WO2019177049A1 - アニリン誘導体の製造方法 - Google Patents

アニリン誘導体の製造方法 Download PDF

Info

Publication number
WO2019177049A1
WO2019177049A1 PCT/JP2019/010353 JP2019010353W WO2019177049A1 WO 2019177049 A1 WO2019177049 A1 WO 2019177049A1 JP 2019010353 W JP2019010353 W JP 2019010353W WO 2019177049 A1 WO2019177049 A1 WO 2019177049A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aniline derivative
producing
carbon atoms
Prior art date
Application number
PCT/JP2019/010353
Other languages
English (en)
French (fr)
Inventor
誠弥 寺井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020506618A priority Critical patent/JP7355004B2/ja
Priority to KR1020207029353A priority patent/KR102656460B1/ko
Priority to EP19767617.4A priority patent/EP3766868A4/en
Priority to CN201980018628.5A priority patent/CN111868029A/zh
Priority to US16/981,178 priority patent/US20210002223A1/en
Publication of WO2019177049A1 publication Critical patent/WO2019177049A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an aniline derivative.
  • organic EL organic electroluminescence
  • a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
  • the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently. Therefore, at the present time when the area of the organic EL display is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventors are able to apply aniline derivatives that can be applied to various wet processes and provide thin films that can realize excellent EL device characteristics when applied to a hole injection layer of an organic EL device.
  • An aniline derivative having good solubility in an organic solvent used therefor has been developed (for example, see Patent Document 1).
  • Patent Document 1 as one method for producing such an aniline derivative, for example, as shown in the following scheme, an amine compound (A) and a halogenated carbazole compound (NH group protected with a benzyl group) ( A method for deprotecting the benzyl group after coupling B) in the presence of a catalyst is disclosed.
  • the present invention has been made in view of the above circumstances, and provides a method for producing an aniline derivative suitable for an efficient and industrial production method that does not require a large excess of base and oxygen during the deprotection process. Objective.
  • the present inventor carried out a coupling reaction between an amine compound and a carbazole compound in which an NH group is protected with a predetermined silyl group, and then desilylating the compound.
  • the inventors have found that an aniline derivative can be efficiently produced without requiring a large excess of base and oxygen, and have completed the present invention.
  • R 1 to R 5 are, independently of one another, a hydrogen atom or formula (2) (In the formula, Ar 1 and Ar 2 each independently represent an aryl group having 6 to 20 carbon atoms, Ar 3 represents an arylene group having 6 to 20 carbon atoms, and any one of Ar 1 to Ar 3 Or two of them may combine to form a ring with the nitrogen atom.) In which at least one of R 1 to R 5 is a hydrogen atom. ] In the presence of a catalyst and a base.
  • X represents a halogen atom or a pseudohalogen group
  • R 6 to R 8 represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, which may be substituted with Z 1.
  • Z 1 represents an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a nitro group or a cyano group.)
  • a silyl group is deprotected after a coupling reaction with a carbazole compound represented by formula (4)
  • R 1 ' ⁇ R 5' independently of one another, a hydrogen atom, represents a group represented by group represented by the formula (2) or the formula (5),
  • At least one of 5 ′ is a group represented by the formula (5).
  • Ar 1 to Ar 3 represent the same meaning as described above.
  • an aniline derivative of the present invention since a raw material obtained by protecting the NH group of a carbazole compound with a silyl group is used, a large excess of base and oxygen are not required in the process of deprotection, and the process is efficiently performed.
  • the target aniline derivative can be produced.
  • FIG. 2 is a diagram showing an HPLC chart of CZ5 obtained in Example 1.
  • FIG. FIG. 2 is an enlarged view showing a range of 0 to 300 mAU on the vertical axis in FIG. 6 is a diagram showing an HPLC chart of CZ5 obtained in Comparative Example 1.
  • FIG. FIG. 4 is an enlarged view showing a range of 0 to 300 mAU on the vertical axis in FIG.
  • an amine compound represented by formula (1) is subjected to a coupling reaction with a carbazole compound represented by formula (3) in the presence of a catalyst and a base, and then a carbazole moiety. It is characterized by deprotecting the silyl group on the nitrogen atom.
  • R 1 to R 5 each independently represent a hydrogen atom or a group represented by the formula (2), and are subjected to a coupling reaction with a carbazole compound represented by the formula (3).
  • at least one of R 1 to R 5 needs to be a hydrogen atom.
  • Ar 1 and Ar 2 each independently represent an aryl group having 6 to 20 carbon atoms
  • Ar 3 represents an arylene group having 6 to 20 carbon atoms
  • Ar 1 to Ar 3 Any two of these may be bonded to form a ring together with the nitrogen atom.
  • Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • arylene group having 6 to 20 carbon atoms include benzene-1,2-diyl (o-phenylene) group, benzene-1,3-diyl (m-phenylene) group, benzene-1,4-diyl ( p-phenylene) group, naphthalene-1,2-diyl group, naphthalene-1,3-diyl group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene-1,6-diyl group , Naphthalene-1,7-diyl group, naphthalene-1,8-diyl group and the like.
  • Examples of the ring formed by combining any two of Ar 1 to Ar 3 together with the nitrogen atom include a carbazole ring.
  • Ar 1 and Ar 2 are preferably a phenyl group, a 1-naphthyl group, and a 2-naphthyl group, and more preferably a phenyl group.
  • Ar 3 is preferably a benzene-1,2-diyl group, a benzene-1,3-diyl group, or a benzene-1,4-diyl group, and more preferably a benzene-1,4-diyl group.
  • the group represented by the formula (2) is preferably a group represented by the formula (2A), and more preferably a group represented by the formula (2A-1).
  • Examples of the compound represented by the formula (1) that can be suitably used in the production method of the present invention include compounds represented by the following formula (1A), wherein R 1 to R 5 are all hydrogen atoms, R 2 and R 4 A compound represented by the following formula (1B) in which R 4 is a 4-diphenylaminophenyl group, a compound represented by the following formula (1C) in which R 1 , R 2 and R 4 are 4-diphenylaminophenyl groups, and the like.
  • R 1A wherein R 1 to R 5 are all hydrogen atoms
  • R 2 and R 4 A compound represented by the following formula (1B) in which R 4 is a 4-diphenylaminophenyl group
  • a compound represented by the following formula (1C) in which R 1 , R 2 and R 4 are 4-diphenylaminophenyl groups and the like.
  • X in the formula (3) represents a halogen atom or a pseudohalogen group
  • R 6 to R 8 may be substituted with Z 1 , an alkyl group having 1 to 20 carbon atoms or a carbon atom having 6 to 20 carbon atoms.
  • Z 1 represents an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a nitro group or a cyano group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • pseudohalogen groups include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group Is mentioned.
