WO2019176180A1 - Sweating state determination device and method and program for controlling sweating state determination device - Google Patents

Sweating state determination device and method and program for controlling sweating state determination device Download PDF

Info

Publication number
WO2019176180A1
WO2019176180A1 PCT/JP2018/043638 JP2018043638W WO2019176180A1 WO 2019176180 A1 WO2019176180 A1 WO 2019176180A1 JP 2018043638 W JP2018043638 W JP 2018043638W WO 2019176180 A1 WO2019176180 A1 WO 2019176180A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
sweating
value
user
mental
Prior art date
Application number
PCT/JP2018/043638
Other languages
French (fr)
Japanese (ja)
Inventor
直人 山下
瑛人 桐迫
侑成 谷本
佳代子 今飯田
達秋 入矢
祥平 武井
北斗 安藤
登志也 林
栄一 小山
哲也 赤瀬
福島 慎一
一雄 毛利
朱香 森田
朋也 廣江
雄二 ▲高▼妻
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2020505585A priority Critical patent/JP6899953B2/en
Publication of WO2019176180A1 publication Critical patent/WO2019176180A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges

Definitions

  • the present invention relates to a sweating state determination device, a control method for a sweating state determination device, and a control program.
  • a perspiration state determination device that determines a user's mental perspiration state is known. For example, it is used for determining a user's stress level or used as a so-called lie detector. Yes.
  • the measured value obtained by continuously measuring the amount of mental sweating for example, every predetermined sampling period
  • a method may be considered in which a value obtained by normalizing (normalizing, standardizing, etc.) the measured value is compared with a predetermined threshold for determination, and the mental sweating state of the user is determined based on the magnitude relationship. It is done.
  • the degree of mental sweating (more or less) and the fluctuation characteristics of mental sweating that change when subjected to mental stimulation such as stress vary greatly depending on individual differences.
  • the fluctuation range (minimum value to maximum value) of the mental sweating amount of the user over the entire period for which the determination of the mental sweating state is inherently obtained is acquired, and the mental sweating of the acquired user is acquired. It is preferable from the viewpoint of appropriately determining the mental sweating state of the user to set a determination threshold value used for determination of the mental sweating state based on the amount variation range.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a technique that makes it possible to appropriately determine the mental sweating state of the user in the sweating state determination device. It is in.
  • a sweating state determination device for solving the above-described problem is a sweating amount measurement electrode for measuring a mental sweating amount of a user, and a user based on an output value of the sweating amount measurement electrode.
  • Sweating state determination that continuously measures the amount of mental sweating over a predetermined period of determination and determines the user's mental sweating state based on the comparison result of the measured amount of mental sweating and the threshold for determination
  • a control unit that executes control, and the control unit changes a user's mental sweating amount that changes over time in a predetermined prediction feature amount measurement period shorter than the determination target period, and the determination
  • a sweating amount minimum value prediction model representing the relationship with the minimum value of the user's mental sweating amount in the target period, and the transition of the user's mental sweating amount that changes over time in the prediction feature amount measurement period, User during the judgment period
  • a storage unit for storing a maximum sweating amount prediction model representing a relationship with the maximum value of the mental sweating amount, and a measured value of the mental
  • the minimum sweating amount prediction model includes the transition of the measured value of the mental sweating amount of the user during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user during the determination target period.
  • the mental sweating amount of the user in the predictive feature measurement period is determined by machine learning using a plurality of minimum sweating amount learning data associated with the minimum value of the measured value of mental sweating amount as teacher data.
  • the prediction model has learned the relationship between the transition and the minimum value of the mental sweating amount of the user in the determination target period, and the sweating amount maximum value prediction model has previously executed the sweating state determination control
  • a plurality of sweating maximum values in which the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period is associated with the maximum value of the user's mental sweating amount during the determination target period Learning the relationship between the transition of the user's mental sweating amount in the prediction feature measurement period and the maximum value of the user's mental sweating amount in the judgment target period by machine learning using training data as teacher data It may be a completed prediction model.
  • the prediction unit when the prediction feature amount measurement period has elapsed from the start of the main processing, the sweating amount minimum value prediction model and the sweating amount maximum value prediction model stored in the storage unit, The minimum predicted value and the maximum predicted value may be predicted based on
  • control unit the measured value of the mental sweating amount of the user measured after the point when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the minimum sweating amount prediction model And the minimum predicted value and the maximum predicted value respectively predicted based on the sweating amount maximum value prediction model and the minimum predicted value as the first value and the maximum predicted value as the first value
  • a processing unit that performs a scaling process as a second value greater than the second value, and the setting unit may set the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. good.
  • the present invention can be specified as a control method of the sweating state determination device. That is, the control method of the sweating state determination device according to the present invention includes a sweating amount measurement electrode for measuring a user's mental sweating amount, and a user's mentality based on an output value of the sweating amount measurement electrode. Sweating state determination control that continuously measures the amount of sexual sweating over a predetermined determination target period and determines the mental sweating state of the user based on the comparison result between the measured amount of mental sweating and the threshold for determination And a control unit that executes the control method, wherein the control unit changes the user's mentality over time in a predetermined prediction feature amount measurement period shorter than the determination target period.
  • a sweating amount minimum value prediction model representing the relationship between the transition of the sweating amount and the minimum value of the mental sweating amount of the user in the determination target period, and the user that changes over time in the prediction feature amount measurement period Changes in the amount of mental sweating
  • a storage unit storing a maximum sweating amount prediction model representing a relationship with the maximum value of the mental sweating amount of the user in the determination target period, and the user measured in the prediction feature amount measurement period
  • the minimum of the user's mental sweating amount in the determination target period A predicted value and a maximum value, which are equal to or more than a minimum predicted value that is the minimum value of the user's mental sweating amount in the predicted determination target period and the user's mental sweating amount in the determination target period.
  • the determination threshold value is set within a range equal to or less than a maximum predicted value that is a maximum value.
  • the control unit when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the sweating amount minimum value prediction model and the sweating amount maximum The minimum prediction value and the maximum prediction value may be predicted based on a value prediction model.
  • the control unit measures the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed since the start of the sweating state determination control. And using the minimum predicted value and the maximum predicted value respectively predicted based on the minimum sweating amount prediction model and the maximum sweating amount prediction model, the minimum predicted value as the first value and the Perform scaling processing with the maximum predicted value as a second value larger than the first value, and set the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. Also good.
  • the present invention can also be specified as a control program for a sweating state determination device. That is, the present invention provides a sweating amount measurement electrode for measuring a user's mental sweating amount, and a user's mental sweating amount based on an output value of the sweating amount measurement electrode for a predetermined determination target period. And a control unit that executes a sweating state determination control for determining a mental sweating state of the user based on a comparison result between the measured amount of mental sweating and the threshold for determination.
  • a control program for a state determination device wherein the control unit changes a user's mental sweating amount that changes with time in a predetermined prediction feature amount measurement period shorter than the determination target period, and the determination target A sweating amount minimum value prediction model representing the relationship with the minimum value of the user's mental sweating amount during the period, the transition of the user's mental sweating amount that changes over time in the predictive feature amount measurement period, and Use during the judgment period
  • the mentality of the user in the determination target period Each of the minimum value and the maximum value of the sweating amount is predicted, and is equal to or more than the minimum predicted value that is the minimum value of the mental sweating amount of the user in the predicted determination target period, and
  • the determination threshold value is set within a range of a maximum predicted value that is a maximum value of the amount of mental sweating.
  • control program for the sweating state determination device causes the control unit to store the minimum sweating amount prediction model and the maximum sweating amount when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control.
  • the minimum prediction value and the maximum prediction value may be predicted based on a value prediction model.
  • control program of the sweating state determination apparatus may cause the control unit to measure the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed since the start of the sweating state determination control. And using the minimum predicted value and the maximum predicted value respectively predicted based on the minimum sweating amount prediction model and the maximum sweating amount prediction model, the minimum predicted value as the first value and the Causing the maximum predicted value to be scaled as a second value greater than the first value, and setting the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. May be.
  • the present invention may be a computer-readable recording medium in which a control program for the perspiration state determination device is recorded.
  • the present invention it is possible to provide a technique that makes it possible to appropriately determine the user's mental sweating state in the sweating state determination device.
  • FIG. 1 is an external perspective view of an aspirator according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of the aspirator according to the first embodiment.
  • FIG. 3 is a front view of the aspirator according to the first embodiment.
  • FIG. 4 is a side view of the aspirator according to the first embodiment.
  • FIG. 5 is a view for explaining an attachment structure between the mouthpiece unit and the wooden casing in the suction device according to the first embodiment.
  • FIG. 6 is a view for explaining an attachment structure between the mouthpiece unit and the wooden casing in the suction device according to the first embodiment.
  • FIG. 7 is a block diagram of the aspirator according to the first embodiment.
  • FIG. 8 is a flowchart illustrating a power-on process routine according to the first embodiment.
  • FIG. 9 is a flowchart showing a main processing routine in the first embodiment.
  • FIG. 10 is a flowchart illustrating a feedback processing routine according to the first embodiment.
  • FIG. 11 is a diagram conceptually showing a time transition of the amount of mental sweating when the controller of the aspirator executes the stress level analysis control.
  • FIG. 12 is a block diagram of an aspirator according to the second embodiment.
  • FIG. 13 is a flowchart illustrating a power-on processing routine according to the second embodiment.
  • FIG. 14 is a flowchart illustrating a main processing routine according to the second embodiment.
  • FIG. 15 is a diagram illustrating an aspirator according to a modification.
  • FIG. 16 is a block diagram of the aspirator according to the third embodiment.
  • FIG. 17 is a diagram illustrating the transition of the amount of mental sweating by the user when the aspirator according to the third embodiment executes the stress level analysis control.
  • FIG. 18 is a diagram illustrating processing contents of the main processing according to the third embodiment.
  • FIG. 19 is a flowchart illustrating the processing content of the sweating amount determination process in the main process according to the third embodiment.
  • FIG. 20 is a diagram showing the time transition of the scaled perspiration measurement value when stress level analysis control is performed on a plurality of users who use the aspirator.
  • FIG. 21 is a diagram illustrating a time transition of the corrected perspiration amount measurement value when stress level analysis control is performed on a plurality of users who use the aspirator.
  • FIG. 22 is a diagram illustrating a massage machine according to the first modification of the third embodiment.
  • FIG. 23 is a schematic diagram of a remote controller according to the first modification of the third embodiment.
  • FIG. 24 is a block diagram of a remote controller according to the first modification of the third embodiment.
  • FIG. 25 is a diagram illustrating a state where the user holds the remote controller according to the first modification with both hands.
  • FIG. 26 is a schematic diagram of a portable inspection terminal according to the second modification of the third embodiment.
  • FIG. 27 is a schematic diagram of a portable inspection terminal according to the second modification of the third embodiment.
  • FIG. 28 is a schematic diagram illustrating the internal structure of the index finger cover and the ring finger cover in the portable inspection terminal according to the second modification of the third embodiment.
  • FIG. 29 is a block diagram of a portable inspection terminal according to the second modification of the third embodiment.
  • FIG. 1 is an external perspective view of an aspirator 1 according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the suction device 1 according to the first embodiment.
  • FIG. 3 is a front view of the aspirator 1 according to the first embodiment.
  • FIG. 4 is a side view of the aspirator 1 according to the first embodiment. 3 and 4, a part of the internal structure of the suction device 1 is illustrated by a broken line.
  • the aspirator 1 is a small portable aspirator having a stress check function for checking a user's degree of stress by measuring the amount of mental sweating of the user's palm.
  • the suction device 1 has a mouthpiece 11, a mouthpiece receptacle 12, a wooden housing 13, and the like, and the outer shape is defined by these.
  • the material of the mouthpiece 11 and the mouthpiece receptacle 12 is not particularly limited, but is made of resin in this embodiment.
  • the control unit 20 includes a substrate storage unit 22 that stores an electronic substrate 21 (the outline is shown by a broken line in FIG. 3), a power source 23, a fixed unit 24, and the like.
  • An exposed portion 25 is formed on a part of the surface of the substrate storage portion 22 so as to be exposed to the outside in a state of being assembled as the aspirator 1, and a pair of mental sweating amount measurement electrodes 26, 27 are arranged vertically.
  • the mental sweating amount measuring electrodes 26 and 27 are electrodes used for measuring the mental sweating amount. Note that the position, size, shape, and the like of the electronic substrate 21 stored in the substrate storage unit 22 in the storage space are not particularly limited.
  • the power source 23 has a battery storage unit 231 for storing the battery 230.
  • a storage space 231a for storing the battery 230 is formed inside the battery storage unit 231, and the battery 230 can be inserted into and extracted from the storage space 231a through an insertion port formed in the upper part of the substrate storage unit 22.
  • the battery 230 is a dry battery, but is not limited thereto, and may be, for example, a lithium ion battery.
  • the substrate storage unit 22 and the power source 23 are integrally formed, but may be configured separately.
  • the power source 23 (battery 230) supplies power necessary for the operation of the suction device 1.
  • the wooden casing 13 has an accommodation space 130 for accommodating the control unit 20 shown in FIG.
  • the fixing unit 24 is a member for fixing the control unit 20 to the wooden housing 13 using the screws 28 shown in FIG.
  • reference numeral 231b shown in FIG. 3 is a spring terminal provided on the battery storage portion 231 side
  • reference numeral 231c is a contact terminal provided on the battery storage portion 231 side.
  • the spring terminal 231b of the battery storage unit 231 is in contact with the negative electrode of the battery 230 stored in the battery storage unit 231, and the contact terminal 231c is in contact with the positive electrode of the battery 230 stored in the battery storage unit 231. Is provided.
  • the spring terminal 231b and the contact terminal 231c of the battery storage unit 231 are disposed at the bottom of the storage space 231a.
  • the fixing unit 24 is provided with a pair of insertion holes 243 through which the screws 28 are inserted. With the screw 28 inserted into the insertion hole 243, the screw 28 is screwed into the screw hole 131 provided in the wooden casing 13, so that the battery 230 is pressed between the terminals and the wooden casing 13 is pressed.
  • the control unit 20 can be fixed in the storage space 130 of the main body. Further, the inside of the fixed unit 24 is hollow, and a detachable opening 244 is formed on the upper surface of the fixed unit 24.
  • the attachment / detachment opening 244 includes a circular insertion / extraction hole 244a and a slide hole 244b which communicates with the insertion / extraction hole 244a and has an elongated shape. The width dimension orthogonal to the extending direction of the slide hole 244b is designed to be smaller than the diameter of the insertion hole 244a.
  • the mouthpiece unit 10 is formed with the mouthpiece 11 attached to the mouthpiece receptacle 12, and the mouthpiece unit 10 is detachable from the wooden housing 13. ing.
  • the mouthpiece receptacle 12 has a mounting hole 121 in which a cylindrical body 111 provided on one end side of the mouthpiece 11 can be attached.
  • the inner diameter of the mounting hole 121 is substantially the same as the outer diameter of the cylindrical body 111.
  • a suction hole 112 is provided on the other end side of the suction hole 11.
  • the mouthpiece hole 112 extends so as to penetrate the mouthpiece 11 in the axial direction.
  • the wooden housing 13 in the suction device 1 is provided with a vent hole (not shown), and the vent hole and the suction hole 112 of the suction unit 10 (suction mouth 11) are connected inside the wooden housing 13.
  • An air passage (not shown) is formed.
  • FIG. 5 and FIG. 6 are diagrams illustrating an attachment structure between the mouthpiece unit 10 and the wooden housing 13 in the suction device 1 according to the first embodiment.
  • a locking protrusion 122 projects downward from the lower surface 12 a side of the mouthpiece receptacle 12 in the mouthpiece unit 10.
  • the locking protrusion 122 has a shaft portion 122a protruding from the lower surface 12a and a locking portion 122b provided at the tip of the shaft portion 122a.
  • the locking portion 122b of the locking projection 122 has a disk shape having a larger diameter than the shaft portion 122a.
  • the locking projection 122 in the mouthpiece unit 10 configured as described above is freely detachable from an attaching / detaching opening 244 provided in the fixing unit 24.
  • the diameter of the locking portion 122b in the locking protrusion 122 is smaller than the inner diameter of the insertion / extraction hole 244a of the attachment / detachment opening 244 in the fixing unit 24 and larger than the width dimension of the sliding hole 244b.
  • the diameter of the shaft portion 122a in the locking projection 122 is smaller than the width dimension of the slide hole 244b.
  • the position of the locking projection 122 in the mouthpiece unit 10 is aligned with the position of the insertion hole 244a in the fixed unit 24, and the lower surface 12a of the mouthpiece receiver 12 is fixed to the fixed unit 24.
  • the locking projection 122 is inserted into the insertion / extraction hole 244a until it abuts on the upper surface 24a of 24. Thereafter, the shaft portion 122a of the locking projection 122 is slid along the sliding hole 244b so that the lower surface 12a of the mouthpiece receptacle 12 slides on the upper surface 24a of the fixing unit 24.
  • the shaft portion 122a of the locking projection 122 is slid to, for example, the tip of the slide hole 244b, the lock portion 29 shown in FIG. 6 is activated, and the locked portion (not shown) of the mouthpiece unit 10 is activated. ) Is attached to the wooden casing 13. In this state, the locking portion 122b of the locking projection 122 is formed at the edge of the slide hole 244b.
  • the lock portion 29 is unlocked, and the shaft portion 122a of the locking projection 122 is moved along the slide hole 244b to the base end (insertion / removal hole). Slide toward the end of the side connected to 244a). Then, after the position of the locking projection 122 is slid to the insertion / extraction hole 244 a, the mouthpiece unit 10 can be removed from the wooden housing 13 by pulling out the locking projection 122 from the insertion / extraction hole 244 a.
  • FIG. 7 is a block diagram of the aspirator 1 according to the first embodiment.
  • a control unit 30 that is a control unit for controlling the suction device 1 is mounted on the electronic substrate 21 of the suction device 1.
  • the control unit 30 may be a microcomputer having a processor, a memory, and the like, for example.
  • the control unit 30 is connected to the mental sweating amount measuring electrodes 26 and 27, the atmospheric pressure sensor 40, the vibration motor 41, the light emitting element 43, the power source 23, and the like through the electrical wiring, and the mental sweating amount measuring electrode 26. , 27, an output signal output from the atmospheric pressure sensor 40 is input.
  • the atmospheric pressure sensor 40 is a sensor that is provided inside the wooden casing 13 and detects the atmospheric pressure in the wooden casing 13.
  • the atmospheric pressure sensor 40 is a condenser microphone sensor, for example, and may output a voltage value indicating the electric capacity of the condenser, for example.
  • air taken into the wooden housing 13 from a vent hole (not shown) is vented toward the suction hole 112 of the suction mouth 11 when the suction mouth 11 is sucked by the user.
  • the pressure in the wooden casing 13 that changes when flowing through a path (not shown) is output.
  • the vibration motor 41 is a motor that is driven (operated) by receiving power supply from the battery 230 in the power source 23. When the vibration motor 41 is driven, the frequency of the vibration motor 41 is determined so that the wooden casing 13 vibrates.
  • the light emitting element 43 is a light source such as an LED or an electric lamp.
  • the light emitting element 43 is provided on the wooden housing 13 in such a manner that the user can visually recognize the light at the time of light emission.
  • the light emitting element 43 may be provided on the side surface of the wooden housing 13 opposite to the mouthpiece 11, whereby the user can emit light from the light emitting element 43 during the suction operation of the mouthpiece 11. The pattern can be easily visually recognized.
  • the light emitting element 43 may emit light with different light emission patterns depending on the state of the aspirator 1. Note that power for operating the light emitting element 43 is supplied from the power source 23.
  • the electrodes 26 and 27 for measuring the amount of mental perspiration correspond to the skin conductance based on the resistance value when a weak current for measuring the amount of perspiration is passed through the skin of the user's finger upon receiving power from the power source 23. Output the response value.
  • the aspirator 1 for example, when the user grips the wooden casing 13, it is set at two predetermined positions (that is, respective positions where the index finger and the middle finger are placed) that the index finger and the middle finger touch.
  • a pair of mental sweating measurement electrodes 26 and 27 are arranged. Thereby, while the user is holding the suction device 1, the electrodes 26 and 27 for measuring the amount of mental sweating can be kept in contact with the skin surface of the user's finger.
  • the arrangement position of the pair of mental sweating measurement electrodes 26 and 27 is not limited to the above position.
  • the user grips the wooden casing 13 it may be arranged at two predetermined locations where two different areas (parts) of the palm of the user holding the wooden casing 13 touch.
  • a pair of mental sweating measurement electrodes 26 and 27 may be disposed at two locations corresponding to the palm of the user's palm and the thumb ball, or the palm of the user's palm and They may be arranged at two locations corresponding to any of the fingers, or may be arranged at two locations corresponding to the palm ball and any of the fingers.
  • a pair of mental sweating measurement electrodes 26 and 27 may be arranged at two locations corresponding to two fingers different from the combination of the index finger and middle finger of the user's palm.
  • the control unit 30 includes an atmospheric pressure acquisition unit 31, a power switch unit 32, a sweating amount measurement unit 33, a motor control unit 34, a storage unit 35, a setting unit 36, a light emission control unit 37, a determination unit 38, It has a timer 39 and the like.
  • the storage unit 35 is a non-volatile memory, for example, and stores various programs to be executed by the processor of the control unit 30.
  • the processor of the control unit 30 executes various programs stored in the storage unit 35, whereby stress degree analysis control is performed.
  • the stress level analysis control is a control for analyzing the user's stress level by measuring the amount of mental sweating of the user who uses the aspirator 1.
  • the atmospheric pressure acquisition unit 31 acquires the atmospheric pressure in the wooden casing 13 based on the output signal of the atmospheric pressure sensor 40. For example, the atmospheric pressure acquisition unit 31 detects the suction operation (puff operation) of the mouthpiece 11 by the user based on the acquired atmospheric pressure in the wooden housing 13 (that is, by detecting a negative pressure). For example, the atmospheric pressure acquisition unit 31 detects a suction state (suction section) in which the user is sucking the mouthpiece 11 and a non-suction state (non-suction section) in which the user is not sucking the mouthpiece 11. Thereby, the atmospheric pressure acquisition unit 31 can specify the number of suction operations for sucking the mouthpiece 11. Specific methods for detecting the start of the suction operation (puff operation) using the atmospheric pressure sensor 40 and the end of the suction operation are known per se, and detailed description thereof is omitted here.
  • the timer unit 39 has, for example, a timer function that measures an elapsed time from the end of the suction (puff) operation by the user, or measures an elapsed time since the start of a main process and a feedback process described later. .
  • the power switch unit 32 is turned on when the power of the suction device 1 is turned on, and is turned off when the power of the suction device 1 is turned off.
  • the power switch unit 32 is turned on when the timer in the timer unit 39 expires, for example, when a predetermined time elapses after the latest suction operation is detected by the atmospheric pressure acquisition unit 31 without detecting the next suction operation. It may be switched to an off state. Further, when the power switch unit 32 is in the off state, for example, when the atmospheric pressure acquisition unit 31 detects the start of the first suction operation by the user, the power switch unit 32 may be switched from the off state to the on state. .
  • the sweating amount measuring unit 33 of the control unit 30 is connected to the mental sweating amount measuring electrodes 26 and 27, and is based on a response value corresponding to the skin conductance output from the mental sweating amount measuring electrodes 26 and 27. To measure the amount of mental sweating of the user.
  • the setting unit 36 of the control unit 30 performs setting of reference values, threshold values and the like regarding each parameter related to stress degree analysis control described later, storage in the storage unit 35, and update (reset). Further, the setting unit 36 also stores, updates (resets), and the like in the storage unit 35 with respect to the count value obtained by counting the number of suction (puff) of the user when the power switch unit 32 is in the on state.
  • the motor control unit 34 controls the drive of the vibration motor 41 and vibrates the wooden casing 13 to notify the user of various information.
  • the light emission control part 37 performs light emission control of the light emitting element 43, and notifies a user of various information.
  • the determination unit 38 performs various determination processes in stress degree analysis control described later.
  • FIG. 8 is a flowchart illustrating a power-on process routine executed by the control unit 30 in the first embodiment.
  • FIG. 9 is a flowchart illustrating a main process routine executed by the control unit 30 after the power-on process routine in the first embodiment is completed.
  • FIG. 10 is a flowchart illustrating a feedback processing routine executed by the control unit 30 after the main processing routine in the first embodiment is completed.
  • the various processing routines shown in FIGS. 8 to 10 can be realized by the processor of the control unit 30 executing various programs stored in the storage unit 35.
  • FIG. 11 is a diagram conceptually showing a time transition of the amount of mental sweating Qs when the control unit 30 of the aspirator 1 executes stress degree analysis control.
  • the horizontal axis indicates time T
  • the vertical axis indicates mental sweating amount Qs.
  • the power-on process is executed in the power-on process interval corresponding to the interval from time T0 to T1.
  • main processing is executed in the main processing interval corresponding to the time period T1 to T2
  • feedback processing is executed in the feedback processing interval corresponding to the time period T2 to T3.
  • the power-on process is a control flow in which the control unit 30 starts executing when the power switch unit 32 is switched from the off state to the on state.
  • the control unit 30 starts executing when the power switch unit 32 is switched from the off state to the on state.
  • the setting unit 36 of the control unit 30 is stored in the storage unit 35 in step S101.
  • the initialization process is performed to initialize (reset) the previous setting information.
  • the previous setting information here is the number of suctions stored in the storage unit 35 when the stress level analysis control is executed when the aspirator 1 is activated last time (when switched from the off state to the on state).
  • the reference number perspiration data, the reference air pressure value data regarding the reference air pressure value, the initial reference perspiration amount data regarding the initial reference perspiration amount Qsb, the determination perspiration amount data regarding the determination perspiration amount Qsj, and the like are reset (deleted).
  • the atmospheric pressure reference value data, the initial reference sweating amount data, and the determination sweating amount data will be described later.
  • the setting unit 36 of the control unit 30 acquires the atmospheric pressure reference value data and the initial reference sweating amount data regarding the current stress degree analysis control, and stores them in the storage unit 35.
  • the atmospheric pressure acquisition unit 31 of the control unit 30 acquires atmospheric pressure data in the wooden casing 13 based on the output signal of the atmospheric pressure sensor 40.
  • a predetermined cycle for example, The average value obtained by averaging the atmospheric pressure data acquired every 100 ms is set as the atmospheric pressure reference value.
  • the setting unit 36 causes the storage unit 35 to store the atmospheric pressure reference value data related to the atmospheric pressure reference value set in this step.
  • air pressure reference value acquired as mentioned above is the atmospheric
  • the sweating amount measuring unit 33 of the control unit 30 performs the mental sweating amount of the user every predetermined cycle (for example, 100 ms) over a predetermined data acquisition period (for example, 3 seconds). Measure.
  • the sweating amount measuring unit 33 issues a command to the power supply 23 to cause the power supply 23 to supply power to the electrodes 26 and 27 for measuring the amount of mental sweating.
  • the mental sweating amount measuring electrodes 26 and 27 are positioned such that the finger (for example, the index finger and the middle finger) of the user holding the aspirator 1 touches the mental sweating amount measuring electrodes 26 and 27. Is arranged.
  • the sweating amount measuring unit 33 sends a weak sweating amount measuring current to the skin of the finger of the user holding the aspirator 1 from the mental sweating amount measuring electrodes 26 and 27, and the mental sweating amount measuring electrode 26, The mental sweating amount of the user can be measured based on the response value corresponding to the skin conductance output from the user 27.
  • the sweating amount measuring unit 33 of the control unit 30 has a plurality of mentalities related to the mental sweating amount acquired every predetermined cycle (for example, 100 ms) over a predetermined data acquisition period (for example, 3 seconds). An average value obtained by averaging the sweating amount data is acquired as the initial reference sweating amount Qsb. Then, the setting unit 36 of the control unit 30 causes the storage unit 35 to store initial reference sweating amount data regarding the initial reference sweating amount Qsb.
  • the initial reference sweating amount Qsb acquired in this step reflects the state of the user in the non-suction state (non-suction section) in which the user is not sucking the mouthpiece 11 at the start of the stress level analysis control. This is the reference value for the amount of mental sweating.
  • the process of step S103 and the process of step S102 mentioned above may be performed simultaneously, and may be performed by changing the order.
  • step S104 a start notification for notifying (notifying) the user of the start of stress level analysis control is performed.
  • the motor control unit 34 of the control unit 30 supplies power from the power source 23 to the vibration motor 41 to operate (drive) the vibration motor 41.
  • the user can be informed of the start of the stress degree analysis control by driving the vibration motor 41 to vibrate the wooden casing 13 and allowing the user to sense the vibration.
  • the start notification may be performed by the light emission of the light emitting element 43.
  • the light emission control unit 37 supplies power from the power source 23 to the light emitting element 43 and causes the light emitting element 43 to emit light with a predetermined light emission pattern.
  • the start notification notified to the user in this step can also be used as a notification for notifying (notifying) the user that the acquisition of the initial reference sweating amount Qsb has been completed.
  • the vibration pattern when vibrating the vibration motor 41 can be changed as appropriate.
  • a state in which the vibration motor 41 is driven and a state in which the drive is suspended may be alternately repeated.
  • the drive time of the vibration motor 41 may be 200 ms
  • the pause time may be 400 ms
  • the drive and pause may be repeated a plurality of sets (for example, twice).
  • both may be performed simultaneously or may be performed with a time shift.
  • the order in which the vibration notification and the light emission notification are performed can be appropriately switched.
  • the mental sweating amount Qs gradually decreases from time T1 to time T2. This is because the user repeatedly repeats deep breathing in the main processing section as the suction operation in which the user sucks the suction device 1 is repeatedly performed as described later, and the stress level of the user is reduced. It is based on leading to the fall of the amount of mental sweating Qs to reflect. It is known that the amount of mental sweating from the skin surface increases when the sympathetic nervous system is tense. In addition, parasympathetic nerves dominate when the body and mind are relaxed by taking deep breaths, and the amount of mental sweating is reduced.
  • the stress level analysis control in this embodiment, it is estimated that the increase / reduction in stress correlates with the tension / relaxation of the sympathetic nervous system, and the mentality that is correlated with the tension / relaxation of the sympathetic nervous system.
  • the stress level of the user is analyzed.
  • the suction device 1 which concerns on this embodiment, it has the wooden housing
  • the mental sweating amount Qs is the initial reference sweating amount Qsb set in the power-on process.
  • the user is awakened by applying a minute stress to the user when the mental sweat rate Qs is reduced to the predetermined low stress sweat rate Qsb2 at time T2.
  • the awakening process is performed, the main process is terminated, and the feedback process is started.
  • the low stress perspiration amount Qsb2 is set to a value lower than the initial reference perspiration amount Qsb by a predetermined first reference perspiration reduction amount ⁇ Qsd1.
  • the low stress sweating amount Qsb2 is such that if the mental sweating amount Qs is reduced by the first reference sweating reduction amount ⁇ Qsd1 from the initial reference sweating amount Qsb, the user's sympathetic nervous system tension is alleviated and the stress is sufficiently increased. It is set as a threshold value that can be determined to have been eliminated.
  • the first reference sweating reduction amount ⁇ Qsd1 may be set as a fixed value or may be changed by the user.
  • the mental sweating amount Qs gradually increases after that.
  • a slight stress is given to the user by giving a stimulus to the skin of the user, and the awakening level of the user is slightly increased.
  • the amount of mental sweating Qs at time T2 corresponds to the amount of low-stress sweating Qsb2, and the amount of mental sweating Qs is increased from time T2 by applying a stimulus related to arousal processing to the user at time T2. It gradually rises toward T3. Then, the feedback process ends when the predetermined awakening completion perspiration amount Qsb3 is reached at time T3.
  • the awakening completion sweat amount Qsb3 is set to a value larger than the low stress sweat amount Qsb2 by a predetermined first reference sweat rise amount ⁇ Qsu1.
  • the first reference sweating increase amount ⁇ Qsu1 is set to a smaller value than the first reference sweating reduction amount ⁇ Qsd1.
  • the first reference sweating increase amount ⁇ Qsu1 is such that if the mental sweating amount Qs increases from the low stress sweating amount Qsb2 by the first reference sweating increase amount ⁇ Qsu1, the user maintains a low stress state and is sufficiently awakened. It can be set as a threshold value that can be determined to be in the state.
  • the first reference sweating increase amount ⁇ Qsu1 may be set as a fixed value or may be changed by the user.
  • step S202 the determination unit 38 determines whether or not the user is currently performing the suction operation of the mouthpiece 11 based on the atmospheric pressure data acquired in step S201.
  • the number-of-suction data stored in the storage unit 35 is updated. Since the number-of-suction data stored in the storage unit 35 is once reset in step S101 of the power-on process, the number-of-suction data stored in the storage unit 35 is reset in this step. A value obtained by integrating the number of times of suction since the start is stored in the storage unit 35. Then, after updating the number-of-suctions data in the storage unit 35, the process proceeds to step S203.
  • step S202 when the determination unit 38 determines that the suction state is not performed, the process proceeds to step S209. The processing content of step S209 will be described later.
  • step S203 the sweating amount measuring unit 33 measures the mental sweating amount Qs of the user. That is, in this step, the mental sweating amount Qs of the user during the suction operation is measured.
  • step S103 of the power-on process shown in FIG. 8 a weak sweating measurement current is applied from the mental sweating measurement electrodes 26 and 27 to the finger skin of the user holding the suction device 1. The skin conductance is measured by flowing, and the mental sweating amount Qs is obtained based on the measured value of the skin conductance.
  • the mental sweating amount Qs of the user in the suction state is measured, it is possible to reduce the body movement artifact which is a change (noise) in the apparent mental sweating amount due to the body movement. it can.
  • the mental sweating amount Qs is measured when it is detected that the user is performing a suction operation. However, the suction operation is continued for a certain time or more. It is also possible to measure the amount of mental sweating Qs only after the detection of. In this case, when the determination unit 38 obtains the duration of the suction operation by the user from the time measuring unit 39 and determines that the duration of the suction operation exceeds a predetermined threshold, the sweating amount measurement unit 33 performs the mental sweating. The amount Qs may be measured.
  • step S204 the determination unit 38 determines the most recently acquired measurement value of mental sweating amount (hereinafter referred to as “latest measurement value”) and the determination sweating amount Qsj stored in the storage unit 35.
  • the amount of change in sweating ⁇ Qs which is the difference from The determination sweating amount Qsj is a determination sweating amount used when comparing the amount of sweating with the low stress sweating amount Qsb2 in a determination step to be described later.
  • the mental sweating amount is gradually increased. This is the amount of sweating that reflects the user's condition with a decrease.
  • the determination unit 38 determines whether or not the calculated sweating change amount ⁇ Qs is less than an allowable change amount ⁇ Qsa (for example, 10 [mg / cm 2 / min]) that is a predetermined threshold value. If the sweating change amount ⁇ Qs is less than the allowable change amount ⁇ Qsa, the process proceeds to step S205, and the setting unit 36 relates to the determination sweating amount Qsj stored in the storage unit 35 using the latest measurement value. Updates perspiration data for judgment. In step S ⁇ b> 205, the latest measured value is adopted as the determination sweating amount Qsj and stored in the storage unit 35. When the process of step S205 ends, the process proceeds to step S206.
  • an allowable change amount ⁇ Qsa for example, 10 [mg / cm 2 / min]
  • step S204 the process of step S204 is omitted and the process proceeds to step S205, and the first measurement value related to the mental sweating amount is stored in the storage unit 35 as the determination sweating amount Qsj.
  • step S206 the process proceeds to step S206.
  • step S204 If the perspiration change amount ⁇ Qs is equal to or greater than the permissible change amount ⁇ Qsa in step S204, the determination perspiration amount data related to the determination perspiration amount Qsj stored in the storage unit 35 is not updated and the step is performed as it is.
  • the process proceeds to S206.
  • the perspiration change amount ⁇ Qs is equal to or greater than the permissible change amount ⁇ Qsa, that is, the latest measurement value acquired most recently is excessively changed with respect to the measurement value acquired before the latest measurement value. In such a case, it is determined that the influence of the body movement artifact on the latest measurement value is large, and the latest measurement value is not adopted as the determination sweating amount Qsj.
  • step S206 the determination unit 38 determines whether the determination sweating amount Qsj stored in the storage unit 35 is less than the low stress sweating amount Qsb2 described in FIG.
  • the low stress perspiration amount Qsb2 is set to a value lower by the first reference perspiration reduction amount ⁇ Qsd1 than the initial reference perspiration amount Qsb set in step S103 of the power-on process. If it is determined in step S206 that the determination sweating amount Qsj is less than the low stress sweating amount Qsb2, the process proceeds to step S207, and if it is determined that the determination sweating amount Qsj is equal to or greater than the low stress sweating amount Qsb2. Advances to step S209.
  • step S207 the motor control unit 34 supplies the electric power from the power source 23 to the vibration motor 41 and operates (drives) the vibration motor 41 to execute the awakening process.
  • the awakening process is a process of raising the user's arousal level by giving the user a vibration stimulus (minute stress) of the wooden casing 13 resulting from the driving of the vibration motor 41.
  • the drive pattern of the vibration motor 41 in the wake-up process is not particularly limited. For example, the wake-up level of the user may be increased by driving the vibration motor 41 for 1000 ms.
  • step S208 the light emission control unit 37 performs control to supply power from the power source 23 to the light emitting element 43, and causes the light emitting element 43 to emit light with a predetermined light emission pattern, thereby notifying the user of the completion of stress relief.
  • Notification (notification).
  • This stress release completion notification is a notification for notifying the user that the user's sympathetic nervous system has been relaxed and the stress has been sufficiently eliminated.
  • the light emission pattern of the light emitting element 43 in this step may be set to a different light emission pattern from that in the case where the user is notified of the start notification in step S105 of the power-on process described above.
  • step S ⁇ b> 209 the determination unit 38 acquires an elapsed time Tp ⁇ b> 1 from the start of the main process from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time Tp1 exceeds a predetermined first timeout time Tsh1.
  • the first timeout time Tsh1 may be set as a fixed value (for example, about 180 seconds), or the setting may be changed by the user.
  • step S209 If it is determined in step S209 that the elapsed time Tp1 has not passed the first timeout time Tsh1, the process returns to step S201, and the processes of steps S201 to S206 are repeated. On the other hand, if it is determined in step S209 that the elapsed time Tp1 has passed the first timeout time Tsh1, the process proceeds to step S210, and the awakening process is performed as in step S207. Then, when the awakening process in step S210 ends, the process proceeds to step S211.
  • step S211 the light emission control unit 37 causes the light emitting element 43 to emit light with a predetermined light emission pattern, thereby notifying (notifying) the user of a time-out notification that time-out has occurred.
  • the light emission pattern of the light emitting element 43 in this step may be set to a light emission pattern different from the start notification at the time of the power-on process described above or the stress release completion notification.
  • step S301 the perspiration amount measurement unit 33 measures the mental perspiration amount Qs of the user.
  • the measurement of the mental sweating amount Qs is the same as the processing content in step S203 of the main processing.
  • step S302 the determination part 38 determines whether the mental sweating amount Qs measured by step S301 exceeds the awakening completion sweating amount Qsb3.
  • the awakening completion sweat amount Qsb3 depends on whether the mental sweat amount Qs has decreased to the low stress sweat amount Qsb2 in the main processing routine described above or the main processing routine is terminated due to a timeout. Are set to different values.
  • the awakening completion sweating amount Qsb3 is more than the low stress sweating amount Qsb2. It is set as a large value by a predetermined first reference sweating increase amount ⁇ Qsu1.
  • the awakening completion sweating amount Qsb3 is determined at the end of the main processing routine.
  • a predetermined second reference sweating increase amount ⁇ Qsu2 is set higher than the determination sweating amount Qsj.
  • the second reference sweat increase amount ⁇ Qsu2 is set to a smaller value than the first reference sweat increase amount ⁇ Qsu1.
  • step S302 If it is determined in step S302 that the mental sweating amount Qs is equal to or less than the awakening completion sweating amount Qsb3, the process proceeds to step S303, and it is determined that the mental sweating amount Qs exceeds the awakening completion sweating amount Qsb3. Then, the process proceeds to step S305.
  • step S ⁇ b> 303 the determination unit 38 acquires the elapsed time Tp ⁇ b> 2 from when the feedback process is started from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time Tp2 exceeds a predetermined second timeout time Tsh2.
  • the second timeout time Tsh2 may be set as a fixed value (for example, about 30 seconds), or the setting may be changed by the user.
  • step S303 If it is determined in step S303 that the elapsed time Tp2 has not passed the second timeout time Tsh2, the process returns to step S301, and the processes in steps S301 to S302 are repeated. On the other hand, if it is determined in step S303 that the elapsed time Tp2 has exceeded the second timeout time Tsh2, the process proceeds to step S304.
  • step S304 a time-out notification is sent to inform the user that time-out has occurred.
  • the timeout notification may be a vibration notification in which the wooden casing 13 is vibrated by driving the motor control unit 34, or may be a light emission notification by light emission of the light emitting element 43 that is used instead of or in combination. Then, when the process of step S304 ends, the process proceeds to step S306.
  • step S305 the user is notified of completion.
  • the completion notification is a notification for notifying the user that the user is in a state of being sufficiently awake while maintaining a low stress state.
  • step S306 the power switch 32 is switched from the on state to the off state, the feedback process is completed, and the power of the suction device 1 is turned off.
  • the control unit 30 performs stress degree analysis control, so that the user's stress is based on the mental sweating amount information related to the user's mental sweating amount. Since the degree is analyzed and the result of the analysis is notified to the user, the user can easily grasp whether or not the stress has been sufficiently eliminated by repeating the suction operation of the suction device 1.
  • the mental sweating amount Qs of the user is repeatedly measured (for example, every 100 ms) by the control unit 30 until a timeout occurs after the main processing routine starts, and the mental sweating amount. It is possible to accurately determine whether or not Qs has been reduced to the low stress perspiration amount Qsb2 and the stress has been sufficiently eliminated. Then, when it is confirmed that the mental sweating amount Qs has decreased to the low stress sweating amount Qsb2, the user is dared to give a slight stimulus (stress) and execute the awakening process for raising the arousal level. Thus, the user can be awakened not in a state where the user's consciousness is blurred, but in a state where the consciousness is refreshed.
  • the awakening process is not essential in the stress level analysis control in this embodiment, and may be omitted as appropriate.
  • step S206 of the main processing routine shown in FIG. 9 it is determined that the determination sweating amount Qsj (user's mental sweating amount Qs) stored in the storage unit 35 is less than the low stress sweating amount Qsb2.
  • the process may proceed to step S208 without performing the awakening process, and the user may be notified of the stress release completion notification.
  • the process may proceed to step S211 without performing the awakening process and notify the user of a time-out notification.
  • the vibration stimulus by vibrating the wooden casing 13 by driving the vibration motor 41 is applied to the user, but a minute stress may be applied to the user.
  • Other methods may be employed if possible.
  • the user may be stimulated by causing the light emitting element 43 to emit light, and may be awakened.
  • the suction device 1 may be provided with the audio
  • the suction device 1 in this embodiment does not need to be provided with the light emitting element 43, and various notifications performed using the light emitting element 43 in the stress degree analysis control described above are by driving the vibration motor 41. It can be replaced by vibration of the wooden casing 13.
  • the aspirator 1 in the present embodiment since the user measures the amount of mental sweating only during the suction operation of the aspirator 1 in the main processing routine related to the stress level analysis control, It is possible to reduce the influence of the body motion artifact, which is a change in the apparent amount of mental sweating due to body movement, and to accurately grasp the user's mental sweating amount.
  • the mental sweating amount may be measured during the non-suction operation.
  • FIG. 12 is a block diagram of an aspirator 1A according to the second embodiment.
  • the suction device 1A according to the second embodiment the same components as those of the suction device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the suction device 1 ⁇ / b> A includes a pressure-sensitive sensor 44.
  • the pressure-sensitive sensor 44 is provided in an exposed state on the wooden housing 13 and detects the pressure when the user grips the suction device 1 relatively strongly.
  • the controller 30 ⁇ / b> A of the suction device 1 ⁇ / b> A includes a pressure detector 31 ⁇ / b> A that acquires an output signal of the pressure sensor 44.
  • the suction device 1A is different from the suction device 1 according to the first embodiment in that it does not include the atmospheric pressure sensor 40, and other configurations are the same as those of the suction device 1 according to the first embodiment.
  • the control unit 30A executes the stress level analysis control
  • the grip pressure at which the user grips the wooden casing 13 is detected based on the output signal from the pressure sensor 44. If so, measure the amount of mental sweating of the user.
  • FIG. 13 is a flowchart showing a power-on processing routine according to the second embodiment.
  • FIG. 14 is a flowchart illustrating a main processing routine according to the second embodiment. The following description will focus on the processing contents different from the power-on processing routine and the main processing routine described in FIGS. 9 and 10 of the first embodiment.
  • step S102 In the power-on processing routine shown in FIG. 13, the processing content of step S102 shown in FIG. 9 is omitted. That is, when the control unit 30A starts the power-on processing routine triggered by the power switch unit 32 switching from the off state to the on state, the initialization processing of the previous setting information stored in the storage unit 35 is performed in step S101. In step S103, the perspiration amount measuring unit 33 acquires the initial reference perspiration amount Qsb. In step S104, after notifying the user of the start notification for notifying the start of the stress level analysis control, the power-on process routine is terminated, and the main process routine shown in FIG. 14 is started.
  • the power switch unit 32 when the power switch unit 32 is in the off state and the pressure detection unit 31A detects the grip pressure of the wooden casing 13 by the user based on the output data of the pressure sensor 44, the power switch unit 32 is turned on from the off state. Switch to state.
  • step S402 the determination unit determines whether or not the user is holding the aspirator 1 (wooden casing 13) based on the output data of the pressure-sensitive sensor 44 acquired by the pressure detection unit 31A. To do. If it is determined in this step that the user is holding the wooden casing 13, the process proceeds to step S203. On the other hand, if it is determined that the user is not holding the wooden casing 13, the process proceeds to step S209.
  • steps S203 to S211 is the same as the main process routine described with reference to FIG.
  • step S402 the amount of mental sweating Qs is measured when the state in which the wooden casing 13 is gripped by the user is detected.
  • the mental sweating amount Qs may be measured only after the continuation is detected.
  • the determination unit 38 acquires the duration of the gripping state of the wooden housing 13 by the user from the time measuring unit 39, and determines that the duration of the gripping state exceeds a predetermined threshold, the sweating amount measurement unit 33 may measure the amount of mental sweating Qs.
  • the feedback process executed after the end of the main process routine is the same as that described in the first embodiment.
