WO2019173949A1 - Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear - Google Patents

Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear Download PDF

Info

Publication number
WO2019173949A1
WO2019173949A1 PCT/CN2018/078719 CN2018078719W WO2019173949A1 WO 2019173949 A1 WO2019173949 A1 WO 2019173949A1 CN 2018078719 W CN2018078719 W CN 2018078719W WO 2019173949 A1 WO2019173949 A1 WO 2019173949A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
temperature
adaptor
cable joint
current
Prior art date
Application number
PCT/CN2018/078719
Other languages
French (fr)
Inventor
Xin Zhang
Genhuang ZHUANG
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2018/078719 priority Critical patent/WO2019173949A1/en
Priority to EP18909982.3A priority patent/EP3765826A4/en
Priority to CN201880085354.7A priority patent/CN111602039B/en
Publication of WO2019173949A1 publication Critical patent/WO2019173949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0358Connections to in or out conductors

Definitions

  • Embodiments of present disclosure generally relate to the field of electrical equipment, and more particularly, to an apparatus and a method for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear (GIS) .
  • GIS gas insulated switchgear
  • GIS is widely used in high-voltage distribution application.
  • a cable is typically connected to the GIS through a cable joint so as to transmit electrical power to the GIS. If the connection between the cable joint and the GIS is poor, a large contact resistance may occur at the cable joint. Thus, a temperature of the cable joint may increase greatly when a current flows in the cable.
  • the demand for monitoring the temperature of the cable joint is getting high gradually.
  • the difficulty of monitoring the temperature of the cable joint lies in that the cable used in the GIS is an all-insulation cable and there is no extra space for any temperature sensors to be installed to the cable joint.
  • an apparatus for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear comprises an adaptor adapted to be coupled to a cable socket of the switchgear, the cable socket being provided with a mounting hole for connecting the cable joint, the mounting hole being provided at a mounting surface, wherein the adaptor, when coupled to the cable socket, is situated at the mounting surface and outside the mounting hole; a temperature sensor arranged in the adaptor and configured to detect a temperature of the adaptor; and a processor configured to determine the temperature of the cable joint based on the detected temperature of the adaptor.
  • the adaptor comprises: a first part coupled to the cable socket at the mounting surface; and a second part configured to accommodate the temperature sensor.
  • the cable socket comprises a threaded hole at the mounting surface, and the first part is a threaded rot adapted to be inserted into the threaded hole.
  • the second part comprises a receiving hole in which the temperature sensor is arranged and sealed by pouring sealant.
  • the apparatus further comprises a current sensor configured to detect a current in the cable, wherein the processor is further configured to determine the temperature of the cable joint further based on the current in the cable.
  • the processor is configured to determine the temperature of the cable joint by: in response to detecting that the current in the cable increases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a first relationship between temperatures of the cable joint and the adaptor; and in response to detecting that the current in the cable decreases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a second relationship between temperatures of the cable joint and the adaptor, the second relationship being different from the first relationship.
  • determining the temperature of the cable joint further based on the current in the cable comprises: in response to an instantaneous increase of the current in the cable exceeding a first threshold, increasing a value of the determined temperature of the cable joint by a first compensation value; and in response to an instantaneous decrease of the current in the cable exceeding a second threshold, decreasing a value of the determined temperature of the cable joint by a second compensation value.
  • a method for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear comprises detecting a temperature of an adaptor by a temperature sensor arranged in the adaptor, the adaptor being adapted to be coupled to a cable socket of the switchgear, the cable socket being provided with a mounting hole for connecting the cable joint, the mounting hole being provided at a mounting surface, wherein the adaptor, when coupled to the cable socket, is situated at the mounting surface and outside the mounting hole; and determining the temperature of the cable joint based on the detected temperature of the adaptor.
  • the cable socket comprises a threaded hole at the mounting surface
  • the adaptor comprises: a first part constructed to be a threaded rot adapted to be inserted into the threaded hole; and a second part configured to accommodate the temperature sensor.
  • the second part comprises a receiving hole in which the temperature sensor is arranged and sealed by pouring sealant.
  • the method further comprises: detecting a current in the cable by a current sensor; in response to detecting that the current in the cable increases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a first relationship between temperatures of the cable joint and the adaptor; and in response to detecting that the current in the cable decreases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a second relationship between temperatures of the cable joint and the adaptor, the second relationship being different from the first relationship.
  • the first relationship is obtained by performing linear fitting on at least two pairs of temperatures of the cable joint and the adaptor
  • the second relationship is obtained by performing linear fitting on at least three pairs of temperatures of the cable joint and the adaptor
  • the at least three pairs of temperatures comprises at least a pair of transient temperatures of the cable joint and the adaptor
  • determining the temperature of the cable joint further based on the current in the cable comprises: in response to an instantaneous increase of the current in the cable exceeding a first threshold, increasing a value of the determined temperature of the cable joint by a first compensation value; and in response to an instantaneous decrease of the current in the cable exceeding a second threshold, decreasing a value of the determined temperature of the cable joint by a second compensation value.
  • a gas insulated switchgear comprising the apparatus according to the first aspect of the present disclosure is provided.
  • the temperature sensor is arranged in the adaptor coupled to the cable socket of the switchgear and the temperature of the cable joint may be determined based on the temperature of the adaptor. Since the location of the adaptor is close to the cable joint, the temperature of the cable joint may be determined conveniently and precisely. Moreover, through the adaptor, the temperature sensor is easy to be installed and maintained.
  • Fig. 1 schematically illustrates a gas insulated switchgear according to an example embodiment
  • Fig. 2 schematically illustrates an apparatus for monitoring a temperature of a cable joint according to an example embodiment
  • Fig. 3 schematically illustrates an example arrangement of the apparatus for monitoring the temperature of the cable joint relative to the cable socket
  • Fig. 4 schematically illustrates an adaptor and a temperature sensor of the apparatus as shown in Fig. 3 in an enlarged view;
  • Fig. 5 is a schematic cross sectional view of a cable socket as shown in Fig. 3;
