WO2019172234A1 - Method for manufacturing slender metal tube - Google Patents

Method for manufacturing slender metal tube Download PDF

Info

Publication number
WO2019172234A1
WO2019172234A1 PCT/JP2019/008586 JP2019008586W WO2019172234A1 WO 2019172234 A1 WO2019172234 A1 WO 2019172234A1 JP 2019008586 W JP2019008586 W JP 2019008586W WO 2019172234 A1 WO2019172234 A1 WO 2019172234A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal thin
thin tube
time
laser beam
irradiation
Prior art date
Application number
PCT/JP2019/008586
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 板倉
清水 潔
孝之 宇野
片山 昌広
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to JP2020505042A priority Critical patent/JP7313333B2/en
Publication of WO2019172234A1 publication Critical patent/WO2019172234A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment

Definitions

  • the present invention relates to a method for producing a metal thin tube having a roughened surface layer portion.
  • Japanese Patent Application Laid-Open No. 2016-78090 discloses a method of manufacturing a metal molded body having a porous structure in a surface layer portion using a continuous wave laser beam and cooling means, and an invention of a method of manufacturing a composite molded body using the same. Have been described.
  • Metal molded bodies include flat plates, rectangular parallelepipeds, cubes, cones, pyramids, cylinders, rings, cylinders, tubes, boxes, hemispheres, spheres, solid lattices and branches of trees, needles, wires Such thin items are also applicable (paragraph number 0016). Summary of the Invention
  • An object of the present invention is to provide a method for producing a metal thin tube having a roughened surface layer portion that can be used as an injection needle of a syringe.
  • the present invention is a method for producing a metal thin tube having an outer diameter of 0.2 mm to 3 mm, a thickness of 0.05 mm to 0.3 mm, and having a surface layer portion roughened on the outer surface side, While rotating the metal thin tube with the support rod inserted inside the metal thin tube, the metal thin tube is continuously irradiated with continuous wave laser light along the length direction of the metal thin tube to remove the metal thin tube. Having a step of forming a roughened surface layer on the surface side, The rotation speed of the metal thin tube is 50 to 1000 r / min; Provided is a method for producing a metal thin tube, wherein the irradiation speed of the continuous wave laser is 2000 mm / sec or more.
  • a thin and thin metal thin tube having an outer diameter of 0.2 mm to 3 mm and a thickness of 0.05 mm to 0.3 mm is roughened on the outer surface side without changing the dimensions.
  • a surface layer portion can be formed.
  • the perspective view of the metal thin tube used with the manufacturing method of this invention The perspective view of the support bar used with the manufacturing method of this invention.
  • the perspective view of the metal thin tube which has the roughened surface layer part obtained by the manufacturing method of this invention. 4 is an SEM photograph of the roughened surface of the metal thin tube obtained in Example 3.
  • FIG. 4 is an SEM photograph of the roughened surface of the metal thin tube obtained in Example 4.
  • FIG. 1 is a perspective view of a thin metal tube 10 used in the manufacturing method of the present invention (for example, one embodiment shown in FIG. 4 and another embodiment shown in FIG. 5).
  • the metal of the metal thin tube 10 is not particularly limited, and depends on the use of the metal thin tube (hereinafter referred to as “final metal thin tube”) having a surface layer portion roughened on the outer surface side obtained by the production method of the present invention. Thus, it can be appropriately selected from known metals.
  • metals examples include iron, aluminum, zinc, titanium, copper, magnesium and alloys containing them; various stainless steels; cermets such as tungsten carbide and chromium carbide.
  • the production method of the present invention can also be applied to those metals which have been subjected to surface treatment such as alumite treatment or plating treatment.
  • various metals such as stainless steel, iron, and titanium are preferable.
  • the metal thin tube 10 preferably has a uniform outer diameter and a uniform inner diameter, but may be a part of the outer diameter, a part of the inner diameter, or a part of the outer diameter and the inner diameter depending on the application.
  • the outer diameter of the metal thin tube 10 is 0.2 mm to 3 mm. In the case where some of the outer diameters are different, the maximum outer diameter is within the above range.
  • the thickness of the thin metal tube 10 is 0.05 mm to 0.3 mm. When the thickness of a part of the metal thin tube is different, the maximum thickness can be within the above range.
  • FIG. 2 is a perspective view showing an example of a support bar 20 used in the manufacturing method of the present invention (one embodiment shown in FIG. 4 and another embodiment shown in FIG. 5).
  • the support rod 20 can be made of metal, and is preferably made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10, but can be made of the same metal as the metal thin tube 10.
  • the metal thin tube is intended for use as a medical device, it is preferable to use stainless steel, iron, or titanium for the support rod 20.
  • the outer diameter of the support rod 20 can be inserted into the through hole 11 of the metal thin tube 10 and is dimensioned so that it can be lightly abutted against the inner peripheral surface of the metal thin tube 10 when the metal thin tube 10 is rotated.
  • FIG. 3 is a perspective view of a cooling cylindrical body 30 that can be used in the manufacturing method of the present invention (the embodiment shown in FIG. 5).
  • the cooling cylindrical body 30 may be made of metal and is preferably made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10, but is made of the same metal as the metal thin tube 10. It can also be used.
  • the metal thin tube is intended for use as a medical device, it is preferable to use stainless steel, iron, or titanium for the cooling tubular body 30.
  • the inner diameter of the cooling tubular body 30 and the outer diameter of the metal thin tube 10 are adjusted so that the inner surface of the through hole 31 of the cooling tubular body 30 can be closely fitted to the outer surface of the metal thin tube 10. It is preferable.
  • the inner diameter of the cooling cylinder 30 and the outer diameter of the metal thin tube 10 can be approximately the same.
  • the cooling cylindrical body 30 may be configured so as to be divided into two along the length direction.
  • the mating surfaces of the two halves divided into two have corresponding irregularities, and the corresponding irregularities can be fitted to each other so that the form shown in FIG. 3 can be obtained. It can also be.
  • it when using what was comprised so that it could divide into two as the cylindrical body 30 for cooling, it can also be used by fixing with a band etc. from the outer side.
  • FIG. 4 illustrates one embodiment of the manufacturing method of the present invention.
  • the support rod 20 has a first end 20a located at the first end 10a of the metal thin tube 10 and a second end 20b protruding outward from the second end 10b of the metal thin tube 10.
  • the metal thin tube 10 is inserted into the through hole 11 (see FIG. 1).
  • the first end 10a side of the thin metal tube 10 is connected to a rotating device (not shown), and the second end 20b of the support bar 20 is fixed by a jig (not shown).
  • a jig such as a vise attached to a work table, for example.
  • the continuous wave laser light source 1 is operated while rotating the metal thin tube 10 in the state shown in FIG. 4, and the laser is applied to the outer surface of the metal thin tube 10 along the length direction of the metal thin tube 10.
  • Light 2 is continuously irradiated. Thereby, the roughened surface layer portion is formed on the outer surface side of the metal thin tube 10.
  • the irradiation position and irradiation area of the laser beam on the metal thin tube 10 can be determined according to the application.
  • the rotation direction of the metal thin tube 10 is preferably the same direction. It is preferable to fix the support rod 20 so as not to rotate when rotating the thin metal tube 10, since it is possible to prevent the thin metal tube 10 from being deformed by both heat and rotation caused by laser light irradiation.
  • the metal thin tube 10 is compared with a case where it is not used (ie, in an air-cooled state). The heat dissipation effect from the inner surface side is obtained, and the deformation prevention effect of the metal thin tube 10 is enhanced, which is preferable.
  • FIG. 5 illustrates another embodiment of the production method of the present invention.
  • the support rod 20 has a first end 20a located at the first end 10a of the metal thin tube 10 and a second end 20b protruding outward from the second end 10b of the metal thin tube 10.
  • the metal thin tube 10 is inserted into the through hole 11 (see FIG. 1).
  • the second end 20b of the support bar 20 is fixed by a jig (not shown).
  • a jig such as a vise attached to a work table, for example.
  • the cooling tubular body 30 is fitted from the first end face 30a side to the first end 10a side of the metal thin tube 10.
  • the second end face 30b side of the cooling cylindrical body 30 is connected to a rotating device (not shown).
  • the cooling cylindrical body 30 can be used in a precooled state in order to enhance the cooling effect of the metal thin tube 10 and reduce the thermal influence during laser light irradiation.
  • the continuous wave laser light source 1 is operated along the length direction of the metal tube 10 while rotating the metal tube 10 by rotating the cooling cylindrical body 30 in the state shown in FIG.
  • the laser beam 2 is continuously irradiated on the outer surface of the thin metal tube 10.
  • the roughened surface layer portion is formed on the outer surface side of the metal thin tube 10.
  • the rotation direction of the metal thin tube 10 is preferably the same direction.
  • the metal tube 10 When the metal tube 10 is rotated by rotating the cooling cylindrical body 30, the metal tube 10 is deformed by both heat and rotation due to laser light irradiation by fixing the support rod 20 so as not to rotate. Is preferable.
  • the support rod 20 together with the cooling tubular body 30 is made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10 or the same metal as the metal thin tube 10, it is not used (ie, air-cooled state). Compared with, the heat dissipation effect from both the outer surface side and the inner surface side of the metal thin tube 10 is obtained, and the deformation prevention effect of the metal thin tube 10 is further enhanced, which is preferable.
  • the rotation speed of the metal thin tube 10 is 50 r / min to 1000 r / min, preferably 50 r / min to 500 r / min.
  • the continuous wave laser irradiates continuously at an irradiation speed of 2000 mm / sec or more.
  • the irradiation speed of the continuous wave laser is preferably 2000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and further preferably 2,000 to 15,000 mm / sec.
  • the irradiation speed of the continuous wave laser light is adjusted to be sufficiently higher than the rotation speed of the metal thin tube 10.
  • the continuous wave laser light can be irradiated linearly along the length direction of the metal thin tube 10.
  • the distance between adjacent irradiation traces is preferably 0.01 to 0.2 mm, more preferably 0.03 to 0.15 mm.
  • the energy density at the time of irradiation with continuous wave laser light is preferably 1 MW / cm 2 or more.
  • the energy density at the time of laser beam irradiation is determined from the laser beam output (W) and the laser beam spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ).
  • Energy density at the irradiation with the laser beam is preferably 2 ⁇ 1000MW / cm 2, more preferably 10 ⁇ 800MW / cm 2, more preferably 10 ⁇ 700MW / cm 2.
  • the laser beam output is preferably 4 to 4000 W, more preferably 50 to 2500 W, and even more preferably 150 to 2000 W.
  • the wavelength is preferably 500 to 11,000 nm.
  • the beam diameter (spot diameter) is preferably 5 to 80 ⁇ m.
  • the defocus distance when irradiating laser light is preferably ⁇ 5 to +5 mm, more preferably ⁇ 1 to +1 mm, and further preferably ⁇ 0.5 to +0.1 mm.
  • the defocus distance may be irradiated with laser with a set value being constant, or laser irradiation may be performed while changing the defocus distance. For example, at the time of laser irradiation, the defocusing distance may be decreased, or may be periodically increased or decreased.
  • irradiation can be performed so that irradiated portions and non-irradiated portions of the laser light are alternately generated.
  • the non-irradiation part of the laser light between the laser light irradiation part and the adjacent laser light irradiation part occurs alternately.
  • the state irradiated so that it may form in a dotted line is shown.
  • the same part can be repeatedly irradiated to form a dotted line along one straight line in appearance.
  • the number of repetitions can be, for example, 1 to 20 times.
  • the laser light irradiation part may be the same, or by changing the laser light irradiation part (shifting the laser light irradiation part), the entire surface of the metal thin tube is roughened. You may make it do.