  • FIG. 15 is a diagram illustrating an aspirator 1B according to a modification.
  • the mouthpiece receptacle 12 in the mouthpiece unit 10 is provided with a liquid holding recess 123.
  • a liquid fragrance such as aroma oil can be dropped into the liquid holding recess 123 to hold it.
  • the user can suck
  • the suction device 1B accommodates a flavor generation source (for example, a fragrance or a tobacco source) that releases a flavor component in the wooden casing 13, and the flavor generation source is used when the user sucks the suction device 1B.
  • the flavor component released from the air may be mixed with the air flowing through the air passage of the wooden casing 13 and supplied from the mouthpiece hole 112 into the oral cavity.
  • the aspirator 1B heats a flavor generation source (for example, a fragrance or a tobacco source) accommodated in the accommodating portion in the wooden casing 13, and promotes the release of the flavor component from the flavor generation source.
  • You may have a heater (not shown).
  • control unit 30 of the aspirator 1 ⁇ / b> B may heat the flavor generation source with a heater and urge the release of the flavor component when the suction (puff) operation by the user is detected.
  • inhalation of the inhaler 1B can be supplied with inhalation air, and a further relaxation feeling can be provided to a user.
  • the process described as the operation can be executed by a computer.
  • the computer executes the above-described processes by executing a program using hardware resources such as a processor (CPU), a memory, and an input / output circuit. Specifically, each process is executed by the processor outputting data to be processed to a memory or an input / output circuit or the like.
  • FIG. 16 is a block diagram of the aspirator 1 according to the third embodiment.
  • the hardware configuration of the aspirator 1 according to the third embodiment is the same as that of the aspirator 1 according to the first embodiment. Below, it demonstrates centering on the part different from the suction device 1 in Embodiment 1 among the suction devices 1 in Embodiment 3, and omits detailed description by attaching
  • the aspirator 1 according to the third embodiment also includes a control unit 30 that is a control unit that controls the aspirator 1.
  • the control unit 30 may be a microcomputer having a processor, a memory, and the like, for example.
  • the control unit 30 includes an air pressure acquisition unit 31, a power switch unit 32, a sweating amount measurement unit 33, a motor control unit 34, a setting unit 36, a light emission control unit 37, a determination unit 38, a time measurement unit 39,
  • Each function unit includes a prediction unit 50, a processing unit 51, and the like.
  • the control unit 30 includes a storage unit 35 in which various programs to be executed by the processor of the control unit 30 are stored.
  • the storage unit 35 is, for example, a nonvolatile memory, and may be a main storage device or an auxiliary storage device included in the control unit 30.
  • Each functional unit described above is realized by a processor (CPU) included in the control unit 30 operating according to a predetermined program.
  • control unit 30 executes each process in each functional unit by executing a program using hardware resources such as a processor (CPU), a memory, and an input / output circuit. Specifically, each process in each functional unit is executed by the processor outputting data to be processed to a memory or an input / output circuit or the like.
  • hardware resources such as a processor (CPU), a memory, and an input / output circuit.
  • the storage unit 35 stores a sweating amount minimum value prediction model 351 and a sweating amount maximum value prediction model 352 used when the main process of the stress degree analysis control executed by the control unit 30 is executed. Details of the sweating amount minimum value prediction model 351 and the sweating amount maximum value prediction model 352 will be described later.
  • the low stress perspiration amount Qsb2 which is a determination threshold for determining whether or not the user has entered a low stress state, is set as an initial reference. Since the first reference sweating reduction amount ⁇ Qsd1 is set to be lower than the sweating amount Qsb, the degree of mental sweating and the fluctuation characteristics of mental sweating that change when receiving mental stimuli such as stress When there is a large variation due to the difference, it is assumed that it is difficult to appropriately determine the mental sweating state of the user due to the influence of the individual difference.
  • the determination threshold used for estimating the mental sweating state of the user is set based on a novel algorithm that is not easily influenced by individual differences for each user. It is characterized by that.
  • the details of the stress degree analysis control in the aspirator 1 according to the third embodiment will be described.
  • the aspirator 1 including the control unit 30 that executes the stress level analysis control is an example of a sweating state determination device according to the present invention.
  • control unit 30 performs each process such as a power-on process and a main process, as in the above-described embodiment.
  • FIG. 17 is a diagram illustrating the transition of the amount of mental sweating Qs in the user when the aspirator 1 according to the third embodiment executes the stress level analysis control.
  • the horizontal axis in FIG. 17 indicates time, and the vertical axis indicates the mental sweating amount Qs of the user.
  • a section from time Ta to Tb is a power-on process period (calibration period) ⁇ Tk in which the power-on process is executed.
  • the power-on process is started by the control unit 30 when the power switch unit 32 is switched from the off state to the on state.
  • the perspiration amount measuring unit 33 of the control unit 30 extends over the power-on process period ⁇ Tk.
  • the mental sweating amount Qs of the user is measured every predetermined sampling period (here, for example, 500 ms).
  • FIG. 17 shows a case where the power-on processing period ⁇ Tk is set to 5 seconds.
  • the power switch unit 32 is in the off state when the air pressure acquisition unit 31 detects the start of the first suction (puff) operation by the user when the power switch unit 32 is in the off state. Switches from on to on.
  • the sweating amount measuring unit 33 issues a command to the power source 23 to supply power from the power source 23 to the electrodes 26 and 27 for mental sweating amount measurement.
  • the sweating amount measuring unit 33 sends a weak sweating amount measuring current to the skin of the finger of the user holding the aspirator 1 from the mental sweating amount measuring electrodes 26 and 27, and the mental sweating amount measuring electrode 26,
  • the mental sweating amount of the user can be measured based on the output value corresponding to the skin conductance output from 27.
  • the mental sweating amount of the user acquired at every predetermined sampling period is stored in the storage unit 35.
  • the sweating amount measuring unit 33 can measure the mental sweating amount of the user at every predetermined sampling period by acquiring the elapsed time from the start of the power-on process from the time measuring unit 39.
  • the mental sweating amount Qs of the user shown in FIG. 17 is an output value corresponding to the skin conductance output by the mental sweating amount measuring electrodes 26 and 27.
  • the unit of the amount of mental sweating Qs shown in FIG. 17 is micro Siemens [ ⁇ S], which correlates with the reciprocal of electrical resistance.
  • the output value [unit: ⁇ S] output from the electrodes 26 and 27 for measuring the amount of mental sweat and the amount of moisture of sweat generated per unit time per unit area of the skin [unit: mg / cm 2 / min] Is a function
  • the sweating amount as the moisture content of sweat can be uniquely determined from the output values output from the electrodes 26 and 27 for mental sweating amount measurement. Therefore, in this specification, “the amount of mental sweating of the user” refers to a substantially equivalent case in both [ ⁇ S] and [mg / cm 2 / min].
  • the control unit 30 ends the power-on process.
  • the control unit 30 accesses the storage unit 35 and sets the maximum value of the mental sweating amount Qs of the user acquired during the power-on processing period ⁇ Tk to the storage unit 35 as the initial reference sweating amount Qs # max.
  • the control unit 30 performs a suction start notification that prompts the user to start suction of the suction device 1.
  • the motor control unit 34 of the control unit 30 supplies power from the power source 23 to the vibration motor 41 to operate (drive) the vibration motor 41.
  • the vibration motor 41 By driving the vibration motor 41, the wooden casing 13 is vibrated, and the user can be notified of the suction start notification by sensing the vibration. Further, instead of using the notification due to the vibration of the wooden casing 13 or in combination, the start notification may be performed by the light emission of the light emitting element 43.
  • the light emission control unit 37 supplies power from the power source 23 to the light emitting element 43 and causes the light emitting element 43 to emit light with a predetermined light emission pattern.
  • the control unit 30 determines whether the user is sucking the mouthpiece 11 or not sucking at every predetermined sampling period. The mental sweating amount Qs of the user is measured.
  • the section of time Tb to Tc shown in FIG. 17 is a prediction feature quantity measurement period ⁇ Tmp in which the control unit 30 executes the prediction feature quantity measurement process. Further, at time Tc, which is the end time of the prediction feature quantity measurement period ⁇ Tmp, the control unit 30 performs min-max prediction processing. Then, in the perspiration amount determination period ⁇ Tmj corresponding to the period of time Tc to Td in FIG. 17, the control unit 30 causes the user to be in a low stress state because the user's mental perspiration amount Qs is less than the determination threshold value. A sweating amount determination process is performed to determine whether or not it has become. Details of the above-described prediction feature quantity measurement process, min-max prediction process, and sweating amount determination process will be described later, but the main process is configured including these processes.
  • the length of the prediction feature quantity measurement period ⁇ Tmp is not particularly limited, but the following describes an example in which the prediction feature quantity measurement period ⁇ Tmp is set to 100 seconds.
  • the control unit 30 determines whether or not the user's mental sweating amount Qs is less than the determination threshold value every predetermined sampling period (here, 500 ms is illustrative). The part 38 determines. When it is confirmed that the mental sweating amount Qs of the user is less than the threshold for determination, it is determined that the user is in a low stress state in which the tension of the sympathetic nervous system is relieved, and the main process is terminated. To do.
  • the main process (perspiration amount determination process) is forcibly terminated as a time-out.
  • the length of the first timeout period is not particularly limited, but in the following, an example in which the first timeout period is 180 seconds will be described.
  • the prediction feature quantity measurement period ⁇ Tmp is set as a period shorter than the first timeout time ⁇ Tto.
  • the time Td at which the first timeout time ⁇ Tto has elapsed from the time Tb at which the main process (prediction feature value measurement process) is started (first timeout period) is the maximum (longest) time at which the main process is continued. This corresponds to a period, and is hereinafter referred to as “main processing continuation maximum period ⁇ Tmax”.
  • the mental sweating amount of the user is continuously measured over the main processing continuation maximum period ⁇ Tmax (corresponding to the “determination target period” in the present invention), and the measured mental sweating amount is determined.
  • the mental sweating state of the user is determined based on the comparison result (magnitude relationship) with the threshold value.
  • FIG. 18 is a diagram illustrating processing contents of the main processing according to the third embodiment. Each process illustrated in FIG. 18 is realized by the processor of the control unit 30 executing various programs stored in the storage unit 35.
  • the main process in this embodiment includes a prediction feature quantity measurement process in step S30, a min-max prediction process in step S40, and a sweating amount determination process in step S50.
  • the main process including the prediction feature quantity measurement process, the min-max prediction process, and the sweating amount determination process is continuously measured over the main process continuous maximum period ⁇ Tmax (determination target period).
  • ⁇ Tmax determination target period
  • the control unit 30 performs the above-described prediction feature quantity measurement period ⁇ Tmp (100 seconds) every predetermined sampling period (here, 500 ms is exemplified).
  • the mental sweating amount Qs of the user is measured.
  • the sweating amount measurement unit 33 of the control unit 30 issues a command to the power source 23 as in the power-on process, and the mental sweating amount measurement electrodes 26 and 27 are instructed. This is performed by supplying power from the power source 23 and acquiring output values output from the electrodes 26 and 27 for mental sweating measurement.
  • Perspiration amount measuring unit 33 by acquiring the elapsed time T i from the start of the main processing (prediction feature quantity measurement process) from the clock unit 39, mental sweating of the user at each predetermined sampling period Can be measured.
  • the determination unit 38 determines whether the user is currently performing the suction operation on the mouthpiece 11 at every sampling period (here, 500 ms is exemplified). Only when the determination unit 38 determines that the suction operation is being performed, the sweating amount measurement unit 33 measures the mental sweating amount Qs of the user.
  • the processing unit 51 is a functional unit that performs various types of processing on the measured value of the mental sweating amount Qs of the user measured in the stress degree analysis control. Whether or not the user is currently performing the suction operation can be determined based on the detection result of the suction operation (puff operation) by the atmospheric pressure acquisition unit 31.
  • the processing unit 51 performs a calculation process of dividing the measured value of the mental sweating amount Qs of the user measured by the sweating amount measurement unit 33 by the initial reference sweating amount G # max acquired during the power-on process.
  • the corrected amount of perspiration measurement G i (i 0,0.5,1.0, ⁇ 99.5) when calculating the in order to smooth the time series data of the measured value of mental sweating amount Qs of the user Then, a moving average process is performed on the measurement value of the mental sweating amount Qs, and a corrected sweating measurement value is obtained by performing a calculation process of dividing the mental sweating amount Qs after the moving average process by the initial reference sweating amount G # max. G may be obtained.
  • the subscript notation i indicates the elapsed time from the start of the main process.
  • the prediction feature quantity measurement period ⁇ Tmp is set to 100 seconds, and the mental sweating measurement period is set to 500 ms.
  • the value of the corrected amount of sweat measurements G 0 in the main processing is started (when the predicted feature quantity measurement processing starts) is set to 1.
  • the processing unit 51 stores the corrected perspiration amount measurement value G at the previous sampling as the corrected perspiration amount measurement value G at the current sampling in the perspiration amount measurement data Dg.
  • G 5.0 is stored in the perspiration amount measurement data Dg as the same value as G 4.5 corresponding to the elapsed time T 4.5 .
  • the user's mental sweating amount Qs is measured only in the suction operation state during the prediction feature amount measurement process, a change in apparent mental sweating amount due to body movement (noise). It is possible to reduce the body motion artifact.
  • the mental sweating amount Qs of the user gradually decreases.
  • the suction operation of the suction device 1 by the user is repeatedly performed, the user substantially repeats deep breathing, which leads to a decrease in the amount of mental sweating Qs that reflects the degree of stress of the user. It depends.
  • the control unit 30 ends the prediction feature amount measurement processing, and performs the min-max prediction processing in step S40 in FIG.
  • the elapsed time T i (i 0, 0.5, 1.0,... 99.5) from the start of the main processing and the perspiration amount measurement data Dg stored in the storage unit 35.
  • the minimum value that minimizes the user's mental sweating amount and the maximum mental sweating amount during the main processing continuation maximum period ⁇ Tmax (180 seconds). This is a process for predicting the maximum value.
  • the perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction model 352 will be described.
  • the sweating amount minimum value prediction model 351 includes the transition of the user's mental sweating amount that changes over time in the prediction feature amount measurement period ⁇ Tmp (100 seconds) and the user in the main processing continuation maximum period ⁇ Tmax (180 seconds). It is a prediction model which shows the relationship with the minimum value of the amount of mental sweating. More specifically, the sweating amount minimum value prediction model 351 is a prediction feature obtained by causing a plurality (a large number) of subjects to use the aspirator 1 in advance and executing stress degree analysis control (main processing).
  • a plurality (a large number) of sweat amounts which are data in which the transition of the measured value of the subject's mental sweat amount in the amount measurement period ⁇ Tmp is associated with the minimum value of the subject's mental sweat amount in the main processing continuation maximum period ⁇ Tmax
  • the transition of the user's mental sweating amount during the prediction feature amount measurement period ⁇ Tmp and the minimum value of the user's mental sweating amount during the main processing continuation maximum period ⁇ Tmax It is a prediction model that has learned the relationship with
  • the sweating amount maximum value prediction model 352 includes the transition of the user's mental sweating amount that changes with time in the prediction feature amount measurement period ⁇ Tmp (100 seconds) and the main processing continuation maximum period ⁇ Tmax (180 seconds). It is a prediction model which shows the relationship with the maximum value of a user's mental sweating amount. More specifically, the sweating amount maximum value prediction model 352 is a prediction feature obtained by causing a plurality (a large number) of subjects to use the aspirator 1 in advance and executing stress degree analysis control (main processing).
  • the sweating amount minimum value prediction model 351 and the sweating amount maximum value prediction model 352 are constructed as linear models.
  • a linear model LASSO etc. can be used suitably, for example.
  • the perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction model 352 are not limited to LASSO, and a non-linear model may be used.
  • the prediction unit 50 corrects the measured sweating amount G, which is an example of the measured value of the mental sweating amount for the user measured over the prediction feature amount measurement period ⁇ Tmp from the start of the main processing.
  • the usage in the main processing continuation maximum period ⁇ Tmax is used. The minimum value of mental sweating of the user and the maximum value of mental sweating of the user are predicted.
  • the minimum value of the mental sweating amount of the user in the main processing continuation maximum period ⁇ Tmax obtained by the prediction using the sweating amount minimum value prediction model 351 in this way is referred to as “minimum predicted value Gpmin”.
  • the maximum value of the user's mental sweating amount during the main processing continuation maximum period ⁇ Tmax obtained by the prediction using the sweating amount maximum value prediction model 352 is referred to as “maximum predicted value Gpmax”.
  • the sweating amount minimum value prediction model 351 predicts the minimum predicted value Gpmin by the following equation (1).
  • Gpmin a 0 ⁇ G 0 + a 0.5 ⁇ G 0.5 + a 1.0 ⁇ G 1.0 + ... + a 99.5 ⁇ G 99.5
  • the sweating amount maximum value prediction model 352 predicts the maximum predicted value Gpmax by the following equation (2).
  • Gpmax b 0 ⁇ G 0 + b 0.5 ⁇ G 0.5 + b 1.0 ⁇ G 1.0 + ... + b 99.5 ⁇ G 99.5 (2)
  • the minimum predicted value Gpmin and the maximum predicted value of the mental sweating amount in the main processing continuation maximum period ⁇ Tmax predicted by the prediction unit 50 using the learned sweating minimum value prediction model 351 and the sweating maximum value prediction model 352 are used.
  • the predicted value Gpmax is stored in the storage unit 35. Then, after the end of the min-max prediction process, the control unit 30 proceeds to step S50 in FIG. 18 and executes a sweating amount determination process.
  • the sweating amount determination process is performed at a time Td (maximum first time-out period Td) after the time Tc when the predictive feature amount measurement period ⁇ Tmp (100 seconds after the main process starts) has elapsed. It is performed over a period from the start of the main process to after 180 seconds. That is, the sweating amount determination process is started 100 seconds after the main process is started, and is performed until 180 seconds at the maximum after the main process is started.
  • the sweating amount measurement unit 33 measures the mental sweating amount Qs of the user every predetermined sampling period.
  • the sampling period for measuring the mental sweating amount Qs of the user in the sweating amount determination process is set to 500 ms will be described as an example, but the sampling period is not particularly limited.
  • the amount of mental sweating of the user can be measured every 500 ms).
  • the measured value of the user's mental sweating amount Qs measured by the sweating amount measurement unit 33 is corrected by the processing unit 51.
  • the processing unit 51 calculates a corrected perspiration amount measurement value G by performing a correction process that divides the measurement value of the mental perspiration amount Qs by the initial reference perspiration amount G # max acquired during the power-on process.
  • the processing unit 51 performs a scaling process on the calculated corrected sweating amount measurement value G using the minimum predicted value Gpmin and the maximum predicted value Gpmax stored in the storage unit 35.
  • the processing unit 51 performs a min-max scaling process with the minimum predicted value Gpmin stored in the storage unit 35 as a predetermined first value and the maximum predicted value Gpmax as a second value.
  • the second value is set as a value larger than the first value.
  • a case where the first value is 0 and the second value is 1 will be described as an example.
  • Gt i (G i ⁇ Gpmin) / (Gpmax ⁇ Gpmin) (3)
  • the scaled sweat amount measurement value Gt i calculated by the processing unit 51 is compared with the determination threshold value set by the setting unit 36, and is used when the scaled sweat amount measurement value Gt i is less than the determination threshold value. It is determined that the person's state has shifted to a low stress state.
  • the setting unit 36 sets the determination threshold to a range that is greater than or equal to the first value (minimum predicted value Gpmin) and less than or equal to the second value (maximum predicted value Gpmax).
  • the first value (minimum predicted value Gpmin) is set to 0, and the second value (maximum predicted value Gpmax) is set to 1, and the user's mentality measured in the sweating amount determination period ⁇ Tmj. Scaling processing is performed on the measured value of sweating amount (specifically, the corrected sweating amount measurement value G). For this reason, the setting unit 36 sets the determination threshold to a value between 0 and 1.
  • determination unit 38 In the amount of perspiration determination processing, determination unit 38, (in this example, 500 ms) prescribed sampling period in the amount of perspiration determination period ⁇ Tmj a scaled amount of perspiration measurement Gt i acquired for each, in each case, for determining In contrast to the threshold value, it is determined whether or not the measured sweating amount Gt i is less than the determination threshold value.
  • the scaled amount of perspiration measurement Gt i is the control section 10 ends the main processing when it is confirmed that becomes less than the determination threshold, and notifies the user of the stress completion notification (notification).
  • the control unit 30 forcibly ends the main process. Specifically, the determination unit 38 acquires the elapsed time from the start of the main process from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time exceeds a predetermined first timeout time ⁇ Tto.
  • the first timeout time ⁇ Tto is set to a predetermined fixed time (180 seconds), but the length of the first timeout time ⁇ Tto may be changed by the user.
  • the above-mentioned stress release completion notification is a notification for notifying the user that the user's sympathetic nervous system has been relaxed and the stress has been sufficiently eliminated.
  • the light emission control unit 37 controls the light emission element 43 to supply power from the power source 23 and causes the light emission element 43 to emit light in a predetermined light emission pattern, as in the first embodiment. May be notified.
  • FIG. 19 is a flowchart showing the processing content of the sweating amount determination processing in the main processing according to the third embodiment.
  • the sweating amount measurement unit 33 determines whether it is currently the measurement timing for measuring the mental sweating amount Qs of the user.
  • the sweating amount measurement unit 33 acquires the elapsed time from the start of the main processing (prediction feature value measurement processing) from the time measuring unit 39, thereby measuring the mental sweating amount of the user at every predetermined sampling period. can do. If it is determined in step S501 that it is the measurement timing, the process proceeds to step S502. If it is determined that it is not the measurement timing, the process returns to step S501.
  • step S502 the determination unit 38 determines whether the user is currently performing a suction operation based on the detection result of the suction operation (puff operation) by the atmospheric pressure acquisition unit 31. In this step, when it is determined that the user is currently performing the suction operation, the process proceeds to step S503, and when it is determined that the user is not performing the suction operation, the process returns to step S501.
  • step S503 the sweating amount measuring unit 33 measures the mental sweating amount Qs of the user.
  • step S504 the processing unit 51 divides the measured value of the mental sweating amount Qs of the user measured by the sweating amount measurement unit 33 by the initial reference sweating amount G # max, thereby correcting the measured sweating amount G. Is calculated.
  • the corrected sweating amount measurement value G in order to smooth the time-series data of the measurement value of the mental sweating amount Qs of the user, a moving average with respect to the measurement value of the mental sweating amount Qs.
  • the corrected perspiration amount measurement value G may be obtained by performing processing for performing the arithmetic processing for dividing the mental perspiration amount Qs after the moving average processing by the initial reference perspiration amount G # max.
  • step S505 the processing unit 51 uses the minimum predicted value Gpmin stored in the storage unit 35 as a predetermined first value and the maximum predicted value Gpmax as a second value.
  • a min-max scaling process is performed on the image, and a scaled perspiration measurement value Gt is calculated.
  • the scaled perspiration measurement value Gt can be calculated based on the above equation (3).
  • step S506 the determination unit 38 determines whether or not the scaled perspiration measurement value Gt is less than the determination threshold value. If it is determined in step S506 that the scaled sweat amount measurement value Gt is less than the determination threshold value, the process proceeds to step S507, and if it is determined that the scaled sweat amount measurement value Gt is greater than or equal to the determination threshold value. The process proceeds to step S509.
  • step S507 the light emission control unit 37 notifies (notifies) the user of a stress release completion notification.
  • the light emission control unit 37 performs control to supply power from the power source 23 to the light emitting element 43, and notifies the user of a stress release completion notification by causing the light emitting element 43 to emit light with a predetermined light emission pattern.
  • the process of step S507 ends, the process proceeds to step S508.
  • step S508 the motor control unit 34 supplies the electric power from the power source 23 to the vibration motor 41 and operates (drives) the vibration motor 41 to execute the awakening process.
  • the awakening process is a process of raising the user's arousal level by giving the user a vibration stimulus (minute stress) of the wooden casing 13 resulting from the driving of the vibration motor 41.
  • the awakening process for increasing the awakening level, the user can be awakened in a state where the user's consciousness has been refreshed, not in a state where the user's consciousness has been blurred.
  • the driving pattern of the vibration motor 41 in the awakening process and its duration are not particularly limited.
  • the vibration motor 41 may be driven intermittently in the awakening process.
  • a vibration time for driving the vibration motor 41 and a pause time for stopping the driving may be repeated a plurality of cycles.
  • the vibration time and the rest time of the vibration motor 41 in the first cycle of the awakening process may be 200 ms, respectively, and after the second cycle, the vibration time and the rest time may be shortened by 20 ms.
  • the awakening process is completed when a predetermined number of cycles is completed, or when a predetermined time has elapsed from the start of the awakening process, and the control routine shown in FIG. 19 ends.
  • the wakefulness level of the user may be increased using a method other than the stimulation by vibration in the wakefulness process.
  • the user may be awakened by causing the light emitting element 43 to emit light.
  • the alerting process may be combined with an alert function for the remaining battery level by using different patterns depending on the remaining battery level. For example, in the awakening process when the remaining amount of the battery 230 is sufficient, the vibration motor 41 is turned on in a predetermined first color (for example, blue) and the vibration motor 41 is set in a predetermined vibration pattern (for example, “200 ms vibration + 200 ms). After several cycles (for example, four cycles) of “pause”, the light emitting element 43 may be turned off simultaneously with the end of the operation of the vibration motor 41.
  • a predetermined first color for example, blue
  • the vibration motor 41 is set in a predetermined vibration pattern (for example, “200 ms vibration + 200 ms).
  • the light emitting element 43 may be turned off simultaneously with the end of the operation of the vibration motor 41.
  • the vibration motor 41 is operated for a few cycles (for example, 5 cycles) with a predetermined vibration pattern (for example, “200 ms vibration + 200 ms pause”).
  • the light emitting element 43 may be turned off simultaneously with the end of the operation of the vibration motor 41.
  • the above pattern is an example, and may be changed as appropriate. It may be.
  • step S506 of the perspiration amount determination process when it is determined that the scaled perspiration amount measurement value Gt is equal to or greater than the determination threshold value, the determination unit 38 proceeds to the process of step S509. It is determined whether or not an elapsed time T i from (time Tb shown in FIG. 17) has passed a predetermined first timeout time ⁇ Tto.
  • the first timeout time ⁇ Tto is set to 180 seconds, but the user may be able to change the setting of the first timeout time ⁇ Tto.
  • Determination unit 38 can acquire the elapsed time T i from the start of the main processing from the clock unit 39.
  • step S509 the case where the elapsed time T i from the start of the main process is determined not to be passed first timeout DerutaTto, the process returns to step S501, the processing of steps S501 ⁇ S506 are repeated. Further, in step S509, the process proceeds to step S510 if the elapsed time T i from the start of the main process is judged to have passed the first timeout period DerutaTto, timeouts to communicate the fact that timed out user Notify me of notifications.
  • the time-out notification may be performed by causing the light emission control unit 37 to cause the light emitting element 43 to emit light in a predetermined light emission pattern.
  • the control routine shown in FIG. 19 is finished.
  • the measurement is performed in the prediction feature amount measurement period ⁇ Tmp set as a period shorter than the main process continuation maximum period ⁇ Tmax.
  • the minimum of the user's mental sweating amount that will change every moment in the future. Values and maximum values can be predicted. Then, using the minimum and maximum values of the user's mental sweat amount predicted based on the prediction model, the user's mental sweat measured in the sweat amount determination period ⁇ Tmj after the prediction feature amount measurement period ⁇ Tmp.
  • the fluctuation range of the scaled sweat amount measurement value Gt acquired in the sweat amount determination period ⁇ Tmj is reduced to some extent. Can be kept small in range.
  • the sweating amount determination processing is performed. Even when the threshold value for determination to be used is set to a fixed value, the ratio of cases in which a time-out notification is notified becomes excessively high, or conversely, a stress relief completion notification is notified immediately after the perspiration amount determination processing is started. It can suppress that the ratio of a case becomes high too much, and can implement
  • FIG. 20 is a diagram showing a time transition of the scaled perspiration measurement value Gt when stress level analysis control is performed on a plurality of users (subjects) using the aspirator 1.
  • FIG. 21 is a diagram showing a time transition of the corrected sweating amount measurement value G when the stress level analysis control is performed on a plurality of users (subjects) using the aspirator 1 for comparison.
  • the corrected perspiration amount measurement value G in FIG. 21 is a value obtained by dividing the measurement value of the mental perspiration amount in the user by the initial reference perspiration amount G # max, and the perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction.
  • Scaling processing using the minimum value and the maximum value of the amount of mental sweat predicted based on the model 352 is not performed.
  • the scaled sweat amount measurement value Gt shown in FIG. 20 and the corrected sweat amount measurement value G shown in FIG. 21 are calculated based on the measured values of the mental sweat amount measured from the same plurality of subjects (11 persons). It is a thing.
  • the transition of the corrected perspiration amount measurement value G obtained by dividing the measurement value of the mental perspiration amount by the initial reference perspiration amount G # max indicates that the main process is started. Variation from subject to subject (individual difference) when the elapsed time from is the same time is relatively large (see FIG. 21).
  • the scaled sweat amount measurement value Gt shown in FIG. 20 is different from the subject-to-subject (individual difference) when the elapsed time from the start of the main processing is the same time, and the corrected sweat amount measurement shown in FIG. It can be seen that it is smaller than the value G.
  • the determination threshold used for the perspiration amount determination processing is set to a fixed value. If this happens, the majority of subjects will time out, or conversely, it is likely to be determined as a low stress state immediately after starting the sweating amount determination process with the number of suctions being small. For example, when the threshold value for determination related to the sweating amount determination process is set to about 0.6 using the corrected sweating amount measurement value G in FIG. 21, many subjects will time out. If it is increased to about 9, many subjects are less stressed immediately after starting the sweating determination process even though the mental sweating amount has decreased by only 10% from the initial reference sweating amount G # max. There is a tendency to be easily determined as a state.
  • the perspiration amount determination process is performed using the scaled perspiration amount measurement value Gt shown in FIG. 20, for example, when the determination threshold used for the perspiration amount determination process is set to about 0.2, the majority Since the scaled sweat amount measurement value Gt does not fall below the determination threshold value (0.2 in this case) immediately after entering the sweat amount determination period ⁇ Tmj, the subject has sufficient time.
  • the stress relief completion notification is notified in a state where the stress is actually eliminated through the suction operation. That is, according to the stress level analysis control in the present embodiment, even if the fluctuation characteristics of mental sweating amount vary from user to user, the majority of users do not time out and the stress is actually eliminated. It can be seen that the user can be notified of the stress relief completion notification in a state, and the usability is very good.
  • the control unit 30 of the aspirator 1 according to the third embodiment is stored (stored) in the storage unit 35 based on the measured value of the user's mental sweating amount measured by the control unit 30 during the stress degree analysis control.
  • a learning processing unit that updates the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352 may be included. That is, the learning processing unit obtains the transition of the measured value of the mental sweating amount of the user during the prediction feature amount measurement period ⁇ Tmp obtained when the user uses the aspirator 1 and the maximum main process continuation period ⁇ Tmax.
  • the amount of mental sweating of the user in the prediction feature amount measurement period ⁇ Tmp is obtained by machine learning using the minimum sweating amount learning data associating with the minimum value of the measured value of the mental sweating amount of the user in
  • the coefficient of the weight a i in the equation (1) is corrected by learning (training) the relationship between the transition of the value and the minimum value of the mental sweating amount of the user in the main processing continuation maximum period ⁇ Tmax.
  • the value prediction model 351 may be updated.
  • the learning processing unit changes the measured value of the mental sweating amount of the user in the prediction feature amount measurement period ⁇ Tmp obtained when the user uses the aspirator 1 and the main processing continuation maximum period.
  • the maximum sweating amount learning data that associates the maximum value of the measured value of the mental sweating amount of the user at ⁇ Tmax, the mental sweating of the user during the predictive feature amount measurement period ⁇ Tmp
  • the coefficient of the weight b i in the formula (2) is corrected, and the sweating amount
  • the maximum value prediction model 352 may be updated.
  • the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352 stored in the storage unit 35 are not necessarily prediction models constructed (generated) by machine learning, and are based on other methods. It is also possible to use a prediction model constructed in this way.
  • the measured value (specifically, the corrected sweating amount) of the user's mental sweating amount measured during the sweating amount determination period ⁇ Tmj.
  • the minimum predicted value Gpmin predicted by the prediction unit 50 is set to the first value (in the above example, “0”)
  • the maximum predicted value Gpmax predicted by the prediction unit 50 is set to the second value. Since the min-max scaling process is performed with the value (in the above example, “1”), the determination threshold is set within the range of the first value or more and the second value or less. However, it is not limited to this.
  • the setting unit 36 sets the maximum predicted value Gpmin or more predicted by the prediction unit 50 to the maximum. What is necessary is just to set the threshold value for determination in the range below the predicted value Gpmax.
  • the units of the mental sweating amount and the determination threshold value are not particularly limited.
  • the minimum predicted value Gpmin predicted by the prediction unit 50 is 0.6 [ ⁇ S] and the predicted maximum predicted value Gpmax is 2.5 [ ⁇ S]
  • the threshold value may be set within a range of 0.6 [ ⁇ S] to 2.5 [ ⁇ S].
  • the determination threshold value may be set to an average value of the minimum predicted value Gpmin and the maximum predicted value Gpmax.
  • the determination threshold is set in the range between the minimum predicted value Gpmin and the maximum predicted value Gpmax predicted by the prediction unit 50. Therefore, the threshold value for determination can be set to an appropriate value without being greatly affected by the variation in fluctuation characteristics of the mental sweating amount for each user.
  • Gpmin to maximum predicted value Gpmax can be predicted by the prediction unit 50 executing the min-max prediction process before the sweating amount determination process is started. That is, based on the user's mental sweating amount continuously measured in the prediction feature amount measurement period ⁇ Tmp shorter than the main processing continuation maximum period ⁇ Tmax (determination target period) and the prediction models 351 and 352, the prediction feature It is possible to suitably predict the future fluctuation range of the amount of mental sweating after the amount measurement period ⁇ Tmp. Therefore, the threshold for determination for determining the mental sweating state of the user can be set to an appropriate size.
  • the min-max scaling process is performed on the measured value of the mental sweating amount of the user measured in the sweating amount determination period ⁇ Tmj. Therefore, it is possible to further reduce the influence of variation in fluctuation characteristics of mental sweating amount for each user, and to provide the aspirator 1 with excellent usability.
  • the minimum predicted value Gpmin predicted by the prediction unit 50 is set to 0 as an example of the first value
  • the maximum predicted value Gpmax is set to 1 as an example of the second value
  • the combination of the first value and the second value is not limited to a specific value.
  • the mental sweating amount of the user is continuously measured over a predetermined determination target period based on the output value of the sweating amount measurement electrode, and the measured mental sweating amount is determined.
  • An application example has been described in which the perspiration state determination device according to the present invention including the control unit that executes the perspiration state determination control for determining the mental perspiration state of the user based on the comparison result with the threshold is mounted on the aspirator 1.
  • the application target of the sweating state determination device according to the present invention is not limited to the aspirator 1.
  • the sweating state determination device having the control unit 30 that executes the main processing (sweat state determination control) in the present embodiment may be applied to a health device or a lie detector.
  • a modified example in which the perspiration state determination device according to the third embodiment is applied to devices other than the aspirator will be described.
  • FIG. 22 is a view showing a massage machine 50 according to the first modification of the third embodiment.
  • the massage machine includes a back massage unit 51, a seat portion 52, a leg support portion 53 provided in front of the seat portion 52, a backrest 54 erected from the rear of the seat portion 52, and the like.
  • the back massage unit 51 is provided on the backrest 54, and a known structure can be adopted.
  • the back massage unit 51 includes a treatment element 510 that massages the shoulder, back, and waist of the user, and is disposed so as to be able to be lifted and lowered along the backrest 54.
  • the armrest 55 of the massage machine 50 has a storage pocket 56, and the remote controller 60 is stored in the storage pocket 56.
  • the storage pocket 56 is fastened to the armrest 55 by a belt 57 or the like.
  • FIG. 23 is a schematic diagram of a remote controller 60 that also serves as a sweating state determination device according to Modification 1 of Embodiment 3.
  • Reference numeral 61 denotes a casing of the remote controller 60.
  • Reference numeral 62 shown in FIG. 23 is an operation button, and reference numeral 63 is a liquid crystal display 63.
  • the operation button 62 receives the operation by the user, so that the back massage unit 51 is activated or the stress degree analysis control described in the third embodiment is performed.
  • mental sweating measurement electrodes 26 and 27 are arranged on the casing 61 of the remote controller 60 so as to be exposed to the outside. In the example shown in FIG.
  • the mental sweating amount measuring electrode 26 is disposed on the upper side of the housing 61, and the mental sweating amount measuring electrode 27 is disposed on the front surface of the housing 61.
  • the housing 61 accommodates the same electronic substrate 21, battery, and the like as in the third embodiment.
  • FIG. 24 is a block diagram of a remote controller 60 according to the first modification of the third embodiment.
  • a control unit 30, which is a control unit that controls the remote controller 60, is mounted on the electronic board 21 of the remote controller 60.
  • the electronic board 21 of the remote controller 60 has the same function as the electronic board 21 according to the third embodiment shown in FIG.
  • the remote controller 60 includes a power source 23, a vibration motor 41, a light emitting element 43, and the like (not shown in FIG. 23) as in the third embodiment.
  • the massage machine 50 is configured so that a user using the massage machine 50 can perform physiological measurement while holding the remote controller 60.
  • the control unit 30 executes the stress level analysis control described in the third embodiment.
  • the remote controller 60 may measure the amount of mental sweating of the user as well as other biological amounts of the user.
  • a thermistor for measuring the user's skin temperature, an electrocardiographic electrode, etc. are arranged on the casing 61 of the remote controller 60 so as to be exposed to the outside. You may measure heart rate etc.
  • FIG. 25 is a diagram illustrating a state in which the user holds the remote controller 60 according to the first modification with both hands.
  • the user holds the remote controller 60 with the index finger of the left hand applied to the mental sweating measurement electrode 26 and the thumb applied to the mental sweating measurement electrode 27. Yes.
  • the electrode for mental sweating measurement is applied to a finger different from the above example. You may make it touch 26,27.
  • the remote controller 60 functions as a sweating state determination device that executes the stress level analysis control described in the third embodiment.
  • the content of the stress degree analysis control is basically the same as that described in the third embodiment, and includes a power-on process and a main process.
  • the control unit 30 of the remote controller 60 starts the power-on process of the stress degree analysis control when receiving the operation of the operation button 62 by the user.
  • the control unit 30 starts executing the main process.
  • the control unit 30 sequentially performs a prediction feature quantity measurement process, a min-max prediction process, and a sweating amount determination process as described with reference to FIG.
  • the corrected perspiration amount measurement value G may be obtained by performing a calculation process of dividing the mental perspiration amount Qs after the moving average processing by the initial reference perspiration amount G # max.
  • the min-max prediction process is as described in the third embodiment, and the transition of the corrected perspiration amount measurement value G acquired in the prediction feature amount measurement process, the perspiration amount minimum value prediction model 351, and the perspiration amount maximum value. Based on the prediction model 352, the minimum predicted value Gpmin that minimizes the user's mental sweating amount and the maximum predicted value Gpmax that is maximum are estimated (predicted) during the main processing continuation maximum period ⁇ Tmax.
  • the sweating amount determination process executed subsequent to the min-max prediction process is also as described in the third embodiment, and the scaled sweating amount measurement value Gti acquired every predetermined sampling period in the sweating amount determination period ⁇ Tmj is used. In each case, it is compared with the determination threshold value to determine whether or not the scaled perspiration measurement value Gti is less than the determination threshold value. Then, at the time when it is confirmed that the scaled sweat amount measurement value Gti is less than the determination threshold, the main process is finished, the stress release completion notice is notified (notified) to the user, and the awakening process described above is performed. Do. Note that the awakening process is not necessarily executed and may be omitted.
  • the control unit 30 forcibly ends the main process.
  • the remote controller 60 in the present modification does not have a mouthpiece, so that min-max scaling is performed with respect to the mental sweating amount of the user measured every predetermined sampling period. It is determined whether or not the user is sufficiently relaxed by comparing the scaled perspiration measurement value Gti acquired by performing the processing with the threshold for determination.
  • the remote controller 60 in this modification can continuously measure the amount of mental sweating of the user while using the massage machine 50, and can appropriately determine the state of sweating of the user.
  • the user who uses the massage machine 50 is gradually relaxed by being massaged by the back massage unit 51, and the amount of mental sweating is also gradually reduced over time.
  • a portable inspection terminal 70 shown in FIG. 26 is, for example, a glove-type wearable inspection terminal worn on a user's hand, and corresponds to a sweating state determination device according to the present invention.
  • the portable inspection terminal 70 shown in FIGS. 26 and 27 is designed to be worn on the right hand of the user.
  • FIG. 26 shows an upper surface 70 a that mainly covers the back of the hand of the user wearing the portable inspection terminal 70.
  • reference numerals 711 to 715 denote a thumb palm covering portion, an index finger covering portion, a middle finger covering portion, a ring finger covering portion, and a little finger covering portion covering each finger of the user.
  • the portable inspection terminal 70 in this modification includes the electrodes 26 and 27 for mental sweating measurement. As shown in FIGS. 26 and 27, in this modification, the electrode for mental sweating measurement 26 is arranged on the index finger covering part 712 in the portable inspection terminal 70, and the electrode for mental sweating measurement on the ring finger covering part 714. 27 is arranged.
  • FIG. 28 is a schematic diagram showing the internal structure of the index finger covering part 712 and ring finger covering part 714 in the portable inspection terminal 70.
  • Reference numeral 70 c shown in FIG. 28 indicates an accommodating portion that is a space for accommodating a hand when the user wears the portable inspection terminal 70.
  • a reference numeral 712a illustrated in FIG. 28 is an index finger pad covering surface of the index finger of a user who wears the portable inspection terminal 70.
  • Reference numeral 714a denotes a ring finger covering surface that covers the belly of the ring finger of the user wearing the portable inspection terminal 70.
  • the electrode 26 for measuring the amount of mental sweating is disposed on the index finger pad covering surface 712a so as to face the accommodating portion 70c of the index finger covering portion 712, and when the user wears the portable inspection terminal 70, The belly of the index finger comes into contact with the electrode 26 for measuring the amount of mental sweating.
  • the mental sweating amount measuring electrode 27 is disposed on the ring finger pad covering surface 714a so as to face the housing portion 70c of the ring finger covering portion 714, and is used when the user wears the portable inspection terminal 70. The belly of the person's ring finger is in contact with the electrode 27 for measuring the amount of mental sweating.
  • the electrodes 26 and 27 for measuring the amount of mental sweating may be arranged on a finger covering portion different from the above example. Further, the mental sweating amount measuring electrodes 26 and 27 may be arranged not at the finger covering portions 711 to 715 in the portable inspection terminal 70 but at positions where they contact the palm of the user wearing the portable inspection terminal 70. good.
  • a controller box 72 that houses the electronic board 21 having the control unit 30 and the like is installed on the upper surface 70 a of the portable inspection terminal 70. In the controller box 72, an operation button 73 for operating the portable inspection terminal 70, the light emitting element 43, and the like are arranged.
  • FIG. 29 is a block diagram of a portable inspection terminal 70 according to the second modification of the third embodiment. About the structure which is common in the above-mentioned embodiment, detailed description is omitted by attaching the same reference numerals.
  • the portable inspection terminal 70 according to Modification 2 functions as a sweating state determination device according to the present invention, and the control unit 30 executes stress degree analysis control as in Modification 1.
  • the control unit 30 may start the power-on process of the stress degree analysis control.
  • the stress degree analysis control executed by the control unit 30 is the same as that in the first modification, detailed description thereof is omitted. According to the portable inspection terminal 70 in the present modification, the user's mental sweating amount can be continuously measured, and the degree of whether the user is relaxed or nervous can be suitably determined. .
  • the portable inspection terminal 70 may include various sensors that measure the biological amount of the user.
  • the portable inspection terminal 70 may include a pulse sensor, a skin temperature sensor, a pressure sensor, and the like. And a user's pulse (heart rate) may be measured with a pulse sensor, a user's skin temperature (body temperature) may be measured with a skin temperature sensor, and a user's blood pressure may be measured with a pressure sensor.
  • inspection terminal 70 may be provided with the radio
  • the program for executing each of the above processes may be recorded on a computer-readable recording medium.
  • the above-described processing can be performed by causing the computer to read and execute the program on the recording medium.
  • the computer-readable recording medium refers to a recording medium in which information such as data and programs is accumulated by electrical, magnetic, optical, mechanical, or chemical action and can be read from the computer.
  • Examples of such a recording medium that can be removed from the computer include a flexible disk, a magneto-optical disk, an optical disk, a magnetic tape, and a memory card.
  • examples of the recording medium fixed to the computer include a hard disk drive and a ROM.
  • a chip configured by a memory that stores a program for executing each process performed by the suction device according to the above-described embodiments and a processor that executes the program stored in the memory may be provided.
  • the suction device may include a hard switch such as a push button that can accept a user operation for switching the power switch unit 32 on and off.
  • a hard switch such as a push button that can accept a user operation for switching the power switch unit 32 on and off.
  • each embodiment and modification which were mentioned above can be implemented combining suitably.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Disabilities (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biomedical Technology (AREA)
  • Educational Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is technology that enables a sweating state determination device to appropriately determine the sweating state of a user. This sweating state determination device is provided with a control unit that performs sweating state determination control in which the amount of emotional sweating of the user is continuously measured over a period subject to determination on the basis of output values of a sweating measurement electrode and the emotional sweating state is determined on the basis of the result of comparison between the measured amount of emotional sweating and a threshold value for determination. The control unit has: a storage unit for storing a sweating amount minimum value prediction model and a sweating amount maximum value prediction model; a prediction unit for predicting the minimum value and the maximum value of the emotional sweating amount of the user in the period subject to determination on the basis of the sweating amount minimum value prediction model and the sweating amount maximum value prediction model; and a setting unit for setting the threshold value for determination within the range from the minimum predicted value in the period subject to determination predicted by the prediction unit to the maximum predicted value in the period subject to determination.

