm
More specifically, the outer can 50 is made of nickel-plated iron, and the nickel plating layer on the outer surface has a thickness of 3.5 μm. The total thickness of the outer can 50 including the nickel plating layer is 300 μm. Furthermore, the dimension of the 1st fusion | melting part 56 of the welding part 54 and the 2nd fusion | melting part 58 is as follows.
(First melting part 56)
(1) Width w1: 170 μm in the short direction when viewed from the outside of the outer can 50
(2) Length L1 in the longitudinal direction when viewed from the outside of the outer can 50: 1600 μm
(3) Thickness (the length at which the first melted portion 56 is formed from the outer surface of the outer can 50) D1: 270 μm
(Second melting part 58)
(1) Width w2 in the short direction when viewed from the outside of the outer can 50: 80 μm
(2) Length L2 in the long direction when viewed from the outside of the outer can 50: 1000 μm
(3) Thickness (length from the outer surface of the outer can 50 to the terminal inside the negative electrode lead 26) D2: 350 μm
 実施例1の製造方法では、外装缶50と負極リード26の間には、実施形態の効果を確認するために、一般的な設備潤滑油を塗布した。その後、第1照射工程で、押さえ棒70(図6)によって外装缶50と負極リード26を密着させた状態で、第1溶融部56を形成する第1レーザ光40を外装缶50の外側から底板部51に照射した。その後に、第2照射工程で、押さえ棒70(図7)によって外装缶50と負極リード26を密着させた状態で、第2溶融部58を形成する第2レーザ光41を照射することにより、外装缶50と負極リード26を溶接した。 In the manufacturing method of Example 1, a general facility lubricating oil was applied between the outer can 50 and the negative electrode lead 26 in order to confirm the effect of the embodiment. Thereafter, in the first irradiation step, the first laser beam 40 that forms the first melting portion 56 is emitted from the outside of the outer can 50 in a state where the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70 (FIG. 6). The bottom plate part 51 was irradiated. After that, in the second irradiation step, by irradiating the second laser beam 41 that forms the second melting portion 58 in a state where the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70 (FIG. 7), The outer can 50 and the negative electrode lead 26 were welded.
 第1レーザ光40及び第2レーザ光41の照射条件は以下の通りである。
(第1レーザ光40)
(1)エネルギー:1.44J
(2)レーザスポット径:170μm
(3)移動速度:470mm/sec
(第2レーザ光41)
(1)エネルギー:0.6J
(2)レーザスポット径:20μm
(3)移動速度:470mm/sec
The irradiation conditions of the first laser beam 40 and the second laser beam 41 are as follows.
(First laser beam 40)
(1) Energy: 1.44J
(2) Laser spot diameter: 170 μm
(3) Movement speed: 470 mm / sec
(Second laser beam 41)
(1) Energy: 0.6J
(2) Laser spot diameter: 20 μm
(3) Movement speed: 470 mm / sec
 上記の条件で実施例1において、溶接部54を形成したところ、第1レーザ光40の照射によって、外装缶50内部に溶融痕が形成された。その溶融痕は、外装缶50の外側表面における短尺方向の幅が170μmで、長尺方向の長さが1600μmで、厚み(外装缶50の外側表面から第1溶融部56の形成された長さ)が270μmであった。続いて第2レーザ光41の照射によって、第1レーザ光40の照射で外装缶50に溶融痕の内側に、短尺方向の幅が80μmで、長尺方向の長さが1000μmで、厚み(外装缶50の外側表面から第2溶融部58の形成された長さ)350μmの溶融痕が形成された。 When the weld 54 was formed in Example 1 under the above conditions, melt marks were formed inside the outer can 50 by irradiation with the first laser light 40. The melt mark has a width in the short direction of 170 μm on the outer surface of the outer can 50, a length in the long direction of 1600 μm, and a thickness (the length from which the first melting portion 56 is formed from the outer surface of the outer can 50. ) Was 270 μm. Subsequently, by irradiation with the second laser light 41, the width of the short direction is 80 μm, the length in the long direction is 1000 μm, the thickness (exterior) The length of the second melted portion 58 formed from the outer surface of the can 50 was 350 μm.
[実施例2]
 実施例2は、図8に示した実施形態の別例の製造方法に対応する。実施例2の電池の構成及び寸法は、実施例1と同様である。実施例2の製造方法では、実施例1と同様に、外装缶50と負極リード26の間に、一般的な設備潤滑油を塗布した。その後、実施例2では、第1照射工程で、図8に示したように、押さえ棒によって外装缶と負極リードを密着させることなく、外装缶と負極リードとの間に隙間が設けられた状態で、第1溶融部56を形成する第1レーザ光40を外装缶50の外側から底板部51に照射した。
[Example 2]
