WO2019176432A1 - Power reception device - Google Patents

Power reception device Download PDF

Info

Publication number
WO2019176432A1
WO2019176432A1 PCT/JP2019/005212 JP2019005212W WO2019176432A1 WO 2019176432 A1 WO2019176432 A1 WO 2019176432A1 JP 2019005212 W JP2019005212 W JP 2019005212W WO 2019176432 A1 WO2019176432 A1 WO 2019176432A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
power receiving
receiving device
drive control
Prior art date
Application number
PCT/JP2019/005212
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 英樹
信太朗 田中
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176432A1 publication Critical patent/WO2019176432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, and a primary coil L1.
  • the power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
  • the power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx.
  • the resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2.
  • the resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx.
  • the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
  • the alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240.
  • the drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
  • a load 400 is connected to the battery 300.
  • the load 400 provides various functions related to the operation of the vehicle using the DC power charged in the battery 300.
  • the load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the battery 300 into AC power, and supplies the AC power to the AC motor.
  • FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to the first embodiment of the present invention.
  • the alternating current detection unit 230 is configured using, for example, a transformer Tr.
  • a transformer Tr When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2.
  • this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr.
  • the alternating current detection part 230 can detect the alternating current i.
  • the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
  • step S20 the power receiving device 200 that has received the charge inquiry in step S10 notifies the power transmitting device 100 of the allowable current of the battery 300 during charging.
  • the power receiving apparatus 200 determines the allowable current based on, for example, the charge state or deterioration state of the battery 300 measured in advance, and transmits information indicating the value of the allowable current from the communication unit 220 to the communication unit 120 of the power transmission apparatus 100. Send. Note that, when charging is unnecessary, the power receiving apparatus 200 may notify the power transmitting apparatus 100 to that effect. In this case, the process flow of FIG. 3 is complete
  • step S40 the power receiving device 200 performs drive control processing of the power converter 250 according to the alternating current i that flows through the resonance circuit including the secondary coil L2 by receiving the alternating magnetic field emitted from the primary coil L1.
  • the drive control unit 240 performs the process shown in the process flow of FIG. 4, thereby performing drive control of the power conversion unit 250 according to the alternating current received from the power transmission device 100.
  • the battery 300 is charged in the constant current (CC) mode. Note that the processing flow of FIG. 4 will be described later.
  • step S180 the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal according to the charge drive signal Sc input from the drive signal generation unit 243 in step S160 or S170, and the power conversion unit 250. Are respectively output to the gate terminals of the MOS transistors Q1 and Q2. As a result, the MOS transistors Q1 and Q2 are respectively switched according to the gate drive signal, and drive control of the power converter 250 is performed.
  • the gate drive signal is output in step S180, the process flow in FIG. 4 is terminated, and the drive control process in step S40 or S70 in FIG. 3 is completed.
  • FIG. 5 is an explanatory diagram of the switching operation of the MOS transistors Q1 and Q2 performed in accordance with the drive control process described in FIG.
  • the power receiving device 200A is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240A is provided instead of the drive control unit 240.
  • the drive control unit 240A is connected to the battery monitoring device 500, acquires the battery voltage Vb from the battery monitoring device 500, and controls the switching operations of the plurality of switching elements included in the power conversion unit 250.
  • the battery monitoring apparatus 500 is connected to the battery 300 and acquires various information for monitoring the state of the battery 300 from the battery 300. For example, the battery monitoring device 500 detects the voltage of the battery 300 and outputs the detection result to the drive control unit 240A as the battery voltage Vb. In addition, it is determined whether or not the battery 300 is in an overcharged state. If it is determined that the battery 300 is in an overcharged state, a predetermined overcharge signal is output to the drive control unit 240A so that the battery 300 is in an overcharged state. Notify that there is.
  • Step S110A the drive control unit 240A acquires the AC voltage Vg from the AC current detection unit 230 and also acquires the battery voltage Vb from the battery monitoring device 500.
  • step S111 If the threshold voltage V ⁇ is set in step S111, the same processing as the processing flow of FIG. 4 described in the first embodiment is performed in subsequent steps S120 and subsequent steps. At this time, in step S120, the threshold voltage V ⁇ set in step S111 is used to compare with the absolute value of the AC voltage Vg. Thereby, the threshold voltage V ⁇ used in the comparison in step S120 is changed based on the battery voltage Vb.
  • the following effect (4) is further achieved in addition to the effects (1) to (3) described in the first embodiment.
  • FIG. 9 is a diagram showing a configuration of a wireless power feeding system 1B according to the third embodiment of the present invention.
  • a wireless power feeding system 1B shown in FIG. 9 is used for wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device respectively mounted on the vehicle side. 200B, battery 300, load 400, and battery monitoring device 500.
  • the power transmission device 100, the battery 300, and the load 400 are the same as those of the wireless power supply system 1 described in the first embodiment, and the battery monitoring device 500 is the wireless power supply described in the second embodiment. Since it is the same as that of the system 1A, the power receiving apparatus 200B will be described below.
  • the power receiving device 200B is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240B is provided instead of the drive control unit 240.
  • the drive control unit 240B is connected to the battery monitoring apparatus 500, and when an overcharge signal is input from the battery monitoring apparatus 500, the power conversion unit 240B is different from the method described in the first embodiment.
  • the switching operation of a plurality of switching elements 250 has is controlled.
  • step S180 the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal corresponding to the discharge drive signal Sd, and the MOS transistor Q1 in the power conversion unit 250 , Output to the gate terminals of Q2.
  • the DC power of the battery 300 is converted into AC power and output to the resonance circuit including the secondary coil L2, and the AC field is emitted from the secondary coil L2 toward the primary coil L1, thereby discharging the battery 300.
  • the power converter 250 is connected to a chargeable / dischargeable battery 300.
  • the drive control unit 240B When the battery 300 is in an overcharged state (step S101: Yes), the drive control unit 240B generates a discharge drive signal Sd different from the charge drive signal Sc (step S102), and the MOS transistor Q1 using the discharge drive signal Sd. , Q2 is controlled (step S180). Since it did in this way, when the battery 300 is an overcharge state, the battery 300 can be discharged and an overcharge state can be eliminated.
  • the wireless power feeding systems 1, 1 ⁇ / b> A, and 1 ⁇ / b> B used for wireless power feeding to a vehicle such as an electric vehicle have been described.
  • the wireless power feeding system is not limited to the wireless power feeding to the vehicle, and is used for other purposes.
  • the present invention may be applied to.
  • Wireless power feeding system 100 Power transmission device 110 Power transmission control unit 120 Communication unit 130 AC power supply 140 Power conversion unit 200, 200A, 200B Power reception device 210 Power reception control unit 220 Communication unit 230 AC current detection unit 240, 240A, 240B Drive Control unit 241 Voltage acquisition unit 242, 242A Comparison unit 243, 243B Drive signal generation unit 244 Gate drive circuit 250 Power conversion unit 300 Battery 400 Load 500 Battery monitoring device L1 Primary coil L2 Secondary coil Lx Resonance coil Cx Resonance capacitor Tr Transformer Q1 , Q2 MOS transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In order to perform an appropriate switching operation according to the state of current flowing through a coil of a power reception device, a power reception device 200 is provided with: a secondary coil L2; a resonance coil Lx and a resonance capacitor Cx which are connected to the secondary coil L2 and which constitute, along with the secondary coil L2, a resonance circuit having a prescribed resonance frequency; an AC current detection unit 230 that detects AC current i, which flows to the resonance circuit when the secondary coil L2 receives an AC magnetic field; a power conversion unit 250 that controls the AC current i by causing MOS transistors Q1, Q2 to separately execute switching operations; and a drive control unit 240 that controls the switching operations of the MOS transistors Q1, Q2. The drive control unit 240 changes timings of the switching operations of the MOS transistors Q1, Q2 on the basis of the AC current i detected by the AC current detection unit 230.

Description

受電装置Power receiving device
 本発明は、無線給電において用いられる受電装置に関する。 The present invention relates to a power receiving device used in wireless power feeding.
 近年、電気自動車等において、地上側に設けられた送電装置から車両側に設けられた受電装置に対して無線により給電を行う無線給電システムが実現されつつある。こうした無線給電システムでは、磁界共振や磁界誘導を利用した無線給電技術が注目されている。磁界誘導とは、地上側の送電装置に設けられたコイルに交流電流を流すことで磁界(磁束)を発生し、この磁界を車両側の受電装置に設けられたコイルで受けて交流電流を生じさせることにより、送電装置から受電装置への無線給電を実現するものである。一方、磁界共振とは、送電装置と受電装置にそれぞれコイルを設ける点は磁界誘導と同じであるが、送電装置のコイルに流れる電流の周波数を受電装置のコイルの共振周波数に一致させることにより、送電装置と受電装置の間に共振を生じさせる。これにより、送電装置のコイルと受電装置のコイルを磁気的に結合し、高効率の無線給電を実現している。 In recent years, in an electric vehicle or the like, a wireless power feeding system that feeds power wirelessly from a power transmitting device provided on the ground side to a power receiving device provided on the vehicle side is being realized. In such a wireless power feeding system, a wireless power feeding technique using magnetic field resonance or magnetic field induction has attracted attention. In magnetic field induction, a magnetic field (magnetic flux) is generated by flowing an alternating current through a coil provided in a ground-side power transmission device, and this magnetic field is received by a coil provided in a vehicle-side power receiving device to generate an alternating current. By doing so, wireless power feeding from the power transmitting device to the power receiving device is realized. On the other hand, magnetic resonance is the same as magnetic field induction in that a coil is provided in each of the power transmission device and the power reception device, but by matching the frequency of the current flowing in the coil of the power transmission device with the resonance frequency of the coil of the power reception device, Resonance is generated between the power transmission device and the power reception device. As a result, the coil of the power transmission device and the coil of the power reception device are magnetically coupled to achieve highly efficient wireless power feeding.