Description

発汗状態判定装置、発汗状態判定装置の制御方法および制御プログラムSweating state determination device, control method and control program for sweat state determination device
 本発明は、発汗状態判定装置、発汗状態判定装置の制御方法および制御プログラムに関する。 The present invention relates to a sweating state determination device, a control method for a sweating state determination device, and a control program.
 従来、ストレス等の精神的な刺激により、交感神経の働きによって手の平(掌)や指先、或いは足の裏等から精神性の汗が分泌されることが知られている。これに関連して、使用者の精神性発汗状態を判定する発汗状態判定装置が知られており、例えば、使用者のストレスレベルを判定する用途で用いられたり、いわゆる嘘発見器として用いられている。 It has been known that mental sweat is secreted from the palm (palm), fingertips, soles, etc. of the sympathetic nerve by mental stimulation such as stress. In this connection, a perspiration state determination device that determines a user's mental perspiration state is known. For example, it is used for determining a user's stress level or used as a so-called lie detector. Yes.
国際公開第2011/096240号International Publication No. 2011-096240 国際公開第2017/208650号International Publication No. 2017/208650
 ここで、発汗状態判定装置を用いて使用者の精神性発汗状態をリアルタイムで判定する場合、精神性発汗量を継続的(例えば、所定のサンプリング周期毎)に測定することで取得した測定値、或いは当該測定値を規準化(正規化、標準化等)することで得られた値を所定の判定用閾値と対比し、その大小関係に基づいて使用者の精神性発汗状態を判定する手法が考えられる。ところで、精神性発汗の程度(多い少ない)や、ストレス等の精神的な刺激を受けた際に変動する精神性発汗の変動特性は、個人差によるばらつきが大きい。従って、本来的には、精神性発汗状態の判定を行う対象となる全期間における使用者の精神性発汗量の変動範囲(最小値~最大値)を取得し、取得した使用者における精神性発汗量の変動範囲に基づいて精神性発汗状態の判定に用いる判定用閾値を設定することが、使用者の精神性発汗状態を適切に判定する観点から好ましい。 Here, when the user's mental sweating state is determined in real time using the sweating state determination device, the measured value obtained by continuously measuring the amount of mental sweating (for example, every predetermined sampling period), Alternatively, a method may be considered in which a value obtained by normalizing (normalizing, standardizing, etc.) the measured value is compared with a predetermined threshold for determination, and the mental sweating state of the user is determined based on the magnitude relationship. It is done. By the way, the degree of mental sweating (more or less) and the fluctuation characteristics of mental sweating that change when subjected to mental stimulation such as stress vary greatly depending on individual differences. Therefore, the fluctuation range (minimum value to maximum value) of the mental sweating amount of the user over the entire period for which the determination of the mental sweating state is inherently obtained is acquired, and the mental sweating of the acquired user is acquired. It is preferable from the viewpoint of appropriately determining the mental sweating state of the user to set a determination threshold value used for determination of the mental sweating state based on the amount variation range.
 しかしながら、従来の発汗状態判定装置を用いて使用者の精神性発汗状態をリアルタイムで判定する場合、実際に測定した過去の精神性発汗量だけしか参照できないため、精神性発汗状態の判定を行う対象となる全期間における精神性発汗量の変動範囲を把握することができなかった。その結果、使用者の精神性発汗状態の判定に用いるための判定用閾値を適正に設定することができず、使用者の精神性発汗状態を適切に判定することが難しいという課題があった。 However, when a user's mental sweating state is determined in real time using a conventional sweating state determination device, only the actual amount of mental sweating actually measured can be referred to. It was impossible to grasp the fluctuation range of the amount of mental sweating over the whole period. As a result, there has been a problem that it is difficult to properly set a determination threshold for use in determining the user's mental sweating state, and it is difficult to appropriately determine the user's mental sweating state.
 本発明は、上記した実情に鑑みてなされてなされたものであって、その目的は、発汗状態判定装置において使用者の精神性発汗状態を適切に判定することを可能にする技術を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a technique that makes it possible to appropriately determine the mental sweating state of the user in the sweating state determination device. It is in.
 上記課題を解決するための本発明に係る発汗状態判定装置は、使用者の精神性発汗量を測定するための発汗量測定用電極と、前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、を備え、前記制御部は、前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部と、前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測する予測部と、前記判定用閾値を、前記予測部が予測した前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で設定する設定部と、を有することを特徴とする。 A sweating state determination device according to the present invention for solving the above-described problem is a sweating amount measurement electrode for measuring a mental sweating amount of a user, and a user based on an output value of the sweating amount measurement electrode. Sweating state determination that continuously measures the amount of mental sweating over a predetermined period of determination and determines the user's mental sweating state based on the comparison result of the measured amount of mental sweating and the threshold for determination A control unit that executes control, and the control unit changes a user's mental sweating amount that changes over time in a predetermined prediction feature amount measurement period shorter than the determination target period, and the determination A sweating amount minimum value prediction model representing the relationship with the minimum value of the user's mental sweating amount in the target period, and the transition of the user's mental sweating amount that changes over time in the prediction feature amount measurement period, User during the judgment period A storage unit for storing a maximum sweating amount prediction model representing a relationship with the maximum value of the mental sweating amount, and a measured value of the mental sweating amount in the user measured in the prediction feature amount measurement period A prediction unit that predicts the minimum value and the maximum value of the mental sweating amount of the user in the determination target period by applying to each of the minimum sweating amount prediction model and the maximum sweating amount prediction model as the amount And the threshold for determination is equal to or greater than a minimum predicted value that is the minimum value of the mental sweating amount of the user in the determination target period predicted by the prediction unit, and the mental sweating of the user in the determination target period And a setting unit that sets the value within a range that is less than or equal to the maximum predicted value that is the maximum value.
 また、前記発汗量最小値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の測定値の最小値とを対応付けた複数の発汗量最小値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最小値との関連性を学習済みの予測モデルであって、前記発汗量最大値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の最大値とを対応付けた複数の発汗量最大値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を学習済みの予測モデルであっても良い。 The minimum sweating amount prediction model includes the transition of the measured value of the mental sweating amount of the user during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user during the determination target period. The mental sweating amount of the user in the predictive feature measurement period is determined by machine learning using a plurality of minimum sweating amount learning data associated with the minimum value of the measured value of mental sweating amount as teacher data. The prediction model has learned the relationship between the transition and the minimum value of the mental sweating amount of the user in the determination target period, and the sweating amount maximum value prediction model has previously executed the sweating state determination control A plurality of sweating maximum values in which the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period is associated with the maximum value of the user's mental sweating amount during the determination target period Learning the relationship between the transition of the user's mental sweating amount in the prediction feature measurement period and the maximum value of the user's mental sweating amount in the judgment target period by machine learning using training data as teacher data It may be a completed prediction model.
 また、前記予測部は、前記メイン処理の開始時から前記予測用特徴量測定期間が経過した時点で、前記記憶部に格納された前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測しても良い。 In addition, the prediction unit, when the prediction feature amount measurement period has elapsed from the start of the main processing, the sweating amount minimum value prediction model and the sweating amount maximum value prediction model stored in the storage unit, The minimum predicted value and the maximum predicted value may be predicted based on
 また、前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行う処理部を更に備え、前記設定部は、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定しても良い。 In addition, the control unit, the measured value of the mental sweating amount of the user measured after the point when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the minimum sweating amount prediction model And the minimum predicted value and the maximum predicted value respectively predicted based on the sweating amount maximum value prediction model and the minimum predicted value as the first value and the maximum predicted value as the first value A processing unit that performs a scaling process as a second value greater than the second value, and the setting unit may set the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. good.
 また、本発明は、発汗状態判定装置の制御方法としても特定することができる。すなわち、本発明に係る発汗状態判定装置の制御方法は、使用者の精神性発汗量を測定するための発汗量測定用電極と、前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、を備える発汗状態判定装置の制御方法であって、前記制御部は、前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部を有し、前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測し、当該予測した前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で前記判定用閾値を設定することを特徴とする。 Also, the present invention can be specified as a control method of the sweating state determination device. That is, the control method of the sweating state determination device according to the present invention includes a sweating amount measurement electrode for measuring a user's mental sweating amount, and a user's mentality based on an output value of the sweating amount measurement electrode. Sweating state determination control that continuously measures the amount of sexual sweating over a predetermined determination target period and determines the mental sweating state of the user based on the comparison result between the measured amount of mental sweating and the threshold for determination And a control unit that executes the control method, wherein the control unit changes the user's mentality over time in a predetermined prediction feature amount measurement period shorter than the determination target period. A sweating amount minimum value prediction model representing the relationship between the transition of the sweating amount and the minimum value of the mental sweating amount of the user in the determination target period, and the user that changes over time in the prediction feature amount measurement period Changes in the amount of mental sweating A storage unit storing a maximum sweating amount prediction model representing a relationship with the maximum value of the mental sweating amount of the user in the determination target period, and the user measured in the prediction feature amount measurement period By applying the measured value of the amount of mental sweating in the feature amount to the minimum sweating amount prediction model and the maximum sweating amount prediction model, respectively, the minimum of the user's mental sweating amount in the determination target period A predicted value and a maximum value, which are equal to or more than a minimum predicted value that is the minimum value of the user's mental sweating amount in the predicted determination target period and the user's mental sweating amount in the determination target period. The determination threshold value is set within a range equal to or less than a maximum predicted value that is a maximum value.
 また、発汗状態判定装置の制御方法において、前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点で、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測しても良い。 Further, in the control method of the sweating state determination device, the control unit, when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the sweating amount minimum value prediction model and the sweating amount maximum The minimum prediction value and the maximum prediction value may be predicted based on a value prediction model.
 また、発汗状態判定装置の制御方法において、前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行い、且つ、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定しても良い。 Further, in the control method of the sweating state determination device, the control unit measures the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed since the start of the sweating state determination control. And using the minimum predicted value and the maximum predicted value respectively predicted based on the minimum sweating amount prediction model and the maximum sweating amount prediction model, the minimum predicted value as the first value and the Perform scaling processing with the maximum predicted value as a second value larger than the first value, and set the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. Also good.
 また、本発明は、発汗状態判定装置の制御プログラムとしても特定することができる。すなわち、本発明は、使用者の精神性発汗量を測定するための発汗量測定用電極と、前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、を備える発汗状態判定装置の制御プログラムであって、前記制御部は、前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部を有し、前記制御プログラムは、前記制御部に、前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測させ、当該予測させた前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で前記判定用閾値を設定させることを特徴とする。 The present invention can also be specified as a control program for a sweating state determination device. That is, the present invention provides a sweating amount measurement electrode for measuring a user's mental sweating amount, and a user's mental sweating amount based on an output value of the sweating amount measurement electrode for a predetermined determination target period. And a control unit that executes a sweating state determination control for determining a mental sweating state of the user based on a comparison result between the measured amount of mental sweating and the threshold for determination. A control program for a state determination device, wherein the control unit changes a user's mental sweating amount that changes with time in a predetermined prediction feature amount measurement period shorter than the determination target period, and the determination target A sweating amount minimum value prediction model representing the relationship with the minimum value of the user's mental sweating amount during the period, the transition of the user's mental sweating amount that changes over time in the predictive feature amount measurement period, and Use during the judgment period And a storage unit for storing a maximum sweating amount prediction model that represents a relationship with the maximum value of the mental sweating amount of the person, and the control program stores the prediction feature amount measurement period in the control unit. By applying the measured value of the mental sweating amount of the measured user as a feature amount to the minimum sweating amount prediction model and the maximum sweating amount prediction model, respectively, the mentality of the user in the determination target period Each of the minimum value and the maximum value of the sweating amount is predicted, and is equal to or more than the minimum predicted value that is the minimum value of the mental sweating amount of the user in the predicted determination target period, and The determination threshold value is set within a range of a maximum predicted value that is a maximum value of the amount of mental sweating.
 また、発汗状態判定装置の制御プログラムは、前記制御部に、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点で、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測させても良い。 Further, the control program for the sweating state determination device causes the control unit to store the minimum sweating amount prediction model and the maximum sweating amount when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control. The minimum prediction value and the maximum prediction value may be predicted based on a value prediction model.
 また、発汗状態判定装置の制御プログラムは、前記制御部に、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行わせ、且つ、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定させても良い。 In addition, the control program of the sweating state determination apparatus may cause the control unit to measure the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed since the start of the sweating state determination control. And using the minimum predicted value and the maximum predicted value respectively predicted based on the minimum sweating amount prediction model and the maximum sweating amount prediction model, the minimum predicted value as the first value and the Causing the maximum predicted value to be scaled as a second value greater than the first value, and setting the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value. May be.
 また、本発明は、上記発汗状態判定装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体であっても良い。 Further, the present invention may be a computer-readable recording medium in which a control program for the perspiration state determination device is recorded.
 本発明によれば、発汗状態判定装置において使用者の精神性発汗状態を適切に判定することを可能にする技術を提供できる。 According to the present invention, it is possible to provide a technique that makes it possible to appropriately determine the user's mental sweating state in the sweating state determination device.
図1は、実施形態1に係る吸引器の外観斜視図である。1 is an external perspective view of an aspirator according to Embodiment 1. FIG. 図2は、実施形態1に係る吸引器の分解斜視図である。FIG. 2 is an exploded perspective view of the aspirator according to the first embodiment. 図3は、実施形態1に係る吸引器の正面図である。FIG. 3 is a front view of the aspirator according to the first embodiment. 図4は、実施形態1に係る吸引器の側面図である。FIG. 4 is a side view of the aspirator according to the first embodiment. 図5は、実施形態1に係る吸引器における吸い口ユニットと木製筐体との取り付け構造を説明する図である。FIG. 5 is a view for explaining an attachment structure between the mouthpiece unit and the wooden casing in the suction device according to the first embodiment. 図6は、実施形態1に係る吸引器における吸い口ユニットと木製筐体との取り付け構造を説明する図である。FIG. 6 is a view for explaining an attachment structure between the mouthpiece unit and the wooden casing in the suction device according to the first embodiment. 図7は、実施形態1に係る吸引器のブロック図である。FIG. 7 is a block diagram of the aspirator according to the first embodiment. 図8は、実施形態1におけるパワーオン処理ルーチンを示すフローチャートである。FIG. 8 is a flowchart illustrating a power-on process routine according to the first embodiment. 図9は、実施形態1におけるメイン処理ルーチンを示すフローチャートである。FIG. 9 is a flowchart showing a main processing routine in the first embodiment. 図10は、実施形態1におけるフィードバック処理ルーチンを示すフローチャートである。FIG. 10 is a flowchart illustrating a feedback processing routine according to the first embodiment. 図11は、吸引器の制御部がストレス度合い分析制御を実行した際における精神性発汗量の時間推移を概念的に示した図である。FIG. 11 is a diagram conceptually showing a time transition of the amount of mental sweating when the controller of the aspirator executes the stress level analysis control. 図12は、実施形態2に係る吸引器のブロック図である。FIG. 12 is a block diagram of an aspirator according to the second embodiment. 図13は、実施形態2に係るパワーオン処理ルーチンを示すフローチャートである。FIG. 13 is a flowchart illustrating a power-on processing routine according to the second embodiment. 図14は、実施形態2に係るメイン処理ルーチンを示すフローチャートである。FIG. 14 is a flowchart illustrating a main processing routine according to the second embodiment. 図15は、変形例に係る吸引器を説明する図である。FIG. 15 is a diagram illustrating an aspirator according to a modification. 図16は、実施形態3に係る吸引器におけるブロック図である。FIG. 16 is a block diagram of the aspirator according to the third embodiment. 図17は、実施形態3に係る吸引器がストレス度合い分析制御を実行した際の使用者における精神性発汗量の推移を例示した図である。FIG. 17 is a diagram illustrating the transition of the amount of mental sweating by the user when the aspirator according to the third embodiment executes the stress level analysis control. 図18は、実施形態3に係るメイン処理の処理内容を示す図である。FIG. 18 is a diagram illustrating processing contents of the main processing according to the third embodiment. 図19は、実施形態3に係るメイン処理における発汗量判定処理の処理内容を示すフローチャートである。FIG. 19 is a flowchart illustrating the processing content of the sweating amount determination process in the main process according to the third embodiment. 図20は、吸引器を使用する複数の使用者に対してストレス度合い分析制御を実施した際のスケーリング済み発汗量測定値の時間推移を示す図である。FIG. 20 is a diagram showing the time transition of the scaled perspiration measurement value when stress level analysis control is performed on a plurality of users who use the aspirator. 図21は、吸引器を使用する複数の使用者に対してストレス度合い分析制御を実施した際の補正済み発汗量測定値の時間推移を示す図である。FIG. 21 is a diagram illustrating a time transition of the corrected perspiration amount measurement value when stress level analysis control is performed on a plurality of users who use the aspirator. 図22は、実施形態3の変形例1に係るマッサージ機を示す図である。FIG. 22 is a diagram illustrating a massage machine according to the first modification of the third embodiment. 図23は、実施形態3の変形例1に係るリモートコントーローラの概略図である。FIG. 23 is a schematic diagram of a remote controller according to the first modification of the third embodiment. 図24は、実施形態3の変形例1に係るリモートコントーローラのブロック図である。FIG. 24 is a block diagram of a remote controller according to the first modification of the third embodiment. 図25は、使用者が両手で変形例1に係るリモートコントーローラを把持した状態を示す図である。FIG. 25 is a diagram illustrating a state where the user holds the remote controller according to the first modification with both hands. 図26は、実施形態3の変形例2に係る携帯型検査端末の概略図である。FIG. 26 is a schematic diagram of a portable inspection terminal according to the second modification of the third embodiment. 図27は、実施形態3の変形例2に係る携帯型検査端末の概略図である。FIG. 27 is a schematic diagram of a portable inspection terminal according to the second modification of the third embodiment. 図28は、実施形態3の変形例2に係る携帯型検査端末における人差し指被覆部、薬指被覆部の内部構造を示す概略図である。FIG. 28 is a schematic diagram illustrating the internal structure of the index finger cover and the ring finger cover in the portable inspection terminal according to the second modification of the third embodiment. 図29は、実施形態3の変形例2に係る携帯型検査端末のブロック図である。FIG. 29 is a block diagram of a portable inspection terminal according to the second modification of the third embodiment.
 ここで、本発明に係る吸引器の実施形態について、図面に基づいて説明する。本実施形態に記載されている構成要素の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Here, an embodiment of an aspirator according to the present invention will be described based on the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the constituent elements described in the present embodiment are not intended to limit the technical scope of the invention only to those unless otherwise specified.
<実施形態1>
≪吸引器≫
 図1は、実施形態1に係る吸引器1の外観斜視図である。図2は、実施形態1に係る吸引器1の分解斜視図である。図3は、実施形態1に係る吸引器1の正面図である。図4は、実施形態1に係る吸引器1の側面図である。なお、図3および図4において、吸引器1の内部構造の一部を破線で図示している。
<Embodiment 1>
≪Aspirator≫
FIG. 1 is an external perspective view of an aspirator 1 according to the first embodiment. FIG. 2 is an exploded perspective view of the suction device 1 according to the first embodiment. FIG. 3 is a front view of the aspirator 1 according to the first embodiment. FIG. 4 is a side view of the aspirator 1 according to the first embodiment. 3 and 4, a part of the internal structure of the suction device 1 is illustrated by a broken line.
 吸引器1は、使用者の掌部の精神性発汗量を測定することで使用者のストレス度合いをチェックするストレスチェック機能を有する小型携帯吸引器である。吸引器1は、吸い口11、吸い口受け12、木製筐体13等を有し、これらによって外形が画定されている。吸い口11および吸い口受け12の材質はとくに限定されないが、本実施形態では樹脂製である。 The aspirator 1 is a small portable aspirator having a stress check function for checking a user's degree of stress by measuring the amount of mental sweating of the user's palm. The suction device 1 has a mouthpiece 11, a mouthpiece receptacle 12, a wooden housing 13, and the like, and the outer shape is defined by these. The material of the mouthpiece 11 and the mouthpiece receptacle 12 is not particularly limited, but is made of resin in this embodiment.
 図2に示す符号20は、吸引器1全体の制御を行う制御ユニットである。制御ユニット20は、電子基板21(図3に破線にて外形を図示)を格納する基板格納部22、電源23、固定ユニット24等を有する。基板格納部22の表面の一部には、吸引器1として組み上げられた状態で外部に露出する露出部25が形成されており、当該露出部25に一対の精神性発汗量測定用電極26,27が上下に並んで配置されている。精神性発汗量測定用電極26,27は、精神性発汗量を測定するために用いられる電極である。なお、基板格納部22の内部に格納される電子基板21が、格納空間内に占める位置、大きさ、形状等は特に限定されない。 2 is a control unit that controls the entire aspirator 1. The control unit 20 includes a substrate storage unit 22 that stores an electronic substrate 21 (the outline is shown by a broken line in FIG. 3), a power source 23, a fixed unit 24, and the like. An exposed portion 25 is formed on a part of the surface of the substrate storage portion 22 so as to be exposed to the outside in a state of being assembled as the aspirator 1, and a pair of mental sweating amount measurement electrodes 26, 27 are arranged vertically. The mental sweating amount measuring electrodes 26 and 27 are electrodes used for measuring the mental sweating amount. Note that the position, size, shape, and the like of the electronic substrate 21 stored in the substrate storage unit 22 in the storage space are not particularly limited.
 電源23は、電池230を格納する電池格納部231を有する。電池格納部231の内部には、電池230を収納する収納空間231aが形成されており、基板格納部22の上部に形成された挿入口から電池230を収納空間231aに挿抜することができる。本実施形態において、電池230は乾電池であるがこれには限定されず、例えばリチウムイオン電池等であっても良い。なお、本実施形態の制御ユニット20においては、基板格納部22および電源23が一体的に形成されているが、別体として構成されていても良い。電源23(電池230)は、吸引器1の動作に必要な電力を供給する。 The power source 23 has a battery storage unit 231 for storing the battery 230. A storage space 231a for storing the battery 230 is formed inside the battery storage unit 231, and the battery 230 can be inserted into and extracted from the storage space 231a through an insertion port formed in the upper part of the substrate storage unit 22. In the present embodiment, the battery 230 is a dry battery, but is not limited thereto, and may be, for example, a lithium ion battery. In the control unit 20 of the present embodiment, the substrate storage unit 22 and the power source 23 are integrally formed, but may be configured separately. The power source 23 (battery 230) supplies power necessary for the operation of the suction device 1.
 木製筐体13には、図2等に示す制御ユニット20を収容する収容空間130を有している。固定ユニット24は、図2に示すネジ28を用いて木製筐体13に制御ユニット20を固定するための部材である。固定ユニット24の下面には、電池230のマイナス極に接触するバネ端子241と、電池230のプラス極に接触する接触端子242が設けられている(図2、図3等を参照)。また、図3に示す符号231bは電池格納部231側に設けられるバネ端子、符号231cは電池格納部231側に設けられる接触端子である。電池格納部231のバネ端子231bは、電池格納部231に格納される電池230のマイナス極に接触し、接触端子231cは、電池格納部231に格納される電池230のプラス極に接触するように設けられている。電池格納部231のバネ端子231bおよび接触端子231cは、収納空間231aの底部に配置されている。 The wooden casing 13 has an accommodation space 130 for accommodating the control unit 20 shown in FIG. The fixing unit 24 is a member for fixing the control unit 20 to the wooden housing 13 using the screws 28 shown in FIG. On the lower surface of the fixed unit 24, a spring terminal 241 that contacts the negative electrode of the battery 230 and a contact terminal 242 that contacts the positive electrode of the battery 230 are provided (see FIGS. 2 and 3). Further, reference numeral 231b shown in FIG. 3 is a spring terminal provided on the battery storage portion 231 side, and reference numeral 231c is a contact terminal provided on the battery storage portion 231 side. The spring terminal 231b of the battery storage unit 231 is in contact with the negative electrode of the battery 230 stored in the battery storage unit 231, and the contact terminal 231c is in contact with the positive electrode of the battery 230 stored in the battery storage unit 231. Is provided. The spring terminal 231b and the contact terminal 231c of the battery storage unit 231 are disposed at the bottom of the storage space 231a.
 固定ユニット24は、ネジ28を挿通するための一対の挿通孔243が設けられている。挿通孔243にネジ28を挿通させた状態で、ネジ28を木製筐体13に設けられたネジ孔131に螺着することで、電池230を端子間に押さえ付けた状態で、木製筐体13の収容空間130内に制御ユニット20を固定することができる。また、固定ユニット24は内部が中空となっており、固定ユニット24の上面には着脱用開口244が形成されている。着脱用開口244は、円形状を有する挿抜用孔244aと、挿抜用孔244aに連通すると共に細長形状を有するスライド用孔244bを含んでいる。スライド用孔244bの延伸方向に直交する幅寸法は、挿抜用孔244aの直径に比べて小さな寸法に設計されている。 The fixing unit 24 is provided with a pair of insertion holes 243 through which the screws 28 are inserted. With the screw 28 inserted into the insertion hole 243, the screw 28 is screwed into the screw hole 131 provided in the wooden casing 13, so that the battery 230 is pressed between the terminals and the wooden casing 13 is pressed. The control unit 20 can be fixed in the storage space 130 of the main body. Further, the inside of the fixed unit 24 is hollow, and a detachable opening 244 is formed on the upper surface of the fixed unit 24. The attachment / detachment opening 244 includes a circular insertion / extraction hole 244a and a slide hole 244b which communicates with the insertion / extraction hole 244a and has an elongated shape. The width dimension orthogonal to the extending direction of the slide hole 244b is designed to be smaller than the diameter of the insertion hole 244a.
 本実施形態に係る吸引器1において、吸い口受け12に吸い口11が装着された状態で吸い口ユニット10が形成されており、吸い口ユニット10は木製筐体13に対して着脱自在となっている。図2に示すように、吸い口受け12には、吸い口11の一端側に設けられる円筒体111を装着可能な装着孔121を有している。ここで、装着孔121の内径は、円筒体111の外径と略同一である。吸い口受け12の装着孔121に吸い口11の円筒体111を差し込むことで、吸い口11が吸い口受け12に装着され、一体の吸い口ユニット10となる。なお、吸い口11の他端側には吸い口孔112が設けられている。吸い口孔112は、吸い口11を軸方向に貫通するように延在している。吸引器1における木製筐体13には、通気孔(図示せず)が設けられており、木製筐体13内部には通気孔と吸い口ユニット10(吸い口11)の吸い口孔112を接続する通気路(図示せず)が形成されている。 In the suction device 1 according to this embodiment, the mouthpiece unit 10 is formed with the mouthpiece 11 attached to the mouthpiece receptacle 12, and the mouthpiece unit 10 is detachable from the wooden housing 13. ing. As shown in FIG. 2, the mouthpiece receptacle 12 has a mounting hole 121 in which a cylindrical body 111 provided on one end side of the mouthpiece 11 can be attached. Here, the inner diameter of the mounting hole 121 is substantially the same as the outer diameter of the cylindrical body 111. By inserting the cylindrical body 111 of the mouthpiece 11 into the attachment hole 121 of the mouthpiece receptacle 12, the mouthpiece 11 is attached to the mouthpiece receptacle 12, and an integral mouthpiece unit 10 is obtained. A suction hole 112 is provided on the other end side of the suction hole 11. The mouthpiece hole 112 extends so as to penetrate the mouthpiece 11 in the axial direction. The wooden housing 13 in the suction device 1 is provided with a vent hole (not shown), and the vent hole and the suction hole 112 of the suction unit 10 (suction mouth 11) are connected inside the wooden housing 13. An air passage (not shown) is formed.
 図5および図6は、実施形態1に係る吸引器1における吸い口ユニット10と木製筐体13との取り付け構造を説明する図である。図5に示すように、吸い口ユニット10における吸い口受け12の下面12a側には、係止用突起122が下方に向かって突設されている。係止用突起122は、下面12aから凸設する軸部122aと、軸部122aの先端に設けられた係止部122bを有する。係止用突起122の係止部122bは、軸部122aよりも大きな直径を有する円盤形状を有している。 FIG. 5 and FIG. 6 are diagrams illustrating an attachment structure between the mouthpiece unit 10 and the wooden housing 13 in the suction device 1 according to the first embodiment. As shown in FIG. 5, a locking protrusion 122 projects downward from the lower surface 12 a side of the mouthpiece receptacle 12 in the mouthpiece unit 10. The locking protrusion 122 has a shaft portion 122a protruding from the lower surface 12a and a locking portion 122b provided at the tip of the shaft portion 122a. The locking portion 122b of the locking projection 122 has a disk shape having a larger diameter than the shaft portion 122a.
 上記のように構成される吸い口ユニット10における係止用突起122は、固定ユニット24に設けられた着脱用開口244に係脱自在となっている。具体的には、係止用突起122における係止部122bの直径は、固定ユニット24における着脱用開口244の挿抜用孔244aの内径よりも小さく、スライド用孔244bの幅寸法よりも大きい。また、係止用突起122における軸部122aの直径は、スライド用孔244bの幅寸法よりも小さい。 The locking projection 122 in the mouthpiece unit 10 configured as described above is freely detachable from an attaching / detaching opening 244 provided in the fixing unit 24. Specifically, the diameter of the locking portion 122b in the locking protrusion 122 is smaller than the inner diameter of the insertion / extraction hole 244a of the attachment / detachment opening 244 in the fixing unit 24 and larger than the width dimension of the sliding hole 244b. Further, the diameter of the shaft portion 122a in the locking projection 122 is smaller than the width dimension of the slide hole 244b.
 吸い口ユニット10を木製筐体13に装着する場合、固定ユニット24における挿抜用孔244aの位置に吸い口ユニット10における係止用突起122の位置を合わせ、吸い口受け12の下面12aが固定ユニット24の上面24aに当接するまで係止用突起122を挿抜用孔244aに挿入する。その後、吸い口受け12の下面12aが固定ユニット24の上面24aと摺動するように係止用突起122の軸部122aをスライド用孔244bに沿ってスライドさせる。そして、係止用突起122の軸部122aを例えばスライド用孔244bの先端までスライドさせた時点で、図6に示すロック部29が作動し、吸い口ユニット10の被係止部(図示せず)を係止することで、木製筐体13に吸い口ユニット10が装着される。また、この状態においては、係止用突起122における係止部122bは、スライド用孔244bの縁部に形成された状態となっている。 When the mouthpiece unit 10 is attached to the wooden housing 13, the position of the locking projection 122 in the mouthpiece unit 10 is aligned with the position of the insertion hole 244a in the fixed unit 24, and the lower surface 12a of the mouthpiece receiver 12 is fixed to the fixed unit 24. The locking projection 122 is inserted into the insertion / extraction hole 244a until it abuts on the upper surface 24a of 24. Thereafter, the shaft portion 122a of the locking projection 122 is slid along the sliding hole 244b so that the lower surface 12a of the mouthpiece receptacle 12 slides on the upper surface 24a of the fixing unit 24. When the shaft portion 122a of the locking projection 122 is slid to, for example, the tip of the slide hole 244b, the lock portion 29 shown in FIG. 6 is activated, and the locked portion (not shown) of the mouthpiece unit 10 is activated. ) Is attached to the wooden casing 13. In this state, the locking portion 122b of the locking projection 122 is formed at the edge of the slide hole 244b.
 一方、木製筐体13から吸い口ユニット10を取り外す際には、ロック部29のロックを解除して、係止用突起122の軸部122aをスライド用孔244bに沿って基端(挿抜用孔244aとの接続される方の端部)に向かってスライドさせる。そして、係止用突起122の位置を挿抜用孔244aまでスライドさせた後、挿抜用孔244aから係止用突起122を引き抜くことで、木製筐体13から吸い口ユニット10を取り外すことができる。 On the other hand, when removing the mouthpiece unit 10 from the wooden housing 13, the lock portion 29 is unlocked, and the shaft portion 122a of the locking projection 122 is moved along the slide hole 244b to the base end (insertion / removal hole). Slide toward the end of the side connected to 244a). Then, after the position of the locking projection 122 is slid to the insertion / extraction hole 244 a, the mouthpiece unit 10 can be removed from the wooden housing 13 by pulling out the locking projection 122 from the insertion / extraction hole 244 a.
 図7は、実施形態1に係る吸引器1のブロック図である。吸引器1の電子基板21には、吸引器1を制御する制御ユニットである制御部30が実装されている。制御部30は、例えばプロセッサ、メモリ等を有するマイクロコンピュータであっても良い。制御部30は、精神性発汗量測定用電極26,27、気圧センサ40、振動モータ41、発光素子43、電源23等と電気配線を介して接続されており、精神性発汗量測定用電極26,27、気圧センサ40が出力する出力信号が入力されるようになっている。 FIG. 7 is a block diagram of the aspirator 1 according to the first embodiment. A control unit 30 that is a control unit for controlling the suction device 1 is mounted on the electronic substrate 21 of the suction device 1. The control unit 30 may be a microcomputer having a processor, a memory, and the like, for example. The control unit 30 is connected to the mental sweating amount measuring electrodes 26 and 27, the atmospheric pressure sensor 40, the vibration motor 41, the light emitting element 43, the power source 23, and the like through the electrical wiring, and the mental sweating amount measuring electrode 26. , 27, an output signal output from the atmospheric pressure sensor 40 is input.
 気圧センサ40は、木製筐体13の内部に設けられており、木製筐体13内の気圧を検出するセンサである。気圧センサ40は、例えばコンデンサマイクロフォンセンサであり、例えばコンデンサの電気容量を示す電圧値を出力しても良い。気圧センサ40は、使用者によって吸い口11が吸引されることで、通気孔(図示せず)から木製筐体13内に取り込まれた空気が、吸い口11の吸い口孔112に向かって通気路(図示せず)を流れる際に変化する木製筐体13内の気圧を出力する。 The atmospheric pressure sensor 40 is a sensor that is provided inside the wooden casing 13 and detects the atmospheric pressure in the wooden casing 13. The atmospheric pressure sensor 40 is a condenser microphone sensor, for example, and may output a voltage value indicating the electric capacity of the condenser, for example. In the atmospheric pressure sensor 40, air taken into the wooden housing 13 from a vent hole (not shown) is vented toward the suction hole 112 of the suction mouth 11 when the suction mouth 11 is sucked by the user. The pressure in the wooden casing 13 that changes when flowing through a path (not shown) is output.
 振動モータ41は、電源23における電池230からの電力供給を受けて駆動(作動)するモータである。振動モータ41の駆動時には、木製筐体13が振動するように振動モータ41の周波数が決定されている。 The vibration motor 41 is a motor that is driven (operated) by receiving power supply from the battery 230 in the power source 23. When the vibration motor 41 is driven, the frequency of the vibration motor 41 is determined so that the wooden casing 13 vibrates.
 発光素子43は、例えば、LEDや電灯などの光源である。発光素子43は、例えば木製筐体13に、発光時における光が使用者に視認できる態様で設けられている。例えば、発光素子43は、木製筐体13において、吸い口11とは反対側の側面に設けられていても良く、これによって、使用者は、吸い口11の吸引動作中において発光素子43の発光パターンを容易に視認することができる。発光素子43は、吸引器1の状態に応じて異なる発光パターンで発光されても良い。なお、発光素子43を作動させるための電力は、電源23から供給される。 The light emitting element 43 is a light source such as an LED or an electric lamp. For example, the light emitting element 43 is provided on the wooden housing 13 in such a manner that the user can visually recognize the light at the time of light emission. For example, the light emitting element 43 may be provided on the side surface of the wooden housing 13 opposite to the mouthpiece 11, whereby the user can emit light from the light emitting element 43 during the suction operation of the mouthpiece 11. The pattern can be easily visually recognized. The light emitting element 43 may emit light with different light emission patterns depending on the state of the aspirator 1. Note that power for operating the light emitting element 43 is supplied from the power source 23.
 精神性発汗量測定用電極26,27は、電源23から電力供給を受けて微弱な発汗量測定用電流を使用者の指の皮膚に流した際の抵抗値に基づいて、皮膚コンダクタンスに対応する応答値を出力する。本実施形態に係る吸引器1において、例えば、使用者が木製筐体13を把持した際に人差し指と中指が触れる予め定められた2箇所(すなわち、人差し指と中指が置かれるそれぞれの位置)に一組の精神性発汗量測定用電極26,27が配置されている。これにより、吸引器1を使用者が把持している間、精神性発汗量測定用電極26,27を使用者の指の皮膚表面に触れた状態に維持することができる。但し、一組の精神性発汗量測定用電極26,27の配置位置は上記の位置に限られない。例えば、使用者が木製筐体13を把持した際に当該木製筐体13を把持する使用者の掌の異なる2つの領域(部位)が触れる予め定められた2箇所に配置されていても良い。例えば、一組の精神性発汗量測定用電極26,27が、使用者の掌の掌底と母指球に対応する2箇所に配置されていても良いし、使用者の掌の掌底と、何れかの指に対応する2箇所に配置されていても良いし、掌の母指球と何れかの指に対応する2箇所に配置されていても良い。また、一組の精神性発汗量測定用電極26,27が、使用者の掌の人差し指と中指の組み合わせと異なる2本の指に対応する2箇所に配置されていても良い。 The electrodes 26 and 27 for measuring the amount of mental perspiration correspond to the skin conductance based on the resistance value when a weak current for measuring the amount of perspiration is passed through the skin of the user's finger upon receiving power from the power source 23. Output the response value. In the aspirator 1 according to the present embodiment, for example, when the user grips the wooden casing 13, it is set at two predetermined positions (that is, respective positions where the index finger and the middle finger are placed) that the index finger and the middle finger touch. A pair of mental sweating measurement electrodes 26 and 27 are arranged. Thereby, while the user is holding the suction device 1, the electrodes 26 and 27 for measuring the amount of mental sweating can be kept in contact with the skin surface of the user's finger. However, the arrangement position of the pair of mental sweating measurement electrodes 26 and 27 is not limited to the above position. For example, when the user grips the wooden casing 13, it may be arranged at two predetermined locations where two different areas (parts) of the palm of the user holding the wooden casing 13 touch. For example, a pair of mental sweating measurement electrodes 26 and 27 may be disposed at two locations corresponding to the palm of the user's palm and the thumb ball, or the palm of the user's palm and They may be arranged at two locations corresponding to any of the fingers, or may be arranged at two locations corresponding to the palm ball and any of the fingers. A pair of mental sweating measurement electrodes 26 and 27 may be arranged at two locations corresponding to two fingers different from the combination of the index finger and middle finger of the user's palm.
 図7に示すように、制御部30は、気圧取得部31、電源スイッチ部32、発汗量測定部33、モータ制御部34、記憶部35、設定部36、発光制御部37、判定部38、計時部39等を有している。記憶部35は、例えば不揮発性メモリであり、制御部30のプロセッサが実行するための各種プログラムが記憶されている。制御部30のプロセッサが記憶部35に記憶されている各種プログラムを実行することで、ストレス度合い分析制御が実施される。ストレス度合い分析制御は、吸引器1を使用する使用者の精神性発汗量を測定することで、使用者のストレス度合いを分析するための制御である。 As shown in FIG. 7, the control unit 30 includes an atmospheric pressure acquisition unit 31, a power switch unit 32, a sweating amount measurement unit 33, a motor control unit 34, a storage unit 35, a setting unit 36, a light emission control unit 37, a determination unit 38, It has a timer 39 and the like. The storage unit 35 is a non-volatile memory, for example, and stores various programs to be executed by the processor of the control unit 30. The processor of the control unit 30 executes various programs stored in the storage unit 35, whereby stress degree analysis control is performed. The stress level analysis control is a control for analyzing the user's stress level by measuring the amount of mental sweating of the user who uses the aspirator 1.
 気圧取得部31は、気圧センサ40の出力信号に基づいて木製筐体13内の気圧を取得する。例えば、気圧取得部31は、取得した木製筐体13内の気圧に基づいて(すなわち、負圧を検出することで)、使用者による吸い口11の吸引動作(パフ動作)を検出する。例えば、気圧取得部31は、使用者が吸い口11を吸引している吸引状態(吸引区間)と、吸い口11を吸引していない非吸引状態(非吸引区間)を検出する。これによって、気圧取得部31は、吸い口11を吸引する吸引動作の回数を特定できる。気圧センサ40を用いた吸引動作(パフ動作)の開始や、吸引動作の終了を検出する具体的な手法自体は公知であり、ここでの詳しい説明は割愛する。 The atmospheric pressure acquisition unit 31 acquires the atmospheric pressure in the wooden casing 13 based on the output signal of the atmospheric pressure sensor 40. For example, the atmospheric pressure acquisition unit 31 detects the suction operation (puff operation) of the mouthpiece 11 by the user based on the acquired atmospheric pressure in the wooden housing 13 (that is, by detecting a negative pressure). For example, the atmospheric pressure acquisition unit 31 detects a suction state (suction section) in which the user is sucking the mouthpiece 11 and a non-suction state (non-suction section) in which the user is not sucking the mouthpiece 11. Thereby, the atmospheric pressure acquisition unit 31 can specify the number of suction operations for sucking the mouthpiece 11. Specific methods for detecting the start of the suction operation (puff operation) using the atmospheric pressure sensor 40 and the end of the suction operation are known per se, and detailed description thereof is omitted here.
 計時部39は、例えば使用者による吸引(パフ)動作の終了からの経過時間を計時したり、後述するメイン処理やフィードバック処理が開始されてからの経過時間を計時する計時機能を有している。 The timer unit 39 has, for example, a timer function that measures an elapsed time from the end of the suction (puff) operation by the user, or measures an elapsed time since the start of a main process and a feedback process described later. .
 電源スイッチ部32は、吸引器1の電源が投入される場合にオン状態に切り替わり、吸引器1の電源が切断される場合にオフ状態に切り替わる。電源スイッチ部32は、計時部39におけるタイマーの満了、例えば気圧取得部31によって直近の吸引動作が検出されてから次回の吸引動作が検出されることなく所定時間が経過した場合に、オン状態からオフ状態に切り替わっても良い。また、電源スイッチ部32がオフ状態にあるときに、例えば気圧取得部31が使用者による初回の吸引動作の開始を検出した場合に、電源スイッチ部32がオフ状態からオン状態に切り替わっても良い。 The power switch unit 32 is turned on when the power of the suction device 1 is turned on, and is turned off when the power of the suction device 1 is turned off. The power switch unit 32 is turned on when the timer in the timer unit 39 expires, for example, when a predetermined time elapses after the latest suction operation is detected by the atmospheric pressure acquisition unit 31 without detecting the next suction operation. It may be switched to an off state. Further, when the power switch unit 32 is in the off state, for example, when the atmospheric pressure acquisition unit 31 detects the start of the first suction operation by the user, the power switch unit 32 may be switched from the off state to the on state. .
 制御部30の発汗量測定部33は、精神性発汗量測定用電極26,27と接続されており、精神性発汗量測定用電極26,27から出力される皮膚コンダクタンスに対応する応答値に基づいて使用者の精神性発汗量を測定する。 The sweating amount measuring unit 33 of the control unit 30 is connected to the mental sweating amount measuring electrodes 26 and 27, and is based on a response value corresponding to the skin conductance output from the mental sweating amount measuring electrodes 26 and 27. To measure the amount of mental sweating of the user.
 制御部30の設定部36は、後述するストレス度合い分析制御に関連する各パラメータに関する基準値、閾値等の設定、記憶部35への記憶、および更新(リセット)を行う。更に、設定部36は、電源スイッチ部32がオン状態のときに使用者の吸引(パフ)回数をカウントしたカウント値に関しても、記憶部35への記憶、更新(リセット)等を行う。 The setting unit 36 of the control unit 30 performs setting of reference values, threshold values and the like regarding each parameter related to stress degree analysis control described later, storage in the storage unit 35, and update (reset). Further, the setting unit 36 also stores, updates (resets), and the like in the storage unit 35 with respect to the count value obtained by counting the number of suction (puff) of the user when the power switch unit 32 is in the on state.
 また、モータ制御部34は、振動モータ41の駆動制御を行い、木製筐体13を振動させることで、使用者に種々の情報を通知する。また、発光制御部37は、発光素子43の発光制御を行い、使用者に種々の情報を通知する。更に、判定部38は、後述するストレス度合い分析制御において、各種の判定処理を行う。 Further, the motor control unit 34 controls the drive of the vibration motor 41 and vibrates the wooden casing 13 to notify the user of various information. Moreover, the light emission control part 37 performs light emission control of the light emitting element 43, and notifies a user of various information. Further, the determination unit 38 performs various determination processes in stress degree analysis control described later.
≪制御内容≫
 次に、実施形態1に係る吸引器1における制御部30が実行するストレス度合い分析制御について説明する。図8は、実施形態1において制御部30が実行するパワーオン処理ルーチンを示すフローチャートである。図9は、実施形態1におけるパワーオン処理ルーチンの終了後、制御部30が実行するメイン処理ルーチンを示すフローチャートである。図10は、実施形態1におけるメイン処理ルーチンの終了後、制御部30が実行するフィードバック処理ルーチンを示すフローチャートである。図8~図10に示す各種処理ルーチンは、制御部30のプロセッサが記憶部35に記憶されている各種プログラムを実行することで実現することができる。
≪Control contents≫
Next, the stress degree analysis control executed by the control unit 30 in the aspirator 1 according to the first embodiment will be described. FIG. 8 is a flowchart illustrating a power-on process routine executed by the control unit 30 in the first embodiment. FIG. 9 is a flowchart illustrating a main process routine executed by the control unit 30 after the power-on process routine in the first embodiment is completed. FIG. 10 is a flowchart illustrating a feedback processing routine executed by the control unit 30 after the main processing routine in the first embodiment is completed. The various processing routines shown in FIGS. 8 to 10 can be realized by the processor of the control unit 30 executing various programs stored in the storage unit 35.
 また、図11は、吸引器1の制御部30がストレス度合い分析制御を実行した際における精神性発汗量Qsの時間推移を概念的に示した図である。図11は、横軸に時間Tを示し、縦軸に精神性発汗量Qsを示す。図11に示すように、時間T0~T1の区間に対応するパワーオン処理区間においてパワーオン処理が実行される。また、時間T1~T2の区間に対応するメイン処理区間においてメイン処理が実行され、時間T2~T3の区間に対応するフィードバック処理区間においてフィードバック処理が実行される。 FIG. 11 is a diagram conceptually showing a time transition of the amount of mental sweating Qs when the control unit 30 of the aspirator 1 executes stress degree analysis control. In FIG. 11, the horizontal axis indicates time T, and the vertical axis indicates mental sweating amount Qs. As shown in FIG. 11, the power-on process is executed in the power-on process interval corresponding to the interval from time T0 to T1. In addition, main processing is executed in the main processing interval corresponding to the time period T1 to T2, and feedback processing is executed in the feedback processing interval corresponding to the time period T2 to T3.
〔パワーオン処理ルーチン〕
 次に、図8を参照して、パワーオン処理の具体的内容について説明する。パワーオン処理は、電源スイッチ部32がオフ状態からオン状態に切り替わったことを契機として制御部30が実行を開始する制御フローである。上記のように、電源スイッチ部32がオフ状態にあるときに、気圧取得部31が使用者による初回の吸引(パフ)動作の開始を検出した場合に、電源スイッチ部32がオフ状態からオン状態に切り替わる。
[Power-on processing routine]
Next, specific contents of the power-on process will be described with reference to FIG. The power-on process is a control flow in which the control unit 30 starts executing when the power switch unit 32 is switched from the off state to the on state. As described above, when the air pressure acquisition unit 31 detects the start of the first suction (puff) operation by the user when the power switch unit 32 is in the off state, the power switch unit 32 is changed from the off state to the on state. Switch to