  • X is preferably a halogen atom, more preferably a bromine atom or an iodine atom, considering availability of raw materials, reactivity, and the like. Further, the substitution position of X is not particularly limited, but the para position is preferred with respect to the nitrogen atom of carbazole.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic.
  • the alkyl group therein may be linear, branched, or cyclic.
  • Examples thereof include a chain or branched chain alkoxy group, a cycloalkyloxy group having 3 to 20 carbon atoms such as a cyclopentyloxy group and a cyclohexyloxy group.
  • R 6 to R 8 are preferably an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferably an alkyl group having 1 to 5 carbon atoms. More specifically, two of R 6 to R 8 are methyl groups, the remaining one is a combination of t-butyl groups, two of R 6 to R 8 are phenyl groups, and the remaining one is a t-butyl group. The combination wherein R 6 to R 8 are all isopropyl groups is preferred, and two of R 6 to R 8 are methyl groups, and the other one is more preferably a t-butyl group.
  • Examples of the compound represented by the formula (3) that can be suitably used in the production method of the present invention include a compound represented by the following formula (3A), particularly a compound represented by the formula (3A-1). However, it is not limited to these.
  • the compound represented by Formula (3) can be obtained by a known method in which the corresponding carbazole is reacted with a triorgano halide such as trialkylsilyl chloride in the presence of a base such as NaH.
  • the amine compound represented by the formula (1) and the carbazole represented by the formula (3) The charging ratio with the compound is preferably about 1 to 5 and more preferably about 1.1 to 2 with respect to the target NH group 1 to be reacted with the amine compound in terms of the substance amount (mol).
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2.
  • catalysts may be used together with a known appropriate ligand.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl.
  • (Phenyl) phosphine di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenyl)
  • Examples include tertiary phosphines such as phosphino) butane and 1,1′-bis (diphenylphosphino) ferrocene, and tertiary phosphites such as trimethyl phosphite, triethyl phosphite, and triphenyl phosphite.
  • Di-t-butyl (F Enyl) phosphine is preferably used.
  • the amount of the catalyst used can be about 0.1 to 100 mol% with respect to 1 mol of the target NH group to be reacted with the amine compound represented by the formula (1), but about 1 to 10 mol%. Is preferably about 2 to 5 mol%, more preferably about 2 mol%. When a ligand is used, the amount used can be 0.1 to 5 equivalents relative to the metal complex to be used, but 1 to 2 equivalents is preferred.
  • Examples of the base include lithium, sodium, potassium, lithium hydride, sodium hydride, potassium hydroxide, t-butoxy lithium, t-butoxy sodium, t-butoxy potassium, lithium hydroxide, sodium hydroxide, potassium hydroxide.
  • Alkali metal simple substance such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal hydrogen carbonate; alkaline earth metal carbonate such as calcium carbonate, etc.
  • sodium t-butoxy is preferred.
  • the amount of the base used is preferably about 1 to 2 equivalents, more preferably about 1.2 to 1.5 equivalents, relative to the target NH group to be reacted with the amine compound represented by formula (1). .
  • the above reaction is carried out in a solvent in the case where all the raw material compounds are solid or from the viewpoint of efficiently obtaining the desired coupling product.
  • a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples thereof include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), Aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene) , P-dichloro
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent used, but is preferably about 0 to 200 ° C., more preferably about 20 to 150 ° C., and further increases the yield of the coupling product. Considering this, the temperature is more preferably about 40 to 100 ° C.
  • the product can be post-treated according to a conventional method to obtain a coupling product.
  • the desilylating agent to be a fluoride ion source is not particularly limited, and can be appropriately selected from known ones. Specific examples thereof include tetrabutylammonium fluoride (TBAF), tetraethylammonium fluoride, tetramethylammonium fluoride and hydrates thereof, hydrogen fluoride pyridine complex, cesium fluoride, potassium fluoride, potassium hydrogen fluoride.
  • TBAF tetrabutylammonium fluoride
  • tetraethylammonium fluoride tetramethylammonium fluoride and hydrates thereof
  • hydrogen fluoride pyridine complex cesium fluoride
  • potassium fluoride potassium hydrogen fluoride.
  • the amount of the desilylating agent used can be about 1 to 5 equivalents, preferably about 1.2 to 2 equivalents, based on the total N—Si bonds in the coupling product.
  • a solvent can be used, and specific examples of the usable solvent are as described above. Ethers are preferable, and tetrahydrofuran is more preferable.
  • the reaction temperature can be from the melting point to the boiling point of the solvent, but is preferably about 0 to 100 ° C, more preferably about 0 to 30 ° C, and even more preferably room temperature of about 25 ° C.
  • post-treatment is performed according to a conventional method to obtain the desired aniline derivative represented by the following formula (4).
  • R 1 ' ⁇ R 5' independently of one another, a hydrogen atom, represents a group represented by the group represented by the formula (2) or the following formula, (5), R 1 ' ⁇ At least one of R 5 ′ is a group represented by the formula (5).
  • Favorable aniline derivatives obtained by the production method of the present invention include those represented by the following formulas (4A) to (4D), but are not limited thereto.
  • Eluent A 0.05% by volume trifluoroacetic acid aqueous solution
  • Eluent B Acetonitrile / tetrahydrofuran (1 to 1 volume conversion, 0.05% by volume trifluoroacetic acid added)
  • Flow rate 0.5mL / min
  • TBSCZ-Br represented by the following formula was synthesized according to Chemistry “of Materials” (2015), 27 (19), 6535-6542.
  • a flask was charged with 2.65 g of TBSCZ3, 3.74 g of TPA-Br, 121 mg of Pd (dba) 2 and 1.42 g of sodium t-butoxy, and the atmosphere in the flask was replaced with nitrogen.
  • 80 mL of toluene and 1.6 mL (concentration: 60 g / L) of a toluene solution of di-t-butyl (phenyl) phosphine prepared in advance were added and stirred at 90 ° C. After 4 hours, the reaction solution was cooled to room temperature, and 100 mL of ion exchange water was mixed to perform a liquid separation treatment.
  • the organic layer was washed with an aqueous solution of 5% sodium N, N-diethyldithiocarbamate trihydrate, ion-exchanged water, and saturated saline, and 0.1 g of Shirakaba P activated carbon (Osaka Gas Chemical Co., Ltd.) was added. After stirring at room temperature for 1 hour, silica gel filtration was performed, and the cake was washed with toluene. After concentrating the filtrate, the obtained crude product was dissolved in 50 mL of toluene, added dropwise to a premixed solution of 375 mL of methanol and 125 mL of ethyl acetate, and the resulting slurry was stirred at room temperature. After 3 days, the slurry was filtered, and the filtrate was dried to obtain 3TPA-TBSCZ3 (yield: 4.80 g, yield: 92%).
  • the measurement result of 1 H-NMR is shown below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

