WO2019172358A1 - Hmgn部分ペプチド及びこれを用いたがん療法 - Google Patents

Hmgn部分ペプチド及びこれを用いたがん療法 Download PDF

Info

Publication number
WO2019172358A1
WO2019172358A1 PCT/JP2019/009015 JP2019009015W WO2019172358A1 WO 2019172358 A1 WO2019172358 A1 WO 2019172358A1 JP 2019009015 W JP2019009015 W JP 2019009015W WO 2019172358 A1 WO2019172358 A1 WO 2019172358A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
peptide
antibody
Prior art date
Application number
PCT/JP2019/009015
Other languages
English (en)
French (fr)
Inventor
綱治 松島
悟史 上羽
俊吾 弟子丸
昌佑 陳
祥司 横地
義郎 石渡
史朗 柴山
Original Assignee
国立大学法人 東京大学
小野薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 小野薬品工業株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2020505099A priority Critical patent/JP7302793B2/ja
Priority to EP19764047.7A priority patent/EP3763731A4/en
Priority to US16/978,633 priority patent/US11572393B2/en
Publication of WO2019172358A1 publication Critical patent/WO2019172358A1/ja
Priority to US18/092,737 priority patent/US11919932B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel peptide and cancer therapy using the same. More specifically, the present invention relates to a peptide derived from a partial region of HMGN1, 2, 4, 5 and a cancer therapy using a combination of the peptide and an immune checkpoint regulator or an anti-CD4 antibody.
  • HMG protein is a superfamily of nucleosome binding proteins and is classified into HMGA, HMGB, and HMGN families. These polypeptides regulate gene expression by binding to DNA.
  • HMG protein is released extracellularly by cell death such as necrosis induced by infection or injury, or by the pathway that is not via the endoplasmic reticulum-Golgi pathway, which is the normal transport pathway, and induces an inflammatory response Is classified into the alarmin molecule group.
  • Other known alarmin proteins include cytokines such as IL-1 ⁇ and IL-33, HSP (heat shock protein), and S100 protein.
  • Alarmin proteins are also involved in the recognition of pathogen-associated molecularPpatterns (PAMPs) via pattern recognition receptors such as Toll-like receptors (TLR). .
  • PAMPs pathogen-associated molecularPpatterns
  • TLR Toll-like receptors
  • HMGN one of the family of HMG proteins, has five types: HMGN1, HMGN2, HMGN3, HMGN4, and HMGN5.
  • HMGN1 has been reported to have increased tumor development in HMGN1-deficient mice (eg, Non-Patent Documents 1 to 3), and HMGN1 is a booster for anti-tumor immunity, such as surgery, chemotherapy, radiation therapy, etc.
  • HMGN1 protein can be used in combination with conventional cancer therapy, immune checkpoint inhibitors, and the like (Non-patent Document 4).
  • Patent Document 1 discloses an invention in which a partial peptide of HMGN2 is used for cancer treatment, but it is used as a carrier for an anticancer agent by utilizing the fact that the partial peptide of HMGN2 is easily accumulated in tumor blood vessels. It is an invention and does not mean that the partial peptide of HMGN2 has an antitumor effect.
  • Patent Document 2 discloses the use of an HMGN peptide or a functional fragment thereof for enhancing an antigen-specific immune response, but does not disclose a specific antitumor action.
  • An object of the present invention is to provide a novel therapeutic means effective and practical for cancer, and a novel substance useful as such a therapeutic means.
  • the inventors of the present invention have intensively studied the antitumor effect of a partial peptide of HMGN using a tumor-bearing model mouse, and as a result, a novel partial peptide containing a specific region of HMGN1 can be administered to a tumor-bearing model mouse alone or as a tumor.
  • the present invention provides a peptide whose amino acid sequence is represented by any one amino acid sequence selected from the following (1) to (9).
  • the present invention also provides an anticancer agent comprising at least one peptide as an active ingredient, wherein the amino acid sequence of the at least one peptide is represented by any one of the following (1) to (9): Provide anti-cancer drugs.
  • the present invention is an anticancer agent potentiator for an anticancer agent comprising at least one peptide, wherein the amino acid sequence of the at least one peptide is any of the following (1) to (9):
  • an amino acid sequence in which 1 to 8 amino acid residues at the C-terminal are deleted
  • Amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (2) (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKPKKAPAKKGE (SEQ ID NO: 12) (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE (SEQ ID NO: 14) (7) GQG DMRQEPKRR SARLS
  • the present invention provides a cancer treatment method comprising administering an effective amount of the peptide of the present invention to a patient in need of cancer treatment.
  • (1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 3) (2) In (1), an amino acid sequence in which 1 to 8 amino acid residues at the C-terminal are deleted (3) An amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (1) (4) Amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (2) (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKPKKAPAKKGE (SEQ ID NO: 12) (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE (SEQ ID NO: 14) (7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD (SEQ ID NO: 15) (8) The amino acid sequence in which 1 to 5 amino acid residue
  • [5] (2) is SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 5), and (3) is AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 7) or EPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 8),
  • the peptide according to any one of [1] to [3] above, wherein (4) is EPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 18).
  • the (2) is SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 5), and the (3) is AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 7) or EPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 8).
  • the peptide according to any one of [1] to [4].
  • the amino acid sequence is any amino acid sequence selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 18.
  • the peptide of the above-mentioned [1] which is represented.
  • the amino acid sequence is represented by any amino acid sequence selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 14, and SEQ ID NO: 15.
  • An anticancer agent comprising at least one peptide as an active ingredient for use in combination with an immune checkpoint regulator and at least one selected from anti-CD4 antibodies or antigen-binding fragments thereof.
  • An anticancer agent, wherein the amino acid sequence of the at least one peptide is represented by any of the following (1) to (9).
  • [15] (2) is SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 5), and (3) is AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 7) or EPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 8),
  • the anticancer agent according to any one of [11] to [13], wherein (4) is EPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 18).
  • [16] (2) is SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK (SEQ ID NO: 5), and (3) is AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 7) or EPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 8) [11]
  • the amino acid sequence of the at least one peptide is selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 18.
  • the anticancer agent according to [11] which is represented by any amino acid sequence.
  • the amino acid sequence of the at least one peptide is any amino acid selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 14, and SEQ ID NO: 15.
  • the anticancer agent in any one.
  • the anticancer agent according to [19], wherein the immune checkpoint control agent is at least one antiimmune checkpoint antibody.
  • the anti-CD4 antibody or antigen-binding fragment thereof is an anti-CD4 antibody having cytotoxic activity, or an anti-CD4 antibody or antigen-binding fragment thereof to which a cytotoxic component is bound.
  • the anticancer agent in any one of.
  • An anticancer agent for enhancing anticancer activity comprising at least one peptide, wherein the anticancer agent comprises an immune checkpoint regulator and an anti-CD4 antibody or an antigen-binding fragment thereof.
  • An anticancer agent comprising at least one selected as an active ingredient, wherein the amino acid sequence of the at least one peptide is represented by any of the following (1) to (9): Agent.
  • An anticancer agent comprising at least one peptide as an active ingredient, wherein the amino acid sequence of the at least one peptide is represented by any one of (1) to (9) below: Cancer drug.
  • (1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD (SEQ ID NO: 3) (2) In (1), an amino acid sequence in which 1 to 8 amino acid residues at the C-terminal are deleted (3) An amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (1) (4) Amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (2) (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKPKKAPAKKGE (SEQ ID NO: 12) (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE (SEQ ID NO: 14) (7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTK
  • An anti-cancer activity enhancer for an anticancer agent comprising at least one peptide, wherein the amino acid sequence of the at least one peptide is represented by any one of (1) to (9) below: Anticancer effect enhancer.
  • SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD SEQ ID NO: 3
  • an amino acid sequence in which 1 to 8 amino acid residues at the C-terminal are deleted
  • Amino acid sequence in which 1 to 13 N-terminal amino acid residues are deleted in (2) (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKPKKAPAKKGE (SEQ ID NO: 12) (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE (SEQ ID NO: 14) (7) GQG DMRQEPKRR SARLSAMLV PVTPEV
  • An anticancer agent comprising the peptide according to any one of [1] to [10] or [27] as an active ingredient.
  • An anticancer agent comprising the amino acid sequence of the peptide according to any one of [1] to [10] or [27].
  • An anticancer agent enhancer for an anticancer agent comprising the peptide according to any one of [1] to [10] or [27].
  • an anticancer agent for enhancing anticancer activity comprising the amino acid sequence of the peptide according to any one of [1] to [10] or [27].
  • the anticancer agent is an anticancer agent comprising an immune checkpoint regulator and at least one selected from an anti-CD4 antibody or an antigen-binding fragment thereof as an active ingredient 34
  • the immune checkpoint regulator is at least one selected from an antagonist to an inhibitory immune checkpoint molecule and an agonist to a costimulatory immune checkpoint molecule.
  • an anti-cancer effect enhancer according to [35] above.
  • the immune checkpoint control agent is at least one anti-immune checkpoint antibody.
  • the anti-immune checkpoint antibody is at least one selected from antagonistic anti-PD-1 antibody, anti-PD-L1 antibody, and anti-PD-L2 antibody.
  • the anti-CD4 antibody or an antigen-binding fragment thereof is an anti-CD4 antibody having cytotoxic activity, or an anti-CD4 antibody or an antigen-binding fragment thereof to which a cytotoxic component is bound.
  • a pharmaceutical composition comprising the peptide according to any one of [1] to [10] or [27] as an active ingredient.
  • a pharmaceutical composition comprising a peptide having the amino acid sequence according to any one of [1] to [10] or [27] as an active moiety.
  • a pharmaceutical composition comprising the amino acid sequence of the peptide according to any one of [1] to [10] or [27].
  • a method for treating cancer comprising administering an effective amount of the peptide according to any one of [1] to [10] or [27] to a patient in need of cancer treatment.
  • the peptide according to any one of [1] to [10] or [27] which is used for cancer treatment.
  • the present invention provides each novel peptide derived from each of the partial regions of HMGN1, HMGN2, HMGN4, and HMGN5, and a novel cancer therapy using these.
  • the anticancer agent comprising the peptide of the present invention is selected alone or from an immune checkpoint regulator and a depleting anti-CD4 antibody, an anti-CD4 antibody to which a cytotoxic component is bound, or an antigen-binding fragment thereof. When used in combination with at least one, it exhibits a significantly superior antitumor effect. The effect is as shown in the following Examples, and the antitumor effect was confirmed so that multiple examples of complete regression of tumors appeared.
  • the antitumor effect of the novel peptide of the present invention can also be understood as an effect of enhancing the anticancer effect.
  • it can be regarded as an effect of enhancing the anticancer action of an anticancer agent such as an immune checkpoint regulator or a depleting anti-CD4 antibody.
  • an anticancer agent such as an immune checkpoint regulator or a depleting anti-CD4 antibody.
  • the peptide of the present invention is about several tens of residues in length, it can be easily prepared by chemical synthesis. In the case of chemical synthesis, unlike genetic recombination, there is no contamination of components derived from host cells, which is advantageous as a pharmaceutical product.
  • the results of the following examples suggest that the blood half-life of the peptide of the present invention is comparable to that of the original full-length HMGN protein, which can also be cited as an advantage of the present invention. .
  • HMGN1 protein and partial peptide were administered at the doses shown in the figure.
  • HMGN1 protein and partial peptide were administered at the doses shown in the figure. 24 days after tumor cell transplantation of colon 26 tumor-bearing mice administered with mouse full-length HMGN1 protein and two partial peptides (mPep1, mPep2) alone or in combination with anti-PD-L1 antibody (200 ⁇ g / mouse) It is a measurement result of tumor volume in. HMGN1 protein and partial peptide were administered at the doses shown in the figure. Significant difference with respect to the control group: *: p ⁇ 0.05, **: p ⁇ 0.01 (Dunnett).
  • Pep1 was administered at the dose (ng / mouse) shown in the figure.
  • Anti-PD-L1 antibody was administered at 200 ⁇ g / mouse. Changes in tumor volume for each mouse in each group of Colon26 tumor-bearing mice administered with various terminal deletions of Pep1 and R ⁇ D substitution in combination with anti-PD-L1 antibody (200 ⁇ g / mouse). is there.
  • Each peptide was administered at the dose (ng / mouse) shown in the figure.
  • Pep1 300 ng / mouse
  • PepO 318 ng, 954 ng / mouse
  • anti-PD-L1 antibody 200 ⁇ g / mouse
  • Each peptide was administered at the dose shown in the figure.
  • Anti-PD-L1 antibody was administered at 200 ⁇ g / mouse.
  • the time course of the tumor volume for each mouse in each group was shown in a graph. It is the measurement result of the tumor volume 24 days after tumor cell transplantation of the Pep1 single administration group, the anti-CD4 antibody single administration group, and the Pep1 + anti-CD4 antibody combination group. ** is significantly different between the two groups, p ⁇ 0.01 (Dunnett).
  • the peptide of the present invention is a peptide whose amino acid sequence is represented by any one amino acid selected from the following (1) to (9). (10) is a preferred example of (9).
  • the peptide of the present invention may be, for example, an anticancer active peptide or an anticancer enhancing peptide.
  • the anticancer active peptide is a peptide having anticancer activity.
  • the anticancer action enhancing peptide is a peptide having an activity of enhancing the anticancer action of an anticancer agent.
  • the anti-cancer activity of an anti-cancer active peptide includes not only the activity of the peptide alone to suppress tumor growth, metastasis and recurrence, but also additive or anti-cancer activity when used in combination with other anti-cancer active ingredients. Synergistic activity to suppress tumor growth, metastasis and recurrence is included. The latter activity, particularly the activity that synergistically suppresses tumor growth and the like, can also be understood as an anti-cancer action enhancing activity.
  • the substitution with a conservative amino acid means the commutation of a residue having a similar side chain.
  • the group of amino acids having an aliphatic side chain glycine, alanine, valine, leucine and isoleucine
  • the group of amino acids having an aliphatic hydroxyl side chain, serine and threonine in the group of amino acids having an amide-containing side chain, asparagine and glutamine, in the group of amino acids having an aromatic side chain
  • phenylalanine, tyrosine and tryptophan phenylalanine, tyrosine and tryptophan
  • lysine arginine and histidine
  • cysteine and methionine in the group of amino acids having sulfur-containing side chains.
  • Examples of preferred conservative amino acid substitutions include substitution between valine, leucine and isoleucine, substitution between phenylalanine and tyrosine, substitution between lysine and arginine, substitution between alanine and valine and between asparagine and glutamine. Substitution.
  • one embodiment of the amino acid sequence from which the C-terminal or N-terminal amino acid residue is deleted includes an amino acid sequence in which amino acid residues are continuously deleted from the C-terminal or N-terminal.
  • the peptide of the present invention is a peptide having the amino acid sequence of (1) (SEQ ID NO: 3) derived from a partial region of HMGN1 protein.
  • the amino acid sequence of SEQ ID NO: 3 is the amino acid sequence of the 7th to 43rd residue region of human HMGN1 protein (GenBank Accession No. NP_004956, SEQ ID NO: 17).
  • HMGN proteins such as NMGN1 are composed of a nucleosomal binding domain (NBD), two nuclear localization signals sandwiching NBD, and a chromatin unfolding domain in the C-terminal region.
  • NBD the 14th to 42nd amino acid region
  • SEQ ID NO: 3 is the sequence of the partial region of HMGN1 containing this NBD.
  • SEQ ID NO: 3 the region from the 8th to the 36th amino acid is NBD.
  • the peptide of the present invention is mPep1 (SEQ ID NO: 1).
  • the peptide of the present invention is a peptide having the amino acid sequence of (2) derived from a partial region of HMGN1 protein.
  • (2) has 1 to 8 C-terminal amino acid residues of the amino acid sequence shown in SEQ ID NO: 3, for example 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3 1, 2, or 8, 7, 7, 5, 4, 3, 2, or 1 deleted amino acid sequences.
  • Specific examples of the amino acid sequence of (2) include the amino acid sequence shown in SEQ ID NO: 5, but the scope of the present invention is not limited to this specific example.
  • the peptide of the present invention is a peptide having an amino acid sequence of (3) derived from a partial region of HMGN1 protein.
  • (3) has 1 to 13 N-terminal amino acid residues of the amino acid sequence shown in SEQ ID NO: 3, for example, 1 to 12, 1 to 11, 1 to 10, 1 to 9, 1 to 8 Pieces, 1-7 pieces, 1-6 pieces, 1-5 pieces, 1-4 pieces, 1-3 pieces, 1-2 pieces, or 13, 12, 11, 10, 9, 8 pieces 7, 6, 5, 4, 3, 2, or 1 deleted amino acid sequences.
  • Specific examples of the amino acid sequence of (3) include the amino acid sequences shown in SEQ ID NO: 7 and SEQ ID NO: 8, but the scope of the present invention is not limited to these specific examples.
  • the peptide of the present invention is a peptide having an amino acid sequence of (4) derived from a partial region of HMGN1 protein.
  • (4) is the amino acid sequence shown in SEQ ID NO: 3, wherein the C-terminal amino acid residue is 1 to 8, for example, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1-2, or 8, 7, 6, 5, 4, 3, 2, or 1 and 1 to 13 amino acid residues at the N-terminus
  • Specific examples of the amino acid sequence of (4) include the amino acid sequence shown in SEQ ID NO: 18, but the scope of the present invention is not limited to this specific example.
  • the peptide of the present invention is a peptide having an amino acid sequence of (10) derived from a partial region of HMGN1 protein.
  • the amino acid sequence of (10) is an amino acid sequence derived from a partial region of HMGN1 protein in (9), and 1 to 3 in any one of (1) to (4), for example, 1 or 2 Or an amino acid sequence in which one amino acid residue is substituted.
  • an amino acid sequence shown in SEQ ID NO: 11 (a sequence in which one residue at the N-terminus of SEQ ID NO: 3 is deleted and three R residues are substituted with D residues) is given.
  • the present invention is not limited to this.
  • One embodiment of this substitution can include substitution with a conservative amino acid.
  • the peptide of the present invention is SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 11 or SEQ ID NO: 18. Or it is sequence number 3, sequence number 5, sequence number 7, sequence number 8, or sequence number 18.
  • the peptide of the present invention is derived from a partial region containing NBD of HMGN2, HMGN4, or HMGN5 (5) amino acid sequence (SEQ ID NO: 12), (6) amino acid sequence (SEQ ID NO: 14) Or a peptide having the amino acid sequence of (7) (SEQ ID NO: 15).
  • SEQ ID NOs: 12, 14, and 15 are amino acid sequences of partial regions containing NBD of human HMGN2, human HMGN4, and human HMGN5, respectively, and regions in each HMGN protein corresponding to the region of SEQ ID NO: 3 in human HMGN1 It is.
  • SEQ ID NO: 12 corresponds to the 12th to 41st amino acids
  • SEQ ID NO: 14 corresponds to the 11th to 40th amino acids
  • SEQ ID NO: 15 corresponds to the 6th to 35th amino acid regions.
  • the peptide of the present invention is a peptide having the amino acid sequence of (8) derived from a partial region containing NBD of HMGN2, HMGN4, or HMGN5.
  • (8) represents the amino acid sequence of any one of SEQ ID NO: 12, SEQ ID NO: 14, and SEQ ID NO: 15, 1 to 5 residues at the C terminus, 1 to 5 residues at the N terminus, or 1 to 5 at the C terminus. It is an amino acid sequence in which residues and 1 to 5 residues at the N-terminus are deleted.
  • the peptide of the present invention is a peptide having the amino acid sequence of (9).
  • (9) is an amino acid sequence in which one to three, for example, one or two, or one amino acid residue is substituted in any one of (1) to (8).
  • the amino acid sequence shown in SEQ ID NO: 11 (a sequence in which one residue at the N-terminus of SEQ ID NO: 3 is deleted and three R residues are substituted with D residues) is given.
  • the present invention is not limited to this.
  • One embodiment of this substitution can include substitution with a conservative amino acid.