 図11に示す時間T0において電源スイッチ部32がオフ状態からオン状態に切り替わることで、パワーオン処理が開始されると、ステップS101において、制御部30の設定部36は、記憶部35に記憶されている前回設定情報を初期化(リセット)する初期化処理を行う。ここでいう前回設定情報は、吸引器1が前回起動された際に(オフ状態からオン状態に切り替わった際に)ストレス度合い分析制御を実行した際に記憶部35に記憶させておいた吸引回数に関する吸引回数データ、気圧基準値に関する気圧基準値データ、初期基準発汗量Qsbに関する初期基準発汗量データ、判定用発汗量Qsjに関する判定用発汗量データ等をリセット(削除)する。気圧基準値データ、初期基準発汗量データ、判定用発汗量データについては後述する。 When the power-on process is started by switching the power switch unit 32 from the off state to the on state at time T0 shown in FIG. 11, the setting unit 36 of the control unit 30 is stored in the storage unit 35 in step S101. The initialization process is performed to initialize (reset) the previous setting information. The previous setting information here is the number of suctions stored in the storage unit 35 when the stress level analysis control is executed when the aspirator 1 is activated last time (when switched from the off state to the on state). The reference number perspiration data, the reference air pressure value data regarding the reference air pressure value, the initial reference perspiration amount data regarding the initial reference perspiration amount Qsb, the determination perspiration amount data regarding the determination perspiration amount Qsj, and the like are reset (deleted). The atmospheric pressure reference value data, the initial reference sweating amount data, and the determination sweating amount data will be described later.
 次に、ステップS102、S103において、今回のストレス度合い分析制御に関する気圧基準値データ、初期基準発汗量データを制御部30の設定部36が取得し、記憶部35に記憶させる。具体的には、ステップS102において、制御部30の気圧取得部31が、気圧センサ40の出力信号に基づいて木製筐体13内の気圧データを取得する。本ステップでは、使用者が吸い口11を吸引していない非吸引状態(非吸引区間)のときに、例えば、所定のデータ取得期間(例えば、3秒間)に亘って、所定の周期(例えば、100ms)毎に取得した気圧データを平均処理して得られた平均値を気圧基準値に設定する。設定部36は、本ステップにおいて設定した気圧基準値に関する気圧基準値データを、記憶部35に記憶させる。なお、上記のように取得される気圧基準値は、非吸引状態(非吸引区間)における木製筐体13内の気圧データであるため、概ね大気圧に一致する。 Next, in steps S102 and S103, the setting unit 36 of the control unit 30 acquires the atmospheric pressure reference value data and the initial reference sweating amount data regarding the current stress degree analysis control, and stores them in the storage unit 35. Specifically, in step S <b> 102, the atmospheric pressure acquisition unit 31 of the control unit 30 acquires atmospheric pressure data in the wooden casing 13 based on the output signal of the atmospheric pressure sensor 40. In this step, when the user is not sucking the mouthpiece 11 (non-suction section), for example, over a predetermined data acquisition period (for example, 3 seconds), a predetermined cycle (for example, The average value obtained by averaging the atmospheric pressure data acquired every 100 ms) is set as the atmospheric pressure reference value. The setting unit 36 causes the storage unit 35 to store the atmospheric pressure reference value data related to the atmospheric pressure reference value set in this step. In addition, since the atmospheric | air pressure reference value acquired as mentioned above is the atmospheric | air pressure data in the wooden housing | casing 13 in a non-attraction | suction state (non-attraction | suction area), it substantially corresponds to atmospheric pressure.
 次に、ステップS103において、制御部30の発汗量測定部33は、所定のデータ取得期間(例えば、3秒間)に亘って、所定の周期(例えば、100ms)毎に使用者の精神性発汗量を測定する。精神性発汗量の測定は、発汗量測定部33が電源23に指令を出し、精神性発汗量測定用電極26,27に対して電源23から電力を供給させる。上記のように、精神性発汗量測定用電極26,27は、吸引器1を把持する使用者の指(例えば、人差し指と中指)が精神性発汗量測定用電極26,27に触れるような位置に配置されている。発汗量測定部33は、精神性発汗量測定用電極26,27から吸引器1を把持する使用者の指の皮膚に微弱な発汗量測定用電流を流し、精神性発汗量測定用電極26,27から出力される皮膚コンダクタンスに対応する応答値に基づいて使用者の精神性発汗量を測定することができる。 Next, in step S103, the sweating amount measuring unit 33 of the control unit 30 performs the mental sweating amount of the user every predetermined cycle (for example, 100 ms) over a predetermined data acquisition period (for example, 3 seconds). Measure. For the measurement of the amount of mental sweating, the sweating amount measuring unit 33 issues a command to the power supply 23 to cause the power supply 23 to supply power to the electrodes 26 and 27 for measuring the amount of mental sweating. As described above, the mental sweating amount measuring electrodes 26 and 27 are positioned such that the finger (for example, the index finger and the middle finger) of the user holding the aspirator 1 touches the mental sweating amount measuring electrodes 26 and 27. Is arranged. The sweating amount measuring unit 33 sends a weak sweating amount measuring current to the skin of the finger of the user holding the aspirator 1 from the mental sweating amount measuring electrodes 26 and 27, and the mental sweating amount measuring electrode 26, The mental sweating amount of the user can be measured based on the response value corresponding to the skin conductance output from the user 27.
 制御部30の発汗量測定部33は、上記のように所定のデータ取得期間(例えば、3秒間)に亘って所定の周期(例えば、100ms)毎に取得した精神性発汗量に関する複数の精神性発汗量データを平均処理して得られた平均値を初期基準発汗量Qsbとして取得する。そして、制御部30の設定部36は、初期基準発汗量Qsbに関する初期基準発汗量データを、記憶部35に記憶させる。なお、本ステップで取得する初期基準発汗量Qsbは、ストレス度合い分析制御の開始時において使用者が吸い口11を吸引していない非吸引状態(非吸引区間)のときにおける使用者の状態を反映した精神性発汗量の基準値である。なお、ステップS103の処理と、上述したステップS102の処理は、同時に行っても良いし、順序を入れ替えて実行しても良い。 As described above, the sweating amount measuring unit 33 of the control unit 30 has a plurality of mentalities related to the mental sweating amount acquired every predetermined cycle (for example, 100 ms) over a predetermined data acquisition period (for example, 3 seconds). An average value obtained by averaging the sweating amount data is acquired as the initial reference sweating amount Qsb. Then, the setting unit 36 of the control unit 30 causes the storage unit 35 to store initial reference sweating amount data regarding the initial reference sweating amount Qsb. The initial reference sweating amount Qsb acquired in this step reflects the state of the user in the non-suction state (non-suction section) in which the user is not sucking the mouthpiece 11 at the start of the stress level analysis control. This is the reference value for the amount of mental sweating. In addition, the process of step S103 and the process of step S102 mentioned above may be performed simultaneously, and may be performed by changing the order.
 次に、ステップS104においては、使用者にストレス度合い分析制御の開始を通知(報知)する開始通知が行われる。具体的には、制御部30のモータ制御部34が、振動モータ41に対して電源23から電力を供給させ、振動モータ41を作動(駆動)させる。なお、振動モータ41を駆動することで木製筐体13を振動させ、その振動を使用者に感知させることで、ストレス度合い分析制御の開始を使用者に知らせることができる。また、木製筐体13の振動による通知に代え、あるいは併用して、発光素子43の発光によって開始通知が行われても良い。この場合、発光制御部37が、発光素子43に対して電源23から電力を供給させ、所定の発光パターンで発光素子43を発光させる。 Next, in step S104, a start notification for notifying (notifying) the user of the start of stress level analysis control is performed. Specifically, the motor control unit 34 of the control unit 30 supplies power from the power source 23 to the vibration motor 41 to operate (drive) the vibration motor 41. In addition, the user can be informed of the start of the stress degree analysis control by driving the vibration motor 41 to vibrate the wooden casing 13 and allowing the user to sense the vibration. Further, instead of using the notification due to the vibration of the wooden casing 13 or in combination, the start notification may be performed by the light emission of the light emitting element 43. In this case, the light emission control unit 37 supplies power from the power source 23 to the light emitting element 43 and causes the light emitting element 43 to emit light with a predetermined light emission pattern.
 振動、あるいは発光による開始通知を感知することで、吸引器1側の準備が完了したことを把握し、ストレスを解消するための吸い口11の吸引動作(深呼吸動作)に移行するタイミングを容易に把握することができる。なお、本ステップにおいて使用者に通知される開始通知は、使用者に初期基準発汗量Qsbの取得が完了したことを通知(報知)するための通知としても利用できる。 By sensing the start notification due to vibration or light emission, it is possible to grasp that the preparation on the side of the aspirator 1 has been completed, and to easily switch to the suction operation (deep breathing operation) of the mouthpiece 11 to relieve stress. I can grasp it. The start notification notified to the user in this step can also be used as a notification for notifying (notifying) the user that the acquisition of the initial reference sweating amount Qsb has been completed.
 また、上記開始通知において、振動モータ41を振動させる際の振動パターンは、適宜変更することができる。例えば、振動モータ41を振動させる際、振動モータ41を駆動する状態と、駆動を休止させた状態とを交互に繰り返しても良い。特に限定されるものではないが、例えば振動モータ41の駆動時間を200ms、休止時間を400msとし、駆動および休止を複数セット(例えば、2回)繰り返しても良い。また、木製筐体13の振動によるバイブレーション通知と、発光素子43の発光による発光通知を併用する場合、双方を同時に行っても良いし、時間的にずらして行っても良い。時間的にずらす場合、バイブレーション通知と発光通知を行う順序は適宜入れ替えることができる。制御部30は、ステップS104の処理が終了すると、パワーオン処理を一旦終了し、図9に示すメイン処理ルーチンに係る処理を開始する。 Also, in the start notification, the vibration pattern when vibrating the vibration motor 41 can be changed as appropriate. For example, when the vibration motor 41 is vibrated, a state in which the vibration motor 41 is driven and a state in which the drive is suspended may be alternately repeated. Although not particularly limited, for example, the drive time of the vibration motor 41 may be 200 ms, the pause time may be 400 ms, and the drive and pause may be repeated a plurality of sets (for example, twice). Moreover, when using the vibration notification by the vibration of the wooden housing 13 and the light emission notification by the light emission of the light emitting element 43, both may be performed simultaneously or may be performed with a time shift. When shifting in terms of time, the order in which the vibration notification and the light emission notification are performed can be appropriately switched. When the process of step S104 ends, the control unit 30 once ends the power-on process and starts the process related to the main process routine shown in FIG.
 図11に示す時間T1において、パワーオン処理が終了されると共にメイン処理が開始されると、精神性発汗量Qsは、時間T1から時間T2に亘って徐々に減少する。これは、メイン処理区間においては後述するように使用者が吸引器1を吸引する吸引動作が繰り返し行われることに伴い、実質的に使用者が深呼吸を繰り返すことになり、使用者のストレス度合いを反映する精神性発汗量Qsの低下に繋がることに拠るものである。なお、交感神経系が緊張しているときは皮膚表面からの精神性発汗量が増加することが知られている。また、深呼吸を行うことで心身の緊張状態を緩和すると副交感神経が優位になるため、精神性発汗量も少なくなる。精神性発汗量が少なくなったことが、使用者のストレスの解消、軽減につながっていると本発明においては判断するものとする。すわなち、本実施形態におけるストレス度合い分析制御では、ストレスの増加・軽減が交感神経系の緊張・緩和と相関があるものと推定し、交感神経系の緊張・緩和と相関が認められる精神性発汗量に基づいて使用者のストレス度合いを分析する。なお、本実施形態に係る吸引器1によれば、木製筐体13を有し、当該木製筐体13が香気成分を含む香気発生源として形成されている。そのため、使用者が吸引器1の吸引動作を行うだけでもストレスが低減するが、吸引器1の吸引時に木製筐体13から発せられる香気成分を使用者は吸引することができ、更なるリラックス感を付与することができる。 When the power-on process is completed and the main process is started at time T1 shown in FIG. 11, the mental sweating amount Qs gradually decreases from time T1 to time T2. This is because the user repeatedly repeats deep breathing in the main processing section as the suction operation in which the user sucks the suction device 1 is repeatedly performed as described later, and the stress level of the user is reduced. It is based on leading to the fall of the amount of mental sweating Qs to reflect. It is known that the amount of mental sweating from the skin surface increases when the sympathetic nervous system is tense. In addition, parasympathetic nerves dominate when the body and mind are relaxed by taking deep breaths, and the amount of mental sweating is reduced. In the present invention, it is determined in the present invention that the decrease in the amount of mental perspiration leads to the relief and reduction of the user's stress. In other words, in the stress level analysis control in this embodiment, it is estimated that the increase / reduction in stress correlates with the tension / relaxation of the sympathetic nervous system, and the mentality that is correlated with the tension / relaxation of the sympathetic nervous system. Based on the amount of sweating, the stress level of the user is analyzed. In addition, according to the suction device 1 which concerns on this embodiment, it has the wooden housing | casing 13 and the said wooden housing | casing 13 is formed as an aroma generation source containing an aroma component. Therefore, although the stress is reduced only by the user performing the suction operation of the suction device 1, the user can suck the fragrance component emitted from the wooden housing 13 during the suction of the suction device 1, and further relaxed feeling. Can be granted.
 図11において、メイン処理が開始される時間T1において、精神性発汗量Qsは、パワーオン処理において設定した初期基準発汗量Qsbである。そして、図11に示す例では、時間T2において所定の低ストレス発汗量Qsb2まで精神性発汗量Qsが低下したことを契機に使用者に微小なストレスを付与することで使用者を覚醒させるための覚醒処理を行い、メイン処理を終了すると共にフィードバック処理が開始される。 In FIG. 11, at the time T1 when the main process is started, the mental sweating amount Qs is the initial reference sweating amount Qsb set in the power-on process. In the example shown in FIG. 11, the user is awakened by applying a minute stress to the user when the mental sweat rate Qs is reduced to the predetermined low stress sweat rate Qsb2 at time T2. The awakening process is performed, the main process is terminated, and the feedback process is started.
 低ストレス発汗量Qsb2は、初期基準発汗量Qsbから所定の第1基準発汗低下量ΔQsd1だけ低い値に設定されている。ここで、低ストレス発汗量Qsb2は、精神性発汗量Qsが初期基準発汗量Qsbから第1基準発汗低下量ΔQsd1だけ低下すれば、使用者の交感神経系の緊張が緩和され、ストレスが十分に解消されたと判断できる閾値として設定されている。第1基準発汗低下量ΔQsd1は、固定値として設定されても良いし、使用者によって設定の変更が可能であっても良い。 The low stress perspiration amount Qsb2 is set to a value lower than the initial reference perspiration amount Qsb by a predetermined first reference perspiration reduction amount ΔQsd1. Here, the low stress sweating amount Qsb2 is such that if the mental sweating amount Qs is reduced by the first reference sweating reduction amount ΔQsd1 from the initial reference sweating amount Qsb, the user's sympathetic nervous system tension is alleviated and the stress is sufficiently increased. It is set as a threshold value that can be determined to have been eliminated. The first reference sweating reduction amount ΔQsd1 may be set as a fixed value or may be changed by the user.
 図11における時間T2において覚醒処理が行われると、それを境に精神性発汗量Qsは徐々に上昇する。覚醒処理の詳細については後述するが、覚醒処理においては使用者の皮膚に刺激を付与することで使用者に僅かなストレスを敢えて与え、使用者の覚醒レベルを若干上昇させる。図11において、時間T2における精神性発汗量Qsは低ストレス発汗量Qsb2に対応しており、時間T2において覚醒処理に係る刺激が使用者に付与されることで精神性発汗量Qsが時間T2からT3にかけて徐々に上昇する。そして、時間T3において所定の覚醒完了発汗量Qsb3に至った時点でフィードバック処理が終了する。 When the awakening process is performed at time T2 in FIG. 11, the mental sweating amount Qs gradually increases after that. Although details of the awakening process will be described later, in the awakening process, a slight stress is given to the user by giving a stimulus to the skin of the user, and the awakening level of the user is slightly increased. In FIG. 11, the amount of mental sweating Qs at time T2 corresponds to the amount of low-stress sweating Qsb2, and the amount of mental sweating Qs is increased from time T2 by applying a stimulus related to arousal processing to the user at time T2. It gradually rises toward T3. Then, the feedback process ends when the predetermined awakening completion perspiration amount Qsb3 is reached at time T3.
 覚醒完了発汗量Qsb3は、低ストレス発汗量Qsb2よりも所定の第1基準発汗上昇量ΔQsu1だけ大きな値に設定されている。第1基準発汗上昇量ΔQsu1は、第1基準発汗低下量ΔQsd1に比べて小さな値に設定されている。第1基準発汗上昇量ΔQsu1は、精神性発汗量Qsが低ストレス発汗量Qsb2から第1基準発汗上昇量ΔQsu1だけ上昇すれば、使用者が低ストレス状態を維持しつつ、且つ意識も十分に覚醒した状態になると判断できる閾値として設定することができる。第1基準発汗上昇量ΔQsu1は、固定値として設定されても良いし、使用者によって設定の変更が可能であっても良い。 The awakening completion sweat amount Qsb3 is set to a value larger than the low stress sweat amount Qsb2 by a predetermined first reference sweat rise amount ΔQsu1. The first reference sweating increase amount ΔQsu1 is set to a smaller value than the first reference sweating reduction amount ΔQsd1. The first reference sweating increase amount ΔQsu1 is such that if the mental sweating amount Qs increases from the low stress sweating amount Qsb2 by the first reference sweating increase amount ΔQsu1, the user maintains a low stress state and is sufficiently awakened. It can be set as a threshold value that can be determined to be in the state. The first reference sweating increase amount ΔQsu1 may be set as a fixed value or may be changed by the user.
〔メイン処理ルーチン〕
 次に、図9を参照して、制御部30が実行するメイン処理の具体的内容について説明する。図9に示すメイン処理ルーチンが開始されると、ステップS201において、気圧取得部31が気圧センサ40から出力される気圧データを取得する。
[Main processing routine]
Next, with reference to FIG. 9, the specific content of the main process which the control part 30 performs is demonstrated. When the main processing routine shown in FIG. 9 is started, the atmospheric pressure acquisition unit 31 acquires atmospheric pressure data output from the atmospheric pressure sensor 40 in step S201.
 次に、ステップS202において、判定部38は、ステップS201において取得した気圧データに基づいて、現在、使用者による吸い口11の吸引動作中か否かを判定する。本ステップにおいて、判定部38が吸引状態であると判定した場合、記憶部35に記憶されている吸引回数データを更新する。記憶部35に記憶されている吸引回数データは、記憶部35に記憶されている吸引回数データは、パワーオン処理のステップS101において一旦リセットされているため、本ステップでは、今回のメイン処理ルーチンが開始されてからの吸引回数を積算した値が記憶部35に記憶される。そして、記憶部35における吸引回数データを更新した後、ステップS203に進む。なお、ステップS202において、判定部38が非吸引状態と判定した場合にはステップS209に進む。ステップS209の処理内容については後述する。 Next, in step S202, the determination unit 38 determines whether or not the user is currently performing the suction operation of the mouthpiece 11 based on the atmospheric pressure data acquired in step S201. In this step, when it is determined that the determination unit 38 is in the suction state, the number-of-suction data stored in the storage unit 35 is updated. Since the number-of-suction data stored in the storage unit 35 is once reset in step S101 of the power-on process, the number-of-suction data stored in the storage unit 35 is reset in this step. A value obtained by integrating the number of times of suction since the start is stored in the storage unit 35. Then, after updating the number-of-suctions data in the storage unit 35, the process proceeds to step S203. In step S202, when the determination unit 38 determines that the suction state is not performed, the process proceeds to step S209. The processing content of step S209 will be described later.
 次に、ステップS203において、発汗量測定部33は、使用者の精神性発汗量Qsを測定する。すなわち、本ステップでは、吸引動作中の使用者の精神性発汗量Qsが測定される。本ステップにおいては、図8に示すパワーオン処理のステップS103と同様、吸引器1を把持する使用者の指の皮膚に精神性発汗量測定用電極26,27から微弱な発汗量測定用電流を流すことで皮膚コンダクタンスを測定し、皮膚コンダクタンスの測定値に基づいて精神性発汗量Qsを取得する。なお、本ステップにおいて、吸引状態における使用者の精神性発汗量Qsを測定するようにしたので、体動による見掛け上の精神性発汗量の変化(ノイズ)である体動アーティファクトを低減することができる。 Next, in step S203, the sweating amount measuring unit 33 measures the mental sweating amount Qs of the user. That is, in this step, the mental sweating amount Qs of the user during the suction operation is measured. In this step, as in step S103 of the power-on process shown in FIG. 8, a weak sweating measurement current is applied from the mental sweating measurement electrodes 26 and 27 to the finger skin of the user holding the suction device 1. The skin conductance is measured by flowing, and the mental sweating amount Qs is obtained based on the measured value of the skin conductance. In this step, since the mental sweating amount Qs of the user in the suction state is measured, it is possible to reduce the body movement artifact which is a change (noise) in the apparent mental sweating amount due to the body movement. it can.
 なお、上記ステップS202、S203では、使用者による吸引動作中であることが検出されたことを契機に精神性発汗量Qsの測定を行っているが、吸引動作を一定時間以上継続していることが検出されて初めて精神性発汗量Qsの測定を行うようにしても良い。この場合、判定部38は、使用者による吸引動作の継続時間を計時部39から取得し、吸引動作の継続時間が所定の閾値を超えたと判定した場合に、発汗量測定部33が精神性発汗量Qsの測定を行うようにしても良い。 In steps S202 and S203, the mental sweating amount Qs is measured when it is detected that the user is performing a suction operation. However, the suction operation is continued for a certain time or more. It is also possible to measure the amount of mental sweating Qs only after the detection of. In this case, when the determination unit 38 obtains the duration of the suction operation by the user from the time measuring unit 39 and determines that the duration of the suction operation exceeds a predetermined threshold, the sweating amount measurement unit 33 performs the mental sweating. The amount Qs may be measured.
 次に、ステップS204へと進み、判定部38は、直近に取得した精神性発汗量の測定値(以下、「最新測定値」という)と、記憶部35に記憶されている判定用発汗量Qsjとの差である発汗変化量ΔQsを算出する。判定用発汗量Qsjは、後述する判定ステップにおいて低ストレス発汗量Qsb2との大小を比較する際に用いられる判定用の発汗量であり、吸引器1を繰り返し吸引することで徐々に精神性発汗量が低下する使用者の状態を反映する発汗量である。 Next, the process proceeds to step S204, where the determination unit 38 determines the most recently acquired measurement value of mental sweating amount (hereinafter referred to as “latest measurement value”) and the determination sweating amount Qsj stored in the storage unit 35. The amount of change in sweating ΔQs, which is the difference from The determination sweating amount Qsj is a determination sweating amount used when comparing the amount of sweating with the low stress sweating amount Qsb2 in a determination step to be described later. By gradually sucking the aspirator 1, the mental sweating amount is gradually increased. This is the amount of sweating that reflects the user's condition with a decrease.
 判定部38は、算出した発汗変化量ΔQsが所定の閾値である許容変化量ΔQsa(例えば、10[mg/cm2/min])未満であるか否かを判定する。ここで、発汗変化量ΔQsが許容変化量ΔQsa未満であった場合には、ステップS205に進み、設定部36は、最新測定値を用いて記憶部35に記憶されている判定用発汗量Qsjに関する判定用発汗量データを更新する。ステップS205では、最新測定値が判定用発汗量Qsjとして採用され、記憶部35に記憶される。ステップS205の処理が終了すると、ステップS206に進む。 The determination unit 38 determines whether or not the calculated sweating change amount ΔQs is less than an allowable change amount ΔQsa (for example, 10 [mg / cm 2 / min]) that is a predetermined threshold value. If the sweating change amount ΔQs is less than the allowable change amount ΔQsa, the process proceeds to step S205, and the setting unit 36 relates to the determination sweating amount Qsj stored in the storage unit 35 using the latest measurement value. Updates perspiration data for judgment. In step S <b> 205, the latest measured value is adopted as the determination sweating amount Qsj and stored in the storage unit 35. When the process of step S205 ends, the process proceeds to step S206.
 なお、メイン処理ルーチンが開始されてから最初に精神性発汗量を測定する初回測定時においては、記憶部35に判定用発汗量Qsjに関する判定用発汗量データがリセットされた状態であるため、その場合には、ステップS204の処理を省略してステップS205へと進み、精神性発汗量に関する初回の測定値を判定用発汗量Qsjとして記憶部35に記憶する。ステップS205の処理が終了すると、ステップS206に進む。 Note that, at the time of the first measurement in which the mental sweating amount is measured for the first time after the main processing routine is started, the determination sweating amount data related to the determination sweating amount Qsj is reset in the storage unit 35. In this case, the process of step S204 is omitted and the process proceeds to step S205, and the first measurement value related to the mental sweating amount is stored in the storage unit 35 as the determination sweating amount Qsj. When the process of step S205 ends, the process proceeds to step S206.
 また、ステップS204において、発汗変化量ΔQsが許容変化量ΔQsa以上であった場合には、記憶部35に記憶されている判定用発汗量Qsjに関する判定用発汗量データを更新せずに、そのままステップS206に進む。本実施形態では、発汗変化量ΔQsが許容変化量ΔQsa以上である場合、すなわち、直近に取得した最新測定値が、当該最新測定値の前に取得した測定値に対して過度に変化しているような場合には、最新測定値に体動アーティファクトの及ぼす影響が大きいと判断され、最新測定値を判定用発汗量Qsjとして採用しない。 If the perspiration change amount ΔQs is equal to or greater than the permissible change amount ΔQsa in step S204, the determination perspiration amount data related to the determination perspiration amount Qsj stored in the storage unit 35 is not updated and the step is performed as it is. The process proceeds to S206. In the present embodiment, when the perspiration change amount ΔQs is equal to or greater than the permissible change amount ΔQsa, that is, the latest measurement value acquired most recently is excessively changed with respect to the measurement value acquired before the latest measurement value. In such a case, it is determined that the influence of the body movement artifact on the latest measurement value is large, and the latest measurement value is not adopted as the determination sweating amount Qsj.
 次に、ステップS206において、判定部38は、記憶部35に記憶されている判定用発汗量Qsjが、図11で説明した低ストレス発汗量Qsb2未満であるか否かを判定する。なお、低ストレス発汗量Qsb2は、パワーオン処理のステップS103で設定した初期基準発汗量Qsbよりも第1基準発汗低下量ΔQsd1だけ低い値として設定される。ステップS206において、判定用発汗量Qsjが低ストレス発汗量Qsb2未満であると判定された場合にはステップS207に進み、判定用発汗量Qsjが低ストレス発汗量Qsb2以上であると判定された場合にはステップS209に進む。 Next, in step S206, the determination unit 38 determines whether the determination sweating amount Qsj stored in the storage unit 35 is less than the low stress sweating amount Qsb2 described in FIG. The low stress perspiration amount Qsb2 is set to a value lower by the first reference perspiration reduction amount ΔQsd1 than the initial reference perspiration amount Qsb set in step S103 of the power-on process. If it is determined in step S206 that the determination sweating amount Qsj is less than the low stress sweating amount Qsb2, the process proceeds to step S207, and if it is determined that the determination sweating amount Qsj is equal to or greater than the low stress sweating amount Qsb2. Advances to step S209.
 ステップS207においては、モータ制御部34が、振動モータ41に対して電源23から電力を供給させ、振動モータ41を作動(駆動)させることで覚醒処理を実行する。覚醒処理は、振動モータ41の駆動に起因する木製筐体13の振動刺激(微小なストレス)を使用者に付与することで、使用者の覚醒レベルを上昇させる処理である。覚醒処理における振動モータ41の駆動パターンは特に限定されないが、例えば1000msに亘って振動モータ41を駆動することで、使用者の覚醒レベルを上昇させても良い。ステップS207の覚醒処理が終了すると、ステップS208に進む。 In step S207, the motor control unit 34 supplies the electric power from the power source 23 to the vibration motor 41 and operates (drives) the vibration motor 41 to execute the awakening process. The awakening process is a process of raising the user's arousal level by giving the user a vibration stimulus (minute stress) of the wooden casing 13 resulting from the driving of the vibration motor 41. The drive pattern of the vibration motor 41 in the wake-up process is not particularly limited. For example, the wake-up level of the user may be increased by driving the vibration motor 41 for 1000 ms. When the awakening process in step S207 ends, the process proceeds to step S208.
 ステップS208においては、発光制御部37が、発光素子43に対して電源23から電力を供給させる制御を行い、所定の発光パターンで発光素子43を発光させることで、ストレス解消完了通知を使用者に通知(報知)する。このストレス解消完了通知は、使用者の交感神経系の緊張が緩和され、ストレスが十分に解消された状態に至ったことを使用者に知らせるための通知である。本ステップにおける発光素子43の発光パターンは、上述したパワーオン処理のステップS105において使用者に開始通知を通知する場合と異なる発光パターンに設定されても良い。ステップS208の処理が終了すると、メイン処理を一旦終了し、図10に示すフィードバック処理ルーチンに係る処理を開始する。 In step S208, the light emission control unit 37 performs control to supply power from the power source 23 to the light emitting element 43, and causes the light emitting element 43 to emit light with a predetermined light emission pattern, thereby notifying the user of the completion of stress relief. Notification (notification). This stress release completion notification is a notification for notifying the user that the user's sympathetic nervous system has been relaxed and the stress has been sufficiently eliminated. The light emission pattern of the light emitting element 43 in this step may be set to a different light emission pattern from that in the case where the user is notified of the start notification in step S105 of the power-on process described above. When the process of step S208 ends, the main process is temporarily ended, and the process related to the feedback process routine shown in FIG. 10 is started.
 次に、ステップS209の処理について説明する。ステップS209において、判定部38は、メイン処理が開始されてからの経過時間Tp1を計時部39から取得する。そして、判定部38は、取得した経過時間Tp1が所定の第1タイムアウト時間Tsh1を超えたか否かを判定する。第1タイムアウト時間Tsh1は、固定値(一例として、180秒程度)として設定しておいても良いし、使用者によって設定の変更が可能であっても良い。 Next, the process of step S209 will be described. In step S <b> 209, the determination unit 38 acquires an elapsed time Tp <b> 1 from the start of the main process from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time Tp1 exceeds a predetermined first timeout time Tsh1. The first timeout time Tsh1 may be set as a fixed value (for example, about 180 seconds), or the setting may be changed by the user.
 ステップS209において、経過時間Tp1が第1タイムアウト時間Tsh1を経過していないと判定された場合には、ステップS201の処理に戻り、ステップS201~S206の処理が繰り返される。一方、ステップS209において、経過時間Tp1が第1タイムアウト時間Tsh1を経過したと判定された場合にはステップS210に進み、ステップS207と同様、覚醒処理を行う。そして、ステップS210の覚醒処理が終了すると、ステップS211に進む。 If it is determined in step S209 that the elapsed time Tp1 has not passed the first timeout time Tsh1, the process returns to step S201, and the processes of steps S201 to S206 are repeated. On the other hand, if it is determined in step S209 that the elapsed time Tp1 has passed the first timeout time Tsh1, the process proceeds to step S210, and the awakening process is performed as in step S207. Then, when the awakening process in step S210 ends, the process proceeds to step S211.
 ステップS211においては、発光制御部37が発光素子43を所定の発光パターンで発光させることで、タイムアウトした旨のタイムアウト通知を使用者に通知(報知)する。本ステップにおける発光素子43の発光パターンは、上述したパワーオン処理時における開始通知や、ストレス解消完了通知とは異なる発光パターンに設定されても良い。ステップS211の通知処理が終了すると、メイン処理を一旦終了し、図10に示すフィードバック処理ルーチンに係る処理を開始する。 In step S211, the light emission control unit 37 causes the light emitting element 43 to emit light with a predetermined light emission pattern, thereby notifying (notifying) the user of a time-out notification that time-out has occurred. The light emission pattern of the light emitting element 43 in this step may be set to a light emission pattern different from the start notification at the time of the power-on process described above or the stress release completion notification. When the notification process in step S211 ends, the main process is temporarily ended, and the process related to the feedback process routine shown in FIG. 10 is started.
〔フィードバック処理〕
 制御部30がフィードバック処理ルーチンを開始すると、まずステップS301において、発汗量測定部33は、使用者の精神性発汗量Qsを測定する。精神性発汗量Qsの測定は、メイン処理のステップS203での処理内容と同様である。次に、ステップS302へと進み、判定部38は、ステップS301で測定した精神性発汗量Qsが、覚醒完了発汗量Qsb3を超えているか否かを判定する。
[Feedback processing]
When the control unit 30 starts the feedback processing routine, first, in step S301, the perspiration amount measurement unit 33 measures the mental perspiration amount Qs of the user. The measurement of the mental sweating amount Qs is the same as the processing content in step S203 of the main processing. Next, it progresses to step S302 and the determination part 38 determines whether the mental sweating amount Qs measured by step S301 exceeds the awakening completion sweating amount Qsb3.
 ここで、覚醒完了発汗量Qsb3の決定手法について説明する。本実施形態において、覚醒完了発汗量Qsb3は、上述したメイン処理ルーチンにおいて精神性発汗量Qsが低ストレス発汗量Qsb2まで低下したか、或いは、タイムアウトによってメイン処理ルーチンを終了したかの違いに応じて、それぞれ異なる値に設定される。 Here, a method for determining the awakening completion sweat amount Qsb3 will be described. In the present embodiment, the awakening completion sweat amount Qsb3 depends on whether the mental sweat amount Qs has decreased to the low stress sweat amount Qsb2 in the main processing routine described above or the main processing routine is terminated due to a timeout. Are set to different values.
 具体的には、メイン処理ルーチンにおいて、精神性発汗量Qsが低ストレス発汗量Qsb2まで低下したことを契機に覚醒処理が行われた場合、覚醒完了発汗量Qsb3は、低ストレス発汗量Qsb2よりも所定の第1基準発汗上昇量ΔQsu1だけ大きな値として設定される。一方、メイン処理ルーチンでタイムアウトに至り、精神性発汗量Qsが低ストレス発汗量Qsb2まで減少していない状態で覚醒処理が行われた場合、覚醒完了発汗量Qsb3は、メイン処理ルーチンの終了時点で記憶部35に記憶されている判定用発汗量Qsjを基準として、当該判定用発汗量Qsjよりも所定の第2基準発汗上昇量ΔQsu2だけ高い値として設定される。ここで、第2基準発汗上昇量ΔQsu2は、第1基準発汗上昇量ΔQsu1に比べて小さな値に設定されている。 Specifically, in the main processing routine, when the wakefulness process is performed when the mental sweating amount Qs decreases to the low stress sweating amount Qsb2, the awakening completion sweating amount Qsb3 is more than the low stress sweating amount Qsb2. It is set as a large value by a predetermined first reference sweating increase amount ΔQsu1. On the other hand, when the awakening process is performed in a state where the main processing routine has timed out and the mental sweating amount Qs has not decreased to the low stress sweating amount Qsb2, the awakening completion sweating amount Qsb3 is determined at the end of the main processing routine. Based on the determination sweating amount Qsj stored in the storage unit 35, a predetermined second reference sweating increase amount ΔQsu2 is set higher than the determination sweating amount Qsj. Here, the second reference sweat increase amount ΔQsu2 is set to a smaller value than the first reference sweat increase amount ΔQsu1.
 ステップS302において、精神性発汗量Qsが覚醒完了発汗量Qsb3以下であると判定された場合にはステップS303に進み、精神性発汗量Qsが覚醒完了発汗量Qsb3を超えていると判定された場合にはステップS305に進む。 If it is determined in step S302 that the mental sweating amount Qs is equal to or less than the awakening completion sweating amount Qsb3, the process proceeds to step S303, and it is determined that the mental sweating amount Qs exceeds the awakening completion sweating amount Qsb3. Then, the process proceeds to step S305.
 ステップS303においては、判定部38は、フィードバック処理が開始されてからの経過時間Tp2を計時部39から取得する。そして、判定部38は、取得した経過時間Tp2が所定の第2タイムアウト時間Tsh2を超えたか否かを判定する。第2タイムアウト時間Tsh2は、固定値(一例として、30秒程度)として設定しておいても良いし、使用者によって設定の変更が可能であっても良い。 In step S <b> 303, the determination unit 38 acquires the elapsed time Tp <b> 2 from when the feedback process is started from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time Tp2 exceeds a predetermined second timeout time Tsh2. The second timeout time Tsh2 may be set as a fixed value (for example, about 30 seconds), or the setting may be changed by the user.
 ステップS303において、経過時間Tp2が第2タイムアウト時間Tsh2を経過していないと判定された場合には、ステップS301の処理に戻り、ステップS301~S302の処理が繰り返される。一方、ステップS303において、経過時間Tp2が第2タイムアウト時間Tsh2を超えたと判定された場合にはステップS304に進む。 If it is determined in step S303 that the elapsed time Tp2 has not passed the second timeout time Tsh2, the process returns to step S301, and the processes in steps S301 to S302 are repeated. On the other hand, if it is determined in step S303 that the elapsed time Tp2 has exceeded the second timeout time Tsh2, the process proceeds to step S304.
 ステップS304においては、使用者に対してタイムアウトした旨を知らせるタイムアウト通知が通知される。タイムアウト通知は、モータ制御部34の駆動によって木製筐体13を振動させるバイブレーション通知であっても良いし、これに代え、或いは併用される発光素子43の発光による発光通知であっても良い。そして、ステップS304の処理が終了すると、ステップS306に進む。 In step S304, a time-out notification is sent to inform the user that time-out has occurred. The timeout notification may be a vibration notification in which the wooden casing 13 is vibrated by driving the motor control unit 34, or may be a light emission notification by light emission of the light emitting element 43 that is used instead of or in combination. Then, when the process of step S304 ends, the process proceeds to step S306.
 ステップS305においては、使用者に対して完了通知が通知される。完了通知は、使用者が低ストレス状態を維持しつつ、意識も十分に覚醒した状態であることを使用者に知らせるための通知である。ステップS305の処理が終了すると、ステップS306に進む。そして、ステップS306においては、電源スイッチ部32がオン状態からオフ状態に切り替わり、フィードバック処理が終了すると共に吸引器1の電源が切断される。 In step S305, the user is notified of completion. The completion notification is a notification for notifying the user that the user is in a state of being sufficiently awake while maintaining a low stress state. When the process of step S305 ends, the process proceeds to step S306. In step S306, the power switch 32 is switched from the on state to the off state, the feedback process is completed, and the power of the suction device 1 is turned off.
 以上のように、本実施形態に係る吸引器1によれば、制御部30がストレス度合い分析制御を行うことで、使用者の精神性発汗量に関する精神性発汗量情報に基づいて使用者のストレス度合いを分析し、その分析結果を使用者に通知するため、使用者は吸引器1の吸引動作を繰り返すことによってストレスが十分に解消されたかどうかを容易に把握することができる。 As described above, according to the aspirator 1 according to the present embodiment, the control unit 30 performs stress degree analysis control, so that the user's stress is based on the mental sweating amount information related to the user's mental sweating amount. Since the degree is analyzed and the result of the analysis is notified to the user, the user can easily grasp whether or not the stress has been sufficiently eliminated by repeating the suction operation of the suction device 1.
 そして、上述したメイン処理ルーチンにおいては、メイン処理ルーチンが開始してからタイムアウトするまでは、制御部30によって使用者の精神性発汗量Qsを繰り返し(例えば、100ms毎)測定し、精神性発汗量Qsが低ストレス発汗量Qsb2まで低下し、ストレスが十分に解消された状態となったか否かを精度良く判別することができる。そして、精神性発汗量Qsが低ストレス発汗量Qsb2まで低下したことが確認された際には、敢えて使用者に僅かな刺激(ストレス)を付与し、覚醒レベルを上昇させる覚醒処理を実行することで、使用者の意識がぼんやりした状態ではなく、意識がリフレッシュした状態に使用者を覚醒させることができる。但し、本実施形態におけるストレス度合い分析制御において覚醒処理は必須ではなく、適宜省略しても良い。例えば、図9に示すメイン処理ルーチンのステップS206において、記憶部35に記憶されている判定用発汗量Qsj(使用者の精神性発汗量Qs)が低ストレス発汗量Qsb2未満であると判定された場合に、覚醒処理を行うことなくステップS208に進み、ストレス解消完了通知を使用者に通知しても良い。また、メイン処理ルーチンのステップS209においてタイムアウトした場合においても、覚醒処理を行うことなくステップS211に進み、タイムアウト通知を使用者に通知しても良い。 In the main processing routine described above, the mental sweating amount Qs of the user is repeatedly measured (for example, every 100 ms) by the control unit 30 until a timeout occurs after the main processing routine starts, and the mental sweating amount. It is possible to accurately determine whether or not Qs has been reduced to the low stress perspiration amount Qsb2 and the stress has been sufficiently eliminated. Then, when it is confirmed that the mental sweating amount Qs has decreased to the low stress sweating amount Qsb2, the user is dared to give a slight stimulus (stress) and execute the awakening process for raising the arousal level. Thus, the user can be awakened not in a state where the user's consciousness is blurred, but in a state where the consciousness is refreshed. However, the awakening process is not essential in the stress level analysis control in this embodiment, and may be omitted as appropriate. For example, in step S206 of the main processing routine shown in FIG. 9, it is determined that the determination sweating amount Qsj (user's mental sweating amount Qs) stored in the storage unit 35 is less than the low stress sweating amount Qsb2. In this case, the process may proceed to step S208 without performing the awakening process, and the user may be notified of the stress release completion notification. Further, even when a time-out occurs in step S209 of the main processing routine, the process may proceed to step S211 without performing the awakening process and notify the user of a time-out notification.
 また、本実施形態における覚醒処理においては、振動モータ41の駆動によって木製筐体13を振動させることによる振動刺激を使用者に付与するようにしたが、使用者に微小なストレスを付与することができれば他の方法を採用しても構わない。例えば、発光素子43を発光させることで使用者に刺激を付与し、覚醒させても良い。また、吸引器1は音声を出力する音声出力装置を備えていても良く、その場合、音声による刺激を付与することで使用者を覚醒させても良い。なお、本実施形態における吸引器1は、発光素子43を備えていなくても良く、上述したストレス度合い分析制御において発光素子43を用いて行った各種の通知は、振動モータ41を駆動させることによる木製筐体13の振動によって代替することができる。 Moreover, in the awakening process in the present embodiment, the vibration stimulus by vibrating the wooden casing 13 by driving the vibration motor 41 is applied to the user, but a minute stress may be applied to the user. Other methods may be employed if possible. For example, the user may be stimulated by causing the light emitting element 43 to emit light, and may be awakened. Moreover, the suction device 1 may be provided with the audio | voice output apparatus which outputs an audio | voice, and may awaken a user by giving the stimulus by an audio | voice in that case. In addition, the suction device 1 in this embodiment does not need to be provided with the light emitting element 43, and various notifications performed using the light emitting element 43 in the stress degree analysis control described above are by driving the vibration motor 41. It can be replaced by vibration of the wooden casing 13.
 また、本実施形態における吸引器1によれば、ストレス度合い分析制御に係るメイン処理ルーチンにおいて、使用者が吸引器1の吸引動作中にのみ、精神性発汗量の測定を行うようにしたので、体動による見掛け上の精神性発汗量の変化である体動アーティファクトの影響を低減し、使用者の精神性発汗量を精度良く把握することができる。但し、本実施形態における吸引器1において、精神性発汗量の測定を非吸引動作中に行うようにしても良い。 Further, according to the aspirator 1 in the present embodiment, since the user measures the amount of mental sweating only during the suction operation of the aspirator 1 in the main processing routine related to the stress level analysis control, It is possible to reduce the influence of the body motion artifact, which is a change in the apparent amount of mental sweating due to body movement, and to accurately grasp the user's mental sweating amount. However, in the aspirator 1 according to the present embodiment, the mental sweating amount may be measured during the non-suction operation.
<実施形態2>
 次に、実施形態2に係る吸引器1Aについて説明する。図12は、実施形態2に係る吸引器1Aのブロック図である。実施形態2に係る吸引器1Aにおいて、実施形態1に係る吸引器1と同一の構成要素については同一の符号を付すことで詳しい説明を省略する。図12に示すように、吸引器1Aは、感圧センサ44を備えている。感圧センサ44は、木製筐体13に露出した状態で設けられており、使用者が吸引器1を比較的強く把持した際の圧力を検知する。吸引器1Aの制御部30Aは、感圧センサ44の出力信号を取得する圧力検知部31Aを有する。また、吸引器1Aは、気圧センサ40を備えていない点で実施形態1に係る吸引器1と相違し、その他の構成は実施形態1に係る吸引器1と共通である。
<Embodiment 2>
Next, the suction device 1A according to the second embodiment will be described. FIG. 12 is a block diagram of an aspirator 1A according to the second embodiment. In the suction device 1A according to the second embodiment, the same components as those of the suction device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 12, the suction device 1 </ b> A includes a pressure-sensitive sensor 44. The pressure-sensitive sensor 44 is provided in an exposed state on the wooden housing 13 and detects the pressure when the user grips the suction device 1 relatively strongly. The controller 30 </ b> A of the suction device 1 </ b> A includes a pressure detector 31 </ b> A that acquires an output signal of the pressure sensor 44. The suction device 1A is different from the suction device 1 according to the first embodiment in that it does not include the atmospheric pressure sensor 40, and other configurations are the same as those of the suction device 1 according to the first embodiment.
 本実施形態に係る吸引器1Aにおいては、制御部30Aがストレス度合い分析制御を実行する際、感圧センサ44からの出力信号に基づいて使用者が木製筐体13を把持するグリップ圧を検知した場合に、使用者の精神性発汗量を測定する。 In the suction device 1A according to the present embodiment, when the control unit 30A executes the stress level analysis control, the grip pressure at which the user grips the wooden casing 13 is detected based on the output signal from the pressure sensor 44. If so, measure the amount of mental sweating of the user.
 図13は、実施形態2に係るパワーオン処理ルーチンを示すフローチャートである。図14は、実施形態2に係るメイン処理ルーチンを示すフローチャートである。以下では、実施形態1の図9、図10で説明したパワーオン処理ルーチンおよびメイン処理ルーチンと相違する処理内容を中心に説明する。 FIG. 13 is a flowchart showing a power-on processing routine according to the second embodiment. FIG. 14 is a flowchart illustrating a main processing routine according to the second embodiment. The following description will focus on the processing contents different from the power-on processing routine and the main processing routine described in FIGS. 9 and 10 of the first embodiment.
〔パワーオン処理ルーチン〕
 図13に示すパワーオン処理ルーチンでは、図9に示すステップS102の処理内容が省略されている。すなわち、電源スイッチ部32がオフ状態からオン状態に切り替わったことを契機として制御部30Aがパワーオン処理ルーチンを開始すると、ステップS101において記憶部35に記憶されている前回設定情報の初期化処理を行い、続くステップS103において発汗量測定部33が初期基準発汗量Qsbを取得する。そして、続くステップS104において、ストレス度合い分析制御の開始を通知する開始通知を使用者に通知した後、パワーオン処理ルーチンを終了し、図14に示すメイン処理ルーチンを開始する。なお、電源スイッチ部32は、オフ状態にあるときに、感圧センサ44の出力データに基づいて圧力検知部31Aが使用者による木製筐体13のグリップ圧を検出した場合に、オフ状態からオン状態に切り替わる。
[Power-on processing routine]
In the power-on processing routine shown in FIG. 13, the processing content of step S102 shown in FIG. 9 is omitted. That is, when the control unit 30A starts the power-on processing routine triggered by the power switch unit 32 switching from the off state to the on state, the initialization processing of the previous setting information stored in the storage unit 35 is performed in step S101. In step S103, the perspiration amount measuring unit 33 acquires the initial reference perspiration amount Qsb. In step S104, after notifying the user of the start notification for notifying the start of the stress level analysis control, the power-on process routine is terminated, and the main process routine shown in FIG. 14 is started. In addition, when the power switch unit 32 is in the off state and the pressure detection unit 31A detects the grip pressure of the wooden casing 13 by the user based on the output data of the pressure sensor 44, the power switch unit 32 is turned on from the off state. Switch to state.
〔メイン処理〕
 メイン処理ルーチンが開始されると、ステップS401において、圧力検知部31Aが感圧センサ44の出力データを取得する。次に、ステップS402において、判定部は、圧力検知部31Aが取得した感圧センサ44の出力データに基づいて、使用者が吸引器1(木製筐体13)を把持しているか否かを判定する。本ステップにおいて、使用者が木製筐体13を把持していると判定された場合、ステップS203に進む。一方、使用者が木製筐体13を把持していないと判定された場合、ステップS209に進む。ステップS203~S211の各処理については、図10で説明したメイン処理ルーチンと同様である。なお、上記ステップS402においては、使用者によって木製筐体13が把持された状態が検出されたことを契機に精神性発汗量Qsの測定を行っているが、使用者による把持状態が一定時間以上継続していることが検出されて初めて精神性発汗量Qsの測定を行っても良い。この場合、判定部38は、使用者による木製筐体13の把持状態の継続時間を計時部39から取得し、把持状態の継続時間が所定の閾値を超えたと判定した場合に、発汗量測定部33が精神性発汗量Qsの測定を行うようにしても良い。なお、実施形態2における吸引器1Aにおいて、メイン処理ルーチンの終了後に実行されるフィードバック処理は、実施形態1で説明したものと同様である。
[Main processing]
When the main processing routine is started, the pressure detection unit 31A acquires output data of the pressure sensor 44 in step S401. Next, in step S402, the determination unit determines whether or not the user is holding the aspirator 1 (wooden casing 13) based on the output data of the pressure-sensitive sensor 44 acquired by the pressure detection unit 31A. To do. If it is determined in this step that the user is holding the wooden casing 13, the process proceeds to step S203. On the other hand, if it is determined that the user is not holding the wooden casing 13, the process proceeds to step S209. Each process of steps S203 to S211 is the same as the main process routine described with reference to FIG. In step S402, the amount of mental sweating Qs is measured when the state in which the wooden casing 13 is gripped by the user is detected. The mental sweating amount Qs may be measured only after the continuation is detected. In this case, the determination unit 38 acquires the duration of the gripping state of the wooden housing 13 by the user from the time measuring unit 39, and determines that the duration of the gripping state exceeds a predetermined threshold, the sweating amount measurement unit 33 may measure the amount of mental sweating Qs. In the aspirator 1A according to the second embodiment, the feedback process executed after the end of the main process routine is the same as that described in the first embodiment.
<変形例>
 次に、変形例について説明する。図15は、変形例に係る吸引器1Bを説明する図である。図15に示すように、変形例に係る吸引器1Bは、吸い口ユニット10における吸い口受け12に、液体保持用凹部123が設けられている。液体保持用凹部123には、例えばアロマオイルなどの液体香料を滴下することで、これを保持することができる。これによれば、吸引器1Bの吸引時に液体保持用凹部123に保持している液体香料から発せられる香気成分を使用者が吸引することができ、更なるリラックス感を付与することができる。
<Modification>
Next, a modified example will be described. FIG. 15 is a diagram illustrating an aspirator 1B according to a modification. As shown in FIG. 15, in the suction device 1 </ b> B according to the modified example, the mouthpiece receptacle 12 in the mouthpiece unit 10 is provided with a liquid holding recess 123. For example, a liquid fragrance such as aroma oil can be dropped into the liquid holding recess 123 to hold it. According to this, the user can suck | inhale the fragrance component emitted from the liquid fragrance | flavor currently hold | maintained at the recessed part 123 for liquid holding | maintenance at the time of suction | inhalation of the suction device 1B, and can provide a further relaxed feeling.
 また、吸引器1Bは、木製筐体13内に香味成分を放出する香味発生源(例えば、香料、たばこ源)を収容しておき、使用者が吸引器1Bを吸引する際に、香味発生源から放出される香味成分を木製筐体13の通気路を流れる空気と混合させて、吸い口孔112から口腔内に供給しても良い。その場合、例えば吸引器1Bは、木製筐体13内の収容部に収容される香味発生源(例えば、香料、たばこ源)を加熱し、香味発生源からの香味成分の放出を促進させるための加熱ヒータ(図示せず)を有していても良い。この場合、例えば吸引器1Bの制御部30は、使用者による吸引(パフ)動作を検出したことを契機に、加熱ヒータによって香味発生源を加熱し、香味成分の放出を促しても良い。このようにすることで、吸引器1Bの吸引時に香味発生源から発せられる香味成分を吸入空気と共に供給し、使用者に更なるリラックス感を付与することができる。 Moreover, the suction device 1B accommodates a flavor generation source (for example, a fragrance or a tobacco source) that releases a flavor component in the wooden casing 13, and the flavor generation source is used when the user sucks the suction device 1B. The flavor component released from the air may be mixed with the air flowing through the air passage of the wooden casing 13 and supplied from the mouthpiece hole 112 into the oral cavity. In that case, for example, the aspirator 1B heats a flavor generation source (for example, a fragrance or a tobacco source) accommodated in the accommodating portion in the wooden casing 13, and promotes the release of the flavor component from the flavor generation source. You may have a heater (not shown). In this case, for example, the control unit 30 of the aspirator 1 </ b> B may heat the flavor generation source with a heater and urge the release of the flavor component when the suction (puff) operation by the user is detected. By doing in this way, the flavor component emitted from a flavor generation source at the time of suction | inhalation of the inhaler 1B can be supplied with inhalation air, and a further relaxation feeling can be provided to a user.
 なお、上記実施形態において、気圧取得部31、圧力検知部31A、電源スイッチ部32、発汗量測定部33、モータ制御部34、設定部36、発光制御部37、判定部38、計時部39の動作として説明した処理は、コンピュータによって実行することができる。例えば、コンピュータがプロセッサ(CPU)、メモリ、および入出力回路等のハードウェア資源を用いてプログラムを実行することによって、上記の各処理を実行する。具体的には、プロセッサが処理対象のデータをメモリ又は入出力回路等に出力したりすることによって、各処理を実行する。 In the above embodiment, the air pressure acquisition unit 31, the pressure detection unit 31 </ b> A, the power switch unit 32, the sweating amount measurement unit 33, the motor control unit 34, the setting unit 36, the light emission control unit 37, the determination unit 38, and the time measurement unit 39. The process described as the operation can be executed by a computer. For example, the computer executes the above-described processes by executing a program using hardware resources such as a processor (CPU), a memory, and an input / output circuit. Specifically, each process is executed by the processor outputting data to be processed to a memory or an input / output circuit or the like.