式(1) 〔R1~R5は、互いに独立して水素原子または式(2) (Ar1,Ar2はアリール基を、Ar3はアリーレン基を表すが、Ar1~Ar3のいずれか2つが結合して環を形成していてもよい。)で表される基を表すが、R1~R5の少なくとも1つは水素原子である。〕 で表されるアミン化合物を、触媒および塩基の存在下、式(3) (Xはハロゲン原子等を、R6~R8はアルキル基等を表す。)で表される化合物と反応させた後、脱保護する式(4) 〔R1'~R5'は、水素原子、式(2)または式(5)を表すが、R1'~R5'の少なくとも1つは、式(5)で表される基である。 (Ar1~Ar3は前記と同じ。)〕 で表される化合物の製法は、脱保護の過程で大過剰の塩基および酸素を必要としない、効率的かつ工業的製法に適したアニリン誘導体の製法である。

Description

アニリン誘導体の製造方法
 本発明は、アニリン誘導体の製造方法に関する。
 有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な機能を果たす。
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与えるアニリン誘導体や、それに用いる有機溶媒に対する溶解性の良好なアニリン誘導体を開発してきている(例えば特許文献1参照)。
 上記特許文献1には、そのようなアニリン誘導体の製造方法の1つとして、例えば、下記スキームに示されるように、アミン化合物(A)と、NH基をベンジル基で保護したハロゲン化カルバゾール化合物(B)とを、触媒存在下でカップリングさせた後、ベンジル基を脱保護する手法が開示されている。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 しかしながら、上記ベンジル基で保護したカルバゾール化合物を用いた場合、脱保護の工程で大過剰の塩基と酸素が必要であり、工業的製法としては適していないという問題があった。
国際公開第2015/050253号
 本発明は、上記事情に鑑みてなされたものであり、脱保護の過程で大過剰の塩基および酸素を必要としない、効率的かつ工業的製法に適したアニリン誘導体の製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、アミン化合物と、NH基を所定のシリル基で保護したカルバゾール化合物とをカップリング反応させた後、脱シリル化することで、大過剰の塩基や酸素を必要とせず、効率的にアニリン誘導体が製造できることを見出し、本発明を完成させた。
 すなわち、本発明は、
1. 式(1)
Figure JPOXMLDOC01-appb-C000008
〔式中、R1~R5は、互いに独立して、水素原子または式(2)
Figure JPOXMLDOC01-appb-C000009
(式中、Ar1およびAr2は、互いに独立して、炭素数6~20のアリール基を表し、Ar3は、炭素数6~20のアリーレン基を表すが、Ar1~Ar3のいずれか2つが結合して窒素原子とともに環を形成していてもよい。)
で表される基を表すが、R1~R5の少なくとも1つは、水素原子である。〕
で表されるアミン化合物を、触媒および塩基の存在下、式(3)
Figure JPOXMLDOC01-appb-C000010
(式中、Xは、ハロゲン原子または擬ハロゲン基を表し、R6~R8は、Z1で置換されてもよい、炭素数1~20のアルキル基または炭素数6~20のアリール基を表し、Z1は、炭素数1~20のアルコキシ基、ハロゲン原子、ニトロ基またはシアノ基を表す。)
で表されるカルバゾール化合物とカップリング反応させた後、シリル基を脱保護することを特徴とする式(4)
Figure JPOXMLDOC01-appb-C000011
〔式中、R1’~R5’は、互いに独立して、水素原子、式(2)で表される基、または式(5)で表される基を表すが、R1’~R5’の少なくとも1つは、式(5)で表される基である。
Figure JPOXMLDOC01-appb-C000012
(式中、Ar1~Ar3は、前記と同じ意味を表す。)〕
で表されるアニリン誘導体の製造方法、
2. 前記R6~R8が、炭素数1~10のアルキル基または炭素数6~10のアリール基である1のアニリン誘導体の製造方法、
3. 前記R6~R8の2つがメチル基で、残りの1つがt-ブチル基である2のアニリン誘導体の製造方法、
4. 前記塩基が、t-ブトキシナトリウムである1~3のいずれかのアニリン誘導体の製造方法、
5. 前記触媒が、パラジウム触媒である1~4のいずれかのアニリン誘導体の製造方法、
6. 前記カップリング反応が、40~100℃で行われる1~5のいずれかのアニリン誘導体の製造方法、
7. 前記脱保護が、フッ化物イオンを用いて行われる1~6のいずれかのアニリン誘導体の製造方法、
8. 前記R1~R5が、すべて水素原子である1~7のいずれかのアニリン誘導体の製造方法
を提供する。
 本発明のアニリン誘導体の製造方法では、カルバゾール化合物のNH基をシリル基で保護した原料を用いているため、脱保護の過程で大過剰の塩基および酸素を必要とすることがなく、効率的に目的のアニリン誘導体を製造することができる。
実施例1で得られたCZ5のHPLCチャートを示す図である。 図1において縦軸0~300mAUの範囲を示す拡大図である。 比較例1で得られたCZ5のHPLCチャートを示す図である。 図3において縦軸0~300mAUの範囲を示す拡大図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るアニリン誘導体の製造方法は、式(1)で表されるアミン化合物を、触媒および塩基の存在下、式(3)で表されるカルバゾール化合物とカップリング反応させた後、カルバゾール部位の窒素原子上のシリル基を脱保護することを特徴とする。
Figure JPOXMLDOC01-appb-C000013
 上記式(1)において、R1~R5は、互いに独立して、水素原子または式(2)で表される基を表すが、式(3)で表されるカルバゾール化合物とカップリング反応させるためには、R1~R5の少なくとも1つが水素原子である必要がある。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、Ar1およびAr2は、互いに独立して、炭素数6~20のアリール基を表し、Ar3は、炭素数6~20のアリーレン基を表すが、Ar1~Ar3のいずれか2つが結合して窒素原子とともに環を形成していてもよい。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数6~20のアリーレン基の具体例としては、ベンゼン-1,2-ジイル(o-フェニレン)基、ベンゼン-1,3-ジイル(m-フェニレン)基、ベンゼン-1,4-ジイル(p-フェニレン)基、ナフタレン-1,2-ジイル基、ナフタレン-1,3-ジイル基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-1,6-ジイル基、ナフタレン-1,7-ジイル基、ナフタレン-1,8-ジイル基等が挙げられる。