  • the laser beam is irradiated multiple times with the same laser beam irradiated part, the laser beam is irradiated in a dotted line, but the laser beam irradiated part is shifted, i.e., the laser beam is not irradiated on the part that was initially irradiated with the laser beam. It is preferable to repeat the irradiation so that the irradiated portions overlap so that even if the irradiation is performed in a dotted line shape, the irradiation is finally performed in a solid line state.
  • the temperature of the irradiated surface may increase, but when irradiating the laser in a dotted line, the laser light irradiation part and the laser light non-irradiation part occur alternately, Since the non-irradiated portion of the laser beam is cooled, it is preferable to continue the laser beam irradiation because deformation such as warpage is difficult to occur even in the metal thin tube. At this time, the same effect can be obtained even when the laser light irradiation portion is changed (the laser light irradiation portion is shifted) as described above.
  • the length (L1) of the laser light irradiation portion is preferably 0.05 mm or more, more preferably 0.1 to 10 mm, in order to roughen the surface layer portion of the metal thin tube into a complex porous structure. More preferably, the thickness is 0.3 to 7 mm.
  • the laser light irradiation step uses a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source, and a duty ratio (duty) The ratio can be adjusted by laser irradiation.
  • a pulse wave laser can be created even with continuous excitation.
  • a Q-switch pulse oscillation method in which a pulse width (pulse ON time) is made shorter than that of a normal pulse and a laser with a high peak power is oscillated accordingly.
  • a pulse wave laser is created by an external modulation method that generates a pulse wave laser by temporally extracting light with an AOM or LN light intensity modulator, and a direct modulation method that generates a pulse wave laser by directly modulating the laser drive current. be able to.
  • a pulsed laser can be created by continuously exciting a laser by using a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source. it can.
  • the duty ratio is a ratio obtained from the ON time and OFF time of the laser light output by the following equation.
  • Duty ratio (%) ON time / (ON time + OFF time) ⁇ 100
  • the duty ratio corresponds to the above L1 / (L1 + L2), it can be selected from a range of 10 to 90%. Irradiation with a dotted line can be performed by adjusting the duty ratio and irradiating laser light.
  • the duty ratio is large, the efficiency of the roughening process is improved, but the cooling effect is low.
  • the duty ratio is small, the cooling effect is improved, but the roughening efficiency is deteriorated. Adjust the duty ratio according to the purpose.
  • a known continuous wave laser can be used, for example, YVO4 laser, fiber laser (preferably single mode fiber laser), excimer laser, carbon dioxide laser, ultraviolet laser, YAG laser, semiconductor laser, glass laser, ruby. Lasers, He—Ne lasers, nitrogen lasers, chelate lasers, and dye lasers can be used. Among these, since the energy density is increased, a fiber laser is preferable, and a single mode fiber laser is particularly preferable.
  • the irradiation form of the continuous wave laser beam is not particularly limited, and the outer surface of the metal thin tube 10 is irradiated in only one direction (one direction) along the length direction of the metal thin tube 10 or bidirectional.
  • the form which irradiates, the form which irradiates combining one direction and two directions, etc. can be implemented.
  • FIG. 6 shows an example of a preferable irradiation mode of continuous wave laser light.
  • Laser light is emitted from a laser oscillator to an object (metal thin tube 10) through a mirror. At this time, the irradiation position and the irradiation length of the laser light are adjusted by changing the angle of the mirror.
  • the head that does not irradiate the laser beam before reaching the start point S1 before starting the laser beam irradiation from the start point S1.
  • There is a time head time [head time]; time until the mirror angle is adjusted to the start point S1) (the position at the start of the head time is H1).
  • the tail time when the laser beam is not irradiated from the end point F1 tail time; time until the mirror stops after the end point F1 ( The position at the end of the tail time is T1).
  • the laser beam is irradiated by a length of 10 mm from the start point S1 to the end point F1
  • the laser beam is irradiated for a length of, for example, about 5 mm until the start point S1 (0 mm) at which the laser beam irradiation is started.
  • a length of about 4 mm from the end point F1 (10 mm) at which the laser light irradiation is stopped requires a time (tail time) during which the laser light is not irradiated.
  • the total time (msec) of the head time, the laser light irradiation time from the start point S1 to the end point F1, and the tail time is the processing time of the first step.
  • the second step is a step of returning from the tail time end position T1 of the first step to H2 moved in the circumferential direction of the metal thin tube 10 from the head time start position H1 of the first step without irradiating the laser beam (FIG. 6 of L2).
  • the change in position in the circumferential direction from H1 to H2 is accompanied by the rotation of the thin metal tube.
  • the time (msec) for returning from T1 to H2 is the processing time of the second step.
  • the first step and the second step can be repeated as a cycle from the first cycle to the nth cycle (n is a positive integer of 2 or more).
  • the processing time of one cycle is the total processing time (msec) of the processing time (msec) of the first step and the processing time (msec) of the second step.
  • the second cycle is shown as H2 corresponding to H1, S2 corresponding to S1, L3 corresponding to L1, F2 corresponding to F1, and T2 corresponding to T1.
  • the distance in the circumferential direction of the thin metal tube 10 from T1 to T2 and the distance in the circumferential direction of the thin metal tube 10 from H1 to H2 are the adjacent irradiation traces of the continuous wave laser beam (adjacent along the length direction of the thin metal tube 10). This corresponds to the interval between the grooves formed by irradiation.
  • the metal thin tube 10 is rotated when the laser beam is irradiated, since the irradiation speed of the laser beam is remarkably faster than the rotation speed of the metal thin tube 10, the laser beam is the length of the metal tube 10 in the first step L1. Irradiation is almost linear along the direction.
  • the irradiation start position is slightly moved in the circumferential direction from S1 to S2 in response to the rotation of the metal thin tube 10 during the total time of the first step and the second step (in FIG. 6, easy to understand). (Shown with diagonal lines) Note that an active stop time (DT) for correcting the irradiation position of the laser beam (shifting the irradiation position) can be provided as necessary.
  • DT active stop time
  • the processing time of one cycle can be adjusted by satisfying any one, two, or all three of the following (a) to (c), and the requirements (a) and (b) It is preferable to adjust by either or both.
  • the processing time of one cycle is adjusted by adjusting the laser beam irradiation speed in the first step.
  • the processing time for one cycle is adjusted by adjusting the return speed of the second step.
  • the processing time of one cycle is adjusted by adjusting one or both of the head time and tail time.
  • the laser beam is irradiated from the start point S1 to the end point F1 using a laser oscillator and mirror in one direction along the length of the metal thin tube.
  • a first step of irradiating a laser beam from a start point S1 to an end point F1 and a second step of adjusting the mirror to return the laser beam irradiable position in the direction of the start point S1 without irradiating the laser beam.
  • the first step includes When irradiating the laser beam from the start point S1 to the end point F1 in the first step, before starting the laser beam irradiation from the start point S1, the head time not irradiating the laser beam before reaching the start point S1 (the head time) And the tail time when the laser beam is not irradiated from the end point F1 after the laser beam is irradiated to the end point F (the position at the end of the tail time is T1).
  • the head time, the irradiation time of the laser light from the start point S1 to the end point F1, and the total time (msec) of the tail time are the processing time of the first step
  • the second step includes The step of returning from the head time start position H1 of the first step to H2 moved in the circumferential direction without irradiating laser light from the tail time end position T1 of the first step,
  • the time (msec) for returning from T1 to H2 is the processing time of the second step
  • the processing time of one cycle is the total time (msec) of the processing time of the first step and the processing time of the second step
  • the processing time of the one cycle is adjusted to a range of 1 to 200 msec by satisfying any one, two, or all three of the following (a) to (c).
  • the processing time of one cycle is adjusted by adjusting the laser beam irradiation speed in the first step.
  • the processing time for one cycle is adjusted by adjusting the return speed of the second step.
  • the processing time of one cycle is adjusted by adjusting one or both of the head time and tail time.
  • processing time of 1 cycle can be adjusted by adjusting DT as requirement (d).
  • laser light can be irradiated also in the second step.
  • the processing time of one cycle can be adjusted by adjusting the irradiation speed of the laser light in the second step.
  • the laser light irradiation process By correlating the peripheral processing speed (mm / msec) when rotating the metal thin tube obtained from the total processing time of one cycle, the outer diameter of the metal thin tube and the rotation speed (rotation speed), the laser light irradiation process to the metal thin tube It is preferable to control.
  • the treatment time for one cycle is preferably 1 to 200 msec, more preferably 1 to 100 msec, and further preferably 1 to 50 msec.
  • the peripheral speed when rotating the metal thin tube is preferably 0.001 to 0.3 mm / msec, more preferably 0.002 to 0.2 mm / msec, and still more preferably 0.01 to 0.018 mm / msec.
  • the interval (pitch) between irradiation marks (grooves formed by laser light) of laser light can be obtained from 1 cycle time ⁇ circumferential speed.
  • the total number of rotations (number of rotations) of the metal thin tube can be obtained from 1 cycle processing time ⁇ number of irradiation times ⁇ circumferential speed.
  • the metal thin tube 10 and the support rod 20 are separated, or after the embodiment shown in FIG. 5, the metal thin tube 10 and the support rod 20, the metal thin tube 10 and the cooling tubular body 30 are separated.
  • the final metal thin tube 10A having the surface layer portion 12 roughened on the outer surface side can be obtained.
  • the surface layer portion 12 has a depth ranging from 30 ⁇ m to 300 ⁇ m from the roughened surface irradiated with the continuous wave laser beam.
  • the final metal thin tube 10A manufactured by the manufacturing method of the present invention can be used for medical devices such as injection needles.
  • a metal molded body for example, a final metal described in the invention described in Japanese Patent No. 5701414. It can be manufactured by applying a method (injection molding method) in which the injection needle using the thin tube 10A) and a resin molded body (for example, a syringe body into which an injection solution is put) are joined and integrated.
  • Example and Comparative Example The metal thin tube 10A shown in FIG. 7 was obtained by carrying out the manufacturing method shown in FIG.
  • the dimensions of the metal thin tube 10, the support rod 20, and the cooling cylindrical body 30 were as follows.
  • Metal thin tube 10 outer diameter 2.11 mm, inner diameter 1.69 mm, length 100 mm
  • Support rod outer diameter 1.69mm, length 120mm
  • Cooling cylinder inner diameter 2.11 mm, length 30 mm
  • the time required for one cycle was about 4 msec.
  • the first end 20b of the support rod 20 was fixed with a vise, and the second end 30b side of the cooling cylindrical body 30 was connected to the rotating portion of the rotating device.
  • the support rod 20, and the cooling cylindrical body 30, SUS304 was used as materials for the metal thin tube 10. 8 and 9 show SEM photographs of the roughened surfaces of the metal thin tubes of Example 3 and Example 4, respectively.
  • Comparative Example 2 not using a support bar was evaluated by inserting a support bar after cooling for 30 seconds after irradiation with laser light under the conditions shown in Table 1.
  • the groove depth was measured with a digital microscope VHX-900 (manufactured by Keyence Corporation) on the surface after laser light irradiation.
  • the maximum groove depth was measured at a total of 10 groove depths at equal intervals in the circumferential direction and the length direction, and was taken as the value of the deepest portion among them.
  • the metal thin tube having the surface layer portion roughened on the outer surface side which is manufactured by the manufacturing method of the present invention, can be used for medical devices such as injection needles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