  • a peptide having an amino acid sequence in which one to three, for example, one or two, or one amino acid residue is substituted in any of (5) to (8) Corresponds to a peptide derived from a partial region containing NBD of HMGN2, HMGN4, and HMGN5.
  • the amino acid sequence of the peptide of the present invention may be any one of (1) to (7) above or any one of (1) to (3) and (5) to (7). Furthermore, the amino acid sequence of the peptide of the present invention may be any of (1) to (4) and (10) above, or (1) to (4).
  • the amino acid sequence of the peptide of the present invention is selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 18. Any amino acid sequence.
  • the amino acid sequence of the peptide of the present invention is any one selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 18.
  • it may be an amino acid sequence in which 1 to 3, for example 1 or 2, or 1 amino acid residue is substituted (preferably substituted by a conservative amino acid).
  • the anticancer agent of the present invention is a preferred example of an application example of the peptide of the present invention, and contains a peptide whose amino acid sequence is represented by any one of the above (1) to (9) as an active ingredient. (10) is a preferred example of (9) as described above.
  • the peptide represented by the amino acid sequence (SEQ ID NO: 3) of (1) exhibits an antitumor effect by itself as described in the following Examples, but an immune checkpoint regulator such as an anti-PD-L1 antibody In combination with anti-CD4 antibody, it acts synergistically and exhibits superior antitumor effects. Therefore, the peptide represented by the amino acid sequence of SEQ ID NO: 3 is useful as an active ingredient of an anticancer agent.
  • the peptide having the amino acid sequence (2) can also be used as an active ingredient of an anticancer agent, like the peptide represented by the amino acid sequence shown in SEQ ID NO: 3.
  • the peptide having the amino acid sequence shown in SEQ ID NO: 3 when the peptide having the amino acid sequence shown in SEQ ID NO: 3 is removed at least 14 residues at its N-terminus, the peptide has a synergistic anti-cancer effect in combination with an immune checkpoint regulator. Although the cancer action is lost, removal of about 8 residues maintains the anticancer action. Therefore, the peptide having the amino acid sequence (3) can also be used as an active ingredient of an anticancer agent, like the peptide represented by the amino acid sequence shown in SEQ ID NO: 3.
  • the 14th to 29th residue region of SEQ ID NO: 3 for example, the 10th to 32nd residue region (SEQ ID NO: 18 ) Is the smallest region important for the anticancer activity of the HMGN1 protein fragment.
  • the amino acid sequence of (4) contains such a minimal region. Therefore, the peptide represented by the amino acid sequence of (4) can also be used as an active ingredient of an anticancer agent, similarly to the peptide represented by the amino acid sequence shown in SEQ ID NO: 3.
  • the fact that the peptide consisting of the minimal region shown in SEQ ID NO: 18 has an anticancer activity has also been confirmed in the following examples.
  • amino acid sequence (5) SEQ ID NO: 12
  • amino acid sequence (6) SEQ ID NO: 14
  • amino acid sequence (7) SEQ ID NO: 15
  • Peptides represented by these amino acid sequences can also be used as active ingredients of anticancer agents.
  • the amino acid sequence shown in SEQ ID NO: 11 is one specific example of the amino acid sequence (9) as described above.
  • the peptide represented by the amino acid sequence shown in SEQ ID NO: 11 has an antitumor effect as shown in the Examples below.
  • any of the above (1) to (7) or any of (1) to (4) and (10) is preferable, As a particularly preferred example, any amino acid sequence selected from SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 18 Although not limited to these, it is not limited to these.
  • the anticancer agent of the present invention may be used in combination with an immune checkpoint control agent and at least one anticancer active ingredient selected from an anti-CD4 antibody or an antigen-binding fragment thereof.
  • the anticancer agent of the present invention exhibits an antitumor effect synergistically when used in combination with such an anticancer active ingredient.
  • active ingredient (a) at least one peptide used as an active ingredient of the anticancer agent of the present invention
  • active ingredient (b) At least one selected from antigen-binding fragments
  • the term “used in combination” includes both an aspect in which a plurality of active ingredients are used as separate agents, and an aspect in which the active ingredient is used as a combination agent containing a plurality of active ingredients in the same preparation.
  • the anticancer agent of the present invention is typically an agent taking the former aspect, and the active ingredient (b) is prepared as a separate agent from the anticancer agent of the present invention. It is common. The same applies to the case where a plurality of active ingredients (b) are used, and an agent containing a plurality of active ingredients (b) in the same preparation may be used, but in general, a plurality of active ingredients (b) are separately provided. It is preferable to combine them as agents.
  • each active ingredient is combined as a separate agent, there is an advantage that the administration site, the administration time, the number of administrations, the dosage, etc. of each active ingredient can be individually optimized.
  • agents containing multiple anticancer active peptides in the same preparation may be used, or multiple anticancer active peptides are prepared as separate agents. Any of these may be used, and either one can be preferably used.
  • administered in combination means that a plurality of active ingredients are administered to a patient simultaneously, sequentially or separately. Sequential administration refers to administration of the next active ingredient immediately after the administration of one active ingredient is completed. Separate administration refers to administration of multiple active ingredients at intervals, such as administration at intervals of several hours or more on the same day, or administration on another day during a course of treatment. Say. In the case of simultaneous administration, active ingredients formulated as separate agents may be administered simultaneously, or an agent containing a plurality of components in the same preparation may be administered.
  • 1 course refers to a small unit period that includes both a medication period and a drug holiday period, as is generally understood in the field of cancer therapy.
  • a course of administration of an anticancer drug for about one week or several weeks and a drug withdrawal period of about one week are considered as one course, and the patient's condition and cancer
  • the number of cools (usually several cools) determined by the doctor according to the reduction effect or the like is performed.
  • the term “cancer treatment” includes various medical procedures performed for the purpose of treating a patient's cancer. Specifically, in addition to treating primary cancer, recurrent cancer, and metastatic cancer, suppression of cancer recurrence and metastasis is also included.
  • the anticancer agent of the present invention is administered to a patient after removing a cancer lesion by surgery for the purpose of preventing recurrence is also encompassed in “cancer treatment”. Therefore, the term “anticancer agent” includes a therapeutic agent for cancer (primary cancer, recurrent cancer, metastatic cancer), a cancer recurrence inhibitor, and a cancer metastasis inhibitor.
  • cancer patient includes patients who have cancer, as well as patients who have undergone surgical removal of a cancer lesion.
  • the type of cancer targeted by the anticancer agent of the present invention is not particularly limited, and solid cancer (malignant melanoma (for example, malignant melanoma in the skin, oral mucosal epithelium, or orbit), non-small cell lung cancer) (Eg squamous non-small cell lung cancer and non-squamous non-small cell lung cancer), small cell lung cancer, head and neck cancer, renal cell cancer, clear cell renal cell cancer, breast cancer, ovarian cancer, serous ovary Cancer, ovarian clear cell adenocarcinoma, nasopharyngeal cancer, uterine cancer (eg cervical cancer, endometrial cancer and endometrial cancer), anal cancer (eg anal canal cancer), large intestine Cancer, rectal cancer, colon cancer, hepatocellular carcinoma, esophageal cancer, esophageal adenocarcinoma, stomach cancer, esophageal junction cancer, small intestine cancer, pancreatic cancer,
  • the anticancer agent of the present invention can be preferably used for solid cancer.
  • solid cancer include lung cancer, breast cancer, stomach cancer, liver cancer, colon cancer, tongue cancer, thyroid cancer, kidney cancer, prostate cancer, uterine cancer, cervical cancer,
  • epithelial solid cancers such as ovarian cancer and other solid cancers that are not classified as epithelial solid cancers such as melanoma and glioma.
  • the cancer targeted by the present invention may be a cancer other than skin cancer.
  • polyethylene glycol (PEG) chains are added for the purpose of improving the stability of peptides in vivo and increasing the blood half-life (Clin Nephrol. 2006 Mar; 65 (3): 180-90. And Proc Natl Acad Sci USA. 2005 Sep 6; 102 (36): 12962-7.), Mainly adding sugar chains to the N-terminus or C-terminus (J Am Chem Soc. 2004 Nov 3; 126 (43): 14013-22 and Angew Chem Int Ed Engl. 2004 Mar 12; 43 (12): 1516-20, etc.), and at least a part of amino acid residues is D-form (J Pharmacol Exp Ther.
  • PEG polyethylene glycol
  • Fc region of the antibody is appropriately modified and added (for example, J. Immunol., 154 ( 10), 5590-5600 (1995), Nature, 332, 563-564 (1998), Nature, 332, 738-740 (1998), BioDrugs. 2008; 22: 11-26, etc.) Yes.
  • the peptide of the present invention particularly a peptide used as an active ingredient of an anticancer agent, may be one to which such a technique is applied.
  • the “peptide whose amino acid sequence is represented by SEQ ID NO: 3” is composed of 37 amino acid residues in which amino acid residues are arranged in the order shown in SEQ ID NO: 3.
  • the peptide may have a form in which another functional polypeptide such as an Fc region is added. Any functional polypeptide may be added as long as the anticancer activity or the anticancer activity enhancing activity of the peptide is not lost.
  • the fusion polypeptide obtained by adding the amino acid sequence of another functional polypeptide to the amino acid sequence of SEQ ID NO: 3 includes a peptide portion consisting of the amino acid sequence of SEQ ID NO: 3.
  • the anticancer agent or the anticancer activity enhancer contains such a fusion polypeptide, the polypeptide moiety (anti-antigen) exhibiting anticancer activity or anticancer activity enhancing activity.
  • An active polypeptide part or an anti-cancer action-enhancing active polypeptide part the “anticancer agent containing the peptide represented by SEQ ID NO: 3 as an active ingredient”, “sequence” "Anti-cancer action enhancer containing the peptide represented by No. 3 as an active ingredient”, "Anti-cancer agent or anti-cancer action enhancer containing the amino acid sequence of the peptide represented by SEQ ID No. 3" Is included.
  • a pharmaceutical composition containing the peptide represented by SEQ ID NO: 3 as an active ingredient or “a pharmaceutical composition containing a peptide having the amino acid sequence represented by SEQ ID NO: 3 as an active moiety”, “SEQ ID NO: 3”
  • the “pharmaceutical composition containing the amino acid sequence of the peptide represented by 3” includes a pharmaceutical composition containing the fusion polypeptide as described above.
  • the peptide of the present invention can be easily prepared by chemical synthesis.
  • Specific examples of the chemical synthesis method include Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method) and the like.
  • Fmoc method fluorenylmethyloxycarbonyl method
  • tBoc method t-butyloxycarbonyl method
  • it can also synthesize
  • the gene recombination method is usually preferably employed as the preparation method.
  • Preparation of polypeptides by gene recombination methods is a well-known conventional method. Briefly, a polynucleotide encoding the peptide of the present invention and a polynucleotide encoding a functional polypeptide are prepared, and these are sequentially incorporated into an appropriate expression vector (in any order) and then an appropriate host cell. The fusion polypeptide is expressed in the host cell from the expression vector, and the fusion polypeptide is recovered from the host cell and purified.
  • immune checkpoint regulators are substances that promote immune cell activation by controlling the function of immune checkpoint molecules, and inhibit inhibitory immune checkpoint molecules. And substances that act positively on costimulatory immune checkpoint molecules.
  • One aspect of the immune checkpoint regulator is an immune checkpoint inhibitor.
  • immune checkpoint molecule includes both receptors and ligands that function as immune checkpoints.
  • An immune checkpoint is an immune escape mechanism that prevents the immune system from attacking its own body.
  • An immune checkpoint receptor exists on T cells and interacts with ligands expressed on cancer cells and antigen-presenting cells. T cells recognize and activate the antigen presented on the MHC molecule and cause an immune response, but the activation of T cells is regulated by the immune checkpoint receptor-ligand interaction that occurs in parallel. Immune checkpoint receptors are co-stimulatory and suppressive, and the balance between the two regulates T cell activation and immune response.
  • Cancer cells express a ligand for the suppressive immune checkpoint receptor and utilize the receptor to escape from destruction by cytotoxic T cells. Therefore, administration of an antagonist to an inhibitory receptor can interfere with the use of immune checkpoint mechanisms by cancer cells and promote killing of cancer cells by CD8 + T cells.
  • immune checkpoint inhibitors that are being put into practical use as anticancer agents are antibodies that target suppressive immune checkpoint receptors or their ligands. Development of anti-CTLA-4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, etc. is progressing for melanoma, lung cancer, leukemia, stomach cancer, lymphoma, kidney cancer and the like.
  • the term “antagonist” includes various substances that interfere with the activation of the receptor by the binding between the receptor and the ligand.
  • a substance that binds to a receptor and interferes with the binding between the receptor and the ligand and a substance that binds with the ligand and interferes with the binding between the receptor and the ligand can be exemplified.
  • an antagonist to an inhibitory immune checkpoint molecule refers to an antagonistic antibody that binds to an inhibitory immune checkpoint molecule (inhibitory receptor or ligand of the receptor); It may be a soluble polypeptide that does not activate the receptor designed based on it; or a vector that can express the polypeptide.
  • the suppressive immune checkpoint molecule of interest include PD-1, CTLA-4, LAG-3, TIM-3, and BTLA as receptors, and PD-L1 (PD-1) as a ligand.
  • Ligand PD-L2 (PD-1 ligand), GAL9 (TIM-3 ligand), HVEM (BTLA ligand) and the like.
  • Antibody production methods, polypeptide synthesis methods by chemical synthesis or genetic engineering techniques are conventional methods well known in the art, and those skilled in the art will normally employ antagonists to the suppressive immune checkpoint molecules described above. It can be prepared by the method.
  • “Agonist to costimulatory immune checkpoint molecule” is an antibody having agonist activity that binds to a costimulatory immune checkpoint receptor; a receptor designed based on a costimulatory immune checkpoint ligand Or a soluble polypeptide having an action of activating the polypeptide; or a vector capable of expressing the polypeptide.
  • Examples of co-stimulatory immune checkpoint molecules of interest include CD137, OX40, and GITR.
  • Receptors include CD137L (CD137 ligand), OX40L (OX40 ligand), TNFSF18 (GITR Ligand).
  • the immune checkpoint control agent can be an antibody against an immune checkpoint molecule (this antibody is referred to herein as an “anti-immune checkpoint antibody”).
  • anti-immune checkpoint antibodies include antagonist antibodies that bind to a receptor and inhibit the binding of a ligand to the receptor, such as an anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-LAG- 3 antibody, anti-TIM-3 antibody, anti-BTLA antibody, etc.
  • agonist antibodies include anti-CD137 antibody, anti-OX40 antibody and anti-antibody having an activity of binding a receptor and activating a downstream signal pathway.
  • GITR antibody and the like can be mentioned.
  • anti-PD-L1, anti-PD-L2, anti-GAL9, and anti-HVEM that bind to a ligand for an inhibitory immune checkpoint receptor and inhibit binding of the ligand to the receptor An antibody etc. can be mentioned.
  • immune checkpoint regulators are illustrated together with known examples such as known pharmaceuticals.
  • anti-CTLA-4 antibodies for example, Ipilimumab (YERVOY (registered trademark), Tremelimumab, AGEN-1884
  • anti-PD-1 antibodies for example, nivolumab, Cemiplimab (REGN-2810), pembrolizumab (MK-3475), Spartalizumab (PDR-001), Tislelizumab (BGB-A317), AMP-514 (MEDI0680), Dostarlimab (ANB011, TSR-042), Toripalimab (JS001), Camrelizumab (SHR-1210), Genolimzumab (CBT-501), Sintilimab (IBI308), STI-A1110, ENUM 388D4, ENUM 244C8, GLS010, MGA012, AGEN2034, CS1003, HLX10, BAT-1306, AK105, AK
  • an antibody containing the known antibody heavy chain and light chain complementarity determining regions (CDRs) or variable regions (VR) is also an embodiment of an immune checkpoint control agent.
  • a further embodiment of an anti-PD-1 antibody includes an antibody comprising nivolumab heavy and light chain complementarity determining regions (CDRs) or variable regions (VR).
  • the immune checkpoint regulator include antagonistic anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody, antagonistic anti-CTLA-4 antibody, agonistic anti-CD137 antibody, antagonistic anti-LAG -3 antibody, antagonistic anti-BTLA antibody, and agonistic anti-GITR antibody, particularly selected from antagonistic anti-PD-1 antibody, anti-PD-L1 antibody, and anti-PD-L2 antibody At least one can be mentioned.
  • Particularly preferred examples of the active ingredient (b) include at least one selected from anti-CD4 antibodies having cytotoxic activity, antagonistic anti-PD-1 antibodies, anti-PD-L1 antibodies, and anti-PD-L2 antibodies. be able to.
  • the scope of the present invention is not limited to these specific examples.
  • the anti-CD4 antibody or antigen-binding fragment thereof an antibody having the action of depleting CD4-positive cells or an antigen-binding fragment thereof is usually used.
  • an anti-CD4 antibody having cytotoxic activity can be mentioned.
  • an anti-CD4 antibody or an antigen-binding fragment thereof to which a cytotoxic component is bound can be mentioned.
  • the cytotoxic activity of antibodies includes antibody-dependent cytotoxic activity (ADCC activity) and complement-dependent cytotoxic activity (CDC activity).
  • the depleting anti-CD4 antibody may have either ADCC activity or CDC activity, but one having a high cytotoxic activity capable of exhibiting a sufficiently high killing ability against CD4 + cells is used.
  • Such an anti-CD4 antibody having high cytotoxic activity is known to have an anticancer action against various cancers (for example, WO 2015/125652 A1).
  • the depleting anti-CD4 antibody has a therapeutic effect by releasing the immune deficiency environment in solid cancer by removing CD4 + cells related to immunosuppression and promoting destruction of cancer cells by CD8 + CTL (T cells) Play.
  • T cells CD8 + CTL
  • “high cytotoxic activity” refers to a known anti-CD4 antibody 6G5 known to have ADCC activity when ADCC activity against CD4 expressing cells is measured using a known measurement method ( zanolimumab) and higher ADCC activity than CE9.1 (keliximab).
  • a known anti-cancer activity known to have CDC activity is known. It means that the CDC activity is stronger than the CD4 antibody OKT4.
  • human peripheral blood mononuclear cells and anti-CD4 antibody are mixed and reacted at 37 ° C for several hours, and the ratio of CD3 + cells to CD8 + cells in the reaction mixture is measured by flow cytometric analysis, and the measurement obtained
  • the strength of the ADCC activity of the anti-CD4 antibody can be evaluated by comparing the value with the measured value when the anti-CD4 antibody not having ADCC activity or the above-mentioned known anti-CD4 antibody is used.
  • the anti-CD4 antibody having high cytotoxic activity has an ADCC activity 10 times or more, more preferably 100 times or more that of the known anti-CD4 antibody 6G5 or CE9.1, or 10 times that of the known anti-CD4 antibody OKT4. It has a CDC activity that is at least twice, more preferably at least 100 times.
  • “10 times or more” means, for example, that the minimum value of the antibody concentration exhibiting cytotoxic activity against a certain amount of cells is 1/10 or less of that of the known antibody.
  • the affinity for CD4 anti-CD4 antibody, antibody binding activity with a K D may be at most about 1 ⁇ 10 -9 M.
  • An anti-CD4 antibody having high cytotoxic activity can be obtained by, for example, increasing its cytotoxic activity from a monoclonal anti-CD4 antibody produced by a known method or a known anti-CD4 antibody already established by a known method in this field. Can be created by. Further, anti-CD4 antibodies that specifically recognize CD4 expressed on the cell surface and have strong cytotoxic activity are also known. For example, WO 2010/074266 A1 has ADCC activity more than conventional anti-CD4 antibodies. Enhanced anti-CD4 antibodies are disclosed. A humanized anti-CD4 antibody IT1208 having enhanced ADCC activity by the below-described potenti technology is also known. Such a known depleting anti-CD4 antibody can also be preferably used.
  • the monoclonal antibody production method itself is a conventional method well known in this field.
  • animals except humans
  • CD4 protein or an appropriate fragment thereof extracellular region, for example, the region from CDN N-terminal to 394th region