 上述した無線給電技術に関して、下記の特許文献1が知られている。特許文献1には、外部との磁気結合により電力を授受する受電コイル、ブリッジ回路及び平滑コンデンサを備えると共に、平滑コンデンサの両端に負荷が接続され、ブリッジ回路が、半導体スイッチとダイオードとを逆並列接続したスイッチングアームを複数備え、受電コイルの電流を検出する電流検出手段、直流端子間電圧を検出する電圧検出手段、及び制御装置を有する給電装置が記載されている。この給電装置において、制御装置は、交流端子間電圧vが、電流iの各ゼロクロスZCPから所定の補償期間φをずらした点を中心として前後に等しい期間だけ、交流端子間電圧vが直流端子間電圧Voを波高値とする正負電圧になり、その他の期間は零電圧になるようにスイッチングすると共に、補償期間φを交流端子間電圧vが零電圧となる期間が最も短くなるように設定する。 Regarding the wireless power feeding technology described above, the following Patent Document 1 is known. Patent Document 1 includes a power receiving coil that transmits and receives electric power by external magnetic coupling, a bridge circuit, and a smoothing capacitor, and a load is connected to both ends of the smoothing capacitor, and the bridge circuit includes a semiconductor switch and a diode in antiparallel. A power supply device including a plurality of connected switching arms and having a current detection means for detecting a current of a power receiving coil, a voltage detection means for detecting a voltage between DC terminals, and a control device is described. In this power feeding device, the control device determines that the AC inter-terminal voltage v is between the DC terminals only during a period in which the AC inter-terminal voltage v is equal to the front and rear around a point where the predetermined compensation period φ is shifted from each zero cross ZCP of the current i. Switching is performed so that the voltage Vo becomes a positive / negative voltage having a peak value, and becomes zero voltage in other periods, and the compensation period φ is set so that the period in which the AC terminal voltage v becomes zero voltage becomes the shortest.
特開2015-23658号公報Japanese Patent Laid-Open No. 2015-23658
 電気自動車等に利用される無線給電システムでは、送電装置と受電装置の組み合わせが必ずしも一定ではなく、様々な組み合わせのものが存在する。そのため、組み合わせによっては高効率の磁界共振を利用できずに、磁界誘導による無線給電や、磁界共振と磁界誘導が混在した状態での無線給電となってしまう場合がある。このような場合、特許文献1に記載の給電装置では、受電コイルに流れる電流の状態に応じた適切なスイッチング動作の実現が困難であるため、スイッチング動作に関して改善の余地がある。 In a wireless power feeding system used for an electric vehicle or the like, a combination of a power transmitting device and a power receiving device is not necessarily constant, and there are various combinations. Therefore, depending on the combination, high-efficiency magnetic field resonance cannot be used, and wireless power feeding by magnetic field induction or wireless power feeding in a state where magnetic field resonance and magnetic field induction are mixed may occur. In such a case, in the power supply device described in Patent Document 1, it is difficult to realize an appropriate switching operation according to the state of the current flowing through the power receiving coil, and thus there is room for improvement regarding the switching operation.
 本発明による受電装置は、地上側に設置された一次コイルから放出される交流磁界を受けて無線給電されるものであって、二次コイルと、前記二次コイルに接続されて所定の共振周波数を有する共振回路を前記二次コイルとともに構成する共振要素と、前記二次コイルが前記交流磁界を受けることで前記共振回路に流れる交流電流を検出する交流電流検出部と、複数のスイッチング素子を有し、前記複数のスイッチング素子をそれぞれスイッチング動作させることで前記交流電流を制御する電力変換部と、前記複数のスイッチング素子のスイッチング動作を制御する駆動制御部と、を備え、前記駆動制御部は、前記交流電流検出部が検出した前記交流電流に基づいて前記スイッチング動作のタイミングを変化させる。 A power receiving device according to the present invention receives an AC magnetic field emitted from a primary coil installed on the ground side and is wirelessly fed, and is connected to a secondary coil and the secondary coil to have a predetermined resonance frequency. A resonant element comprising the secondary coil together with the secondary coil, an AC current detector for detecting an AC current flowing in the resonant circuit when the secondary coil receives the AC magnetic field, and a plurality of switching elements. And a power conversion unit that controls the alternating current by causing each of the plurality of switching elements to perform a switching operation, and a drive control unit that controls a switching operation of the plurality of switching elements, and the drive control unit includes: The timing of the switching operation is changed based on the alternating current detected by the alternating current detector.
 本発明によれば、受電装置のコイルに流れる電流の状態に応じた適切なスイッチング動作を実現できる。 According to the present invention, it is possible to realize an appropriate switching operation according to the state of the current flowing in the coil of the power receiving device.
本発明の第1の実施形態に係る無線給電システムの構成を示す図である。1 is a diagram illustrating a configuration of a wireless power feeding system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る受電装置の構成例を示す図である。It is a figure which shows the structural example of the power receiving apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る無線給電システムの処理フローを示す図である。It is a figure which shows the processing flow of the wireless power feeding system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る受電装置における駆動制御処理の処理フローを示す図である。It is a figure which shows the processing flow of the drive control process in the power receiving apparatus which concerns on the 1st Embodiment of this invention. スイッチング動作の説明図である。It is explanatory drawing of switching operation | movement. 本発明の第2の実施形態に係る無線給電システムの構成を示す図である。It is a figure which shows the structure of the wireless electric power feeding system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る受電装置の構成例を示す図である。It is a figure which shows the structural example of the power receiving apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る受電装置における駆動制御処理の処理フローを示す図である。It is a figure which shows the processing flow of the drive control process in the power receiving apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る無線給電システムの構成を示す図である。It is a figure which shows the structure of the wireless electric power feeding system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る受電装置の構成例を示す図である。It is a figure which shows the structural example of the power receiving apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る受電装置における駆動制御処理の処理フローを示す図である。It is a figure which shows the processing flow of the drive control process in the power receiving apparatus which concerns on the 3rd Embodiment of this invention.
 以下、図面を参照して、本発明に係る受電装置の実施の形態について説明する。 Hereinafter, embodiments of a power receiving device according to the present invention will be described with reference to the drawings.
-第1の実施形態-
 図1は、本発明の第1の実施形態に係る無線給電システム1の構成を示す図である。図1に示す無線給電システム1は、電気自動車等の車両への無線給電において利用されるものであり、車両付近の地上側に設置された送電装置100と、車両側にそれぞれ搭載された受電装置200、電池300および負荷400とを有する。
-First embodiment-
FIG. 1 is a diagram showing a configuration of a wireless power feeding system 1 according to the first embodiment of the present invention. A wireless power feeding system 1 shown in FIG. 1 is used in wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device respectively mounted on the vehicle side. 200, a battery 300, and a load 400.
 送電装置100は、送電制御部110、通信部120、交流電源130、電力変換部140および一次コイルL1を備える。送電制御部110は、通信部120および電力変換部140の動作を制御することで、送電装置100全体の制御を行う。 The power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, and a primary coil L1. The power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
 通信部120は、送電制御部110の制御により、受電装置200が備える通信部220との間で無線通信を行う。この通信部120と通信部220の無線通信により、無線給電の際に必要な各種情報が送電装置100と受電装置200の間で交換される。たとえば、一次コイルL1に流れる交流電流の周波数、すなわち一次コイルL1から放出される交流磁界の周波数等の情報が、通信部120から通信部220に送信される。また、電池300の充電状態(SOC)や劣化状態、充電時の許容電流等の情報が、通信部220から通信部120に送信される。 The communication unit 120 performs wireless communication with the communication unit 220 included in the power receiving device 200 under the control of the power transmission control unit 110. Various information necessary for wireless power feeding is exchanged between the power transmitting apparatus 100 and the power receiving apparatus 200 by wireless communication between the communication unit 120 and the communication unit 220. For example, information such as the frequency of the alternating current flowing through the primary coil L1, that is, the frequency of the alternating magnetic field emitted from the primary coil L1, is transmitted from the communication unit 120 to the communication unit 220. In addition, information such as the state of charge (SOC) and deterioration state of battery 300 and the allowable current during charging is transmitted from communication unit 220 to communication unit 120.
 交流電源130は、たとえば商用電源であり、所定の交流電力を電力変換部140に供給する。電力変換部140は、送電制御部110の制御により、交流電源130から供給された交流電力を用いて所定の周波数および電流値の交流電流を一次コイルL1に出力する。一次コイルL1は、車両の下に位置する地上側に設置されており、電力変換部140から流される交流電流に応じた交流磁界を車両に向けて空中に放出する。これにより、車両への無線給電を行う。 AC power supply 130 is a commercial power supply, for example, and supplies predetermined AC power to the power conversion unit 140. The power conversion unit 140 outputs an alternating current having a predetermined frequency and current value to the primary coil L <b> 1 using the alternating current power supplied from the alternating current power supply 130 under the control of the power transmission control unit 110. Primary coil L1 is installed on the ground side located under the vehicle, and emits an alternating magnetic field corresponding to the alternating current flowing from power conversion unit 140 toward the vehicle. Thereby, wireless power feeding to the vehicle is performed.
 受電装置200は、受電制御部210、通信部220、交流電流検出部230、駆動制御部240、電力変換部250、二次コイルL2、共振コイルLxおよび共振コンデンサCxを備える。共振コイルLxおよび共振コンデンサCxは、二次コイルL2に接続されており、二次コイルL2とともに共振回路を構成する。この共振回路の共振周波数は、二次コイルL2および共振コイルLxがそれぞれ有するインダクタンスと、共振コンデンサCxが有する静電容量値とに応じて決定される。なお、共振コイルLxおよび共振コンデンサCxはそれぞれ複数の素子により構成されていてもよい。また、共振コイルLxの一部または全部を二次コイルL2のインダクタンスで代用してもよい。 The power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx. The resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2. The resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx. Note that the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
 受電制御部210は、通信部220および駆動制御部240の動作を制御することで、受電装置200全体の制御を行う。通信部220は、受電制御部210の制御により、送電装置100が備える通信部120との間で無線通信を行い、送電装置100と受電装置200の間で交換される前述のような各種情報を送受信する。通信部220が受信した一次コイルL1に流れる交流電流の周波数等の情報は、通信部220から受電制御部210に出力される。 The power reception control unit 210 controls the power reception apparatus 200 as a whole by controlling the operations of the communication unit 220 and the drive control unit 240. The communication unit 220 performs wireless communication with the communication unit 120 included in the power transmission device 100 under the control of the power reception control unit 210, and stores various types of information as described above exchanged between the power transmission device 100 and the power reception device 200. Send and receive. Information such as the frequency of the alternating current flowing through the primary coil L1 received by the communication unit 220 is output from the communication unit 220 to the power reception control unit 210.