[Problem] To provide a method for manufacturing a slender metal tube that can be used as a hypodermic needle and has a roughened surface part on an outer-surface side. [Solution] A method for manufacturing a slender metal tube that has an outside diameter of 0.2-3 mm and a thickness of 0.05-0.3 mm, and has a roughened surface part on an outer-surface side, wherein: the method for manufacturing a slender metal tube has a step for continuously irradiating the slender metal tube with continuous-wave laser light along the length direction of the slender metal tube while rotating the slender metal tube in a state in which a support rod is inserted inside the slender metal tube, whereby the roughened surface part is formed on the outer-surface side of the slender metal tube; the rotation speed of the slender metal tube is 50-1000 r/min; and the radiation speed of the continuous-wave laser is 2000 mm/sec or higher.

Description

金属細管の製造方法Manufacturing method of metal capillaries
 本発明は、粗面化された表層部を有する金属細管の製造方法に関する。 The present invention relates to a method for producing a metal thin tube having a roughened surface layer portion.
 各種部品の軽量化の観点から、金属代替品として樹脂成形体が使用されているが、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられ、前記接合一体化技術として、レーザー光を利用して金属成形体と樹脂成形体を接合する技術が知られている。 From the viewpoint of reducing the weight of various parts, resin molded products are used as metal substitutes, but it is often difficult to replace all metal parts with resin. In such a case, it is conceivable to manufacture a new composite part by joining and integrating the metal molded body and the resin molded body. A technique for joining resin moldings is known.
 特開2016-78090号公報には、連続波レーザー光と冷却手段を使用して、表層部に多孔構造を有する金属成形体の製造方法と、それを利用した複合成形体の製造方法の発明が記載されている。 Japanese Patent Application Laid-Open No. 2016-78090 discloses a method of manufacturing a metal molded body having a porous structure in a surface layer portion using a continuous wave laser beam and cooling means, and an invention of a method of manufacturing a composite molded body using the same. Have been described.
 金属成形体としては、平板、直方体、立方体、円錐、角錐、円柱のほか、リング、筒、管、箱、半球、球、立体格子や木の枝のような複雑な形状のもの、針、ワイヤのような細いものも適用対象となっている(段落番号0016)。
発明の概要
Metal molded bodies include flat plates, rectangular parallelepipeds, cubes, cones, pyramids, cylinders, rings, cylinders, tubes, boxes, hemispheres, spheres, solid lattices and branches of trees, needles, wires Such thin items are also applicable (paragraph number 0016).
Summary of the Invention
 本発明は、注射器の注射針などとして使用できる、粗面化された表層部を有する金属細管の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a metal thin tube having a roughened surface layer portion that can be used as an injection needle of a syringe.
 本発明は、外径0.2mm~3mm、厚さ0.05mm~0.3mmであり、外表面側に粗面化された表層部を有する金属細管の製造方法であって、
 前記金属細管の内側に支持棒を差し込んだ状態で前記金属細管を回転させながら、前記金属細管の長さ方向に沿って前記金属細管に連続波レーザー光を連続照射することで前記金属細管の外表面側に粗面化された表層部を形成させる工程を有しており、
 前記金属細管の回転速度が50~1000r/minであり、
 前記連続波レーザーの照射速度が2000mm/sec以上である、金属細管の製造方法を提供する。
The present invention is a method for producing a metal thin tube having an outer diameter of 0.2 mm to 3 mm, a thickness of 0.05 mm to 0.3 mm, and having a surface layer portion roughened on the outer surface side,
While rotating the metal thin tube with the support rod inserted inside the metal thin tube, the metal thin tube is continuously irradiated with continuous wave laser light along the length direction of the metal thin tube to remove the metal thin tube. Having a step of forming a roughened surface layer on the surface side,
The rotation speed of the metal thin tube is 50 to 1000 r / min;
Provided is a method for producing a metal thin tube, wherein the irradiation speed of the continuous wave laser is 2000 mm / sec or more.
 本発明の製造方法によれば、外径0.2mm~3mm、厚さ0.05mm~0.3mmという、細くかつ薄肉の金属細管を寸法変化させることなく、その外表面側に粗面化された表層部を形成させることができる。 According to the manufacturing method of the present invention, a thin and thin metal thin tube having an outer diameter of 0.2 mm to 3 mm and a thickness of 0.05 mm to 0.3 mm is roughened on the outer surface side without changing the dimensions. A surface layer portion can be formed.
本発明の製造方法で使用する金属細管の斜視図。The perspective view of the metal thin tube used with the manufacturing method of this invention. 本発明の製造方法で使用する支持棒の斜視図。The perspective view of the support bar used with the manufacturing method of this invention. 本発明の製造方法で使用する冷却用筒状体の斜視図。The perspective view of the cylindrical body for cooling used with the manufacturing method of this invention. 本発明の製造方法の一実施形態を説明するための軸方向断面図。An axial sectional view for explaining one embodiment of a manufacturing method of the present invention. 本発明の製造方法の他実施形態を説明するための軸方向断面図。An axial direction sectional view for explaining other embodiments of a manufacturing method of the present invention. 連続波レーザー光の照射形態の説明図。Explanatory drawing of the irradiation form of a continuous wave laser beam. 本発明の製造方法により得られた粗面化された表層部を有する金属細管の斜視図。The perspective view of the metal thin tube which has the roughened surface layer part obtained by the manufacturing method of this invention. 実施例3で得られた金属細管の粗面化された面のSEM写真。4 is an SEM photograph of the roughened surface of the metal thin tube obtained in Example 3. FIG. 実施例4で得られた金属細管の粗面化された面のSEM写真。4 is an SEM photograph of the roughened surface of the metal thin tube obtained in Example 4. FIG.
 以下、図面により本発明の製造方法を説明する。 Hereinafter, the manufacturing method of the present invention will be described with reference to the drawings.
 図1は、本発明の製造方法(例えば図4に示す1つの実施形態と図5に示す別の実施形態)で使用する金属細管10の斜視図である。金属細管10の金属は特に制限されるものではなく、本発明の製造方法で得られる外表面側に粗面化された表層部を有する金属細管(以下「最終金属細管」という)の用途に応じて公知の金属から適宜選択することができる。 FIG. 1 is a perspective view of a thin metal tube 10 used in the manufacturing method of the present invention (for example, one embodiment shown in FIG. 4 and another embodiment shown in FIG. 5). The metal of the metal thin tube 10 is not particularly limited, and depends on the use of the metal thin tube (hereinafter referred to as “final metal thin tube”) having a surface layer portion roughened on the outer surface side obtained by the production method of the present invention. Thus, it can be appropriately selected from known metals.
 金属の例としては、鉄、アルミニウム、亜鉛、チタン、銅、マグネシウムおよびそれらを含む合金;各種ステンレス;タングステンカーバイド、クロミウムカーバイドなどのサーメットなどから選ばれるものを挙げることができる。本発明の製造方法は、これらの金属に対して、アルマイト処理、めっき処理などの表面処理を施したものにも適用できる。最終的に得られた金属細管が医療用具を用途とするものであるときは、金属としては各種ステンレス、鉄、チタンが好ましい。 Examples of metals include iron, aluminum, zinc, titanium, copper, magnesium and alloys containing them; various stainless steels; cermets such as tungsten carbide and chromium carbide. The production method of the present invention can also be applied to those metals which have been subjected to surface treatment such as alumite treatment or plating treatment. When the finally obtained thin metal tube is intended for medical devices, various metals such as stainless steel, iron, and titanium are preferable.
 金属細管10は、均一外径および均一内径のものが好ましいが、用途に応じて一部の外径、一部の内径または一部の外径と内径の両方が異なるものでもよい。金属細管10の外径は外径0.2mm~3mmである。一部の外径が異なるものの場合には、最大外径が前記範囲内のものである。金属細管10の厚さは0.05mm~0.3mmである。金属細管の一部の厚さが異なる場合には、最大厚さが前記範囲内のものであることができる。 The metal thin tube 10 preferably has a uniform outer diameter and a uniform inner diameter, but may be a part of the outer diameter, a part of the inner diameter, or a part of the outer diameter and the inner diameter depending on the application. The outer diameter of the metal thin tube 10 is 0.2 mm to 3 mm. In the case where some of the outer diameters are different, the maximum outer diameter is within the above range. The thickness of the thin metal tube 10 is 0.05 mm to 0.3 mm. When the thickness of a part of the metal thin tube is different, the maximum thickness can be within the above range.
 図2は、本発明の製造方法(図4に示す1つの実施形態と図5に示す別の実施形態)で使用する支持棒20の1つの例を示す斜視図である。支持棒20は金属製のものであることができ、金属細管10の金属よりも熱伝導率が高い金属からなるものが好ましいが、金属細管10と同じ金属からなるものを使用することもできる。金属細管が医療用具を最終用途とするものであるときは、支持棒20にはステンレス、鉄、チタンを使用することが好ましい。 FIG. 2 is a perspective view showing an example of a support bar 20 used in the manufacturing method of the present invention (one embodiment shown in FIG. 4 and another embodiment shown in FIG. 5). The support rod 20 can be made of metal, and is preferably made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10, but can be made of the same metal as the metal thin tube 10. When the metal thin tube is intended for use as a medical device, it is preferable to use stainless steel, iron, or titanium for the support rod 20.
 支持棒20の外径は、金属細管10の貫通孔11内に挿入することができ、かつ金属細管10を回転させたときに金属細管10の内周面に軽く当接される程度の寸法であることが好ましい。金属細管10の内径(D1)と支持棒20の外径(D2)は、D2/D1≧0.90が好ましく、D2/D1=0.95~0.99の範囲がより好ましい。 The outer diameter of the support rod 20 can be inserted into the through hole 11 of the metal thin tube 10 and is dimensioned so that it can be lightly abutted against the inner peripheral surface of the metal thin tube 10 when the metal thin tube 10 is rotated. Preferably there is. The inner diameter (D1) of the metal thin tube 10 and the outer diameter (D2) of the support rod 20 are preferably D2 / D1 ≧ 0.90, and more preferably in the range of D2 / D1 = 0.95 to 0.99.
