WO2019174240A1 - 显示面板、其驱动方法及显示装置 - Google Patents

显示面板、其驱动方法及显示装置 Download PDF

Info

Publication number
WO2019174240A1
WO2019174240A1 PCT/CN2018/111964 CN2018111964W WO2019174240A1 WO 2019174240 A1 WO2019174240 A1 WO 2019174240A1 CN 2018111964 W CN2018111964 W CN 2018111964W WO 2019174240 A1 WO2019174240 A1 WO 2019174240A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
sub
electrode layer
display panel
pixel
Prior art date
Application number
PCT/CN2018/111964
Other languages
English (en)
French (fr)
Inventor
宋文帅
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/478,315 priority Critical patent/US11402622B2/en
Publication of WO2019174240A1 publication Critical patent/WO2019174240A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display panel, a driving method thereof, and a display device.
  • LCDs Liquid crystal displays
  • the LCD display realizes the display by flipping the liquid crystal molecules between the electric fields formed by the two conductive glasses.
  • the liquid crystal molecules maintain the same deflection for a long time, the liquid crystal molecules cannot be recovered, which may cause image sticking and cause poor display.
  • the display panel provided by the embodiment of the present disclosure includes: a first substrate and a second substrate disposed opposite to each other, and a plurality of pixel units located between the first substrate and the second substrate; wherein the pixel unit includes Photonic crystal dimming structure.
  • each of the pixel units further includes a plurality of sub-pixels of different colors
  • the photonic crystal dimming structure includes a first electrode layer, a photonic crystal film layer, and a second electrode layer disposed in sequence;
  • the material of the photonic crystal film layer includes a piezoelectric material, and at least one of the first electrode layer and the second electrode layer includes a plurality of sub-independent ones and one-to-one corresponding to each of the sub-pixels. electrode.
  • the photonic crystal film layer includes a photonic crystal resonator corresponding to each of the sub-pixels.
  • each of the pixel units includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel;
  • the photonic crystal resonant cavity includes a corresponding to the red sub-pixel a red photonic crystal resonator, a green photonic crystal resonator corresponding to the green subpixel, and a blue photonic crystal resonator corresponding to the blue subpixel.
  • the piezoelectric material comprises barium titanate, lead zirconate titanate, lead metasilicate or lead bismuth ruthenate.
  • each of the sub-pixels includes a corresponding color filter, and each of the color filters is located between the first substrate and the second substrate. .
  • the cavity length of the photonic crystal resonator is an integer multiple of the wavelength of the sub-pixel emitted light corresponding thereto.
  • the cavity length of the photonic crystal resonator is an odd multiple of a half wavelength of the emitted light of the sub-pixel corresponding thereto.
  • the photonic crystal dimming structure is configured to adjust the photonic crystal according to a voltage difference between the first electrode layer and the second electrode layer.
  • the cavity length of the cavity is configured to adjust the photonic crystal according to a voltage difference between the first electrode layer and the second electrode layer.
  • the photonic crystal resonant cavity is an annular photonic crystal resonant cavity.
  • the display panel further includes a backlight, and the backlight is located at one of the first substrate and the second substrate facing away from the pixel unit side.
  • the second electrode The layer is a planar electrode.
  • the first electrode The layer is a planar electrode.
  • the embodiment of the present disclosure further provides a display device, including the display panel provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a driving method of a display panel, including:
  • the photonic crystal dimming structure is controlled such that each of the pixel units emits the determined light intensity.
  • the photonic crystal dimming structure includes a first electrode layer, a photonic crystal film layer, and a second electrode layer which are sequentially stacked on the sub-pixel.
  • the material of the photonic crystal film layer comprises a piezoelectric material, and at least one of the first electrode layer and the second electrode layer comprises a sub-electrode corresponding to each of the sub-pixels and disposed independently of each other;
  • the photonic crystal film layer includes a photonic crystal resonator corresponding to each of the sub-pixels; the photonic crystal dimming structure is controlled such that each of the pixel units emits the determined light intensity, specifically:
  • the second electrode layer applies a second voltage such that each of the pixel units emits the determined intensity of the light.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a second schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a third schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a fourth structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a photonic crystal film layer according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a photonic crystal resonant cavity according to an embodiment of the present disclosure
  • FIG. 7 is a graph showing transmittance of light of different frequencies according to an embodiment of the present disclosure.
  • FIG. 8 is a graph showing changes in transmittance of light of the same frequency at different voltages according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of a driving method of a display panel according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a display panel, as shown in FIG. 1 , comprising: a first substrate 01 and a second substrate 02 disposed opposite to each other, and a plurality of pixel units between the first substrate 01 and the second substrate 02 (One pixel unit is taken as an example in FIG. 1); wherein the pixel unit includes a photonic crystal dimming structure 03.
  • the liquid crystal layer is disposed so that the liquid crystal molecules do not recover due to the long-term retention of the same deflection for a long time, which causes image sticking, which leads to a problem of poor display.
  • the photonic crystal is a novel optical material that exhibits a periodic distribution in space.
  • a photonic crystal is capable of modulating an electromagnetic wave having a corresponding wavelength.
  • an electromagnetic wave propagates in a photonic crystal structure, it is modulated by the presence of Bragg scattering, and the electromagnetic wave energy forms an energy band structure, and a band gap occurs between the energy band and the energy band, that is, a photonic band gap. All photons with energy in the photonic band gap cannot enter the crystal. That is, only light of a certain frequency will be completely forbidden to propagate in a certain photonic crystal with a certain periodic distance, and thus transmitted.
  • each pixel unit further includes a plurality of sub-pixels of different colors
  • the photonic crystal dimming structure 03 includes a first electrode layer 031, a photonic crystal film layer 033 and a second electrode layer 032 which are sequentially stacked;
  • the material of the photonic crystal film layer 033 includes a piezoelectric material, and at least one of the first electrode layer 031 and the second electrode layer 032 includes a plurality of sub-electrodes that are independent of each other and are disposed in one-to-one correspondence with the respective sub-pixels.
  • the photonic crystal film layer 033 includes a photonic crystal resonator corresponding to each sub-pixel in one-to-one correspondence.