<実施形態3>
 次に、実施形態3に係る吸引器1について説明する。図16は、実施形態3に係る吸引器1におけるブロック図である。実施形態3に係る吸引器1のハードウェア構成については、実施形態1に係る吸引器1と同一である。以下では、実施形態3における吸引器1のうち、実施形態1における吸引器1と相違する部分を中心に説明し、同一の要素については同一の参照符号を付すことで詳しい説明を割愛する。実施形態3における吸引器1においても、吸引器1を制御する制御ユニットである制御部30を備えている。制御部30は、例えばプロセッサ、メモリ等を有するマイクロコンピュータであっても良い。
<Embodiment 3>
Next, the aspirator 1 according to Embodiment 3 will be described. FIG. 16 is a block diagram of the aspirator 1 according to the third embodiment. The hardware configuration of the aspirator 1 according to the third embodiment is the same as that of the aspirator 1 according to the first embodiment. Below, it demonstrates centering on the part different from the suction device 1 in Embodiment 1 among the suction devices 1 in Embodiment 3, and omits detailed description by attaching | subjecting the same referential mark about the same element. The aspirator 1 according to the third embodiment also includes a control unit 30 that is a control unit that controls the aspirator 1. The control unit 30 may be a microcomputer having a processor, a memory, and the like, for example.
 制御部30は、図16に示すように、気圧取得部31、電源スイッチ部32、発汗量測定部33、モータ制御部34、設定部36、発光制御部37、判定部38、計時部39、予測部50、処理部51等といった各機能部を有している。また、制御部30は、制御部30のプロセッサが実行するための各種プログラムが記憶された記憶部35を備えている。記憶部35は、例えば不揮発性メモリであり、制御部30が備える主記憶装置又は補助記憶装置であっても良い。なお、上記各機能部は、制御部30が備えるプロセッサ(CPU)が所定のプログラムに従って動作することにより実現される。すなわち、制御部30がプロセッサ(CPU)、メモリ、および入出力回路等のハードウェア資源を用いてプログラムを実行することによって、上記各機能部における各処理を実行する。具体的には、プロセッサが処理対象のデータをメモリ又は入出力回路等に出力したりすることによって、各機能部における各処理を実行する。 As shown in FIG. 16, the control unit 30 includes an air pressure acquisition unit 31, a power switch unit 32, a sweating amount measurement unit 33, a motor control unit 34, a setting unit 36, a light emission control unit 37, a determination unit 38, a time measurement unit 39, Each function unit includes a prediction unit 50, a processing unit 51, and the like. In addition, the control unit 30 includes a storage unit 35 in which various programs to be executed by the processor of the control unit 30 are stored. The storage unit 35 is, for example, a nonvolatile memory, and may be a main storage device or an auxiliary storage device included in the control unit 30. Each functional unit described above is realized by a processor (CPU) included in the control unit 30 operating according to a predetermined program. That is, the control unit 30 executes each process in each functional unit by executing a program using hardware resources such as a processor (CPU), a memory, and an input / output circuit. Specifically, each process in each functional unit is executed by the processor outputting data to be processed to a memory or an input / output circuit or the like.
 ここで、記憶部35には、制御部30が実行するストレス度合い分析制御のメイン処理実行時において用いる発汗量最小値予測モデル351、発汗量最大値予測モデル352が格納されている。発汗量最小値予測モデル351、発汗量最大値予測モデル352の詳細については後述する。 Here, the storage unit 35 stores a sweating amount minimum value prediction model 351 and a sweating amount maximum value prediction model 352 used when the main process of the stress degree analysis control executed by the control unit 30 is executed. Details of the sweating amount minimum value prediction model 351 and the sweating amount maximum value prediction model 352 will be described later.
 上述までの実施形態1および2に係るストレス度合い分析制御のメイン処理においては、使用者が低ストレス状態となったか否かを判定するための判定用閾値である低ストレス発汗量Qsb2を、初期基準発汗量Qsbよりも第1基準発汗低下量ΔQsd1だけ低い値として設定していたため、精神性発汗の程度や、ストレス等の精神的な刺激を受けた際に変動する精神性発汗の変動特性が個人差によって大きくばらついた場合、当該個人差による影響によって使用者の精神性発汗状態を適切に判定することが難しくなることが想定される。そこで、実施形態3に係る吸引器1においては、使用者の精神性発汗状態を推定するために用いる判定用閾値を、使用者毎の個人差の影響を受け難い新規なアルゴリズムに基づいて設定することを特徴としている。以下、実施形態3に係る吸引器1におけるストレス度合い分析制御の詳細について説明する。なお、本実施形態において、上記ストレス度合い分析制御を実行する制御部30を備える吸引器1は、本発明における発汗状態判定装置の一例である。 In the main processing of the stress level analysis control according to the first and second embodiments described above, the low stress perspiration amount Qsb2, which is a determination threshold for determining whether or not the user has entered a low stress state, is set as an initial reference. Since the first reference sweating reduction amount ΔQsd1 is set to be lower than the sweating amount Qsb, the degree of mental sweating and the fluctuation characteristics of mental sweating that change when receiving mental stimuli such as stress When there is a large variation due to the difference, it is assumed that it is difficult to appropriately determine the mental sweating state of the user due to the influence of the individual difference. Therefore, in the aspirator 1 according to the third embodiment, the determination threshold used for estimating the mental sweating state of the user is set based on a novel algorithm that is not easily influenced by individual differences for each user. It is characterized by that. Hereinafter, the details of the stress degree analysis control in the aspirator 1 according to the third embodiment will be described. In the present embodiment, the aspirator 1 including the control unit 30 that executes the stress level analysis control is an example of a sweating state determination device according to the present invention.
 次に、実施形態3における吸引器1におけるストレス度合い分析制御を説明する。本実施形態におけるストレス度合い分析制御においても、上述の実施形態と同様、制御部30がパワーオン処理、メイン処理などの各処理を行う。 Next, the stress level analysis control in the suction device 1 according to the third embodiment will be described. Also in the stress level analysis control in the present embodiment, the control unit 30 performs each process such as a power-on process and a main process, as in the above-described embodiment.
 図17は、実施形態3に係る吸引器1がストレス度合い分析制御を実行した際の使用者における精神性発汗量Qsの推移を例示した図である。図17の横軸は時間を示し、縦軸は使用者の精神性発汗量Qsを示す。時間Ta~Tbの区間は、パワーオン処理が実行されるパワーオン処理期間(キャリブレーション期間)ΔTkである。 FIG. 17 is a diagram illustrating the transition of the amount of mental sweating Qs in the user when the aspirator 1 according to the third embodiment executes the stress level analysis control. The horizontal axis in FIG. 17 indicates time, and the vertical axis indicates the mental sweating amount Qs of the user. A section from time Ta to Tb is a power-on process period (calibration period) ΔTk in which the power-on process is executed.
 パワーオン処理は、実施形態1と同様、電源スイッチ部32がオフ状態からオン状態に切り替わったことを契機として制御部30が実行を開始する。例えば、図17に示す時間Taにおいて電源スイッチ部32がオフ状態からオン状態に切り替わることでパワーオン処理が開始されると、制御部30の発汗量測定部33は、パワーオン処理期間ΔTkに亘って、所定のサンプリング周期(ここでは、例示的に500ms)毎に使用者の精神性発汗量Qsを測定する。パワーオン処理期間ΔTkは特に限定されないが、図17ではパワーオン処理期間ΔTkを5秒間に設定されている場合を示している。なお、電源スイッチ部32は、電源スイッチ部32がオフ状態にあるときに、気圧取得部31が使用者による初回の吸引(パフ)動作の開始を検出した場合に、電源スイッチ部32がオフ状態からオン状態に切り替わる。 As in the first embodiment, the power-on process is started by the control unit 30 when the power switch unit 32 is switched from the off state to the on state. For example, when the power-on process is started by switching the power switch unit 32 from the off state to the on state at the time Ta shown in FIG. 17, the perspiration amount measuring unit 33 of the control unit 30 extends over the power-on process period ΔTk. Thus, the mental sweating amount Qs of the user is measured every predetermined sampling period (here, for example, 500 ms). Although the power-on processing period ΔTk is not particularly limited, FIG. 17 shows a case where the power-on processing period ΔTk is set to 5 seconds. In addition, the power switch unit 32 is in the off state when the air pressure acquisition unit 31 detects the start of the first suction (puff) operation by the user when the power switch unit 32 is in the off state. Switches from on to on.
 使用者の精神性発汗量Qsの測定は、発汗量測定部33が電源23に指令を出し、精神性発汗量測定用電極26,27に対して電源23から電力を供給させる。発汗量測定部33は、精神性発汗量測定用電極26,27から吸引器1を把持する使用者の指の皮膚に微弱な発汗量測定用電流を流し、精神性発汗量測定用電極26,27から出力される皮膚コンダクタンスに対応する出力値に基づいて使用者の精神性発汗量を測定することができる。パワーオン処理時において、所定のサンプリング周期毎に取得した使用者の精神性発汗量は、記憶部35に記憶される。なお、発汗量測定部33は、パワーオン処理が開始されてからの経過時間を計時部39から取得することで、所定のサンプリング周期毎に使用者の精神性発汗量を測定することができる。 For measuring the mental sweating amount Qs of the user, the sweating amount measuring unit 33 issues a command to the power source 23 to supply power from the power source 23 to the electrodes 26 and 27 for mental sweating amount measurement. The sweating amount measuring unit 33 sends a weak sweating amount measuring current to the skin of the finger of the user holding the aspirator 1 from the mental sweating amount measuring electrodes 26 and 27, and the mental sweating amount measuring electrode 26, The mental sweating amount of the user can be measured based on the output value corresponding to the skin conductance output from 27. During the power-on process, the mental sweating amount of the user acquired at every predetermined sampling period is stored in the storage unit 35. The sweating amount measuring unit 33 can measure the mental sweating amount of the user at every predetermined sampling period by acquiring the elapsed time from the start of the power-on process from the time measuring unit 39.
 ここで、図17に示す使用者の精神性発汗量Qsは、精神性発汗量測定用電極26,27が出力する皮膚コンダクタンスに対応する出力値である。図17に示す精神性発汗量Qsの単位はマイクロジーメンス[μS]であり、電気抵抗の逆数に相関している。なお、精神性発汗量測定用電極26,27が出力する出力値[単位:μS]と、皮膚の単位面積当たりにおいて単位時間に発生する汗の水分量[単位:mg/cm2/min]との関係は関数となっており、精神性発汗量測定用電極26,27が出力する出力値から汗の水分量としての発汗量は一義的に求めることができる。従って、本明細書において、「使用者の精神性発汗量」は、[μS]で表す場合と、[mg/cm2/min]で表す場合の何れも実質的に等価なものを指す。 Here, the mental sweating amount Qs of the user shown in FIG. 17 is an output value corresponding to the skin conductance output by the mental sweating amount measuring electrodes 26 and 27. The unit of the amount of mental sweating Qs shown in FIG. 17 is micro Siemens [μS], which correlates with the reciprocal of electrical resistance. It should be noted that the output value [unit: μS] output from the electrodes 26 and 27 for measuring the amount of mental sweat and the amount of moisture of sweat generated per unit time per unit area of the skin [unit: mg / cm 2 / min] Is a function, and the sweating amount as the moisture content of sweat can be uniquely determined from the output values output from the electrodes 26 and 27 for mental sweating amount measurement. Therefore, in this specification, “the amount of mental sweating of the user” refers to a substantially equivalent case in both [μS] and [mg / cm 2 / min].
 ここで、パワーオン処理の開始からパワーオン処理期間ΔTkが経過した時間Tbにおいて、制御部30はパワーオン処理を終了する。その際、制御部30は、記憶部35にアクセスし、パワーオン処理期間ΔTkにおいて取得した使用者の精神性発汗量Qsのうちの最大値を、初期基準発汗量Qs#maxとして記憶部35に記憶させる。更に、制御部30は、使用者に吸引器1の吸引開始を促す吸引開始通知が行われる。例えば、制御部30のモータ制御部34が、振動モータ41に対して電源23から電力を供給させ、振動モータ41を作動(駆動)させる。振動モータ41を駆動することで木製筐体13を振動させ、その振動を使用者に感知させることで、吸引開始通知を使用者に知らせることができる。また、木製筐体13の振動による通知に代え、あるいは併用して、発光素子43の発光によって開始通知が行われても良い。この場合、発光制御部37が、発光素子43に対して電源23から電力を供給させ、所定の発光パターンで発光素子43を発光させる。なお、制御部30は、パワーオン処理においては、使用者が吸い口11を吸引している吸引状態であるか、吸引していない非吸引状態であるかに関わらず、所定のサンプリング周期毎に使用者の精神性発汗量Qsを測定する。 Here, at time Tb when the power-on process period ΔTk has elapsed from the start of the power-on process, the control unit 30 ends the power-on process. At that time, the control unit 30 accesses the storage unit 35 and sets the maximum value of the mental sweating amount Qs of the user acquired during the power-on processing period ΔTk to the storage unit 35 as the initial reference sweating amount Qs # max. Remember me. Furthermore, the control unit 30 performs a suction start notification that prompts the user to start suction of the suction device 1. For example, the motor control unit 34 of the control unit 30 supplies power from the power source 23 to the vibration motor 41 to operate (drive) the vibration motor 41. By driving the vibration motor 41, the wooden casing 13 is vibrated, and the user can be notified of the suction start notification by sensing the vibration. Further, instead of using the notification due to the vibration of the wooden casing 13 or in combination, the start notification may be performed by the light emission of the light emitting element 43. In this case, the light emission control unit 37 supplies power from the power source 23 to the light emitting element 43 and causes the light emitting element 43 to emit light with a predetermined light emission pattern. In the power-on process, the control unit 30 determines whether the user is sucking the mouthpiece 11 or not sucking at every predetermined sampling period. The mental sweating amount Qs of the user is measured.
 ここで、図17に示す時間Tb~Tcの区間は、制御部30が予測用特徴量測定処理を実行する予測用特徴量測定期間ΔTmpである。また、予測用特徴量測定期間ΔTmpの終了時期である時間Tcにおいて、制御部30は、min-max予測処理を行う。そして、図17における時間Tc~Tdの区間に対応する発汗量判定期間ΔTmjにおいて、制御部30は、使用者の精神性発汗量Qsが判定用閾値未満になることで使用者が低ストレス状態となったかどうかを判定する発汗量判定処理を行う。上述の予測用特徴量測定処理、min-max予測処理、および発汗量判定処理の詳細については後述するが、これらの各処理を含んでメイン処理が構成されている。 Here, the section of time Tb to Tc shown in FIG. 17 is a prediction feature quantity measurement period ΔTmp in which the control unit 30 executes the prediction feature quantity measurement process. Further, at time Tc, which is the end time of the prediction feature quantity measurement period ΔTmp, the control unit 30 performs min-max prediction processing. Then, in the perspiration amount determination period ΔTmj corresponding to the period of time Tc to Td in FIG. 17, the control unit 30 causes the user to be in a low stress state because the user's mental perspiration amount Qs is less than the determination threshold value. A sweating amount determination process is performed to determine whether or not it has become. Details of the above-described prediction feature quantity measurement process, min-max prediction process, and sweating amount determination process will be described later, but the main process is configured including these processes.
 なお、本実施形態において、予測用特徴量測定期間ΔTmpの長さは特に限定されないが、以下では予測用特徴量測定期間ΔTmpを100秒間に設定する場合を例に説明する。また、発汗量判定処理においては、使用者の精神性発汗量Qsが判定用閾値未満であるか否かを所定のサンプリング周期(ここでは、例示的に500msとする)毎に制御部30の判定部38が判定する。そして、使用者の精神性発汗量Qsが判定用閾値未満となったことが確認されると、使用者における交感神経系の緊張が緩和された低ストレス状態にあると判断し、メイン処理を終了する。 In the present embodiment, the length of the prediction feature quantity measurement period ΔTmp is not particularly limited, but the following describes an example in which the prediction feature quantity measurement period ΔTmp is set to 100 seconds. In the sweating amount determination process, the control unit 30 determines whether or not the user's mental sweating amount Qs is less than the determination threshold value every predetermined sampling period (here, 500 ms is illustrative). The part 38 determines. When it is confirmed that the mental sweating amount Qs of the user is less than the threshold for determination, it is determined that the user is in a low stress state in which the tension of the sympathetic nervous system is relieved, and the main process is terminated. To do.
 また、本実施形態のメイン処理では、発汗量判定処理において使用者の精神性発汗量Qsが判定用閾値以上に維持されていたとしても、メイン処理の開始時(時間Tb)からの経過時間Tが予め定められた所定の第1タイムアウト時間を経過した場合には、タイムアウトとしてメイン処理(発汗量判定処理)を強制的に終了させる。なお、上記の第1タイムアウト時間の長さは特に限定されないが、以下では180秒間とする場合を例に説明する。ここで、パワーオン処理期間ΔTkを5秒間、予測用特徴量測定期間ΔTmpを100秒間、第1タイムアウト時間ΔTtoを185秒間とすると、発汗量判定期間ΔTmjは最大で80秒間となる。なお、本実施形態では、予測用特徴量測定期間ΔTmpは、第1タイムアウト時間ΔTtoよりも短い期間として設定されている。また、メイン処理(予測用特徴量測定処理)が開始される時間Tbから第1タイムアウト時間ΔTtoが経過した時点(第1タイムアウト時期)の時間Tdは、メイン処理が継続される最大(最長)の期間に相当し、以下では「メイン処理継続最大期間ΔTmax」という。 Further, in the main processing of the present embodiment, even if the user's mental sweating amount Qs is maintained at the determination threshold or higher in the sweating amount determination processing, the elapsed time T from the start of the main processing (time Tb). When i has passed a predetermined first time-out period that is set in advance, the main process (perspiration amount determination process) is forcibly terminated as a time-out. Note that the length of the first timeout period is not particularly limited, but in the following, an example in which the first timeout period is 180 seconds will be described. Here, if the power-on processing period ΔTk is 5 seconds, the predictive feature amount measurement period ΔTmp is 100 seconds, and the first timeout period ΔTto is 185 seconds, the perspiration amount determination period ΔTmj is 80 seconds at the maximum. In the present embodiment, the prediction feature quantity measurement period ΔTmp is set as a period shorter than the first timeout time ΔTto. The time Td at which the first timeout time ΔTto has elapsed from the time Tb at which the main process (prediction feature value measurement process) is started (first timeout period) is the maximum (longest) time at which the main process is continued. This corresponds to a period, and is hereinafter referred to as “main processing continuation maximum period ΔTmax”.
 本実施形態では、メイン処理継続最大期間ΔTmax(本発明における「判定対象期間」に相当する)に亘って継続的に使用者の精神性発汗量を測定し、測定した精神性発汗量と判定用閾値との対比結果(大小関係)に基づいて使用者の精神性発汗状態を判定することとなる。 In the present embodiment, the mental sweating amount of the user is continuously measured over the main processing continuation maximum period ΔTmax (corresponding to the “determination target period” in the present invention), and the measured mental sweating amount is determined. The mental sweating state of the user is determined based on the comparison result (magnitude relationship) with the threshold value.
 次に、制御部30はメイン処理を開始する。図18は、実施形態3に係るメイン処理の処理内容を示す図である。図18に示す各処理は、制御部30のプロセッサが記憶部35に記憶されている各種プログラムを実行することで実現される。本実施形態におけるメイン処理は、ステップS30における予測用特徴量測定処理、ステップS40におけるmin-max予測処理、ステップS50における発汗量判定処理を含む。 Next, the control unit 30 starts the main process. FIG. 18 is a diagram illustrating processing contents of the main processing according to the third embodiment. Each process illustrated in FIG. 18 is realized by the processor of the control unit 30 executing various programs stored in the storage unit 35. The main process in this embodiment includes a prediction feature quantity measurement process in step S30, a min-max prediction process in step S40, and a sweating amount determination process in step S50.
 本実施形態においては、予測用特徴量測定処理、min-max予測処理、および発汗量判定処理を含むメイン処理が、メイン処理継続最大期間ΔTmax(判定対象期間)に亘って継続的に測定した使用者における精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御に相当する。 In the present embodiment, the main process including the prediction feature quantity measurement process, the min-max prediction process, and the sweating amount determination process is continuously measured over the main process continuous maximum period ΔTmax (determination target period). This corresponds to the sweating state determination control for determining the mental sweating state of the user based on the comparison result between the mental sweating amount and the determination threshold in the person.
 先ず、ステップS30の予測用特徴量測定処理において、制御部30は上述した予測用特徴量測定期間ΔTmp(100秒間)に亘り、所定のサンプリング周期(ここでは、例示的に500msとする)毎に、使用者の精神性発汗量Qsを測定する。使用者における精神性発汗量Qsの測定については、パワーオン処理時と同様、制御部30の発汗量測定部33が電源23に指令を出し、精神性発汗量測定用電極26,27に対して電源23から電力を供給させ、精神性発汗量測定用電極26,27から出力される出力値を取得することで行われる。発汗量測定部33は、メイン処理(予測用特徴量測定処理)が開始されてからの経過時間Tを計時部39から取得することで、所定のサンプリング周期毎に使用者の精神性発汗量を測定することができる。 First, in the prediction feature quantity measurement process in step S30, the control unit 30 performs the above-described prediction feature quantity measurement period ΔTmp (100 seconds) every predetermined sampling period (here, 500 ms is exemplified). The mental sweating amount Qs of the user is measured. As for the measurement of the amount of mental sweating Qs by the user, the sweating amount measurement unit 33 of the control unit 30 issues a command to the power source 23 as in the power-on process, and the mental sweating amount measurement electrodes 26 and 27 are instructed. This is performed by supplying power from the power source 23 and acquiring output values output from the electrodes 26 and 27 for mental sweating measurement. Perspiration amount measuring unit 33 by acquiring the elapsed time T i from the start of the main processing (prediction feature quantity measurement process) from the clock unit 39, mental sweating of the user at each predetermined sampling period Can be measured.
 なお、予測用特徴量測定処理において、判定部38は、サンプリング周期(ここでは、例示的に500msとする)毎に、現在、使用者が吸い口11を吸引動作中か否かを判定し、判定部38が吸引動作中と判定した場合にのみ発汗量測定部33が使用者の精神性発汗量Qsを測定する。ここで、処理部51は、ストレス度合い分析制御において測定した使用者の精神性発汗量Qsの測定値に対して各種の処理を行う機能部である。なお、現在、使用者が吸引動作中か否かの判定については、気圧取得部31による吸引動作(パフ動作)の検出結果に基づいて行うことができる。ここで、処理部51は、発汗量測定部33が測定した使用者の精神性発汗量Qsの測定値を、パワーオン処理時に取得した初期基準発汗量G#maxによって割る演算処理を行うことで「補正済み発汗量測定値G」(G=Qs/G#max)を算出し、当該算出された補正処理済み発汗量測定値Gを、メイン処理開始時からの経過時間T(i=0,0.5,1.0,・・・99.5)に対応付けた発汗量測定データDgを記憶部35に記憶させる。なお、補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)を算出する際、使用者の精神性発汗量Qsの測定値の時系列データを平滑化するために、精神性発汗量Qsの測定値に対して移動平均処理を施し、移動平均処理後の精神性発汗量Qsを初期基準発汗量G#maxによって割る演算処理を行うことで補正済み発汗量測定値Gを求めてもよい。 In the predictive feature amount measurement process, the determination unit 38 determines whether the user is currently performing the suction operation on the mouthpiece 11 at every sampling period (here, 500 ms is exemplified). Only when the determination unit 38 determines that the suction operation is being performed, the sweating amount measurement unit 33 measures the mental sweating amount Qs of the user. Here, the processing unit 51 is a functional unit that performs various types of processing on the measured value of the mental sweating amount Qs of the user measured in the stress degree analysis control. Whether or not the user is currently performing the suction operation can be determined based on the detection result of the suction operation (puff operation) by the atmospheric pressure acquisition unit 31. Here, the processing unit 51 performs a calculation process of dividing the measured value of the mental sweating amount Qs of the user measured by the sweating amount measurement unit 33 by the initial reference sweating amount G # max acquired during the power-on process. A “corrected perspiration amount measurement value G” (G = Qs / G # max) is calculated, and the calculated corrected perspiration amount measurement value G is used as an elapsed time T i (i = 0) from the start of the main processing. , 0.5, 1.0,... 99.5) are stored in the storage unit 35. Incidentally, the corrected amount of perspiration measurement G i (i = 0,0.5,1.0, ··· 99.5) when calculating the in order to smooth the time series data of the measured value of mental sweating amount Qs of the user Then, a moving average process is performed on the measurement value of the mental sweating amount Qs, and a corrected sweating measurement value is obtained by performing a calculation process of dividing the mental sweating amount Qs after the moving average process by the initial reference sweating amount G # max. G may be obtained.
 また、上記の添字表記iは、メイン処理開始時からの経過時間を示している。上記のように、ここでの説明では予測用特徴量測定期間ΔTmpを100秒間に設定し、精神性発汗量の測定周期を500msに設定しているため、予測用特徴量測定処理において生成される発汗量測定データDgには、メイン処理開始からの経過時間T(i=0,0.5,1.0,・・・99.5)に対応する200個の補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)が含まれる。また、発汗量測定データDgに含まれる各補正済み発汗量測定値を配列で表すと、以下のようになる。
Dg=[G0,G0.5,G1.0,・・・G99.5
 なお、メイン処理開始時(予測用特徴量測定処理開始時)における補正済み発汗量測定値Gの値は1とする。
The subscript notation i indicates the elapsed time from the start of the main process. As described above, in the description here, the prediction feature quantity measurement period ΔTmp is set to 100 seconds, and the mental sweating measurement period is set to 500 ms. The sweating amount measurement data Dg includes 200 corrected sweating amount measurement values G i (i = 0, 0, corresponding to the elapsed time T i (i = 0, 0.5, 1.0,... 99.5) from the start of the main processing. 0.5, 1.0, ... 99.5) are included. Moreover, each corrected sweating measurement value included in the sweating measurement data Dg is represented as an array as follows.
Dg = [G 0 , G 0.5 , G 1.0 ,... G 99.5 ]
The value of the corrected amount of sweat measurements G 0 in the main processing is started (when the predicted feature quantity measurement processing starts) is set to 1.
 また、予測用特徴量測定処理の各サンプリング時において、判定部38が非吸引動作中と判定した場合には、発汗量測定部33は使用者の精神性発汗量Qsを測定しない。この場合、処理部51は、前回のサンプリング時における補正済み発汗量測定値Gを、今回のサンプリング時における補正済み発汗量測定値Gとして、発汗量測定データDgに格納する。例えば、メイン処理開始からの経過時間T5.0において非吸引動作中である場合には、G5.0は、経過時間T4.5に対応するG4.5と同じ値として発汗量測定データDgに格納される。 Further, when the determination unit 38 determines that the non-suction operation is being performed at each sampling of the prediction feature amount measurement process, the sweat amount measurement unit 33 does not measure the mental sweat amount Qs of the user. In this case, the processing unit 51 stores the corrected perspiration amount measurement value G at the previous sampling as the corrected perspiration amount measurement value G at the current sampling in the perspiration amount measurement data Dg. For example, when the non-suction operation is being performed at the elapsed time T 5.0 from the start of the main process, G 5.0 is stored in the perspiration amount measurement data Dg as the same value as G 4.5 corresponding to the elapsed time T 4.5 .
 上記のように、予測用特徴量測定処理時において、吸引動作状態にのみ使用者の精神性発汗量Qsを測定するようにしたので、体動による見掛け上の精神性発汗量の変化(ノイズ)である体動アーティファクトを低減することができる。なお、図17に示すように、メイン処理の予測用特徴量測定処理が行われる予測用特徴量測定期間ΔTmpにおいては、使用者の精神性発汗量Qsが徐々に減少する。これは、使用者による吸引器1の吸引動作が繰り返し行われることに伴い、実質的に使用者が深呼吸を繰り返すことになり、使用者のストレス度合いを反映する精神性発汗量Qsの低下に繋がることに拠るものである。 As described above, since the user's mental sweating amount Qs is measured only in the suction operation state during the prediction feature amount measurement process, a change in apparent mental sweating amount due to body movement (noise). It is possible to reduce the body motion artifact. Note that, as shown in FIG. 17, in the prediction feature amount measurement period ΔTmp in which the prediction feature amount measurement process of the main process is performed, the mental sweating amount Qs of the user gradually decreases. As the suction operation of the suction device 1 by the user is repeatedly performed, the user substantially repeats deep breathing, which leads to a decrease in the amount of mental sweating Qs that reflects the degree of stress of the user. It depends.
 ここで、予測用特徴量測定期間ΔTmp(100秒間)が終了した時点で、制御部30は予測用特徴量測定処理を終了し、図18のステップS40におけるmin-max予測処理を行う。min-max予測処理は、制御部30の予測部50が、予測用特徴量測定処理において記憶部35に記憶した補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)とメイン処理開始時からの経過時間T(i=0,0.5,1.0,・・・99.5)が対応付けられた発汗量測定データDgと、記憶部35に格納されている発汗量最小値予測モデル351および発汗量最大値予測モデル352に基づいて、メイン処理継続最大期間ΔTmax(180秒間)において使用者の精神性発汗量が最小となる最小値と、当該精神性発汗量が最大となる最大値をそれぞれ予測する処理である。 Here, when the prediction feature amount measurement period ΔTmp (100 seconds) ends, the control unit 30 ends the prediction feature amount measurement processing, and performs the min-max prediction processing in step S40 in FIG. In the min-max prediction process, the corrected sweating measurement value G i (i = 0, 0.5, 1.0,... 99.5) stored in the storage unit 35 by the prediction unit 50 of the control unit 30 in the prediction feature amount measurement process. ) And the elapsed time T i (i = 0, 0.5, 1.0,... 99.5) from the start of the main processing and the perspiration amount measurement data Dg stored in the storage unit 35. Based on the prediction model 351 and the maximum sweating amount prediction model 352, the minimum value that minimizes the user's mental sweating amount and the maximum mental sweating amount during the main processing continuation maximum period ΔTmax (180 seconds). This is a process for predicting the maximum value.
 発汗量最小値予測モデル351および発汗量最大値予測モデル352を説明する。発汗量最小値予測モデル351は、予測用特徴量測定期間ΔTmp(100秒間)において経時的に変化する使用者の精神性発汗量の推移と、メイン処理継続最大期間ΔTmax(180秒間)における使用者の精神性発汗量の最小値との関連性を示す予測モデルである。より具体的には、発汗量最小値予測モデル351は、予め複数(多数)の被験者に吸引器1を使用させ、ストレス度合い分析制御(メイン処理)を実行することで得られた、予測用特徴量測定期間ΔTmpにおける被験者の精神性発汗量の測定値の推移とメイン処理継続最大期間ΔTmaxにおける被験者の精神性発汗量の測定値の最小値を対応付けたデータである複数(多数)の発汗量最小値学習用データを教師データとして用いた機械学習によって、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の推移とメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最小値との関連性を学習済みの予測モデルである。 The perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction model 352 will be described. The sweating amount minimum value prediction model 351 includes the transition of the user's mental sweating amount that changes over time in the prediction feature amount measurement period ΔTmp (100 seconds) and the user in the main processing continuation maximum period ΔTmax (180 seconds). It is a prediction model which shows the relationship with the minimum value of the amount of mental sweating. More specifically, the sweating amount minimum value prediction model 351 is a prediction feature obtained by causing a plurality (a large number) of subjects to use the aspirator 1 in advance and executing stress degree analysis control (main processing). A plurality (a large number) of sweat amounts, which are data in which the transition of the measured value of the subject's mental sweat amount in the amount measurement period ΔTmp is associated with the minimum value of the subject's mental sweat amount in the main processing continuation maximum period ΔTmax By machine learning using the minimum value learning data as teacher data, the transition of the user's mental sweating amount during the prediction feature amount measurement period ΔTmp and the minimum value of the user's mental sweating amount during the main processing continuation maximum period ΔTmax It is a prediction model that has learned the relationship with
 また、発汗量最大値予測モデル352は、予測用特徴量測定期間ΔTmp(100秒間)において経時的に変化する使用者の精神性発汗量の推移と、メイン処理継続最大期間ΔTmax(180秒間)における使用者の精神性発汗量の最大値との関連性を示す予測モデルである。より具体的には、発汗量最大値予測モデル352は、予め複数(多数)の被験者に吸引器1を使用させ、ストレス度合い分析制御(メイン処理)を実行することで得られた、予測用特徴量測定期間ΔTmpにおける複数(多数)の被験者の精神性発汗量の測定値の推移と前記メイン処理継続最大期間ΔTmaxにおける複数(多数)の被験者の精神性発汗量の最大値を対応付けたデータである複数(多数)の発汗量最大値学習用データを教師データとして用いた機械学習によって、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の推移とメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最大値との関連性を学習済みの予測モデルである。 In addition, the sweating amount maximum value prediction model 352 includes the transition of the user's mental sweating amount that changes with time in the prediction feature amount measurement period ΔTmp (100 seconds) and the main processing continuation maximum period ΔTmax (180 seconds). It is a prediction model which shows the relationship with the maximum value of a user's mental sweating amount. More specifically, the sweating amount maximum value prediction model 352 is a prediction feature obtained by causing a plurality (a large number) of subjects to use the aspirator 1 in advance and executing stress degree analysis control (main processing). Data in which the transition of the measured value of the mental sweating amount of a plurality of (many) subjects in the amount measurement period ΔTmp is associated with the maximum value of the mental sweating amount of the plurality of (many) subjects in the main processing continuation maximum period ΔTmax. By machine learning using a plurality of (a large number) of sweating maximum value learning data as teacher data, the transition of the user's mental sweating amount during the prediction feature amount measurement period ΔTmp and the user during the main processing maximum duration ΔTmax It is a prediction model that has learned the relationship with the maximum value of mental sweating.
 本実施形態において、発汗量最小値予測モデル351および発汗量最大値予測モデル352は線形モデルとして構築されている。このような線形モデルとしては、例えば、LASSO等を好適に用いることができる。但し、発汗量最小値予測モデル351および発汗量最大値予測モデル352は、LASSOに限定されず、また、非線形モデルを用いても良い。 In this embodiment, the sweating amount minimum value prediction model 351 and the sweating amount maximum value prediction model 352 are constructed as linear models. As such a linear model, LASSO etc. can be used suitably, for example. However, the perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction model 352 are not limited to LASSO, and a non-linear model may be used.
 min-max予測処理において、予測部50は、メイン処理開始時から予測用特徴量測定期間ΔTmpに亘って測定した使用者における精神性発汗量の測定値の一例である補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)を特徴量として、発汗量最小値予測モデル351と発汗量最大値予測モデル352にそれぞれ適用することによって、メイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最小値と使用者の精神性発汗量の最大値をそれぞれ予測する。以下、このようにして発汗量最小値予測モデル351を用いた予測によって得られたメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最小値を、「最小予測値Gpmin」という。また、発汗量最大値予測モデル352を用いた予測によって得られたメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最大値を、「最大予測値Gpmax」という。 In the min-max prediction process, the prediction unit 50 corrects the measured sweating amount G, which is an example of the measured value of the mental sweating amount for the user measured over the prediction feature amount measurement period ΔTmp from the start of the main processing. By using i (i = 0, 0.5, 1.0,... 99.5) as a feature amount and applying it to the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352, respectively, the usage in the main processing continuation maximum period ΔTmax is used. The minimum value of mental sweating of the user and the maximum value of mental sweating of the user are predicted. Hereinafter, the minimum value of the mental sweating amount of the user in the main processing continuation maximum period ΔTmax obtained by the prediction using the sweating amount minimum value prediction model 351 in this way is referred to as “minimum predicted value Gpmin”. In addition, the maximum value of the user's mental sweating amount during the main processing continuation maximum period ΔTmax obtained by the prediction using the sweating amount maximum value prediction model 352 is referred to as “maximum predicted value Gpmax”.
 発汗量最小値予測モデル351は、以下の(1)式によって最小予測値Gpminを予測する。
Gpmin=a0×G0+a0.5×G0.5+a1.0×G1.0+…+a99.5×G99.5 (1)式
 ここで、a(i=0,0.5,1.0,・・・99.5)は、特徴量である補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)に対する重みである。
The sweating amount minimum value prediction model 351 predicts the minimum predicted value Gpmin by the following equation (1).
Gpmin = a 0 × G 0 + a 0.5 × G 0.5 + a 1.0 × G 1.0 + ... + a 99.5 × G 99.5 (1) formula, where, a i (i = 0,0.5,1.0, ··· 99.5) is characterized It is a weight for the corrected perspiration amount measurement value G i (i = 0, 0.5, 1.0,... 99.5), which is the amount.
 発汗量最大値予測モデル352は、以下の(2)式によって最大予測値Gpmaxを予測する。
Gpmax=b0×G0+b0.5×G0.5+b1.0×G1.0+…+b99.5×G99.5 (2)式
 ここで、b(i=0,0.5,1.0,・・・99.5)は、特徴量である補正済み発汗量測定値G(i=0,0.5,1.0,・・・99.5)に対する重みである。
The sweating amount maximum value prediction model 352 predicts the maximum predicted value Gpmax by the following equation (2).
Gpmax = b 0 × G 0 + b 0.5 × G 0.5 + b 1.0 × G 1.0 + ... + b 99.5 × G 99.5 (2) where b i (i = 0, 0.5, 1.0,... 99.5) is a feature. It is a weight for the corrected perspiration amount measurement value G i (i = 0, 0.5, 1.0,... 99.5), which is the amount.
 このようにして、学習済みの発汗量最小値予測モデル351および発汗量最大値予測モデル352を用いて予測部50が予測したメイン処理継続最大期間ΔTmaxにおける精神性発汗量の最小予測値Gpminおよび最大予測値Gpmaxは、記憶部35に記憶される。そして、制御部30は、min-max予測処理の終了後、図18におけるステップS50に進み、発汗量判定処理を実行する。 In this way, the minimum predicted value Gpmin and the maximum predicted value of the mental sweating amount in the main processing continuation maximum period ΔTmax predicted by the prediction unit 50 using the learned sweating minimum value prediction model 351 and the sweating maximum value prediction model 352 are used. The predicted value Gpmax is stored in the storage unit 35. Then, after the end of the min-max prediction process, the control unit 30 proceeds to step S50 in FIG. 18 and executes a sweating amount determination process.
 本実施形態において、発汗量判定処理は、上記の通り、予測用特徴量測定期間ΔTmp(メイン処理開始後から100秒間)が経過した時間Tc以降、最大で第1タイムアウト時期が到来する時間Td(メイン処理開始後から180秒経過後)までの期間に亘って行われる。つまり、発汗量判定処理は、メイン処理が開始されてから100秒経過後に開始され、メイン処理が開始されてから最大で180秒経過するまで行われる。 In the present embodiment, as described above, the sweating amount determination process is performed at a time Td (maximum first time-out period Td) after the time Tc when the predictive feature amount measurement period ΔTmp (100 seconds after the main process starts) has elapsed. It is performed over a period from the start of the main process to after 180 seconds. That is, the sweating amount determination process is started 100 seconds after the main process is started, and is performed until 180 seconds at the maximum after the main process is started.
 発汗量判定処理における具体的な処理内容について説明すると、発汗量判定処理に際して、発汗量測定部33は所定のサンプリング周期毎に使用者の精神性発汗量Qsを測定する。ここでは、発汗量判定処理において使用者の精神性発汗量Qsを測定するサンプリング周期を500msとする場合を例に説明するが、上記サンプリング周期は特に限定されない。なお、発汗量測定部33は、メイン処理が開始されてからの経過時間T(i=0,0.5,1.0,・・・99.5)を計時部39から取得することで、所定のサンプリング周期(ここでは、500ms)毎に使用者の精神性発汗量を測定することができる。 The specific processing content in the sweating amount determination process will be described. In the sweating amount determination process, the sweating amount measurement unit 33 measures the mental sweating amount Qs of the user every predetermined sampling period. Here, the case where the sampling period for measuring the mental sweating amount Qs of the user in the sweating amount determination process is set to 500 ms will be described as an example, but the sampling period is not particularly limited. The sweating amount measuring unit 33 acquires an elapsed time T i (i = 0, 0.5, 1.0,... 99.5) from the start of the main process from the time measuring unit 39, thereby obtaining a predetermined sampling period ( Here, the amount of mental sweating of the user can be measured every 500 ms).
 発汗量判定処理において、発汗量測定部33が測定した使用者の精神性発汗量Qsの測定値は、処理部51によって補正処理される。具体的には、処理部51は、パワーオン処理時に取得した初期基準発汗量G#maxによって精神性発汗量Qsの測定値を割る補正処理を行うことで補正済み発汗量測定値Gを算出する。更に、処理部51は、算出した補正済み発汗量測定値Gを、記憶部35に記憶されている最小予測値Gpminおよび最大予測値Gpmaxを用いて、スケーリング処理を行う。 In the sweating amount determination process, the measured value of the user's mental sweating amount Qs measured by the sweating amount measurement unit 33 is corrected by the processing unit 51. Specifically, the processing unit 51 calculates a corrected perspiration amount measurement value G by performing a correction process that divides the measurement value of the mental perspiration amount Qs by the initial reference perspiration amount G # max acquired during the power-on process. . Further, the processing unit 51 performs a scaling process on the calculated corrected sweating amount measurement value G using the minimum predicted value Gpmin and the maximum predicted value Gpmax stored in the storage unit 35.
 ここで、処理部51は、記憶部35に記憶されている最小予測値Gpminを所定の第1の値とし、最大予測値Gpmaxを第2の値としてmin-maxスケーリング処理を行う。ここで、第2の値とは、第1の値よりも大きな値として設定されている。ここでは、第1の値を0、第2の値を1とする場合を例に説明する。 Here, the processing unit 51 performs a min-max scaling process with the minimum predicted value Gpmin stored in the storage unit 35 as a predetermined first value and the maximum predicted value Gpmax as a second value. Here, the second value is set as a value larger than the first value. Here, a case where the first value is 0 and the second value is 1 will be described as an example.
 処理部51は、min-maxスケーリング処理を行う際、以下の(3)式に、補正済み発汗量測定値G(i=100,100.5,101,・・・180)を代入することで、min-maxスケーリング処理後のスケーリング済み発汗量測定値Gt(i=100,100.5,101,・・・180)を算出する。
Gt=(G-Gpmin)/(Gpmax-Gpmin) (3)式
When the processing unit 51 performs the min-max scaling process, the corrected perspiration amount measurement value G i (i = 100, 100.5, 101,... 180) is substituted into the following equation (3): The scaled perspiration measurement value Gt i (i = 100, 100.5, 101,... 180) after the min-max scaling process is calculated.
Gt i = (G i −Gpmin) / (Gpmax−Gpmin) (3)
 処理部51が算出したスケーリング済み発汗量測定値Gtは、設定部36によって設定される判定用閾値と対比され、当該スケーリング済み発汗量測定値Gtが判定用閾値未満である場合に、使用者の状態が低ストレス状態に移行したと判断される。ここで、設定部36は、判定用閾値を、第1の値(最小予測値Gpmin)以上で且つ第2の値(最大予測値Gpmax)以下の範囲に設定する。上記の通り、本実施形態においては、第1の値(最小予測値Gpmin)を0、第2の値(最大予測値Gpmax)を1として、発汗量判定期間ΔTmjにおいて測定した使用者の精神性発汗量の測定値(具体的には、補正済み発汗量測定値G)に対してスケーリング処理を行う。そのため、設定部36は、判定用閾値を、0以上1以下の値に設定する。 The scaled sweat amount measurement value Gt i calculated by the processing unit 51 is compared with the determination threshold value set by the setting unit 36, and is used when the scaled sweat amount measurement value Gt i is less than the determination threshold value. It is determined that the person's state has shifted to a low stress state. Here, the setting unit 36 sets the determination threshold to a range that is greater than or equal to the first value (minimum predicted value Gpmin) and less than or equal to the second value (maximum predicted value Gpmax). As described above, in the present embodiment, the first value (minimum predicted value Gpmin) is set to 0, and the second value (maximum predicted value Gpmax) is set to 1, and the user's mentality measured in the sweating amount determination period ΔTmj. Scaling processing is performed on the measured value of sweating amount (specifically, the corrected sweating amount measurement value G). For this reason, the setting unit 36 sets the determination threshold to a value between 0 and 1.
 発汗量判定処理において、判定部38は、発汗量判定期間ΔTmjにおける所定のサンプリング周期(ここでの例では、500ms)毎に取得されるスケーリング済み発汗量測定値Gtを、その都度、判定用閾値と対比し、スケーリング済み発汗量測定値Gtが判定用閾値未満であるか否かを判定する。そして、スケーリング済み発汗量測定値Gtが判定用閾値未満になったことが確認された時点でメイン処理を終了すると共に、ストレス解消完了通知を使用者に通知(報知)する。 In the amount of perspiration determination processing, determination unit 38, (in this example, 500 ms) prescribed sampling period in the amount of perspiration determination period ΔTmj a scaled amount of perspiration measurement Gt i acquired for each, in each case, for determining In contrast to the threshold value, it is determined whether or not the measured sweating amount Gt i is less than the determination threshold value. The scaled amount of perspiration measurement Gt i is the control section 10 ends the main processing when it is confirmed that becomes less than the determination threshold, and notifies the user of the stress completion notification (notification).
 一方、発汗量判定処理において、スケーリング済み発汗量測定値Gtが判定用閾値まで低下していなくても、メイン処理の開始からの経過時間が予め設定される第1タイムアウト時間ΔTtoを経過した場合には、タイムアウトとして制御部30はメイン処理を強制的に終了させる。具体的には、判定部38は、メイン処理が開始されてからの経過時間を計時部39から取得する。そして、判定部38は、取得した経過時間が所定の第1タイムアウト時間ΔTtoを超えたか否かを判定する。第1タイムアウト時間ΔTtoは、本制御例では予め定められた固定の時間(180秒間)としているが、第1タイムアウト時間ΔTtoの長さは使用者によって設定の変更が可能であっても良い。 On the other hand, in the sweating amount determination process, even if the scaled sweating amount measurement value Gt i has not decreased to the determination threshold value, the elapsed time from the start of the main processing has passed a preset first timeout time ΔTto As a timeout, the control unit 30 forcibly ends the main process. Specifically, the determination unit 38 acquires the elapsed time from the start of the main process from the time measuring unit 39. Then, the determination unit 38 determines whether or not the acquired elapsed time exceeds a predetermined first timeout time ΔTto. In the present control example, the first timeout time ΔTto is set to a predetermined fixed time (180 seconds), but the length of the first timeout time ΔTto may be changed by the user.
 また、上記のストレス解消完了通知は、使用者の交感神経系の緊張が緩和され、ストレスが十分に解消された状態に至ったことを使用者に知らせるための通知である。ストレス解消完了通知は、実施形態1と同様、発光制御部37が、発光素子43に対して電源23から電力を供給させる制御を行い、所定の発光パターンで発光素子43を発光させることで使用者に通知しても良い。 Further, the above-mentioned stress release completion notification is a notification for notifying the user that the user's sympathetic nervous system has been relaxed and the stress has been sufficiently eliminated. Similar to the first embodiment, the light emission control unit 37 controls the light emission element 43 to supply power from the power source 23 and causes the light emission element 43 to emit light in a predetermined light emission pattern, as in the first embodiment. May be notified.
 ここで、図19は、実施形態3に係るメイン処理における発汗量判定処理の処理内容を示すフローチャートである。図19に示すステップS501において、発汗量測定部33は、現在、使用者の精神性発汗量Qsを測定する測定タイミングかどうかを判定する。発汗量測定部33は、メイン処理(予測用特徴量測定処理)が開始されてからの経過時間を計時部39から取得することで、所定のサンプリング周期毎に使用者の精神性発汗量を測定することができる。ステップS501において、測定タイミングであると判定された場合、ステップS502に進み、測定タイミングではないと判定された場合には、ステップS501に戻る。 Here, FIG. 19 is a flowchart showing the processing content of the sweating amount determination processing in the main processing according to the third embodiment. In step S501 shown in FIG. 19, the sweating amount measurement unit 33 determines whether it is currently the measurement timing for measuring the mental sweating amount Qs of the user. The sweating amount measurement unit 33 acquires the elapsed time from the start of the main processing (prediction feature value measurement processing) from the time measuring unit 39, thereby measuring the mental sweating amount of the user at every predetermined sampling period. can do. If it is determined in step S501 that it is the measurement timing, the process proceeds to step S502. If it is determined that it is not the measurement timing, the process returns to step S501.
 ステップS502において、判定部38は、気圧取得部31による吸引動作(パフ動作)の検出結果に基づいて、現在、使用者が吸引動作中であるか否かを判定する。本ステップにおいて、現在、使用者が吸引動作中であると判定された場合、ステップS503に進み、吸引動作中でないと判定された場合、ステップS501に戻る。 In step S502, the determination unit 38 determines whether the user is currently performing a suction operation based on the detection result of the suction operation (puff operation) by the atmospheric pressure acquisition unit 31. In this step, when it is determined that the user is currently performing the suction operation, the process proceeds to step S503, and when it is determined that the user is not performing the suction operation, the process returns to step S501.
 ステップS503において、発汗量測定部33は使用者の精神性発汗量Qsを測定する。次に、ステップS504において、処理部51は、発汗量測定部33が測定した使用者の精神性発汗量Qsの測定値を初期基準発汗量G#maxによって割ることで補正済み発汗量測定値Gを算出する。ここで、補正済み発汗量測定値Gを算出する際、使用者の精神性発汗量Qsの測定値の時系列データを平滑化するために、精神性発汗量Qsの測定値に対して移動平均処理を施し、移動平均処理後の精神性発汗量Qsを初期基準発汗量G#maxによって割る演算処理を行うことで補正済み発汗量測定値Gを求めてもよい。 In step S503, the sweating amount measuring unit 33 measures the mental sweating amount Qs of the user. Next, in step S504, the processing unit 51 divides the measured value of the mental sweating amount Qs of the user measured by the sweating amount measurement unit 33 by the initial reference sweating amount G # max, thereby correcting the measured sweating amount G. Is calculated. Here, when calculating the corrected sweating amount measurement value G, in order to smooth the time-series data of the measurement value of the mental sweating amount Qs of the user, a moving average with respect to the measurement value of the mental sweating amount Qs. The corrected perspiration amount measurement value G may be obtained by performing processing for performing the arithmetic processing for dividing the mental perspiration amount Qs after the moving average processing by the initial reference perspiration amount G # max.
 次に、ステップS505において、処理部51は、記憶部35に記憶されている最小予測値Gpminを所定の第1の値とし、最大予測値Gpmaxを第2の値として補正済み発汗量測定値Gに対するmin-maxスケーリング処理を行い、スケーリング済み発汗量測定値Gtを算出する。スケーリング済み発汗量測定値Gtは、上記(3)式に基づいて算出することができる。 Next, in step S505, the processing unit 51 uses the minimum predicted value Gpmin stored in the storage unit 35 as a predetermined first value and the maximum predicted value Gpmax as a second value. A min-max scaling process is performed on the image, and a scaled perspiration measurement value Gt is calculated. The scaled perspiration measurement value Gt can be calculated based on the above equation (3).
 次に、ステップS506において、判定部38は、スケーリング済み発汗量測定値Gtが判定用閾値未満であるか否かを判定する。ステップS506において、スケーリング済み発汗量測定値Gtが判定用閾値未満であると判定された場合、ステップS507に進み、スケーリング済み発汗量測定値Gtが判定用閾値以上であると判定された場合には、ステップS509に進む。 Next, in step S506, the determination unit 38 determines whether or not the scaled perspiration measurement value Gt is less than the determination threshold value. If it is determined in step S506 that the scaled sweat amount measurement value Gt is less than the determination threshold value, the process proceeds to step S507, and if it is determined that the scaled sweat amount measurement value Gt is greater than or equal to the determination threshold value. The process proceeds to step S509.
 ステップS507においては、発光制御部37が、ストレス解消完了通知を使用者に通知(報知)する。例えば、発光制御部37は、発光素子43に対して電源23から電力を供給させる制御を行い、所定の発光パターンで発光素子43を発光させることで使用者にストレス解消完了通知を通知する。ステップS507の処理が終了すると、ステップS508に進む。 In step S507, the light emission control unit 37 notifies (notifies) the user of a stress release completion notification. For example, the light emission control unit 37 performs control to supply power from the power source 23 to the light emitting element 43, and notifies the user of a stress release completion notification by causing the light emitting element 43 to emit light with a predetermined light emission pattern. When the process of step S507 ends, the process proceeds to step S508.