 図3は、本発明の製造方法(図5に示す実施形態)で使用することのできる冷却用筒状体30の斜視図である。冷却用筒状体30は金属製のものであってよく、金属細管10の金属よりも熱伝導率が高い金属からなるものを使用することが好ましいが、金属細管10と同じ金属からなるものを使用することもできる。金属細管が医療用具を最終用途とするものであるときは、冷却用筒状体30にはステンレス、鉄、チタンを使用することが好ましい。 FIG. 3 is a perspective view of a cooling cylindrical body 30 that can be used in the manufacturing method of the present invention (the embodiment shown in FIG. 5). The cooling cylindrical body 30 may be made of metal and is preferably made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10, but is made of the same metal as the metal thin tube 10. It can also be used. When the metal thin tube is intended for use as a medical device, it is preferable to use stainless steel, iron, or titanium for the cooling tubular body 30.
 冷却用筒状体30の内径と金属細管10の外径は、冷却用筒状体30の貫通孔31の内表面が金属細管10の外表面に密着して嵌め込むことができるように調整されていることが好ましい。例えば冷却用筒状体30の内径と金属細管10の外径はほぼ同程度であることができる。 The inner diameter of the cooling tubular body 30 and the outer diameter of the metal thin tube 10 are adjusted so that the inner surface of the through hole 31 of the cooling tubular body 30 can be closely fitted to the outer surface of the metal thin tube 10. It is preferable. For example, the inner diameter of the cooling cylinder 30 and the outer diameter of the metal thin tube 10 can be approximately the same.
 なお、冷却用筒状体30は、長さ方向に沿って二分割することができるように構成したものでもよい。そのような実施形態の場合には、二分割されたそれぞれの半体が有する合わせ面が対応する凹凸を有しており、前記対応する凹凸同士を嵌め合わせることで図3に示す形態にできるようにすることもできる。また冷却用筒状体30として二分割できるように構成したものを使用するときは、外側からバンドなどで固定して使用することもできる。 Note that the cooling cylindrical body 30 may be configured so as to be divided into two along the length direction. In the case of such an embodiment, the mating surfaces of the two halves divided into two have corresponding irregularities, and the corresponding irregularities can be fitted to each other so that the form shown in FIG. 3 can be obtained. It can also be. Moreover, when using what was comprised so that it could divide into two as the cylindrical body 30 for cooling, it can also be used by fixing with a band etc. from the outer side.
 図4により本発明の製造方法の1つの実施形態を説明する。支持棒20は、第1端部20aが金属細管10の第1端部10aに位置し、第2端部20bが金属細管10の第2端部10bから外側に突き出された状態になるように金属細管10の貫通孔11(図1参照)内に差し込まれている。 FIG. 4 illustrates one embodiment of the manufacturing method of the present invention. The support rod 20 has a first end 20a located at the first end 10a of the metal thin tube 10 and a second end 20b protruding outward from the second end 10b of the metal thin tube 10. The metal thin tube 10 is inserted into the through hole 11 (see FIG. 1).
 1つの例では、金属細管10の第1端部10a側は図示してない回転装置に接続され、支持棒20の第2端部20bは図示していない治具により固定されている。このように支持棒20を固定するときは、例えば作業台に取り付けられた万力のような治具により固定することができる。 In one example, the first end 10a side of the thin metal tube 10 is connected to a rotating device (not shown), and the second end 20b of the support bar 20 is fixed by a jig (not shown). When the support bar 20 is fixed in this way, it can be fixed by a jig such as a vise attached to a work table, for example.
 この例においては、図4に示す状態で金属細管10を回転させながら、連続波レーザー光源1を操作して、金属細管10の長さ方向に沿って、金属細管10の外表面に対してレーザー光2を連続照射する。これにより、金属細管10の外表面側に粗面化された表層部が形成される。 In this example, the continuous wave laser light source 1 is operated while rotating the metal thin tube 10 in the state shown in FIG. 4, and the laser is applied to the outer surface of the metal thin tube 10 along the length direction of the metal thin tube 10. Light 2 is continuously irradiated. Thereby, the roughened surface layer portion is formed on the outer surface side of the metal thin tube 10.
 金属細管10に対するレーザー光の照射位置および照射面積は、用途に応じて決定することができる。金属細管10の回転方向は同一方向が好ましい。金属細管10を回転させるときに支持棒20を固定して回転させないようにすることで、レーザー光照射による熱と回転の両方により金属細管10が変形することを防止できるので好ましい。 The irradiation position and irradiation area of the laser beam on the metal thin tube 10 can be determined according to the application. The rotation direction of the metal thin tube 10 is preferably the same direction. It is preferable to fix the support rod 20 so as not to rotate when rotating the thin metal tube 10, since it is possible to prevent the thin metal tube 10 from being deformed by both heat and rotation caused by laser light irradiation.
 また支持棒20として金属細管10の金属よりも熱伝導率が高い金属または金属細管10と同じ金属からなるものを使用したときは、使用しないとき(即ち、空冷状態)と比べると、金属細管10の内表面側からの放熱効果が得られ、金属細管10の変形防止効果が高められるため好ましい。 Further, when the support rod 20 is made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10 or made of the same metal as the metal thin tube 10, the metal thin tube 10 is compared with a case where it is not used (ie, in an air-cooled state). The heat dissipation effect from the inner surface side is obtained, and the deformation prevention effect of the metal thin tube 10 is enhanced, which is preferable.
 図5により本発明の製造方法の別の実施形態を説明する。支持棒20は、第1端部20aが金属細管10の第1端部10aに位置し、第2端部20bが金属細管10の第2端部10bから外側に突き出された状態になるように金属細管10の貫通孔11(図1参照)内に差し込まれている。 FIG. 5 illustrates another embodiment of the production method of the present invention. The support rod 20 has a first end 20a located at the first end 10a of the metal thin tube 10 and a second end 20b protruding outward from the second end 10b of the metal thin tube 10. The metal thin tube 10 is inserted into the through hole 11 (see FIG. 1).
 1つの例では、支持棒20の第2端部20bは、図示していない治具により固定されている。このように支持棒20を固定するときは、例えば作業台に取り付けられた万力のような治具により固定することができる。 In one example, the second end 20b of the support bar 20 is fixed by a jig (not shown). When the support bar 20 is fixed in this way, it can be fixed by a jig such as a vise attached to a work table, for example.
 金属細管10の第1端部10a側には、冷却用筒状体30が第1端面30a側から嵌め込まれている。冷却用筒状体30の第2端面30b側は図示してない回転装置に接続されている。冷却用筒状体30は、金属細管10の冷却効果を高めてレーザー光照射時の熱的影響を減少させるため、予め冷却した状態のものを使用することもできる。 The cooling tubular body 30 is fitted from the first end face 30a side to the first end 10a side of the metal thin tube 10. The second end face 30b side of the cooling cylindrical body 30 is connected to a rotating device (not shown). The cooling cylindrical body 30 can be used in a precooled state in order to enhance the cooling effect of the metal thin tube 10 and reduce the thermal influence during laser light irradiation.
 この例においては、図5に示す状態で冷却用筒状体30を回転させることで金属細管10を回転させながら、連続波レーザー光源1を操作して、金属細管10の長さ方向に沿って、金属細管10の外表面に対してレーザー光2を連続照射する。これにより、金属細管10の外表面側に粗面化された表層部が形成される。金属細管10の回転方向は同一方向が好ましい。 In this example, the continuous wave laser light source 1 is operated along the length direction of the metal tube 10 while rotating the metal tube 10 by rotating the cooling cylindrical body 30 in the state shown in FIG. The laser beam 2 is continuously irradiated on the outer surface of the thin metal tube 10. Thereby, the roughened surface layer portion is formed on the outer surface side of the metal thin tube 10. The rotation direction of the metal thin tube 10 is preferably the same direction.
 冷却用筒状体30を回転させて金属細管10を回転させるとき、支持棒20を固定して回転させないようにすることで、レーザー光照射による熱と回転の両方により金属細管10が変形することを防止できるので好ましい。 When the metal tube 10 is rotated by rotating the cooling cylindrical body 30, the metal tube 10 is deformed by both heat and rotation due to laser light irradiation by fixing the support rod 20 so as not to rotate. Is preferable.
 また冷却用筒状体30と共に支持棒20として金属細管10の金属よりも熱伝導率が高い金属または金属細管10と同じ金属からなるものを使用したときは、使用しないとき(即ち、空冷状態)と比べると、金属細管10の外表面側と内表面側の両方からの放熱効果が得られ、金属細管10の変形防止効果がより高められるため好ましい。 In addition, when the support rod 20 together with the cooling tubular body 30 is made of a metal having a higher thermal conductivity than the metal of the metal thin tube 10 or the same metal as the metal thin tube 10, it is not used (ie, air-cooled state). Compared with, the heat dissipation effect from both the outer surface side and the inner surface side of the metal thin tube 10 is obtained, and the deformation prevention effect of the metal thin tube 10 is further enhanced, which is preferable.
 図4に示す実施形態および図5に示す実施形態のいずれの製造方法においても、金属細管10の回転速度は50r/min~1000r/minであり、50r/min~500r/minが好ましい。例えば、外径2mm(外周6.28mm)の金属細管10が100r/minで回転するとき、周方向の回転速度(周速度)は628mm/min(=10.47mm/sec=0.01047mm/msec)となる。 In both the embodiment shown in FIG. 4 and the embodiment shown in FIG. 5, the rotation speed of the metal thin tube 10 is 50 r / min to 1000 r / min, preferably 50 r / min to 500 r / min. For example, when the thin metal tube 10 having an outer diameter of 2 mm (outer periphery 6.28 mm) rotates at 100 r / min, the circumferential rotational speed (peripheral speed) is 628 mm / min (= 10.47 mm / sec = 0.01047 mm / msec). )