  • Fig. 6 schematically illustrates an apparatus for monitoring the temperature of the cable joint according to another example embodiment
  • Fig. 7 is a graph schematically illustrating real temperatures of the adaptor and the cable joint when a current in the cable varies
  • Fig. 8 is a graph schematically illustrating a first fitting relationship between the temperatures of the cable joint and the adaptor when the current in the cable increases;
  • Fig. 9 is a graph schematically illustrating a second fitting relationship between the temperatures of the cable joint and the adaptor when the current in the cable decreases;
  • Fig. 10A is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase A;
  • Fig. 10B is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase B;
  • Fig. 10C is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase C;
  • Fig. 11A is a graph schematically illustrating an error between the determined temperature and the real temperature of the cable joint without compensating for the determined temperature
  • Fig. 11B is a graph schematically illustrating the error between the determined temperature and the real temperature of the cable joint after compensating for the determined temperature
  • Fig. 12 is a flow chart of a method for monitoring a temperature of a cable joint of a cable connected to the switchgear according to embodiments of the present disclosure.
  • a temperature sensor is arranged in an adaptor coupled to the cable socket of the switchgear and the temperature of the cable joint may be determined based on the temperature of the adaptor.
  • Figs. 1-12 illustrate example manners for implementing the principles of the present disclosure and corresponding test results.
  • the principles of the present disclosure will be described in detail with reference to Figs. 1-12.
  • Fig. 1 schematically illustrates a gas insulated switchgear 300 according to an example embodiment.
  • the switchgear 300 includes a cable socket 31.
  • a cable 200 may be connected to the cable socket 31 through a cable joint 201 so as to transmit electrical power to the switchgear 300.
  • the switchgear 300 may further include an apparatus 100 for monitoring the temperature of the cable joint 201.
  • example configurations of the apparatus 100 will be described in detail with respect to Figs. 2-6.
  • Fig. 2 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to an example embodiment
  • Fig. 3 schematically illustrates an example arrangement of the apparatus 100 relative to the cable socket 31.
  • the cable socket 31 is provided with a mounting hole 311 for connecting the cable joint 201.
  • the mounting hole 311 is provided at a mounting surface 312 of the cable socket 31.
  • the apparatus 100 may include an adaptor 101, a temperature sensor 102, and a processor 103.
  • the adaptor 101 is connected to the cable socket 31 at the mounting surface 312 and situated outside the mounting hole 311. Along the mounting surface 312, the adaptor 101 is spaced from the mounting hole 311 by a distance.
  • the temperature sensor 102 is arranged in the adaptor 101 to detect the temperature of the adaptor 101. Based on the detected temperature of the adaptor 101, the processor 103 may determine the temperature of the cable joint 201 through a predefined relationship between temperatures of the adaptor 101 and the cable joint 201.
  • Fig. 4 schematically illustrates the adaptor 101 and the temperature sensor 102 as shown in Fig. 3 in an enlarged view
  • Fig. 5 is a schematic cross sectional view of the cable socket 31 as shown in Fig. 3.
  • the adaptor 101 may include a first part 111 and a second part 112.
  • the first part 111 may be coupled to the cable socket 31 at the mounting surface 312 of the cable socket 31.
  • the temperature sensor 102 may be arranged in the second part 112.
  • the temperature sensor 102 may be connected to the processor 103 through a wire 115 and a terminal 116.
  • a value of the detected temperature of the adaptor 101 may be provided to the processor 103 via the wire 115 and the terminal 116.
  • the first part 111 may be a threaded rot.
  • the cable socket 31 may include a threaded hole 313 at the mounting surface 312.
  • the threaded hole 313 is spaced apart from the mounting hole 311 along the mounting surface 312.
  • the first part 111 may be screwed into or out of the threaded hole 313. In this way, the temperature sensor 102 is easy to be installed and maintained.
  • the first part 111 may be coupled to the cable socket 31 in other manners.
  • the first part 111 may be adhered or soldered to the cable socket 31. It is to be understood that the first part 111 may be coupled to the cable socket 31 in any other suitable manners. The present disclosure does not intend to limit the coupling manners between the first part 111 of the adaptor 101 and the cable socket 31.
  • the second part 112 may include a receiving hole 113.
  • the temperature sensor 102 may be arranged in the receiving hole 113 and sealed by pouring sealant 114. With such an arrangement, the temperature of the adaptor 101 may be detected precisely by the temperature sensor 102. It is to be understood that the temperature sensor 102 may be arranged in the adaptor 101 in any other suitable manners. The present disclosure does not intend to limit the arrangement of the temperature sensor 102 in the adaptor 101.
  • the temperature sensor 102 may be conveniently arranged in the adaptor 101 coupled to the cable socket 31 and the temperature of the cable joint 201 may be determined based on the temperature of the adaptor 101. Since the location of the adaptor 101 is close to the cable joint 201, the temperature of the cable joint 201 may be determined precisely.
  • Fig. 6 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to another example embodiment.
  • the apparatus 100 as shown in Fig. 6 is similar to the apparatus 100 as shown in Fig. 2.
  • Fig. 6 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to another example embodiment.
  • the apparatus 100 as shown in Fig. 6 is similar to the apparatus 100 as shown in Fig. 2.
  • Fig. 6 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to another example embodiment.
  • the apparatus 100 as shown in Fig. 6 is similar to the apparatus 100 as shown in Fig. 2.
  • the apparatuses 100 of Figs. 6 and 2 will be described in detail, and the description regarding the same portions will be omitted.
  • the apparatus 100 further includes a current sensor 104 for detecting a current in the cable 200.
  • the processor 103 may determine the temperature of the cable joint 201 further based on the current in the cable 200.
  • the variation of temperatures of the adaptor 101 and the cable joint 201 over the current in the cable 200 will be described in detail in the following with reference to Figs 7-11B.
  • Fig. 7 is a graph schematically illustrating real temperatures of the adaptor 101 and the cable joint 201 when a current in the cable 200 varies.
  • the real temperature of the cable joint 201 may increase gradually and the real temperature of the adaptor 101 may increase accordingly.
  • the real temperature of the cable joint 201 may decrease gradually and the real temperature of the adaptor 101 may decrease accordingly.
  • the increase process of the temperature of the adaptor 101 is different from the decrease process of the temperature of the adaptor 101, since there is a temperature gradient field between the adaptor 101 and the cable joint 201.
  • the temperature of the adaptor 101 may increase substantially synchronous with the temperature of the cable joint 201.
  • the temperature decrease of the adaptor 101 may lag behind the temperature decrease of the cable joint 201.
  • the processor 103 may determine the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a first relationship between temperatures of the cable joint 201 and the adaptor 101. With respect to the first relationship, Fig. 8 illustrates an example fitting process.