  • the structure of the resonant cavity is located in the R1, G1 and B1 regions in the imaginary frame of the figure, and R1, G1 and B1 are respectively arranged corresponding to the sub-pixels.
  • the specific structure of the resonant cavity and the principle of incident and outgoing light are as follows. 5 and the explanation of the principle part of Fig. 6 will not be described in detail herein.
  • the present disclosure controls the intensity of the light emitted from each sub-pixel by providing a photonic crystal cavity structure in one-to-one correspondence with each sub-pixel in the photonic crystal film layer 033.
  • the structure of the photonic crystal resonator in the photonic crystal film layer can be obtained due to the characteristics of the photonic crystal (only when the light of a certain frequency is completely prohibited from being propagated in a photonic crystal with a certain periodic distance).
  • the photonic crystal film layer is provided not only to control the light output intensity of each sub-pixel, but also to control the color of each sub-pixel, thereby reducing the setting of the color film layer. , thereby increasing the light transmittance of the display panel.
  • each pixel unit includes a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel.
  • the photonic crystal resonator includes a red photonic crystal cavity R1 corresponding to the red sub-pixel R1, a green photonic crystal cavity G1 corresponding to the green sub-pixel G, and a blue photonic crystal cavity B1 corresponding to the blue sub-pixel B.
  • the sub-pixels may also have sub-pixels of other colors, and are not limited to the sub-pixels of the three colors provided by the embodiments of the present disclosure.
  • the photonic crystal resonator is correspondingly included.
  • a photonic crystal resonator corresponding to its color.
  • the piezoelectric material includes: barium titanate, lead zirconate titanate, lead metasilicate or lead bismuth ruthenate, but is not limited to the above materials. Any material having an inverse piezoelectric effect is within the scope of the present disclosure, and is not enumerated here.
  • the piezoelectric material is a material having an inverse piezoelectric effect, wherein the inverse piezoelectric effect means that when an electric field is applied in the polarization direction of the dielectric, these dielectrics generate mechanical deformation or mechanical stress in a certain direction. When the applied electric field is removed, these deformations or stresses also disappear.
  • the photonic crystal film layer between the first electrode layer and the second electrode layer is deformed, and the photonic crystal is formed.
  • the cavity length of the resonant cavity in the film layer changes, that is, the cavity length of the resonant cavity changes with the change of the voltage, so that the light intensity of the corresponding sub-pixel of the resonant cavity changes.
  • the cavity length of the red photonic crystal resonator is an integer multiple of the wavelength of the corresponding red sub-pixel emitted light, from the red photonic crystal cavity
  • the intensity of the emitted light is the strongest.
  • the cavity length of the red photonic crystal resonator changes, and the intensity of the emitted light also changes. Therefore, the corresponding voltage can be applied according to the intensity of the emitted light of different colors. , to obtain the light of different light intensity.
  • the photonic crystal resonator realizes the light-emitting color of each sub-pixel by defining the transmittance of light of each color, that is, the red photonic crystal resonator.
  • the transmittance of light of each color that is, the red photonic crystal resonator.
  • Medium red light has the highest transmittance, and blue and green transmittances are extremely small, but there are still weak blue and green light that passes through the red photonic crystal resonator, which affects the display of red sub-pixels.
  • each sub-pixel includes a corresponding color filter 04, and each color filter 04 is located on the first substrate 01 and the second substrate.
  • the red (R) sub-pixel, the green (G) sub-pixel, and the blue (B) sub-pixel respectively include a red color filter, a green color filter, and a blue color filter. Therefore, it is ensured that the light in the photonic crystal dimming structure in each sub-pixel is the light corresponding to the sub-pixel, thereby preventing the light of other colors from affecting the color of the sub-pixel, so as to improve the contrast of the display panel.
  • each color filter is located between the first substrate and the second substrate, and specifically, each color filter is located between the first substrate and the crystal dimming structure.
  • the color filters may be located between the second substrate and the crystal dimming structure, and are not specifically limited herein.
  • the cavity length of the photonic crystal resonator is an integral multiple of the wavelength of the sub-pixel emitted light corresponding thereto.
  • the cavity length of the photonic crystal resonator is an integral multiple of the wavelength of the corresponding sub-pixel emitted light, and there is no voltage difference between the first electrode layer and the second electrode layer, that is, the photonic crystal resonator maintains its When the original length is used, the intensity of the light emitted by each sub-pixel is the largest.
  • the cavity length of the red photonic crystal resonator is an integer multiple of the red wavelength
  • the cavity length of the green photonic crystal resonator is an integer multiple of the green wavelength
  • the cavity length of the blue photonic crystal resonator is an integer multiple of the blue wavelength.
  • the cavity length of the photonic crystal resonator is an odd multiple of a half wavelength of the sub-pixel emitted light corresponding thereto.
  • the cavity length of the photonic crystal resonator when there is a voltage difference between the first electrode layer and the second electrode layer, and the photonic crystal resonates
  • the cavity length of the cavity is an odd multiple of the half wavelength of the light emitted by the sub-pixel corresponding thereto, and the intensity of the emitted light of each sub-pixel is the weakest.
  • the photonic crystal dimming structure is configured to adjust a cavity length of the photonic crystal resonator according to a voltage difference between the first electrode layer and the second electrode layer.
  • the photonic crystal film layer between the first electrode layer and the second electrode layer is deformed,
  • the cavity length of the resonant cavity in the photonic crystal film layer changes, that is, the cavity length of the resonant cavity changes with the change of the voltage, for example, when a red photonic crystal resonator corresponding to the red sub-pixel is fabricated, the red photon is
  • the cavity length of the crystal cavity is an integral multiple of the wavelength of the corresponding red sub-pixel emitted light, the intensity of the light emitted from the red photonic crystal resonator is the strongest.
  • the cavity of the red photonic crystal cavity is applied.
  • the intensity of the emitted light also changes. Therefore, the corresponding voltage can be applied according to the intensity of the emitted light of different colors to obtain the outgoing light of different light intensities.
  • the photonic crystal resonant cavity is an annular photonic crystal resonant cavity.
  • the ring-shaped photonic crystal resonator is hexagonal as an example.
  • the ring-shaped photonic crystal resonator may also be quadrilateral, octagonal, etc., of course, when the ring is close to a circle, the light is emitted. The effect is best because the shapes of the quadrilateral, hexagonal, octagonal, etc. all have angularities that affect the light exit.