Example 2 corresponds to another manufacturing method of the embodiment shown in FIG. The configuration and dimensions of the battery of Example 2 are the same as those of Example 1. In the manufacturing method of Example 2, as in Example 1, general equipment lubricating oil was applied between the outer can 50 and the negative electrode lead 26. Thereafter, in Example 2, in the first irradiation step, as shown in FIG. 8, a gap is provided between the outer can and the negative electrode lead without causing the presser bar to closely contact the outer can and the negative electrode lead. Then, the first laser beam 40 that forms the first melting part 56 was applied to the bottom plate part 51 from the outside of the outer can 50.
 その後に、第2照射工程で、実施例1と同様に、押さえ棒70(図7)によって外装缶50と負極リード26を密着させた状態で、第2溶融部58を形成する第2レーザ光41を照射することにより、外装缶50と負極リード26を溶接した。第1レーザ光40及び第2レーザ光41の照射条件は、実施例1と同様である。 Thereafter, in the second irradiation step, as in the first embodiment, the second laser beam that forms the second melting portion 58 in a state where the outer can 50 and the negative electrode lead 26 are brought into close contact with the pressing rod 70 (FIG. 7). The outer can 50 and the negative electrode lead 26 were welded by irradiating 41. The irradiation conditions of the first laser beam 40 and the second laser beam 41 are the same as those in the first embodiment.
 [比較例]
 また、比較例として、第1溶融部56(図6、図8)を形成する第1レーザ光40を照射せずに、第2レーザ光41を照射して第2溶融部58を形成することにより、外装缶と負極リードを溶接した電池を作製した。これにより、比較例の電池の製造方法では、外装缶の底部に第1溶融部が形成されず、負極リードと外装缶とを溶接する第2溶融部58のみが形成された。その他の電池の構成及び寸法、第2レーザ光の照射条件は、実施例1と同様である。
[Comparative example]
Further, as a comparative example, the second melting portion 58 is formed by irradiating the second laser beam 41 without irradiating the first laser beam 40 forming the first melting portion 56 (FIGS. 6 and 8). Thus, a battery in which the outer can and the negative electrode lead were welded was produced. Thereby, in the battery manufacturing method of the comparative example, the first melting part was not formed at the bottom of the outer can, and only the second melting part 58 for welding the negative electrode lead and the outer can was formed. The other configurations and dimensions of the battery and the irradiation conditions of the second laser light are the same as those in the first embodiment.
[実験結果]
 表1は、上記の製造方法のそれぞれで作製された実施例1、2、比較例の電池を用いて、外装缶50を貫通する穴の発生確率を確認した結果を示している。実験では、実施例1、2、比較例のそれぞれで複数の電池を作製し、穴の発生確率を確認した。
[Experimental result]
Table 1 shows the results of confirming the probability of occurrence of a hole penetrating the outer can 50 using the batteries of Examples 1 and 2 and Comparative Example produced by each of the above manufacturing methods. In the experiment, a plurality of batteries were produced in each of Examples 1 and 2 and Comparative Example, and the probability of occurrence of holes was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例のように、第1溶融部を形成する第1レーザ光を照射せずに、第2レーザ光41を照射して第2溶融部58を形成した場合に、外装缶50を貫通する穴の発生確率は10%であった。 As shown in Table 1, when the second melted portion 58 is formed by irradiating the second laser beam 41 without irradiating the first laser beam forming the first melted portion as in the comparative example, The probability of occurrence of holes penetrating the outer can 50 was 10%.
 一方、実施例1のように、第1溶融部56を形成する第1レーザ光40を照射した後に、第2レーザ光41を照射して第2溶融部58を形成した場合に、外装缶50を貫通する穴の発生確率は5%に減少することが確認できた。 On the other hand, when the second melted portion 58 is formed by irradiating the second laser beam 41 after irradiating the first laser beam 40 that forms the first melted portion 56 as in the first embodiment, the outer can 50 is formed. It has been confirmed that the probability of occurrence of a hole penetrating through is reduced to 5%.