  • Fig. 8 is a graph schematically illustrating a first fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 when the current in the cable 200 increases.
  • multiple pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart.
  • two pairs of temperatures of the cable joint 201 and the adaptor 101 in a stable state may be plotted in the chart.
  • the first relationship may be fitted as a linear relationship.
  • one or more pairs of transient temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart. With more temperature points, the fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 may be more precise.
  • the first relationship may be fitted in any other suitable manners. The present disclosure does not intend to limit the fitting manners of the first relationship.
  • the processor 103 may determine the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a second relationship between temperatures of the cable joint 201 and the adaptor 101.
  • the second relationship is different from the first relationship.
  • Fig. 9 illustrates an example fitting process.
  • Fig. 9 is a graph schematically illustrating a second fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 when the current in the cable 200 decreases.
  • multiple pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart.
  • at least three pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart.
  • the at least three pairs of temperatures may include at least a pair of transient temperatures of the cable joint 201 and the adaptor 101.
  • three temperatures of the adaptor 101 TR stable , TR stable_under_last_current , and TR transient may be determined for plotting in the chart.
  • TR stable represents the stable temperature of the adaptor 101 for a specific current in the cable 200, for example 1500 A.
  • TR stable_under_last_current represents the stable temperature of the adaptor 101 for the last current, for example 2110A.
  • TR transient represents a transient temperature of the adaptor 101 for the specific current in the cable 200, for example 1500 A.
  • TR transient may be selected according to the thermal response time equation:
  • TR transient may be calculated according to the above equation. Hence, for each current as shown in Fig. 7, three pairs of temperatures of the cable joint 201 and the adaptor 101 may be obtained and plotted in the chart.
  • the second relationship may be fitted as a linear relationship through least square method. Through more temperature points, the fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 may be more precise when the current in the cable 200 decreases. It is to be understood that the second relationship may be fitted in any other suitable manners. The present disclosure does not intend to limit the fitting manners of the second relationship.
  • the switchgear 300 may be connected to a plurality of cables 200 of three phases A, B, and C.
  • the temperature of the cable joint 201 may be determined in the manners described herein.
  • Fig. 10A is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase A
  • Fig. 1 0B is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase B
  • Fig. 10C is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase C.
  • the real temperature and the determined temperature of the cable joint 201 substantially conform to each other as time varies.
  • the test results show that, with embodiments of the present disclosure, the temperature of the cable joint 201 may be determined precisely.
  • Fig. 11A is a graph schematically illustrating an error between the determined temperature and the real temperature of the cable joint 201 without compensating for the determined temperature.
  • the error between the determined temperature and the real temperature of the cable joint 201 is below 5 °C.
  • the error would get to 10 °C.
  • the reason of this phenomenon is that when the current in the cable 200 changes sharply, the temperature of the cable joint 201 can follow this sharp change, but it would spend some time for this change in influencing the temperature of the adaptor 101 because of the temperature gradient field between cable joint 201 and the adaptor 101.
  • the processor 103 may increase a value of the determined temperature of the cable joint 201 by a first compensation value.
  • the first threshold the instantaneous increase of the current may be found.
  • the first compensation value may be a fixed value or a time-varying value.
  • the processor 103 may decrease a value of the determined temperature of the cable joint 201 by a second compensation value.
  • the second threshold the instantaneous decrease of the current may be found.
  • the second compensation value may be a fixed value or a time-varying value.
  • Fig. 11B is a graph schematically illustrating the error between the determined temperature and the real temperature of the cable joint 201 after compensating for the determined temperature. As shown, after compensating, the error is substantially below 5 °C.
  • Fig. 12 is a flow chart of a method for monitoring the temperature of the cable joint 201 according to embodiments of the present disclosure.
  • the method 900 can be carried out by, for example the apparatus 100 for monitoring the temperature of the cable joint 201 as illustrated in Figs. 2-6.
  • a temperature of an adaptor 101 is detected by a temperature sensor 102 arranged in the adaptor 101.
  • the adaptor 101 is adapted to be coupled to a cable socket 31 of the switchgear 300.
  • the cable socket 31 is provided with a mounting hole 311 for connecting the cable joint 201.
  • the mounting hole 311 being provided at a mounting surface 312.
  • the adaptor 101 when coupled to the cable socket 31, is situated at the mounting surface 312 and outside the mounting hole 311.
  • the cable socket 31 comprises a threaded hole 313 at the mounting surface 312, and the adaptor 101 comprises: a first part 111 constructed to be a threaded rot adapted to be inserted into the threaded hole 313; and a second part 112 configured to accommodate the temperature sensor 102.
  • the second part 112 comprises a receiving hole 113 in which the temperature sensor 102 is arranged and sealed by pouring sealant 114.
  • the temperature of the cable joint 201 is determined based on the detected temperature of the adaptor 101.
  • the method 900 further includes: detecting a current in the cable 200 by a current sensor 104; in response to detecting that the current in the cable 200 increases, determining the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a first relationship between temperatures of the cable joint 201 and the adaptor 101; and in response to detecting that the current in the cable 200 decreases, determining the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a second relationship between temperatures of the cable joint 201 and the adaptor 101, the second relationship being different from the first relationship.
  • the first relationship is obtained by performing linear fitting on at least two pairs of temperatures of the cable joint 201 and the adaptor 101
  • the second relationship is obtained by performing linear fitting on at least three pairs of temperatures of the cable joint 201 and the adaptor 101
  • the at least three pairs of temperatures comprises at least a pair of transient temperatures of the cable joint 201 and the adaptor 101.
  • determining the temperature of the cable joint 201 further based on the current in the cable 200 includes: in response to an instantaneous increase of the current in the cable 200 exceeding a first threshold, increasing a value of the determined temperature of the cable joint 201 by a first compensation value; and in response to an instantaneous decrease of the current in the cable 200 exceeding a second threshold, decreasing a value of the determined temperature of the cable joint 201 by a second compensation value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