  • extracellular region for example, the region from CDN N-terminal to 394th region
  • an anti-CD4 monoclonal antibody can be obtained from the culture supernatant.
  • CD4 protein used as an immunogen or an appropriate fragment thereof can be easily prepared by a well-known genetic engineering technique based on such sequence information.
  • the depleting anti-CD4 antibody is a human chimeric antibody against human CD4, a humanized antibody (non-human-derived antibody CDR region transplanted to the corresponding region of a human antibody), or a recombinant human antibody.
  • a human chimeric antibody against human CD4 a humanized antibody (non-human-derived antibody CDR region transplanted to the corresponding region of a human antibody), or a recombinant human antibody.
  • the same antibody as that produced in the human body produced using a non-human animal or human cell line.
  • Methods for producing human chimeric antibodies, humanized antibodies and recombinant human antibodies have also been established as methods well known in the art. For example, for an anti-CD4 human antibody, a CDR sequence fragment that guarantees CD4 recognition can be prepared by a cassette modification method.
  • One of the methods for enhancing ADCC activity is the Potergent (registered trademark) technology that removes fucose (core fucose) contained in the sugar chain present in the Fc portion of an antibody (Yamane-Ohnuki N, Satoh M). , Production of therapeutic antibodies with controlled fucosylation, MAbs 2009; 1: 230-236.).
  • FucT-8 FucT-8
  • FucT-8 a gene encoding a recombinant antibody in an animal cell knocked out of Fut-8
  • Antibody molecules with enhanced ADCC activity can be obtained (Yamane-Ohnuki N, et al., Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defbosylated antibodiestoxicwith endependentity body Biotechnol Bioeng 2004; 87: 614-622.).
  • ADCC activity examples include a method of converting a sugar chain present in the Fc site of an antibody.
  • this method by adding GlcNAc of the antenna-type branched sugar chain part by GnT-III gene manipulation, core fucose addition is avoided (M. Schuster et al., Iproved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering, Cancer Res 2005; 65: 7934-7941.).
  • An anti-CD4 antibody with enhanced ADCC activity produced by such a technique may be used.
  • Complement registered trademark
  • isotype IgG1 As a method for enhancing CDC activity, for example, Complement (registered trademark) technology for enhancing CDC activity by combining a part of isotype IgG1 with a sequence of isotype IgG3 (Natsume A, In M, Takamura H, et al. Engineered antibodies of IgG1 / IgG3 mixed isotype with enhanced cytotoxic activities, Cancer Res. 2008; 68: 3863-3872.).
  • the Aclitamab (registered trademark) technology that enhances the cytotoxic activity of the antibody by combining the above-mentioned Potergent (registered trademark) technology and the complementary (registered trademark) technology is also known (Natsume A, et al., Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC, Drug Des Devel Ther. 2009; 3: 7-16).
  • An anti-CD4 antibody in which both ADCC activity and CDC activity are enhanced by such a technique may be used.
  • cytotoxic component refers to a substance having an activity of destroying living cells, and includes biologically derived poisons, chemical substances, radioactive substances and the like.
  • the antigen-binding fragment may be any antibody fragment as long as the binding property of the original antibody to the corresponding antigen (antigen-antibody reactivity) is maintained.
  • Specific examples include, but are not limited to, Fab, F (ab ′) 2 , scFv, and the like.
  • Fab and F (ab ′) 2 can be obtained by treating a monoclonal antibody with a proteolytic enzyme such as papain or pepsin.
  • a method for producing scFv single chain fragment of variable region is also well known.
  • mRNA of a hybridoma produced as described above is extracted, single-stranded cDNA is prepared, and immunoglobulin H chain and L PCR is carried out using primers specific to the chain to amplify the immunoglobulin H chain gene and L chain gene, and these are ligated with a linker, added with an appropriate restriction enzyme site, and introduced into a plasmid vector.
  • ScFv can be obtained by transforming E. coli to express scFv and recovering it from E. coli.
  • the subject to which the active ingredient (a) or a combination of the active ingredients (a) and (b) is administered is a cancer patient, i.e. a patient in need of cancer treatment, and actually having cancer, and Patients after removal of cancerous lesions by surgery are included.
  • the patient is typically a mammal, particularly a human, but is not limited thereto.
  • the definition of the term cancer treatment is as described above.
  • the dose of the peptide of the present invention may be an amount effective for cancer treatment.
  • the effective amount can be appropriately selected according to the size and symptoms of the tumor, the age and weight of the patient, and the like.
  • the dosage of the anticancer agent of the present invention is the effective amount per day for the subject (here, the effective amount per day refers to other functionalities such as the Fc region of the active ingredient peptide).
  • the polypeptide When the polypeptide is added, it is the amount of the peptide moiety consisting of the amino acid sequence of (1) to (9), and the total amount when administering multiple peptides). It is about 1 ng to 1 mg per kg, for example, about 100 ng to 100 ⁇ g. Daily administration may be performed once or divided into several times.
  • the anticancer agent may be administered once during the treatment period with the anticancer agent of the present invention, or may be administered every day for several days, or several times every several days, weeks or months. Good.
  • the administration route of the anticancer agent of the present invention may be oral administration or parenteral administration, but generally, parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration, intraarterial administration and the like is preferable.
  • Systemic administration or local administration may be used. In the case of local administration, for example, it can be administered in or near a tumor tissue, or in a regional lymph node near the tumor.
  • systemic administration means administration to a site different from the tumor tissue, its vicinity, and the regional lymph nodes near the tumor.
  • intravenous and intraarterial administration subcutaneous administration and intramuscular administration are also systemic administration. Is included.
  • the dose of the immune checkpoint control agent is also appropriately selected according to the size and symptoms of the tumor, the age and weight of the patient, and the like.
  • a known immunity checkpoint control agent may be used in the same dosage, administration route, and administration schedule as used for cancer treatment, and is generally administered multiple times every day or every few days during the treatment period. is there.
  • the dose and the number of administrations can be reduced as compared with the case where a known immune checkpoint control agent is usually used.
  • the HMG protein or the recombinant vector capable of expressing the protein may be administered on the same schedule or may be administered on a different schedule.
  • the administration route may be oral administration or parenteral administration, but generally parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration, intraarterial administration and the like is preferable.
  • parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration, intraarterial administration and the like is preferable.
  • Systemic administration or local administration may be used, but systemic administration is preferred.
  • the dose of the anti-CD4 antibody is also appropriately selected according to the size and symptoms of the tumor, the age and weight of the patient, and the like.
  • the dose may be about 0.001 mg / kg to 1000 mg / kg per kg of body weight, for example, about 0.01 mg / kg to 100 mg / kg as the effective daily dose for the subject.
  • the daily administration may be performed once or may be divided into several times.
  • the anti-CD4 antibody may be administered once during the treatment period, or may be administered every day for several days, or multiple times every several days, weeks or months.
  • the HMG protein or the recombinant vector capable of expressing the protein may be administered on the same schedule or may be administered on a different schedule.
  • the administration route of the anti-CD4 antibody may be oral administration or parenteral administration, but generally parenteral administration such as intramuscular administration, subcutaneous administration, intravenous administration, intraarterial administration and the like is preferable. Systemic administration or local administration may be used, but systemic administration is preferred. The same applies to the administration of an anti-CD4 antibody or antigen-binding fragment thereof to which a cytotoxic component is bound.
  • the active ingredients (a) and (b) may be administered simultaneously as described above, or may be administered sequentially or separately. If administered sequentially or separately, either may be administered first. In the following examples, the administration of the active ingredient (b) is started first, but is not limited thereto, and the administration of the active ingredient (a) may be started first.
  • All active ingredients are pharmaceutically acceptable carriers, diluents, excipients, binders, lubricants, disintegrants, sweeteners, suspending agents, emulsifiers, colorants suitable for each route of administration.
  • the composition can be appropriately mixed with additives such as a corrigent and a stabilizer.
  • additives such as a corrigent and a stabilizer.
  • examples of the dosage form include oral preparations such as tablets, capsules, granules, powders, and syrups, and parenteral preparations such as inhalants, injections, suppositories, and liquids.
  • Formulation methods and usable additives are well known in the field of pharmaceutical formulations, and any method and additive can be used.
  • the pharmaceutical composition of the present invention comprises at least one peptide of the present invention and a pharmaceutically acceptable carrier, diluent, excipient, binder, lubricant, disintegrant, sweetener, suspending agent. And at least one additive selected from agents, emulsifiers, colorants, flavoring agents, stabilizers and the like.
  • the anticancer agent of the present invention exhibits an excellent antitumor effect, particularly when used in combination with an active ingredient (b) such as an immune checkpoint control agent. This combined effect can also be understood as an activity that enhances the anticancer action of the anticancer agent used in combination with the peptide of the present invention.
  • the anticancer activity enhancer of an anticancer agent containing the above-described peptide of the present invention as an active ingredient is an invention expressing the anticancer activity of the peptide from this viewpoint.
  • an anticancer agent the anticancer agent which uses the above-mentioned active ingredient (b) as an active ingredient can be mentioned.
  • Preferred examples of the peptide used as the active ingredient of the anticancer activity enhancer, preferred examples of the active ingredient (b), preferred examples of dosage and administration method are the same as those preferred examples of the anticancer agent of the present invention. is there.
  • HMGN peptide, HMGN1 protein The amino acid sequence of the HMGN peptide used in this experiment is shown in Table 1 below. The peptide was prepared by conventional chemical synthesis. A mouse full-length HMGN1 protein (SEQ ID NO: 16) was purchased from CUSABIO as a recombinant protein.
  • HMGN peptide was administered into the peritoneal cavity a total of 4 times at the doses described below 9, 14, 17 and 20 days after tumor cell transplantation.
  • Anti-mouse PD-L1 antibody was administered intraperitoneally at a dose of 200 ⁇ g / mouse at 4, 8, 14, and 18 days after tumor cell transplantation.
  • Anti-mouse CD4 antibody was administered intraperitoneally at a dose of 200 ⁇ g / mouse 5 and 9 days after tumor cell transplantation.
  • the major axis and minor axis of the solid tumor were measured every 3 to 4 days, and the tumor volume was calculated by the following formula.
  • Tumor volume (mm 3 ) (major axis; mm) x (minor axis; mm) 2 x 0.5236
  • Fig. 1 shows mouse full-length HMGN1 protein (HMGN1, SEQ ID NO: 16, 80 or 800 ng / mouse administered in total 4 times), mouse HMGN1 NBD peptide 1 (mPep1, SEQ ID NO: 1, 30 or 300 ng / mouse for a total of 4 doses) and mouse HMGN1 NBD peptide 2 (mPep2, SEQ ID NO: 2, 33 or 330 ng / mouse consisting of the C-terminal region of mouse HMGN1 NBD) This is a change over time in the tumor volume of each mouse when alone or in combination with an anti-PD-L1 antibody.
  • mPep1 synergistically inhibited tumor growth, and Colon 26 solid tumors completely regressed in 5-7 of 8 mice at doses of 30 ng and 300 ng.
  • mPep2 showed no combined effect.
  • FIG. 2 shows the results of comparing the measurement results of tumor volume 24 days after Colon26 tumor cell transplantation between the administration groups.
  • mPep1 and mPep2 were administered in the same number of moles.
  • mPep1 is synergistic with anti-PD-L1 antibody at a dose of 30, ng300 ng / mouse (significant differences compared to the control group: *: p ⁇ 0.05, **: p ⁇ 0.01 (Dunnett)), 8 at day 24 Complete regression of solid tumors was observed in 4 of the animals.
  • mPep2 was invalid.
  • the full-length protein When comparing the full-length protein and its fragment, the full-length protein usually has a longer blood half-life.
  • mPep1 showed an antitumor effect equivalent to or higher than that of mouse full-length HMGN1 protein, suggesting that the half-life of mPep1 is comparable to that of full-length HMGN1 protein.
  • HMGN1 NBD peptide 1 A partial fragment of human HMGN1 (SEQ ID NO: 17) corresponding to mPep1 (human HMGN1 NBD peptide 1; Pep1, SEQ ID NO: 3) was prepared alone or with an anti-PD-L1 antibody (200 ⁇ g). / mouse) was administered to Colon26 tumor-bearing mice and the antitumor effect was examined.
  • FIG. 3 shows the results of measuring the tumor volume 23 days after tumor implantation and comparing the control group (Colon 26 tumor-bearing mouse group to which neither peptide nor anti-PD-L1 antibody was administered) with each administration group.
  • FIG. 4 shows changes over time in tumor volume for each mouse in the Pep1 single administration group and the Pep1 + anti-PD-L1 antibody combination group.
  • Pep1 significantly suppressed colon 26 solid tumor growth in a dose-dependent manner (FIG. 3, significant difference with respect to the control group *: p ⁇ 0.05, **: p ⁇ 0.01 (Dunnett)).
  • Pep1 C (SEQ ID NO: 4) from which the C-terminal 13 residues of Pep1 were removed and Pep1 C-terminal 5 residues were removed.
  • Pep1 ⁇ C1 (SEQ ID NO: 5) and Pep1 ⁇ C2 (SEQ ID NO: 6) from which the C-terminal 9 residues of Pep1 were removed were prepared.
  • Pep1 N-terminal deletion peptide Pep1 ⁇ N1 (SEQ ID NO: 7) from which the N-terminal 5 residues of Pep1 were removed, Pep1 ⁇ N2 (SEQ ID NO: 8) from which the N-terminal 9 residues of Pep1 were removed, Pep1 N-terminal 14 Pep1 ⁇ N3 (SEQ ID NO: 9) from which residues were removed was prepared. Further, a Pep1 mutant (SEQ ID NO: 11) having a sequence in which one N-terminal residue of Pep1 was removed and three R residues were replaced with D residues was prepared.
  • peptides were administered to Colon 26 tumor-bearing mice in combination with anti-PD-L1 antibody (200 ⁇ g / mouse), respectively, and the tumor volume was measured over time.
  • the peptide dose was intraperitoneally administered with the same number of moles based on a Pep1 dose of 300 ng / mouse.
  • the common ratio was set to 5, and the same number of moles was similarly administered.
  • FIG. 5 shows changes over time in tumor volume for each mouse.
  • FIG. 6 shows the results of comparison of the tumor volume between the administration groups at the time point 26 days after tumor cell transplantation (significant difference **: p ⁇ 0.01 (Dunnett) with respect to the anti-PD-L1 antibody alone administration group).
  • the growth of the Colon 26 solid tumor was significantly suppressed.
  • the Pep1 ⁇ C1 + anti-PD-L1 antibody combination group the growth of the Colon26 solid tumor was significantly suppressed.
  • Pep1 ⁇ N1 significantly suppressed colon 26 solid tumor growth by administration of 53 and 267 ng / mouse.
  • Pep1 ⁇ N2 also inhibited solid tumors, and solid tumors completely regressed in 2-4 animals.
  • the combination group of Pep1 ⁇ N3 and anti-PD-L1 antibody in which 5 N-terminal amino acid residues were further removed from Pep1 ⁇ N2, administration with equimolar amounts with other peptides was ineffective, and the antitumor effect of the peptides was lost. It was.
  • Pep1 ⁇ C1 and Pep1 ⁇ N2 maintained the antitumor effect of the peptide
  • Pep1 ⁇ C2 and Pep1 ⁇ N3 lost the antitumor effect of the peptide
  • the 10th to 32nd residues of Pep1 retained in Pep1 ⁇ C1 and Pep1 ⁇ N2
  • the region of the group was the minimal active unit (core) as an anti-tumor peptide. Therefore, a peptide consisting of this region was prepared as Peptide1 core (Pep1core), and the antitumor effect was compared with Pep1, Pep1 ⁇ C1 and Pep1 ⁇ N2.
  • Peptide doses were intraperitoneally administered (i.p.) with the same number of moles based on Pep1 doses of 300 ng and 60 ng / mouse.
  • the peptides administered at 3 doses (Pep1core, Pep1 ⁇ C1, Pep1 ⁇ N2) were further administered intraperitoneally with a common ratio of 5 and the same number of moles.
  • FIG. 7 shows changes in tumor volume over time for each mouse.
  • Reference Pep1 synergistically inhibited tumor growth when combined with anti-PD-L1 antibody, and colon 26 solid tumors were completely regressed in 5-7 of 8 mice at doses of 60 ng and 300 ng .
  • Even in Pep1core solid tumor growth was suppressed in a dose-dependent manner at a dose of 8 to 200 ng / mouse, and 1 to 2 cases of completely tumor regression were observed in 8 mice per group.
  • Pep1 ⁇ C1 showed complete regression of solid tumors in 3 of 8 cases by administration of 11 and 265 ng / mouse, and complete regression in 1 case of 53 ng administration.
  • Pep1 ⁇ N2 also showed a synergistic effect at the three doses administered, and solid tumors were completely regressed in 4 of 8 cases, particularly at the dose of 9.4 mousng / mouse.
  • FIG. 8 shows the results of comparison of the tumor volume at 27 days after tumor cell transplantation between the respective administration groups (significant difference with respect to the anti-PD-L1 antibody single administration group *: p ⁇ 0.05, **: p ⁇ 0.01). (Dunnett)).
  • Pep1 synergistically suppressed tumor growth In combination with anti-PD-L1 antibody, Pep1 synergistically suppressed tumor growth.
  • Pep1 ⁇ C1 as a comparative control also significantly suppressed tumor growth synergistically, and solid tumors were completely regressed in 3 of 8 cases at doses of 11 and 265 ng / mouse.
  • Pep1 ⁇ N2 also significantly suppressed tumor growth.
  • EPKRREPSARLSAKPPA KVEAKPKK (SEQ ID NO: 18) is a minimum active peptide of HMGN1.
  • Pep1 mutant corresponding to R ⁇ D mutant of Pep1 showed the same antitumor effect as Pep1 (FIG. 6).
  • RRSARLSA in HMGN1 NBD is conserved in all HMGN proteins of various animals and is an important region for binding to nucleosomes, but all arginine (R) in this region is replaced with aspartic acid (D). However, it was revealed that the antitumor effect of the peptide was maintained.
  • HMGN1 a peptide (PepO, KEEPKRR SARLSAKPPA KVEAKPKKAA AKDKSSDKK, SEQ ID NO: 10) consisting of a region shifted several residues from the Pep1 region to the C-terminal side was prepared and used in combination with the anti-PD-L1 antibody The antitumor effect of was compared with the combined use of Pep1 + anti-PD-L1 antibody.
  • the amino acid sequence of PepO is a sequence described as an amino acid sequence of a functional fragment of HMGN protein in US Pat. No. 8227417, which discloses the use of HMGN protein for enhancing antigen-specific immune responses, and is an example of a known HMGN peptide. It is.
  • FIG. 9 shows the results of measuring the tumor volume over time after administering Pep1 or PepO together with an anti-PD-L1 antibody (200 ⁇ g / mouse) to Colon26 cancer-bearing mice.
  • FIG. 10 shows the results of measurement of tumor volume 24 days after tumor implantation and comparison between the administration groups (significant difference ⁇ **: p ⁇ 0.01 (Dunnett) with respect to the anti-PD-1 antibody administration group).
  • the dose of Pep1 was 300 ng / mouse, and PepO was administered in an equimolar amount (318 ng / mouse) with Pep1 or three times (954 ng / mouse).
  • PepO did not show any antitumor effect when used in combination with anti-PD-L1 antibody (200 ⁇ g / mouse) at a dose of 318 ng / mouse, but significantly increased at a dose of 954 ng / mouse. Inhibition of growth and complete regression of solid tumors was observed in 3 animals.
  • Pep1 was also effective when used in combination with anti-PD-L1 antibody at 3 ng / mouse and 30 ng / mouse as shown in FIG. Combined with this result, it is considered that the antitumor effect of PepO and Pep1 according to the present invention is more than 300-fold.
  • HMGN2 NBD-peptide PepN2 NBD-peptide
  • HMGN3 NBD-peptide PepN3 NBD-peptide
  • HMGN4 NBD-peptide PepN4 NBD-peptide
  • HMGN5 NBD-peptide PepN5 NBD-peptide
  • FIG. 11 shows the results of comparing the tumor volume measured 24 days after tumor implantation between the anti-PD-L1 antibody single administration group and each combination administration group.
  • PepN2, PepN4 and PepN5 have significant antitumor effects when used in combination with anti-PD-L1 antibody (significant difference compared to anti-PD-L1 antibody administration group **: p ⁇ 0.01 (Dunnett)).
  • p ⁇ 0.01 (Dunnett)
  • HMGN1 partial peptide Pep1 (800 ng / mouse) is used in combination with anti-CD4 antibody (200 ⁇ g / mouse) to Colon26 tumor-bearing mice, and anti-tumor effect Examined.
  • FIG. 12 shows changes over time in tumor volume for each mouse.
  • FIG. 13 shows the results of measurement of tumor volume 24 days after tumor implantation and comparison between the administration groups (** is significantly different between the two groups, p ⁇ 0.01 (Dunnett)).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