 さらに、実施例2のように、外装缶50と負極リード26の間に隙間を設けて、互いに密着させない状態で第1溶融部56を形成する第1レーザ光40を照射した場合に、外装缶50を貫通する穴の発生確率は0%に減少することが確認できた。これにより、実施例2の場合には、実施例1のように、第1レーザ光の照射時に、外装缶50と負極リード26の間に隙間を形成せず互いに密着させた状態とした場合に比べて、外装缶50を貫通する穴の発生確率を減少できた。その理由は、実施例2では、第1レーザ光40が照射されたことで発せられた熱が外装缶50の中に留まり、負極リード26や、外装缶50と負極リード26を密着させる押さえ棒に熱が吸収されることがないためである。このため、実施例2では、外装缶50と負極リード26の間に存在する樹脂を効率よく気化させることができた。 Further, as in the second embodiment, when a gap is provided between the outer can 50 and the negative electrode lead 26 and the first laser beam 40 that forms the first melting portion 56 is irradiated without being in close contact with each other, the outer can It was confirmed that the probability of occurrence of holes penetrating 50 decreased to 0%. As a result, in the case of the second embodiment, as in the first embodiment, when the first laser beam is irradiated, the gap between the outer can 50 and the negative electrode lead 26 is not formed, and the two are in close contact with each other. In comparison, the probability of occurrence of holes penetrating the outer can 50 could be reduced. The reason for this is that in Example 2, the heat generated by the irradiation of the first laser beam 40 stays in the outer can 50, and the negative electrode lead 26, or the presser bar that closely contacts the outer can 50 and the negative electrode lead 26. This is because heat is not absorbed by the heat sink. For this reason, in Example 2, the resin existing between the outer can 50 and the negative electrode lead 26 could be efficiently vaporized.
 図9は、実施形態の別例の電池20aの底面側半部の断面図である。図10は、図9に示す電池20aの底面図である。 FIG. 9 is a cross-sectional view of the bottom half of a battery 20a according to another example of the embodiment. 10 is a bottom view of the battery 20a shown in FIG.
 図9、図10に示す別例では、外装缶50と負極リード26とを溶接する3本の線状の平行な溶接部54a、54b、54cからなる溶接群60が形成される。3本の溶接部54a、54b、54cからなる溶接群60が形成されることで、外装缶50と負極リード26との溶接強度を確保しやすい。図9、図10には、3本の平行な溶接部からなる溶接群60を図示しているが、勿論、溶接部は3本に限定するものではなく、2本、または4本以上の複数本の溶接部が形成されてもよい。局所的にこのような溶接部を形成する際には、ファイバーレーザのレーザ光を用いることが好適である。本例において、その他の構成及び作用は、図1~図7の構成と同様である。 In another example shown in FIGS. 9 and 10, a weld group 60 including three linear parallel welds 54 a, 54 b and 54 c for welding the outer can 50 and the negative electrode lead 26 is formed. By forming the welded group 60 including the three welded portions 54a, 54b, and 54c, it is easy to ensure the welding strength between the outer can 50 and the negative electrode lead 26. 9 and 10 show a weld group 60 composed of three parallel welds. Of course, the number of welds is not limited to three, but two or more than four. A weld of a book may be formed. When forming such a weld locally, it is preferable to use a laser beam of a fiber laser. In this example, other configurations and operations are the same as those in FIGS. 1 to 7.
 上記の各例では、負極に接続された負極リードを外装缶に溶接する場合を説明したが、正極に接続された正極リードを外装缶に溶接する場合にも、本開示の構成を適用することができる。 In each of the above examples, the case where the negative electrode lead connected to the negative electrode is welded to the outer can has been described. Can do.
 上記の各例では、負極の巻き終わり側端部に接続された負極リードを外装缶に溶接する場合を説明したが、負極の巻き始め側端部に接続された負極リードを外装缶に溶接する場合にも本開示の構成を適用することができる。 In each of the above examples, the case where the negative electrode lead connected to the winding end side end portion of the negative electrode is welded to the outer can, but the negative electrode lead connected to the winding start side end portion of the negative electrode is welded to the outer can. Even in this case, the configuration of the present disclosure can be applied.
 上記の各例では、負極に接続された1本の負極リードを外装缶に溶接する場合を説明したが、負極に接続された複数本の負極リードを外装缶に溶接する場合にも、本開示の構成を適用することができる。 In each of the above examples, the case where one negative electrode lead connected to the negative electrode is welded to the outer can has been described, but the present disclosure is also applicable to the case where a plurality of negative electrode leads connected to the negative electrode are welded to the outer can. The configuration can be applied.
 20,20a 密閉電池(電池)、22 電極体、23 正極、23a 正極集電体、24 負極、24a 負極集電体、25 セパレータ、26 負極リード、29 巻き芯部、30 絶縁板、40 第1レーザ光、41 第2レーザ光、50 外装缶、51 底板部、54,54a,54b,54c 溶接部、56 第1溶融部、58 第2溶融部、60 溶接群、70 押さえ棒。 20, 20a sealed battery (battery), 22 electrode body, 23 positive electrode, 23a positive electrode current collector, 24 negative electrode, 24a negative electrode current collector, 25 separator, 26 negative electrode lead, 29 winding core, 30 insulating plate, 40 1st Laser beam, 41, second laser beam, 50 outer can, 51 bottom plate, 54, 54a, 54b, 54c weld, 56 first melt, 58 second melt, 60 weld group, 70 presser bar.