An apparatus and a method for monitoring a temperature of a cable joint (201) of a cable (200) connected to a gas insulated switchgear (300). The apparatus comprises an adaptor (101) adapted to be coupled to a cable socket (31) of the switchgear, the cable socket being provided with a mounting hole (311) for connecting the cable joint, the mounting hole being provided at a mounting surface (312), wherein the adaptor, when coupled to the cable socket, is situated at the mounting surface and outside the mounting hole; a temperature sensor (102) arranged in the adaptor and configured to detect a temperature of the adaptor; and a processor (103) configured to determine the temperature of the cable joint based on the detected temperature of the adaptor. Then the temperature of the cable joint may be determined conveniently and precisely.

Description

APPARATUS AND METHOD FOR MONITORING TEMPERATURE OF CABLE JOINT OF CABLE CONNECTED TO GAS INSULATED SWITCHGEAR FIELD
Embodiments of present disclosure generally relate to the field of electrical equipment, and more particularly, to an apparatus and a method for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear (GIS) .
BACKGROUND
GIS is widely used in high-voltage distribution application. In use, a cable is typically connected to the GIS through a cable joint so as to transmit electrical power to the GIS. If the connection between the cable joint and the GIS is poor, a large contact resistance may occur at the cable joint. Thus, a temperature of the cable joint may increase greatly when a current flows in the cable. Currently, the demand for monitoring the temperature of the cable joint is getting high gradually. However, the difficulty of monitoring the temperature of the cable joint lies in that the cable used in the GIS is an all-insulation cable and there is no extra space for any temperature sensors to be installed to the cable joint.
Therefore, there is a need for a new solution for monitoring the temperature of the cable joint conveniently and precisely.
SUMMARY
In a first aspect of the present disclosure, an apparatus for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear is provided. The apparatus comprises an adaptor adapted to be coupled to a cable socket of the switchgear, the cable socket being provided with a mounting hole for connecting the cable joint, the mounting hole being provided at a mounting surface, wherein the adaptor, when coupled to the cable socket, is situated at the mounting surface and outside the  mounting hole; a temperature sensor arranged in the adaptor and configured to detect a temperature of the adaptor; and a processor configured to determine the temperature of the cable joint based on the detected temperature of the adaptor.
In some embodiments, the adaptor comprises: a first part coupled to the cable socket at the mounting surface; and a second part configured to accommodate the temperature sensor.
In some embodiments, the cable socket comprises a threaded hole at the mounting surface, and the first part is a threaded rot adapted to be inserted into the threaded hole.
In some embodiments, the second part comprises a receiving hole in which the temperature sensor is arranged and sealed by pouring sealant.
In some embodiments, the apparatus further comprises a current sensor configured to detect a current in the cable, wherein the processor is further configured to determine the temperature of the cable joint further based on the current in the cable.
In some embodiments, the processor is configured to determine the temperature of the cable joint by: in response to detecting that the current in the cable increases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a first relationship between temperatures of the cable joint and the adaptor; and in response to detecting that the current in the cable decreases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a second relationship between temperatures of the cable joint and the adaptor, the second relationship being different from the first relationship.
In some embodiments, determining the temperature of the cable joint further based on the current in the cable comprises: in response to an instantaneous increase of the current in the cable exceeding a first threshold, increasing a value of the determined temperature of the cable joint by a first compensation value; and in response to an instantaneous decrease of the current in the cable exceeding a second threshold, decreasing a value of the determined temperature of the cable joint by a second compensation value.
In a second aspect of the present disclosure, a method for monitoring a temperature of a cable joint of a cable connected to a gas insulated switchgear is provided. The method comprises detecting a temperature of an adaptor by a temperature sensor arranged in the adaptor, the adaptor being adapted to be coupled to a cable socket of the switchgear, the cable socket being provided with a mounting hole for connecting the cable joint, the mounting hole being provided at a mounting surface, wherein the adaptor, when coupled to the cable socket, is situated at the mounting surface and outside the mounting hole; and determining the temperature of the cable joint based on the detected temperature of the adaptor.
In some embodiments, the cable socket comprises a threaded hole at the mounting surface, and the adaptor comprises: a first part constructed to be a threaded rot adapted to be inserted into the threaded hole; and a second part configured to accommodate the temperature sensor.
In some embodiments, the second part comprises a receiving hole in which the temperature sensor is arranged and sealed by pouring sealant.
In some embodiments, the method further comprises: detecting a current in the cable by a current sensor; in response to detecting that the current in the cable increases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a first relationship between temperatures of the cable joint and the adaptor; and in response to detecting that the current in the cable decreases, determining the temperature of the cable joint based on the detected temperature of the adaptor and a second relationship between temperatures of the cable joint and the adaptor, the second relationship being different from the first relationship.
In some embodiments, the first relationship is obtained by performing linear fitting on at least two pairs of temperatures of the cable joint and the adaptor, the second relationship is obtained by performing linear fitting on at least three pairs of temperatures of the cable joint and the adaptor, and the at least three pairs of temperatures comprises at least a pair of transient temperatures of the cable joint and the adaptor.
In some embodiments, determining the temperature of the cable joint further based on the current in the cable comprises: in response to an instantaneous increase of  the current in the cable exceeding a first threshold, increasing a value of the determined temperature of the cable joint by a first compensation value; and in response to an instantaneous decrease of the current in the cable exceeding a second threshold, decreasing a value of the determined temperature of the cable joint by a second compensation value.
In a third aspect of the present disclosure, a gas insulated switchgear comprising the apparatus according to the first aspect of the present disclosure is provided.
According to various embodiments of the present disclosure, the temperature sensor is arranged in the adaptor coupled to the cable socket of the switchgear and the temperature of the cable joint may be determined based on the temperature of the adaptor. Since the location of the adaptor is close to the cable joint, the temperature of the cable joint may be determined conveniently and precisely. Moreover, through the adaptor, the temperature sensor is easy to be installed and maintained.
DESCRIPTION OF DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an example and in a non-limiting manner, wherein:
Fig. 1 schematically illustrates a gas insulated switchgear according to an example embodiment;
Fig. 2 schematically illustrates an apparatus for monitoring a temperature of a cable joint according to an example embodiment;
Fig. 3 schematically illustrates an example arrangement of the apparatus for monitoring the temperature of the cable joint relative to the cable socket;
Fig. 4 schematically illustrates an adaptor and a temperature sensor of the apparatus as shown in Fig. 3 in an enlarged view;
Fig. 5 is a schematic cross sectional view of a cable socket as shown in Fig. 3;
Fig. 6 schematically illustrates an apparatus for monitoring the temperature of the cable joint according to another example embodiment;
Fig. 7 is a graph schematically illustrating real temperatures of the adaptor and the cable joint when a current in the cable varies;
Fig. 8 is a graph schematically illustrating a first fitting relationship between the temperatures of the cable joint and the adaptor when the current in the cable increases;
Fig. 9 is a graph schematically illustrating a second fitting relationship between the temperatures of the cable joint and the adaptor when the current in the cable decreases;
Fig. 10A is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase A;
Fig. 10B is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase B;
Fig. 10C is a graph schematically illustrating the real temperature and the determined temperature of the cable joint in phase C;
Fig. 11A is a graph schematically illustrating an error between the determined temperature and the real temperature of the cable joint without compensating for the determined temperature;