 交流電流検出部230は、一次コイルL1から放出された交流磁界を二次コイルL2が受けることで二次コイルL2を含む共振回路に流れる交流電流を検出する。そして、検出した交流電流に応じて周波数と振幅がそれぞれ変化する交流電圧を発生させ、駆動制御部240に出力する。駆動制御部240は、交流電流検出部230から入力された交流電圧に基づいて、共振回路に流れる交流電流の周波数や大きさを取得することができる。 The alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240. The drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
 駆動制御部240は、受電制御部210の制御により、電力変換部250が有する複数のスイッチング素子のスイッチング動作を制御する。このとき駆動制御部240は、交流電流検出部230が検出した共振回路に流れる交流電流に基づいて、各スイッチング素子のスイッチング動作のタイミングを変化させる。なお、スイッチング動作のタイミングを変化させる具体的な方法は後述する。 The drive control unit 240 controls the switching operations of the plurality of switching elements included in the power conversion unit 250 under the control of the power reception control unit 210. At this time, the drive control unit 240 changes the timing of the switching operation of each switching element based on the alternating current flowing through the resonance circuit detected by the alternating current detection unit 230. A specific method for changing the timing of the switching operation will be described later.
 電力変換部250は、複数のスイッチング素子を有しており、複数のスイッチング素子をそれぞれスイッチング動作させることで、共振回路に流れる交流電流を制御するとともに整流し、交流電力から直流電力への変換を行う。電力変換部250には充放電可能な電池300が接続されており、電力変換部250から出力される直流電力を用いて電池300が充電される。なお、電力変換部250と電池300の間には、電池300への入力電圧を平滑化するための平滑コンデンサC0が接続されている。 The power conversion unit 250 has a plurality of switching elements, and controls the AC current flowing through the resonance circuit and rectifies by switching each of the plurality of switching elements, thereby converting AC power to DC power. Do. The power conversion unit 250 is connected to a chargeable / dischargeable battery 300, and the battery 300 is charged using DC power output from the power conversion unit 250. Note that a smoothing capacitor C0 for smoothing an input voltage to the battery 300 is connected between the power conversion unit 250 and the battery 300.
 電池300には、負荷400が接続される。負荷400は、電池300に充電された直流電力を利用して、車両の動作に関する様々な機能を提供する。負荷400には、たとえば車両駆動用の交流モータや、電池300の直流電力を交流電力に変換して交流モータに供給するインバータなどが含まれる。 A load 400 is connected to the battery 300. The load 400 provides various functions related to the operation of the vehicle using the DC power charged in the battery 300. The load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the battery 300 into AC power, and supplies the AC power to the AC motor.
 次に、図1の無線給電システム1のうち、本発明が適用される受電装置200の詳細について説明する。図2は、本発明の第1の実施形態に係る受電装置200の構成例を示す図である。 Next, details of the power receiving apparatus 200 to which the present invention is applied in the wireless power feeding system 1 of FIG. 1 will be described. FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to the first embodiment of the present invention.
 図2に示すように、交流電流検出部230は、たとえばトランスTrを用いて構成される。一次コイルL1から放出された交流磁界による磁束が二次コイルL2と鎖交すると、二次コイルL2に起電力が生じ、二次コイルL2を含む共振回路に交流電流iが流れる。
この交流電流iがトランスTrの一次側コイルに流れると、トランスTrの二次側コイルの両端に、交流電流iに応じて周波数と振幅がそれぞれ変化する交流電圧Vgが発生する。これにより、交流電流検出部230は交流電流iの検出を行うことができる。なお、共振回路に流れる交流電流iを検出できるものであれば、トランスTr以外のものを用いて交流電流検出部230を構成してもよい。
As shown in FIG. 2, the alternating current detection unit 230 is configured using, for example, a transformer Tr. When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2.
When this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr. Thereby, the alternating current detection part 230 can detect the alternating current i. Note that the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
 電力変換部250は、直列接続された2つのMOSトランジスタ(MOSFET)Q1、Q2を有する。MOSトランジスタQ1、Q2は、駆動制御部240からのゲート駆動信号に応じて、ソース-ドレイン間を導通状態から切断状態へ、または切断状態から導通状態へと切り替えるスイッチング動作をそれぞれ行う。このスイッチング動作により、MOSトランジスタQ1を上アームのスイッチング素子として機能させるとともに、MOSトランジスタQ2を下アームのスイッチング素子として機能させることができる。MOSトランジスタQ1、Q2間の接続点Oと、MOSトランジスタQ2のソース端子には、二次コイルL2を含む共振回路がそれぞれ接続されている。そのため、MOSトランジスタQ1、Q2をそれぞれ適切なタイミングでスイッチング動作させることで、共振回路に流れる交流電流iの制御および整流を行うことができる。 The power conversion unit 250 includes two MOS transistors (MOSFETs) Q1 and Q2 connected in series. The MOS transistors Q1 and Q2 perform a switching operation for switching between the source and the drain from the conductive state to the disconnected state or from the disconnected state to the conductive state in accordance with the gate drive signal from the drive control unit 240. By this switching operation, the MOS transistor Q1 can function as an upper arm switching element, and the MOS transistor Q2 can function as a lower arm switching element. A resonance circuit including the secondary coil L2 is connected to the connection point O between the MOS transistors Q1 and Q2 and the source terminal of the MOS transistor Q2. Therefore, the AC current i flowing through the resonance circuit can be controlled and rectified by switching the MOS transistors Q1 and Q2 at appropriate timings.
 なお、図2では2つのMOSトランジスタQ1、Q2をスイッチング素子として用いたハーフブリッジ構成の電力変換部250を例示したが、4つのMOSトランジスタをスイッチング素子として用いたフルブリッジ構成の電力変換部250としてもよい。以下では図2に示したハーフブリッジ構成の電力変換部250による動作例を説明するが、フルブリッジ構成とした場合でも基本的な動作は同様である。 2 exemplifies the power conversion unit 250 having a half-bridge configuration using two MOS transistors Q1 and Q2 as switching elements, but as a power conversion unit 250 having a full-bridge configuration using four MOS transistors as switching elements. Also good. In the following, an example of operation by the power converter 250 having the half-bridge configuration shown in FIG. 2 will be described, but the basic operation is the same even when the full-bridge configuration is used.
 駆動制御部240は、電圧取得部241、比較部242、駆動信号生成部243およびゲート駆動回路244を有する。 The drive control unit 240 includes a voltage acquisition unit 241, a comparison unit 242, a drive signal generation unit 243, and a gate drive circuit 244.
 電圧取得部241は、交流電流検出部230(トランスTr)から出力される交流電圧Vgを取得し、比較部242に出力する。 The voltage acquisition part 241 acquires the alternating voltage Vg output from the alternating current detection part 230 (transformer Tr), and outputs it to the comparison part 242.
 比較部242には、電圧取得部241が取得した交流電圧Vgと、所定の閾値電圧Vαとが入力される。閾値電圧Vαは、電力変換部250に出力するゲート駆動信号の位相を調整するための電圧であり、その電圧値は位相の調整量に応じて予め設定されている。比較部242は、入力された交流電圧Vgと閾値電圧Vαとを比較し、その比較結果に応じた位相信号Spを駆動信号生成部243に出力する。なお、比較部242が行う比較の詳細については、後で図4の処理フローを参照して説明する。 The comparison unit 242 receives the AC voltage Vg acquired by the voltage acquisition unit 241 and a predetermined threshold voltage Vα. The threshold voltage Vα is a voltage for adjusting the phase of the gate drive signal output to the power converter 250, and the voltage value is set in advance according to the phase adjustment amount. The comparison unit 242 compares the input AC voltage Vg and the threshold voltage Vα, and outputs a phase signal Sp corresponding to the comparison result to the drive signal generation unit 243. The details of the comparison performed by the comparison unit 242 will be described later with reference to the processing flow of FIG.
 駆動信号生成部243には、比較部242からの位相信号Spに加えて、受電制御部210から基本駆動信号Srが入力される。基本駆動信号Srは、駆動制御部240から電力変換部250に出力されてMOSトランジスタQ1、Q2のスイッチング動作を制御するゲート駆動信号の元となる交流信号であり、その周波数は送電装置100の一次コイルL1に流れる電流の周波数に応じて決定される。具体的には、通信部220は、送電装置100の一次コイルL1に流れる交流電流の周波数fを表す情報を通信部120から受信すると、これを受電制御部210に出力する。受電制御部210は、通信部220から周波数fの情報が入力されると、この周波数fに応じた基本駆動信号Srを生成し、駆動制御部240に出力する。なお、基本駆動信号Srは、たとえばMOSトランジスタQ1、Q2にそれぞれ対応する2つの矩形波の組み合わせであり、オン(導通状態)に対応するHレベルと、オフ(切断状態)に対応するLレベルとが、周波数fで交互に繰り返される。ただし、MOSトランジスタQ1とQ2が同時にオンとならないように、2つの矩形波におけるHレベルの間には所定の保護期間が設けられる。 In addition to the phase signal Sp from the comparison unit 242, the basic drive signal Sr from the power reception control unit 210 is input to the drive signal generation unit 243. The basic drive signal Sr is an AC signal that is output from the drive control unit 240 to the power conversion unit 250 and is a source of a gate drive signal that controls the switching operation of the MOS transistors Q1 and Q2, and the frequency thereof is the primary power transmission device 100. It is determined according to the frequency of the current flowing through the coil L1. Specifically, when the communication unit 220 receives information representing the frequency f of the alternating current flowing through the primary coil L1 of the power transmission device 100 from the communication unit 120, the communication unit 220 outputs the information to the power reception control unit 210. When the information on the frequency f is input from the communication unit 220, the power reception control unit 210 generates a basic drive signal Sr corresponding to the frequency f and outputs it to the drive control unit 240. The basic drive signal Sr is, for example, a combination of two rectangular waves corresponding to the MOS transistors Q1 and Q2, respectively, and has an H level corresponding to ON (conducting state) and an L level corresponding to OFF (disconnected state). Are alternately repeated at the frequency f. However, a predetermined protection period is provided between the H levels of the two rectangular waves so that the MOS transistors Q1 and Q2 are not turned on simultaneously.