 また、Ar1~Ar3のいずれか2つが結合して窒素原子とともに形成する環としては、カルバゾール環等が挙げられる。
 これらの中でも、Ar1およびAr2は、フェニル基、1-ナフチル基、2-ナフチル基が好ましく、フェニル基がより好ましい。
 また、Ar3は、ベンゼン-1,2-ジイル基、ベンゼン-1,3-ジイル基、ベンゼン-1,4-ジイル基が好ましく、ベンゼン-1,4-ジイル基がより好ましい。
 したがって、式(2)で表される基は、式(2A)で表される基が好ましく、式(2A-1)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 本発明の製法で好適に用いることができる式(1)で表される化合物としては、上記R1~R5がすべて水素原子である下記式(1A)で示される化合物、R2およびR4が4-ジフェニルアミノフェニル基である下記式(1B)で示される化合物、R1、R2およびR4が4-ジフェニルアミノフェニル基である下記式(1C)で示される化合物等が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
 一方、式(3)におけるXは、ハロゲン原子または擬ハロゲン基を表し、R6~R8は、Z1で置換されてもよい、炭素数1~20のアルキル基または炭素数6~20のアリール基を表し、Z1は、炭素数1~20のアルコキシ基、ハロゲン原子、ニトロ基またはシアノ基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
 これらの中でも、原料の入手性や反応性等を考慮すると、Xは、ハロゲン原子が好ましく、臭素原子、ヨウ素原子がより好ましい。
 また、Xの置換位置は特に限定されるものではないが、カルバゾールの窒素原子に対してパラ位が好ましい。
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。
 炭素数6~20のアリール基としては、上記と同様のものが挙げられる。
 炭素数1~20のアルコキシ基としては、その中のアルキル基が直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~20の直鎖または分岐鎖状のアルコキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~20の環状アルキルオキシ基などが挙げられる。
 これらの中でも、R6~R8は、炭素数1~10のアルキル基、炭素数6~10のアリール基が好ましく、炭素数1~5のアルキル基がより好ましい。
 より具体的には、R6~R8の2つがメチル基で、残りの1つがt-ブチル基の組み合わせ、R6~R8の2つがフェニル基で、残りの1つがt-ブチル基の組み合わせ、R6~R8がすべてイソプロピル基のものが好ましく、R6~R8の2つがメチル基で、残りの1つがt-ブチル基の組み合わせがより好ましい。
 本発明の製法に好適に用いることができる式(3)で示される化合物としては、下記式(3A)で表される化合物、特に、式(3A-1)で示される化合物等が挙げられるが、これらに限定されるものではない。
 なお、式(3)で表される化合物は、対応するカルバゾールを、NaH等の塩基存在下、トリアルキルシリルクロライド等のトリオルガノハライドと反応させる公知の手法によって得ることができる。
Figure JPOXMLDOC01-appb-C000018
(式中、R6~R8およびXは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000019
 上記式(1)で表されるアミン化合物と式(3)で表されるカルバゾール化合物とのカップリング反応において、式(1)で表されるアミン化合物と、式(3)で表されるカルバゾール化合物との仕込み比は、物質量(mol)比で、アミン化合物の反応させたい目的とするNH基1に対して、カルバゾール化合物1~5程度が好ましく、1.1~2程度がより好ましい。
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ジベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ジベンジリデンアセトン)ジパラジウム)、Pd(P-t-Bu32(ビス(トリ(t-ブチルホスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。
 また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
 このような配位子としては、トリフェニルホスフィン、トリ-o-トリルフォスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-t-ブチルホスフィン、ジ-t-ブチル(フェニル)ホスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級ホスファイトなどが挙げられるが、本発明では、ジ-t-ブチル(フェニル)ホスフィンが好適に用いられる。
 触媒の使用量は、それぞれ式(1)で表されるアミン化合物の反応させたい目的とするNH基1molに対して、0.1~100mol%程度とすることができるが、1~10mol%程度が好ましく2~5mol%程度がより好ましく、2mol%程度がより一層好ましい。
 また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
 また、塩基としては、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化カリウム、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属などが挙げられるが、カップリング反応を効率的に進行させることを考慮すると、t-ブトキシナトリウムが好ましい。
 塩基の使用量は、それぞれ、式(1)で表されるアミン化合物の反応させたい目的とするNH基に対して1~2当量程度が好ましく、1.2~1.5当量程度がより好ましい。
 原料化合物が全て固体である場合や、目的とするカップリング生成物を効率よく得る観点から、上記反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。その具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。