Fig. 11B is a graph schematically illustrating the error between the determined temperature and the real temperature of the cable joint after compensating for the determined temperature; and
Fig. 12 is a flow chart of a method for monitoring a temperature of a cable joint of a cable connected to the switchgear according to embodiments of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIEMTNS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art in better understanding and thereby achieving the present disclosure, rather than to limit the scope of the disclosure in any manner.
As discussed above, the difficulty of monitoring the temperature of the cable joint lies in that the cable used in the GIS is an all-insulation cable and there is no extra space for any temperature sensors to be installed to the cable joint. According to embodiments of the present disclosure, a temperature sensor is arranged in an adaptor coupled to the cable socket of the switchgear and the temperature of the cable joint may be determined based on the temperature of the adaptor.
The above idea may be implemented in various manners, as will be described in detail in the following paragraphs. Figs. 1-12 illustrate example manners for implementing the principles of the present disclosure and corresponding test results. Hereinafter, the principles of the present disclosure will be described in detail with reference to Figs. 1-12.
Fig. 1 schematically illustrates a gas insulated switchgear 300 according to an example embodiment. As shown, the switchgear 300 includes a cable socket 31. A cable 200 may be connected to the cable socket 31 through a cable joint 201 so as to transmit electrical power to the switchgear 300. In use, if the connection between the cable joint 201 and the cable socket 31 is poor, a large contact resistance may occur at the cable joint 201. In this situation, a temperature of the cable joint 201 may increase greatly when a current flows in the cable 200. In order to capture the temperature change of the cable joint 201 timely, the switchgear 300 may further include an apparatus 100 for monitoring the temperature of the cable joint 201. Hereinafter, example configurations of the apparatus 100 will be described in detail with respect to Figs. 2-6.
Fig. 2 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to an example embodiment, and Fig. 3 schematically  illustrates an example arrangement of the apparatus 100 relative to the cable socket 31. As shown, the cable socket 31 is provided with a mounting hole 311 for connecting the cable joint 201. The mounting hole 311 is provided at a mounting surface 312 of the cable socket 31.
In an embodiment, as shown in Figs. 2 and 3, the apparatus 100 may include an adaptor 101, a temperature sensor 102, and a processor 103. The adaptor 101 is connected to the cable socket 31 at the mounting surface 312 and situated outside the mounting hole 311. Along the mounting surface 312, the adaptor 101 is spaced from the mounting hole 311 by a distance. The temperature sensor 102 is arranged in the adaptor 101 to detect the temperature of the adaptor 101. Based on the detected temperature of the adaptor 101, the processor 103 may determine the temperature of the cable joint 201 through a predefined relationship between temperatures of the adaptor 101 and the cable joint 201.
Fig. 4 schematically illustrates the adaptor 101 and the temperature sensor 102 as shown in Fig. 3 in an enlarged view, and Fig. 5 is a schematic cross sectional view of the cable socket 31 as shown in Fig. 3.
In an embodiment, as shown in Fig. 4, the adaptor 101 may include a first part 111 and a second part 112. The first part 111 may be coupled to the cable socket 31 at the mounting surface 312 of the cable socket 31. The temperature sensor 102 may be arranged in the second part 112. The temperature sensor 102 may be connected to the processor 103 through a wire 115 and a terminal 116. A value of the detected temperature of the adaptor 101 may be provided to the processor 103 via the wire 115 and the terminal 116.
In an embodiment, the first part 111 may be a threaded rot. Accordingly, as shown in Fig. 5, the cable socket 31 may include a threaded hole 313 at the mounting surface 312. The threaded hole 313 is spaced apart from the mounting hole 311 along the mounting surface 312. Through thread mating between the threaded rot and the threaded hole 313, the first part 111 may be screwed into or out of the threaded hole 313. In this way, the temperature sensor 102 is easy to be installed and maintained.
In other embodiments, the first part 111 may be coupled to the cable socket 31  in other manners. As an example, the first part 111 may be adhered or soldered to the cable socket 31. It is to be understood that the first part 111 may be coupled to the cable socket 31 in any other suitable manners. The present disclosure does not intend to limit the coupling manners between the first part 111 of the adaptor 101 and the cable socket 31.
In an embodiment, as shown in Fig. 4, the second part 112 may include a receiving hole 113. The temperature sensor 102 may be arranged in the receiving hole 113 and sealed by pouring sealant 114. With such an arrangement, the temperature of the adaptor 101 may be detected precisely by the temperature sensor 102. It is to be understood that the temperature sensor 102 may be arranged in the adaptor 101 in any other suitable manners. The present disclosure does not intend to limit the arrangement of the temperature sensor 102 in the adaptor 101.
With the above embodiments of the present disclosure, the temperature sensor 102 may be conveniently arranged in the adaptor 101 coupled to the cable socket 31 and the temperature of the cable joint 201 may be determined based on the temperature of the adaptor 101. Since the location of the adaptor 101 is close to the cable joint 201, the temperature of the cable joint 201 may be determined precisely.
Fig. 6 schematically illustrates an apparatus 100 for monitoring the temperature of the cable joint 201 according to another example embodiment. The apparatus 100 as shown in Fig. 6 is similar to the apparatus 100 as shown in Fig. 2. Hereinafter, only the difference between the apparatuses 100 of Figs. 6 and 2 will be described in detail, and the description regarding the same portions will be omitted.
In the embodiment as depicted in Fig. 6, the apparatus 100 further includes a current sensor 104 for detecting a current in the cable 200. The processor 103 may determine the temperature of the cable joint 201 further based on the current in the cable 200. In order to determine the temperature of the cable joint 201 further based on the current in the cable 200, the variation of temperatures of the adaptor 101 and the cable joint 201 over the current in the cable 200 will be described in detail in the following with reference to Figs 7-11B.
Fig. 7 is a graph schematically illustrating real temperatures of the adaptor 101  and the cable joint 201 when a current in the cable 200 varies. As shown, when the current in the cable 200 increases, for example from 200A to 2110A, the real temperature of the cable joint 201 may increase gradually and the real temperature of the adaptor 101 may increase accordingly. When the current in the cable 200 decreases, for example from 2110A to 450A, the real temperature of the cable joint 201 may decrease gradually and the real temperature of the adaptor 101 may decrease accordingly. However, the increase process of the temperature of the adaptor 101 is different from the decrease process of the temperature of the adaptor 101, since there is a temperature gradient field between the adaptor 101 and the cable joint 201. Specifically, when the temperature of the cable joint 201 increases, the temperature of the adaptor 101 may increase substantially synchronous with the temperature of the cable joint 201. However, when the temperature of the cable joint 201 decreases, the temperature decrease of the adaptor 101 may lag behind the temperature decrease of the cable joint 201. Thus, the relationships between the temperatures of the cable joint 201 and the adaptor 101 when the current in the cable 200 increases and decreases are different.
In an embodiment, in response to detecting that the current in the cable 200 increases, the processor 103 may determine the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a first relationship between temperatures of the cable joint 201 and the adaptor 101. With respect to the first relationship, Fig. 8 illustrates an example fitting process.
Fig. 8 is a graph schematically illustrating a first fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 when the current in the cable 200 increases. As shown, multiple pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart. In an embodiment, for each current as shown in Fig. 7, two pairs of temperatures of the cable joint 201 and the adaptor 101 in a stable state may be plotted in the chart. Through a least square method, the first relationship may be fitted as a linear relationship. In another embodiment, in addition to the two pairs of temperatures of the cable joint 201 and the adaptor 101 in a stable state, one or more pairs of transient temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart. With more temperature points, the fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 may be more precise. It is to be  understood that the first relationship may be fitted in any other suitable manners. The present disclosure does not intend to limit the fitting manners of the first relationship.