 駆動信号生成部243は、比較部242から入力された位相信号Spに基づいて、受電制御部210から入力された基本駆動信号Srの位相を変化させた充電駆動信号Scを生成する。そして、生成した充電駆動信号Scをゲート駆動回路244に出力する。なお、駆動信号生成部243による充電駆動信号Scの生成方法の詳細については、後で図4の処理フローを参照して説明する。 The drive signal generation unit 243 generates a charge drive signal Sc in which the phase of the basic drive signal Sr input from the power reception control unit 210 is changed based on the phase signal Sp input from the comparison unit 242. Then, the generated charge drive signal Sc is output to the gate drive circuit 244. The details of the method for generating the charge drive signal Sc by the drive signal generation unit 243 will be described later with reference to the processing flow of FIG.
 ゲート駆動回路244は、駆動信号生成部243から入力された充電駆動信号Scに基づくゲート駆動信号をMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させる。これにより、電力変換部250において、MOSトランジスタQ1、Q2がスイッチング素子としてそれぞれ機能し、一次コイルL1から放出された交流磁界に応じて共振回路に流れる交流電流iの制御や、交流電力から直流電力への変換が行われる。 The gate drive circuit 244 outputs a gate drive signal based on the charge drive signal Sc input from the drive signal generation unit 243 to the gate terminals of the MOS transistors Q1 and Q2, respectively, and causes the MOS transistors Q1 and Q2 to perform a switching operation. Thus, in the power conversion unit 250, the MOS transistors Q1 and Q2 function as switching elements, respectively, and control of the alternating current i flowing in the resonance circuit according to the alternating magnetic field emitted from the primary coil L1, or the alternating current power to the direct current power. Conversion to
 本実施形態の受電装置200は、以上説明したような動作を行うことにより、送電装置100から無線給電を受けて電池300を充電することができる。 The power receiving device 200 of the present embodiment can charge the battery 300 by receiving wireless power feeding from the power transmitting device 100 by performing the operation described above.
 次に、無線給電システム1を用いた無線給電の流れについて説明する。図3は、本発明の第1の実施形態に係る無線給電システム1の処理フローを示す図である。受電装置200、電池300および負荷400を搭載した車両が所定の充電位置に駐車されると、無線給電システム1において図3の処理フローが開始される。 Next, the flow of wireless power feeding using the wireless power feeding system 1 will be described. FIG. 3 is a diagram showing a processing flow of the wireless power feeding system 1 according to the first embodiment of the present invention. When the vehicle equipped with the power receiving device 200, the battery 300, and the load 400 is parked at a predetermined charging position, the processing flow of FIG.
 ステップS10では、地上側の送電装置100から車両側の受電装置200に対して、充電の問い合わせを行う。ここでは、たとえば送電装置100の通信部120から受電装置200の通信部220へ所定の通信メッセージを送信することにより、充電の問い合わせを行う。 In step S10, the ground-side power transmission device 100 issues a charge inquiry to the vehicle-side power reception device 200. Here, for example, charging is inquired by transmitting a predetermined communication message from the communication unit 120 of the power transmission device 100 to the communication unit 220 of the power reception device 200.
 ステップS20では、ステップS10で充電の問い合わせを受けた受電装置200から送電装置100に対して、充電時における電池300の許容電流を通知する。このとき受電装置200は、たとえば予め測定した電池300の充電状態や劣化状態に基づいて許容電流を決定し、その許容電流の値を示す情報を、通信部220から送電装置100の通信部120へ送信する。なお、充電が不要な場合は、その旨を受電装置200から送電装置100へ通知してもよい。この場合、ステップS30以降の処理は実行されずに、図3の処理フローが終了する。 In step S20, the power receiving device 200 that has received the charge inquiry in step S10 notifies the power transmitting device 100 of the allowable current of the battery 300 during charging. At this time, the power receiving apparatus 200 determines the allowable current based on, for example, the charge state or deterioration state of the battery 300 measured in advance, and transmits information indicating the value of the allowable current from the communication unit 220 to the communication unit 120 of the power transmission apparatus 100. Send. Note that, when charging is unnecessary, the power receiving apparatus 200 may notify the power transmitting apparatus 100 to that effect. In this case, the process flow of FIG. 3 is complete | finished, without performing the process after step S30.
 ステップS30では、送電装置100において電流量を決定し、受電装置200への送電を開始する。このとき送電装置100は、ステップS20で受電装置200から通知された許容電流に対応する出力電流値と、自身の定格電流値とを比較し、いずれか小さい方を選択して電流量を決定する。そして、送電制御部110により電力変換部140を制御して、決定した電流量に応じた交流電流を一次コイルL1に流すことで、一次コイルL1に交流磁界を発生させて送電を開始する。なお、このときさらに、一次コイルL1に流れる交流電流の周波数fを表す情報を通信部120から受電装置200の通信部220へ送信することで、受電装置200の受電制御部210において、周波数fに応じた前述の基本駆動信号Srを生成できるようにすることが好ましい。あるいは、ステップS10で充電の問い合わせを行う際に、送電装置100から受電装置200へ周波数fを通知してもよい。 In step S30, the power transmission device 100 determines the amount of current and starts power transmission to the power reception device 200. At this time, the power transmitting apparatus 100 compares the output current value corresponding to the allowable current notified from the power receiving apparatus 200 in step S20 and its own rated current value, and selects the smaller one to determine the current amount. . Then, the power transmission control unit 110 controls the power conversion unit 140 to cause an alternating current corresponding to the determined current amount to flow through the primary coil L1, thereby generating an alternating magnetic field in the primary coil L1 and starting power transmission. At this time, by further transmitting information representing the frequency f of the alternating current flowing through the primary coil L1 from the communication unit 120 to the communication unit 220 of the power reception device 200, the power reception control unit 210 of the power reception device 200 sets the frequency f to It is preferable that the above-described basic drive signal Sr can be generated. Alternatively, the frequency f may be notified from the power transmitting apparatus 100 to the power receiving apparatus 200 when an inquiry for charging is made in step S10.
 ステップS40では、受電装置200において、一次コイルL1から放出された交流磁界を受けて二次コイルL2を含む共振回路に流れる交流電流iに応じて、電力変換部250の駆動制御処理を行う。ここでは、駆動制御部240において図4の処理フローに示す処理を実施することで、送電装置100から受電した交流電流に応じた電力変換部250の駆動制御を行う。これにより、定電流(CC)モードで電池300の充電を実施する。
なお、図4の処理フローについては後で説明する。
In step S40, the power receiving device 200 performs drive control processing of the power converter 250 according to the alternating current i that flows through the resonance circuit including the secondary coil L2 by receiving the alternating magnetic field emitted from the primary coil L1. Here, the drive control unit 240 performs the process shown in the process flow of FIG. 4, thereby performing drive control of the power conversion unit 250 according to the alternating current received from the power transmission device 100. Thereby, the battery 300 is charged in the constant current (CC) mode.
Note that the processing flow of FIG. 4 will be described later.
 ステップS50では、受電装置200において、電池300の充電状態(SOC)が所定の値、たとえば80%以上になったか否かを判定する。その結果、SOCが80%未満であれば、ステップS40の駆動制御処理を繰り返し、SOCが80%以上になったら、定電流モードから定電圧(CV)モードに移行してステップS60に進む。 In step S50, the power receiving device 200 determines whether or not the state of charge (SOC) of the battery 300 has reached a predetermined value, for example, 80% or more. As a result, if the SOC is less than 80%, the drive control process of step S40 is repeated. If the SOC becomes 80% or more, the constant current mode is changed to the constant voltage (CV) mode and the process proceeds to step S60.
 ステップS60では、受電装置200から送電装置100に対して、現在の電池300の充電状態に応じた充電電流を通知する。このとき受電装置200は、現在の電池300の充電状態に基づいて、ステップS20で通知した許容電流よりも小さな値で充電電流を決定し、その充電電流の値を示す情報を、通信部220から送電装置100の通信部120へ送信する。 In step S60, the power receiving device 200 notifies the power transmitting device 100 of a charging current corresponding to the current state of charge of the battery 300. At this time, the power receiving apparatus 200 determines a charging current with a value smaller than the allowable current notified in step S20 based on the current charging state of the battery 300, and receives information indicating the value of the charging current from the communication unit 220. It transmits to the communication part 120 of the power transmission apparatus 100.
 ステップS70では、受電装置200において、ステップS40と同様の駆動制御処理を行うことにより、定電圧(CV)モードで電池300の充電を実施する。 In step S70, the power receiving device 200 performs the same drive control process as in step S40, thereby charging the battery 300 in the constant voltage (CV) mode.
 ステップS80では、受電装置200において、電池300の充電状態(SOC)が満充電の100%に達したか否かを判定する。その結果、SOCが100%未満であれば、ステップS60に戻って電池300の充電を継続し、SOCが100%に達したらステップS90に進む。 In step S80, the power receiving device 200 determines whether the state of charge (SOC) of the battery 300 has reached 100% of full charge. As a result, if the SOC is less than 100%, the process returns to step S60 to continue charging the battery 300, and if the SOC reaches 100%, the process proceeds to step S90.
 ステップS90では、電池300の充電を終了する。ここでは、たとえば受電装置200の通信部220から送電装置100の通信部120へ所定の通信メッセージを送信することにより、送電停止を指示する。送電装置100では、この送電停止指示に応じて一次コイルL1への通電を遮断することで、送電を停止する。送電装置100からの送電が停止されたら、受電装置200において電力変換部250の動作を停止することで、電池300の充電を終了する。 In step S90, charging of the battery 300 is terminated. Here, for example, by transmitting a predetermined communication message from the communication unit 220 of the power receiving device 200 to the communication unit 120 of the power transmission device 100, the power transmission stop is instructed. In the power transmission device 100, power transmission is stopped by interrupting the energization of the primary coil L1 in response to the power transmission stop instruction. When the power transmission from the power transmission device 100 is stopped, the operation of the power conversion unit 250 in the power reception device 200 is stopped, thereby completing the charging of the battery 300.
 ステップS90で電池300の充電を終了したら、図3の処理フローを終了する。これにより、無線給電システム1の無線給電が完了する。 When the charging of the battery 300 is finished in step S90, the processing flow of FIG. 3 is finished. Thereby, the wireless power supply of the wireless power supply system 1 is completed.
 次に、図3のステップS40、S70で実施される駆動制御処理について説明する。図4は、本発明の第1の実施形態に係る受電装置200における駆動制御処理の処理フローを示す図である。 Next, the drive control process performed in steps S40 and S70 of FIG. 3 will be described. FIG. 4 is a diagram illustrating a processing flow of drive control processing in the power receiving device 200 according to the first embodiment of the present invention.