  • the annular photonic crystal resonator is a circular photonic crystal resonator.
  • the display panel further includes a backlight, and the backlight is located at a side of one of the first substrate and the second substrate facing away from the pixel unit.
  • the backlight may be located on a side of the first substrate facing away from the pixel unit, and light is emitted from the side of the second substrate; the backlight may also be located on a side of the second substrate facing away from the pixel unit. The light is emitted from the side of the first substrate; it is not specifically limited herein.
  • the present disclosure provides a photonic crystal dimming structure instead of the prior art liquid crystal layer, and uses a backlight to illuminate the light, so that the liquid crystal molecules do not recover due to the long-term retention of the same deflection, resulting in image sticking. A problem that causes the screen to display poorly.
  • FIG. 5 is a schematic structural diagram of a photonic crystal film layer 03 according to an embodiment of the present disclosure.
  • the photonic crystal film layer 03 includes a photonic crystal cavity structure corresponding to each sub-pixel, and the left side of FIG. 5 is a photonic crystal resonance.
  • Schematic diagram of the cavity, the right side is a partial enlarged schematic view of the photonic crystal resonator, in which the black dot is a hollow structure, and the portion without the black dot forms a cavity.
  • the incident light is from the lower side of the cavity (arrow Incidentally, the exiting light emerges from the upper side of the resonant cavity (indicated by the arrow). As shown in Fig.
  • the resonant cavity is an annular cavity, and the light I 1 circulates in the cavity.
  • the light is coupled to the straight line.
  • the photonic crystal film layer 03 is made of a piezoelectric material, when the photonic crystal is When a voltage is applied to the electrode layers at both ends of the film layer 03, the photonic crystal film layer 03 is deformed, that is, the photonic crystal resonator cavity is deformed, and the cavity length of the resonant cavity changes, because the light intensity of the sub-pixels
  • the cavity length of the sub-crystal resonator changes, FIG.
  • the cavity length of the cavity corresponding to points A and B is an integral multiple of the wavelength of the light of the color. It can be seen that the transmission rates of points A and B are the largest.
  • the cavity length of the cavity corresponding to point A is 1 times the wavelength of the light of the color
  • the cavity length of the cavity corresponding to point B is twice the wavelength of the light of the color
  • the cavity length of the cavity corresponding to point C is 1.5 times the wavelength of the light of the color
  • the transmittance decreases from point A to point C
  • the transmittance from point C to point B increases, that is, the cavity length in the cavity is the adjacent two integers of the wavelength of the light of the color.
  • Fig. 8 is a graph showing the change of the frequency f of the light and the transmittance Tr. It can be seen from the figure that the transmittance Tr of the light of the frequency D is shifted due to the application of the voltage, the cavity of the cavity. The length will change, and the intensity of the different lumens will be different. Generally, different voltages are applied to the electrode layers, and the cavity length of the crystal resonators will change accordingly. Different cavity lengths of the crystal resonators will emit light of different intensities, so we can according to the predetermined first electrode layer and second electrode.
  • the first electrode layer 031 includes a plurality of first sub-electrodes 001, which are independent of each other and are in one-to-one correspondence with the sub-pixels
  • the second electrode Layer 032 includes a plurality of second sub-electrodes 002 that are independent of one another and that correspond one-to-one with each sub-pixel.
  • the first electrode layer 031 when the first electrode layer 031 includes a plurality of first sub-electrodes 001 that are independent of each other and are in one-to-one correspondence with the respective sub-pixels,
  • the two electrode layer 032 is a planar electrode.
  • the fabrication process of the second electrode layer 032 can be saved, and the first electrode layer 031 can be made into the sub-electrodes 001 independent of each other, that is, the red photonic crystal resonator, the green photonic crystal resonator, and the blue photonic crystal.
  • the second electrode layer 032 of the resonant cavity is shared, and the emitted light of different intensity can be realized by applying a corresponding voltage to the corresponding first electrode layer 031 of each color resonant cavity.
  • One electrode layer 031 is a planar electrode. This can save the fabrication process of the first electrode layer 031 by simply forming the second electrode layer 032 into mutually independent sub-electrodes 002, that is, a red photonic crystal cavity, a green photonic crystal cavity, and a blue photonic crystal.
  • the first electrode layer 031 of the resonant cavity is shared, and the emitted light of different intensity can be realized by applying a corresponding voltage to the corresponding second electrode layer 032 of each color cavity.
  • an embodiment of the present disclosure further provides a driving method of a display panel, as shown in FIG. 9, including:
  • each pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the required light intensity of each color sub-pixel is determined.
  • the photonic crystal dimming structure can be controlled to cause the red sub-pixel to emit the determined light intensity.
  • the photonic crystal dimming structure includes a first electrode layer, a photonic crystal film layer, and a second electrode layer which are sequentially stacked; wherein, the photonic crystal film layer The material includes a piezoelectric material, and at least one of the first electrode layer and the second electrode layer includes a sub-electrode corresponding to each sub-pixel and disposed independently of each other; the photonic crystal film layer includes a photonic crystal resonant cavity corresponding to each sub-pixel in one-to-one correspondence; Controlling the photonic crystal dimming structure, so that each pixel unit emits a determined light intensity, specifically:
  • an embodiment of the present disclosure further provides a display device, including the display panel provided by the embodiment of the present disclosure.
  • the principle of the display device is similar to that of the foregoing display panel. Therefore, the implementation of the display device can be referred to the implementation of the foregoing display panel, and the repeated description is not repeated herein.
  • the display panel includes a first substrate and a second substrate disposed opposite to each other, and a plurality of pixels between the first substrate and the second substrate a unit; wherein the pixel unit comprises a photonic crystal dimming structure.
  • the present disclosure realizes the light intensity required for each pixel unit to be emitted by controlling the photonic crystal dimming structure by providing a photonic crystal dimming structure in the pixel unit, so that the photonic crystal dimming structure can be used instead of the liquid crystal layer setting in the prior art. Therefore, there is no problem that the liquid crystal molecules cannot be recovered due to the same deflection for a long time, which causes image sticking, which leads to poor display of the screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板、其驱动方法及显示装置,包括相对设置的第一基板(01)与第二基板(02),以及位于第一基板(01)与第二基板(02)之间的多个像素单元;其中,像素单元包括光子晶体调光结构(03),该光子晶体调光结构(03)可以用于调节像素单元的出光强度,以采用光子晶体调光结构代替现有技术中液晶层的设置。