がんに対して有効で実用的な、新規な治療手段、およびそのような治療手段として有用な新規な物質が開示されている。HMGN1、HMGN2、HMGN4、HMGN5の部分領域に由来する新規ペプチド、並びに該ペプチドを有効成分とする抗がん剤及び抗がん作用増強剤を提供した。本発明のペプチドは、単独でも抗腫瘍効果を有するが、とりわけ免疫チェックポイント制御剤、又は抗CD4抗体若しくはその抗原結合性断片と併用することで、顕著に優れた抗腫瘍効果を発揮する。

Description

HMGN部分ペプチド及びこれを用いたがん療法
 本発明は、新規ペプチド及びこれを用いたがん療法に関する。より具体的には、HMGN1,2,4,5の部分領域に由来するペプチド、及び該ペプチドと免疫チェックポイント制御剤又は抗CD4抗体との組み合わせによるがん療法に関する。
 HMGタンパク質はヌクレオソーム結合蛋白のスーパーファミリーで、HMGA, HMGB, HMGNのファミリーに分類される。これらのポリペプチドはDNAに結合することにより遺伝子発現を調節している。また、HMGタンパク質は、感染や傷害によって誘導されるネクローシスのような細胞死、または通常の輸送経路である小胞体-ゴルジ体経路を介さない経路によって細胞外に放出され、炎症応答を誘導することから、アラーミン(alarmin)分子群に分類される。なお、アラーミンタンパクとしてはほかにIL-1αやIL-33のようなサイトカインやHSP(heat shock protein)、S100タンパク質などが知られている。アラーミンタンパクは、Toll様受容体(Toll-like receptor:TLR)に代表されるパターン認識受容体を介した病原体固有に存在するパターン構造(pathogen-associated molecular patterns:PAMPs)の認識にも関係する。
 HMGタンパク質のファミリーの1つであるHMGNには、HMGN1、HMGN2、HMGN3、HMGN4、及びHMGN5の5種類がある。このうちHMGN1については、HMGN1欠損マウスで腫瘍発生が増大したとの報告があるほか(例えば、非特許文献1~3)、HMGN1が抗腫瘍免疫のブースターであり、手術、化学療法、放射線療法等の従来のがん療法や、免疫チェックポイント阻害剤などとHMGN1タンパク質を併用できるとの報告がある(非特許文献4)。
 しかしながら、これらの報告はいずれも、HMGN1全長タンパク質のがん治療への応用の可能性、ないしは生体内でのHMGN1全長タンパク質と腫瘍発生との関連に関する報告である。特許文献1は、HMGN2の部分ペプチドをがんの治療に利用する発明が開示されているが、HMGN2部分ペプチドが腫瘍の血管に集積しやすいことを利用して抗がん剤のキャリアとして用いるという発明であり、HMGN2の部分ペプチドが抗腫瘍効果を有するという内容ではない。また、特許文献2は、HMGNペプチドまたはその機能的断片の抗原特異的免疫反応増強用途を開示しているが、具体的な抗腫瘍作用については開示されていない。
米国特許第7544767号公報 米国特許第8227417号公報
Birger et al., "Increased Tumorigenicity and Sensitivity to Ionizing Radiation upon Loss of Chromosomal Protein HMGN1." Cancer Research, 65: (15). August 1, 2005, p.6711-6718 Gabi Gerlitz, "HMGNs, DNA Repair and Cancer." Biochim Biophys Acta. 2010; 1799(1-2): 80-85. Postnikov et al., "Loss of the nucleosome-binding protein HMGN1 affects the rate of N-nitrosodiethylamine induced hepatocarcinogenesis in mice." Mol Cancer Res. 2014 January; 12(1): 82-90. De Yang, Michael Bustin and Joost J Oppenheim, "Harnessing the alarmin HMGN1 for anticancer therapy." Immunotherapy, 2015;7(11):1129-31. Published Online: 16 Nov 2015
 本発明は、がんに対して有効で実用的な、新規な治療手段、およびそのような治療手段として有用な新規な物質を提供することを目的とする。
 本願発明者らは、担癌モデルマウスを用いてHMGNの部分ペプチドの抗腫瘍効果を鋭意に検討した結果、HMGN1の特定の領域を含む新規な部分ペプチドが、担癌モデルマウスにおいて単独投与でも腫瘍の増殖を有意に抑制すること、免疫チェックポイント制御剤との併用により相乗的な抗腫瘍効果が得られることを見出し、さらに、HMGN2、HMGN4、及びHMGN5の特定の領域を含む新規部分ペプチドも、HMGN1部分ペプチドと同様に抗腫瘍効果を有すること、本願発明に係る新規な部分ペプチドは、特許文献2に開示されている部分ペプチドと比較して顕著に高い抗腫瘍効果を有することを見出し、本願発明を完成した。
 すなわち、本発明は、そのアミノ酸配列が、下記(1)~(9)から選択されるいずれか1種のアミノ酸配列で表される、ペプチドを提供する。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
 (9)の好ましい一例として、
(10) (1)~(4)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
を挙げることができる。
 また、本発明は、少なくとも1種のペプチドを有効成分とする抗がん剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん剤を提供する。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
 (9)の好ましい一例として、
(10) (1)~(4)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
を挙げることができる。
 さらに、本発明は、少なくとも1種のペプチドを含む、抗がん剤の抗がん作用増強剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん作用増強剤を提供する。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
 (9)の好ましい一例として、
(10) (1)~(4)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
を挙げることができる。
 さらに、本発明は、上記本発明のペプチドの有効量を、がんの治療を必要とする患者に投与することを含む、がんの治療方法を提供する。
 本発明の一実施態様として、以下のものが挙げられる。
[1] そのアミノ酸配列が、下記(1)~(9)から選択されるいずれか1種のアミノ酸配列で表される、ペプチド。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
[2] 前記(2)が、(1)において、C末端のアミノ酸残基が1~5個欠失したアミノ酸配列であり、前記(3)が、(1)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列であり、前記(4)が、(2)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列である、前記[1]記載のペプチド。
[3] そのアミノ酸配列が、前記(1)~(7)のいずれかで表される、前記[1]又は[2]記載のペプチド。
[4] そのアミノ酸配列が、前記(1)~(3)、(5)~(7)のいずれかで表される、前記[1]又は[2]記載のペプチド。
[5] 前記(2)が、SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK(配列番号5)であり、前記(3)が、AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号7)又はEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号8)であり、前記(4)が、EPKRR SARLSAKPPA KVEAKPKK(配列番号18)である、前記[1]~[3]のいずれかに記載のペプチド。
[6] 前記(2)が、SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK(配列番号5)であり、前記(3)が、AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号7)又はEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号8)である、前記[1]~[4]のいずれかに記載のペプチド。
[7] そのアミノ酸配列が、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列で表される、前記[1]記載のペプチド。
[8] そのアミノ酸配列が、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、及び配列番号15から選択されるいずれかのアミノ酸配列で表される、前記[1]記載のペプチド。
[9] 抗がん活性ペプチドである、前記[1]~[8]のいずれかに記載のペプチド。
[10] 抗がん作用増強ペプチドである、前記[1]~[8]のいずれかに記載のペプチド。
[11] 免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種と組み合わせて用いるための、少なくとも1種のペプチドを有効成分として含有する抗がん剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん剤。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
[12] 前記(2)が、(1)において、C末端のアミノ酸残基が1~5個欠失したアミノ酸配列であり、前記(3)が、(1)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列であり、前記(4)が、(2)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列である、前記[11]記載の抗がん剤。
[13] 前記少なくとも1種のペプチドのアミノ酸配列が、前記(1)~(7)のいずれかで表される、前記[11]又は[12]記載の抗がん剤。
[14] 前記少なくとも1種のペプチドのアミノ酸配列が、前記(1)~(3)、(5)~(7)のいずれかで表される、前記[11]又は[12]記載の抗がん剤。
[15] 前記(2)が、SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK(配列番号5)であり、前記(3)が、AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号7)又はEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号8)であり、前記(4)が、EPKRR SARLSAKPPA KVEAKPKK(配列番号18)である、前記[11]~[13]のいずれかに記載の抗がん剤。
[16] 前記(2)が、SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK(配列番号5)であり、前記(3)が、AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号7)又はEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号8)である、前記[11]~[14]のいずれか1項に記載の抗がん剤。
[17] 前記少なくとも1種のペプチドのアミノ酸配列が、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列で表される、前記[11]記載の抗がん剤。
[18] 前記少なくとも1種のペプチドのアミノ酸配列が、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、及び配列番号15から選択されるいずれかのアミノ酸配列で表される、前記[11]記載の抗がん剤。
[19] 免疫チェックポイント制御剤が、抑制性の免疫チェックポイント分子に対するアンタゴニスト、及び共刺激性の免疫チェックポイント分子に対するアゴニストから選択される少なくとも1種である、前記[11]~[18]のいずれかに記載の抗がん剤。
[20] 免疫チェックポイント制御剤が、少なくとも1種の抗免疫チェックポイント抗体である、前記[19]記載の抗がん剤。
[21] 抗免疫チェックポイント抗体が、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、及び抗PD-L2抗体から選択される少なくとも1種である、前記[20]記載の抗がん剤。
[22] 抗CD4抗体若しくはその抗原結合性断片が、細胞傷害活性を有する抗CD4抗体、又は細胞毒成分を結合させた抗CD4抗体若しくはその抗原結合性断片である、前記[11]~[21]のいずれかに記載の抗がん剤。
[23] 前記がんが固形がんである、前記[11]~[22]のいずれかに記載の抗がん剤。
[24] 前記ペプチドが抗がん活性ペプチドである、前記[11]~[18]のいずれかに記載の抗がん剤。
[25] 少なくとも1種のペプチドを含む、抗がん剤の抗がん作用増強剤であって、前記抗がん剤が、免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種を有効成分とする抗がん剤であり、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん作用増強剤。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
[26]前記ペプチドが抗がん作用増強ペプチドである、前記[25]記載の抗がん作用増強剤。
[27]そのアミノ酸配列が、前記(1)~(4)のいずれかで表される、前記[1]~[3]のいずれかに記載のペプチド。
[28]少なくとも1種のペプチドを有効成分として含有する抗がん剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん剤。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
[29]少なくとも1種のペプチドを含む、抗がん剤の抗がん作用増強剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん作用増強剤。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
[30]前記[1]~[10]、又は[27]のいずれかに記載のペプチドを有効成分として含有する、抗がん剤。
[31]前記[1]~[10]、又は[27]のいずれかに記載のペプチドのアミノ酸配列を含有する、抗がん剤。
[32]免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種と組み合わせて用いるための、前記[30]又は[31]記載の抗がん剤。
[33]前記[1]~[10]、又は[27]のいずれかに記載のペプチドを含む、抗がん剤の抗がん作用増強剤。
[34]前記[1]~[10]、又は[27]のいずれかに記載のペプチドのアミノ酸配列を含有する、抗がん剤の抗がん作用増強剤。
[35]抗がん剤が、免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種を有効成分とする抗がん剤である、前記[33]又は[34]記載の抗がん作用増強剤。
[36] 免疫チェックポイント制御剤が、抑制性の免疫チェックポイント分子に対するアンタゴニスト、及び共刺激性の免疫チェックポイント分子に対するアゴニストから選択される少なくとも1種である、前記[32]記載の抗がん剤または前記[35]に記載の抗がん作用増強剤。
[37] 免疫チェックポイント制御剤が、少なくとも1種の抗免疫チェックポイント抗体である、前記[36]記載の剤。
[38] 抗免疫チェックポイント抗体が、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、及び抗PD-L2抗体から選択される少なくとも1種である、前記[37]記載の剤。
[39] 抗CD4抗体若しくはその抗原結合性断片が、細胞傷害活性を有する抗CD4抗体、又は細胞毒成分を結合させた抗CD4抗体若しくはその抗原結合性断片である、前記[32]、[35]~[38]のいずれかに記載の剤。
[40] 前記がんが固形がんである、前記[30]~[39]のいずれかに記載の剤。
[41]前記[1]~[10]、又は[27]のいずれかに記載のペプチドを有効成分として含有する医薬組成物。
[42]前記[1]~[10]、又は[27]のいずれかに記載のアミノ酸配列を活性部分とするペプチドを含有する医薬組成物。
[43]前記[1]~[10]、又は[27]のいずれかに記載のペプチドのアミノ酸配列を含有する医薬組成物。
[44]前記[1]~[10]、又は[27]のいずれかに記載のペプチドの有効量を、がんの治療を必要とする患者に投与することを含む、がんの治療方法。
[45]がん治療に使用される前記[1]~[10]、又は[27]のいずれかに記載のペプチド。
[46]抗がん剤を製造するための前記[1]~[10]、又は[27]のいずれかに記載のペプチドの使用。
 本発明により、HMGN1、HMGN2、HMGN4、及びHMGN5の部分領域に各々由来する各新規ペプチド、及びこれらを用いた新規ながん療法が提供される。本発明のペプチドを含む抗がん剤は、単独で、または、免疫チェックポイント制御剤及び枯渇性の抗CD4抗体、細胞毒成分を結合させた抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種と併用することにより、顕著に優れた抗腫瘍効果を発揮する。その効果は下記実施例において示される通りであり、腫瘍の完全退縮例が複数例出現するほどの抗腫瘍効果が確認されている。本発明の新規ペプチドが有する抗腫瘍効果は、抗がん作用を増強する効果として捉えることもできる。例えば、免疫チェックポイント制御剤や枯渇性抗CD4抗体等の抗がん剤の抗がん作用を増強する効果として捉えることもできる。本発明のペプチドは数十残基長程度であることから、化学合成で容易に調製することができる。化学合成の場合、遺伝子組換えとは異なり、宿主細胞由来の成分の混入がないため、医薬品として有利である。下記実施例の結果より、本発明のペプチドの血中半減期は、もとの全長HMGNタンパク質と同程度であることが示唆されており、この点も本発明の有利な点として挙げることができる。