 ステップS110において、駆動制御部240は、交流電流検出部230から交流電圧Vgを取得する。ここでは、電圧取得部241を用いて、図2のようにトランスTrにより構成された交流電流検出部230から、二次コイルL2を含む共振回路に流れる交流電流iに応じた交流電圧Vgを取得する。 In step S110, the drive control unit 240 acquires the AC voltage Vg from the AC current detection unit 230. Here, the voltage acquisition unit 241 is used to acquire the AC voltage Vg corresponding to the AC current i flowing through the resonance circuit including the secondary coil L2, from the AC current detection unit 230 configured by the transformer Tr as shown in FIG. To do.
 ステップS120において、駆動制御部240は、比較部242を用いて、ステップS120で取得した交流電圧Vgの絶対値を所定の閾値電圧Vαと比較する。その結果、交流電圧Vgの絶対値が閾値電圧Vαよりも大きければステップS130に進み、Vα以下であればステップS130に進む。 In step S120, the drive control unit 240 uses the comparison unit 242 to compare the absolute value of the AC voltage Vg acquired in step S120 with a predetermined threshold voltage Vα. As a result, if the absolute value of the AC voltage Vg is greater than the threshold voltage Vα, the process proceeds to step S130, and if it is equal to or less than Vα, the process proceeds to step S130.
 ステップS130において、駆動制御部240は、比較部242から位相信号SpをHレベルにして出力する。ステップS130を実行したら、ステップS150に進む。 In step S130, the drive control unit 240 outputs the phase signal Sp from the comparison unit 242 at the H level. If step S130 is performed, it will progress to step S150.
 ステップS140において、駆動制御部240は、比較部242から位相信号SpをLレベルにして出力する。ステップS140を実行したら、ステップS150に進む。 In step S140, the drive control unit 240 outputs the phase signal Sp from the comparison unit 242 at the L level. If step S140 is performed, it will progress to step S150.
 ステップS150において、駆動制御部240は、駆動信号生成部243を用いて、ステップS130またはS140で比較部242から入力された位相信号SpがHレベルであり、かつ、受電制御部210から入力された基本駆動信号SrがHレベルであるか否かを判定する。その結果、位相信号Spと基本駆動信号Srが両方ともHレベルであればステップS160に進み、いずれか少なくとも一方がLレベルであればステップS170に進む。 In step S150, the drive control unit 240 uses the drive signal generation unit 243, and the phase signal Sp input from the comparison unit 242 in step S130 or S140 is at the H level and is input from the power reception control unit 210. It is determined whether or not the basic drive signal Sr is at the H level. As a result, if both the phase signal Sp and the basic drive signal Sr are at the H level, the process proceeds to step S160, and if at least one of them is at the L level, the process proceeds to step S170.
 ステップS160において、駆動制御部240は、駆動信号生成部243から充電駆動信号ScをHレベルにして出力する。ステップS160を実行したら、ステップS180に進む。 In step S160, the drive control unit 240 outputs the charge drive signal Sc from the drive signal generation unit 243 to the H level and outputs it. If step S160 is performed, it will progress to step S180.
 ステップS170において、駆動制御部240は、駆動信号生成部243から充電駆動信号ScをLレベルにして出力する。ステップS170を実行したら、ステップS180に進む。 In step S170, the drive controller 240 outputs the charge drive signal Sc from the drive signal generator 243 to the L level and outputs it. If step S170 is performed, it will progress to step S180.
 ステップS180において、駆動制御部240は、ゲート駆動回路244を用いて、ステップS160またはS170で駆動信号生成部243から入力された充電駆動信号Scに応じたゲート駆動信号を生成し、電力変換部250におけるMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力する。これにより、ゲート駆動信号に応じてMOSトランジスタQ1、Q2をそれぞれスイッチング動作させ、電力変換部250の駆動制御を行う。ステップS180でゲート駆動信号を出力したら、図4の処理フローを終了し、図3のステップS40またはS70の駆動制御処理を完了する。 In step S180, the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal according to the charge drive signal Sc input from the drive signal generation unit 243 in step S160 or S170, and the power conversion unit 250. Are respectively output to the gate terminals of the MOS transistors Q1 and Q2. As a result, the MOS transistors Q1 and Q2 are respectively switched according to the gate drive signal, and drive control of the power converter 250 is performed. When the gate drive signal is output in step S180, the process flow in FIG. 4 is terminated, and the drive control process in step S40 or S70 in FIG. 3 is completed.
 受電装置200は、以上説明した駆動制御処理を駆動制御部240において実行することにより、交流電流検出部230が検出した交流電流iに基づいて、電力変換部250におけるMOSトランジスタQ1、Q2のスイッチング動作のタイミングを変化させることができる。具体的には、駆動制御部240は、ステップS120の比較結果に基づき、ステップS130またはステップS140において、位相信号Spの出力を変化させる。そして、この位相信号Spの出力に基づいてステップS150の判定を行い、位相信号Spと基本駆動信号Srが両方ともHレベルである場合とそうでない場合とで、ステップS160またはステップS170において充電駆動信号Scの出力を変化させる。こうして変化された充電駆動信号Scの出力に応じて、ステップS180でゲート駆動信号を生成し、MOSトランジスタQ1、Q2にそれぞれ出力する。その結果、MOSトランジスタQ1、Q2のスイッチング動作のタイミングは、交流電流検出部230からの交流電圧Vgによって定まる位相信号Spに応じて変化する。したがって、交流電流検出部230が検出した交流電流iに基づいて、MOSトランジスタQ1、Q2のスイッチング動作のタイミングを変化させることができる。 The power receiving device 200 executes the drive control process described above in the drive control unit 240, thereby switching the MOS transistors Q <b> 1 and Q <b> 2 in the power conversion unit 250 based on the AC current i detected by the AC current detection unit 230. The timing can be changed. Specifically, the drive control unit 240 changes the output of the phase signal Sp in step S130 or step S140 based on the comparison result in step S120. Then, the determination of step S150 is performed based on the output of the phase signal Sp, and the charge drive signal is determined in step S160 or step S170 depending on whether the phase signal Sp and the basic drive signal Sr are both at the H level or not. The output of Sc is changed. In accordance with the output of the charging drive signal Sc thus changed, a gate drive signal is generated in step S180 and output to the MOS transistors Q1 and Q2, respectively. As a result, the timing of the switching operation of the MOS transistors Q1 and Q2 changes according to the phase signal Sp determined by the AC voltage Vg from the AC current detector 230. Therefore, the timing of the switching operation of the MOS transistors Q1 and Q2 can be changed based on the alternating current i detected by the alternating current detector 230.
 図5は、図4で説明した駆動制御処理に応じて行われるMOSトランジスタQ1、Q2のスイッチング動作の説明図である。 FIG. 5 is an explanatory diagram of the switching operation of the MOS transistors Q1 and Q2 performed in accordance with the drive control process described in FIG.
 図5(b)に示すように、二次コイルL2を含む共振回路に交流電流iが流れると、この交流電流iよりも位相が90°進んで、交流電流iに同期した交流電圧Vgが交流電流検出部230から出力される。なお、図5(b)における交流電流iの値は、図5(a)の左方向を正としている。 As shown in FIG. 5B, when an alternating current i flows through a resonance circuit including the secondary coil L2, the phase advances by 90 ° from the alternating current i, and the alternating voltage Vg synchronized with the alternating current i is alternating current. Output from the current detector 230. Note that the value of the alternating current i in FIG. 5B is positive in the left direction of FIG.
 MOSトランジスタQ1に対する基本駆動信号SrがHレベルであるときに、交流電圧Vgの絶対値が閾値電圧Vαを上回ると、図5(b)に示すように、Vg=0である位相角270°のタイミングを基準点として、ここからVαに対応する位相αだけ遅れたタイミングでMOSトランジスタQ1がオンされる。同様に、Vg=0である位相角90°のタイミングを基準点として、ここからVαに対応する位相αだけ遅れたタイミングでMOSトランジスタQ2がオンされる。このとき、電圧が0の状態でMOSトランジスタQ1、Q2がそれぞれオンされるように、これらのタイミングが設定される。一方、MOSトランジスタQ1、Q2は、対応する基本駆動信号SrがLレベルになるとそれぞれオフされる。このとき、電流が0の状態でMOSトランジスタQ1、Q2がそれぞれオフされるように、これらのタイミングが設定される。 When the absolute value of the AC voltage Vg exceeds the threshold voltage Vα when the basic drive signal Sr for the MOS transistor Q1 is at the H level, a phase angle of 270 ° where Vg = 0 is obtained as shown in FIG. With the timing as a reference point, the MOS transistor Q1 is turned on at a timing delayed by a phase α corresponding to Vα. Similarly, the MOS transistor Q2 is turned on at a timing delayed by the phase α corresponding to Vα from the timing of the phase angle 90 ° where Vg = 0 as a reference point. At this time, these timings are set so that the MOS transistors Q1 and Q2 are turned on while the voltage is zero. On the other hand, the MOS transistors Q1 and Q2 are turned off when the corresponding basic drive signal Sr becomes L level. At this time, these timings are set so that the MOS transistors Q1 and Q2 are turned off while the current is zero.
 MOSトランジスタQ2がオフされてからMOSトランジスタQ1がオンされるまでの間には、図5(a)、(b)に示すように、MOSトランジスタQ1、Q2をそれぞれ流れる電流の向きが変化する。すなわち、MOSトランジスタQ2がオンである期間Aでは、オフ状態のMOSトランジスタQ1には電流が流れず、MOSトランジスタQ2のドレイン端子からソース端子に向かって電流が流れる。続いて、MOSトランジスタQ2がオフされた直後から接続点Oの電圧Voが上昇する期間Bでは、MOSトランジスタQ1、Q2はいずれもオフ状態であり、それぞれ有する寄生容量Csを通って、MOSトランジスタQ1ではソース端子からドレイン端子に向かって、MOSトランジスタQ2ではドレイン端子からソース端子に向かって、それぞれ電流が流れる。こうした挙動を一般的にソフトスイッチング、或いはQ1側をZCS(Zero Current Switching)、他方Q2側をZVS(Zero Voltage Switching)と呼ぶ。 Between the time when the MOS transistor Q2 is turned off and the time when the MOS transistor Q1 is turned on, the directions of the currents flowing through the MOS transistors Q1 and Q2 change as shown in FIGS. That is, during period A when MOS transistor Q2 is on, no current flows through MOS transistor Q1 in the off state, and current flows from the drain terminal to the source terminal of MOS transistor Q2. Subsequently, in a period B in which the voltage Vo at the connection point O increases immediately after the MOS transistor Q2 is turned off, both the MOS transistors Q1 and Q2 are in the off state, and pass through the parasitic capacitance Cs that each has, so that the MOS transistor Q1. Then, current flows from the source terminal to the drain terminal, and in the MOS transistor Q2, current flows from the drain terminal to the source terminal. This behavior is generally called soft switching, or the Q1 side is called ZCS (Zero Current Switching), and the Q2 side is called ZVS (Zero Voltage Switching).