Description

显示面板、其驱动方法及显示装置
本公开要求在2018年03月14日提交中国专利局、公开号为201810210885.6,公开名称为“一种显示面板、其驱动方法及显示装置”的中国专利公开的优先权,其全部内容以引入的方式并入本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及显示面板、其驱动方法及显示装置。
背景技术
液晶显示器(Liquid Crystal Display,LCD)已经成为平板显示领域的主流。LCD显示器是通过两片导电玻璃形成的电场驱动其间的液晶分子翻转来实现显示的,但是由于液晶分子长时间保持同一偏转,导致无法恢复,这样就会造成残影现象,导致画面显示不良。
发明内容
本公开实施例提供的显示面板,包括:相对设置的第一基板与第二基板,以及位于所述第一基板与所述第二基板之间的多个像素单元;其中,所述像素单元包括光子晶体调光结构。
可选地,在本公开实施例提供的显示面板中,每一所述像素单元还包括多个不同颜色的子像素;
所述光子晶体调光结构包括位于依次层叠设置的第一电极层、光子晶体膜层和第二电极层;
其中,所述光子晶体膜层的材料包括压电材料,所述第一电极层和所述第二电极层至少之一包括多个相互独立、且与各所述子像素一一对应设置的子电极。
可选地,在本公开实施例提供的显示面板中,所述光子晶体膜层包括与各所述子像素一一对应的光子晶体谐振腔。
可选地,在本公开实施例提供的显示面板中,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素;所述光子晶体谐振腔包括与所述红色子像素对应的红光光子晶体谐振腔、与所述绿色子像素对应的绿光光子晶体谐振腔和与所述蓝色子像素对应的蓝光光子晶体谐振腔。
可选地,在本公开实施例提供的显示面板中,所述压电材料包括钛酸钡、锆钛酸铅、偏铌酸铅或铌酸铅钡锂。
可选地,在本公开实施例提供的显示面板中,每一所述子像素包括对应的彩色滤光片,各所述彩色滤光片位于所述第一基板与所述第二基板之间。
可选地,在本公开实施例提供的显示面板中,所述光子晶体谐振腔的腔长为与其相对应的所述子像素出射光波长的整数倍。
可选地,在本公开实施例提供的显示面板中,所述光子晶体谐振腔的腔长为与其相对应的所述子像素出射光半波长的奇数倍。
可选地,在本公开实施例提供的显示面板中,所述光子晶体调光结构被配置为根据所述第一电极层和所述第二电极层之间的电压差,调节所述光子晶体谐振腔的腔长。
可选地,在本公开实施例提供的显示面板中,所述光子晶体谐振腔为环形光子晶体谐振腔。
可选地,在本公开实施例提供的显示面板中,所述显示面板还包括背光源,所述背光源位于所述第一基板和所述第二基板中之一背离所述像素单元的一侧。
可选地,在本公开实施例提供的显示面板中,在所述第一电极层包括多个相互独立、且与各所述子像素一一对应的所述子电极时,所述第二电极层为面状电极。
可选地,在本公开实施例提供的显示面板中,在所述第二电极层包括多个相互独立、且与各所述子像素一一对应的所述子电极时,所述第一电极层为面状电极。
本公开实施例还提供了显示装置,包括本公开实施例提供的显示面板。
本公开实施例还提供了显示面板的驱动方法,包括:
确定各所述像素单元的出光强度;
控制所述光子晶体调光结构,使得各所述像素单元出射确定的所述出光强度。
可选地,在本公开实施例提供的显示面板的驱动方法中,所述光子晶体调光结构包括位于所述子像素上依次层叠设置的第一电极层、光子晶体膜层和第二电极层;其中,所述光子晶体膜层的材料包括压电材料,所述第一电极层和所述第二电极层至少之一包括与各所述子像素对应且相互独立设置的子电极;所述光子晶体膜层包括与各所述子像素一一对应的光子晶体谐振腔;所述控制所述光子晶体调光结构,使得各所述像素单元出射确定的所述出光强度,具体为:
确定所述光子晶体谐振腔的腔长与所述像素单元出光强度的对应关系;
根据所述光子晶体谐振腔的腔长与所述像素单元出光强度的对应关系设定所述第一电极层和所述第二电极层之间的电压差;
根据所述所述第一电极层和所述第二电极层之间的电压差,向所述像素单元对应的所述第一电极层施加第一电压、向所述像素单元对应的所述第二电极层施加第二电压,使得各所述像素单元出射确定的所述出光强度。
附图说明
图1为本公开实施例提供的一种显示面板的结构示意图之一;
图2为本公开实施例提供的一种显示面板的结构示意图之二;
图3为本公开实施例提供的一种显示面板的结构示意图之三;
图4为本公开实施例提供的一种显示面板的结构示意图之四;
图5为本公开实施例提供的光子晶体膜层的结构示意图;
图6为本公开实施例提供的光子晶体谐振腔的结构示意图;
图7为本公开实施例提供的不同频率的光的透射率曲线图;
图8为本公开实施例提供的同一频率的光在不同电压下的透射率变化曲 线图;
图9为本公开实施例提供的一种显示面板的驱动方法流程图。
具体实施方式
为了使本公开的目的,技术方案和优点更加清楚,下面结合附图,对本公开实施例提供的显示面板、其驱动方法及显示装置的具体实施方式进行详细地说明。
附图中各层薄膜厚度和形状不反映阵列基板的真实比例,目的只是示意说明本公开内容。
本公开实施例提供了一种显示面板,如图1所示,包括:相对设置的第一基板01与第二基板02,以及位于第一基板01与第二基板02之间的多个像素单元(图1中以一个像素单元为例);其中,像素单元包括光子晶体调光结构03。
本公开实施例提供的显示面板中,通过在像素单元中设置光子晶体调光结构,通过控制光子晶体调光结构,来控制各像素单元对应的出光强度,这样可以采用光子晶体调光结构代替现有技术中液晶层的设置,从而不会出现由于液晶分子长时间保持同一偏转,导致无法恢复,而造成残影现象,进而导致画面显示不良的问题。