マウス全長HMGN1タンパク質(mHMGN1)、及びその部分ペプチド2種(mPep1、mPep2)を単独で、又は抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。HMGN1タンパク質及び部分ペプチドは、図中に示した用量で投与した。 マウス全長HMGN1タンパク質(mHMGN1)、及びその部分ペプチド2種(mPep1、mPep2)を単独で、又は抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。HMGN1タンパク質及び部分ペプチドは、図中に示した用量で投与した。 マウス全長HMGN1タンパク質、及びその部分ペプチド2種(mPep1、mPep2)を単独で、又は抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、腫瘍細胞移植24日後における腫瘍体積の計測結果である。HMGN1タンパク質及び部分ペプチドは、図中に示した用量で投与した。Control群に対する有意差 *:p<0.05、**:p<0.01(Dunnett)。 ヒトHMGN1の部分ペプチド(Pep1)を単独で、又は抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、腫瘍細胞移植24日後における腫瘍体積の計測結果である。Pep1は図中に示した用量で投与した。Control群に対する有意差 *: p< 0.05、**: p< 0.01(Dunnett)。 Pep1単独投与群及びPep1+抗PD-L1抗体併用群のマウス個体ごとの腫瘍体積の経時変化である。Pep1は図中に示した用量(ng/mouse)で投与した。抗PD-L1抗体は200μg/mouseで投与した。 Pep1単独投与群及びPep1+抗PD-L1抗体併用群のマウス個体ごとの腫瘍体積の経時変化である。Pep1は図中に示した用量(ng/mouse)で投与した。抗PD-L1抗体は200μg/mouseで投与した。 Pep1の各種末端欠失体及びR→D置換体を、抗PD-L1抗体(200μg/mouse)とそれぞれ併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。各ペプチドは図中に示した用量(ng/mouse)で投与した。 Pep1の各種末端欠失体及びR→D置換体を、抗PD-L1抗体(200μg/mouse)とそれぞれ併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。各ペプチドは図中に示した用量(ng/mouse)で投与した。 Pep1の各種末端欠失体及びR→D置換体を抗PD-L1抗体(200μg/mouse)とそれぞれ併用して投与したColon26担癌マウス各群の、腫瘍細胞移植26日後における腫瘍体積の計測結果である。各ペプチドは図中に示した用量で投与した。抗PD-L1抗体単独投与群に対する有意差 **: p< 0.01(Dunnett)。 Pep1coreを抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。比較のため、Pep1+抗PD-L1抗体併用群、Pep1ΔC1+抗PD-L1抗体併用群及びPep1ΔN2+抗PD-L1抗体併用群の腫瘍体積の経時変化も併せて示す。各ペプチドは図中に示した用量(ng/mouse)で投与した。 Pep1coreを抗PD-L1抗体(200μg/mouse)と併用して投与したColon26担癌マウス各群の、マウス個体ごとの腫瘍体積の経時変化である。比較のため、Pep1+抗PD-L1抗体併用群、Pep1ΔC1+抗PD-L1抗体併用群及びPep1ΔN2+抗PD-L1抗体併用群の腫瘍体積の経時変化も併せて示す。各ペプチドは図中に示した用量(ng/mouse)で投与した。 Pep1、Pep1ΔC1、Pep1ΔN2及びPep1coreを抗PD-L1抗体(200μg/mouse)とそれぞれ併用して投与したColon26担癌マウス各群の、腫瘍細胞移植27日後における腫瘍体積の計測結果である。各ペプチドは図中に示した用量で投与した。抗PD-L1抗体単独投与群に対する有意差 *: p< 0.05、**: p< 0.01(Dunnett)。 Pep1(300ng/mouse)及びPepO(318ng, 954ng/mouse)を、抗PD-L1抗体(200μg/mouse)とそれぞれ併用してColon26担癌マウスに投与し、腫瘍体積を経時的に計測した結果である。 Pep1+抗PD-L1抗体併用群、PepO+抗PD-L1抗体併用群の、腫瘍細胞移植24日後における腫瘍体積の計測結果である。各ペプチドは図中に示した用量で投与した。抗PD-L1抗体は200μg/mouseで投与した。抗PD-1抗体単独投与群に対する有意差 **: p< 0.01(Dunnett)。 HMGN2、HMGN3、HMGN4、HMGN5の部分ペプチドの抗腫瘍効果を調べた結果である。各部分ペプチドを抗PD-L1抗体と併用してColon26担癌マウスに投与し、腫瘍移植24日後に計測した腫瘍体積を、抗PD-L1抗体単独投与群と各併用投与群との間で比較した。抗PD-L1抗体単独投与群に対する有意差 **: p< 0.01(Dunnett)。 Pep1(800 ng/mouse)を抗CD4抗体(200μg/mouse)と併用してColon26担癌マウスに投与し、腫瘍体積を経時的に計測した結果である。各群のマウス個体ごとの腫瘍体積の経時変化をグラフで示した。 Pep1単独投与群、抗CD4抗体単独投与群、Pep1+抗CD4抗体併用群の、腫瘍細胞移植24日後における腫瘍体積の計測結果である。**は両群間に有意差あり、p<0.01(Dunnett)。
 本発明のペプチドは、そのアミノ酸配列が下記(1)~(9)から選択されるいずれか1種のアミノ酸で表されるペプチドである。(10)は、(9)の好ましい一例である。
(1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
(2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
(3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
(5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
(6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
(7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
(8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
(9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
(10) (1)~(4)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
 本発明のペプチドは、例えば、抗がん活性ペプチド、又は抗がん作用増強ペプチドであってよい。抗がん活性ペプチドとは、抗がん活性を有するペプチドである。抗がん作用増強ペプチドとは、抗がん剤の抗がん作用を増強する活性を有するペプチドである。抗がん活性ペプチドが有する抗がん活性には、当該ペプチド単独で腫瘍の増殖や転移、再発を抑制する活性のほか、他の抗がん活性成分と組み合わせて用いたときに相加的ないし相乗的に腫瘍の増殖や転移、再発を抑制する活性が包含される。後者の活性、とりわけ相乗的に腫瘍の増殖等を抑制する活性は、抗がん作用増強活性と理解することもできる。
 本発明において、保存的アミノ酸による置換は、類似する側鎖を有する残基の可換性を意味し、例えば、脂肪族側鎖を有するアミノ酸の群においては、グリシン、アラニン、バリン、ロイシンおよびイソロイシンであり、脂肪族ヒドロキシル側鎖を有するアミノ酸の群においては、セリンおよびトレオニンであり、アミド含有側鎖を有するアミノ酸の群においては、アスパラギンおよびグルタミンであり、芳香族側鎖を有するアミノ酸の群においては、フェニルアラニン、チロシンおよびトリプトファンであり、塩基性側鎖を有するアミノ酸の群においては、リシン、アルギニンおよびヒスチジンであり、硫黄含有側鎖を有するアミノ酸の群においては、システインおよびメチオニンである。好ましい保存的アミノ酸による置換の例としては、バリン、ロイシンおよびイソロイシン間での置換、フェニルアラニンおよびチロシン間での置換、リシンおよびアルギニン間での置換、アラニンおよびバリン間での置換ならびにアスパラギンおよびグルタミン間での置換が挙げられる。
 本発明において、C末端又はN末端のアミノ酸残基が欠失したアミノ酸配列の一態様としては、C末端又はN末端から連続してアミノ酸残基が欠失したアミノ酸配列が挙げられる。
<HMGN1タンパク質の部分領域に由来するペプチド>
 一実施形態において、本発明のペプチドは、HMGN1タンパク質の部分領域に由来する、(1)のアミノ酸配列(配列番号3)のペプチドである。配列番号3のアミノ酸配列は、ヒトHMGN1タンパク質(GenBank Accession No. NP_004956、配列番号17)の第7番~第43番残基の領域のアミノ酸配列である。NMGN1等のHMGNタンパク質は、ヌクレオソーム結合ドメイン(Nucleosomal Binding Domain; NBD)、NBDを挟む2つの核局在化シグナル(Nuclear Localization Signal)、及びC末領域のクロマチンアンフォールディングドメイン(Chromatin Unfolding Domain)で構成されるタンパク質であり、ヒトHMGN1では第14番~第42番アミノ酸の領域がNBDである(Ueda et al., MOLECULAR AND CELLULAR BIOLOGY, May 2008, p. 2872-2883)。配列番号3は、このNBDを含むHMGN1の部分領域の配列であり、配列番号3においては第8番~第36番アミノ酸の領域がNBDである。
 また、一実施形態において、本発明のペプチドはmPep1(配列番号1)である。
 一実施形態において、本発明のペプチドは、HMGN1タンパク質の部分領域に由来する、(2)のアミノ酸配列のペプチドである。(2)は、配列番号3に示したアミノ酸配列のC末端のアミノ酸残基が1~8個、例えば1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は8個、7個、6個、5個、4個、3個、2個、若しくは1個欠失したアミノ酸配列である。(2)のアミノ酸配列の具体例として、配列番号5に示したアミノ酸配列を挙げることができるが、本発明の範囲はこの具体例に限定されない。
 一実施形態において、本発明のペプチドは、HMGN1タンパク質の部分領域に由来する、(3)のアミノ酸配列のペプチドである。(3)は、配列番号3に示したアミノ酸配列のN末端のアミノ酸残基が1~13個、例えば1~12個、1~11個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は13個、12個、11個、10個、9個、8個、7個、6個、5個、4個、3個、2個、若しくは1個欠失したアミノ酸配列である。(3)のアミノ酸配列の具体例として、配列番号7及び配列番号8に示したアミノ酸配列を挙げることができるが、本発明の範囲はこれらの具体例に限定されない。
 一実施形態において、本発明のペプチドは、HMGN1タンパク質の部分領域に由来する、(4)のアミノ酸配列のペプチドである。(4)は、配列番号3に示したアミノ酸配列において、C末端のアミノ酸残基が1~8個、例えば1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は8個、7個、6個、5個、4個、3個、2個、若しくは1個欠失し、かつ、N末端のアミノ酸残基が1~13個、例えば1~12個、1~11個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、又は13個、12個、11個、10個、9個、8個、7個、6個、5個、4個、3個、2個、若しくは1個欠失したアミノ酸配列である。(4)のアミノ酸配列の具体例として、配列番号18に示したアミノ酸配列を挙げることができるが、本発明の範囲はこの具体例に限定されない。
 一実施形態において、本発明のペプチドは、HMGN1タンパク質の部分領域に由来する、(10)のアミノ酸配列のペプチドである。(10)のアミノ酸配列は、(9)のうちでHMGN1タンパク質の部分領域に由来するアミノ酸配列であり、(1)~(4)のいずれかにおいて、1個~3個、例えば1若しくは2個、又は1個のアミノ酸残基が置換されたアミノ酸配列である。そのようなアミノ酸配列の具体例として、配列番号11に示したアミノ酸配列(配列番号3のN末端が1残基欠失し、3個のR残基をD残基に置換した配列)を挙げることができるが、これに限定されない。当置換の一態様として、保存的アミノ酸による置換を挙げることができる。
 一実施形態において、本発明のペプチドは、配列番号3、配列番号5、配列番号7、配列番号8、配列番号11または配列番号18である。または、配列番号3、配列番号5、配列番号7、配列番号8、または配列番号18である。
<HMGN2、HMGN4、及びHMGN5のNBDを含む部分領域に由来するペプチド>
 一実施形態において、本発明のペプチドは、HMGN2、HMGN4、又はHMGN5のNBDを含む部分領域に由来する、(5)のアミノ酸配列(配列番号12)、(6)のアミノ酸配列(配列番号14)、又は(7)のアミノ酸配列(配列番号15)のペプチドである。配列番号12、14、および15はそれぞれ、ヒトHMGN2、ヒトHMGN4、及びヒトHMGN5のNBDを含む部分領域のアミノ酸配列であり、ヒトHMGN1中の配列番号3の領域に対応する各HMGNタンパク質中の領域である。配列番号12では第12番~第41番アミノ酸、配列番号14では第11番~第40番アミノ酸、配列番号15では第6番~第35番アミノ酸の領域が各々NBDに対応する。
 一実施形態において、本発明のペプチドは、HMGN2、HMGN4、又はHMGN5のNBDを含む部分領域に由来する、(8)のアミノ酸配列のペプチドである。(8)は、配列番号12、配列番号14、及び配列番号15のいずれかのアミノ酸配列において、C末端の1~5残基、N末端の1~5残基、又はC末端の1~5残基とN末端の1~5残基が欠失したアミノ酸配列である。
 一実施形態において、本発明のペプチドは、(9)のアミノ酸配列のペプチドである。(9)は、(1)~(8)のいずれかにおいて、1個~3個、例えば1若しくは2個、又は1個のアミノ酸残基が置換されたアミノ酸配列である。そのようなアミノ酸配列の具体例として、配列番号11に示したアミノ酸配列(配列番号3のN末端が1残基欠失し、3個のR残基をD残基に置換した配列)を挙げることができるが、これに限定されない。当置換の一態様として、保存的アミノ酸による置換を挙げることができる。(9)のアミノ酸配列のペプチドのうち、(5)~(8)のいずれかにおいて、1個~3個、例えば1若しくは2個、又は1個のアミノ酸残基が置換されたアミノ酸配列のペプチドが、HMGN2、HMGN4、及びHMGN5のNBDを含む部分領域に由来するペプチドに該当する。
 本発明のペプチドのアミノ酸配列は、上記のうちの(1)~(7)のいずれか、又は(1)~(3)および(5)~(7)のいずれかであってよい。さらに本発明のペプチドのアミノ酸配列は上記のうちの(1)~(4)および(10)のいずれか、または(1)~(4)のいずれかであってよい。例えば、本発明のペプチドのアミノ酸配列は、配列番号3、配列番号5、配列番号7、配列番号8、配列番号11、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列であり得る。また、本発明のペプチドのアミノ酸配列は、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列において、1個~3個、例えば1若しくは2個、又は1個のアミノ酸残基が置換された(好ましくは、保存的アミノ酸によって置換された)アミノ酸配列であり得る。
 本発明の抗がん剤は、本発明のペプチドの応用例の好ましい一例であり、そのアミノ酸配列が上記(1)~(9)のいずれかで表されるペプチドを有効成分として含有する。(10)は、上述したように、(9)の好ましい一例である。
 (1)のアミノ酸配列(配列番号3)で表されるペプチドは、下記実施例に記載されるように、単独でも抗腫瘍効果を発揮するが、抗PD-L1抗体等の免疫チェックポイント制御剤や抗CD4抗体との併用により相乗的に作用し、さらに優れた抗腫瘍効果を発揮する。従って、配列番号3のアミノ酸配列で表されるペプチドは、抗がん剤の有効成分として有用である。
 配列番号3に示したアミノ酸配列からなるペプチドは、下記実施例に示されるように、そのC末端を9残基(NBDのうちのC末端8残基)以上除去した場合には、免疫チェックポイント制御剤との併用による相乗的な抗がん作用が失われるが、5残基(NBDのうちのC末端4残基)程度の除去であれば抗がん作用を維持している。従って、(2)のアミノ酸配列のペプチドも、配列番号3に示すアミノ酸配列で表されるペプチドと同様に、抗がん剤の有効成分として利用することができる。
 配列番号3に示したアミノ酸配列からなるペプチドは、下記実施例に示されるように、そのN末端を14残基以上除去した場合には、免疫チェックポイント制御剤との併用による相乗的な抗がん作用が失われるが、8残基程度の除去であれば抗がん作用を維持している。従って、(3)のアミノ酸配列のペプチドも、配列番号3に示すアミノ酸配列で表されるペプチドと同様に、抗がん剤の有効成分として利用することができる。
 また、下記実施例の末端欠失体の実験結果から、配列番号3のうちの少なくとも第14番~第29番残基の領域、例えば第10番~第32番残基の領域(配列番号18)が、HMGN1タンパク質断片の抗がん作用に重要な最小領域であることが理解される。(4)のアミノ酸配列は、かかる最小領域を含んでいる。従って、(4)のアミノ酸配列で表されるペプチドも、配列番号3に示すアミノ酸配列で表されるペプチドと同様に、抗がん剤の有効成分として利用することができる。配列番号18に示した最小領域からなるペプチドが抗がん作用を有することは、下記実施例においても具体的に確認されている。
 (5)のアミノ酸配列(配列番号12)、(6)のアミノ酸配列(配列番号14)、(7)のアミノ酸配列(配列番号15)が抗がん活性を有することは、下記実施例に示される通りである。これらのアミノ酸配列で表されるペプチドも、抗がん剤の有効成分として利用できる。
 (8)は、上記したように、配列番号12、配列番号14、及び配列番号15のいずれかのアミノ酸配列において、C末端の1~5残基、N末端の1~5残基、又は、C末端の1~5残基とN末端の1~5残基が欠失したアミノ酸配列である。配列番号3に示したヒトHMGN1ペプチドの末端欠失体を用いた実験結果から、そのようなアミノ酸配列のペプチドも、もとのペプチドと同様に抗腫瘍効果を発揮できると考えられるので、抗がん剤の有効成分として有用である。
 配列番号11に示したアミノ酸配列は、上記したように、(9)のアミノ酸配列の具体例の1つである。配列番号11に示したアミノ酸配列で表されるペプチドが抗腫瘍効果を有することは、下記実施例において示される通りである。
 抗がん剤の有効成分として用いられるペプチドのアミノ酸配列としては、上記のうちの(1)~(7)のいずれか、又は(1)~(4)および(10)のいずれかが好ましく、特に好ましい例として、配列番号3、配列番号5、配列番号7、配列番号8、配列番号11、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列を挙げることができるが、これらに限定されない。
 本発明の抗がん剤は、免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種の抗がん活性成分と組み合わせて用いてもよい。本発明の抗がん剤は、そのような抗がん活性成分と組み合わせて用いることにより、相乗的に抗腫瘍効果を発揮する。以下、本明細書において、説明の便宜のため、本発明の抗がん剤の有効成分として用いる少なくとも1種のペプチドを「有効成分(a)」、免疫チェックポイント制御剤及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種を「有効成分(b)」と呼ぶことがある。
 「組み合わせて用いる」という語は、複数の有効成分をそれぞれ別個の剤として用いる態様、同一製剤中に複数の有効成分を含有する配合剤として用いる態様の両者を包含する。本発明の抗がん剤は、典型的には前者の態様をとる剤であり、有効成分(b)は、本発明の抗がん剤とは別個の剤として調製されたものを用いるのが一般的である。有効成分(b)を複数種類用いる場合も同様であり、同一製剤中に複数の有効成分(b)を含有した剤を用いても良いが、一般には複数の有効成分(b)をそれぞれ別個の剤として組み合わせることが好ましい。各有効成分を別個の剤として組み合わせた場合には、各有効成分の投与部位、投与時期、投与回数、投与量などを個別に最適化することができる利点がある。抗がん活性ペプチドを複数種類用いる場合には、同一製剤中に複数の抗がん活性ペプチドを含有した剤を用いてもよいし、複数の抗がん活性ペプチドをそれぞれ別個の剤として調製したものを用いてもよく、どちらでも好ましく使用可能である。
 「組み合わせて投与する」という語は、複数の有効成分を患者に対し同時に、順次に、又は別々に投与することを意味する。順次に投与するとは、1の有効成分の投与が完了した後すぐに続けて次の有効成分の投与を行なうことをいう。別々に投与とは、間隔を空けて複数の有効成分を投与することをいい、例えば同日中に数時間程度以上の間隔を空けて、あるいは1クールの治療期間中の別の日に投与することをいう。同時に投与する場合、別個の剤として製剤された有効成分を同時に投与してもよいし、同一製剤中に複数の成分を含有した剤を投与してもよい。
 1クールとは、がん療法の分野における一般的な意味の通り、投薬期間と休薬期間を合わせた小単位の期間をいう。単剤療法、多剤併用量のいずれの場合でも、抗がん剤を1週間ないしは数週間程度投与する投薬期間と、1週間程度の休薬期間を1クールとし、患者の状態やがんの縮小効果などに応じて医師により決定された回数のクール(通常数クール)を実施するのが一般的である。
 本発明において、「がんの治療」という語には、患者のがんを治療する目的で行われる種々の医療処置が包含される。具体的には、原発がん、再発がん及び転移がんの治療の他、がんの再発及び転移の抑制も包含される。例えば、外科手術によりがん病巣を切除した後の患者に対し、再発防止の目的で本発明の抗がん剤を投与する態様も、「がんの治療」に包含される。従って「抗がん剤」という語には、がん(原発がん、再発がん、転移がん)の治療剤、がんの再発抑制剤、及びがんの転移抑制剤が包含される。「がん患者」という語には、がんを現に有している患者の他、外科手術によりがん病巣を切除した後の患者も包含される。