 その後、接続点Oの電圧Voが一定となってからMOSトランジスタQ1がオンされ、交流電流iが0となるまでの期間Cでは、MOSトランジスタQ1が有する寄生ダイオードDsを通って、MOSトランジスタQ1のソース端子からドレイン端子に向かって電流が流れる。その後、交流電流iが正になるとMOSトランジスタQ1のドレイン端子からソース端子に向かって電流が流れる。続いて、MOSトランジスタQ1がオフされるまでの期間Dでは、MOSトランジスタQ2はオフ状態であり電流が流れず、MOSトランジスタQ1のドレイン端子からソース端子に向かって電流が流れる。 Thereafter, during a period C from when the voltage Vo at the connection point O becomes constant until the MOS transistor Q1 is turned on and the alternating current i becomes 0, the MOS transistor Q1 has a parasitic diode Ds that passes through the parasitic diode Ds. A current flows from the source terminal to the drain terminal. Thereafter, when the alternating current i becomes positive, a current flows from the drain terminal to the source terminal of the MOS transistor Q1. Subsequently, in a period D until the MOS transistor Q1 is turned off, the MOS transistor Q2 is in an off state and no current flows, and a current flows from the drain terminal to the source terminal of the MOS transistor Q1.
 なお、MOSトランジスタQ1がオフされてからMOSトランジスタQ2がオンされるまでの間(期間B’とC’)にも、MOSトランジスタQ1、Q2をそれぞれ流れる電流の向きが上記と同様に変化する。このときの期間A’~D’における電流の向きは、期間A~Dとそれぞれ反対方向になる。 Note that the direction of the current flowing through each of the MOS transistors Q1 and Q2 also changes in the same manner as described above from the time the MOS transistor Q1 is turned off to the time when the MOS transistor Q2 is turned on (periods B 'and C'). At this time, current directions in the periods A ′ to D ′ are opposite to the periods A to D, respectively.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following operational effects are obtained.
(1)受電装置200は、地上側に設置された一次コイルL1から放出される交流磁界を受けて無線給電される。受電装置200は、二次コイルL2と、二次コイルL2に接続されて所定の共振周波数を有する共振回路を二次コイルL2とともに構成する共振要素である共振コイルLxおよび共振コンデンサCxと、二次コイルL2が交流磁界を受けることで共振回路に流れる交流電流iを検出する交流電流検出部230と、複数のスイッチング素子であるMOSトランジスタQ1、Q2を有し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させることで交流電流iを制御する電力変換部250と、MOSトランジスタQ1、Q2のスイッチング動作を制御する駆動制御部240とを備える。駆動制御部240は、交流電流検出部230が検出した交流電流iに基づいてMOSトランジスタQ1、Q2のスイッチング動作のタイミングを変化させる。このようにしたので、受電装置200の二次コイルL2に流れる電流の状態に応じた適切なスイッチング動作を実現できる。 (1) The power receiving device 200 is wirelessly powered by receiving an alternating magnetic field emitted from the primary coil L1 installed on the ground side. The power receiving device 200 includes a secondary coil L2, a resonance coil Lx and a resonance capacitor Cx that are resonance elements that are connected to the secondary coil L2 and have a resonance circuit having a predetermined resonance frequency together with the secondary coil L2. The coil L2 has an alternating current detection unit 230 that detects an alternating current i flowing in the resonance circuit by receiving an alternating magnetic field, and MOS transistors Q1 and Q2 that are a plurality of switching elements, and each of the MOS transistors Q1 and Q2 performs a switching operation. Thus, a power conversion unit 250 that controls the alternating current i and a drive control unit 240 that controls the switching operation of the MOS transistors Q1 and Q2 are provided. The drive controller 240 changes the timing of the switching operation of the MOS transistors Q1 and Q2 based on the alternating current i detected by the alternating current detector 230. Since it did in this way, the suitable switching operation | movement according to the state of the electric current which flows into the secondary coil L2 of the power receiving apparatus 200 is realizable.
(2)交流電流検出部230は、交流電流iに応じて周波数と振幅がそれぞれ変化する交流電圧Vgを発生させる。駆動制御部240は、交流電圧Vgに基づいてMOSトランジスタQ1、Q2のスイッチング動作のタイミングを変化させる。このようにしたので、交流電流iを容易に検出し、その検出結果をスイッチング動作のタイミング変化に利用することができる。 (2) The alternating current detection unit 230 generates an alternating voltage Vg whose frequency and amplitude change according to the alternating current i. The drive control unit 240 changes the timing of the switching operation of the MOS transistors Q1 and Q2 based on the AC voltage Vg. Since it did in this way, the alternating current i can be detected easily and the detection result can be utilized for the timing change of switching operation.
(3)駆動制御部240は、交流電圧Vgを所定の閾値電圧Vαと比較し(ステップS120)、その比較結果に基づいてMOSトランジスタQ1、Q2のスイッチング動作のタイミングを変化させる。具体的には、受電装置200は、一次コイルL1に流れる電流の周波数fに応じた基本駆動信号Srを生成する受電制御部210をさらに備える。駆動制御部240は、交流電圧Vgと閾値電圧Vαの比較結果に基づいて、基本駆動信号Srの位相を変化させた充電駆動信号Scを生成し(ステップS130~S170)、充電駆動信号Scを用いてMOSトランジスタQ1、Q2のスイッチング動作を制御する(ステップS180)。このようにしたので、交流電流iに応じてMOSトランジスタQ1、Q2のスイッチング動作のタイミングを確実に変化させることができる。 (3) The drive control unit 240 compares the AC voltage Vg with a predetermined threshold voltage Vα (step S120), and changes the timing of the switching operation of the MOS transistors Q1 and Q2 based on the comparison result. Specifically, the power reception device 200 further includes a power reception control unit 210 that generates a basic drive signal Sr corresponding to the frequency f of the current flowing through the primary coil L1. The drive control unit 240 generates a charge drive signal Sc in which the phase of the basic drive signal Sr is changed based on the comparison result between the AC voltage Vg and the threshold voltage Vα (steps S130 to S170), and uses the charge drive signal Sc. Then, the switching operation of the MOS transistors Q1, Q2 is controlled (step S180). Since it did in this way, the timing of switching operation of MOS transistor Q1, Q2 can be changed reliably according to the alternating current i.
-第2の実施形態-
 図6は、本発明の第2の実施形態に係る無線給電システム1Aの構成を示す図である。
図6に示す無線給電システム1Aは、電気自動車等の車両への無線給電において利用されるものであり、車両付近の地上側に設置された送電装置100と、車両側にそれぞれ搭載された受電装置200A、電池300、負荷400および電池監視装置500とを有する。なお、送電装置100、電池300および負荷400については、第1の実施形態で説明した無線給電システム1のものと同様であるため、以下では受電装置200Aおよび電池監視装置500について説明する。
-Second Embodiment-
FIG. 6 is a diagram showing a configuration of a wireless power feeding system 1A according to the second embodiment of the present invention.
A wireless power feeding system 1A shown in FIG. 6 is used in wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device mounted on each vehicle side. 200A, battery 300, load 400, and battery monitoring device 500. Since the power transmission device 100, the battery 300, and the load 400 are the same as those of the wireless power feeding system 1 described in the first embodiment, the power receiving device 200A and the battery monitoring device 500 will be described below.
 受電装置200Aは、駆動制御部240の代わりに駆動制御部240Aを備える点以外は、第1の実施形態で説明した無線給電システム1における受電装置200と同様である。駆動制御部240Aは、電池監視装置500と接続されており、電池監視装置500から電池電圧Vbを取得して、電力変換部250が有する複数のスイッチング素子のスイッチング動作を制御する。 The power receiving device 200A is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240A is provided instead of the drive control unit 240. The drive control unit 240A is connected to the battery monitoring device 500, acquires the battery voltage Vb from the battery monitoring device 500, and controls the switching operations of the plurality of switching elements included in the power conversion unit 250.
 電池監視装置500は、電池300と接続されており、電池300の状態を監視するための様々な情報を電池300から取得する。たとえば、電池監視装置500は電池300の電圧を検出し、その検出結果を電池電圧Vbとして駆動制御部240Aに出力する。また、電池300が過充電状態であるか否かを判断し、過充電状態であると判断した場合には、所定の過充電信号を駆動制御部240Aに出力して電池300が過充電状態であることを通知する。 The battery monitoring apparatus 500 is connected to the battery 300 and acquires various information for monitoring the state of the battery 300 from the battery 300. For example, the battery monitoring device 500 detects the voltage of the battery 300 and outputs the detection result to the drive control unit 240A as the battery voltage Vb. In addition, it is determined whether or not the battery 300 is in an overcharged state. If it is determined that the battery 300 is in an overcharged state, a predetermined overcharge signal is output to the drive control unit 240A so that the battery 300 is in an overcharged state. Notify that there is.
 次に、図6の無線給電システム1Aのうち、本発明が適用される受電装置200Aの詳細について説明する。図7は、本発明の第2の実施形態に係る受電装置200Aの構成例を示す図である。受電装置200Aは、駆動制御部240Aにおいて比較部242の代わりに比較部242Aを備える点以外は、第1の実施形態で説明した受電装置200と同様である。 Next, details of the power receiving apparatus 200A to which the present invention is applied in the wireless power feeding system 1A of FIG. 6 will be described. FIG. 7 is a diagram illustrating a configuration example of a power receiving device 200A according to the second embodiment of the present invention. The power receiving device 200A is the same as the power receiving device 200 described in the first embodiment, except that the drive control unit 240A includes a comparison unit 242A instead of the comparison unit 242.