需要说明的是,光子晶体是一种空间呈现周期性分布的新型光学材料。光子晶体能够调制具有相应波长的电磁波,当电磁波在光子晶体结构中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构,能带与能带之间出现带隙,即光子带隙,所有能量处在光子带隙的光子,不能进入该晶体,即,只有某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播,从而被透射出来。
可选地,在本公开实施例提供的显示面板中,如图2至图4所示,每一像素单元还包括多个不同颜色的子像素;
该光子晶体调光结构03包括依次层叠设置的第一电极层031、光子晶体 膜层033和第二电极层032;
其中,光子晶体膜层033的材料包括压电材料,第一电极层031和第二电极层032至少之一包括多个相互独立、且与各子像素一一对应设置的子电极。
具体地,在本公开实施例提供的显示面板中,如图2至图4所示,光子晶体膜层033包括与各子像素一一对应的光子晶体谐振腔。
其中,该谐振腔的结构位于图中虚框框出的R1、G1和B1区域,R1、G1和B1分别与子像素对应设置,谐振腔的具体结构和入射、出射光的原理参见下文中对图5和图6的原理部分的解释,在此不做详述。本公开通过在光子晶体膜层033设置与各子像素一一对应的光子晶体谐振腔结构,进而控制各子像素出射光的强度。
由于光子晶体的特性(仅在某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播,从而被透射出来),可以将光子晶体膜层内的光子晶体谐振腔的结构设置为仅透过与各子像素对应的颜色的光,这样的光子晶体膜层不仅具有控制各子像素出光强度的作用,还具有控制各子像素出光颜色的作用,可以减少彩膜层的设置,从而增加显示面板的透光率。
可选地,在本公开实施例提供的显示面板中,如图2至图4所示,每一像素单元包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素;光子晶体谐振腔包括与红色子像素R对应的红光光子晶体谐振腔R1、与绿色子像素G对应的绿光光子晶体谐振腔G1和与蓝色子像素B对应的蓝光光子晶体谐振腔B1。当然具体实施时,子像素还可以有其它颜色的子像素,不限制于本公开实施例提供的三种颜色的子像素,当还包括其它颜色的子像素时,光子晶体谐振腔就相应的包括与其对应颜色的光子晶体谐振腔。
可选地,在本公开实施例提供的显示面板中,该压电材料包括:钛酸钡、锆钛酸铅、偏铌酸铅或铌酸铅钡锂,但并不仅限于上述几种材料,只要是具有逆压电效应的材料都属于本公开保护的范围,在此不进行一一列举。
需要说明的是,压电材料为具有逆压电效应的材料,其中,逆压电效应 是指当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失。
因此在本公开实施例提供的显示面板中,当对第一电极层和第二电极层施加电压时,第一电极层和第二电极层之间的光子晶体膜层会发生形变,则光子晶体膜层中的谐振腔的腔长会发生变化,即谐振腔的腔长随着电压的变化而变化,从而使得该谐振腔对应的子像素的出光强度产生变化。
例如,在制作与红色子像素对应的红光光子晶体谐振腔时,红光光子晶体谐振腔的腔长为与其相对应的红色子像素出射光波长的整数倍时,从红光光子晶体谐振腔出射的光的强度最强,当施加电压时,红光光子晶体谐振腔的腔长发生变化,则出射光的强度也会发生变化,因此可以根据不同颜色的出射光的强度来施加相应的电压,获得不同光强的出射光。
虽然,通过光子晶体谐振腔的设置可以限定各子像素的出光颜色,但是光子晶体谐振腔是通过限定各颜色的光的透过率来实现各子像素的出光颜色的,即红色光子晶体谐振腔中红色光的透过率最大,蓝色和绿色的透过率极小,但是还是会存在微弱的蓝色和绿色的光透过该红色光子晶体谐振腔,对红色子像素的显示产生影响。
因此,在本公开实施例提供的显示面板中,如图2至图4所示,每一子像素包括对应的彩色滤光片04,各彩色滤光片04位于第一基板01与第二基板02之间。即红色(R)子像素、绿色(G)子像素和蓝色(B)子像素中分别包括红色滤光片、绿色滤光片和蓝色滤光片。从而保证射入各子像素中的光子晶体调光结构中的光为该子像素对应的光,从而避免了其他颜色的光对该子像素的出光颜色产生影响,以提高显示面板的对比度。
需要说明的是,在本公开实施例提供的显示面板中,各彩色滤光片位于第一基板与第二基板之间具体可以为各彩色滤光片位于第一基板与晶体调光结构之间,还可以为各彩色滤光片位于第二基板与晶体调光结构之间,在此不作具体限定。
当然,除采用滤光片以外,也可以是其它可以出射相应颜色的光的结构, 均属于本公开保护的范围。
可选地,在本公开实施例提供的显示面板中,光子晶体谐振腔的腔长为与其相对应的子像素出射光波长的整数倍。其中,光子晶体谐振腔的腔长为与其相对应的子像素出射光波长的整数倍是在第一电极层和第二电极层之间不存在电压差的情况下,即光子晶体谐振腔保持其原有的长度时,各子像素出射光的强度最大。例如,红光光子晶体谐振腔的腔长是红光波长的整数倍,绿光光子晶体谐振腔的腔长是绿光波长的整数倍,蓝光光子晶体谐振腔的腔长是蓝光波长的整数倍,这是因为当谐振腔的腔长是对应颜色子像素出射光波长的整数倍时,出射光的强度最大,因此在制作谐振腔时,不同颜色的光子晶体谐振腔的腔长为与其相对应的子像素出射光波长的整数倍。
可选地,在本公开实施例提供的显示面板中,光子晶体谐振腔的腔长为与其相对应的子像素出射光半波长的奇数倍。其中,在光子晶体谐振腔的腔长为与其相对应的子像素出射光半波长的奇数倍时,是在第一电极层和第二电极层之间存在电压差的时候,且在光子晶体谐振腔的腔长为与其相对应的子像素出射光半波长的奇数倍,各子像素出射光强度最弱。
可选地,在本公开实施例提供的显示面板中,该光子晶体调光结构被配置为根据第一电极层和第二电极层之间的电压差,调节光子晶体谐振腔的腔长。