 これらの中でも、特に、芳香族炭化水素類が好ましく、トルエンがより好ましい。
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃程度がより好ましく、カップリング生成物の収率をより高めることを考慮すると、40~100℃程度がより一層好ましい。
 反応終了後は、常法にしたがって後処理をし、カップリング生成物を得ることができる。
 続いて、得られたカップリング生成物におけるカルバゾール部位の窒素原子上のシリル基を脱保護する。
 脱保護は公知の手法から適宜選択して行うことができるが、本発明では、フッ化物イオンによって脱保護することが好ましい。
 フッ化物イオン源となる脱シリル化剤としては、特に限定されるものではなく、公知のものから適宜選択して用いることができる。
 その具体例としては、テトラブチルアンモニウムフルオライド(TBAF),テトラエチルアンモニウムフルオライド,テトラメチルアンモニウムフルオライドおよびそれらの水和物、フッ化水素ピリジンコンプレックス、フッ化セシウム、フッ化カリウム、フッ化水素カリウム、フッ化ナトリウム、フッ化リチウム、フッ化カルシウム等が挙げられるが、これらの中でも、TBAFが好適である。
 脱シリル化剤の使用量は、カップリング生成物中の全N-Si結合に対し、1~5当量程度とすることができるが、1.2~2当量程度が好ましい。
 この反応の際も溶媒を用いることができ、使用可能な溶媒の具体例としては上述のとおりであるが、エーテル類が好ましく、テトラヒドロフランがより好ましい。
 反応温度は、溶媒の融点から沸点まで可能だが、0~100℃程度が好ましく、0~30℃程度がより好ましく、25℃程度の室温がより一層好ましい。
 反応終了後は、常法にしたがって後処理をし、目的の下記式(4)で表されるアニリン誘導体が得られる。
Figure JPOXMLDOC01-appb-C000020
 式中、R1’~R5’は、互いに独立して、水素原子、上記式(2)で表される基、または下記式(5)で表される基を表すが、R1’~R5’の少なくとも1つは、式(5)で表される基である。
Figure JPOXMLDOC01-appb-C000021
 本発明の製法で得られる好適なアニリン誘導体としては、下記式(4A)~(4D)で示されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、1H-NMRは、ブルカー・バイオスピン(株)製 核磁気共鳴分光計 AVANCE III HD 500MHzを用いて測定した。
 高速液体クロマトグラフィー(HPLC)は、(株)島津製作所製 Prominenceを用いて以下に示す測定条件で測定した。
溶離液A:0.05体積%トリフルオロ酢酸水溶液
溶離液B:アセトニトリル/テトラヒドロフラン(1対1体積換算、0.05体積%トリフルオロ酢酸添加)
流速:0.5mL/min
カラム:Poroshell 120 EC-C8(2.7μm、3.0×50mm、アジレント・テクノロジー(株)
グラデーション条件:溶離液B:30%(0-0.01min)→30-100%(0.01-10min)→100%(10-30min)
[実施例1]アニリン誘導体Cz5の合成
(1)TBSCZ5の合成
Figure JPOXMLDOC01-appb-C000023
 フラスコ内に、DADPA4.78g、TBSCZ-Br47.6g、Pd(dba)21.38gおよびt-ブトキシナトリウム16.6gを入れた後、フラスコ内を窒素置換した。次にトルエン240mL、予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液20mL(濃度:55g/L)を加え、90℃で撹拌した。2.5時間後、反応液を室温まで冷却し、イオン交換水240mLを混合して分液処理を行った。さらに有機層をイオン交換水、飽和食塩水で分液洗浄後、硫酸ナトリウムで乾燥し、濃縮した。得られた粗物をトルエン200mLに溶解させ、白鷺P活性炭(大阪ガスケミカル(株)製)3.5gを加え、室温で2時間撹拌後にシリカゲル濾過を行い、トルエンでケーキ洗浄を行った。濾液を240gまで濃縮後、濃縮液をN,N-ジエチルジチオカルバミド酸ナトリウム三水和物7.02g、メタノール1.20L、酢酸エチル0.40Lの予混合溶液中に滴下し、得られたスラリーを室温で撹拌した。18時間後、スラリーを濾過し、濾物をメタノールで洗浄後、乾燥してTBSCZ5を得た(収量:36.3g、収率:95%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz,THF-d8)δ[ppm]:7.88-7.98(m,10H),7.55-7.61(m,10H),7.19-7.30(m,10H),7.12(t,J=7.3Hz,1H),7.05(t,J=7.3Hz,4H),6.96-7.00(m,8H),1.05(s,36H),1.04(s,9H),0.74(s,30H).
 なお、下記式で示されるTBSCZ-Brは、Chemistry of Materials (2015), 27(19), 6535-6542.に従って合成した(以下、同様)。
Figure JPOXMLDOC01-appb-C000024
(2)CZ5の合成
Figure JPOXMLDOC01-appb-C000025
 フラスコ内にTHF178mL、TBSCZ5 33.5gを入れた後、氷浴で冷却しながら撹拌し、TBAFのTHF溶液(濃度:1M)158mLを滴下した。滴下終了後に氷浴を外し、室温で1.5時間撹拌した後に反応液をイオン交換水670mL中に滴下してクエンチした。得られた析出物は、濾取後、130gのTHF溶液にし、メタノール1L中に滴下することで再び析出させた。この濾取から晶析までの操作をさらに2回繰り返した後、析出物を濾取・乾燥してCZ5を得た(収量:18.6g、収率:87%)。
 得られたCZ5のHPLCチャートを図1,2に示す。
[実施例2]アニリン誘導体3Cz-TRI3の合成
(1)3TBSCz-TRI3の合成
Figure JPOXMLDOC01-appb-C000026