 連続波レーザーは、照射速度が2000mm/sec以上で連続照射する。連続波レーザーの照射速度は、2000~20,000mm/secが好ましく、2,000~18,000mm/secがより好ましく、2,000~15,000mm/secがさらに好ましい。連続波レーザー光の照射速度は、金属細管10の回転速度に比べると十分に大きくなるように調整されている。 The continuous wave laser irradiates continuously at an irradiation speed of 2000 mm / sec or more. The irradiation speed of the continuous wave laser is preferably 2000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and further preferably 2,000 to 15,000 mm / sec. The irradiation speed of the continuous wave laser light is adjusted to be sufficiently higher than the rotation speed of the metal thin tube 10.
 連続波レーザー光は金属細管10の長さ方向に沿って直線状に照射することができる。隣接する照射痕(隣接する直線状の照射により形成された溝)同士の間隔は、0.01~0.2mmが好ましく、0.03~0.15mmがより好ましい。 The continuous wave laser light can be irradiated linearly along the length direction of the metal thin tube 10. The distance between adjacent irradiation traces (grooves formed by adjacent linear irradiation) is preferably 0.01 to 0.2 mm, more preferably 0.03 to 0.15 mm.
 連続波レーザー光の照射時のエネルギー密度は1MW/cm以上が好ましい。レーザー光の照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光のスポット面積(cm)(π・〔スポット径/2〕)から求められる。レーザー光の照射時のエネルギー密度は、2~1000MW/cmが好ましく、10~800MW/cmがより好ましく、10~700MW/cmがさらに好ましい。 The energy density at the time of irradiation with continuous wave laser light is preferably 1 MW / cm 2 or more. The energy density at the time of laser beam irradiation is determined from the laser beam output (W) and the laser beam spot area (cm 2 ) (π · [spot diameter / 2] 2 ). Energy density at the irradiation with the laser beam is preferably 2 ~ 1000MW / cm 2, more preferably 10 ~ 800MW / cm 2, more preferably 10 ~ 700MW / cm 2.
 レーザー光の出力は4~4000Wが好ましく、50~2500Wがより好ましく、150~2000Wがさらに好ましい。波長は500~11,000nmが好ましい。ビーム径(スポット径)は5~80μmが好ましい。 The laser beam output is preferably 4 to 4000 W, more preferably 50 to 2500 W, and even more preferably 150 to 2000 W. The wavelength is preferably 500 to 11,000 nm. The beam diameter (spot diameter) is preferably 5 to 80 μm.
 レーザー光を照射するときの焦点はずし距離は、-5~+5mmが好ましく、-1~+1mmがより好ましく、-0.5~+0.1mmがさらに好ましい。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を小さくしていくようにしたり、周期的に大きくしたり小さくしたりしても良い。 The defocus distance when irradiating laser light is preferably −5 to +5 mm, more preferably −1 to +1 mm, and further preferably −0.5 to +0.1 mm. The defocus distance may be irradiated with laser with a set value being constant, or laser irradiation may be performed while changing the defocus distance. For example, at the time of laser irradiation, the defocusing distance may be decreased, or may be periodically increased or decreased.
 本発明の金属細管の製造方法では、粗面化対象となる金属細管の表面に対してレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射することができる。 In the method for producing a metal thin tube according to the present invention, when the surface of the metal thin tube to be roughened is irradiated with laser light, irradiation can be performed so that irradiated portions and non-irradiated portions of the laser light are alternately generated. .
 レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、レーザー光の照射部分と隣接するレーザー光の照射部分の間にあるレーザー光の非照射部分が交互に生じて、全体として点線状に形成されるように照射した状態を示している。 When irradiating so that the laser light irradiation part and non-irradiation part occur alternately, the non-irradiation part of the laser light between the laser light irradiation part and the adjacent laser light irradiation part occurs alternately. The state irradiated so that it may form in a dotted line is shown.
 このとき、同じ部分に繰り返して照射して外観上1本の直線に沿った点線状にすることもできる。繰り返し回数は、例えば1~20回にすることができる。複数回照射するときは、レーザー光の照射部分を同じにしてもよいし、レーザー光の照射部分を異ならせる(レーザー光の照射部分をずらす)ことで、金属細管の表面全体が粗面化されるようにしてもよい。 At this time, the same part can be repeatedly irradiated to form a dotted line along one straight line in appearance. The number of repetitions can be, for example, 1 to 20 times. When irradiating multiple times, the laser light irradiation part may be the same, or by changing the laser light irradiation part (shifting the laser light irradiation part), the entire surface of the metal thin tube is roughened. You may make it do.
 レーザー光の照射部分を同じにして複数回照射したときは点線状に照射されるが、レーザー光の照射部分をずらして、即ち、最初はレーザー光の非照射部分であった部分にレーザー光の照射部分が重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状態に照射されることになるので好ましい。 When the laser beam is irradiated multiple times with the same laser beam irradiated part, the laser beam is irradiated in a dotted line, but the laser beam irradiated part is shifted, i.e., the laser beam is not irradiated on the part that was initially irradiated with the laser beam. It is preferable to repeat the irradiation so that the irradiated portions overlap so that even if the irradiation is performed in a dotted line shape, the irradiation is finally performed in a solid line state.
 金属細管に対して連続的にレーザー光を照射すると、照射面の温度が上昇する場合があるが、点線状にレーザー照射すると、レーザー光の照射部分とレーザー光の非照射部分が交互に生じ、レーザー光の非照射部分では冷却されていることになるため、レーザー光の照射を継続した場合、金属細管でもそりなどの変形が生じ難くなるので好ましい。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらせた)場合でも同様の効果が得られる。 When continuously irradiating a laser beam to a metal thin tube, the temperature of the irradiated surface may increase, but when irradiating the laser in a dotted line, the laser light irradiation part and the laser light non-irradiation part occur alternately, Since the non-irradiated portion of the laser beam is cooled, it is preferable to continue the laser beam irradiation because deformation such as warpage is difficult to occur even in the metal thin tube. At this time, the same effect can be obtained even when the laser light irradiation portion is changed (the laser light irradiation portion is shifted) as described above.
 レーザー光の照射部分の長さ(L1)とレーザー光の非照射部分の長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分の長さ(L1)は、金属細管の表層部を複雑な多孔構造に粗面化するためには0.05mm以上であることが好ましく、0.1~10mmがより好ましく、0.3~7mmがさらに好ましい。 The length (L1) of the laser light irradiated portion and the length (L2) of the non-irradiated portion of the laser light can be adjusted to be in a range of L1 / L2 = 1/9 to 9/1. The length (L1) of the laser light irradiation portion is preferably 0.05 mm or more, more preferably 0.1 to 10 mm, in order to roughen the surface layer portion of the metal thin tube into a complex porous structure. More preferably, the thickness is 0.3 to 7 mm.
 本発明の金属細管の製造方法では、上記したレーザー光の照射工程は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、デューティ比(duty ratio)を調整してレーザー照射することによって行うことができる。 In the method for manufacturing a metal thin tube according to the present invention, the laser light irradiation step uses a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source, and a duty ratio (duty) The ratio can be adjusted by laser irradiation.
 レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。連続励起であってもパルス波レーザーを作り出すことが可能であり、例えば、ノーマルパルスよりパルス幅(パルスON時間)を短くして、その分ピークパワーの高いレーザーを発振させるQスイッチパルス発振方法、AOMやLN光強度変調機により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式によりパルス波レーザーを作り出すことができる。 There are two types of laser excitation, pulse excitation and continuous excitation, and pulse wave lasers based on pulse excitation are generally called normal pulses. A pulse wave laser can be created even with continuous excitation. For example, a Q-switch pulse oscillation method in which a pulse width (pulse ON time) is made shorter than that of a normal pulse and a laser with a high peak power is oscillated accordingly. A pulse wave laser is created by an external modulation method that generates a pulse wave laser by temporally extracting light with an AOM or LN light intensity modulator, and a direct modulation method that generates a pulse wave laser by directly modulating the laser drive current. be able to.
 本発明の好ましい実施形態では、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用することで、レーザーを連続励起させてパルス波レーザーを作り出すことができる。 In a preferred embodiment of the present invention, a pulsed laser can be created by continuously exciting a laser by using a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source. it can.
 デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
 デューティ比(%)=ON時間/(ON時間+OFF時間)×100
The duty ratio is a ratio obtained from the ON time and OFF time of the laser light output by the following equation.
Duty ratio (%) = ON time / (ON time + OFF time) × 100
 デューティ比は、上記のL1/(L1+L2)に対応するものであるから、10~90%の範囲から選択することができる。デューティ比を調整してレーザー光を照射することで、点線状に照射することができる。デューティ比が大きいと粗面化工程の効率は良くなるが、冷却効果は低くなり、デューティ比が小さいと冷却効果は良くなるが、粗面化効率は悪くなる。目的に応じて、デューティ比を調整する。 Since the duty ratio corresponds to the above L1 / (L1 + L2), it can be selected from a range of 10 to 90%. Irradiation with a dotted line can be performed by adjusting the duty ratio and irradiating laser light. When the duty ratio is large, the efficiency of the roughening process is improved, but the cooling effect is low. When the duty ratio is small, the cooling effect is improved, but the roughening efficiency is deteriorated. Adjust the duty ratio according to the purpose.