具体地,在本发明实施例提供的显示面板中,当对第一电极层和第二电极层施加电压时,第一电极层和第二电极层之间的光子晶体膜层会发生形变,则光子晶体膜层中的谐振腔的腔长会发生变化,即谐振腔的腔长随着电压的变化而变化,例如,在制作与红色子像素对应的红光光子晶体谐振腔时,红光光子晶体谐振腔的腔长为与其相对应的红色子像素出射光波长的整数倍时,从红光光子晶体谐振腔出射的光的强度最强,当施加电压时,红光光子晶体谐振腔的腔长发生变化,则出射光的强度也会发生变化,因此可以根据不同颜色的出射光的强度来施加相应的电压,获得不同光强的出射光。
可选地,在本公开实施例提供的显示面板中,如图5所示,光子晶体谐 振腔为环形光子晶体谐振腔。图5中是以环形光子晶体谐振腔为六边形为例进行示意的,当然具体实施时,环形光子晶体谐振腔也可以为四边形、八边形等等,当然环形接近圆形时出射光的效果最好,这是因为四边形、六边形、八边形等这些形状都有棱角,对光的出射有影响。
因此,可选地,在本公开实施例提供的显示面板中,环形光子晶体谐振腔为圆形光子晶体谐振腔。
可选地,在本公开实施例提供的显示面板中,显示面板还包括背光源,背光源位于第一基板和第二基板中之一背离像素单元的一侧。
具体地,在本公开实施例提供的显示面板中,背光源可以位于第一基板背离像素单元的一侧,从第二基板一侧出光;背光源还可以位于第二基板背离像素单元的一侧,从第一基板一侧出光;在此不做具体限定。
即本公开通过设置光子晶体调光结构代替现有技术中液晶层的设置,采用背光源照射发光,从而不会出现由于液晶分子长时间保持同一偏转,导致无法恢复,而造成残影现象,进而导致画面显示不良的问题。
下面以图2所示的实施例对本公开的显示原理进行说明:
图5为本公开实施例提供的光子晶体膜层03的结构示意图,光子晶体膜层03包括与各子像素一一对应的光子晶体谐振腔结构,图5中左侧的图是各光子晶体谐振腔的示意图,右侧是光子晶体谐振腔的局部放大示意图,图中黑色圆点是空洞结构,没有黑色圆点的部分形成了谐振腔,本公开中入射光是从谐振腔下侧(箭头所示)入射,出射光从谐振腔的上侧(箭头所示)出射,如图6所示,谐振腔为环形腔,光I 1在腔中循环传播,当达到耦合点时,光耦合到直线路径上,当多次耦合出来的光相互叠加形成了输出光I 2,各子像素出射的光会通过对应的谐振腔输出,由于光子晶体膜层03采用压电材料制成,当对光子晶体膜层03两端的电极层施加电压时,光子晶体膜层03会发生形变,即光子晶体谐振腔会发生形变,则谐振腔的腔长会发生变化,由于子像素的出光强度会随光子晶体谐振腔的腔长的变化而变化,图7为光的频率f与其透过率Tr的曲线图,A点和B点对应的谐振腔的腔长是该颜色的光 波长的整数倍,可以看出A点和B点的透过率最大。例如,A点对应的谐振腔的腔长是该颜色的光波长的1倍,B点对应的谐振腔的腔长是该颜色的光波长的2倍,C点对应的谐振腔的腔长是该颜色的光波长的1.5倍,从A点到C点透过率下降,从C点到B点透过率上升,即在谐振腔的腔长是该颜色的光波长的相邻两个整数倍之间,透过率有一个下降的过程和一个上升的过程,只有在整数倍时透过率最大。图8为光的频率f与透过率Tr的变化曲线图,从图中可以看出,频率为D的光对应的透过率Tr会发生偏移,这是由于施加电压,谐振腔的腔长会发生变化,不同腔长出射光的强度不同。一般对电极层施加不同的电压,晶体谐振腔的腔长会发生相应的变化,晶体谐振腔不同的腔长会出射不同强度的光,因此我们可以根据预先确定的第一电极层和第二电极层之间的电压差与光子晶体谐振腔的腔长之间的对应关系,以及光子晶体谐振腔的腔长与像素单元出光强度的对应关系,向第一电极层施加第一电压、向第二电极层施加第二电压,使得各像素单元出射确定的出光强度。
可选地,在本公开实施例提供的显示面板中,如图2所示,第一电极层031包括多个相互独立、且与各子像素一一对应的第一子电极001,第二电极层032包括多个相互独立、且与各子像素一一对应的第二子电极002。
可选地,在本公开实施例提供的显示面板中,如图3所示,在第一电极层031包括多个相互独立、且与各子像素一一对应的第一子电极001时,第二电极层032为面状电极。这样可以节省第二电极层032的制作工艺,只需将第一电极层031制成相互独立的子电极001,也就是说,红光光子晶体谐振腔、绿光光子晶体谐振腔和蓝光光子晶体谐振腔的第二电极层032共用,通过对各颜色谐振腔施对应的第一电极层031施加相应的的电压即可实现出射不同强度的出射光。
可选地,在本公开实施例提供的显示面板中,如图4所示,在第二电极层032包括多个相互独立、且与各子像素一一对应的第二子电极002时,第一电极层031为面状电极。这样可以节省第一电极层031的制作工艺,只需将第二电极层032制成相互独立的子电极002,也就是说,红光光子晶体谐振 腔、绿光光子晶体谐振腔和蓝光光子晶体谐振腔的第一电极层031共用,通过对各颜色谐振腔施对应的第二电极层032施加相应的的电压即可实现出射不同强度的出射光。
基于同一发明构思,本公开实施例还提供了显示面板的驱动方法,如图9所示,包括:
S901、确定各像素单元的出光强度;
例如,每一像素单元包括红色子像素,绿色子像素和蓝色子像素,确定出各颜色子像素需要的出光强度。
S902、控制光子晶体调光结构,使得各像素单元出射确定的出光强度。
例如,确定了红色子像素的出光强度,则可以控制光子晶体调光结构,使红色子像素出射确定的出光强度。
可选地,在本公开实施例提供的显示面板的驱动方法中,光子晶体调光结构包括依次层叠设置的第一电极层、光子晶体膜层和第二电极层;其中,光子晶体膜层的材料包括压电材料,第一电极层和第二电极层至少之一包括与各子像素对应且相互独立设置的子电极;光子晶体膜层包括与各子像素一一对应的光子晶体谐振腔;控制所述光子晶体调光结构,使得各像素单元出射确定的出光强度,具体为:
确定光子晶体谐振腔的腔长与像素单元出光强度的对应关系;