 ステップS508においては、モータ制御部34が、振動モータ41に対して電源23から電力を供給させ、振動モータ41を作動(駆動)させることで覚醒処理を実行する。覚醒処理は、振動モータ41の駆動に起因する木製筐体13の振動刺激(微小なストレス)を使用者に付与することで、使用者の覚醒レベルを上昇させる処理である。覚醒レベルを上昇させる覚醒処理を実行することで、使用者の意識がぼんやりした状態ではなく、意識がリフレッシュした状態に使用者を覚醒させることができる。 In step S508, the motor control unit 34 supplies the electric power from the power source 23 to the vibration motor 41 and operates (drives) the vibration motor 41 to execute the awakening process. The awakening process is a process of raising the user's arousal level by giving the user a vibration stimulus (minute stress) of the wooden casing 13 resulting from the driving of the vibration motor 41. By executing the awakening process for increasing the awakening level, the user can be awakened in a state where the user's consciousness has been refreshed, not in a state where the user's consciousness has been blurred.
 覚醒処理における振動モータ41の駆動パターンや、その継続期間は特に限定されない。例えば、覚醒処理において、振動モータ41を間欠的に駆動させても良い。例えば、振動モータ41を駆動させる振動時間と、駆動を停止させる休止時間を複数サイクル繰り返しても良い。その場合、1サイクル毎に、振動モータ41の振動時間と休止時間を変化させても良い。例えば、覚醒処理の1サイクル目における振動モータ41の振動時間と休止時間をそれぞれ200msとし、2サイクル目以降は、振動時間と休止時間を20msずつ短くしていっても良い。覚醒処理において、所定のサイクル数が完了したした時点、或いは、覚醒処理の開始から一定時間が経過した時点で覚醒処理を完了し、図19に示す制御ルーチンが終了する。なお、本実施形態においても、実施形態1と同様、覚醒処理において、振動による刺激以外の手法を用いて、使用者の覚醒レベルを上昇させても良い。例えば、発光素子43を発光させることで使用者を覚醒させても良い。 The driving pattern of the vibration motor 41 in the awakening process and its duration are not particularly limited. For example, the vibration motor 41 may be driven intermittently in the awakening process. For example, a vibration time for driving the vibration motor 41 and a pause time for stopping the driving may be repeated a plurality of cycles. In that case, you may change the vibration time and rest time of the vibration motor 41 for every cycle. For example, the vibration time and the rest time of the vibration motor 41 in the first cycle of the awakening process may be 200 ms, respectively, and after the second cycle, the vibration time and the rest time may be shortened by 20 ms. In the awakening process, the awakening process is completed when a predetermined number of cycles is completed, or when a predetermined time has elapsed from the start of the awakening process, and the control routine shown in FIG. 19 ends. In the present embodiment, as in the first embodiment, the wakefulness level of the user may be increased using a method other than the stimulation by vibration in the wakefulness process. For example, the user may be awakened by causing the light emitting element 43 to emit light.
 また、覚醒処理は電池230の残量に応じて異なるパターンとすることで、電池残量のアラート機能を兼ねていても良い。例えば、電池230の残量が十分な状態における覚醒処理では、発光素子43を所定の第1の色(例えば、青色)に点灯させつつ振動モータ41を所定の振動パターン(例えば、「200ms振動+200ms休止」で数サイクル(例えば、4サイクル)作動させた後、振動モータ41の作動を終了させると同時に発光素子43を消灯してもよい。また、電池230の残量が少ない状態における覚醒処理では、発光素子43を所定の第2の色(例えば、赤色)に点灯させつつ振動モータ41を所定の振動パターン(例えば、「200ms振動+200ms休止」で数サイクル(例えば、5サイクル)作動させた後、振動モータ41の作動を終了させると同時に発光素子43を消灯してもよい。また、上記のパターンは例示であり、適宜変更しても良い。 Also, the alerting process may be combined with an alert function for the remaining battery level by using different patterns depending on the remaining battery level. For example, in the awakening process when the remaining amount of the battery 230 is sufficient, the vibration motor 41 is turned on in a predetermined first color (for example, blue) and the vibration motor 41 is set in a predetermined vibration pattern (for example, “200 ms vibration + 200 ms). After several cycles (for example, four cycles) of “pause”, the light emitting element 43 may be turned off simultaneously with the end of the operation of the vibration motor 41. In the awakening process when the remaining amount of the battery 230 is low After the light emitting element 43 is lit in a predetermined second color (for example, red), the vibration motor 41 is operated for a few cycles (for example, 5 cycles) with a predetermined vibration pattern (for example, “200 ms vibration + 200 ms pause”). The light emitting element 43 may be turned off simultaneously with the end of the operation of the vibration motor 41. The above pattern is an example, and may be changed as appropriate. It may be.
 また、上記発汗量判定処理のステップS506において、スケーリング済み発汗量測定値Gtが判定用閾値以上であると判定されることでステップS509の処理に進む場合、判定部38は、メイン処理の開始時(図17に示す時間Tb)からの経過時間Tが予め定められた所定の第1タイムアウト時間ΔTtoを経過したか否かを判定する。本制御例では、第1タイムアウト時間ΔTtoが180秒に設定されているが、使用者による第1タイムアウト時間ΔTtoの設定変更が可能であっても良い。判定部38は、メイン処理の開始からの経過時間Tを計時部39から取得することができる。 In step S506 of the perspiration amount determination process, when it is determined that the scaled perspiration amount measurement value Gt is equal to or greater than the determination threshold value, the determination unit 38 proceeds to the process of step S509. It is determined whether or not an elapsed time T i from (time Tb shown in FIG. 17) has passed a predetermined first timeout time ΔTto. In the present control example, the first timeout time ΔTto is set to 180 seconds, but the user may be able to change the setting of the first timeout time ΔTto. Determination unit 38 can acquire the elapsed time T i from the start of the main processing from the clock unit 39.
 ステップS509において、メイン処理を開始してからの経過時間Tが第1タイムアウト時間ΔTtoを経過していないと判定された場合、ステップS501の処理に戻り、ステップS501~S506の処理が繰り返される。また、ステップS509において、メイン処理を開始してからの経過時間Tが第1タイムアウト時間ΔTtoを経過したと判定された場合にはステップS510に進み、使用者にタイムアウトした旨を伝えるためのタイムアウト通知を通知する。例えば、発光制御部37が発光素子43を所定の発光パターンで発光させることで、タイムアウト通知を行っても良い。タイムアウト通知の実行が終了すると、図19に示す制御ルーチンを終了する。 In step S509, the case where the elapsed time T i from the start of the main process is determined not to be passed first timeout DerutaTto, the process returns to step S501, the processing of steps S501 ~ S506 are repeated. Further, in step S509, the process proceeds to step S510 if the elapsed time T i from the start of the main process is judged to have passed the first timeout period DerutaTto, timeouts to communicate the fact that timed out user Notify me of notifications. For example, the time-out notification may be performed by causing the light emission control unit 37 to cause the light emitting element 43 to emit light in a predetermined light emission pattern. When the execution of the timeout notification is finished, the control routine shown in FIG. 19 is finished.
 以上のように、本実施形態におけるストレス度合い分析制御におけるメイン処理(発汗状態判定制御)によれば、メイン処理継続最大期間ΔTmaxよりも短い期間として設定される予測用特徴量測定期間ΔTmpで測定した使用者の精神性発汗量の経時的な推移と、発汗量最小値予測モデル351および発汗量最大値予測モデル352に基づいて、将来的に刻一刻と推移する使用者の精神性発汗量の最小値と最大値を予測することができる。そして、上記予測モデルに基づいて予測した使用者の精神性発汗量の最小値と最大値を用いて、予測用特徴量測定期間ΔTmp以後の発汗量判定期間ΔTmjにおいて測定する使用者の精神性発汗量の測定値をスケーリング処理することで、使用者毎に精神性発汗量の変動特性が大きくばらついたとしても、発汗量判定期間ΔTmjにおいて取得するスケーリング済み発汗量測定値Gtの変動範囲をある程度の範囲に小さく収めることができる。本実施形態におけるストレス度合い分析制御のメイン処理(発汗状態判定制御)によれば、上記のように精神性発汗量の変動特性に関する個人差を小さくするアルゴリズムを採用することで、発汗量判定処理に用いる判定用閾値を固定値に設定する場合においても、タイムアウト通知が通知されるケースの割合が過度に高くなったり、逆に、発汗量判定処理を開始した直後にストレス解消完了通知が通知されるケースの割合が過度に高くなることを抑制でき、ユーザビリティの優れた吸引器1を実現することができる。 As described above, according to the main process (sweating state determination control) in the stress level analysis control in the present embodiment, the measurement is performed in the prediction feature amount measurement period ΔTmp set as a period shorter than the main process continuation maximum period ΔTmax. Based on the temporal transition of the user's mental sweating amount and the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352, the minimum of the user's mental sweating amount that will change every moment in the future. Values and maximum values can be predicted. Then, using the minimum and maximum values of the user's mental sweat amount predicted based on the prediction model, the user's mental sweat measured in the sweat amount determination period ΔTmj after the prediction feature amount measurement period ΔTmp. By scaling the measurement value of the amount, even if the fluctuation characteristic of the mental sweat amount greatly varies from user to user, the fluctuation range of the scaled sweat amount measurement value Gt acquired in the sweat amount determination period ΔTmj is reduced to some extent. Can be kept small in range. According to the main processing (sweating state determination control) of the stress degree analysis control in the present embodiment, by adopting the algorithm for reducing the individual difference regarding the fluctuation characteristics of the mental sweating amount as described above, the sweating amount determination processing is performed. Even when the threshold value for determination to be used is set to a fixed value, the ratio of cases in which a time-out notification is notified becomes excessively high, or conversely, a stress relief completion notification is notified immediately after the perspiration amount determination processing is started. It can suppress that the ratio of a case becomes high too much, and can implement | achieve the suction device 1 excellent in usability.
 図20は、吸引器1を使用する複数の使用者(被験者)に対してストレス度合い分析制御を実施した際のスケーリング済み発汗量測定値Gtの時間推移を示す図である。図21は、比較用に、吸引器1を使用する複数の使用者(被験者)に対してストレス度合い分析制御を実施した際の補正済み発汗量測定値Gの時間推移を示す図である。図21における補正済み発汗量測定値Gは、使用者における精神性発汗量の測定値を初期基準発汗量G#maxによって割った値であり、発汗量最小値予測モデル351および発汗量最大値予測モデル352に基づいて予測した精神性発汗量の最小値と最大値を用いたスケーリング処理はなされていない。なお、図20に示すスケーリング済み発汗量測定値Gtと、図21に示す補正済み発汗量測定値Gは、同じ複数の被験者(11人)から測定した精神性発汗量の測定値に基づいて算出したものである。 FIG. 20 is a diagram showing a time transition of the scaled perspiration measurement value Gt when stress level analysis control is performed on a plurality of users (subjects) using the aspirator 1. FIG. 21 is a diagram showing a time transition of the corrected sweating amount measurement value G when the stress level analysis control is performed on a plurality of users (subjects) using the aspirator 1 for comparison. The corrected perspiration amount measurement value G in FIG. 21 is a value obtained by dividing the measurement value of the mental perspiration amount in the user by the initial reference perspiration amount G # max, and the perspiration amount minimum value prediction model 351 and the perspiration amount maximum value prediction. Scaling processing using the minimum value and the maximum value of the amount of mental sweat predicted based on the model 352 is not performed. The scaled sweat amount measurement value Gt shown in FIG. 20 and the corrected sweat amount measurement value G shown in FIG. 21 are calculated based on the measured values of the mental sweat amount measured from the same plurality of subjects (11 persons). It is a thing.
 図20および図21を対比すると明らかなように、精神性発汗量の測定値を初期基準発汗量G#maxによって割っただけの補正済み発汗量測定値Gの推移は、メイン処理が開始されてからの経過時間が同時刻のときの被験者毎(個人差)によるばらつきが比較的大きい(図21を参照)。一方、図20に示すスケーリング済み発汗量測定値Gtは、メイン処理が開始されてからの経過時間が同時刻のときの被験者毎(個人差)によるばらつきが、図21に示す補正済み発汗量測定値Gに比べて小さいことが判る。 As is clear from comparison between FIG. 20 and FIG. 21, the transition of the corrected perspiration amount measurement value G obtained by dividing the measurement value of the mental perspiration amount by the initial reference perspiration amount G # max indicates that the main process is started. Variation from subject to subject (individual difference) when the elapsed time from is the same time is relatively large (see FIG. 21). On the other hand, the scaled sweat amount measurement value Gt shown in FIG. 20 is different from the subject-to-subject (individual difference) when the elapsed time from the start of the main processing is the same time, and the corrected sweat amount measurement shown in FIG. It can be seen that it is smaller than the value G.
 図21における補正済み発汗量測定値Gにおいては、スケーリング済み発汗量測定値Gtで評価する場合に比べて個人差によるばらつきが大きいため、発汗量判定処理に用いる判定用閾値を固定値に設定してしまうと、大多数の被験者がタイムアウトしてしまうか、逆に、吸引回数が少ない状態のまま発汗量判定処理を開始した直後に低ストレス状態と判断され易くなる傾向がある。例えば、図21における補正済み発汗量測定値Gを用いて発汗量判定処理に係る判定用閾値を0.6程度にすると、多くの被験者はタイムアウトに至ってしまい、逆に、判定用閾値を0.9程度に上げてしまうと、実際には初期基準発汗量G#maxから10%しか精神性発汗量が低下していないにも関わらず発汗量判定処理を開始した直後に多くの被験者が低ストレス状態と判断され易くなる傾向がある。 In the corrected perspiration amount measurement value G in FIG. 21, since the variation due to individual differences is larger than in the case of evaluation with the scaled perspiration amount measurement value Gt, the determination threshold used for the perspiration amount determination processing is set to a fixed value. If this happens, the majority of subjects will time out, or conversely, it is likely to be determined as a low stress state immediately after starting the sweating amount determination process with the number of suctions being small. For example, when the threshold value for determination related to the sweating amount determination process is set to about 0.6 using the corrected sweating amount measurement value G in FIG. 21, many subjects will time out. If it is increased to about 9, many subjects are less stressed immediately after starting the sweating determination process even though the mental sweating amount has decreased by only 10% from the initial reference sweating amount G # max. There is a tendency to be easily determined as a state.
 これに対して、図20に示すスケーリング済み発汗量測定値Gtを用いて発汗量判定処理を行う場合、例えば、発汗量判定処理に用いる判定用閾値を0.2程度に設定した場合、大多数の被験者にタイムアウトに至らず、且つ、発汗量判定期間ΔTmjに突入した直後にスケーリング済み発汗量測定値Gtが判定用閾値(ここでは、0.2)を下回ることがないため、被験者が十分な吸引動作を経て実際にストレスが解消された状態でストレス解消完了通知が通知されることになる。すなわち、本実施形態におけるストレス度合い分析制御によれば、使用者毎に精神性発汗量の変動特性がばらついても、大多数の使用者がタイムアウトに至らず、且つ、実際にストレスが解消された状態でストレス解消完了通知を使用者に通知することができ、非常にユーザビリティが優れていることが判る。 On the other hand, when the perspiration amount determination process is performed using the scaled perspiration amount measurement value Gt shown in FIG. 20, for example, when the determination threshold used for the perspiration amount determination process is set to about 0.2, the majority Since the scaled sweat amount measurement value Gt does not fall below the determination threshold value (0.2 in this case) immediately after entering the sweat amount determination period ΔTmj, the subject has sufficient time. The stress relief completion notification is notified in a state where the stress is actually eliminated through the suction operation. That is, according to the stress level analysis control in the present embodiment, even if the fluctuation characteristics of mental sweating amount vary from user to user, the majority of users do not time out and the stress is actually eliminated. It can be seen that the user can be notified of the stress relief completion notification in a state, and the usability is very good.
 なお、実施形態3における吸引器1の制御部30は、制御部30がストレス度合い分析制御時に測定した使用者の精神性発汗量の測定値に基づいて、記憶部35に格納(記憶)されている発汗量最小値予測モデル351および発汗量最大値予測モデル352を更新する学習処理部を有していても良い。すなわち、学習処理部は、使用者が吸引器1を使用した際に得られた、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の測定値の推移と、メイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の測定値の最小値とを対応付けた発汗量最小値学習用データを教師データとする機械学習によって、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の推移とメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最小値との関連性を学習(訓練)することで、(1)式における重みaの係数を修正し、発汗量最小値予測モデル351を更新してもよい。 The control unit 30 of the aspirator 1 according to the third embodiment is stored (stored) in the storage unit 35 based on the measured value of the user's mental sweating amount measured by the control unit 30 during the stress degree analysis control. A learning processing unit that updates the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352 may be included. That is, the learning processing unit obtains the transition of the measured value of the mental sweating amount of the user during the prediction feature amount measurement period ΔTmp obtained when the user uses the aspirator 1 and the maximum main process continuation period ΔTmax. The amount of mental sweating of the user in the prediction feature amount measurement period ΔTmp is obtained by machine learning using the minimum sweating amount learning data associating with the minimum value of the measured value of the mental sweating amount of the user in The coefficient of the weight a i in the equation (1) is corrected by learning (training) the relationship between the transition of the value and the minimum value of the mental sweating amount of the user in the main processing continuation maximum period ΔTmax. The value prediction model 351 may be updated.
 同様に、学習処理部は、使用者が吸引器1を使用した際に得られた、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の測定値の推移と、メイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の測定値の最大値とを対応付けた発汗量最大値学習用データを教師データとする機械学習によって、予測用特徴量測定期間ΔTmpにおける使用者の精神性発汗量の推移とメイン処理継続最大期間ΔTmaxにおける使用者の精神性発汗量の最大値との関連性を学習(訓練)することで、(2)式における重みbの係数を修正し、発汗量最大値予測モデル352を更新してもよい。 Similarly, the learning processing unit changes the measured value of the mental sweating amount of the user in the prediction feature amount measurement period ΔTmp obtained when the user uses the aspirator 1 and the main processing continuation maximum period. By machine learning using, as teacher data, the maximum sweating amount learning data that associates the maximum value of the measured value of the mental sweating amount of the user at ΔTmax, the mental sweating of the user during the predictive feature amount measurement period ΔTmp By learning (training) the relationship between the transition of the amount and the maximum value of the mental sweating amount of the user in the main processing continuation maximum period ΔTmax, the coefficient of the weight b i in the formula (2) is corrected, and the sweating amount The maximum value prediction model 352 may be updated.
 また、記憶部35に格納されている発汗量最小値予測モデル351および発汗量最大値予測モデル352は、必ずしも機械学習によって構築(生成)された予測モデルである必要は無く、他の手法に基づいて構築された予測モデルであっても良い。 Further, the minimum sweating amount prediction model 351 and the maximum sweating amount prediction model 352 stored in the storage unit 35 are not necessarily prediction models constructed (generated) by machine learning, and are based on other methods. It is also possible to use a prediction model constructed in this way.
 また、実施形態3におけるストレス度合い分析制御のメイン処理(発汗状態判定制御)においては、発汗量判定期間ΔTmjにおいて測定した使用者の精神性発汗量の測定値(具体的には、補正済み発汗量測定値G)に対して、予測部50が予測した最小予測値Gpminを第1の値(上記の例では、“0”)とすると共に予測部50が予測した最大予測値Gpmaxを第2の値(上記の例では、“1”)としてmin-maxスケーリング処理を行うようにしたので、第1の値以上であって且つ第2の値以下の範囲内で判定用閾値を設定するようにしているが、これには限られない。 In the main process (sweating state determination control) of the stress level analysis control in the third embodiment, the measured value (specifically, the corrected sweating amount) of the user's mental sweating amount measured during the sweating amount determination period ΔTmj. With respect to the measurement value G), the minimum predicted value Gpmin predicted by the prediction unit 50 is set to the first value (in the above example, “0”), and the maximum predicted value Gpmax predicted by the prediction unit 50 is set to the second value. Since the min-max scaling process is performed with the value (in the above example, “1”), the determination threshold is set within the range of the first value or more and the second value or less. However, it is not limited to this.
 例えば、発汗量判定期間ΔTmjにおいて測定した使用者の精神性発汗量の測定値に対してmin-maxスケーリング処理を行わない場合、設定部36は、予測部50が予測した最小予測値Gpmin以上最大予測値Gpmax以下の範囲で判定用閾値を設定すればよい。この場合、精神性発汗量および判定用閾値の単位は特に限定されない。例えば、予測部50が予測した最小予測値Gpminが0.6[μS]であり、予測した最大予測値Gpmaxが2.5[μS]であった場合、発汗量判定処理に適用される判定用閾値を、0.6[μS]以上、2.5[μS]以下の範囲内で設定すればよい。例えば、判定用閾値を、最小予測値Gpminおよび最大予測値Gpmaxの平均値に設定しても良い。本実施形態におけるストレス度合い分析制御のメイン処理(発汗状態判定制御)によれば、予測部50が予測した最小予測値Gpmin以上最大予測値Gpmax以下の範囲で判定用閾値を設定するようにしたので、使用者毎による精神性発汗量の変動特性のばらつきの影響を大きく受けることなく判定用閾値を適正な値に設定することができる。 For example, when the min-max scaling process is not performed on the measured value of the user's mental sweating amount measured in the sweating amount determination period ΔTmj, the setting unit 36 sets the maximum predicted value Gpmin or more predicted by the prediction unit 50 to the maximum. What is necessary is just to set the threshold value for determination in the range below the predicted value Gpmax. In this case, the units of the mental sweating amount and the determination threshold value are not particularly limited. For example, when the minimum predicted value Gpmin predicted by the prediction unit 50 is 0.6 [μS] and the predicted maximum predicted value Gpmax is 2.5 [μS], the determination is applied to the sweating amount determination process. The threshold value may be set within a range of 0.6 [μS] to 2.5 [μS]. For example, the determination threshold value may be set to an average value of the minimum predicted value Gpmin and the maximum predicted value Gpmax. According to the main process (sweat state determination control) of the stress degree analysis control in this embodiment, the determination threshold is set in the range between the minimum predicted value Gpmin and the maximum predicted value Gpmax predicted by the prediction unit 50. Therefore, the threshold value for determination can be set to an appropriate value without being greatly affected by the variation in fluctuation characteristics of the mental sweating amount for each user.
 以上のように、本実施形態におけるメイン処理(発汗状態判定制御)においては、メイン処理継続最大期間ΔTmax(判定対象期間)の全期間内における使用者の精神性発汗量の変動範囲(最小予測値Gpmin~最大予測値Gpmax)を、発汗量判定処理が開始される前に予測部50がmin-max予測処理を実行することで予測することができる。すなわち、メイン処理継続最大期間ΔTmax(判定対象期間)よりも短い予測用特徴量測定期間ΔTmpにおいて継続的に測定した使用者の精神性発汗量と各予測モデル351,352に基づいて、予測用特徴量測定期間ΔTmp以降における将来的な精神性発汗量の変動範囲を好適に予測することができる。そのため、使用者の精神性発汗状態を判定するための判定用閾値を適正な大きさに設定することができる。 As described above, in the main process (sweat state determination control) in the present embodiment, the fluctuation range (minimum predicted value) of the user's mental sweat amount within the entire main process continuation maximum period ΔTmax (determination target period). Gpmin to maximum predicted value Gpmax) can be predicted by the prediction unit 50 executing the min-max prediction process before the sweating amount determination process is started. That is, based on the user's mental sweating amount continuously measured in the prediction feature amount measurement period ΔTmp shorter than the main processing continuation maximum period ΔTmax (determination target period) and the prediction models 351 and 352, the prediction feature It is possible to suitably predict the future fluctuation range of the amount of mental sweating after the amount measurement period ΔTmp. Therefore, the threshold for determination for determining the mental sweating state of the user can be set to an appropriate size.
 更に、本実施形態に係るストレス度合い分析制御のメイン処理(発汗状態判定制御)によれば、発汗量判定期間ΔTmjにおいて測定した使用者の精神性発汗量の測定値に対してmin-maxスケーリング処理をするようにしたので、使用者毎による精神性発汗量の変動特性のばらつきの影響をより一層小さくすることができ、ユーザビリティの優れた吸引器1を提供することができる。 Furthermore, according to the main processing (sweating state determination control) of the stress level analysis control according to the present embodiment, the min-max scaling process is performed on the measured value of the mental sweating amount of the user measured in the sweating amount determination period ΔTmj. Therefore, it is possible to further reduce the influence of variation in fluctuation characteristics of mental sweating amount for each user, and to provide the aspirator 1 with excellent usability.
 なお、本実施形態に係るストレス度合い分析制御の発汗量判定処理において、min-maxスケーリング処理を行う際、予測部50が予測した最小予測値Gpminを第1の値の例示として0に設定し、最大予測値Gpmaxを第2の値の例示として1に設定する場合を説明したが、第1の値と第2の値の組み合わせは特定の値に限定されない。 In the perspiration amount determination process of the stress level analysis control according to the present embodiment, when performing the min-max scaling process, the minimum predicted value Gpmin predicted by the prediction unit 50 is set to 0 as an example of the first value, Although the case where the maximum predicted value Gpmax is set to 1 as an example of the second value has been described, the combination of the first value and the second value is not limited to a specific value.
 また、実施形態3においては、発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部を備えた本発明に係る発汗状態判定装置を吸引器1に実装する適用例を説明したが、本発明に係る発汗状態判定装置の適用対象は吸引器1に限られない。例えば、本実施形態におけるメイン処理(発汗状態判定制御)を実行する制御部30を有する発汗状態判定装置を健康器具に適用しても良いし、嘘発見器に適用しても良い。以下、実施形態3に係る発汗状態判定装置を吸引器以外に適用する変形例について説明する。 In the third embodiment, the mental sweating amount of the user is continuously measured over a predetermined determination target period based on the output value of the sweating amount measurement electrode, and the measured mental sweating amount is determined. An application example has been described in which the perspiration state determination device according to the present invention including the control unit that executes the perspiration state determination control for determining the mental perspiration state of the user based on the comparison result with the threshold is mounted on the aspirator 1. However, the application target of the sweating state determination device according to the present invention is not limited to the aspirator 1. For example, the sweating state determination device having the control unit 30 that executes the main processing (sweat state determination control) in the present embodiment may be applied to a health device or a lie detector. Hereinafter, a modified example in which the perspiration state determination device according to the third embodiment is applied to devices other than the aspirator will be described.
<実施形態3の変形例1>
 変形例1では、実施形態3で説明した発汗状態判定装置を、健康器具の一例であるマッサージ機に適用する場合を説明する。なお、上述までの実施形態と共通する構成については、同じ参照符号を付すことで詳しい説明を割愛する。
<Modification 1 of Embodiment 3>
In the first modification, a case where the sweating state determination device described in the third embodiment is applied to a massage machine that is an example of a health device will be described. In addition, about the structure which is common in the above-mentioned embodiment, detailed description is omitted by attaching | subjecting the same referential mark.
 図22は、実施形態3の変形例1に係るマッサージ機50を示す図である。マッサージ機は、背中マッサージユニット51、シート部52、シート部52の前方に設けられた脚支持部53、シート部52の後方から立設された背もたれ54等を有している。背中マッサージユニット51は、背もたれ54に設けられており、公知の構造を採用することができる。例えば、背中マッサージユニット51は、使用者の肩、背中および腰に対してマッサージを施す施療子510を有しており、背もたれ54に沿って昇降可能に配設されている。 FIG. 22 is a view showing a massage machine 50 according to the first modification of the third embodiment. The massage machine includes a back massage unit 51, a seat portion 52, a leg support portion 53 provided in front of the seat portion 52, a backrest 54 erected from the rear of the seat portion 52, and the like. The back massage unit 51 is provided on the backrest 54, and a known structure can be adopted. For example, the back massage unit 51 includes a treatment element 510 that massages the shoulder, back, and waist of the user, and is disposed so as to be able to be lifted and lowered along the backrest 54.
 マッサージ機50のアームレスト55は収納ポケット56を有し、収納ポケット56の中にリモートコントーローラ60が収納されている。収納ポケット56は、ベルト57等によってアームレスト55に留められている。 The armrest 55 of the massage machine 50 has a storage pocket 56, and the remote controller 60 is stored in the storage pocket 56. The storage pocket 56 is fastened to the armrest 55 by a belt 57 or the like.
 図23は、実施形態3の変形例1に係る発汗状態判定装置を兼ねるリモートコントーローラ60の概略図である。符号61はリモートコントーローラ60の筐体である。図23に示す符号62は操作ボタンであり、符号63は液晶ディスプレイ63である。操作ボタン62は、使用者による操作を受け付けることで、背中マッサージユニット51が作動したり、実施形態3で説明したストレス度合い分析制御が行われる。また、図23に示すように、リモートコントーローラ60の筐体61には、精神性発汗量測定用電極26,27が外部に露出した状態で配置されている。図23に示す例では、精神性発汗量測定用電極26が筐体61の側面上部に配置され、精神性発汗量測定用電極27が筐体61の正面に配置されている。また、筐体61には、実施形態3と同様な電子基板21、電池等が収容されている。 FIG. 23 is a schematic diagram of a remote controller 60 that also serves as a sweating state determination device according to Modification 1 of Embodiment 3. Reference numeral 61 denotes a casing of the remote controller 60. Reference numeral 62 shown in FIG. 23 is an operation button, and reference numeral 63 is a liquid crystal display 63. The operation button 62 receives the operation by the user, so that the back massage unit 51 is activated or the stress degree analysis control described in the third embodiment is performed. Further, as shown in FIG. 23, mental sweating measurement electrodes 26 and 27 are arranged on the casing 61 of the remote controller 60 so as to be exposed to the outside. In the example shown in FIG. 23, the mental sweating amount measuring electrode 26 is disposed on the upper side of the housing 61, and the mental sweating amount measuring electrode 27 is disposed on the front surface of the housing 61. The housing 61 accommodates the same electronic substrate 21, battery, and the like as in the third embodiment.
 図24は、実施形態3の変形例1に係るリモートコントーローラ60のブロック図である。リモートコントーローラ60の電子基板21には、リモートコントーローラ60を制御する制御ユニットである制御部30が実装されている。リモートコントーローラ60の電子基板21は、図16に示される実施形態3に係る電子基板21と同様な機能を有している。図24に示されるように、リモートコントーローラ60は、実施形態3と同様、電源23、振動モータ41、発光素子43等(図23において図示を省略)を有している。 FIG. 24 is a block diagram of a remote controller 60 according to the first modification of the third embodiment. A control unit 30, which is a control unit that controls the remote controller 60, is mounted on the electronic board 21 of the remote controller 60. The electronic board 21 of the remote controller 60 has the same function as the electronic board 21 according to the third embodiment shown in FIG. As shown in FIG. 24, the remote controller 60 includes a power source 23, a vibration motor 41, a light emitting element 43, and the like (not shown in FIG. 23) as in the third embodiment.
 本変形例に係るマッサージ機50は、マッサージ機50を使用する使用者が、リモートコントーローラ60を把持した状態で生理量計測を行うことができるようになっており、生理量計測を行う際に制御部30は実施形態3で説明したストレス度合い分析制御を実行する。なお、リモートコントーローラ60は、使用者の精神性発汗量を測定する他、使用者の他の生体量を測定しても良い。例えば、リモートコントーローラ60の筐体61に、使用者の皮膚温度を測定するためのサーミスタや、心電位計測用電極等をそれぞれ外部に露出する態様で配置し、使用者の皮膚温度や平均心拍数等を測定しても良い。 The massage machine 50 according to this modification is configured so that a user using the massage machine 50 can perform physiological measurement while holding the remote controller 60. In addition, the control unit 30 executes the stress level analysis control described in the third embodiment. Note that the remote controller 60 may measure the amount of mental sweating of the user as well as other biological amounts of the user. For example, a thermistor for measuring the user's skin temperature, an electrocardiographic electrode, etc. are arranged on the casing 61 of the remote controller 60 so as to be exposed to the outside. You may measure heart rate etc.
 図25は、使用者が両手で変形例1に係るリモートコントーローラ60を把持した状態を示す図である。図25に示す例では、左手の人差し指を精神性発汗量測定用電極26に当て、親指を精神性発汗量測定用電極27に当てた状態で、使用者がリモートコントーローラ60を把持している。但し、精神性発汗量測定用電極26,27を配置する位置を適宜変更して、使用者がリモートコントーローラ60を把持した際に、上記例とは異なる指に精神性発汗量測定用電極26,27を触れさせるようにしても良い。 FIG. 25 is a diagram illustrating a state in which the user holds the remote controller 60 according to the first modification with both hands. In the example shown in FIG. 25, the user holds the remote controller 60 with the index finger of the left hand applied to the mental sweating measurement electrode 26 and the thumb applied to the mental sweating measurement electrode 27. Yes. However, when the position where the electrodes 26 and 27 for mental sweating measurement are arranged is appropriately changed and the user grips the remote controller 60, the electrode for mental sweating measurement is applied to a finger different from the above example. You may make it touch 26,27.
 変形例1に係るリモートコントーローラ60は、実施形態3で説明したストレス度合い分析制御を実行する発汗状態判定装置として機能する。ストレス度合い分析制御の内容は、実施形態3で説明したものと基本的に同様であり、パワーオン処理、メイン処理を含む。例えば、リモートコントーローラ60の制御部30は、使用者による操作ボタン62の操作を受け付けることを契機にストレス度合い分析制御のパワーオン処理を開始する。そして、パワーオン処理が終了すると、制御部30は、メイン処理の実行を開始する。制御部30はメイン処理において、図18で説明したように予測用特徴量測定処理、min-max予測処理、発汗量判定処理を順次行う。 The remote controller 60 according to Modification 1 functions as a sweating state determination device that executes the stress level analysis control described in the third embodiment. The content of the stress degree analysis control is basically the same as that described in the third embodiment, and includes a power-on process and a main process. For example, the control unit 30 of the remote controller 60 starts the power-on process of the stress degree analysis control when receiving the operation of the operation button 62 by the user. When the power-on process ends, the control unit 30 starts executing the main process. In the main process, the control unit 30 sequentially performs a prediction feature quantity measurement process, a min-max prediction process, and a sweating amount determination process as described with reference to FIG.
 なお、変形例1におけるリモートコントーローラ60は、図1に示すような吸引器1と異なり吸い口11を有していないため、メイン処理において使用者が吸引状態であるか否かの判定を行わない。すなわち、メイン処理の予測用特徴量測定処理において、所定のサンプリング周期毎に使用者の精神性発汗量Qsを測定し、当該測定値をパワーオン処理時に取得した初期基準発汗量G#maxによって割る演算処理を行うことで「補正済み発汗量測定値G」(G=Qs/G#max)を算出する。そして、算出した補正処理済み発汗量測定値Gを、メイン処理開始時からの経過時間Tiに対応付けた発汗量測定データDgを記憶部35に記憶させる。勿論、実施形態3で説明したように、使用者の精神性発汗量Qsの測定値の時系列データを平滑化するために、精神性発汗量Qsの測定値に対して移動平均処理を施し、移動平均処理後の精神性発汗量Qsを初期基準発汗量G#maxによって割る演算処理を行うことで補正済み発汗量測定値Gを求めてもよい。 Since the remote controller 60 in the modified example 1 does not have the suction mouth 11 unlike the suction device 1 as shown in FIG. 1, it is determined whether or not the user is in the suction state in the main process. Not performed. That is, in the predictive feature amount measurement process of the main process, the mental sweating amount Qs of the user is measured every predetermined sampling period, and the measured value is divided by the initial reference sweating amount G # max acquired during the power-on process. The “corrected sweat amount measurement value G” (G = Qs / G # max) is calculated by performing the calculation process. Then, the sweating amount measurement data Dg in which the calculated corrected sweating measurement value G is associated with the elapsed time Ti from the start of the main processing is stored in the storage unit 35. Of course, as described in the third embodiment, in order to smooth the time-series data of the measured value of the mental sweating amount Qs of the user, the moving average process is performed on the measured value of the mental sweating amount Qs, The corrected perspiration amount measurement value G may be obtained by performing a calculation process of dividing the mental perspiration amount Qs after the moving average processing by the initial reference perspiration amount G # max.
 min-max予測処理については、実施形態3で説明した通りであり、予測用特徴量測定処理において取得した補正済み発汗量測定値Gの推移と、発汗量最小値予測モデル351および発汗量最大値予測モデル352に基づいて、メイン処理継続最大期間ΔTmaxにおいて使用者の精神性発汗量が最小となる最小予測値Gpminと最大となる最大予測値Gpmaxを推定(予測)する。 The min-max prediction process is as described in the third embodiment, and the transition of the corrected perspiration amount measurement value G acquired in the prediction feature amount measurement process, the perspiration amount minimum value prediction model 351, and the perspiration amount maximum value. Based on the prediction model 352, the minimum predicted value Gpmin that minimizes the user's mental sweating amount and the maximum predicted value Gpmax that is maximum are estimated (predicted) during the main processing continuation maximum period ΔTmax.
 min-max予測処理に続いて実行される発汗量判定処理についても実施形態3で説明した通りであり、発汗量判定期間ΔTmjにおける所定のサンプリング周期毎に取得されるスケーリング済み発汗量測定値Gtiを、その都度、判定用閾値と対比し、スケーリング済み発汗量測定値Gtiが判定用閾値未満であるか否かを判定する。そして、スケーリング済み発汗量測定値Gtiが判定用閾値未満になったことが確認された時点でメイン処理を終了すると共に、ストレス解消完了通知を使用者に通知(報知)すると共に上述した覚醒処理を行う。なお、覚醒処理については、必ずしも実行する必要は無く、省略しても良い。 The sweating amount determination process executed subsequent to the min-max prediction process is also as described in the third embodiment, and the scaled sweating amount measurement value Gti acquired every predetermined sampling period in the sweating amount determination period ΔTmj is used. In each case, it is compared with the determination threshold value to determine whether or not the scaled perspiration measurement value Gti is less than the determination threshold value. Then, at the time when it is confirmed that the scaled sweat amount measurement value Gti is less than the determination threshold, the main process is finished, the stress release completion notice is notified (notified) to the user, and the awakening process described above is performed. Do. Note that the awakening process is not necessarily executed and may be omitted.
 一方、発汗量判定処理において、スケーリング済み発汗量測定値Gtiが判定用閾値まで低下していなくてもタイムアウトした場合には、制御部30はメイン処理を強制的に終了させる。なお、発汗量判定処理においても、本変形例におけるリモートコントーローラ60は吸い口を有していないため、所定のサンプリング周期毎に測定した使用者の精神性発汗量に対してmin-maxスケーリング処理を施すことで取得したスケーリング済み発汗量測定値Gtiを判定用閾値と対比することで、使用者が十分にリラックスした状態かどうかを判定する。 On the other hand, in the perspiration amount determination process, when the scaled perspiration amount measurement value Gti has not fallen to the determination threshold value and timed out, the control unit 30 forcibly ends the main process. Even in the sweating amount determination process, the remote controller 60 in the present modification does not have a mouthpiece, so that min-max scaling is performed with respect to the mental sweating amount of the user measured every predetermined sampling period. It is determined whether or not the user is sufficiently relaxed by comparing the scaled perspiration measurement value Gti acquired by performing the processing with the threshold for determination.
 本変形例におけるリモートコントーローラ60は、マッサージ機50を使用中における使用者の精神性発汗量を継続的に測定し、使用者の発汗状態を適正に判定することができる。なお、マッサージ機50を使用する使用者は、背中マッサージユニット51によってマッサージを施されることで徐々にリラックスすることで、精神性発汗量も経時的に徐々に低下すると考えられる。本発明における発汗状態判定装置を、このような健康器具に適用することで、使用者のストレス度合い(リラックス度合い)を好適に判定することができる。 The remote controller 60 in this modification can continuously measure the amount of mental sweating of the user while using the massage machine 50, and can appropriately determine the state of sweating of the user. In addition, it is thought that the user who uses the massage machine 50 is gradually relaxed by being massaged by the back massage unit 51, and the amount of mental sweating is also gradually reduced over time. By applying the sweating state determination apparatus according to the present invention to such a health appliance, the user's stress level (relaxation level) can be determined appropriately.
<実施形態3の変形例2>
 次に、実施形態3の変形例2について説明する。本発明における発汗状態判定装置の適用例は、変形例1で説明したマッサージ機50に限られず、図26および図27に示すような携帯型検査端末(所謂ウェアラブル検査端末)に適用しても良い。図26に示す携帯型検査端末70は、例えば、使用者の手に装着する手袋(グローブ)型のウェアラブル検査端末であり、本発明に係る発汗状態判定装置に相当する。図26および図27に示す携帯型検査端末70は、使用者の右手に装着する仕様となっている。図26は、携帯型検査端末70を装着する使用者の手の甲を主として覆う上面70aを示している。図27は、携帯型検査端末70の掌側を主として覆う下面70bを示している。ここで、符号711~715は、使用者の各指を覆う親指掌被覆部、人差し指被覆部、中指被覆部、薬指被覆部、小指被覆部である。
<Modification 2 of Embodiment 3>
Next, a second modification of the third embodiment will be described. The application example of the sweating state determination device in the present invention is not limited to the massage machine 50 described in the first modification, and may be applied to a portable inspection terminal (so-called wearable inspection terminal) as shown in FIGS. . A portable inspection terminal 70 shown in FIG. 26 is, for example, a glove-type wearable inspection terminal worn on a user's hand, and corresponds to a sweating state determination device according to the present invention. The portable inspection terminal 70 shown in FIGS. 26 and 27 is designed to be worn on the right hand of the user. FIG. 26 shows an upper surface 70 a that mainly covers the back of the hand of the user wearing the portable inspection terminal 70. FIG. 27 shows a lower surface 70 b that mainly covers the palm side of the portable inspection terminal 70. Here, reference numerals 711 to 715 denote a thumb palm covering portion, an index finger covering portion, a middle finger covering portion, a ring finger covering portion, and a little finger covering portion covering each finger of the user.
 本変形例における携帯型検査端末70は、精神性発汗量測定用電極26,27を備えている。図26および図27に示すように、本変形例では、携帯型検査端末70における人差し指被覆部712に精神性発汗量測定用電極26が配置され、薬指被覆部714に精神性発汗量測定用電極27が配置されている。図28は、携帯型検査端末70における人差し指被覆部712、薬指被覆部714の内部構造を示す概略図である。図28に示す符号70cは、携帯型検査端末70を使用者が装着する際に手を収容するための空間である収容部を示している。図28に示す符号712aは、携帯型検査端末70を装着する使用者における人差し指の腹を被覆する人差し指腹被覆面である。符号714aは、携帯型検査端末70を装着する使用者における薬指の腹を被覆する薬指腹被覆面である。精神性発汗量測定用電極26は、人差し指被覆部712における収容部70c内を臨むように人差し指腹被覆面712aに配置されており、使用者が携帯型検査端末70を装着した際に使用者の人差し指の腹が精神性発汗量測定用電極26と接触するようになっている。また、精神性発汗量測定用電極27は、薬指被覆部714における収容部70c内を臨むように薬指腹被覆面714aに配置されており、使用者が携帯型検査端末70を装着した際に使用者の薬指の腹が精神性発汗量測定用電極27と接触するようになっている。但し、精神性発汗量測定用電極26,27は、上述の例とは異なる指被覆部に配置されていても良い。また、携帯型検査端末70における各指被覆部711~715ではなく、携帯型検査端末70を装着する使用者の掌に接触する位置に精神性発汗量測定用電極26,27を配置しても良い。また、図26に示すように、携帯型検査端末70の上面70aには、制御部30を有する電子基板21等を収容するコントローラボックス72が設置されている。コントローラボックス72には、携帯型検査端末70を操作するための操作ボタン73や発光素子43等が配置されている。 The portable inspection terminal 70 in this modification includes the electrodes 26 and 27 for mental sweating measurement. As shown in FIGS. 26 and 27, in this modification, the electrode for mental sweating measurement 26 is arranged on the index finger covering part 712 in the portable inspection terminal 70, and the electrode for mental sweating measurement on the ring finger covering part 714. 27 is arranged. FIG. 28 is a schematic diagram showing the internal structure of the index finger covering part 712 and ring finger covering part 714 in the portable inspection terminal 70. Reference numeral 70 c shown in FIG. 28 indicates an accommodating portion that is a space for accommodating a hand when the user wears the portable inspection terminal 70. A reference numeral 712a illustrated in FIG. 28 is an index finger pad covering surface of the index finger of a user who wears the portable inspection terminal 70. Reference numeral 714a denotes a ring finger covering surface that covers the belly of the ring finger of the user wearing the portable inspection terminal 70. The electrode 26 for measuring the amount of mental sweating is disposed on the index finger pad covering surface 712a so as to face the accommodating portion 70c of the index finger covering portion 712, and when the user wears the portable inspection terminal 70, The belly of the index finger comes into contact with the electrode 26 for measuring the amount of mental sweating. The mental sweating amount measuring electrode 27 is disposed on the ring finger pad covering surface 714a so as to face the housing portion 70c of the ring finger covering portion 714, and is used when the user wears the portable inspection terminal 70. The belly of the person's ring finger is in contact with the electrode 27 for measuring the amount of mental sweating. However, the electrodes 26 and 27 for measuring the amount of mental sweating may be arranged on a finger covering portion different from the above example. Further, the mental sweating amount measuring electrodes 26 and 27 may be arranged not at the finger covering portions 711 to 715 in the portable inspection terminal 70 but at positions where they contact the palm of the user wearing the portable inspection terminal 70. good. As shown in FIG. 26, a controller box 72 that houses the electronic board 21 having the control unit 30 and the like is installed on the upper surface 70 a of the portable inspection terminal 70. In the controller box 72, an operation button 73 for operating the portable inspection terminal 70, the light emitting element 43, and the like are arranged.
 図29は、実施形態3の変形例2に係る携帯型検査端末70のブロック図である。上述までの実施形態と共通する構成については、同じ参照符号を付すことで詳しい説明を割愛する。変形例2に係る携帯型検査端末70は、本発明における発汗状態判定装置として機能し、変形例1と同様、制御部30がストレス度合い分析制御を実行する。 FIG. 29 is a block diagram of a portable inspection terminal 70 according to the second modification of the third embodiment. About the structure which is common in the above-mentioned embodiment, detailed description is omitted by attaching the same reference numerals. The portable inspection terminal 70 according to Modification 2 functions as a sweating state determination device according to the present invention, and the control unit 30 executes stress degree analysis control as in Modification 1.
 携帯型検査端末70は、使用者(装着者)による操作ボタン73に対する操作を受け付けることを契機に制御部30はストレス度合い分析制御のパワーオン処理を開始しても良い。その他、制御部30が実行するストレス度合い分析制御は、変形例1と同様であるため詳しい説明を省略する。本変形例における携帯型検査端末70によれば、使用者の精神性発汗量を継続的に測定し、使用者がリラックスしているか、或いは緊張しているかの度合いを好適に判定することができる。 When the portable inspection terminal 70 receives an operation on the operation button 73 by the user (wearer), the control unit 30 may start the power-on process of the stress degree analysis control. In addition, since the stress degree analysis control executed by the control unit 30 is the same as that in the first modification, detailed description thereof is omitted. According to the portable inspection terminal 70 in the present modification, the user's mental sweating amount can be continuously measured, and the degree of whether the user is relaxed or nervous can be suitably determined. .
 なお、携帯型検査端末70は、使用者の生体量を測定する各種のセンサを備えていても良い。例えば、携帯型検査端末70は、脈拍センサ、皮膚温度センサ、圧力センサ等を備えていても良い。そして、脈拍センサによって使用者の脈拍(心拍数)を測定し、皮膚温度センサによって使用者の皮膚温度(体温)を測定し、圧力センサによって使用者の血圧を測定してもよい。また、携帯型検査端末70は、外部装置(例えば、他の端末装置)に、使用者の生体量に関する生体情報を送信するための無線通信部を備えていても良い。 Note that the portable inspection terminal 70 may include various sensors that measure the biological amount of the user. For example, the portable inspection terminal 70 may include a pulse sensor, a skin temperature sensor, a pressure sensor, and the like. And a user's pulse (heart rate) may be measured with a pulse sensor, a user's skin temperature (body temperature) may be measured with a skin temperature sensor, and a user's blood pressure may be measured with a pressure sensor. Moreover, the portable test | inspection terminal 70 may be provided with the radio | wireless communication part for transmitting the biometric information regarding a user's biometric quantity to an external device (for example, other terminal device).
 また、上記の各処理を実行するためのプログラムは、コンピュータ読み取り可能な記録媒体に記録されていても良い。当該プログラムが記録された記録媒体については、コンピュータに、この記録媒体のプログラムを読み込ませて実行させることにより、上述の処理が可能となる。 Further, the program for executing each of the above processes may be recorded on a computer-readable recording medium. With respect to the recording medium on which the program is recorded, the above-described processing can be performed by causing the computer to read and execute the program on the recording medium.
 ここで、コンピュータ読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、又は化学的作用によって蓄積し、コンピュータから読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータから取り外し可能なものとしては、フレキシブルディスク、光磁気ディスク、光ディスク、磁気テープ、メモリカード等がある。また、コンピュータに固定された記録媒体としては、ハードディスクドライブやROM等がある。 Here, the computer-readable recording medium refers to a recording medium in which information such as data and programs is accumulated by electrical, magnetic, optical, mechanical, or chemical action and can be read from the computer. Examples of such a recording medium that can be removed from the computer include a flexible disk, a magneto-optical disk, an optical disk, a magnetic tape, and a memory card. In addition, examples of the recording medium fixed to the computer include a hard disk drive and a ROM.
 また、上述までの実施形態に係る吸引器が行う各処理を実行するためのプログラムを記憶するメモリおよびメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップが提供されても良い。 Further, a chip configured by a memory that stores a program for executing each process performed by the suction device according to the above-described embodiments and a processor that executes the program stored in the memory may be provided.
 以上、本発明を上述した実施形態および変形例によって説明したが、本発明は上記実施形態に限定されるものではなく、種々の代替実施形態を採用することができる。例えば、吸引器は、電源スイッチ部32のオン、オフを切り替えるための使用者の操作を受け付け可能な押しボタン等のハードスイッチを備えていても良い。また、上述した各実施形態および変形例は適宜組み合わせて実施することができる。 As mentioned above, although the present invention has been described by using the above-described embodiments and modifications, the present invention is not limited to the above-described embodiments, and various alternative embodiments can be adopted. For example, the suction device may include a hard switch such as a push button that can accept a user operation for switching the power switch unit 32 on and off. Moreover, each embodiment and modification which were mentioned above can be implemented combining suitably.
1・・・吸引器
10・・・吸い口ユニット
11・・・吸い口
12・・・吸い口受け
13・・・木製筐体
20・・・制御ユニット
21・・・電子基板
23・・・電源
24・・・固定ユニット
26,27・・・精神性発汗量測定用電極
30・・・制御部
31・・・気圧取得部
32・・・電源スイッチ部
33・・・発汗量測定部
34・・・モータ制御部
35・・・記憶部
36・・・設定部
37・・・発光制御部
38・・・判定部
39・・・計時部
40・・・気圧センサ
41・・・振動モータ
43・・・発光素子
DESCRIPTION OF SYMBOLS 1 ... Suction device 10 ... Suction unit 11 ... Suction port 12 ... Suction receptacle 13 ... Wooden housing 20 ... Control unit 21 ... Electronic board 23 ... Power supply 24 ... Fixing units 26, 27 ... Mental sweat amount measurement electrode 30 ... Control unit 31 ... Air pressure acquisition unit 32 ... Power switch unit 33 ... Sweat amount measurement unit 34 ...・ Motor control unit 35... Storage unit 36... Setting unit 37 .. light emission control unit 38 .. determination unit 39.・ Light emitting element