 本発明の抗がん剤が対象とするがんの種類は特に限定されず、固形がん(悪性黒色腫(例えば、皮膚、口腔粘膜上皮または眼窩内などにおける悪性黒色腫)、非小細胞肺がん(例えば、扁平非小細胞肺癌および非扁平非小細胞肺がん)、小細胞肺がん、頭頸部がん、腎細胞がん、淡明細胞型腎細胞がん、乳がん、卵巣がん、漿液性卵巣がん、卵巣明細胞腺がん、鼻咽頭がん、子宮がん(例えば、子宮頸がん、子宮内膜がんおよび子宮体がん)、肛門がん(例えば、肛門管がん)、大腸がん、直腸がん、結腸がん、肝細胞がん、食道がん、食道腺がん、胃がん、食道胃接合部がん、小腸がん、膵がん、尿路上皮がん(例えば、膀胱がん、上部尿路がん、尿管がん、腎盂がんおよび尿道がん)、前立腺がん、卵管がん、原発性腹膜がん、胸膜中皮腫、胆嚢がん、胆管がん、胆道がん、皮膚がん(例えば、ブドウ膜悪性黒色腫およびメルケル細胞がん)、精巣がん(胚細胞腫瘍)、膣がん、外陰部がん、陰茎がん、小腸がん、内分泌系がん、甲状腺がん、副甲状腺がん、副腎がん、脊椎腫瘍、脳腫瘍、神経膠芽腫、神経膠肉腫、扁平上皮がん、骨・軟部肉腫(例えば、ユーイング肉腫、小児横紋筋肉腫および子宮体部平滑筋肉腫)およびカポジ肉腫)及び血液がん(悪性リンパ腫、白血病、多発性骨髄腫)を含む種々のがんに対して適用できる。例えば、本発明の抗がん剤は固形がんに対して好ましく使用できる。固形がんの典型的な具体例として、肺がん、乳がん、胃がん、肝がん、大腸がん、舌がん、甲状腺がん、腎臓がん、前立腺がん、子宮がん、子宮頸がん、卵巣がん等の上皮性固形がんや、メラノーマ及びグリオーマ等の、上皮性固形がんには分類されないその他の固形がんを挙げることができる。1つの態様において、本発明が対象とするがんは、皮膚がん以外のがんであり得る。
 ペプチド製剤の分野では、ペプチドの生体内での安定性を向上させ、血中半減期を高めるなどの目的で、ポリエチレングリコール(PEG)鎖を付加する(Clin Nephrol. 2006 Mar;65(3):180-90.やProc Natl Acad Sci USA. 2005 Sep 6;102(36):12962-7.など)、主としてN末端又はC末端に糖鎖を付加する(J Am Chem Soc. 2004 Nov 3;126(43):14013-22やAngew Chem Int Ed Engl. 2004 Mar 12;43(12):1516-20など)、アミノ酸残基の少なくとも一部をD体とする(J Pharmacol Exp Ther. 2004 Jun;309(3):1190-7やJ Pharmacol Exp Ther. 2004 Jun;309(3):1183-9.など)、抗体のFc領域を適宜改変して付加する(例えば、J. Immunol., 154 (10), 5590-5600 (1995)、Nature, 332, 563-564 (1998)、Nature, 332, 738-740 (1998)、BioDrugs. 2008;22:11-26など)等の技術が用いられている。本発明のペプチド、特に抗がん剤の有効成分として用いるペプチドは、そのような技術を適用したものであってもよい。
 配列番号3を例に用いて説明すると、「そのアミノ酸配列が配列番号3で表されるペプチド」は、配列番号3に示された順番でアミノ酸残基が並び、37個のアミノ酸残基からなるペプチドに、Fc領域のような、他の機能性ポリペプチドを付加した形態であってもよい。ペプチドの抗がん活性ないしは抗がん作用増強活性を失わせない限り、いかなる機能性ポリペプチドが付加されていてもよい。配列番号3のアミノ酸配列に他の機能性ポリペプチドのアミノ酸配列を付加した融合ポリペプチドには、配列番号3のアミノ酸配列からなるペプチド部分が含まれている。従って、抗がん剤又は抗がん作用増強剤がそのような融合ポリペプチドを含有する場合であっても、抗がん活性ないし抗がん作用増強活性を発揮する当該ポリペプチド部分(抗がん活性ポリペプチド部分、ないし抗がん作用増強活性ポリペプチド部分)がその中に含まれているので、「配列番号3で表されるペプチドを有効成分として含有する抗がん剤」、「配列番号3で表されるペプチドを有効成分として含有する抗がん作用増強剤」、「配列番号3で表されるペプチドのアミノ酸配列を含有する、抗がん剤または抗がん作用増強剤」に包含される。同様に、「配列番号3で表されるペプチドを有効成分として含有する医薬組成物」または「配列番号3で表されるアミノ酸配列を活性部分とするペプチドを含有する医薬組成物」、「配列番号3で表されるペプチドのアミノ酸配列を含有する医薬組成物」には、上記のような融合ポリペプチドを含有する医薬組成物が包含される。
 本発明のペプチドは、化学合成により容易に調製することができる。化学合成法の具体例としては、例えばFmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等を挙げることができる。また、各種の市販のペプチド合成機を利用して常法により合成することもできる。
 他の機能性ポリペプチドを付加した融合ポリペプチドの形態にある本発明のペプチドは、ポリペプチド全体のサイズが大きいため、調製方法として通常は遺伝子組換え法が好ましく採用される。遺伝子組換え法によるポリペプチドの調製は周知の常法である。簡潔に記載すると、本発明のペプチドをコードするポリヌクレオチドと、機能性ポリペプチドをコードするポリヌクレオチドを調製し、これらを順次(順番は問わない)適当な発現ベクターに組み込んだ後に適当な宿主細胞に導入し、該宿主細胞内で発現ベクターから融合ポリペプチドを発現させ、該融合ポリペプチドを宿主細胞より回収、精製すればよい。
 有効成分(b)のうち、免疫チェックポイント制御剤とは、免疫チェックポイント分子の機能を制御することで免疫細胞の活性化を促進する物質であり、抑制性の免疫チェックポイント分子に対して阻害的に働く物質と、共刺激性の免疫チェックポイント分子に対して促進的に働く物質とが包含される。免疫チェックポイント制御剤の一態様として、免疫チェックポイント阻害剤が挙げられる。「免疫チェックポイント分子」という語には、免疫チェックポイントとして機能する受容体とリガンドの両者が包含される。
 免疫チェックポイントとは、免疫系が自己の体を攻撃しないための免疫逃避機構である。T細胞上には免疫チェックポイント受容体が存在し、がん細胞や抗原提示細胞上に発現しているリガンドと相互作用する。T細胞はMHC分子上に提示された抗原を認識して活性化し、免疫反応を起こすが、並行して生じる免疫チェックポイント受容体-リガンドの相互作用によりT細胞の活性化が調節を受ける。免疫チェックポイント受容体には共刺激性のものと抑制性のものがあり、両者のバランスによってT細胞の活性化及び免疫反応が調節を受けている。
 がん細胞は、抑制性の免疫チェックポイント受容体に対するリガンドを発現し、該受容体を利用して細胞傷害性T細胞による破壊から逃避している。従って、抑制性の受容体に対するアンタゴニストを投与することで、がん細胞による免疫チェックポイント機構の利用を妨害し、CD8+T細胞によるがん細胞の殺傷を促進することができる。近年抗がん剤として実用化が進みつつあるいわゆる免疫チェックポイント阻害剤とは、抑制性の免疫チェックポイント受容体又はそのリガンドを標的とした抗体である。メラノーマ、肺がん、白血病、胃がん、リンパ腫、腎臓がん等を対象に、抗CTLA-4抗体や抗PD-1抗体、抗PD-L1抗体等の開発が進んでいる。
 また、共刺激性の免疫チェックポイント受容体に対するアゴニストを投与することで、免疫反応を促進し、それによりCD8+T細胞によるがん細胞の殺傷を促進することも可能である。
 本発明において、「アンタゴニスト」という語には、受容体とリガンドとの結合による受容体の活性化を妨害する各種の物質が包含される。例えば、受容体に結合して受容体-リガンド間の結合を妨害する物質、及びリガンドに結合して受容体-リガンド間の結合を妨害する物質を挙げることができる。
 例えば、「抑制性の免疫チェックポイント分子に対するアンタゴニスト」は、抑制性の免疫チェックポイント分子(抑制性の受容体又は該受容体のリガンド)と結合するアンタゴニスト性抗体;抑制性の免疫チェックポイントリガンドに基づいて設計された、受容体を活性化しない可溶性のポリペプチド;又は該ポリペプチドを発現可能なベクター等であり得る。対象となる抑制性の免疫チェックポイント分子として、受容体としてはPD-1、CTLA-4、LAG-3、TIM-3、BTLA等を挙げることができ、リガンドとしてはPD-L1(PD-1のリガンド)、PD-L2(PD-1のリガンド)、GAL9(TIM-3のリガンド)、HVEM(BTLAのリガンド)等を挙げることができる。抗体の製造方法、化学合成又は遺伝子工学的手法によるポリペプチドの製造方法は、この分野で周知の常法であり、当業者であれば上記のような抑制性の免疫チェックポイント分子に対するアンタゴニストを常法により調製することができる。
 「共刺激性の免疫チェックポイント分子に対するアゴニスト」は、共刺激性の免疫チェックポイント受容体と結合する、アゴニスト活性を有する抗体;共刺激性の免疫チェックポイントリガンドに基づいて設計された、受容体を活性化する作用を有する可溶性のポリペプチド;又は該ポリペプチドを発現可能なベクター等であり得る。対象となる共刺激性の免疫チェックポイント分子として、受容体としてはCD137、OX40、GITR等を挙げることができ、リガンドとしてはCD137L(CD137のリガンド)、OX40L(OX40のリガンド)、TNFSF18(GITRのリガンド)等を挙げることができる。
 免疫チェックポイント制御剤は、免疫チェックポイント分子に対する抗体(本明細書において該抗体を「抗免疫チェックポイント抗体」という)であり得る。抗免疫チェックポイント抗体の具体例を挙げると、アンタゴニスト抗体としては、受容体に結合して該受容体へのリガンドの結合を阻害する、抗PD-1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗BTLA抗体等を挙げることができ、アゴニスト抗体としては、受容体に結合して下流のシグナル経路を作動させる活性を有する、抗CD137抗体、抗OX40抗体及び抗GITR抗体等を挙げることができる。さらなる具体例として、抑制性の免疫チェックポイント受容体に対するリガンドに結合して該リガンドの受容体への結合を阻害する、抗PD-L1抗体、抗PD-L2抗体、抗GAL9抗体、及び抗HVEM抗体等を挙げることができる。
 免疫チェックポイント制御剤の具体例を公知の医薬品等の公知例と共に例示すると、例えば、抗CTLA-4抗体(例えば、Ipilimumab(YERVOY(登録商標)、Tremelimumab、AGEN-1884)、抗PD-1抗体(例えば、ニボルマブ、Cemiplimab(REGN-2810)、ペンブロリズマブ(MK-3475)、Spartalizumab(PDR-001)、Tislelizumab(BGB-A317)、AMP-514(MEDI0680)、Dostarlimab(ANB011、TSR-042)、Toripalimab(JS001)、Camrelizumab(SHR-1210)、Genolimzumab(CBT-501)、Sintilimab(IBI308)、STI-A1110、ENUM 388D4、ENUM 244C8、GLS010、MGA012、AGEN2034、CS1003、HLX10、BAT-1306、AK105、AK103、BI 754091、LZM009、CMAB819、Sym021、GB226、SSI-361、JY034、HX008、ABBV181、BCD-100、PF-06801591、CX-188およびJNJ-63723283など)、抗PD-L1抗体(例えば、アテゾリズマブ(RG7446、MPDL3280A)、アベルマブ(PF-06834635、MSB0010718C)、デュルバルマブ(MEDI4736)、BMS-936559、STI-1010、STI-1011、STI-1014、KN035、LY3300054、HLX20、SHR-1316、CS1001(WBP3155)、MSB2311、BGB-A333、KL-A167、CK-301、AK106、AK104、ZKAB001、FAZ053、CBT-502(TQB2450)、JS003およびCX-072など)、抗PD-L2抗体(例えば、rHIgM12B7)、PD-L1融合タンパク質、PD-L2融合タンパク質(例えば、AMP-224)、抗Tim-3抗体(例えば、MBG453)、抗LAG-3抗体(例えば、BMS-986016、LAG525)、抗KIR抗体(例えば、Lirilumab)、PD-1拮抗剤(例えば、AUNP-12、BMS-M1~BMS-M10の各化合物、BMS-1、BMS-2、BMS-3、BMS-8、BMS-37、BMS-200、BMS-202、BMS-230、BMS-242、BMS-1001、BMS-1166、Incyte-1~Incyte-6の各化合物、CAMC-1~CAMC-4、RG_1およびDPPA-1など)、PD-L1/VISTA拮抗剤(例えば、CA-170など)、PD-L1/TIM3拮抗剤(例えば、CA-327など)等が挙げられる。また、上記既知の抗体の重鎖および軽鎖相補性決定領域(CDRs)または可変領域(VR)を含む抗体も免疫チェックポイント制御剤の一態様である。例えば、抗PD-1抗体の更なる一態様としては、ニボルマブの重鎖および軽鎖相補性決定領域(CDRs)または可変領域(VR)を含む抗体が挙げられる。
 免疫チェックポイント制御剤の好ましい具体例としては、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体、アンタゴニスト性抗CTLA-4抗体、アゴニスト性抗CD137抗体、アンタゴニスト性抗LAG-3抗体、アンタゴニスト性抗BTLA抗体、及びアゴニスト性抗GITR抗体から選択される少なくとも1種、特に、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、及び抗PD-L2抗体から選択される少なくとも1種を挙げることができる。有効成分(b)のとりわけ好ましい例としては、細胞傷害活性を有する抗CD4抗体、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、及び抗PD-L2抗体から選択される少なくとも1種を挙げることができる。もっとも本発明の範囲はこれらの具体例に限定されるものではない。
 有効成分(b)のうち、抗CD4抗体又はその抗原結合性断片としては、通常、CD4陽性細胞を枯渇させる作用を有する抗体又はその抗原結合性断片を用いる。第一の例として、細胞障害活性を有する抗CD4抗体を挙げることができる。第二の例として、細胞毒成分を結合させた抗CD4抗体又はその抗原結合性断片を挙げることができる。
 抗体が有する細胞傷害活性には、抗体依存性細胞傷害活性(ADCC活性)と補体依存性細胞傷害活性(CDC活性)がある。枯渇性抗CD4抗体は、ADCC活性とCDC活性のいずれを有するものであってもよいが、CD4+細胞に対し十分に高い殺傷能力を発揮できる、高い細胞傷害活性を有するものを用いる。そのような高い細胞傷害活性を有する抗CD4抗体は、さまざまながんに対して抗がん作用を有することが知られている(例えば、WO 2015/125652 A1)。枯渇性の抗CD4抗体は、免疫抑制に係るCD4+細胞の除去により固形がんにおける免疫不全環境を解除し、CD8+ CTL(T細胞)によるがん細胞の破壊を促進することにより、治療効果を奏する。血液がんに対しては、がん細胞自体がCD4陽性であるため、がん細胞を直接傷害することで治療効果を奏する。
 「高い細胞傷害活性」とは、ADCC活性の場合、公知の測定方法を用いてCD4発現細胞に対するADCC活性を測定したときに、ADCC活性を有することが知られている公知の抗CD4抗体6G5(zanolimumab)やCE9.1(keliximab)よりも高いADCC活性を有することをいう。また、CDC活性の場合、公知の測定方法を用いて、同一の補体を用いた実験系でCD4発現細胞に対するCDC活性を測定したときに、CDC活性を有することが知られている公知の抗CD4抗体OKT4よりも強いCDC活性を示すことをいう。
 抗体のADCC活性やCDC活性を測定する方法は、Cancer Immunol. Immunother., 36, 373 (1993)等に記載され公知であり、また市販のキット類も存在する。そのような市販のキットを用いて、公知の抗CD4抗体よりも細胞傷害活性が高いかどうかを評価してよい。あるいは、ヒト末梢血単核球と抗CD4抗体を混合して37℃で数時間反応させ、フローサイトメトリー解析により反応液中のCD8+細胞に対するCD3+細胞の割合を測定し、得られた測定値を、ADCC活性を有しない抗CD4抗体や上記した公知の抗CD4抗体を用いた場合の測定値と比較することにより、抗CD4抗体のADCC活性の強さを評価することができる。
 好ましくは、高い細胞傷害活性を有する抗CD4抗体は、公知の抗CD4抗体6G5やCE9.1の10倍以上、より好ましくは100倍以上のADCC活性を有するか、公知の抗CD4抗体OKT4の10倍以上、より好ましくは100倍以上のCDC活性を有する。ここでいう「10倍以上」とは、例えば、一定量の細胞に対して細胞傷害活性を示す抗体濃度の最小値が、公知の上記抗体のそれの1/10以下であることを意味する。なお、抗CD4抗体のCD4に対するアフィニティーについては、抗体結合活性KDが1×10-9 M程度以下であればよい。
 高い細胞傷害活性を有する抗CD4抗体は、例えば、公知の手法により作出したモノクローナル抗CD4抗体又は既に確立されている公知の抗CD4抗体から、この分野で公知の手法によりその細胞傷害活性を高めることによって作出することができる。また、細胞表面に発現するCD4を特異的に認識し、かつ強力な細胞傷害活性を有する抗CD4抗体も公知であり、例えばWO 2010/074266 A1には、従来の抗CD4抗体よりもADCC活性が高められた抗CD4抗体が開示されている。後述するポテリジェント技術によりADCC活性を高めたヒト化抗CD4抗体IT1208も知られている。このような公知の枯渇性抗CD4抗体も好ましく用いることができる。
 モノクローナル抗体の作製方法自体はこの分野で周知の常法である。例えば、周知のハイブリドーマ法により作製する場合、CD4タンパク質ないしはその適当な断片(細胞外領域、例えばCD4のN末より394番目までの領域)を免疫原として用いて動物(ヒトを除く)に免疫し、該動物から脾細胞やリンパ球のような抗体産生細胞を採取し、これをミエローマ細胞と融合させてハイブリドーマを調製し、CD4タンパク質と結合する抗体を産生するハイブリドーマをスクリーニングし、これを増殖させて培養上清から抗CD4モノクローナル抗体を得ることができる。CD4の遺伝子配列、アミノ酸配列及び立体構造等の情報は、公的データベースに登録されており、例えばNCBIのGenBankにはM12807のアクセッション番号で登録されている。免疫原として用いるCD4タンパク質ないしはその適当な断片は、このような配列情報に基づいて周知の遺伝子工学的手法により容易に調製することができる。
 ヒトに投与する場合、枯渇性抗CD4抗体は、ヒトCD4に対するヒト型キメラ抗体、ヒト化抗体(非ヒト由来抗体のCDR領域をヒト抗体の相当する領域に移植したもの)、又は組換えヒト抗体(非ヒト動物又はヒト細胞株を用いて製造される、ヒトの体内で産生されるものと同じ抗体)であることが望ましい。ヒト型キメラ抗体、ヒト化抗体及び組換えヒト抗体の作製方法も、この分野で周知の方法として確立している。例えば、抗CD4ヒト抗体は、CD4認識を担保するCDR配列断片をカセット改変法にて調製することができる。
 抗体の細胞傷害活性を高める手法も公知であり、いずれの手法を用いてもよい。公知の手法の一例を以下に記載する。
 ADCC活性を増強する方法の一つとして、抗体のFc部分に存在している糖鎖に含まれるフコース(コアフコース)を除去するポテリジェント(登録商標)技術が挙げられる(Yamane-Ohnuki N, Satoh M, Production of therapeutic antibodies with controlled fucosylation, MAbs 2009; 1: 230-236.)。このコアフコースを付加する酵素はFucT-8(Fut-8)と称される遺伝子にコードされているので、Fut-8をノックアウトした動物細胞内で組換え抗体をコードする遺伝子を発現させることにより、ADCC活性が増強された抗体分子を得ることができる(Yamane-Ohnuki N, et al., Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity, Biotechnol Bioeng 2004; 87: 614-622.)。
 ADCC活性を増強する他の方法として、抗体のFc部位に存在する糖鎖を変換する方法が挙げられる。当該方法では、アンテナ型分岐糖鎖部のGlcNAcをGnT-III遺伝子操作で導入することによりコアフコース付加を回避する(M. Schuster et al., Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering, Cancer Res 2005; 65: 7934-7941.)。このような手法により作出されたADCC活性が増強された抗CD4抗体を用いてもよい。