 フラスコ内に、TRI3 55.1g、TBSCZ-Br95.4g、Pd(dba)22.77gおよびt-ブトキシナトリウム32.4gを入れた後、フラスコ内を窒素置換した。次にトルエン550mL、予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液22mL(濃度:96g/L)を加え、90℃で撹拌した。1.5時間、反応液を室温まで冷却し、イオン交換水550mLを混合して分液処理を行った。得られた有機層に白鷺P活性炭(大阪ガスケミカル(株)製)11.0gを加え、室温で1時間撹拌後、シリカゲル濾過を行い、トルエンでケーキ洗浄を行った。濾液を660gまで濃縮し、濃縮液をN,N-ジエチルジチオカルバミド酸ナトリウム三水和物22.0g、メタノール3.30L、酢酸エチル1.10Lの予混合溶液中に滴下し、得られたスラリーを室温で撹拌した。1時間後、スラリーを濾過し、濾物をメタノールで洗浄後、乾燥して3TBSCZ-TRI3を得た(収量:112g、収率:92%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz,THF-d8)δ[ppm]:7.93-7.95(m,3H),7.89(d,J=2.1Hz,3H),7.57-7.62(m,6H),7.26-7.30(m,3H),7.15-7.21(m,11H),7.06-7.13(m,3H),6.96-7.03(m,20H),6.88-6.94(m,8H),1.05(s,18H),1.04(s,9H),0.75(s,12H),0.74(s,6H).
(3)3Cz-TRI3の合成
Figure JPOXMLDOC01-appb-C000027
 フラスコ内にTHF315mL、3TBSCZ-TRI3 105gを入れた後、氷浴で冷却しながら撹拌し、TBAFのTHF溶液(濃度:1M)310mLを滴下した。滴下終了後に氷浴を外し、室温で3時間撹拌した後、反応液を735gとなるまでTHFで希釈し、これをメタノール1.57L中に滴下してクエンチした。得られた析出物は室温で1時間撹拌後に濾取し、メタノールでケーキ洗浄後、さらにメタノール1.05Lで2時間スラリー洗浄した。これを濾取して、メタノールでケーキ洗浄後、乾燥して3CZ-TRI3を得た(収量:75.4g、収率:93%)。
[実施例3]アニリン誘導体3TPA-CZ3の合成
(1)TBSCZ3の合成
Figure JPOXMLDOC01-appb-C000028
 フラスコ内に、DADPA1.99g、TBSCZ-Br7.22g、Pd(dba)2233mgおよびt-ブトキシナトリウム2.69gを入れた後、フラスコ内を窒素置換した。次にトルエン100mL、予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液3.7mL(濃度:49g/L)を加え、90℃で撹拌した。2時間後、反応液を室温まで冷却し、イオン交換水100mLを混合した後、これを濾過した。得られた濾物を熱トルエンで溶解させ、熱時濾過を行い、濾液を室温で撹拌した。18時間後、析出物を濾取し、これをメタノールで洗浄後、乾燥してTBSCZ3を得た(収量:3.87g、収率:51%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz,DMSO-d6)δ[ppm]:7.99(d,J=7.6Hz,2H),7.68(d,J=2.1Hz,2H),7.63(s,2H),7.59(d,J=8.5Hz,2H),7.52(d,J=8.9Hz,2H),7.49(s,1H),7.30-7.33(m,2H),7.12-7.15(m,2H),7.07(dd,J=8.9,2.1Hz,2H),6.94-7.02(m,8H),0.98(s,18H),0.73(s,12H).
(2)3TPA-TBSCZ3の合成
Figure JPOXMLDOC01-appb-C000029
 フラスコ内に、TBSCZ3 2.65g、TPA-Br3.74g、Pd(dba)2121mgおよびt-ブトキシナトリウム1.42gを入れた後、フラスコ内を窒素置換した。次にトルエン80mL、予め調製しておいたジ-t-ブチル(フェニル)ホスフィンのトルエン溶液1.6mL(濃度:60g/L)を加え、90℃で撹拌した。4時間後、反応液を室温まで冷却し、イオン交換水100mLを混合して分液処理を行った。さらに有機層を5%N,N-ジエチルジチオカルバミド酸ナトリウム三水和物の水溶液、イオン交換水、飽和食塩水で洗浄後、白鷺P活性炭(大阪ガスケミカル(株))0.1gを加え、室温で1時間撹拌後にシリカゲル濾過を行い、トルエンでケーキ洗浄を行った。濾液を濃縮後、得られた粗物をトルエン50mLに溶解し、メタノール375mL、酢酸エチル125mLの予混合液に滴下し、得られたスラリーを室温で撹拌した。3日後、スラリーを濾過し、濾物を乾燥して3TPA-TBSCZ3を得た(収量:4.80g、収率:92%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz,THF-d8)δ[ppm]:7.94(d,J=7.3Hz,2H),7.89(d,J=1.8Hz,2H),7.61(t,J=8.2Hz,4H),7.29(t,J=7.3Hz,2H),7.16-7.20(m,14H),7.10(t,J=7.3Hz,2H),6.98-7.04(m,26H),6.89-6.94(m,12H).
(3)3TPA-CZ3の合成
Figure JPOXMLDOC01-appb-C000030
 フラスコ内にTHF22.5mL、3TPA-TBSCZ3 3.72gを入れた後、撹拌しながらTBAFのTHF溶液(濃度:1M)7.5mLを滴下した。滴下終了から1時間後、反応液をメタノール300mL中に滴下してクエンチし、得られた析出物を濾取した。これをトルエン90mL、1,4-ジオキサン10mLの混合液に加熱溶解し、熱時濾過を行った後、再結晶した。この結晶をさらにメタノール50mLでスラリー洗浄し、濾取後、乾燥することで3TPA-CZ3を得た(収量:1.78g、収率:57%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz,DMSO-d6)δ[ppm]:11.26(s,2H),8.03(d,J=7.6Hz,2H),7.95(d,J=1.5Hz,2H),7.47(t,J=8.9Hz,4H),7.36(t,J=7.6Hz,2H),7.17-7.26(m,14H),7.08(t,J=7.6Hz,2H),6.88-6.97(m,38H).
[比較例1]
 国際公開第2015/050253号(特許文献1)に従ってCz5を合成した。得られたCZ5のHPLCチャートを図3,4に示す。
 図1~4に示されるように、実施例1で合成したCz5(図1,2)と比較例1で合成したCz5(図3,4)とを比較すると、実施例1で合成したCz5のHPLC面積百分率は99.9%に対して比較例1で合成したCz5は93.5%であった。
 得られたCz5のHPLC面積百分率の違いから、本発明は大量製造に適した効率良いアニリン誘導体の製法を与えると同時に高純度な化合物を与えることがわかった。