Claims (12)

  1.  使用者の精神性発汗量を測定するための発汗量測定用電極と、
     前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、
     を備え、
     前記制御部は、
     前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部と、
     前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測する予測部と、
     前記判定用閾値を、前記予測部が予測した前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で設定する設定部と、
     を有する、
     発汗状態判定装置。
    An electrode for measuring the amount of sweat for measuring the amount of mental sweat of the user;
    The mental sweating amount of the user is continuously measured over a predetermined determination target period based on the output value of the sweating amount measuring electrode, and based on the comparison result between the measured mental sweating amount and the determination threshold value. A control unit for performing sweating state determination control for determining a mental sweating state of the user,
    With
    The controller is
    Relationship between the transition of the user's mental sweating amount that changes over time in the predetermined prediction feature amount measurement period shorter than the determination target period and the minimum value of the user's mental sweating amount in the determination target period A model for predicting the minimum amount of sweating that expresses gender, the transition of the amount of mental sweating of the user that changes over time in the characteristic measurement period for prediction, and the maximum value of the amount of mental sweating of the user in the determination target period A storage unit for storing a sweating amount maximum value prediction model representing the relationship between
    The determination is performed by applying the measured value of the mental sweating amount in the user measured in the prediction feature amount measurement period as the feature amount to the minimum sweating amount prediction model and the maximum sweating amount prediction model, respectively. A prediction unit for predicting the minimum and maximum values of the mental sweating amount of the user during the target period,
    The threshold for determination is equal to or more than a minimum predicted value that is a minimum value of the mental sweating amount of the user in the determination target period predicted by the prediction unit, and the mental sweating amount of the user in the determination target period A setting unit that is set within the range of the maximum predicted value that is the maximum value,
    Having
    Sweat condition determination device.
  2.  前記発汗量最小値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の測定値の最小値とを対応付けた複数の発汗量最小値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最小値との関連性を学習済みの予測モデルであって、
     前記発汗量最大値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の最大値とを対応付けた複数の発汗量最大値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を学習済みの予測モデルである、
     請求項1に記載の発汗状態判定装置。
    The minimum sweating amount prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the mental sweating amount of the user during the predictive feature amount measurement period by machine learning using a plurality of sweating amount learning value learning data that is associated with the minimum value of the measured value of the spontaneous sweating amount as teacher data A prediction model that has learned the relationship with the minimum value of the mental sweating amount of the user in the determination target period,
    The sweating amount maximum value prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the user's mental sweating amount during the prediction feature amount measurement period and the determination target by machine learning using a plurality of sweating amount maximum value learning data associating with the maximum value of the spontaneous sweating amount It is a predictive model that has learned the relationship with the maximum value of the user's mental sweating during the period,
    The sweating state determination device according to claim 1.
  3.  前記予測部は、前記メイン処理の開始時から前記予測用特徴量測定期間が経過した時点で、前記記憶部に格納された前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測する、請求項1又は2に記載の発汗状態判定装置。 The prediction unit is based on the minimum sweating amount prediction model and the maximum sweating amount prediction model stored in the storage unit when the prediction feature amount measurement period has elapsed from the start of the main processing. The perspiration state determination device according to claim 1, wherein the minimum predicted value and the maximum predicted value are respectively predicted.
  4.  前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行う処理部を更に備え、
     前記設定部は、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定する、
     請求項1から3の何れか一項に記載の発汗状態判定装置。
    The control unit measures the measured value of the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the sweating amount minimum value prediction model, and the Using the minimum predicted value and the maximum predicted value respectively predicted based on the sweating amount maximum value prediction model, the minimum predicted value is set as a first value and the maximum predicted value is set to be higher than the first value. A processing unit that performs a scaling process as the second large value;
    The setting unit sets the threshold value for determination as a fixed value that is greater than or equal to the first value and less than or equal to the second value;
    The perspiration state determination device according to any one of claims 1 to 3.
  5.  使用者の精神性発汗量を測定するための発汗量測定用電極と、前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、を備える発汗状態判定装置の制御方法であって、
     前記制御部は、
     前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部を有し、
     前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測し、当該予測した前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で前記判定用閾値を設定する、
     発汗状態判定装置の制御方法。
    A sweat amount measurement electrode for measuring the user's mental sweat amount, and the user's mental sweat amount based on the output value of the sweat amount measurement electrode is continuously measured over a predetermined determination target period. A control method for a sweating state determination apparatus, comprising: a control unit that performs measurement and performs a sweating state determination control that determines a mental sweating state of a user based on a comparison result between a measured amount of mental sweating and a determination threshold value Because
    The controller is
    Relationship between the transition of the user's mental sweating amount that changes over time in the predetermined prediction feature amount measurement period shorter than the determination target period and the minimum value of the user's mental sweating amount in the determination target period A model for predicting the minimum amount of sweating that expresses gender, the transition of the amount of mental sweating of the user that changes over time in the characteristic measurement period for prediction, and the maximum value of the amount of mental sweating of the user in the determination target period A sweating volume maximum value prediction model representing the relationship between
    The determination is performed by applying the measured value of the mental sweating amount in the user measured in the prediction feature amount measurement period as the feature amount to the minimum sweating amount prediction model and the maximum sweating amount prediction model, respectively. Predicting the minimum value and the maximum value of the mental sweating amount of the user in the target period, respectively, which is equal to or more than the minimum predicted value that is the minimum value of the mental sweating amount of the user in the predicted determination target period, and Setting the threshold for determination within a range of a maximum predicted value that is the maximum value of the mental sweating amount of the user in the determination target period,
    A control method of the sweating state determination device.
  6.  前記発汗量最小値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の測定値の最小値とを対応付けた複数の発汗量最小値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最小値との関連性を学習済みの予測モデルであって、
     前記発汗量最大値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の最大値とを対応付けた複数の発汗量最大値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を学習済みの予測モデルである、
     請求項5に記載の発汗状態判定装置の制御方法。
    The minimum sweating amount prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the mental sweating amount of the user during the predictive feature amount measurement period by machine learning using a plurality of sweating amount learning value learning data that is associated with the minimum value of the measured value of the spontaneous sweating amount as teacher data A prediction model that has learned the relationship with the minimum value of the mental sweating amount of the user in the determination target period,
    The sweating amount maximum value prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the user's mental sweating amount during the prediction feature amount measurement period and the determination target by machine learning using a plurality of sweating amount maximum value learning data associating with the maximum value of the spontaneous sweating amount It is a predictive model that has learned the relationship with the maximum value of the user's mental sweating during the period,
    The control method of the perspiration state determination apparatus according to claim 5.
  7.  前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点で、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測する、
     請求項5又は6に記載の発汗状態判定装置の制御方法。
    The control unit, when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, based on the minimum sweating value prediction model and the minimum sweating amount prediction model, the minimum prediction value And predicting the maximum predicted value respectively.
    The control method of the perspiration state determination apparatus according to claim 5 or 6.
  8.  前記制御部は、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行い、且つ、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定する、
     請求項5から7の何れか一項に記載の発汗状態判定装置の制御方法。
    The control unit measures the measured value of the mental sweating amount of the user measured after the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the sweating amount minimum value prediction model, and the Using the minimum predicted value and the maximum predicted value respectively predicted based on the sweating amount maximum value prediction model, the minimum predicted value is set as a first value and the maximum predicted value is set to be higher than the first value. Performing a scaling process as a large second value, and setting the threshold for determination as a fixed value that is greater than or equal to the first value and less than or equal to the second value;
    The control method of the perspiration state determination apparatus as described in any one of Claims 5-7.
  9.  使用者の精神性発汗量を測定するための発汗量測定用電極と、前記発汗量測定用電極の出力値に基づいて使用者の精神性発汗量を所定の判定対象期間に亘って継続的に測定し、測定した精神性発汗量と判定用閾値との対比結果に基づいて使用者の精神性発汗状態を判定する発汗状態判定制御を実行する制御部と、を備える発汗状態判定装置の制御プログラムであって、
     前記制御部は、前記判定対象期間よりも短い所定の予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と、前記判定対象期間における使用者の精神性発汗量の最小値との関連性を表す発汗量最小値予測モデルと、前記予測用特徴量測定期間において経時的に変化する使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を表す発汗量最大値予測モデルと、を格納する記憶部を有し、
     前記制御プログラムは、前記制御部に、前記予測用特徴量測定期間において測定した使用者における精神性発汗量の測定値を特徴量として、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとにそれぞれ適用することによって、前記判定対象期間における使用者の精神性発汗量の最小値と最大値をそれぞれ予測させ、当該予測させた前記判定対象期間における使用者の精神性発汗量の最小値である最小予測値以上であって且つ当該判定対象期間における使用者の精神性発汗量の最大値である最大予測値以下の範囲内で前記判定用閾値を設定させる、
     発汗状態判定装置の制御プログラム。
    A sweat amount measurement electrode for measuring the user's mental sweat amount, and the user's mental sweat amount based on the output value of the sweat amount measurement electrode is continuously measured over a predetermined determination target period. A control program for a sweating state determination device, comprising: a control unit that performs measurement and performs sweating state determination control for determining a mental sweating state of a user based on a comparison result between the measured amount of mental sweating and a threshold for determination Because
    The control unit is configured to change a user's mental sweating amount that changes over time in a predetermined prediction feature amount measurement period shorter than the determination target period, and a user's mental sweating amount in the determination target period. A model for predicting the minimum amount of sweat that represents the relationship with the minimum value, the change in the amount of mental sweating of the user that changes over time in the characteristic measurement period for prediction, and the mental sweating of the user in the period to be judged A sweating volume maximum value prediction model representing a relationship with the maximum value of the amount, and a storage unit for storing,
    The control program uses the measurement value of the mental sweating amount of the user measured during the prediction feature amount measurement period as the feature amount in the control unit, and the sweating amount minimum value prediction model and the sweating amount maximum value prediction model. Respectively, the minimum value and the maximum value of the user's mental sweating amount in the determination target period are respectively predicted, and the predicted minimum value of the user's mental sweating amount in the determination target period The determination threshold is set within a range that is equal to or greater than the minimum predicted value and equal to or less than the maximum predicted value that is the maximum value of the mental sweating amount of the user in the determination target period.
    A control program for the sweating state determination device.
  10.  前記発汗量最小値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の測定値の最小値とを対応付けた複数の発汗量最小値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最小値との関連性を学習済みの予測モデルであって、
     前記発汗量最大値予測モデルは、予め前記発汗状態判定制御を実行したときの前記予測用特徴量測定期間における使用者の精神性発汗量の測定値の推移と前記判定対象期間における使用者の精神性発汗量の最大値とを対応付けた複数の発汗量最大値学習用データを教師データとして用いた機械学習によって前記予測用特徴量測定期間における使用者の精神性発汗量の推移と前記判定対象期間における使用者の精神性発汗量の最大値との関連性を学習済みの予測モデルである、
     請求項9に記載の発汗状態判定装置の制御プログラム。
    The minimum sweating amount prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the mental sweating amount of the user during the predictive feature amount measurement period by machine learning using a plurality of sweating amount learning value learning data that is associated with the minimum value of the measured value of the spontaneous sweating amount as teacher data A prediction model that has learned the relationship with the minimum value of the mental sweating amount of the user in the determination target period,
    The sweating amount maximum value prediction model includes the transition of the measured value of the user's mental sweating amount during the prediction feature amount measurement period when the sweating state determination control is executed in advance and the user's mentality during the determination target period. The transition of the user's mental sweating amount during the prediction feature amount measurement period and the determination target by machine learning using a plurality of sweating amount maximum value learning data associating with the maximum value of the spontaneous sweating amount It is a predictive model that has learned the relationship with the maximum value of the user's mental sweating during the period,
    A control program for a sweating state determination apparatus according to claim 9.
  11.  前記制御部に、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点で、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいて前記最小予測値と前記最大予測値をそれぞれ予測させる、
     請求項9又は10に記載の発汗状態判定装置の制御プログラム。
    In the control unit, when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the minimum predicted value based on the minimum sweating amount prediction model and the maximum sweating amount prediction model And predicting the maximum predicted value respectively.
    The control program of the perspiration state determination apparatus according to claim 9 or 10.
  12.  前記制御部に、前記発汗状態判定制御の開始時から前記予測用特徴量測定期間が経過した時点以降に測定した使用者の精神性発汗量の測定値を、前記発汗量最小値予測モデルと前記発汗量最大値予測モデルとに基づいてそれぞれ予測した前記最小予測値および前記最大予測値を用いて、前記最小予測値を第1の値とすると共に前記最大予測値を前記第1の値よりも大きい第2の値としてスケーリング処理を行わせ、且つ、前記第1の値以上で且つ前記第2の値以下の固定値として前記判定用閾値を設定させる、
     請求項9から11の何れか一項に記載の発汗状態判定装置の制御プログラム。
    In the control unit, the measured value of the mental sweating amount of the user measured after the point when the prediction feature amount measurement period has elapsed from the start of the sweating state determination control, the sweating amount minimum value prediction model, and the Using the minimum predicted value and the maximum predicted value respectively predicted based on the sweating amount maximum value prediction model, the minimum predicted value is set as a first value and the maximum predicted value is set to be higher than the first value. Causing the scaling process to be performed as a large second value, and setting the determination threshold as a fixed value that is greater than or equal to the first value and less than or equal to the second value.
    The control program of the perspiration state determination apparatus as described in any one of Claims 9-11.
PCT/JP2018/043638 2018-03-13 2018-11-27 Sweating state determination device and method and program for controlling sweating state determination device WO2019176180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505585A JP6899953B2 (en) 2018-03-13 2018-11-27 Sweating state judgment device, control method and control program of sweating state judgment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/009706 2018-03-13
PCT/JP2018/009706 WO2019175961A1 (en) 2018-03-13 2018-03-13 Inhaler and method and program for controlling inhaler