 連続波レーザーは公知のものを使用することができ、例えば、YVO4レーザー、ファイバーレーザー(好ましくはシングルモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。これらの中でもエネルギー密度が高められることから、ファイバーレーザーが好ましく、特にシングルモードファイバーレーザーが好ましい。 A known continuous wave laser can be used, for example, YVO4 laser, fiber laser (preferably single mode fiber laser), excimer laser, carbon dioxide laser, ultraviolet laser, YAG laser, semiconductor laser, glass laser, ruby. Lasers, He—Ne lasers, nitrogen lasers, chelate lasers, and dye lasers can be used. Among these, since the energy density is increased, a fiber laser is preferable, and a single mode fiber laser is particularly preferable.
 連続波レーザー光の照射形態は特に制限されるものではなく、金属細管10の外表面に対して、金属細管10の長さ方向に沿って一方向(片方向)のみに照射する形態、双方向に照射する形態、一方向と双方向を組み合わせて照射する形態などを実施することができる。 The irradiation form of the continuous wave laser beam is not particularly limited, and the outer surface of the metal thin tube 10 is irradiated in only one direction (one direction) along the length direction of the metal thin tube 10 or bidirectional. The form which irradiates, the form which irradiates combining one direction and two directions, etc. can be implemented.
 図6は、連続波レーザー光の好ましい照射形態の例を示したものである。レーザー光は、レーザー発振器から発振されたレーザー光がミラーを介して被照射物(金属細管10)に照射されるものである。このときミラーの角度を変化させて行くことでレーザー光の照射位置および照射長さが調整される。 FIG. 6 shows an example of a preferable irradiation mode of continuous wave laser light. Laser light is emitted from a laser oscillator to an object (metal thin tube 10) through a mirror. At this time, the irradiation position and the irradiation length of the laser light are adjusted by changing the angle of the mirror.
 第1工程において、始点S1から終点F1までレーザー光を照射するとき(図6中のL1)、始点S1からレーザー光の照射を開始する前において、始点S1に至る前のレーザー光を照射しないヘッドタイム(ヘッドタイム[head time];ミラーの角度を始点S1に合わせるまでの時間)(ヘッドタイム開始時の位置をH1とする)が存在する。 In the first step, when irradiating the laser beam from the start point S1 to the end point F1 (L1 in FIG. 6), the head that does not irradiate the laser beam before reaching the start point S1 before starting the laser beam irradiation from the start point S1. There is a time (head time [head time]; time until the mirror angle is adjusted to the start point S1) (the position at the start of the head time is H1).
 さらに第1工程において、終点F1までレーザー光を照射した後において、前記終点F1からレーザー光を照射しないテールタイム(テールタイム[tale time];終点F1を過ぎてミラーが停止するまでの時間)(前記テールタイム終了時の位置をT1とする)が存在している。 Further, in the first step, after irradiating the laser beam to the end point F1, the tail time when the laser beam is not irradiated from the end point F1 (tail time; time until the mirror stops after the end point F1) ( The position at the end of the tail time is T1).
 このため、例えばレーザー光を始点S1から終点F1まで10mmの長さだけ照射するとき、レーザー光の照射が開始される始点S1(0mm)に至るまでの例えば約5mmの長さはレーザー光が照射されない時間(ヘッドタイム)であり、レーザー光の照射が停止される終点F1(10mm)から例えば約4mmの長さはレーザー光が照射されない時間(テールタイム)が必要になることになる。ヘッドタイム、始点S1から終点F1までのレーザー光の照射時間、およびテールタイムの合計時間(msec)が第1工程の処理時間である。 For this reason, for example, when the laser beam is irradiated by a length of 10 mm from the start point S1 to the end point F1, the laser beam is irradiated for a length of, for example, about 5 mm until the start point S1 (0 mm) at which the laser beam irradiation is started. For example, a length of about 4 mm from the end point F1 (10 mm) at which the laser light irradiation is stopped requires a time (tail time) during which the laser light is not irradiated. The total time (msec) of the head time, the laser light irradiation time from the start point S1 to the end point F1, and the tail time is the processing time of the first step.
 第2工程は、第1工程のテールタイム終了位置T1から、レーザー光を照射することなく、前記第1工程のヘッドタイム開始位置H1から金属細管10の周方向に移動したH2まで戻す工程(図6中のL2)である。H1からH2の周方向への位置変化は、金属細管が回転していることに伴うものである。T1からH2まで戻す時間(msec)が第2工程の処理時間である。 The second step is a step of returning from the tail time end position T1 of the first step to H2 moved in the circumferential direction of the metal thin tube 10 from the head time start position H1 of the first step without irradiating the laser beam (FIG. 6 of L2). The change in position in the circumferential direction from H1 to H2 is accompanied by the rotation of the thin metal tube. The time (msec) for returning from T1 to H2 is the processing time of the second step.
 第1工程と第2工程を1サイクルとして、第1サイクルから第nサイクル(nは2以上の正の整数)まで繰り返し実施することができる。このとき、1サイクルの処理時間は、第1工程の処理時間(msec)と第2工程の処理時間(msec)の合計処理時間(msec)である。 The first step and the second step can be repeated as a cycle from the first cycle to the nth cycle (n is a positive integer of 2 or more). At this time, the processing time of one cycle is the total processing time (msec) of the processing time (msec) of the first step and the processing time (msec) of the second step.
 図6では、2サイクル目が、H1に対応するH2、S1に対応するS2、L1に対応するL3、F1に対応するF2、T1に対応するT2として示されている。T1からT2までの金属細管10の周方向の距離とH1からH2までの金属細管10の周方向の距離は、連続波レーザー光の隣接する照射痕(金属細管10の長さ方向に沿った隣接する照射により形成された溝)同士の間隔に相当する。 In FIG. 6, the second cycle is shown as H2 corresponding to H1, S2 corresponding to S1, L3 corresponding to L1, F2 corresponding to F1, and T2 corresponding to T1. The distance in the circumferential direction of the thin metal tube 10 from T1 to T2 and the distance in the circumferential direction of the thin metal tube 10 from H1 to H2 are the adjacent irradiation traces of the continuous wave laser beam (adjacent along the length direction of the thin metal tube 10). This corresponds to the interval between the grooves formed by irradiation.
 レーザー光を照射するとき金属細管10は回転しているが、レーザー光の照射速度は金属細管10の回転速度と比べると著しく速いため、第1工程L1では、レーザー光は金属細管10の長さ方向に沿ったほぼ直線状に照射されることになる。 Although the metal thin tube 10 is rotated when the laser beam is irradiated, since the irradiation speed of the laser beam is remarkably faster than the rotation speed of the metal thin tube 10, the laser beam is the length of the metal tube 10 in the first step L1. Irradiation is almost linear along the direction.
 第2工程L2では、第1工程と第2工程の合計時間中の金属細管10の回転を受けて、照射開始位置はS1からS2に周方向に僅かに移動している(図6では分かり易くするために斜線で示している)。なお、必要に応じてレーザー光の照射位置を修正する(照射位置をずらす)ための積極的な停止時間(delay time)(DT)を設けることができる。 In the second step L2, the irradiation start position is slightly moved in the circumferential direction from S1 to S2 in response to the rotation of the metal thin tube 10 during the total time of the first step and the second step (in FIG. 6, easy to understand). (Shown with diagonal lines) Note that an active stop time (DT) for correcting the irradiation position of the laser beam (shifting the irradiation position) can be provided as necessary.
 1サイクルの処理時間は、下記の(a)~(c)のいずれか1つ、2つ、または3つ全ての要件を満たすことで調整することができ、要件(a)、(b)のいずれかまたは両方により調整することが好ましい。 The processing time of one cycle can be adjusted by satisfying any one, two, or all three of the following (a) to (c), and the requirements (a) and (b) It is preferable to adjust by either or both.
 (a)第1工程におけるレーザー光の照射速度を調整することにより1サイクルの処理時間を調整する。
 (b)第2工程の戻り速度を調整することにより1サイクルの処理時間を調整する。
 (c)ヘッドタイムとテールタイムの一方または両方を調整することにより1サイクルの処理時間を調整する。
(A) The processing time of one cycle is adjusted by adjusting the laser beam irradiation speed in the first step.
(B) The processing time for one cycle is adjusted by adjusting the return speed of the second step.
(C) The processing time of one cycle is adjusted by adjusting one or both of the head time and tail time.
 すなわち、本発明の例示的な連続波レーザー光の連続照射工程においては、金属細管の長さ方向の一方向に対してレーザー発振器およびミラーを使用して始点S1から終点F1までレーザー光を照射するとき、
 始点S1から終点F1までレーザー光を照射する第1工程と、前記ミラーを調整することによって、レーザー光を照射することなくレーザー光の照射可能位置を前記始点S1方向に戻す第2工程を有しており、
 前記第1工程が、
 前記第1工程において始点S1から終点F1までレーザー光を照射するとき、前記始点S1からレーザー光の照射を開始する前において、前記始点S1に至る前のレーザー光を照射しないヘッドタイム(前記ヘッドタイム開始時の位置をH1とする)が存在し、前記終点Fまでレーザー光を照射した後において、前記終点F1からレーザー光を照射しないテールタイム(前記テールタイム終了時の位置をT1とする)が存在しており、
 前記ヘッドタイム、前記始点S1から終点F1までのレーザー光の照射時間、およびテールタイムの合計時間(msec)が第1工程の処理時間であり、
 前記第2工程が、
 前記第1工程のテールタイム終了位置T1からレーザー光を照射することなく、前記第1工程のヘッドタイム開始位置H1から周方向に移動したH2まで戻す工程であり、
 前記T1からH2まで戻す時間(msec)が第2工程の処理時間であり、
 前記第1工程と前記第2工程を1サイクルとして、第1サイクルから第nサイクル(nは2以上の正の整数)まで繰り返し実施するとき、
 1サイクルの処理時間が、第1工程の処理時間と第2工程の処理時間の合計時間(msec)であり、
 下記の(a)~(c)のいずれか1つ、2つ、または3つ全ての要件を満たすようにすることで前記1サイクルの処理時間を1~200msecの範囲に調整する。
 (a)第1工程におけるレーザー光の照射速度を調整することにより1サイクルの処理時間を調整する。
 (b)第2工程の戻り速度を調整することにより1サイクルの処理時間を調整する。
 (c)ヘッドタイムとテールタイムの一方または両方を調整することにより1サイクルの処理時間を調整する。
That is, in the exemplary continuous wave laser beam irradiation process of the present invention, the laser beam is irradiated from the start point S1 to the end point F1 using a laser oscillator and mirror in one direction along the length of the metal thin tube. When
A first step of irradiating a laser beam from a start point S1 to an end point F1, and a second step of adjusting the mirror to return the laser beam irradiable position in the direction of the start point S1 without irradiating the laser beam. And
The first step includes
When irradiating the laser beam from the start point S1 to the end point F1 in the first step, before starting the laser beam irradiation from the start point S1, the head time not irradiating the laser beam before reaching the start point S1 (the head time) And the tail time when the laser beam is not irradiated from the end point F1 after the laser beam is irradiated to the end point F (the position at the end of the tail time is T1). Exists,
