WO2019172476A1 - Procédé et dispositif d'analyse d'occlusion buccale sur la base d'un mouvement d'articulation temporo-mandibulaire d'un patient - Google Patents

Procédé et dispositif d'analyse d'occlusion buccale sur la base d'un mouvement d'articulation temporo-mandibulaire d'un patient Download PDF

Info

Publication number
WO2019172476A1
WO2019172476A1 PCT/KR2018/002880 KR2018002880W WO2019172476A1 WO 2019172476 A1 WO2019172476 A1 WO 2019172476A1 KR 2018002880 W KR2018002880 W KR 2018002880W WO 2019172476 A1 WO2019172476 A1 WO 2019172476A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
joint
oral
patient
mandibular
Prior art date
Application number
PCT/KR2018/002880
Other languages
English (en)
Korean (ko)
Inventor
김진사
Original Assignee
주식회사 쓰리디산업영상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쓰리디산업영상 filed Critical 주식회사 쓰리디산업영상
Publication of WO2019172476A1 publication Critical patent/WO2019172476A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/05Measuring instruments specially adapted for dentistry for determining occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods

Definitions

  • the present invention relates to patient temporomandibular joint movement analysis.
  • the image registration unit may match the 3D oral scan image and the CT image, and generate the registration image by adding a virtual prosthesis to the procedure position of the matched image.
  • the collision simulation unit may output the oral occlusal state of the patient by the virtual prosthesis by measuring the collision state of the occlusal surface of the patient through the simulation.
  • the outputting of the oral occlusal state of the patient may further measure the collision state of the temporomandibular joint region of the patient through the simulation to output the oral occlusal state of the patient.
  • patient-specific oral occlusion may be analyzed using a 3D oral scan image and a CT image.
  • FIG. 1 is a block diagram of a device for mandibular movement based oral occlusal analysis according to an embodiment.
  • FIG. 2 is a view illustrating registration of a 3D oral cavity scan image and a CT image according to an exemplary embodiment.
  • FIG. 5 is an illustration of a mandible joint motion model according to an embodiment.
  • FIG. 6 is a view for explaining the principle of mandibular movement according to an embodiment.
  • FIG. 7 is a diagram illustrating a mandible motion simulation and collision analysis using a mandible joint motion model according to an embodiment.
  • FIG. 9 is a flowchart illustrating a method of analyzing oral occlusion based on patient temporomandibular joint movement according to an embodiment.
  • FIG. 1 is a block diagram of a device for analyzing mandibular movement based oral occlusion according to an embodiment
  • FIG. 2 is a view illustrating registration of a 3D oral scan image and CT image according to an embodiment
  • FIG. It is a figure explaining mandibular joint separation.
  • the dental oral scanner 10 images the oral cavity surface through imaging. Therefore, the three-dimensional oral scan image obtained by the dental oral scanner 10 is a tooth root (parts coupled with the alveolar bone) that is not clearly revealed in the shape of the crown (upper teeth shown outside the gums) of the periodontal tissue in the oral cavity. And the shape of the gum around the lower tooth side). Therefore, the oral cavity surface information about the crown and the gum of the tooth can be obtained from the 3D oral scan image.
  • the image matching unit 110 matches the matching points of the two images to match the 3D oral scan image and the CT image.
  • the image matching unit 110 may initially match by matching the matching points, and may precisely match based on detailed information such as teeth.
  • the registration point may be selected by the user or automatically determined by the same points that are commonly expressed in the 3D oral scan image and the CT image. In this case, the registration point may be determined as a specific position on the surface of the reference teeth.
  • matching points p11, p12, and p13 are determined in the 3D oral cavity scan image 11.
  • Points p21, p22, and p23 that are matched with registration points p11, p12, and p13 of the 3D oral cavity scan image 11 in the CT image 21 are determined.
  • the image matching unit 110 matches the registration points of the two images and overlaps the 3D oral scan image 11 and the CT image 21. Then, an image 30 in which the 3D oral scan image 11 and the CT image 21 are matched is generated.
  • the patient's maxillary / mandibular bone tissue and oral surface structure must be accurately represented.
  • the CT image 21 expresses hard bone tissue well, there is a limit in that it cannot express soft tissues such as gums, tongues, muscles, and the like.
  • the registration image 30 can accurately represent the bone tissue and the oral surface structure.
  • the mandibular joint motion model generator 130 separates the mandible and the skull including the temporal mandibular joint (TMJ) using a CT image.
  • the maxillary / mandible may be separated by a region growing method by setting a threshold of the CT image.
  • the mandible joint motion model generation unit 130 may convert the maxillary / mandible separated from the 3D volume data into a 3D mesh image.
  • the mandibular joint motion model generation unit 130 sets the center points of the left and right temporal mandibular joint (TMJ) and the lower jaw tooth, which are the axes of the mandibular movement, as exercise reference points.
  • the mandibular joint motion model generator 130 sets motion parameters that determine the range of motion of the left and right temporal mandibular joints, and models the mandibular joint motion model that models (displays) the motion range of the temporomandibular joint (TMJ) in three-dimensional space. Create
  • the collision simulation unit 150 may determine a collision state between the maxillary and mandibular dental occlusal surface and the temporomandibular joint region by the virtual prosthesis based on the registration image further including virtual prosthetic data. It can be measured. That is, the user (doctor) adds (synthesizes) a virtual prosthesis to the procedure position of the registration image, and measures the collision state between the tooth occlusal surface and the temporomandibular joint region before the procedure of various prosthetics such as an implant. Through this, the user (doctor) can check the tooth occlusion effect by the virtual prosthesis in advance, and can modify the prosthesis design according to the collision state information in the patient's mouth.
  • FIG. 4 is a diagram illustrating an example of setting an exercise reference point for generating a mandible joint motion model according to an embodiment
  • FIG. 5 is an illustration of a mandible joint motion model according to an embodiment
  • FIG. 6 is a diagram illustrating a mandatory movement principle according to an embodiment. It is a figure.
  • the temporomandibular joint is a joint between two bones located between the mandible (mandibular bone) and the temporal bone (temporal bone).
  • the temporomandibular joint acts as the central axis of the mandibular movement and is supported by the jaw muscles and ligaments.