In an embodiment, in response to detecting that the current in the cable 200 decreases, the processor 103 may determine the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a second relationship between temperatures of the cable joint 201 and the adaptor 101. In an example, the second relationship is different from the first relationship. With respect to the second relationship, Fig. 9 illustrates an example fitting process.
Fig. 9 is a graph schematically illustrating a second fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 when the current in the cable 200 decreases. As shown, multiple pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart. In an embodiment, for each current as shown in Fig. 7, at least three pairs of temperatures of the cable joint 201 and the adaptor 101 may be plotted in the chart. The at least three pairs of temperatures may include at least a pair of transient temperatures of the cable joint 201 and the adaptor 101. As an example, for each current as shown in Fig. 7, three temperatures of the adaptor 101 TR stable, TR stable_under_last_current, and TR transient may be determined for plotting in the chart. TR stable represents the stable temperature of the adaptor 101 for a specific current in the cable 200, for example 1500 A. TR stable_under_last_current represents the stable temperature of the adaptor 101 for the last current, for example 2110A. TR transient represents a transient temperature of the adaptor 101 for the specific current in the cable 200, for example 1500 A. In an embodiment, TR transient may be selected according to the thermal response time equation:
Figure PCTCN2018078719-appb-000001
wherein e represent natural constant. With TR stable and TR stable_under_last_current, TR transient may be calculated according to the above equation. Hence, for each current as shown in Fig. 7, three pairs of temperatures of the cable joint 201 and the adaptor 101 may be obtained and plotted in the chart.
With the at least three pairs of temperatures of the cable joint 201 and the  adaptor 101, the second relationship may be fitted as a linear relationship through least square method. Through more temperature points, the fitting relationship between the temperatures of the cable joint 201 and the adaptor 101 may be more precise when the current in the cable 200 decreases. It is to be understood that the second relationship may be fitted in any other suitable manners. The present disclosure does not intend to limit the fitting manners of the second relationship.
In the following, test results of the determined temperature of the cable joint 201 will be described in detail with respect to Figs. 10A-10C. In an example, the switchgear 300 may be connected to a plurality of cables 200 of three phases A, B, and C. For each cable 200, the temperature of the cable joint 201 may be determined in the manners described herein. Fig. 10A is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase A, Fig. 1 0B is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase B, and Fig. 10C is a graph schematically illustrating the real temperature and the determined temperature of the cable joint 201 in phase C. As shown, for the cables 200 in each phase, the real temperature and the determined temperature of the cable joint 201 substantially conform to each other as time varies. Thus, the test results show that, with embodiments of the present disclosure, the temperature of the cable joint 201 may be determined precisely.
Fig. 11A is a graph schematically illustrating an error between the determined temperature and the real temperature of the cable joint 201 without compensating for the determined temperature. As shown, most of time, the error between the determined temperature and the real temperature of the cable joint 201 is below 5 ℃. However, at the beginning of sharp change of the current in the cable 200, the error would get to 10 ℃. The reason of this phenomenon is that when the current in the cable 200 changes sharply, the temperature of the cable joint 201 can follow this sharp change, but it would spend some time for this change in influencing the temperature of the adaptor 101 because of the temperature gradient field between cable joint 201 and the adaptor 101.
In an embodiment, in response to an instantaneous increase of the current in the cable 200 exceeding a first threshold, the processor 103 may increase a value of the  determined temperature of the cable joint 201 by a first compensation value. With the first threshold, the instantaneous increase of the current may be found. In various embodiments, the first compensation value may be a fixed value or a time-varying value. Through increasing the value of the determined temperature of the cable joint 201 by the first compensation value, the error between the determined temperature and the real temperature of the cable joint 201 may be compensated when the current in the cable 200 increases. Thus, the temperature of the cable joint 201 may be determined more precisely when the current in the cable 200 increases.
In an embodiment, in response to an instantaneous decrease of the current in the cable 200 exceeding a second threshold, the processor 103 may decrease a value of the determined temperature of the cable joint 201 by a second compensation value. With the second threshold, the instantaneous decrease of the current may be found. In various embodiments, the second compensation value may be a fixed value or a time-varying value. Through decreasing the value of the determined temperature of the cable joint 201 by the second compensation value, the error between the determined temperature and the real temperature of the cable joint 201 may be compensated when the current in the cable 200 decreases. Thus, the temperature of the cable joint 201 may be determined more precisely when the current in the cable 200 decreases.
Fig. 11B is a graph schematically illustrating the error between the determined temperature and the real temperature of the cable joint 201 after compensating for the determined temperature. As shown, after compensating, the error is substantially below 5 ℃.
Fig. 12 is a flow chart of a method for monitoring the temperature of the cable joint 201 according to embodiments of the present disclosure. The method 900 can be carried out by, for example the apparatus 100 for monitoring the temperature of the cable joint 201 as illustrated in Figs. 2-6.
At block 910, a temperature of an adaptor 101 is detected by a temperature sensor 102 arranged in the adaptor 101. The adaptor 101 is adapted to be coupled to a cable socket 31 of the switchgear 300. The cable socket 31 is provided with a mounting hole 311 for connecting the cable joint 201. The mounting hole 311 being provided at a  mounting surface 312. The adaptor 101, when coupled to the cable socket 31, is situated at the mounting surface 312 and outside the mounting hole 311.
In some embodiments, the cable socket 31 comprises a threaded hole 313 at the mounting surface 312, and the adaptor 101 comprises: a first part 111 constructed to be a threaded rot adapted to be inserted into the threaded hole 313; and a second part 112 configured to accommodate the temperature sensor 102.
In some embodiments, the second part 112 comprises a receiving hole 113 in which the temperature sensor 102 is arranged and sealed by pouring sealant 114.
At block 920, the temperature of the cable joint 201 is determined based on the detected temperature of the adaptor 101.
In some embodiments, the method 900 further includes: detecting a current in the cable 200 by a current sensor 104; in response to detecting that the current in the cable 200 increases, determining the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a first relationship between temperatures of the cable joint 201 and the adaptor 101; and in response to detecting that the current in the cable 200 decreases, determining the temperature of the cable joint 201 based on the detected temperature of the adaptor 101 and a second relationship between temperatures of the cable joint 201 and the adaptor 101, the second relationship being different from the first relationship.
In some embodiments, the first relationship is obtained by performing linear fitting on at least two pairs of temperatures of the cable joint 201 and the adaptor 101, the second relationship is obtained by performing linear fitting on at least three pairs of temperatures of the cable joint 201 and the adaptor 101, and the at least three pairs of temperatures comprises at least a pair of transient temperatures of the cable joint 201 and the adaptor 101.
In some embodiments, determining the temperature of the cable joint 201 further based on the current in the cable 200 includes: in response to an instantaneous increase of the current in the cable 200 exceeding a first threshold, increasing a value of the determined temperature of the cable joint 201 by a first compensation value; and in  response to an instantaneous decrease of the current in the cable 200 exceeding a second threshold, decreasing a value of the determined temperature of the cable joint 201 by a second compensation value.
It should be appreciated that the above detailed embodiments of the present disclosure are only to exemplify or explain principles of the present disclosure and not to limit the present disclosure. Therefore, any modifications, equivalent alternatives and improvement, etc. without departing from the spirit and scope of the present disclosure shall be included in the scope of protection of the present disclosure. Meanwhile, appended claims of the present disclosure aim to cover all the variations and modifications falling under the scope and boundary of the claims or equivalents of the scope and boundary.