The head time, the irradiation time of the laser light from the start point S1 to the end point F1, and the total time (msec) of the tail time are the processing time of the first step,
The second step includes
The step of returning from the head time start position H1 of the first step to H2 moved in the circumferential direction without irradiating laser light from the tail time end position T1 of the first step,
The time (msec) for returning from T1 to H2 is the processing time of the second step,
When the first step and the second step are set as one cycle and are repeatedly performed from the first cycle to the nth cycle (n is a positive integer of 2 or more),
The processing time of one cycle is the total time (msec) of the processing time of the first step and the processing time of the second step,
The processing time of the one cycle is adjusted to a range of 1 to 200 msec by satisfying any one, two, or all three of the following (a) to (c).
(A) The processing time of one cycle is adjusted by adjusting the laser beam irradiation speed in the first step.
(B) The processing time for one cycle is adjusted by adjusting the return speed of the second step.
(C) The processing time of one cycle is adjusted by adjusting one or both of the head time and tail time.
 さらにDTを設けるときは、要件(d)として、DTを調整することで1サイクルの処理時間を調整することができる。 Furthermore, when providing DT, processing time of 1 cycle can be adjusted by adjusting DT as requirement (d).
 なお、本発明では、第2工程においてもレーザー光を照射することができる。第2工程においてもレーザー光を照射するときは、第2工程におけるレーザー光の照射速度を調整することによっても1サイクルの処理時間を調整することができる。 In the present invention, laser light can be irradiated also in the second step. When irradiating laser light also in the second step, the processing time of one cycle can be adjusted by adjusting the irradiation speed of the laser light in the second step.
 1サイクルの合計処理時間、金属細管の外径と回転数(回転速度)から求められる金属細管を回転するときの周速度(mm/msec)を関連づけることによって、金属細管に対するレーザー光の照射工程を制御することが好ましい。 By correlating the peripheral processing speed (mm / msec) when rotating the metal thin tube obtained from the total processing time of one cycle, the outer diameter of the metal thin tube and the rotation speed (rotation speed), the laser light irradiation process to the metal thin tube It is preferable to control.
 1サイクルの処理時間は1~200msecが好ましく、1~100msecがより好ましく、1~50msecがさらに好ましい。金属細管を回転させるときの周速度は、0.001~0.3mm/msecが好ましく、0.002~0.2mm/msecがより好ましく、0.01~0.018mm/msecがさらに好ましい。 The treatment time for one cycle is preferably 1 to 200 msec, more preferably 1 to 100 msec, and further preferably 1 to 50 msec. The peripheral speed when rotating the metal thin tube is preferably 0.001 to 0.3 mm / msec, more preferably 0.002 to 0.2 mm / msec, and still more preferably 0.01 to 0.018 mm / msec.
 レーザー光の照射痕(レーザー光により形成される溝)同士の間隔(ピッチ)は、1サイクル時間×周速度から求めることができる。金属細管の合計回転数(周回数)は、1サイクルの処理時間×照射回数×周速度から求めることができる。 The interval (pitch) between irradiation marks (grooves formed by laser light) of laser light can be obtained from 1 cycle time × circumferential speed. The total number of rotations (number of rotations) of the metal thin tube can be obtained from 1 cycle processing time × number of irradiation times × circumferential speed.
 図4に示す実施形態の後、金属細管10と支持棒20を分離するか、または図5に示す実施形態の後、金属細管10と支持棒20、金属細管10と冷却用筒状体30を分離することで、図7に示すとおり、外表面側に粗面化された表層部12を有する最終的な金属細管10Aを得ることができる。1つの例では、表層部12は、連続波レーザー光が照射された粗面化された表面から深さ30μm~300μmの範囲までである。 After the embodiment shown in FIG. 4, the metal thin tube 10 and the support rod 20 are separated, or after the embodiment shown in FIG. 5, the metal thin tube 10 and the support rod 20, the metal thin tube 10 and the cooling tubular body 30 are separated. By separating, as shown in FIG. 7, the final metal thin tube 10A having the surface layer portion 12 roughened on the outer surface side can be obtained. In one example, the surface layer portion 12 has a depth ranging from 30 μm to 300 μm from the roughened surface irradiated with the continuous wave laser beam.
 本発明の製造方法により製造された最終的な金属細管10Aは、注射針などの医療用具の用途に使用することができる。本発明の製造方法により製造された最終的な金属細管10Aを使用して注射器などを製造するときは、特許第5701414号公報に記載の発明に記載された、金属成形体(例えば最終的な金属細管10Aを使用した注射針)と樹脂成形体(例えば注射液を入れる注射器本体)を接合一体化する方法(射出成形法)を適用して製造することができる。 The final metal thin tube 10A manufactured by the manufacturing method of the present invention can be used for medical devices such as injection needles. When a syringe or the like is manufactured using the final metal capillary 10A manufactured by the manufacturing method of the present invention, a metal molded body (for example, a final metal described in the invention described in Japanese Patent No. 5701414). It can be manufactured by applying a method (injection molding method) in which the injection needle using the thin tube 10A) and a resin molded body (for example, a syringe body into which an injection solution is put) are joined and integrated.
実施例および比較例
 図5に示す製造方法の例により実施して、図7に示すような金属細管10Aを得た。金属細管10、支持棒20、冷却用筒状体30の寸法は、次のとおりであった。
 金属細管10:外径2.11mm、内径1.69mm、長さ100mm
 支持棒:外径1.69mm、長さ120mm
 冷却用筒状体:内径2.11mm、長さ30mm
 実施例および比較例において、1サイクル当たりに要した時間は約4msecであった。
Example and Comparative Example The metal thin tube 10A shown in FIG. 7 was obtained by carrying out the manufacturing method shown in FIG. The dimensions of the metal thin tube 10, the support rod 20, and the cooling cylindrical body 30 were as follows.
Metal thin tube 10: outer diameter 2.11 mm, inner diameter 1.69 mm, length 100 mm
Support rod: outer diameter 1.69mm, length 120mm
Cooling cylinder: inner diameter 2.11 mm, length 30 mm
In the examples and comparative examples, the time required for one cycle was about 4 msec.
 支持棒20の第1端部20bは万力で固定し、冷却用筒状体30の第2端部30b側は回転装置の回転部分に接続した。金属細管10、支持棒20および冷却用筒状体30の材料は、いずれもSUS304を使用した。実施例3、実施例4の金属細管の粗面化された面のSEM写真を図8、図9に示す。 The first end 20b of the support rod 20 was fixed with a vise, and the second end 30b side of the cooling cylindrical body 30 was connected to the rotating portion of the rotating device. As materials for the metal thin tube 10, the support rod 20, and the cooling cylindrical body 30, SUS304 was used. 8 and 9 show SEM photographs of the roughened surfaces of the metal thin tubes of Example 3 and Example 4, respectively.
 (支持棒の引抜き易さ)
 表1に示す条件でレーザー光を照射した後、図5に示す状態のまま30秒間放置した。支持棒20の固定を解除した後、支持棒20を手で引抜くときの抵抗力で変形を評価した。
  ○ 抵抗なく支持棒を引抜くことができた。
  △ 抵抗が大きいが引抜くことができた。
  × 引抜くことができなかった。
  ×× 金属細管に貫通孔が形成されたか、または金属細管が切断された。
(Ease of pulling out the support bar)
After irradiating the laser beam under the conditions shown in Table 1, it was left for 30 seconds in the state shown in FIG. After releasing the support rod 20, the deformation was evaluated by the resistance when the support rod 20 was pulled out by hand.
○ The support rod could be pulled out without resistance.
Δ: The resistance was high, but it could be pulled out.
× Could not be pulled out.
XX A through hole was formed in the metal thin tube, or the metal thin tube was cut.
 (支持棒の挿入し易さ)
 上記の支持棒20の引き抜き易さの評価後、金属細管10内に新しい支持棒20を手で挿入するときの抵抗力で変形を評価した。
  ○ 抵抗なく、支持棒を挿入できた。
  △ 抵抗が大きいが挿入できた。
  × 挿入できなかった。
(Easy to insert support rod)
After evaluating the ease of pulling out the support rod 20, the deformation was evaluated by the resistance when the new support rod 20 was inserted into the metal thin tube 10 by hand.
○ The support rod could be inserted without resistance.
△ Although the resistance is large, it was inserted.
× Could not be inserted.
 支持棒を使用していない比較例2は、表1に示す条件でレーザー光を照射した後、30秒間の冷却後に支持棒を挿入して評価した。 Comparative Example 2 not using a support bar was evaluated by inserting a support bar after cooling for 30 seconds after irradiation with laser light under the conditions shown in Table 1.
 (最大溝深さ)
 溝深さは、レーザー光照射後の面をデジタルマイクロスコープVHX-900((株)キーエンス製)で測定した。最大溝深さは、周方向および長さ方向に等間隔で合計10箇所の溝深さを測定し、それらの中で最も深い部分の値とした。
(Maximum groove depth)
The groove depth was measured with a digital microscope VHX-900 (manufactured by Keyence Corporation) on the surface after laser light irradiation. The maximum groove depth was measured at a total of 10 groove depths at equal intervals in the circumferential direction and the length direction, and was taken as the value of the deepest portion among them.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例と比較例の対比から、支持棒がない場合、金属細管の回転速度が遅い場合には、目的とする粗面化された表層部を有する金属細管を得ることができなかった。
産業上の利用可能性
From the comparison between Examples and Comparative Examples, when there was no support rod or when the rotation speed of the metal thin tube was slow, the target metal thin tube having a roughened surface layer portion could not be obtained.
Industrial applicability
 本発明の製造方法により製造された、外表面側に粗面化された表層部を有する金属細管は、例えば注射針などの医療用具の用途に使用することができる。
符号の説明
The metal thin tube having the surface layer portion roughened on the outer surface side, which is manufactured by the manufacturing method of the present invention, can be used for medical devices such as injection needles.
Explanation of symbols
 10 金属細管
 10A 外表面側に粗面化された表層部を有する金属細管
 11 貫通孔
 12 表層部
 20 支持棒
 30 冷却用筒状体
 