  • Mandibular movement is determined by the structure of the mandibular condyle (mandibular condyle) and concave mandibular fossa in the TMJ region. Therefore, in order to analyze the geometric motion of the mandible, the left and right temporal mandibular joints (TMJ_R, TMJ_L) are set as the motion reference points. A three-dimensional movement axis is set for each of the joint protrusions of the left and right temporal mandibular joints TMJ_R and TMJ_L.
  • the center of the lower jaw teeth (Centric Relation, CR) is also set as the reference point of movement.
  • the mandibular joint motion model generation unit 130 uses left and right temporal mandibular joints TMJ_R and TMJ_L, and mandibular tooth center CR, respectively, using motion parameters that determine a range of motion of each exercise reference point. Set the range of motion.
  • the exercise parameters are shown in Table 1.
  • Exercise parameters Explanation Centric Occlusion Center position of occlusal teeth Left Lateral (LL) Max left movement range Right Lateral (RL) Maximum right-hand movement range P (Protrusive) Maximum protrusion of the jaw R (Rest Position) Mandible stable position Maximum opening (E) Open position
  • the area that connects the maximum left movement range (LL), the maximum right movement range (RL), and the maximum protrusion range (P) with respect to the mandibular tooth center (CR) or occlusal center (CO) is defined in the mandibular movement range.
  • the mandible stable position (R), the maximum opening position (E) can be used to model the mandibular movement in the three-dimensional space.
  • the method of setting the maximum left movement range LL, the maximum right movement range RL, and the maximum protrusion range P for each of the left and right temporal mandibular joints TMJ_R and TMJ_L may vary.
  • the range of mandibular movement of the patient may be set based on a reference value measured according to age or gender.
  • a specially designed measuring device for radiography can be inserted into the patient's mouth and moved to the front, left and right of the jaw to the maximum, and the position values of the maximum left movement point, maximum right movement point and maximum protrusion point can be measured.
  • the mandible joint motion model generator 130 generates a mandible joint motion model that models (displays) a mandible movement range according to the movement of the left and right temporal mandibular joints TMJ_R and TMJ_L in three-dimensional space.
  • FIG. 5A is a motion model showing a sagittal plane, ie, a range of mandibular movement seen from the side.
  • the horizontal axis is the position in the direction from the back to the front of the face, and the vertical axis is the position in the direction from the bottom to the top.
  • FIG. 5B is a motion model showing a coronal plane, that is, the range of mandible movement seen from above.
  • the horizontal axis is the position in the direction from the right to the left of the face, and the vertical axis is the position in the direction from the bottom to the top.
  • FIG. 5C is a motion model showing a transverse plane, that is, a range of mandibular movement seen from above.
  • the horizontal axis is the position in the direction from the right to the left of the face, and the vertical axis is the position in the direction from the front to the back.
  • FIG. 6 it is a diagram illustrating the principle of mandibular movement according to the movement of the temporomandibular joint.
  • (a) of FIG. 7 in the horizontal plane, when the right joint protrusion moves from C to W, the left joint protrusion opposite to the balance of the jaw moves along the line B in C, and a BG called Bennett Angle Generated and extruded from C to P.
  • the right mandible movement is a horizontal plane connecting the maximum left movement range (LL), the maximum right movement range (RL), and the maximum protrusion range (P) with respect to the mandibular tooth center (CR) / occlusal center (CO). It can be represented graphically as the movement of a point at (CR, LL, P, RL) and the position (W, C, B, P) of the articular process.
  • FIG. 7 is a diagram illustrating a mandible motion simulation and collision analysis using a mandibular joint motion model according to an embodiment
  • FIG. 8 is a diagram illustrating a collision and occlusion analysis according to an embodiment.
  • the collision simulation unit 150 applies the mandibular joint motion model of the patient to the matched image to simulate the mandibular movement.
  • the collision simulation unit 150 analyzes various collision states of the oral data in the matched image through the mandibular motion simulation to analyze the occlusal state of the collided upper and lower jaw.
  • the collision simulation unit 150 may analyze the movement of the temporomandibular joint (TMJ). As a result, as shown in (b), the impact region of the temporal mandibular joint (TMJ) with the mandible may be analyzed, and as shown in (c), the collision region of the joint protrusion may be analyzed.
  • the collision simulation unit 150 analyzes the collision of the upper and lower teeth of the occlusal surface through the mandibular motion simulation and outputs the oral occlusal state according to the mandibular motion.
  • the collision simulation unit 150 checks the mandibular movement due to the patient's own temporomandibular joint, and performs a prosthesis design based on the temporal mandibular joint (TMJ) and the occlusal surface collision through the mandibular movement.
  • TMJ temporal mandibular joint
  • the prosthesis may be designed based on the patient's oral occlusal state, or the prosthetic design may be modified based on the oral occlusion by the virtual prosthesis.
  • FIG. 9 is a flowchart illustrating a method of analyzing oral occlusion based on patient temporomandibular joint movement according to an embodiment.
  • the oral occlusal analysis apparatus 100 obtains a 3D oral scan image and a CT image of a patient (S110).
  • the oral occlusal analysis apparatus 100 generates a matched image in which the 3D oral scan image and the CT image are matched by matching registration points and / or teeth of the 3D oral scan image and the CT image (S120).
  • the oral occlusal analysis apparatus 100 separates the mandible and the skull including the temporal mandibular joint (TMJ) from the registration image or the CT image using the CT image (S130).
  • TMJ temporal mandibular joint
  • the oral occlusal analysis apparatus 100 sets the center points of the left and right temporal mandibular joint (TMJ) and the lower jaw teeth as exercise reference points (S140).
  • the oral occlusal analysis apparatus 100 sets motion parameters for determining a range of motion of the left and right temporal mandibular joint (TMJ), and generates a mandibular joint motion model modeling the motion range of the temporal mandibular joint (TMJ) in three-dimensional space. (S150).
  • the oral occlusal analysis apparatus 100 applies the mandibular joint motion model of the patient to the registration image of the patient to simulate the mandibular movement of the patient (S160).
  • the oral occlusal analysis apparatus 100 measures a collision state of the maxillary / mandibular tooth occlusal surface and the temporomandibular joint region through the mandibular motion simulation of the patient (S170).
  • the oral occlusal state including the maxillary / mandibular tooth occlusal surface and the collision state of the temporomandibular joint site, is reflected in the prosthetic design.
  • the patient-specific oral occlusion may be analyzed using the 3D oral scan image and the CT image.
  • the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