Claims (14)

  1. An apparatus (100) for monitoring a temperature of a cable joint (201) of a cable (200) connected to a gas insulated switchgear (300) , comprising:
    an adaptor (101) adapted to be coupled to a cable socket (31) of the switchgear (300) , the cable socket (31) being provided with a mounting hole (311) for connecting the cable joint (201) , the mounting hole (311) being provided at a mounting surface (312) , wherein the adaptor (101) , when coupled to the cable socket (31) , is situated at the mounting surface (312) and outside the mounting hole (311) ;
    a temperature sensor (102) arranged in the adaptor (101) and configured to detect a temperature of the adaptor (101) ; and
    a processor (103) configured to determine the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) .
  2. The apparatus (100) according to claim 1, wherein the adaptor (101) comprises:
    a first part (111) coupled to the cable socket (31) at the mounting surface (312) ; and
    a second part (112) configured to accommodate the temperature sensor (102) .
  3. The apparatus (100) according to claim 2, wherein the cable socket (31) comprises a threaded hole (313) at the mounting surface (312) , and the first part (111) is a threaded rot adapted to be inserted into the threaded hole (313) .
  4. The apparatus (100) according to claim 2, wherein the second part (112) comprises a receiving hole (113) in which the temperature sensor (102) is arranged and sealed by pouring sealant (114) .
  5. The apparatus (100) according to claim 1, further comprising a current sensor (104) configured to detect a current in the cable (200) , wherein the processor (103) is further configured to determine the temperature of the cable joint (201) further based on the current in the cable (200) .
  6. The apparatus (100) according to claim 5, wherein the processor (103) is configured to determine the temperature of the cable joint (201) by:
    in response to detecting that the current in the cable (200) increases, determining the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) and a first relationship between temperatures of the cable joint (201) and the adaptor (101) ; and
    in response to detecting that the current in the cable (200) decreases, determining the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) and a second relationship between temperatures of the cable joint (201) and the adaptor (101) , the second relationship being different from the first relationship.
  7. The apparatus (100) according to claim 5, wherein determining the temperature of the cable joint (201) further based on the current in the cable (200) comprises:
    in response to an instantaneous increase of the current in the cable (200) exceeding a first threshold, increasing a value of the determined temperature of the cable joint (201) by a first compensation value; and
    in response to an instantaneous decrease of the current in the cable (200) exceeding a second threshold, decreasing a value of the determined temperature of the cable joint (201) by a second compensation value.
  8. A method (900) for monitoring a temperature of a cable joint (201) of a cable (200) connected to a gas insulated switchgear (300) , comprising:
    detecting a temperature of an adaptor (101) by a temperature sensor (102) arranged in the adaptor (101) , the adaptor (101) being adapted to be coupled to a cable socket (31) of the switchgear (300) , the cable socket (31) being provided with a mounting hole (311) for connecting the cable joint (201) , the mounting hole (311) being provided at a mounting surface (312) , wherein the adaptor (101) , when coupled to the cable socket (31) , is situated at the mounting surface (312) and outside the mounting hole (311) ; and
    determining the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) .
  9. The method (900) according to claim 8, wherein the cable socket (31) comprises a threaded hole (313) at the mounting surface (312) , and the adaptor (101) comprises:
    a first part (111) constructed to be a threaded rot adapted to be inserted into the threaded hole (313) ; and
    a second part (112) configured to accommodate the temperature sensor (102) .
  10. The method (900) according to claim 9, wherein the second part (112) comprises a receiving hole (113) in which the temperature sensor (102) is arranged and sealed by pouting sealant (114) .
  11. The method (900) according to claim 8, further comprising:
    detecting a current in the cable (200) by a current sensor (104) ;
    in response to detecting that the current in the cable (200) increases, determining the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) and a first relationship between temperatures of the cable joint (201) and the adaptor (101) ; and
    in response to detecting that the current in the cable (200) decreases, determining the temperature of the cable joint (201) based on the detected temperature of the adaptor (101) and a second relationship between temperatures of the cable joint (201) and the adaptor (101) , the second relationship being different from the first relationship.
  12. The method (900) according to claim 11, wherein the first relationship is obtained by performing linear fitting on at least two pairs of temperatures of the cable joint (201) and the adaptor (101) ,
    the second relationship is obtained by performing linear fitting on at least three pairs of temperatures of the cable joint (201) and the adaptor (101) , and
    the at least three pairs of temperatures comprises at least a pair of transient temperatures of the cable joint (201) and the adaptor (101 ) .
  13. The method (900) according to claim 11, wherein determining the temperature of the cable joint (201) further based on the current in the cable (200) comprises:
    in response to an instantaneous increase of the current in the cable (200) exceeding a first threshold, increasing a value of the determined temperature of the cable joint (201) by a first compensation value; and
    in response to an instantaneous decrease of the current in the cable (200) exceeding a second threshold, decreasing a value of the determined temperature of the cable joint (201) by a second compensation value.
  14. A gas insulated switchgear (300) comprising the apparatus (100) according to any of claims 1-7.
PCT/CN2018/078719 2018-03-12 2018-03-12 Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear WO2019173949A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/078719 WO2019173949A1 (en) 2018-03-12 2018-03-12 Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear
EP18909982.3A EP3765826A4 (en) 2018-03-12 2018-03-12 Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear
CN201880085354.7A CN111602039B (en) 2018-03-12 2018-03-12 Device and method for monitoring the temperature of a cable joint of a cable connected to a gas-insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078719 WO2019173949A1 (en) 2018-03-12 2018-03-12 Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear

Publications (1)

Publication Number Publication Date
WO2019173949A1 true WO2019173949A1 (en) 2019-09-19

Family

ID=67908523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078719 WO2019173949A1 (en) 2018-03-12 2018-03-12 Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear

Country Status (3)

Country Link
EP (1) EP3765826A4 (en)
CN (1) CN111602039B (en)
WO (1) WO2019173949A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884819A (en) * 2021-11-01 2022-01-04 西南交通大学 Cable joint fault positioning system and method for traction power supply system
CN114002553A (en) * 2021-11-01 2022-02-01 西南交通大学 Traction power supply 27.5kV cable joint fault identification method
CN116026416A (en) * 2023-02-24 2023-04-28 国网江西省电力有限公司电力科学研究院 Diversified cable joint monitoring devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117413163A (en) * 2021-08-05 2024-01-16 Abb瑞士股份有限公司 Temperature sensing device and switchgear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202651537U (en) * 2012-06-14 2013-01-02 赫兹曼电力(广东)有限公司 Cable plug with temperature detection
CN203337269U (en) * 2013-06-17 2013-12-11 长沙高升电子电器科技有限公司 A packaging structure and a temperature measuring probe of a temperature sensor
CN104977097A (en) * 2014-04-01 2015-10-14 西安和其光电科技有限公司 Method for measuring temperature of high-voltage/extra-high-voltage cable connector by using fiber
US20170016936A1 (en) * 2014-03-10 2017-01-19 Repl International Limited Electrical Sensor
CN205958134U (en) * 2016-08-17 2017-02-15 北京博大华电测控技术有限公司 Pt100 cable head embeds temperature measuring device
CN206685870U (en) 2017-05-15 2017-11-28 廊坊芳远新合电气有限公司 Cable connector for below rated voltage 35kV equipment for power transmission and distribution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015231A1 (en) * 2009-08-04 2011-02-10 Abb Ab Switching device and method for fastening a cable in such switching device
CA2801402A1 (en) * 2010-11-11 2012-05-18 Zhejiang Tuwei Electricity Technology Co., Ltd Technology and device for precisely measuring temperature of cable joint on the basis of radio frequency technique
CN201917403U (en) * 2010-12-30 2011-08-03 常州电子研究所有限公司 Temperature measuring clamp for cable connector
CN104155012A (en) * 2014-06-17 2014-11-19 广东安迪普科技有限公司 Monitoring system capable of displaying temperature rise of cable head on site
CN204855025U (en) * 2015-07-16 2015-12-09 河北省电力勘测设计研究院 Be used for cable intermediate head temperature field measuring temperature measurement testing system
JP6561931B2 (en) * 2016-07-26 2019-08-21 山里産業株式会社 Connection method of temperature sensor element wire and extension lead wire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202651537U (en) * 2012-06-14 2013-01-02 赫兹曼电力(广东)有限公司 Cable plug with temperature detection
CN203337269U (en) * 2013-06-17 2013-12-11 长沙高升电子电器科技有限公司 A packaging structure and a temperature measuring probe of a temperature sensor
US20170016936A1 (en) * 2014-03-10 2017-01-19 Repl International Limited Electrical Sensor
CN104977097A (en) * 2014-04-01 2015-10-14 西安和其光电科技有限公司 Method for measuring temperature of high-voltage/extra-high-voltage cable connector by using fiber
CN205958134U (en) * 2016-08-17 2017-02-15 北京博大华电测控技术有限公司 Pt100 cable head embeds temperature measuring device
CN206685870U (en) 2017-05-15 2017-11-28 廊坊芳远新合电气有限公司 Cable connector for below rated voltage 35kV equipment for power transmission and distribution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3765826A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884819A (en) * 2021-11-01 2022-01-04 西南交通大学 Cable joint fault positioning system and method for traction power supply system
CN114002553A (en) * 2021-11-01 2022-02-01 西南交通大学 Traction power supply 27.5kV cable joint fault identification method
CN116026416A (en) * 2023-02-24 2023-04-28 国网江西省电力有限公司电力科学研究院 Diversified cable joint monitoring devices
CN116026416B (en) * 2023-02-24 2023-08-15 国网江西省电力有限公司电力科学研究院 Diversified cable joint monitoring devices

Also Published As

Publication number Publication date
CN111602039B (en) 2022-12-27
EP3765826A1 (en) 2021-01-20
CN111602039A (en) 2020-08-28
EP3765826A4 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2019173949A1 (en) Apparatus and method for monitoring temperature of cable joint of cable connected to gas insulated switchgear
US20140179174A1 (en) Fixed tap low threshold current power supply
KR101330091B1 (en) Method of life-decision for high-voltage cables in operation
US11372060B2 (en) Busway joint connection monitoring system and methods of assembling the same
EP3173804B1 (en) Method and apparatus for detecting abnormal electrical connection in main circuit of switching device
EP3306177A1 (en) Pipeline leak detection device
TWI647341B (en) System for evaluation of current distribution in electrodes of electrochemical plants
US20170067953A1 (en) Method and device for insulation fault location having an adaptive test current determination
WO2016038908A1 (en) Gas leak detection device and gas leak inspection method
CN104267063A (en) Low-value insulator detection method based on infrared thermography
CN103854446A (en) Method and device for diagnosing high-voltage switch cabinet dynamic temperature rising and alarming
WO2012162486A2 (en) On-line monitoring system of insulation losses for underground power cables
EP3236272A1 (en) High-voltage lead-in insulating device
CN109188096B (en) Contact resistance measuring method and device
RU2634817C1 (en) Device for determining current distribution over anodes of aluminium electrolyser
US12009160B2 (en) Monitoring method for an electric power transmission device
EP3551979B1 (en) Systems and methods for continuously monitoring a temperature of an electrical supply system
CN104864981A (en) Method for temperature determination
Ignatenko et al. Determination of criteria to find the quality of an electrical connection
CN112683335A (en) Method and device for detecting faults of transformer equipment casing
CN105445627A (en) DC system insulation inspection and acceptance instrument
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
CN115494330A (en) Method for estimating residual life of surge protector on line, surge protector and electronic equipment
CN105388354A (en) Mounting assembly for all-optical overvoltage sensor for overvoltage measurement
US3363172A (en) Insulating bushing test apparatus including an insulated test terminal having a guard electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018909982

Country of ref document: EP

Effective date: 20201012