 CDC活性が増強する方法としては、例えば、アイソタイプIgG1の一部にアイソタイプIgG3の配列を組み合わせてCDC活性を高めるコンプリジェント(登録商標)技術が知られている(Natsume A, In M, Takamura H, et al. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities, Cancer Res. 2008; 68: 3863-3872.)。
 さらに、上記したポテリジェント(登録商標)技術とコンプリジェント(登録商標)技術を組み合わせて抗体の細胞傷害活性を強力に高めるアクリタマブ(登録商標)技術も知られている(Natsume A, et al., Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC, Drug Des Devel Ther. 2009; 3: 7-16)。このような手法でADCC活性及びCDC活性の両者を高めた抗CD4抗体を用いてもよい。
 抗CD4抗体又はその抗原結合性断片に細胞毒成分を結合させたものを有効成分(b)として用いる場合、細胞毒成分によってCD4陽性細胞が傷害されるので、抗体のエフェクター機能としての細胞傷害活性は必要ではない。細胞毒成分とは、生細胞を破壊する活性を有する物質をいい、生物由来の毒物、化学物質、放射性物質等が包含される。
 抗原結合性断片は、もとの抗体の対応抗原に対する結合性(抗原抗体反応性)を維持している限り、いかなる抗体断片であってもよい。具体例としては、Fab、F(ab')2、scFv等を挙げることができるが、これらに限定されない。FabやF(ab')2は、周知の通り、モノクローナル抗体をパパインやペプシンのようなタンパク分解酵素で処理することにより得ることができる。scFv(single chain fragment of variable region、単鎖抗体)の作製方法も周知であり、例えば、上記の通りに作製したハイブリドーマのmRNAを抽出し、一本鎖cDNAを調製し、免疫グロブリンH鎖及びL鎖に特異的なプライマーを用いてPCRを行なって免疫グロブリンH鎖遺伝子及びL鎖遺伝子を増幅し、これらをリンカーで連結し、適切な制限酵素部位を付与してプラスミドベクターに導入し、該ベクターで大腸菌を形質転換してscFvを発現させ、これを大腸菌から回収することにより、scFvを得ることができる。
 有効成分(a)、又は有効成分(a)と(b)の組み合わせを投与する対象は、がん患者、すなわち、がんの治療を必要とする患者であり、現にがんを有する患者、及び外科手術によりがん病巣を切除した後の患者が包含される。患者は典型的には哺乳動物、特にはヒトであるが、これに限定されない。がんの治療という語の定義は上記の通りである。
 本発明のペプチドの投与量は、がんの治療に有効な量であればよい。有効量は、腫瘍の大きさや症状、患者の年齢や体重等に応じて適宜選択され得る。特に限定されないが、本発明の抗がん剤の投与量は、対象に対し1日当たりの有効量(ここでいう1日当たりの有効量とは、有効成分のペプチドがFc領域等の他の機能性ポリペプチドを付加した形態にある場合には、(1)~(9)のアミノ酸配列からなるペプチド部分の量であり、複数のペプチドを投与する場合には、その合計量である)として、体重1kg当たり1ng~1mg程度であり、例えば100ng~100μg程度としてよい。1日の投与は1回でもよいし、数回に分けて投与してもよい。また、本発明の抗がん剤による治療期間中の該抗がん剤の投与は1回でもよいし、あるいは数日間毎日、又は数日、数週若しくは数月おきに複数回投与してもよい。
 本発明の抗がん剤の投与経路は、経口投与でも非経口投与でもよいが、一般には筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。全身投与でも局所投与でもよい。局所投与の場合、例えば、腫瘍組織内又はその近傍や、腫瘍近傍の所属リンパ節に投与することができる。全身投与という語は、腫瘍組織、その近傍、腫瘍近傍の所属リンパ節とは異なる部位への投与を意味し、経口投与や静脈内・動脈内投与の他、皮下投与や筋肉内投与も全身投与に包含される。
 本発明のペプチドに免疫チェックポイント制御剤を組み合わせて用いる場合、免疫チェックポイント制御剤の投与量も、腫瘍の大きさや症状、患者の年齢や体重等に応じて適宜選択される。公知の免疫チェックポイント制御剤をがんの治療に用いる場合と同様の投与量、投与経路、投与スケジュールで用いてよく、治療期間中に毎日又は数日おきに複数回投与するのが一般的である。もっとも、有効成分(a)と組み合わせて用いることにより高い抗がん作用が得られるので、公知の免疫チェックポイント制御剤を通常用いる場合よりも投与量及び投与回数を減らすことも可能である。HMGタンパク質ないしは該タンパク質を発現可能な組換えベクターと同一のスケジュールで投与しても良いし、異なるスケジュールで投与してもよい。投与経路は、経口投与でも非経口投与でもよいが、一般には筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。全身投与でも局所投与でもよいが、全身投与が好ましい。
 本発明のペプチドに抗CD4抗体を組み合わせて用いる場合、抗CD4抗体の投与量も、腫瘍の大きさや症状、患者の年齢や体重等に応じて適宜選択される。特に限定されないが、その投与量は、対象に対し1日当たりの有効量として体重1kg当たり0.001mg/kg~1000mg/kg程度、例えば0.01mg/kg~100mg/kg程度であり得る。1日の投与は1回でもよいし、数回に分けて投与してもよい。治療期間中の抗CD4抗体の投与は1回でもよいし、あるいは数日間毎日、又は数日、数週若しくは数月おきに複数回投与してもよい。HMGタンパク質ないしは該タンパク質を発現可能な組換えベクターと同一のスケジュールで投与しても良いし、異なるスケジュールで投与してもよい。抗CD4抗体の投与経路は、経口投与でも非経口投与でもよいが、一般には筋肉内投与、皮下投与、静脈内投与、動脈内投与等の非経口投与が好ましい。全身投与でも局所投与でもよいが、全身投与が好ましい。細胞毒成分を結合させた抗CD4抗体又はその抗原結合性断片の投与についても同様である。
 有効成分(a)と(b)を組み合わせて用いる場合、上述した通り、有効成分(a)と(b)を同時に投与しても良いし、順次に又は別々に投与してもよい。順次に又は別々に投与する場合、どちらを先に投与してもよい。下記実施例では、有効成分(b)の投与を先に開始しているが、これに限定されず、有効成分(a)の投与を先に開始してもよい。
 いずれの有効成分も、各投与経路に適した、薬剤的に許容される担体、希釈剤、賦形剤、結合剤、滑沢剤、崩壊剤、甘味剤、懸濁化剤、乳化剤、着色剤、矯味剤、安定剤等の添加剤と適宜混合して製剤することができる。製剤形態としては、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの経口剤や、吸入剤、注射剤、座剤、液剤などの非経口剤などを挙げることができる。製剤方法及び使用可能な添加剤は、医薬製剤の分野において周知であり、いずれの方法及び添加剤をも用いることができる。
 本発明の医薬組成物には、少なくとも1種の本発明のペプチドと、薬剤的に許容される担体、希釈剤、賦形剤、結合剤、滑沢剤、崩壊剤、甘味剤、懸濁化剤、乳化剤、着色剤、矯味剤、安定剤等から選択される少なくとも1種の添加剤が含まれる。
 本発明の抗がん剤は、とりわけ免疫チェックポイント制御剤等の有効成分(b)との併用により、優れた抗腫瘍効果を発揮する。この併用効果は、本発明のペプチドに併用した抗がん剤の抗がん作用を増強する活性として理解することも可能である。上記した本発明のペプチドを有効成分として含有する、抗がん剤の抗がん作用増強剤は、ペプチドの抗がん活性をかかる視点から表現した発明である。抗がん剤の一例として、上記した有効成分(b)を有効成分とする抗がん剤を挙げることができる。抗がん作用増強剤の有効成分として用いるペプチドの好ましい例、有効成分(b)の好ましい例、投与量や投与方法の好ましい例は、本発明の抗がん剤におけるこれらの好ましい例と同じである。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
<材料>
担癌マウス:
 7週齢の雄性BALB/c系マウスを1群8匹で使用し、Colon26大腸癌細胞を2 x 105 cells /mouseで右側腹部皮下に移植した。
抗体:
 抗マウスPD-L1抗体(clone 10F.9G2)、枯渇性抗マウスCD4 抗体(clone GK1.5)は、BioXcell社より購入した。
HMGNペプチド、HMGN1タンパク質:
 本実験で使用したHMGNペプチドのアミノ酸配列を下記表1に示す。ペプチドは常法の化学合成により調製した。マウス全長HMGN1タンパク質(配列番号16)は、CUSABIO社より組換えタンパク質を購入した。
Figure JPOXMLDOC01-appb-T000001
<方法および結果>
 HMGNペプチドは、腫瘍細胞移植の9, 14, 17および20日後に後述する用量で腹腔内に合計4回投与した。抗マウスPD-L1抗体は、腫瘍細胞移植の4, 8, 14および18日後に200μg/mouseで腹腔内に合計4回投与した。抗マウスCD4抗体は、腫瘍細胞移植の5および9日後に200μg/mouseで腹腔内に合計2回投与した。3~4日毎に固形腫瘍の長径と短径を測定し、以下の計算式で腫瘍体積を算出した。
腫瘍体積(mm3) = (長径; mm) x (短径; mm)2 x 0.5236
1.マウスHMGN1 NBD peptide 1と抗PD-L1抗体との併用による相乗的な抗腫瘍効果
 図1は、マウス全長HMGN1タンパク質(HMGN1、配列番号16、80又は800ng/mouseで合計4回投与)、マウスHMGN1 NBD peptide 1(mPep1、配列番号1、30又は300ng/mouseで合計4回投与)、およびマウスHMGN1 NBDよりC末側の領域からなるマウスHMGN1 NBD peptide 2(mPep2、配列番号2、33又は330ng/mouseで合計4回投与)を単独で、又は抗PD-L1抗体と併用した時の、マウス個体ごとの腫瘍体積の経時変化である。抗PD-L1抗体との併用では、mPep1は相乗的に腫瘍増殖を抑制し、30ng、300ngの投与量で、8匹中5~7匹でColon26固形腫瘍が完全に退縮した。一方、mPep2は併用効果が全く認められなかった。
 図2は、Colon26腫瘍細胞移植24日後における腫瘍体積の計測結果を各投与群間で比較した結果である。mPep1とmPep2は同モル数で投与した。mPep1は、30, 300ng/mouseの用量で抗PD-L1抗体と相乗効果を示し(Control群に対する有意差は、*:p<0.05、**:p<0.01(Dunnett))、day 24で8匹中4匹で固形腫瘍の完全退縮が観察された。一方、mPep2は無効であった。
 全長タンパク質とその断片を比較した場合、全長の方が血中半減期が長いのが通常である。しかしながら、本実験の結果によると、mPep1はマウス全長HMGN1タンパク質よりも少ない用量で同等以上の抗腫瘍効果を示しており、mPep1の半減期は全長HMGN1タンパク質と同程度であることが示唆された。
2.ヒトHMGN1 NBD peptide 1の抗腫瘍効果
 mPep1に相当するヒトHMGN1(配列番号17)の部分断片(ヒトHMGN1 NBD peptide 1; Pep1、配列番号3)を調製し、単独で又は抗PD-L1抗体(200μg/mouse)と併用してColon26担癌マウスに投与し、抗腫瘍効果を調べた。
 図3は、腫瘍移植23日後に腫瘍体積を計測し、Control群(ペプチドも抗PD-L1抗体も投与しないColon26担癌マウス群)と各投与群との間で比較した結果である。図4は、Pep1単独投与群及びPep1+抗PD-L1抗体併用群のマウス個体ごとの腫瘍体積の経時変化である。Pep1は、単独でもColon26固形腫瘍の増殖を用量依存的に有意に抑制した(図3、Control群に対する有意差 *: p< 0.05、**: p< 0.01(Dunnett))。抗PD-L1抗体との併用では、Pep1は相乗的に腫瘍増殖を抑制し、30, 300ngの投与量で、8匹中5~7匹においてColon26固形腫瘍が完全に退縮した。また、マウスにおいてヒト配列のペプチドも有効であったことから、HMGNペプチドの抗腫瘍効果に種差はないことが示唆された。
3.HMGN1 NBD peptide 1の抗腫瘍効果に重要な領域の探索
 Pep1のC末端欠失ペプチドとして、Pep1のC末端13残基を除去したPep1ΔC(配列番号4)、Pep1のC末端5残基を除去したPep1ΔC1(配列番号5)、Pep1のC末端9残基を除去したPep1ΔC2(配列番号6)を調製した。また、Pep1のN末端欠失ペプチドとして、Pep1のN末端5残基を除去したPep1ΔN1(配列番号7)、Pep1のN末端9残基を除去したPep1ΔN2(配列番号8)、Pep1のN末端14残基を除去したPep1ΔN3(配列番号9)を調製した。さらに、Pep1のN末端1残基を除去し、3箇所のR残基をD残基に置き換えた配列のPep1 mutant(配列番号11)を調製した。これらのペプチドを、抗PD-L1抗体(200μg/mouse)とそれぞれ併用してColon26担癌マウスに投与し、腫瘍体積を経時的に測定した。ペプチドの用量は、Pep1の投与量300ng/mouseを基準とし、モル数を同じくして腹腔内投与した。2用量で投与したペプチド(Pep1ΔN1, Pep1ΔN2, Pep1 mutant)では公比5とし、同様にモル数を同じくして投与した。
 図5は、マウス個体ごとの腫瘍体積の経時変化である。図6は、腫瘍細胞移植26日後の時点での腫瘍体積を各投与群間で比較した結果である(抗PD-L1抗体単独投与群に対する有意差 **: p< 0.01(Dunnett))。Pep1+抗PD-L1抗体併用群では、図3及び図4にも示したように、Colon26固形腫瘍の増殖が有意に抑制された。Pep1ΔC1+抗PD-L1抗体併用群でも、Colon26固形腫瘍の増殖が有意に抑制された。一方、Pep1ΔC1からさらに4つのC末端アミノ酸残基を除去したPep1ΔC2と抗PD-L1抗体の併用群では、他のペプチドと等モルでの投与でも無効であり、ペプチドの抗腫瘍効果が失われていた。Pep1ΔC2からさらにC末端残基を除去したPep1ΔCでも、ペプチドの抗腫瘍効果が失われていることを確認した。
 Pep1ΔN1は、53および267 ng/mouseの投与でColon26固形腫瘍増殖を有意に抑制した。Pep1ΔN2も同様に固形腫瘍を抑制し、2~4匹で固形腫瘍が完全に退縮した。一方、Pep1ΔN2からさらに5つのN末端アミノ酸残基を除去したPep1ΔN3と抗PD-L1抗体の併用群では、他のペプチドと等モルでの投与でも無効であり、ペプチドの抗腫瘍効果が失われていた。
 Pep1ΔC1及びPep1ΔN2ではペプチドの抗腫瘍効果が維持され、Pep1ΔC2及びPep1ΔN3ではペプチドの抗腫瘍効果が失われたという上記の結果から、Pep1ΔC1及びPep1ΔN2において保持されているPep1の第10番~第32番残基の領域が抗腫瘍ペプチドとしての最小活性単位(core)であることが想定された。そこで、当該領域からなるペプチドをPeptide1 core(Pep1core)として調製し、抗腫瘍効果をPep1、Pep1ΔC1及びPep1ΔN2と比較した。ペプチドの用量は、Pep1の投与量300 ng, 60 ng/mouseを基準とし、モル数を同じくして腹腔内投与(i.p.)した。3用量で投与したペプチド(Pep1core, Pep1ΔC1, Pep1ΔN2)ではさらに、公比5とし、同様にモル数を同じくして腹腔内投与した。
 図7は、マウス個体ごとの腫瘍体積の経時変化である。基準としたPep1は、抗PD-L1抗体との併用では相乗的に腫瘍増殖を抑制し、60 ng、300 ngの投与量で、8匹中5~7匹においてColon26固形腫瘍が完全に退縮した。Pep1coreでも、8~200 ng/mouseの投与量で用量依存的に固形腫瘍増殖を抑制し、1群8匹中1~2例の腫瘍完全退縮個体が認められた。比較対照としたPep1ΔC1は、11及び265 ng/mouseの投与により8例中3例で固形腫瘍の完全退縮が認められ、53 ng投与でも1例で完全退縮が認められた。Pep1ΔN2も、投与した3用量において相乗効果が認められ、特に9.4 ng/mouseの投与では8例中4例において固形腫瘍が完全退縮した。
 図8は、腫瘍細胞移植27日後の時点での腫瘍体積を各投与群間で比較した結果である(抗PD-L1抗体単独投与群に対する有意差 *: p< 0.05、**: p< 0.01(Dunnett))。抗PD-L1抗体との併用で、Pep1は相乗的に有意に腫瘍増殖を抑制した。比較対照としたPep1ΔC1も相乗的に有意に腫瘍増殖を抑制し、11及び265 ng/mouseの投与量で8例中3例において固形腫瘍が完全退縮した。Pep1ΔN2も有意に腫瘍増殖を抑制した。Pep1coreも、抗PD-L1抗体との併用によりColon26固形腫瘍の増殖が抑制され、投与量40および200 ng/mouseの群では抗PD-L1抗体単独投与群に対し有意差が認められた。
 図7、8の結果より、EPKRR SARLSAKPPA KVEAKPKK(配列番号18)がHMGN1のminimum active peptideであることが明らかになった。
 Pep1のR→D mutantに相当するPep1 mutantは、Pep1と同様の抗腫瘍作用が認められた(図6)。HMGN1のNBD中のRRSARLSAは、各種動物の全てのHMGNタンパク質で保存されており、ヌクレオソームへの結合に重要な領域であるが、この領域中のアルギニン(R)を全てアスパラギン酸(D)に置き換えてもペプチドの抗腫瘍効果は維持されることが明らかとなった。
 さらに、HMGN1タンパク質配列において、Pep1の領域からC末側に数残基ずれた領域の配列からなるペプチド(PepO、KEEPKRR SARLSAKPPA KVEAKPKKAA AKDKSSDKK、配列番号10)を調製し、抗PD-L1抗体との併用による抗腫瘍効果をPep1+抗PD-L1抗体併用と比較した。PepOのアミノ酸配列は、HMGNタンパク質の抗原特異的免疫反応増強用途を開示する米国特許第8227417号において、HMGNタンパク質の機能的断片のアミノ酸配列として記載されている配列であり、公知のHMGNペプチドの一例である。
 図9は、Pep1又はPepOと抗PD-L1抗体(200μg/mouse)を併用してColon26担癌マウスに投与し、腫瘍体積を経時的に計測した結果である。図10は、腫瘍移植24日後に腫瘍体積を計測し、各投与群間で比較した結果である(抗PD-1抗体投与群に対する有意差 **: p< 0.01(Dunnett))。Pep1の用量は300 ng/mouseとし、PepOはPep1と等モル量(318 ng/mouse)又はその3倍量(954 ng/mouse)で投与した。PepOは、318 ng/mouseの用量で抗PD-L1抗体(200μg/mouse)と併用した場合には抗腫瘍効果を全く示さなかったが、3倍量の954 ng/mouseの用量では有意に腫瘍増殖を抑制し、3匹で固形腫瘍の完全退縮が観察された。
 Pep1は、図3に示した通り、3 ng/mouse及び30 ng/mouseで抗PD-L1抗体と併用した場合にも有効であった。この結果も併せると、PepOと本発明によるPep1の抗腫瘍作用には300倍以上の効力差があると考えられる。
4.HMGN2、HMGN3、HMGN4、HMGN5の部分ペプチドの抗腫瘍効果
 HMGN2、HMGN3、HMGN4、HMGN5のNBDペプチドにも抗腫瘍効果があるかどうかを調べた。HMGN2 NBD-peptide(PepN2)、HMGN3 NBD-peptide(PepN3)、HMGN4 NBD-peptide(PepN4)、HMGN5 NBD-peptide(PepN5)を抗PD-L1抗体と併用してColon26担癌マウスに投与し、腫瘍体積を計測した。各ペプチドは、Pep1 300ngと同モル数の用量でマウスに投与した。
 図11は、腫瘍移植24日後に計測した腫瘍体積を、抗PD-L1抗体単独投与群と各併用投与群との間で比較した結果である。PepN2、PepN4およびPepN5は、抗PD-L1抗体との併用で有意な抗腫瘍効果が認められ(抗PD-L1抗体投与群に対する有意差 **: p< 0.01(Dunnett))、その抗腫瘍効果はPep1と同レベルであった。一方、PepN3には抗腫瘍効果は認められなかった。
5.HMGN1部分ペプチドと抗CD4抗体の併用による抗腫瘍効果
 ヒトHMGN1の部分ペプチドPep1(800 ng/mouse)を抗CD4抗体(200μg/mouse)と併用してColon26担癌マウスに投与し、抗腫瘍効果を調べた。
 図12は、マウス個体ごとの腫瘍体積の経時変化である。図13は、腫瘍移植24日後に腫瘍体積を計測し、各投与群間で比較した結果である(**は両群間に有意差あり、p<0.01(Dunnett))。Pep1は、抗CD4抗体との併用でも、抗PD-L1抗体との併用と同様にColon26固形腫瘍増殖を相乗的に抑制した。