La présente invention concerne un dispositif d'analyse d'occlusion buccale, qui fonctionne au moyen d'au moins un processeur, et qui comprend : une unité de mise en correspondance d'image pour générer une image mise en correspondance par mise en correspondance d'une image de balayage buccal tridimensionnel et d'une image CT d'un patient ; une unité de génération de modèle de mouvement d'articulation mandibulaire pour séparer la mandibule comprenant l'articulation temporo-mandibulaire de l'image mise en correspondance ou de l'image CT, et pour générer un modèle de mouvement d'articulation mandibulaire qui est une plage de mouvement de la mandibule modélisée dans un espace tridimensionnel au moyen de paramètres de mouvement déterminant la plage de mouvement de l'articulation temporo-mandibulaire ; et une unité de simulation de collision pour simuler le mouvement mandibulaire du patient par application du modèle de mouvement d'articulation mandibulaire à une zone mandibulaire de l'image mise en correspondance, et pour mesurer l'état de collision d'une surface dentaire occlusale du patient au moyen de la simulation.
PCT/KR2018/002880 2018-03-08 2018-03-12 Procédé et dispositif d'analyse d'occlusion buccale sur la base d'un mouvement d'articulation temporo-mandibulaire d'un patient WO2019172476A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180027632 2018-03-08
KR10-2018-0027632 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172476A1 true WO2019172476A1 (fr) 2019-09-12