Claims (8)

  1.  式(1)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R1~R5は、互いに独立して、水素原子または式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar1およびAr2は、互いに独立して、炭素数6~20のアリール基を表し、Ar3は、炭素数6~20のアリーレン基を表すが、Ar1~Ar3のいずれか2つが結合して窒素原子とともに環を形成していてもよい。)
    で表される基を表すが、R1~R5の少なくとも1つは、水素原子である。〕
    で表されるアミン化合物を、触媒および塩基の存在下、式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは、ハロゲン原子または擬ハロゲン基を表し、R6~R8は、Z1で置換されてもよい、炭素数1~20のアルキル基または炭素数6~20のアリール基を表し、Z1は、炭素数1~20のアルコキシ基、ハロゲン原子、ニトロ基またはシアノ基を表す。)
    で表されるカルバゾール化合物とカップリング反応させた後、シリル基を脱保護することを特徴とする式(4)
    Figure JPOXMLDOC01-appb-C000004
    〔式中、R1’~R5’は、互いに独立して、水素原子、式(2)で表される基、または式(5)で表される基を表すが、R1’~R5’の少なくとも1つは、式(5)で表される基である。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Ar1~Ar3は、前記と同じ意味を表す。)〕
    で表されるアニリン誘導体の製造方法。
  2.  前記R6~R8が、炭素数1~10のアルキル基または炭素数6~10のアリール基である請求項1記載のアニリン誘導体の製造方法。
  3.  前記R6~R8の2つがメチル基で、残りの1つがt-ブチル基である請求項2記載のアニリン誘導体の製造方法。
  4.  前記塩基が、t-ブトキシナトリウムである請求項1~3のいずれか1項記載のアニリン誘導体の製造方法。
  5.  前記触媒が、パラジウム触媒である請求項1~4のいずれか1項記載のアニリン誘導体の製造方法。
  6.  前記カップリング反応が、40~100℃で行われる請求項1~5のいずれか1項記載のアニリン誘導体の製造方法。
  7.  前記脱保護が、フッ化物イオンを用いて行われる請求項1~6のいずれか1項記載のアニリン誘導体の製造方法。
  8.  前記R1~R5が、すべて水素原子である請求項1~7のいずれか1項記載のアニリン誘導体の製造方法。
PCT/JP2019/010353 2018-03-16 2019-03-13 アニリン誘導体の製造方法 WO2019177049A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020506618A JP7355004B2 (ja) 2018-03-16 2019-03-13 アニリン誘導体の製造方法
KR1020207029353A KR102656460B1 (ko) 2018-03-16 2019-03-13 아닐린 유도체의 제조 방법
EP19767617.4A EP3766868A4 (en) 2018-03-16 2019-03-13 ANILINE DERIVATIVE PRODUCTION PROCESS
CN201980018628.5A CN111868029A (zh) 2018-03-16 2019-03-13 苯胺衍生物的制造方法
US16/981,178 US20210002223A1 (en) 2018-03-16 2019-03-13 Method for producing aniline derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049629 2018-03-16
JP2018049629 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177049A1 true WO2019177049A1 (ja) 2019-09-19