根据光子晶体谐振腔的腔长与像素单元出光强度的对应关系设定第一电极层和第二电极层之间的电压差;
根据第一电极层和第二电极层之间的电压差,向像素单元对应的第一电极层施加第一电压、向像素单元对应的第二电极层施加第二电压,使得各像素单元出射确定的出光强度。
基于同一发明构思,本公开实施例还提供了显示装置,包括本公开实施例提供的显示面板。该显示装置解决问题的原理与前述显示面板相似,因此该显示装置的实施可以参见前述显示面板的实施,重复之处在此不再赘述。
本公开实施例提供的显示面板、其驱动方法及显示装置,该显示面板包 括相对设置的第一基板与第二基板,以及位于所述第一基板与所述第二基板之间的多个像素单元;其中,所述像素单元包括光子晶体调光结构。本公开通过在像素单元设置光子晶体调光结构,通过控制光子晶体调光结构,来实现使得各像素单元出射需要的出光强度,这样可以采用光子晶体调光结构代替现有技术中液晶层的设置,从而不会出现由于液晶分子长时间保持同一偏转,导致无法恢复,而造成残影现象,进而导致画面显示不良的问题。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种显示面板,其中,包括:相对设置的第一基板与第二基板,以及位于所述第一基板与所述第二基板之间的多个像素单元;其中,所述像素单元包括光子晶体调光结构。
  2. 如权利要求1所述的显示面板,其中,每一所述像素单元还包括多个不同颜色的子像素;
    所述光子晶体调光结构包括依次层叠设置的第一电极层、光子晶体膜层和第二电极层;
    其中,所述光子晶体膜层的材料包括压电材料,所述第一电极层和所述第二电极层至少之一包括多个相互独立、且与各所述子像素一一对应设置的子电极。
  3. 如权利要求2所述的显示面板,其中,所述光子晶体膜层包括与各所述子像素一一对应的光子晶体谐振腔。
  4. 如权利要求3所述的显示面板,其中,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素;
    所述光子晶体谐振腔包括与所述红色子像素对应的红光光子晶体谐振腔、与所述绿色子像素对应的绿光光子晶体谐振腔和与所述蓝色子像素对应的蓝光光子晶体谐振腔。
  5. 如权利要求2所述的显示面板,其中,所述压电材料包括钛酸钡、锆钛酸铅、偏铌酸铅或铌酸铅钡锂。
  6. 如权利要求3所述的显示面板,其中,每一所述子像素包括彩色滤光片,各所述彩色滤光片位于所述第一基板与所述第二基板之间。
  7. 如权利要求3所述的显示面板,其中,所述光子晶体谐振腔的腔长为与其相对应的所述子像素出射光波长的整数倍。
  8. 如权利要求3所述的显示面板,其中,所述光子晶体谐振腔的腔长为与其相对应的所述子像素出射光半波长的奇数倍。
  9. 如权利要求3所述的显示面板,其中,所述光子晶体调光结构被配置为根据所述第一电极层和所述第二电极层之间的电压差,调节所述光子晶体谐振腔的腔长。
  10. 如权利要求7-9任一项所述的显示面板,其中,所述光子晶体谐振腔为环形光子晶体谐振腔。
  11. 如权利要求6所述的显示面板,其中,所述显示面板还包括背光源,所述背光源位于所述第一基板和所述第二基板中之一背离所述像素单元的一侧。
  12. 如权利要求2所述的显示面板,其中,在所述第一电极层包括多个相互独立、且与各所述子像素一一对应的所述子电极时,所述第二电极层为面状电极。
  13. 如权利要求2所述的显示面板,其中,在所述第二电极层包括多个相互独立、且与各所述子像素一一对应的所述子电极时,所述第一电极层为面状电极。
  14. 一种显示装置,其中,包括如权利要求1-13任一项所述的显示面板。
  15. 一种如权利要求1-13任一项所述的显示面板的驱动方法,其中,包括:
    确定各所述像素单元的出光强度;
    控制所述光子晶体调光结构,使得各所述像素单元出射确定的所述出光强度。
  16. 如权利要求15所述的驱动方法,其中,所述光子晶体调光结构包括依次层叠设置的第一电极层、光子晶体膜层和第二电极层;其中,所述光子晶体膜层的材料包括压电材料,所述第一电极层和所述第二电极层至少之一包括与各所述子像素对应且相互独立设置的子电极;所述光子晶体膜层包括与各所述子像素一一对应的光子晶体谐振腔;
    所述控制所述光子晶体调光结构,使得各所述像素单元出射确定的所述出光强度,具体为:
    确定所述光子晶体谐振腔的腔长与所述像素单元出光强度的对应关系;
    根据所述光子晶体谐振腔的腔长与所述像素单元出光强度的对应关系设定所述第一电极层和所述第二电极层之间的电压差;
    根据所述所述第一电极层和所述第二电极层之间的电压差,向所述像素单元对应的所述第一电极层施加第一电压、向所述像素单元对应的所述第二电极层施加第二电压,使得各所述像素单元出射确定的所述出光强度。
PCT/CN2018/111964 2018-03-14 2018-10-25 显示面板、其驱动方法及显示装置 WO2019174240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/478,315 US11402622B2 (en) 2018-03-14 2018-10-25 Display panel, method for driving the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810210885.6A CN108363249B (zh) 2018-03-14 2018-03-14 一种显示面板、其驱动方法及显示装置
CN201810210885.6 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019174240A1 true WO2019174240A1 (zh) 2019-09-19