Claims (5)

  1.  少なくとも1つの正極と少なくとも1つの負極とがセパレータを介して巻回または積層された電極体と、前記電極体を収容する有底筒状の外装缶とを含む密閉電池の製造方法であって、
     前記外装缶の外部からエネルギービームを照射して、前記正極及び前記負極の一方に接続されたリードを前記外装缶に溶接する溶接工程を備え、
     前記溶接工程は、
     前記外装缶の外側表面のうち、前記外装缶の内側表面を介して前記リードが対向する部分に、前記外装缶の内部に溶融痕である第1溶融部が留まるように制御された第1エネルギービームを照射する第1照射工程と、
     前記第1照射工程後に、前記外装缶の外側表面のうち前記第1溶融部が露出している部分の内側に、前記外装缶の外側表面から前記リードの内部にかけて溶融痕である第2溶融部が形成されるように制御された第2エネルギービームを照射する第2照射工程と、を有する、
     密閉電池の製造方法。
    A method for producing a sealed battery, comprising: an electrode body in which at least one positive electrode and at least one negative electrode are wound or laminated via a separator; and a bottomed cylindrical outer can that accommodates the electrode body,
    Irradiating an energy beam from the outside of the outer can, and comprising a welding step of welding a lead connected to one of the positive electrode and the negative electrode to the outer can,
    The welding process includes
    The first energy controlled so that the first melting part which is a melting mark stays inside the outer can at the portion of the outer surface of the outer can facing the lead through the inner surface of the outer can. A first irradiation step of irradiating a beam;
    After the first irradiation step, a second melted portion that is a melt mark from the outer surface of the outer can to the inside of the lead inside the portion of the outer surface of the outer can where the first melted portion is exposed. A second irradiation step of irradiating a second energy beam controlled so as to be formed.
    A manufacturing method of a sealed battery.
  2.  前記第1照射工程において、前記リードと前記外装缶の間に隙間が設けられた状態で前記第1エネルギービームを照射する、請求項1に記載の密閉電池の製造方法。 The method for manufacturing a sealed battery according to claim 1, wherein, in the first irradiation step, the first energy beam is irradiated in a state where a gap is provided between the lead and the outer can.
  3.  前記第1エネルギービームのビームスポット径は、前記第2エネルギービームのビームスポット径より大きい、請求項1または請求項2に記載の密閉電池の製造方法。 The method for manufacturing a sealed battery according to claim 1 or 2, wherein a beam spot diameter of the first energy beam is larger than a beam spot diameter of the second energy beam.
  4.  少なくとも1つの正極と少なくとも1つの負極とがセパレータを介して巻回または積層された電極体と、前記電極体を収容する有底筒状の外装缶とを備える密閉電池であって、
     前記外装缶は、ニッケルめっきされた鉄により形成され、
     前記正極及び前記負極の一方に接続されたリードと前記外装缶とが、前記外装缶の外側表面から前記リードに向けて形成された溶接部で溶接されており、
     前記溶接部は、溶融痕である第1溶融部及び第2溶融部を含み、
     前記第1溶融部が、前記外装缶の外側表面から前記外装缶の厚みの50~99%の範囲に形成され、
     前記第2溶融部が、前記外装缶の外側表面から前記リードの内部にかけて形成され、前記外装缶の外側から前記溶接部を見た場合に、前記第1溶融部の内側にある、密閉電池。
    A sealed battery comprising an electrode body in which at least one positive electrode and at least one negative electrode are wound or laminated with a separator interposed therebetween, and a bottomed cylindrical outer can that accommodates the electrode body,
    The outer can is formed of nickel-plated iron,
    The lead connected to one of the positive electrode and the negative electrode and the outer can are welded at a weld formed from the outer surface of the outer can toward the lead,
    The welded portion includes a first melting portion and a second melting portion that are melting marks,
    The first melting portion is formed in the range of 50 to 99% of the thickness of the outer can from the outer surface of the outer can;
    The sealed battery, wherein the second melting portion is formed from the outer surface of the outer can to the inside of the lead, and is located inside the first melting portion when the welded portion is viewed from the outer side of the outer can.
  5.  前記第2溶融部のニッケル濃度(質量%)が前記第1溶融部より高い、請求項4に記載の密閉電池。 The sealed battery according to claim 4, wherein the nickel concentration (mass%) of the second melting part is higher than that of the first melting part.
PCT/JP2019/010460 2018-03-16 2019-03-14 Manufacturing method for sealed battery, and sealed battery WO2019177081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-050014 2018-03-16
JP2018050014A JP7009271B2 (en) 2018-03-16 2018-03-16 Manufacturing method of closed battery and closed battery