 比較部242Aには、電圧取得部241が取得した交流電圧Vgと、電池監視装置500から出力された電池電圧Vbとが入力される。比較部242Aは、入力された電池電圧Vbに基づいて閾値電圧αを設定し、入力された交流電圧Vgと設定した閾値電圧Vαとを比較する。そして、これらの比較結果に応じた位相信号Spを駆動信号生成部243に出力する。 The comparison unit 242A receives the AC voltage Vg acquired by the voltage acquisition unit 241 and the battery voltage Vb output from the battery monitoring device 500. The comparison unit 242A sets a threshold voltage α based on the input battery voltage Vb, and compares the input AC voltage Vg with the set threshold voltage Vα. Then, the phase signal Sp corresponding to these comparison results is output to the drive signal generator 243.
 図8は、本発明の第2の実施形態に係る受電装置200Aにおける駆動制御処理の処理フローを示す図である。 FIG. 8 is a diagram showing a processing flow of drive control processing in the power receiving device 200A according to the second embodiment of the present invention.
 ステップS110Aにおいて、駆動制御部240Aは、交流電流検出部230から交流電圧Vgを取得するとともに、電池監視装置500から電池電圧Vbを取得する。 In Step S110A, the drive control unit 240A acquires the AC voltage Vg from the AC current detection unit 230 and also acquires the battery voltage Vb from the battery monitoring device 500.
 ステップS111において、駆動制御部240Aは、ステップS110Aで取得した電池電圧Vbに基づいて、閾値電圧Vαを設定する。ここでは、たとえば電池電圧Vbが高いほど閾値電圧Vαの値を高く設定することで、MOSトランジスタQ1、Q2がそれぞれオンされる時間が短くなるようにする。 In step S111, the drive control unit 240A sets the threshold voltage Vα based on the battery voltage Vb acquired in step S110A. Here, for example, the higher the battery voltage Vb, the higher the threshold voltage Vα is set so that the time during which the MOS transistors Q1 and Q2 are turned on becomes shorter.
 ステップS111で閾値電圧Vαを設定したら、続くステップS120以降では、第1の実施形態で説明した図4の処理フローと同様の処理を行う。このときステップS120では、ステップS111で設定した閾値電圧Vαを用いて、交流電圧Vgの絶対値との比較を行う。これにより、電池電圧Vbに基づいて、ステップS120の比較で用いる閾値電圧Vαを変化させる。 If the threshold voltage Vα is set in step S111, the same processing as the processing flow of FIG. 4 described in the first embodiment is performed in subsequent steps S120 and subsequent steps. At this time, in step S120, the threshold voltage Vα set in step S111 is used to compare with the absolute value of the AC voltage Vg. Thereby, the threshold voltage Vα used in the comparison in step S120 is changed based on the battery voltage Vb.
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した(1)~(3)の作用効果に加えて、さらに下記(4)の作用効果を奏する。 According to the second embodiment of the present invention described above, the following effect (4) is further achieved in addition to the effects (1) to (3) described in the first embodiment.
(4)電力変換部250は、充放電可能な電池300に接続されている。駆動制御部240Aは、電池300の電圧すなわち電池電圧Vbに基づいて閾値電圧Vαを変化させる(ステップS111)。このようにしたので、電池300の充電状態に応じてMOSトランジスタQ1、Q2のスイッチング動作を最適なタイミングで行うことができる。 (4) The power converter 250 is connected to a chargeable / dischargeable battery 300. The drive control unit 240A changes the threshold voltage Vα based on the voltage of the battery 300, that is, the battery voltage Vb (step S111). Since it did in this way, according to the charge condition of the battery 300, switching operation of MOS transistor Q1, Q2 can be performed at an optimal timing.
-第3の実施形態-
 図9は、本発明の第3の実施形態に係る無線給電システム1Bの構成を示す図である。
図9に示す無線給電システム1Bは、電気自動車等の車両への無線給電において利用されるものであり、車両付近の地上側に設置された送電装置100と、車両側にそれぞれ搭載された受電装置200B、電池300、負荷400および電池監視装置500とを有する。なお、送電装置100、電池300および負荷400については、第1の実施形態で説明した無線給電システム1のものと同様であり、電池監視装置500については、第2の実施形態で説明した無線給電システム1Aのものと同様であるため、以下では受電装置200Bについて説明する。
-Third embodiment-
FIG. 9 is a diagram showing a configuration of a wireless power feeding system 1B according to the third embodiment of the present invention.
A wireless power feeding system 1B shown in FIG. 9 is used for wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device respectively mounted on the vehicle side. 200B, battery 300, load 400, and battery monitoring device 500. The power transmission device 100, the battery 300, and the load 400 are the same as those of the wireless power supply system 1 described in the first embodiment, and the battery monitoring device 500 is the wireless power supply described in the second embodiment. Since it is the same as that of the system 1A, the power receiving apparatus 200B will be described below.
 受電装置200Bは、駆動制御部240の代わりに駆動制御部240Bを備える点以外は、第1の実施形態で説明した無線給電システム1における受電装置200と同様である。駆動制御部240Bは、電池監視装置500と接続されており、電池監視装置500から過充電信号が入力された場合には、第1の実施形態で説明したのとは異なる方法で、電力変換部250が有する複数のスイッチング素子のスイッチング動作を制御する。 The power receiving device 200B is the same as the power receiving device 200 in the wireless power feeding system 1 described in the first embodiment, except that a drive control unit 240B is provided instead of the drive control unit 240. The drive control unit 240B is connected to the battery monitoring apparatus 500, and when an overcharge signal is input from the battery monitoring apparatus 500, the power conversion unit 240B is different from the method described in the first embodiment. The switching operation of a plurality of switching elements 250 has is controlled.
 次に、図9の無線給電システム1Bのうち、本発明が適用される受電装置200Bの詳細について説明する。図10は、本発明の第3の実施形態に係る受電装置200Bの構成例を示す図である。受電装置200Bは、駆動制御部240Bにおいて駆動信号生成部243の代わりに駆動信号生成部243Bを備える点以外は、第1の実施形態で説明した受電装置200と同様である。 Next, details of the power receiving apparatus 200B to which the present invention is applied in the wireless power feeding system 1B of FIG. 9 will be described. FIG. 10 is a diagram illustrating a configuration example of a power receiving device 200B according to the third embodiment of the present invention. The power receiving device 200B is the same as the power receiving device 200 described in the first embodiment, except that the drive control unit 240B includes a drive signal generation unit 243B instead of the drive signal generation unit 243.
 駆動信号生成部243Bには、比較部242からの位相信号Spおよび受電制御部210からの基本駆動信号Srに加えて、電池監視装置500から過充電信号が出力された場合には、その過充電信号が入力される。駆動信号生成部243Bは、過充電信号の入力の有無に応じて、充電駆動信号Scまたは放電駆動信号Sdのいずれかを生成し、ゲート駆動回路244に出力する。 In addition to the phase signal Sp from the comparison unit 242 and the basic drive signal Sr from the power reception control unit 210, when the overcharge signal is output from the battery monitoring device 500 to the drive signal generation unit 243B, the overcharge is performed. A signal is input. The drive signal generation unit 243B generates either the charge drive signal Sc or the discharge drive signal Sd according to whether or not an overcharge signal is input, and outputs the generated signal to the gate drive circuit 244.
 図11は、本発明の第3の実施形態に係る受電装置200Bにおける駆動制御処理の処理フローを示す図である。 FIG. 11 is a diagram showing a processing flow of drive control processing in the power receiving device 200B according to the third embodiment of the present invention.
 ステップS101において、駆動制御部240Bは、電池監視装置500から過充電信号が入力されたか否かを判定する。過充電信号が入力された場合はステップS102に進み、入力されない場合はステップS110に進む。ステップS110に進んだ場合、駆動制御部240Bは、第1の実施形態で説明したステップS110~S180の処理を実行し、図11の処理フローを終了する。 In step S101, the drive control unit 240B determines whether or not an overcharge signal is input from the battery monitoring device 500. If an overcharge signal is input, the process proceeds to step S102. If not input, the process proceeds to step S110. When the processing proceeds to step S110, the drive control unit 240B executes the processing of steps S110 to S180 described in the first embodiment, and ends the processing flow of FIG.
 ステップS102において、駆動制御部240Bは、駆動信号生成部243Bから充電駆動信号Scの出力を停止するとともに、充電駆動信号Scに代わる放電駆動信号Sdを生成してゲート駆動回路244に出力する。ここでは、たとえば一次コイルL1に流れる電流の周波数fとは異なる周波数f’の矩形波を放電駆動信号Sdとして出力する。ステップS102を実行したらステップS180に進む。 In step S102, the drive control unit 240B stops outputting the charge drive signal Sc from the drive signal generation unit 243B, generates a discharge drive signal Sd instead of the charge drive signal Sc, and outputs it to the gate drive circuit 244. Here, for example, a rectangular wave having a frequency f 'different from the frequency f of the current flowing through the primary coil L1 is output as the discharge drive signal Sd. If step S102 is performed, it will progress to step S180.
 ステップS102からステップS180に進んだ場合、ステップS180において、駆動制御部240は、ゲート駆動回路244を用いて、放電駆動信号Sdに応じたゲート駆動信号を生成し、電力変換部250におけるMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力する。これにより、電池300の直流電力が交流電力に変換されて二次コイルL2を含む共振回路に出力され、二次コイルL2から一次コイルL1に向けて交流磁界が放出されることで電池300が放電されるようにする。 When the process proceeds from step S102 to step S180, in step S180, the drive control unit 240 uses the gate drive circuit 244 to generate a gate drive signal corresponding to the discharge drive signal Sd, and the MOS transistor Q1 in the power conversion unit 250 , Output to the gate terminals of Q2. As a result, the DC power of the battery 300 is converted into AC power and output to the resonance circuit including the secondary coil L2, and the AC field is emitted from the secondary coil L2 toward the primary coil L1, thereby discharging the battery 300. To be.
 以上説明した本発明の第3の実施形態によれば、第1の実施形態で説明した(1)~(3)の作用効果に加えて、さらに下記(5)の作用効果を奏する。 According to the third embodiment of the present invention described above, in addition to the effects (1) to (3) described in the first embodiment, the following effects (5) are further exhibited.