Family

ID=67908356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010353 WO2019177049A1 (ja) 2018-03-16 2019-03-13 アニリン誘導体の製造方法

Country Status (7)

Country Link
US (1) US20210002223A1 (ja)
EP (1) EP3766868A4 (ja)
JP (1) JP7355004B2 (ja)
KR (1) KR102656460B1 (ja)
CN (1) CN111868029A (ja)
TW (1) TWI796452B (ja)
WO (1) WO2019177049A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290149B2 (ja) * 2018-03-16 2023-06-13 日産化学株式会社 アニリン誘導体およびその利用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2016174377A1 (en) * 2015-04-29 2016-11-03 University Court Of The University Of St Andrews Light emitting devices and compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920496B2 (ja) * 2014-02-18 2016-05-18 住友化学株式会社 積層多孔質フィルムおよび非水電解液二次電池
EP3174115B1 (en) * 2014-07-23 2020-05-20 Nissan Chemical Corporation Charge transport material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2016174377A1 (en) * 2015-04-29 2016-11-03 University Court Of The University Of St Andrews Light emitting devices and compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALBRECHT, K. ET AL.: "Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency", CHEMICAL COMMUNICATIONS, vol. 53, 2017, pages 2439 - 2442, XP055639574 *
CHEMISTRY OF MATERIALS, vol. 27, no. 19, 2015, pages 6535 - 6542
XIE, G. ET AL.: "Polarity-Tunable Host Materials and Their Applications in Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes", ACS APPLIED MATERIALS & INTERFACES, vol. 8, 2016, pages 27920 - 27930, XP055639577 *

Also Published As

Publication number Publication date
US20210002223A1 (en) 2021-01-07
KR20200131870A (ko) 2020-11-24
EP3766868A1 (en) 2021-01-20
EP3766868A4 (en) 2021-11-24
CN111868029A (zh) 2020-10-30
TW201945339A (zh) 2019-12-01
JPWO2019177049A1 (ja) 2021-03-18
TWI796452B (zh) 2023-03-21
JP7355004B2 (ja) 2023-10-03
KR102656460B1 (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
JP5812583B2 (ja) トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
JP5940548B2 (ja) 新規なスピロビフルオレン化合物
WO2018203666A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP2020202377A (ja) 有機発光素子
TW201420581A (zh) 芳香族化合物之製造方法
JPWO2018084189A1 (ja) イリジウム錯体の製造方法、イリジウム錯体ならびに該化合物からなる発光材料
JP2009256340A (ja) 9―アリール−10―ヨードアントラセン誘導体の合成方法及び発光材料の合成方法
TW201615686A (zh) 含有氟原子之聚合物以及其利用
JP2001515879A (ja) アリールオリゴアミン類の調製法
WO2019177049A1 (ja) アニリン誘導体の製造方法
US10669226B2 (en) Polymerizable triptycene derivative compound
JP4835852B2 (ja) π共役系芳香環含有化合物及び有機エレクトロルミネッセンス素子
JP6968373B2 (ja) ナフトビスカルコゲナジアゾール誘導体及びその製造方法
WO2020090989A1 (ja) フッ化芳香族第二級または第三級アミン化合物の製造方法
CN116583522A (zh) 作为蓝色荧光发光体用于oled中的吲哚并[3.2.1-jk]咔唑-6-腈衍生物
WO2018025554A1 (ja) 含窒素複素環化合物の製造方法
JP2014065670A (ja) トリフルオロメチルフタロニトリルの簡便な製造方法及びフタロシアニン誘導体
JP2023516814A (ja) 縮合環を有するアミン化合物及びこれを含む有機発光素子
JP2019043941A (ja) カルバゾール誘導体及びビフェニル誘導体の製造方法並びに新規ビフェニル誘導体
TW202106663A (zh) 芳基磺酸酯化合物之製造方法
JP7322884B2 (ja) 重合体及びその利用
JP4627412B2 (ja) (チオフェン/フェニレン)コオリゴマー類およびそれらを含む発光材料
JP5798309B2 (ja) フッ素置換ジベンゾイルメタニドを配位子とするアルミニウム錯体
JP2002205967A (ja) アセナフチレン環を有する新規な架橋性化合物及びその合成中間体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029353

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019767617

Country of ref document: EP