Claims (21)

  1.  そのアミノ酸配列が、下記(1)~(9)から選択されるいずれか1種のアミノ酸配列で表される、ペプチド。
    (1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
    (2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
    (3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
    (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
    (7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
    (8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
    (9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
  2.  前記(2)が、(1)において、C末端のアミノ酸残基が1~5個欠失したアミノ酸配列であり、前記(3)が、(1)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列であり、前記(4)が、(2)において、N末端のアミノ酸残基が1~9個欠失したアミノ酸配列である、請求項1記載のペプチド。
  3.  そのアミノ酸配列が、前記(1)~(7)のいずれかで表される、請求項1又は2記載のペプチド。
  4.  そのアミノ酸配列が、前記(1)~(4)のいずれかで表される、請求項1~3のいずれか1項に記載のペプチド。
  5.  前記(2)が、SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKK(配列番号5)であり、前記(3)が、AAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号7)又はEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号8)であり、前記(4)が、EPKRR SARLSAKPPA KVEAKPKK(配列番号18)である、請求項1~4のいずれか1項に記載のペプチド。
  6.  そのアミノ酸配列が、配列番号3、配列番号5、配列番号7、配列番号8、配列番号12、配列番号14、配列番号15、及び配列番号18から選択されるいずれかのアミノ酸配列で表される、請求項1記載のペプチド。
  7.  抗がん活性ペプチドである、請求項1~6のいずれか1項に記載のペプチド。
  8.  抗がん作用増強ペプチドである、請求項1~6のいずれか1項に記載のペプチド。
  9.  請求項1~8のいずれか1項に記載のペプチドを有効成分として含有する医薬組成物。
  10.  少なくとも1種のペプチドを有効成分として含有する抗がん剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん剤。
    (1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
    (2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
    (3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
    (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
    (7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
    (8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
    (9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
  11.  免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種と組み合わせて用いるための、請求項10記載の抗がん剤。
  12.  免疫チェックポイント制御剤が、抑制性の免疫チェックポイント分子に対するアンタゴニスト、及び共刺激性の免疫チェックポイント分子に対するアゴニストから選択される少なくとも1種である、請求項11のいずれか1項に記載の抗がん剤。
  13.  免疫チェックポイント制御剤が、少なくとも1種の抗免疫チェックポイント抗体である、請求項11記載の抗がん剤。
  14.  抗免疫チェックポイント抗体が、アンタゴニスト性抗PD-1抗体、抗PD-L1抗体、及び抗PD-L2抗体から選択される少なくとも1種である、請求項11記載の抗がん剤。
  15.  抗CD4抗体若しくはその抗原結合性断片が、細胞傷害活性を有する抗CD4抗体、又は細胞毒成分を結合させた抗CD4抗体若しくはその抗原結合性断片である、請求項11~14記載の抗がん剤。
  16.  前記がんが固形がんである、請求項11~15のいずれか1項に記載の抗がん剤。
  17.  前記ペプチドが抗がん活性ペプチドである、請求項11~16のいずれか1項に記載の抗がん剤。
  18.  少なくとも1種のペプチドを含む、抗がん剤の抗がん作用増強剤であって、前記少なくとも1種のペプチドのアミノ酸配列が、下記(1)~(9)のいずれかで表される、抗がん作用増強剤。
    (1) SSAE GAAKEEPKRR SARLSAKPPA KVEAKPKKAA AKD(配列番号3)
    (2) (1)において、C末端のアミノ酸残基が1~8個欠失したアミノ酸配列
    (3) (1)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (4) (2)において、N末端のアミノ酸残基が1~13個欠失したアミノ酸配列
    (5) EGDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPKPKKAPAKKGE(配列番号12)
    (6) GDAKGDK AKVKDEPQRR SARLSAKPA PPKPEPRPKKASAKKGE(配列番号14)
    (7) GQG DMRQEPKRR SARLSAMLV PVTPEVKPKRTSSSRKMKTKSD(配列番号15)
    (8) (5)~(7)のいずれかにおいて、C末端の1~5個のアミノ酸残基、及び/又はN末端の1~5個のアミノ酸残基が欠失したアミノ酸配列
    (9) (1)~(8)のいずれかにおいて、1個~3個のアミノ酸残基が置換されたアミノ酸配列
  19. 前記抗がん剤が、免疫チェックポイント制御剤、及び抗CD4抗体若しくはその抗原結合性断片から選択される少なくとも1種を有効成分とする抗がん剤である、請求項18記載の抗がん作用増強剤。
  20.  前記ペプチドが抗がん作用増強ペプチドである、請求項18又は19記載の抗がん作用増強剤。
  21.  請求項1~10のいずれか1項に記載のペプチドの有効量を、がんの治療を必要とする患者に投与することを含む、がんの治療方法。
PCT/JP2019/009015 2018-03-08 2019-03-07 Hmgn部分ペプチド及びこれを用いたがん療法 WO2019172358A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020505099A JP7302793B2 (ja) 2018-03-08 2019-03-07 Hmgn部分ペプチド及びこれを用いたがん療法
EP19764047.7A EP3763731A4 (en) 2018-03-08 2019-03-07 PARTIAL PEPTIDE HMGN AND ANTI-CANCER THERAPY USING IT
US16/978,633 US11572393B2 (en) 2018-03-08 2019-03-07 HMGN partial peptide and cancer therapy using the same
US18/092,737 US11919932B2 (en) 2018-03-08 2023-01-03 HMGN partial peptide and cancer therapy using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018041560 2018-03-08
JP2018-041560 2018-03-08
JP2019014105 2019-01-30
JP2019-014105 2019-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/978,633 A-371-Of-International US11572393B2 (en) 2018-03-08 2019-03-07 HMGN partial peptide and cancer therapy using the same
US18/092,737 Continuation US11919932B2 (en) 2018-03-08 2023-01-03 HMGN partial peptide and cancer therapy using the same

Publications (1)

Publication Number Publication Date
WO2019172358A1 true WO2019172358A1 (ja) 2019-09-12

Family

ID=67846101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009015 WO2019172358A1 (ja) 2018-03-08 2019-03-07 Hmgn部分ペプチド及びこれを用いたがん療法

Country Status (5)

Country Link
US (2) US11572393B2 (ja)
EP (1) EP3763731A4 (ja)
JP (1) JP7302793B2 (ja)
TW (1) TW201938580A (ja)
WO (1) WO2019172358A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059703A1 (ja) * 2020-09-16 2022-03-24 国立大学法人大阪大学 がん治療用医薬、免疫賦活剤および抗がん物質のスクリーニング方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172358A1 (ja) * 2018-03-08 2019-09-12 国立大学法人 東京大学 Hmgn部分ペプチド及びこれを用いたがん療法
CN114921443B (zh) * 2022-05-05 2023-07-07 重庆医科大学 肺炎链球菌肽链内切酶o在制备抗肿瘤药物中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544767B2 (en) 2002-04-05 2009-06-09 Burnham Institute For Medical Research HMGN2 peptides and related molecules that selectively home to tumor blood vessels and tumor cells
WO2010074266A1 (ja) 2008-12-26 2010-07-01 協和発酵キリン株式会社 抗cd4抗体
WO2011031477A2 (en) * 2009-08-25 2011-03-17 Esperance Pharmaceuticals, Inc. Nucleolin-binding peptides, nucleolin-binding lytic peptides, fusion constructs and methods of making and using same
US8227417B2 (en) 2008-07-25 2012-07-24 The United States Of America As Represented By The Secretary, Department Of Health And Human Services HMGN polypeptides as immune enhancers and HMGN antagonists as immune suppressants
WO2015125652A1 (ja) 2014-02-21 2015-08-27 Idacセラノスティクス株式会社 固形がんの治療剤
WO2018047917A1 (ja) * 2016-09-09 2018-03-15 国立大学法人 東京大学 Hmgタンパク質と抗cd4抗体又は免疫チェックポイント制御剤との組み合わせによる相乗的抗腫瘍効果

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094409A1 (en) * 2003-03-27 2004-11-04 Lankenau Institute For Medical Research Novel ido inhibitors and methods of use
WO2019172358A1 (ja) * 2018-03-08 2019-09-12 国立大学法人 東京大学 Hmgn部分ペプチド及びこれを用いたがん療法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544767B2 (en) 2002-04-05 2009-06-09 Burnham Institute For Medical Research HMGN2 peptides and related molecules that selectively home to tumor blood vessels and tumor cells
US8227417B2 (en) 2008-07-25 2012-07-24 The United States Of America As Represented By The Secretary, Department Of Health And Human Services HMGN polypeptides as immune enhancers and HMGN antagonists as immune suppressants
WO2010074266A1 (ja) 2008-12-26 2010-07-01 協和発酵キリン株式会社 抗cd4抗体
WO2011031477A2 (en) * 2009-08-25 2011-03-17 Esperance Pharmaceuticals, Inc. Nucleolin-binding peptides, nucleolin-binding lytic peptides, fusion constructs and methods of making and using same
WO2015125652A1 (ja) 2014-02-21 2015-08-27 Idacセラノスティクス株式会社 固形がんの治療剤
WO2018047917A1 (ja) * 2016-09-09 2018-03-15 国立大学法人 東京大学 Hmgタンパク質と抗cd4抗体又は免疫チェックポイント制御剤との組み合わせによる相乗的抗腫瘍効果

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
ANGEW CHEM INT ED ENGL., vol. 43, no. 12, 12 March 2004 (2004-03-12), pages 1516 - 20
BIODRUGS, vol. 22, 2008, pages 11 - 26
BIRGER ET AL.: "Increased Tumorigenicity and Sensitivity to Ionizing Radiation upon Loss of Chromosomal Protein HMGN1", CANCER RESEARCH, vol. 65, no. 15, 1 August 2005 (2005-08-01), pages 6711 - 6718, XP055637637, DOI: 10.1158/0008-5472.CAN-05-0310
BIRGER, Y. ET AL.: "Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1", CANCER RESEARCH, vol. 65, no. 15, August 2005 (2005-08-01), pages 6711 - 6718, XP055637637 *
CANCER IMMUNOL. IMMUNOTHER, vol. 36, 1993, pages 373
CLIN NEPHROL., vol. 65, no. 3, March 2006 (2006-03-01), pages 180 - 90
DE YANGMICHAEL BUSTINJOOST J OPPENHEIM: "Harnessing the alarmin HMGN1 for anticancer therapy", IMMUNOTHERAPY, vol. 7, no. 11, 2015, pages 1129 - 3 1, XP055376710, DOI: 10.2217/imt.15.76
GABI GERLITZ: "HMGNs, DNA Repair and Cancer", BIOCHIM BIOPHYS ACTA, vol. 1799, no. 1-2, 2010, pages 80 - 85, XP026868822
GERLITZ G: "DNA repair and cancer", BIOCHIM. BIOPHYS. ACTA ., vol. 1799, no. 1-2, 2010, pages 80 - 85, XP026868822 *
J AM CHEM SOC., vol. 126, no. 43, 3 November 2004 (2004-11-03), pages 14013 - 22
J PHARMACOL EXP THER., vol. 309, no. 3, June 2004 (2004-06-01), pages 1 183 - 9
J. IMMUNOL., vol. 154, no. 10, 1995, pages 5590 - 5600
KLEPONIS, J. ET AL.: "Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune chec", CANCER BIOLOGY & MEDICINE, vol. 12, 2015, pages 201 - 208, XP008182450, doi:10.7497/j.issn.2095-3941.2015.0046 *
M. SCHUSTER ET AL.: "Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering", CANCER RES, vol. 65, 2005, pages 7934 - 7941, XP008060462
NATSUME A ET AL.: "Improving effector functions of antibodies for cancer treatment:Enhancing ADCC and CDC", DRUG DES DEVEL THER, vol. 3, 2009, pages 7 - 16, XP002727883, DOI: 10.2147/DDDT.S4378
NATSUME A, IN MTAKAMURA H ET AL.: "Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities", CANCER RES., vol. 68, 2008, pages 3863 - 3872, XP007913550, DOI: 10.1158/0008-5472.CAN-07-6297
NATURE, vol. 332, 1998, pages 738 - 740
NIE, Y. ET AL.: "Alarmins and Antitumor Immunity", CLINICAL THERAPEUTICS, vol. 38, no. 5, May 2016 (2016-05-01), pages 1042 - 1053, XP029539766, doi:10.1016/j.clinthera.2016.03.021 *
PORKKA, K. ET AL.: "A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo", PROC. NATL. ACAD. SCI. USA, vol. 99, no. 11, 2002, pages 7444 - 7449, XP002665488, doi:10.1073/PNAS.062189599 *
POSTNIKOV ET AL.: "Loss of the nucleosome-binding protein HMGN1 affects the rate of N-nitrosodiethylamine induced hepatocarcinogenesis in mice", MOL CANCER RES., vol. 12, no. l, January 2014 (2014-01-01), pages 82 - 90, XP055637639, DOI: 10.1158/1541-7786.MCR-13-0392
POSTNIKOV, YV ET AL.: "Loss of the nucleosome- binding protein HMGN1 affects the rate of N- nitrosodiethylamine-induced hepatocarcinogenesis in mice", MOLECULAR CANCER RESEARCH, vol. 12, no. 1, 2014, pages 82 - 90, XP055637639 *
PROC NATL ACAD SCI USA, vol. 102, no. 36, 6 September 2005 (2005-09-06), pages 12962 - 7
See also references of EP3763731A4
TRIESCHMANN, L. ET AL.: "Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain", MOLECULAR AND CELLULAR BIOLOGY, vol. 15, no. 12, December 1995 (1995-12-01), pages 6663 - 6669, XP055637642 *
UEDA ET AL., MOLECULAR AND CELLULAR BIOLOGY, May 2008 (2008-05-01), pages 2872 - 2883
WEI, F. ET AL.: "The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant", CANCER RES., vol. 74, no. 21, 2014, pages 5989 - 5998, XP055376833, doi:10.1158/0008-5472.CAN-13-2042 *
YAMANE-OHNUKI N ET AL.: "Establishment ofFUT8 knockout Chinese hamster ovary cells:an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity", BIOTECHNOL BIOENG, vol. 87, 2004, pages 614 - 622, XP002984450, DOI: 10.1002/bit.20151
YAMANE-OHNUKI NSATOH M: "Production of therapeutic antibodies with controlled fucosylation", MABS, vol. 1, 2009, pages 230 - 236, XP002731447, DOI: 10.4161/mabs.1.3.8328
YANG, D. ET AL.: "Harnessing the alarmin HMGN1 for anticancer therapy", IMMUNOTHERAPY, vol. 7, no. 11, 2015, pages 1129 - 1131, XP055376710, doi:10.2217/imt.15.76 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059703A1 (ja) * 2020-09-16 2022-03-24 国立大学法人大阪大学 がん治療用医薬、免疫賦活剤および抗がん物質のスクリーニング方法

Also Published As

Publication number Publication date
US11572393B2 (en) 2023-02-07
JPWO2019172358A1 (ja) 2021-03-11
US11919932B2 (en) 2024-03-05
EP3763731A1 (en) 2021-01-13
EP3763731A4 (en) 2021-11-17
US20230220022A1 (en) 2023-07-13
JP7302793B2 (ja) 2023-07-04
TW201938580A (zh) 2019-10-01
US20200407408A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
KR102427192B1 (ko) 항-인간 4-1bb 항체 및 그의 용도
KR102340832B1 (ko) 항 pd-1 항체 및 그의 용도
AU2016269145C1 (en) Therapeutic combinations and methods for treating neoplasia
US11919932B2 (en) HMGN partial peptide and cancer therapy using the same
BR112019025243A2 (pt) anticorpos específicos para flt3 e usos dos mesmos
US11168137B2 (en) Method for reducing side effects of immune checkpoint control agent
TW201622748A (zh) 用於治療贅瘤形成之治療組合及方法
KR20180100412A (ko) 면역강화제에 의해 증진되는 초항원 매개된 암 면역요법
WO2017040660A1 (en) Combination therapy for treatment of disease
AU2019371457A1 (en) Anti-TIM-3 antibodies
WO2018047917A1 (ja) Hmgタンパク質と抗cd4抗体又は免疫チェックポイント制御剤との組み合わせによる相乗的抗腫瘍効果
AU2021308586A1 (en) Therapeutic antibodies and their uses
CN114364400A (zh) 使用pd-1轴抑制剂及抗骨膜蛋白抗体治疗癌症的方法
CN111973739A (zh) 抗pd-l1单克隆抗体治疗癌症的用途
CN114616247A (zh) Ox40/pd-l1双特异性抗体
US20240190961A1 (en) Combination of anti-garp antibody and immunomodulator
WO2021079958A1 (ja) 抗garp抗体と免疫調節剤の組み合わせ
US20240076396A1 (en) Anti-gitr antibodies and uses thereof
CN117355331A (zh) 抗Siglec组合物及其用途
TW201729827A (zh) 用於癌症治療之肽及擬肽與t細胞活化劑及/或查核點抑制劑之組合

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019764047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019764047

Country of ref document: EP

Effective date: 20201008