DESCRIPTION OF SYMBOLS 10 Metal thin tube 10A Metal thin tube which has the surface layer part roughened by the outer surface side 11 Through-hole 12 Surface layer part 20 Support rod 30 Cooling cylindrical body

Claims (6)

  1.  外径0.2mm~3mm、厚さ0.05mm~0.3mmであり、外表面側に粗面化された表層部を有する金属細管の製造方法であって、
     前記金属細管の内側に支持棒を差し込んだ状態で前記金属細管を回転させながら、前記金属細管の長さ方向に沿って前記金属細管に連続波レーザー光を連続照射することで前記金属細管の外表面側に粗面化された表層部を形成させる工程を有しており、
     前記金属細管の回転速度が50~1000r/minであり、
     前記連続波レーザーの照射速度が2000mm/sec以上である、金属細管の製造方法。
    A method for producing a metal thin tube having an outer diameter of 0.2 mm to 3 mm, a thickness of 0.05 mm to 0.3 mm, and a surface layer portion roughened on the outer surface side,
    While rotating the metal thin tube with the support rod inserted inside the metal thin tube, the metal thin tube is continuously irradiated with continuous wave laser light along the length direction of the metal thin tube to remove the metal thin tube. Having a step of forming a roughened surface layer on the surface side,
    The rotation speed of the metal thin tube is 50 to 1000 r / min;
    A method for producing a metal thin tube, wherein the irradiation speed of the continuous wave laser is 2000 mm / sec or more.
  2.  前記金属細管の長さ方向に連続波レーザー光を連続照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する、請求項1記載の金属細管の製造方法。 The method for producing a metal thin tube according to claim 1, wherein when continuous wave laser light is continuously irradiated in the length direction of the metal thin tube, irradiation is performed such that laser light irradiation portions and non-irradiation portions are alternately generated.
  3.  前記連続波レーザー光の連続照射工程が、前記金属細管の長さ方向の一方向に対してレーザー発振器およびミラーを使用して始点S1から終点F1までレーザー光を照射するとき、
     始点S1から終点F1までレーザー光を照射する第1工程と、前記ミラーを調整することによって、レーザー光を照射することなくレーザー光の照射可能位置を前記始点S1方向に戻す第2工程を有しており、
     前記第1工程が、
     前記第1工程において始点S1から終点F1までレーザー光を照射するとき、前記始点S1からレーザー光の照射を開始する前において、前記始点S1に至る前のレーザー光を照射しないヘッドタイム(前記ヘッドタイム開始時の位置をH1とする)が存在し、前記終点Fまでレーザー光を照射した後において、前記終点F1からレーザー光を照射しないテールタイム(前記テールタイム終了時の位置をT1とする)が存在しており、
     前記ヘッドタイム、前記始点S1から終点F1までのレーザー光の照射時間、およびテールタイムの合計時間(msec)が第1工程の処理時間であり、
     前記第2工程が、
     前記第1工程のテールタイム終了位置T1からレーザー光を照射することなく、前記第1工程のヘッドタイム開始位置H1から周方向に移動したH2まで戻す工程であり、
     前記T1からH2まで戻す時間(msec)が第2工程の処理時間であり、
     前記第1工程と前記第2工程を1サイクルとして、第1サイクルから第nサイクル(nは2以上の正の整数)まで繰り返し実施するとき、
     1サイクルの処理時間が、第1工程の処理時間と第2工程の処理時間の合計時間(msec)であり、
     下記の(a)~(c)の1、2または3の要件を満たすようにすることで前記1サイクルの処理時間を1~200msecの範囲に調整する、請求項1または2記載の金属細管の製造方法。
     (a)第1工程におけるレーザー光の照射速度を調整することにより1サイクルの処理時間を調整する。
     (b)第2工程の戻り速度を調整することにより1サイクルの処理時間を調整する。
     (c)ヘッドタイムとテールタイムの一方または両方を調整することにより1サイクルの処理時間を調整する。
    When the continuous irradiation step of the continuous wave laser beam irradiates the laser beam from the start point S1 to the end point F1 using a laser oscillator and a mirror with respect to one direction of the length of the metal thin tube,
    A first step of irradiating a laser beam from a start point S1 to an end point F1, and a second step of adjusting the mirror to return the laser beam irradiable position in the direction of the start point S1 without irradiating the laser beam. And
    The first step includes
    When irradiating the laser beam from the start point S1 to the end point F1 in the first step, before starting the laser beam irradiation from the start point S1, the head time not irradiating the laser beam before reaching the start point S1 (the head time) And the tail time when the laser beam is not irradiated from the end point F1 after the laser beam is irradiated to the end point F (the position at the end of the tail time is T1). Exists,
    The head time, the irradiation time of the laser light from the start point S1 to the end point F1, and the total time (msec) of the tail time are the processing time of the first step,
    The second step includes
    The step of returning from the head time start position H1 of the first step to H2 moved in the circumferential direction without irradiating laser light from the tail time end position T1 of the first step,
    The time (msec) for returning from T1 to H2 is the processing time of the second step,
    When the first step and the second step are set as one cycle and are repeatedly performed from the first cycle to the nth cycle (n is a positive integer of 2 or more),
    The processing time of one cycle is the total time (msec) of the processing time of the first step and the processing time of the second step,
    The metal thin tube according to claim 1 or 2, wherein the processing time of the one cycle is adjusted to a range of 1 to 200 msec by satisfying the following requirements (1), (2), and (3): Production method.
    (A) The processing time of one cycle is adjusted by adjusting the laser beam irradiation speed in the first step.
    (B) The processing time for one cycle is adjusted by adjusting the return speed of the second step.
    (C) The processing time of one cycle is adjusted by adjusting one or both of the head time and tail time.
  4.  前記金属細管の内側に支持棒を差し込み、前記金属細管の外側に冷却用筒状体を嵌め込んだ状態で、前記筒状の冷却用筒状体を回転させることで前記金属細管を回転させる、請求項1~3のいずれか1項記載の金属細管の製造方法。 Inserting a support rod inside the metal thin tube, and rotating the metal thin tube by rotating the cylindrical cooling tubular body with the cooling tubular body fitted on the outside of the metal thin tube, The method for producing a metal thin tube according to any one of claims 1 to 3.
  5.  前記金属細管の内側に差し込まれた支持棒が固定されており、前記金属細管を回転させたときに前記支持棒が回転されない、請求項1~4のいずれか1項記載の金属細管の製造方法。 The method for producing a metal thin tube according to any one of claims 1 to 4, wherein a support rod inserted inside the metal thin tube is fixed, and the support rod is not rotated when the metal thin tube is rotated. .
  6.  前記金属細管が医療用具を用途とする、請求項1~5のいずれか1項記載の金属細管の製造方法。
     
    The method for producing a metal thin tube according to any one of claims 1 to 5, wherein the metal thin tube is used for a medical device.
PCT/JP2019/008586 2018-03-06 2019-03-05 Method for manufacturing slender metal tube WO2019172234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505042A JP7313333B2 (en) 2018-03-06 2019-03-05 METHOD FOR MANUFACTURING METAL TUBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-039443 2018-03-06
JP2018039443 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019172234A1 true WO2019172234A1 (en) 2019-09-12

Family

ID=67846759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008586 WO2019172234A1 (en) 2018-03-06 2019-03-05 Method for manufacturing slender metal tube

Country Status (2)

Country Link
JP (1) JP7313333B2 (en)
WO (1) WO2019172234A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124330A (en) * 2012-12-26 2014-07-07 Taisei Kako Co Ltd Syringe
WO2014155481A1 (en) * 2013-03-25 2014-10-02 テルモ株式会社 Syringe with injection needle, and manufacturing method of syringe with injection needle
JP2016078090A (en) * 2014-10-20 2016-05-16 ダイセルポリマー株式会社 Method of manufacturing metal molding having porous structure in surface layer part
JP2017000496A (en) * 2015-06-11 2017-01-05 株式会社片岡製作所 Needle processing method, laser beam processing machine, and needle
WO2017216315A1 (en) * 2016-06-17 2017-12-21 Terumo Europe Nv Needle assembly and syringe containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051331A (en) * 2015-09-08 2017-03-16 メディキット株式会社 Textured long-sized device for medical treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124330A (en) * 2012-12-26 2014-07-07 Taisei Kako Co Ltd Syringe
WO2014155481A1 (en) * 2013-03-25 2014-10-02 テルモ株式会社 Syringe with injection needle, and manufacturing method of syringe with injection needle
JP2016078090A (en) * 2014-10-20 2016-05-16 ダイセルポリマー株式会社 Method of manufacturing metal molding having porous structure in surface layer part
JP2017000496A (en) * 2015-06-11 2017-01-05 株式会社片岡製作所 Needle processing method, laser beam processing machine, and needle
WO2017216315A1 (en) * 2016-06-17 2017-12-21 Terumo Europe Nv Needle assembly and syringe containing the same

Also Published As

Publication number Publication date
JPWO2019172234A1 (en) 2021-02-25
JP7313333B2 (en) 2023-07-24

Similar Documents

Publication Publication Date Title
US8378258B2 (en) System and method for laser machining
US11167376B2 (en) Method for roughening metal molded body surface
CN108695484B (en) Welded structure and method for manufacturing same
KR102359488B1 (en) A method for roughening a metal molded body
WO2015107664A1 (en) Laser welding method and welded joint
JP7161571B2 (en) Composite molded article and its manufacturing method
JP6703170B2 (en) Laser system for drilling holes in medical devices
JP2017080796A (en) Manufacturing method of processing resin substrate, and laser processing device
JP2004154813A (en) Laser beam machining method and device
WO2019172234A1 (en) Method for manufacturing slender metal tube
JP2016016432A (en) Surface modification method and surface modification metal member
JP3999999B2 (en) Laser surface processing equipment
US20210145553A1 (en) Implant and method for manufacturing same
JP6180240B2 (en) Laser cutting method
Brown et al. High-brightness laser cutting & drilling of aerospace materials
JP2023073891A (en) Hole machining method with carbon oxide gas laser on printed circuit board
JP6431867B2 (en) Laser processing machine
JP5961593B2 (en) Metal member and manufacturing method thereof
JP5944963B2 (en) Laser processing head and laser processing machine
Naeem et al. Microwelding performance comparison between a low power (125W) pulsed Nd: YAG laser and a low power (100-200W) single mode fiber laser
JP2005002801A (en) Valve lifter made from titanium alloy and its surface treatment method
Schuessler et al. Status and trends of nitinol micromachining techniques
Dury et al. Expansion of pulsed laser process limits through pulsed fiber lasers
Chen et al. The study of the acrylic material drilling used by the CO2 laser
JP2005219115A (en) Butt welding method of metallic sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764040

Country of ref document: EP

Kind code of ref document: A1