Family

ID=63000310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111964 WO2019174240A1 (zh) 2018-03-14 2018-10-25 显示面板、其驱动方法及显示装置

Country Status (3)

Country Link
US (1) US11402622B2 (zh)
CN (1) CN108363249B (zh)
WO (1) WO2019174240A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363249B (zh) 2018-03-14 2023-06-13 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN112037676B (zh) * 2020-09-24 2022-05-31 京东方科技集团股份有限公司 显示面板及显示装置
CN112987440A (zh) * 2021-02-24 2021-06-18 合肥京东方光电科技有限公司 显示面板及其显示方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130092534A (ko) * 2013-07-30 2013-08-20 주식회사 나노브릭 반사형 표시 장치 및 그 제어 방법
US20140198373A1 (en) * 2013-01-17 2014-07-17 Nthdegree Technologies Worldwide Inc. Reflective color display
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN105301860A (zh) * 2015-11-09 2016-02-03 昆山龙腾光电有限公司 蓝相液晶显示面板
CN106066553A (zh) * 2016-08-10 2016-11-02 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN106647015A (zh) * 2017-03-24 2017-05-10 京东方科技集团股份有限公司 一种显示装置
CN108363249A (zh) * 2018-03-14 2018-08-03 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515791B1 (en) * 2001-04-06 2003-02-04 Read-Rite Corporation Active reflection and anti-reflection optical switch
US6738178B2 (en) * 2002-06-27 2004-05-18 Koninklijke Philips Electronics N.V. Electrically configurable photonic crystal
KR100452859B1 (ko) * 2002-07-27 2004-10-14 삼성전자주식회사 밴드갭 조절을 이용한 광조절장치 및 광결정 디스플레이
US20050205883A1 (en) * 2004-03-19 2005-09-22 Wierer Jonathan J Jr Photonic crystal light emitting device
US20080106677A1 (en) * 2006-11-03 2008-05-08 United Microdisplay Optronics Corp. Electrode structure capable of reflecting color light and lcos panel
CN101191963A (zh) * 2006-11-24 2008-06-04 联诚光电股份有限公司 可反射出色域的电极结构以及单晶硅面板与显示装置
KR101678672B1 (ko) * 2010-08-19 2016-11-23 삼성전자주식회사 반사형 모드와 투과형 모드 사이의 전환이 가능한 디스플레이 장치
KR20120106317A (ko) * 2011-03-18 2012-09-26 (주)바이오제닉스 광결정 구조를 포함하는 디스플레이 장치
TWI455104B (zh) * 2011-08-15 2014-10-01 Innolux Corp 藍相液晶顯示裝置及其驅動方法
KR101951317B1 (ko) 2012-09-19 2019-02-22 삼성전자주식회사 가변 광결정 칼라 필터 및 이를 포함한 칼라 영상 표시 장치
CN103091756B (zh) * 2013-02-05 2016-03-30 北京京东方光电科技有限公司 光子晶体、彩膜基板、显示面板和显示装置
CN104062801B (zh) * 2014-06-12 2017-01-25 京东方科技集团股份有限公司 一种液晶显示装置及其制造方法
CN104157612A (zh) * 2014-08-21 2014-11-19 深圳市华星光电技术有限公司 Tft阵列基板的制作方法及tft阵列基板结构
WO2016169023A1 (zh) * 2015-04-23 2016-10-27 北京航空航天大学 一种单分束器透射式光子晶体光纤谐振腔
CN104880879A (zh) * 2015-06-19 2015-09-02 京东方科技集团股份有限公司 Coa阵列基板及其制造方法、显示装置
CN104965366B (zh) * 2015-07-15 2018-11-20 深圳市华星光电技术有限公司 阵列彩膜集成式液晶显示面板的制作方法及其结构
CN105607365A (zh) * 2015-12-31 2016-05-25 深圳市华星光电技术有限公司 一种coa基板及其制作方法
CN105511189B (zh) * 2016-02-16 2018-10-26 深圳市华星光电技术有限公司 Va型coa液晶显示面板
CN106783876B (zh) * 2016-12-13 2019-09-24 深圳市华星光电技术有限公司 Coa基板的制作方法及coa基板
CN107123665A (zh) * 2017-05-11 2017-09-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN107329311B (zh) * 2017-08-03 2020-04-28 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN107238968B (zh) * 2017-08-04 2020-02-21 京东方科技集团股份有限公司 一种彩膜基板以及制备方法、液晶显示面板
CN107561683B (zh) * 2017-09-15 2023-05-16 京东方科技集团股份有限公司 像素结构、显示基板及其控制方法、显示装置
KR20190055297A (ko) * 2017-11-14 2019-05-23 삼성디스플레이 주식회사 반사형 표시 장치 및 반사형 표시 장치의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140198373A1 (en) * 2013-01-17 2014-07-17 Nthdegree Technologies Worldwide Inc. Reflective color display
KR20130092534A (ko) * 2013-07-30 2013-08-20 주식회사 나노브릭 반사형 표시 장치 및 그 제어 방법
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN105301860A (zh) * 2015-11-09 2016-02-03 昆山龙腾光电有限公司 蓝相液晶显示面板
CN106066553A (zh) * 2016-08-10 2016-11-02 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN106647015A (zh) * 2017-03-24 2017-05-10 京东方科技集团股份有限公司 一种显示装置
CN108363249A (zh) * 2018-03-14 2018-08-03 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置

Also Published As

Publication number Publication date
US11402622B2 (en) 2022-08-02
CN108363249B (zh) 2023-06-13
CN108363249A (zh) 2018-08-03
US20210026131A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019174240A1 (zh) 显示面板、其驱动方法及显示装置
US7068875B2 (en) Optical switch and display unit
CN107918233B (zh) 一种显示装置
US8363185B2 (en) Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters
US10018871B1 (en) Display apparatus
JP4694284B2 (ja) Ocbモードの液晶層を備える液晶表示装置及びその製造方法
RU2721752C2 (ru) Устройство отображения и способ управления отображением
US20060203155A1 (en) Method of manufacturing a color transflective liquid crystal display device having adjusting windows corresponding to reflective region wherein the adjusting windows having color concentration of more than zero
US10146082B2 (en) Display devices and the color filters thereof
JP2008537789A (ja) 電気光学アドレス指定構造を備えた発光源
WO2013143301A1 (zh) 彩膜基板、显示装置及彩膜基板的制备方法
JPH06194639A (ja) 液晶表示パネル
CN107329309B (zh) 显示模式控制装置及其控制方法、显示装置
US20200264355A1 (en) Color filter
KR20120035424A (ko) 콜레스테릭 액정 디스플레이 장치 및 그 제조방법
CN110264881B (zh) 显示装置及制作方法
JP2006154725A (ja) Ocbモードの液晶層を備える液晶表示装置及びその製造方法
KR20100040650A (ko) 광결정형 광학필터, 이를 이용한 투과형 컬러 필터, 반투과형 컬러 필터 및 디스플레이 장치
KR20140022603A (ko) 액정 표시 장치
US11143921B2 (en) Display device
KR102027186B1 (ko) 광변조 양자점 컬러 디스플레이 및 이의 제조방법
JP6385132B2 (ja) 液晶表示装置
KR101330494B1 (ko) 시야각 제어가 가능한 액정 표시 장치 및 그의 구동 방법
US20120147456A1 (en) Wavelength selective reflection element, wavelength selective reflection unit, and reflective display device
JP4125260B2 (ja) 表示素子および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909669

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18909669

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18909669

Country of ref document: EP

Kind code of ref document: A1