Family

ID=67846154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002880 WO2019172476A1 (fr) 2018-03-08 2018-03-12 Procédé et dispositif d'analyse d'occlusion buccale sur la base d'un mouvement d'articulation temporo-mandibulaire d'un patient

Country Status (1)

Country Link
WO (1) WO2019172476A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112700703A (zh) * 2021-01-14 2021-04-23 四川大学 一种颞下颌关节体外仿真模拟器
WO2023191566A1 (fr) * 2022-04-01 2023-10-05 주식회사 레이 Procédé de simulation de mouvement de mandibule
WO2023213425A1 (fr) * 2022-05-06 2023-11-09 3Shape A/S Procédé de surveillance de changements de morsure
WO2024027724A1 (fr) * 2022-08-04 2024-02-08 首都医科大学宣武医院 Procédé de mesure et d'évaluation tridimensionnelles numériques pour articulations temporo-mandibulaires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048432A1 (en) * 2002-08-22 2005-03-03 Align Technology, Inc. Systems and methods for treatment analysis by teeth matching
US20050191594A1 (en) * 1997-12-30 2005-09-01 Cadent Ltd. Virtual orthodontic treatment
KR20090105130A (ko) * 2008-04-01 2009-10-07 이태경 디지털 데이터를 통한 교합상태 판단방법 및 디지털교합기
JP2011523565A (ja) * 2008-04-29 2011-08-18 マテリアライズ・デンタル・ナムローゼ・フエンノートシャップ 側頭下顎関節における提案された歯の改質の影響を決定するための方法
KR101778951B1 (ko) * 2015-02-23 2017-09-18 서울대학교산학협력단 하악운동 시뮬레이션 방법, 이를 위한 장치, 및 이를 기록한 기록 매체
KR20170125599A (ko) * 2016-05-04 2017-11-15 주식회사 메디트 치과용 3차원 데이터 처리장치 및 그 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191594A1 (en) * 1997-12-30 2005-09-01 Cadent Ltd. Virtual orthodontic treatment
US20050048432A1 (en) * 2002-08-22 2005-03-03 Align Technology, Inc. Systems and methods for treatment analysis by teeth matching
KR20090105130A (ko) * 2008-04-01 2009-10-07 이태경 디지털 데이터를 통한 교합상태 판단방법 및 디지털교합기
JP2011523565A (ja) * 2008-04-29 2011-08-18 マテリアライズ・デンタル・ナムローゼ・フエンノートシャップ 側頭下顎関節における提案された歯の改質の影響を決定するための方法
KR101778951B1 (ko) * 2015-02-23 2017-09-18 서울대학교산학협력단 하악운동 시뮬레이션 방법, 이를 위한 장치, 및 이를 기록한 기록 매체
KR20170125599A (ko) * 2016-05-04 2017-11-15 주식회사 메디트 치과용 3차원 데이터 처리장치 및 그 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112700703A (zh) * 2021-01-14 2021-04-23 四川大学 一种颞下颌关节体外仿真模拟器
WO2023191566A1 (fr) * 2022-04-01 2023-10-05 주식회사 레이 Procédé de simulation de mouvement de mandibule
WO2023213425A1 (fr) * 2022-05-06 2023-11-09 3Shape A/S Procédé de surveillance de changements de morsure
WO2024027724A1 (fr) * 2022-08-04 2024-02-08 首都医科大学宣武医院 Procédé de mesure et d'évaluation tridimensionnelles numériques pour articulations temporo-mandibulaires