Publications (1)

Publication Number Publication Date
WO2019176180A1 true WO2019176180A1 (en) 2019-09-19

Family

ID=67906547

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/009706 WO2019175961A1 (en) 2018-03-13 2018-03-13 Inhaler and method and program for controlling inhaler
PCT/JP2018/043637 WO2019176179A1 (en) 2018-03-13 2018-11-27 Inhaler and method and program for controlling inhaler
PCT/JP2018/043638 WO2019176180A1 (en) 2018-03-13 2018-11-27 Sweating state determination device and method and program for controlling sweating state determination device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/009706 WO2019175961A1 (en) 2018-03-13 2018-03-13 Inhaler and method and program for controlling inhaler
PCT/JP2018/043637 WO2019176179A1 (en) 2018-03-13 2018-11-27 Inhaler and method and program for controlling inhaler

Country Status (3)

Country Link
JP (3) JP6899952B2 (en)
TW (2) TW201938218A (en)
WO (3) WO2019175961A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009362A1 (en) * 2020-07-09 2022-01-13 日本たばこ産業株式会社 Main body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler
US20240065321A1 (en) * 2022-08-30 2024-02-29 R.J. Reynolds Tobacco Company Aerosol delivery device with improved mouthpieces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524023A (en) * 1978-08-08 1980-02-20 Tadashi Takahashi Meditation training machine
JP2000014656A (en) * 1998-07-07 2000-01-18 Musashi Denshi Kk Relaxed state measuring device
JP2006346110A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Biological information detector
WO2011096240A1 (en) * 2010-02-05 2011-08-11 日本電気株式会社 Organism information measuring instrument, portable terminal device, organism information measuring method, and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432703B2 (en) 2004-09-29 2010-03-17 豊田合成株式会社 Luminance control method and control data generation device for light emitting device
JP4969796B2 (en) * 2005-05-24 2012-07-04 ゆり 山口 Breathing pattern improvement device by inhalation synchronized scent stimulation
JP4942042B2 (en) * 2007-10-15 2012-05-30 明彦 内山 Cell phone with stress reduction function
JP2010246787A (en) * 2009-04-17 2010-11-04 Sanyo Electric Co Ltd Massaging machine
US20130312749A1 (en) * 2012-05-22 2013-11-28 LifeSense Technologies, LLC Method and apparatus to enable inhalation of air of varied temperature with or without aromatic conditioning
US11291252B2 (en) * 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524023A (en) * 1978-08-08 1980-02-20 Tadashi Takahashi Meditation training machine
JP2000014656A (en) * 1998-07-07 2000-01-18 Musashi Denshi Kk Relaxed state measuring device
JP2006346110A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Biological information detector
WO2011096240A1 (en) * 2010-02-05 2011-08-11 日本電気株式会社 Organism information measuring instrument, portable terminal device, organism information measuring method, and program

Also Published As

Publication number Publication date
WO2019176179A1 (en) 2019-09-19
TW201938218A (en) 2019-10-01
JPWO2019176179A1 (en) 2021-02-04
JP6899953B2 (en) 2021-07-07
JPWO2019176180A1 (en) 2021-02-04
JP6899952B2 (en) 2021-07-07
TW201938105A (en) 2019-10-01
JP7190535B2 (en) 2022-12-15
WO2019175961A1 (en) 2019-09-19
JP2021166519A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7083086B2 (en) Transcutaneous electrical nerve stimulator that automatically detects the user&#39;s sleep-wakefulness
US9711060B1 (en) Biometric sensor ring for continuous wear mobile data applications
US9592385B2 (en) Patient handheld device for use with a spinal cord stimulation system
US10363388B2 (en) System and method for enhancing sleep slow wave activity based on cardiac characteristics or respiratory characteristics
US9173587B2 (en) Sense a physiological response
JP3733133B2 (en) Sleep state estimation device
JP7190535B2 (en) aspirator
JP2006239272A (en) Eating utensil
WO2019230379A1 (en) Wheeze detection device and wheeze detection program
KR101218629B1 (en) Arraratus and method determining quality of sleep by measuring heart beat in real time
JP2018023676A (en) Fatigue degree determination device, fatigue degree determination method, fatigue degree determination program, and biological information measurement device
JP2007167185A (en) Oximeter system
JP2005137895A (en) Relaxation system, relaxation method, relaxation program, massaging system, massaging method, massaging program, physical activity discriminating device, physical activity discriminating method, and physical activity discriminating program
JP2008110138A (en) Breathing program, recording medium, and apparatus for breath determination
JP2023501113A (en) Inhaler with stress monitoring
JP2012176120A (en) Body moisture meter
US20080058685A1 (en) Electronic Pulse Massage Apparatus Capable of Measuring Temperature
JP2006043304A (en) Sleep cycle controlling apparatus and program
JP6716888B2 (en) Respiratory analysis device, respiratory analysis method and program
TW201938047A (en) Inhaler, and method and program for controlling inhaler
KR20110097358A (en) Portable diagnosis apparatus for dizziness
WO2020162105A1 (en) Biological sound measurement device, method for controlling biological sound measurement device, and program for controlling biological sound measurement device
CN215502988U (en) Electronic wrist strap
JP4186702B2 (en) EMG measurement device
JP3047782U (en) Portable exercise intensity alarm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909591

Country of ref document: EP

Kind code of ref document: A1