Publications (1)

Publication Number Publication Date
WO2019177081A1 true WO2019177081A1 (en) 2019-09-19

Family

ID=67908294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010460 WO2019177081A1 (en) 2018-03-16 2019-03-14 Manufacturing method for sealed battery, and sealed battery

Country Status (2)

Country Link
JP (1) JP7009271B2 (en)
WO (1) WO2019177081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824227B2 (en) * 2020-06-19 2023-11-21 Zhuhai Cosmx Battery Co., Ltd. Battery and portable electrical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090294B1 (en) * 2010-11-12 2011-12-07 대현산업 (주) Water and sewage pipe
KR101090299B1 (en) * 2010-11-12 2011-12-07 대현산업 (주) Polygon water and sewage pipe
JPWO2022181383A1 (en) * 2021-02-26 2022-09-01

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217422A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Laser welding method
JP2016173972A (en) * 2015-03-18 2016-09-29 パナソニックIpマネジメント株式会社 Sealed battery and manufacturing method for the same
JP2016207412A (en) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 Laser weldment and laser welding quality determination method for battery
WO2019044265A1 (en) * 2017-08-30 2019-03-07 三洋電機株式会社 Sealed cell and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217422A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Laser welding method
JP2016173972A (en) * 2015-03-18 2016-09-29 パナソニックIpマネジメント株式会社 Sealed battery and manufacturing method for the same
JP2016207412A (en) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 Laser weldment and laser welding quality determination method for battery
WO2019044265A1 (en) * 2017-08-30 2019-03-07 三洋電機株式会社 Sealed cell and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824227B2 (en) * 2020-06-19 2023-11-21 Zhuhai Cosmx Battery Co., Ltd. Battery and portable electrical device

Also Published As

Publication number Publication date
JP7009271B2 (en) 2022-01-25
JP2019160751A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2019177081A1 (en) Manufacturing method for sealed battery, and sealed battery
CN110800131B (en) Battery and method for manufacturing same
JP6331079B2 (en) Laser welding method and laser welding apparatus
US20110195288A1 (en) Sealed battery and method for fabricating the same
JP7134978B2 (en) Sealed battery and manufacturing method thereof
US20120079713A1 (en) Manufacturing method of prismatic sealed cell
US9634298B2 (en) Hermetically sealed battery and method for manufacturing the same
JP2009259452A (en) Battery and its method for manufacturing
JP5137516B2 (en) Sealed battery
JP5384071B2 (en) Sealed battery
JP7394051B2 (en) Battery and its manufacturing method
JP2007250442A (en) Nonaqueous electrolyte secondary battery
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP2020013733A (en) Power storage device and manufacturing method thereof
JP5248210B2 (en) Lithium ion secondary battery
WO2019187776A1 (en) Cylindrical battery and method of manufacturing same
JP2000182576A (en) Battery
JP6201795B2 (en) Method for manufacturing power storage device
WO2022196442A1 (en) Sealed battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767086

Country of ref document: EP

Kind code of ref document: A1