Similar Documents

Publication Publication Date Title
US20220015878A1 (en) Method and system for acquiring data from an individual for preparing a 3d model
WO2019172476A1 (fr) Procédé et dispositif d'analyse d'occlusion buccale sur la base d'un mouvement d'articulation temporo-mandibulaire d'un patient
RU2567604C2 (ru) Динамический виртуальный артикулятор
JP5676325B2 (ja) 情報処理装置、情報処理方法、及びプログラム
US8620045B2 (en) System , method and article for measuring and reporting craniomandibular biomechanical functions
US20120115107A1 (en) System and method for automated manufacturing of dental orthotics
US20040172150A1 (en) System and method for virtual articulator
JP5746316B2 (ja) 歯科用模型を形成するための方法および装置
Hong et al. Setting the sagittal condylar inclination on a virtual articulator by using a facial and intraoral scan of the protrusive interocclusal position: A dental technique
CN107080554A (zh) 颞下颌关节测量方法、牙合板制备方法
PL235136B1 (pl) Sposób rejestracji ruchu i geometrii stawu skroniowo-żuchwowego
WO2021096163A1 (fr) Appareil de fabrication de dispositif personnalisé de prévention du ronflement et de l'apnée du sommeil
WO2022075698A2 (fr) Système capable d'analyser la forme d'une arcade dentaire et un modèle d'occlusion et permettant la combinaison de dents supérieures et inférieures dans une position anatomiquement idéale sur la base d'un nuage de mégadonnées dans lequel un modèle d'occlusion et des formes d'arcade dentaire de dents supérieures et inférieures sont classés
Özdemir et al. Virtual articulators, virtual occlusal records and virtual patients in dentistry
US20180153658A1 (en) Anatomical articulator for dental diagonostic method and prosthetic reconstruction
D’Albis et al. Orientation of digital casts according to the face-bow arbitrary plan
Plaster Transfer of the patient's oral situation to the articulator and synchronizing the articulated models: Part 1: Occlusal plane and jaw relation--the analysis and transfer of information.
CN114343906B (zh) 咬合垂直距离的获取方法、装置、介质及电子设备
CN114668538A (zh) 三维模块化颅颌骨医学影像的数字颌型架及构建方法
US20110191083A1 (en) System and Method for Measuring and Reporting the Relative Functions of Dental Anatomical Structures
US20230225839A1 (en) Methods and systems for obtaining hinge axis position and condyle guide inclination from a patient
WO2023191566A1 (fr) Procédé de simulation de mouvement de mandibule
Att et al. Registration of patient-relevant references in edentulous jaws using intraoral scanners: simplification of the clinical procedure.
DAHM TĂTARU THE APPLICABILITY OF FUNCTIONAL ANALYSIS IN FIXED PROSTHETICS.
CN115517795A (zh) 一种建立虚拟颌架的方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908651

Country of ref document: EP

Kind code of ref document: A1