(5)電力変換部250は、充放電可能な電池300に接続されている。駆動制御部240Bは、電池300が過充電状態のときには(ステップS101:Yes)、充電駆動信号Scとは異なる放電駆動信号Sdを生成し(ステップS102)、放電駆動信号Sdを用いてMOSトランジスタQ1、Q2のスイッチング動作を制御する(ステップS180)。このようにしたので、電池300が過充電状態のときには、電池300を放電させて過充電状態を解消することができる。 (5) The power converter 250 is connected to a chargeable / dischargeable battery 300. When the battery 300 is in an overcharged state (step S101: Yes), the drive control unit 240B generates a discharge drive signal Sd different from the charge drive signal Sc (step S102), and the MOS transistor Q1 using the discharge drive signal Sd. , Q2 is controlled (step S180). Since it did in this way, when the battery 300 is an overcharge state, the battery 300 can be discharged and an overcharge state can be eliminated.
 なお、以上説明した各実施形態において、駆動制御部240、240A、240Bがそれぞれ有する各構成要素は、マイクロコンピュータ等で実行されるソフトウェアにより実現してもよいし、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。 In each embodiment described above, each component included in each of the drive control units 240, 240A, and 240B may be realized by software executed by a microcomputer or the like, or an FPGA (Field-Programmable Gate Array). It may be realized by hardware such as. These may be used in combination.
 上記各実施形態では、電気自動車等の車両への無線給電において利用される無線給電システム1、1A、1Bをそれぞれ説明したが、車両への無線給電用に限らず、他の用途の無線給電システムに本発明を適用してもよい。 In the above embodiments, the wireless power feeding systems 1, 1 </ b> A, and 1 </ b> B used for wireless power feeding to a vehicle such as an electric vehicle have been described. However, the wireless power feeding system is not limited to the wireless power feeding to the vehicle, and is used for other purposes. The present invention may be applied to.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Each embodiment and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiment and the modification were demonstrated above, this invention is not limited to these content. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 1,1A,1B 無線給電システム
 100 送電装置
 110 送電制御部
 120 通信部
 130 交流電源
 140 電力変換部
 200,200A,200B 受電装置
 210 受電制御部
 220 通信部
 230 交流電流検出部
 240,240A,240B 駆動制御部
 241 電圧取得部
 242,242A 比較部
 243,243B 駆動信号生成部
 244 ゲート駆動回路
 250 電力変換部
 300 電池
 400 負荷
 500 電池監視装置
 L1 一次コイル
 L2 二次コイル
 Lx 共振コイル
 Cx 共振コンデンサ
 Tr トランス
 Q1,Q2 MOSトランジスタ
1, 1A, 1B Wireless power feeding system 100 Power transmission device 110 Power transmission control unit 120 Communication unit 130 AC power supply 140 Power conversion unit 200, 200A, 200B Power reception device 210 Power reception control unit 220 Communication unit 230 AC current detection unit 240, 240A, 240B Drive Control unit 241 Voltage acquisition unit 242, 242A Comparison unit 243, 243B Drive signal generation unit 244 Gate drive circuit 250 Power conversion unit 300 Battery 400 Load 500 Battery monitoring device L1 Primary coil L2 Secondary coil Lx Resonance coil Cx Resonance capacitor Tr Transformer Q1 , Q2 MOS transistor

Claims (6)

  1.  地上側に設置された一次コイルから放出される交流磁界を受けて無線給電される受電装置であって、
     二次コイルと、
     前記二次コイルに接続されて所定の共振周波数を有する共振回路を前記二次コイルとともに構成する共振要素と、
     前記二次コイルが前記交流磁界を受けることで前記共振回路に流れる交流電流を検出する交流電流検出部と、
     複数のスイッチング素子を有し、前記複数のスイッチング素子をそれぞれスイッチング動作させることで前記交流電流を制御する電力変換部と、
     前記複数のスイッチング素子のスイッチング動作を制御する駆動制御部と、を備え、
     前記駆動制御部は、前記交流電流検出部が検出した前記交流電流に基づいて前記スイッチング動作のタイミングを変化させる受電装置。
    A power receiving device that receives an alternating magnetic field emitted from a primary coil installed on the ground side and is wirelessly powered,
    A secondary coil;
    A resonant element connected to the secondary coil to form a resonant circuit having a predetermined resonant frequency together with the secondary coil;
    An alternating current detection unit that detects an alternating current flowing in the resonance circuit when the secondary coil receives the alternating magnetic field;
    A power converter that has a plurality of switching elements and controls the alternating current by switching the plurality of switching elements, respectively;
    A drive control unit that controls a switching operation of the plurality of switching elements,
    The drive control unit is a power receiving device that changes the timing of the switching operation based on the alternating current detected by the alternating current detection unit.
  2.  請求項1に記載の受電装置において、
     前記交流電流検出部は、前記交流電流に応じて周波数と振幅がそれぞれ変化する交流電圧を発生させ、
     前記駆動制御部は、前記交流電圧に基づいて前記スイッチング動作のタイミングを変化させる受電装置。
    The power receiving device according to claim 1,
    The alternating current detection unit generates an alternating voltage whose frequency and amplitude change according to the alternating current,
    The drive control unit is a power receiving device that changes a timing of the switching operation based on the AC voltage.
  3.  請求項2に記載の受電装置において、
     前記駆動制御部は、前記交流電圧を所定の閾値電圧と比較し、その比較結果に基づいて前記スイッチング動作のタイミングを変化させる受電装置。
    The power receiving device according to claim 2,
    The drive control unit compares the AC voltage with a predetermined threshold voltage, and changes the timing of the switching operation based on the comparison result.
  4.  請求項3に記載の受電装置において、
     前記一次コイルに流れる電流の周波数に応じた基本駆動信号を生成する受電制御部をさらに備え、
     前記駆動制御部は、前記比較結果に基づいて前記基本駆動信号の位相を変化させた駆動信号を生成し、前記駆動信号を用いて前記複数のスイッチング素子のスイッチング動作を制御する受電装置。
    The power receiving device according to claim 3,
    A power reception control unit that generates a basic drive signal according to the frequency of the current flowing through the primary coil;
    The drive control unit generates a drive signal in which a phase of the basic drive signal is changed based on the comparison result, and controls a switching operation of the plurality of switching elements using the drive signal.
  5.  請求項3または4に記載の受電装置において、
     前記電力変換部は、充放電可能な電池に接続されており、
     前記駆動制御部は、前記電池の電圧に基づいて前記閾値電圧を変化させる受電装置。
    The power receiving device according to claim 3 or 4,
    The power conversion unit is connected to a chargeable / dischargeable battery,
    The drive control unit is a power receiving device that changes the threshold voltage based on a voltage of the battery.
  6.  請求項4に記載の受電装置において、
     前記電力変換部は、充放電可能な電池に接続されており、
     前記駆動制御部は、前記電池が過充電状態のときには、前記駆動信号とは異なる第2の駆動信号を生成し、前記第2の駆動信号を用いて前記複数のスイッチング素子のスイッチング動作を制御する受電装置。
    The power receiving device according to claim 4,
    The power conversion unit is connected to a chargeable / dischargeable battery,
    The drive control unit generates a second drive signal different from the drive signal when the battery is in an overcharged state, and controls a switching operation of the plurality of switching elements using the second drive signal. Power receiving device.
PCT/JP2019/005212 2018-03-14 2019-02-14 Power reception device WO2019176432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046627A JP2021083139A (en) 2018-03-14 2018-03-14 Power reception device
JP2018-046627 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176432A1 true WO2019176432A1 (en) 2019-09-19

Family

ID=67907839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005212 WO2019176432A1 (en) 2018-03-14 2019-02-14 Power reception device

Country Status (2)

Country Link
JP (1) JP2021083139A (en)
WO (1) WO2019176432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158970A (en) * 2021-03-31 2022-10-17 オムロン株式会社 Wireless charging system, transmission side charging device and reception side charging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882959A (en) 2016-01-15 2018-11-23 Tva医疗公司 The device and method for being used to form fistula

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
JP2015208150A (en) * 2014-04-22 2015-11-19 株式会社日本自動車部品総合研究所 Non-contact power transmission/reception system
JP2016036225A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Non-contact power transmission system
JP2016226242A (en) * 2015-06-03 2016-12-28 株式会社日本自動車部品総合研究所 Non-contact power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
JP2015208150A (en) * 2014-04-22 2015-11-19 株式会社日本自動車部品総合研究所 Non-contact power transmission/reception system
JP2016036225A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Non-contact power transmission system
JP2016226242A (en) * 2015-06-03 2016-12-28 株式会社日本自動車部品総合研究所 Non-contact power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158970A (en) * 2021-03-31 2022-10-17 オムロン株式会社 Wireless charging system, transmission side charging device and reception side charging device

Also Published As

Publication number Publication date
JP2021083139A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US10069340B2 (en) Wireless power receiver for adjusting magnitude of wireless power
JP5419857B2 (en) Secondary power receiving circuit of non-contact power supply equipment
WO2014010518A1 (en) Power-receiving device and power transfer system
TW201310848A (en) Wireless power receiving and supplying apparatus, wireless power supply system and auto-adjusting assistant circuit
WO2011065255A1 (en) Non-contact power transmission apparatus
JP2014079107A (en) Non-contact power reception apparatus and non-contact power transmission system
JP6176547B2 (en) Non-contact power feeding device and starting method of non-contact power feeding device
JP2012070463A (en) Non-contact power supply device
JP2013169081A (en) Charger
WO2019176432A1 (en) Power reception device
WO2011142440A1 (en) Inductive power-supply system, power-receiving device, and control method
CN112448484A (en) Non-contact power supply device
US11322985B2 (en) Wireless power transfer system, power transmission apparatus, and power reception apparatus
WO2019176359A1 (en) Power reception device
US11652368B2 (en) Non-contact power supply device and power transmission device
JP2016092959A (en) Power transmission equipment and contactless power transmission device
JP2021083140A (en) Power reception device
JP6675094B2 (en) Non-contact power supply device, program, non-contact power supply device control method, and non-contact power transmission system
WO2019176375A1 (en) Power transmission device, power reception device, and wireless power feed system
CN112448482B (en) Non-contact power supply device and power transmission device
WO2020049853A1 (en) Non-contact power feeding system and power transmission device
JP6685016B2 (en) Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system
JP2021035077A (en) Wireless power supply device
JP6183671B2 (en) Non-contact power feeding device control method and non-contact power feeding device
WO2019176433A1 (en) Power transmission device and wireless power feed system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP