WO2019169902A1 - 正交静电悬浮加速度计敏感结构 - Google Patents

正交静电悬浮加速度计敏感结构 Download PDF

Info

Publication number
WO2019169902A1
WO2019169902A1 PCT/CN2018/116472 CN2018116472W WO2019169902A1 WO 2019169902 A1 WO2019169902 A1 WO 2019169902A1 CN 2018116472 W CN2018116472 W CN 2018116472W WO 2019169902 A1 WO2019169902 A1 WO 2019169902A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
electrodes
measuring tube
opposite
axis measuring
Prior art date
Application number
PCT/CN2018/116472
Other languages
English (en)
French (fr)
Inventor
张嵘
贺晓霞
韩丰田
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019169902A1 publication Critical patent/WO2019169902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance

Definitions

  • the invention relates to a sensitive structure of an accelerometer, in particular to a sensitive structure design and an electrode arrangement scheme of an electrostatic suspension accelerometer.
  • Gravity measuring equipment such as air gravimeter requires the measurement accuracy of gravity anomaly to reach 1mGal (1 ⁇ 10 -6 g), and accordingly an accelerometer with accuracy better than 1 ⁇ 10 -6 g is required as a gravity sensor.
  • the electrostatic suspension accelerometer is a force-balanced accelerometer that relies on electrostatic force to achieve inspection quality without contact suspension.
  • the utility model is characterized in that it is easy to realize small-range, high-precision and high-stability, and can simultaneously measure the linear acceleration of three orthogonal directions of the carrier, and a single meter can realize the function of the three-axis accelerometer component required by the inertial navigation system, and realize the accelerometer high
  • the important technical development direction of precision has broad prospects for inertial navigation and precision measurement in aerospace, navigation, aviation and other fields.
  • the inspection mass includes six thin plates to form a hollow structure, the purpose is to improve the area-to-mass ratio, and the material of the inspection mass can be made of tantalum, hard aluminum, Titanium alloy, quartz or ceramic, 12 electrodes are used for the acceleration and detection of six-degree-of-freedom suspension.
  • the size of the thin plate is 20 ⁇ 10 ⁇ 0.3 mm (laser welding between the thin plates), and the mass is only 1 g; if the mass is made of quartz, the size of the thin plate is 20 ⁇ 9.8 ⁇ 0.3 mm ( The bonding method is adopted between the thin plates, and the hexahedral frame is taken as 1 ⁇ 1 ⁇ 10 mm, and the mass is 1.5 g.
  • the size of the electrode plate is 45 ⁇ 10 ⁇ 5 mm, the number is 48, and the reference numeral 47 is an unused area.
  • the holding potential is the same as that of the mass. Vacuum coating is used, ultrasonic slotting is performed, and a high frequency carrier and a bias voltage are applied through the gold wire.
  • the cube inspection mass accelerometer adopts a three-axis symmetrical design, which consists of six groups of twelve electrodes.
  • the electrode assembly has a hexahedral structure and six degrees of freedom electrostatic suspension. Compared with the cylindrical inspection mass, the cubic mass is used. The axis decoupling performance is improved and the triaxial angular acceleration can also be output.
  • a cylindrical mass accelerometer with a Saturn ring is used for electrostatic suspension with five degrees of freedom.
  • the prior art liquid medium triaxial electrostatic accelerometer has the same three-axis parameters, but the principle and structure are relatively complicated, and the processing and assembly processes are complicated.
  • the main problem of the electrostatic suspension accelerometer is that the ground support suspension voltage is high, which leads to problems such as complicated supporting circuit system and large control circuit error, and it is difficult to achieve high precision and high stability.
  • the existing accelerometer designs are mostly asymmetrical in the design of the various directions and measurement parameters, making it difficult to achieve three-axis measurement, or the measurement consistency of each axis is not good. Therefore, there is a need for an accelerometer design that is simple in structure, triaxially symmetric, and low in supporting voltage.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention provides an orthogonal electrostatic suspension accelerometer sensitive structure, and the structure of the orthogonal electrostatic suspension accelerometer sensitive structure is relatively simple.
  • An orthogonal electrostatic suspension accelerometer sensitive structure includes: a sensitive mass block including an X-axis measuring tube, a Y-axis measuring tube and a Z extending along the X-axis, the Y-axis and the Z-axis, respectively An axial measuring tube; an electrode, the plurality of electrodes are non-contactly mounted around each measuring tube of the sensitive mass, and the electrodes are respectively in the X-axis measuring tube and the Y-axis measuring tube And the Z-axis measuring tube is arranged in pairs, each pair of the electrodes are respectively located inside and outside of the corresponding measuring tube; wherein: the X-axis, the Y-axis and the Z-axis are formed into a rectangular coordinate system, and when energized A plurality of the electrodes apply an electrostatic levitation force and a feedback control force to the sensitive mass to place the sensitive mass in a suspended state.
  • the sensitive mass is a hollow structure and both inner and outer surfaces can be used for arranging the electrodes, the sensitive mass has a large surface area to mass ratio, that is, at the same supporting voltage.
  • the electrodes provide a large support force, which expands the range of the sensitive structure of the orthogonal electrostatic levitation accelerometer.
  • the simultaneous measurement of the three-axis acceleration can be realized, the integration of the measurement is high, the synchronization of the measurement and control of each axis is better realized, and the measurement and control are simplified. Circuit.
  • the X-axis measuring tube, the Y-axis measuring tube, and the Z-axis measuring tube are all round tubes.
  • the inner side of the tube wall of the X-axis measuring tube is provided with a plurality of circumferentially spaced first inner electrodes
  • the outer side of the tube wall of the X-axis measuring tube is provided with a plurality of circumferentially spaced
  • the first outer electrode of the open distribution, the first inner electrode and the first outer electrode are disposed in one-to-one correspondence.
  • a distance between two adjacent first outer electrodes and no conduction is equal to a spacing between adjacent two first outer electrodes.
  • the number of the first outer electrode and the first inner electrode are both even, and the two opposite first electrodes of the center are opposite to each other, and the two opposite first centers are opposite to each other.
  • the voltage applied by the electrodes is reversed.
  • the inner side of the tube wall of the Y-axis measuring tube is provided with a plurality of circumferentially spaced second inner electrodes
  • the outer side of the tube wall of the Y-axis measuring tube is provided with a plurality of circumferentially spaced
  • the second outer electrode of the open distribution, the second inner electrode and the second outer electrode are disposed in one-to-one correspondence.
  • the number of the second outer electrode and the second inner electrode are both even, and the opposite sides of the two opposite second outer electrodes have opposite polarities, and the two opposite inner second electrodes are opposite to each other.
  • the opposite polarity is the same.
  • the inner side of the tube wall of the Z-axis measuring tube is provided with a plurality of circumferentially spaced third inner electrodes
  • the outer side of the tube wall of the Z-axis measuring tube is provided with a plurality of circumferentially spaced
  • the third outer electrode of the open distribution, the third inner electrode and the third outer electrode are disposed in one-to-one correspondence.
  • the number of the third outer electrode and the third inner electrode are both even, and the voltages of the two opposite outer electrodes opposite to each other are opposite to each other, and the two opposite third centers are applied at the center. The voltage sign is reversed.
  • the X-axis measuring tube, the Y-axis measuring tube, and the Z-axis measuring tube are identical in shape, equal in length, and the number of the electrodes is equal.
  • FIG. 1 is a schematic diagram showing the overall structure of a sensitive structure of an orthogonal electrostatic levitation accelerometer according to an embodiment of the invention.
  • FIG. 2 is a schematic structural view of a sensitive mass according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of electrode distribution on an X-axis measuring tube in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of electrode grouping of an orthogonal electrostatic suspension accelerometer sensitive structure in accordance with an embodiment of the present invention.
  • the third inner electrode 131 and the third outer electrode 132 are connected to The third inner electrode 131 and the third outer electrode 132.
  • first and second may include one or more of the features, either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • an orthogonal electrostatic levitation accelerometer sensitive structure 10 includes a sensitive mass 100 and electrodes, and the sensitive mass 100 includes X extending along the X, Y, and Z axes, respectively.
  • the shaft measuring tube 110, the Y-axis measuring tube 120 and the Z-axis measuring tube 130 have a plurality of electrodes, and the plurality of electrodes are non-contactly mounted around the measuring tubes of the sensitive mass 100, and the electrodes are respectively in the X-axis measuring tubes 110 and Y.
  • the shaft measuring tube 120 and the Z-axis measuring tube 130 are disposed in pairs, and each pair of electrodes is respectively located inside and outside the corresponding measuring tube.
  • the X-axis, the Y-axis, and the Z-axis are formed in a rectangular coordinate system.
  • the plurality of electrodes When energized, the plurality of electrodes apply an electrostatic levitation force and a feedback control force to the sensitive mass 100 to place the sensitive mass 100 in a floating state.
  • the plurality of electrodes apply an electrostatic levitation force to the sensitive mass 100 such that the sensitive mass 100 is in an initial suspension state, and when the sensitive mass 100 moves, it may deviate from the initial suspension state, and
  • the connected detecting mechanism of the orthogonal electrostatic levitation accelerometer sensitive structure 10 detects the offset of the sensitive mass 100.
  • the voltage of the electrode needs to be adjusted, and the adjusted electrode is A feedback control force is applied to the sensitive mass 100 to return the sensitive mass 100 to the initial suspension position, and the acceleration of the sensitive mass 100 can be obtained by the change of the electrode voltage, thereby reflecting the acceleration received by the sensitive mass.
  • the essence of the feedback control force is also the electrostatic levitation force applied by the electrodes to the sensitive mass 100, which is an electrostatic levitation force applied against the acceleration of the sensitive mass, thus ensuring that the sensitive mass 100 is always in force balance. status.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are both hollow structures, electrodes can be disposed inside and outside the tube wall of the three measuring tubes, thereby enabling sensitive quality.
  • the block 100 has a large surface area to mass ratio, that is, the electrode can provide a greater electrostatic levitation force at the same support voltage, thereby increasing the range of the orthogonal electrostatic levitation accelerometer sensitive structure 10.
  • the sensitive mass 100 is relatively compact in connection with the structure of the three-axis measuring tube, the acceleration measurement of the three axes can be simultaneously realized, the integration degree of the measurement is high, and the synchronization of the measurement and control of each axis is better realized, which simplifies. Measurement and control circuits.
  • the sensitive mass 100 is a hollow structure and both inner and outer surfaces can be used for arranging the electrodes, the sensitive mass has a large specific surface area per unit volume, that is, the same support Under the voltage, the electrode can provide a large supporting force, thereby expanding the range of the orthogonal electrostatic suspension accelerometer sensitive structure 10.
  • the overall structure of the orthogonal electrostatic levitation accelerometer sensitive structure 10 is compact, synchronous measurement of three-axis acceleration can be realized, the integration degree of measurement is high, and the synchronization of measurement and control of each axis is better realized, which simplifies measurement and Control circuit.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are all circular tubes.
  • the processing of the circular tube is convenient, and the production cost of the orthogonal electrostatic suspension accelerometer sensitive structure 10 is reduced.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120 or the Z-axis measuring tube 130 can also be formed into other tubes, such as square. Tube, elliptical tube, etc.
  • the inner side of the tube wall of the X-axis measuring tube 110 is provided with a plurality of circumferentially spaced first inner electrodes 111, and the outer side of the tube wall of the X-axis measuring tube 110 is provided.
  • the first outer electrodes 112 are circumferentially spaced apart, and the first inner electrodes 111 and the first outer electrodes 112 are disposed one by one. It can be understood that providing the first outer electrode 112 and the first inner electrode 111 circumferentially spaced on the X-axis measuring tube 110 enables the block to be measured in the X-axis measuring tube 110 to be in the Y-axis and the Z-axis.
  • the upward movement and the rotation around the X-axis measure the three-degree-of-freedom control and detection to be measured, improving the integration of the orthogonal electrostatic suspension accelerometer sensitive structure 10.
  • a spacing is provided between two adjacent first outer electrodes 112.
  • the spacing is required to meet the maximum difference between adjacent voltages, and there is no breakdown discharge between the electrodes, and the adjacent two first inner electrodes 111 are The distance between the two is equal to the spacing between the adjacent two first outer electrodes 112. It can be understood that the spacing between adjacent two first outer electrodes 112 exceeds the loss of the electrode area, resulting in the sensitive mass being subjected to the same acceleration, and the voltage required to be applied to the electrodes is increased, and the spacing is too small. The breakdown of the adjacent two first outer electrodes 112 causes a short circuit, which affects the measurement result. In practical applications, the spacing between two adjacent first outer electrodes 112 can be adjusted according to actual conditions.
  • the number of the first outer electrodes 112 and the first inner electrodes 111 are both even, and the voltages of the two first outer electrodes 112 opposite to each other are oppositely applied, and the voltages of the two first inner electrodes 111 opposite to each other are applied.
  • the opposite sign. Therefore, the potential of the block to be measured located in the X-axis measuring tube 110 can be zero, and can be smoothly suspended in the X-axis measuring tube 110, thereby avoiding the deviation of the sensitive mass from the axis of the X-axis measuring tube 110, thereby affecting the measurement accuracy.
  • a plurality of circumferentially spaced second inner electrodes 121 are disposed on the inner side of the tube wall of the Y-axis measuring tube 120, and the outer side of the tube wall of the Y-axis measuring tube 120 is provided.
  • the second outer electrodes 122 are circumferentially spaced apart, and the second inner electrodes 121 and the second outer electrodes 122 are disposed one by one. It can be understood that providing the second outer electrode 122 and the second inner electrode 121 spaced apart in the circumferential direction on the Y-axis measuring tube 120 can realize the block to be measured in the Y-axis measuring tube 120 on the X-axis and the Z-axis.
  • the movement in the upper direction and the rotation around the Y axis realize the three-degree-of-freedom control and detection to be measured, and improve the integration of the orthogonal electrostatic suspension accelerometer sensitive structure 10.
  • the number of the second outer electrodes 122 and the second inner electrodes 121 are both even, and the voltages applied by the two opposite outer second electrodes 122 are opposite to each other, and the voltages applied by the two opposite second inner electrodes 121 are opposite.
  • the opposite sign Thereby, the block to be measured located in the Y-axis measuring tube 120 can be smoothly suspended in the Y-axis measuring tube 120, and the axis of the measuring block is prevented from deviating from the axis of the Y-axis measuring tube 120, thereby affecting the measurement accuracy.
  • the inner side of the tube wall of the Z-axis measuring tube 130 is provided with a plurality of third inner electrodes 131 spaced apart in the circumferential direction, and the outer side of the tube wall of the Z-axis measuring tube 130 is provided.
  • the third outer electrodes 132 are circumferentially spaced apart, and the third inner electrodes 131 and the third outer electrodes 132 are disposed one by one. It can be understood that the provision of the third outer electrode 132 and the third inner electrode 131 spaced apart in the circumferential direction on the Z-axis measuring tube 130 enables the block to be measured in the Z-axis measuring tube 130 to be in the Y-axis and the Z-axis.
  • the movement in the upper direction and the rotation around the Z axis realize the three-degree-of-freedom control and detection to be measured, and improve the integration of the orthogonal electrostatic suspension accelerometer sensitive structure 10.
  • the number of the third outer electrode 132 and the third inner electrode 131 are both even, and the voltages applied by the two opposite third outer electrodes 132 are opposite to each other, and the voltages applied by the two opposite third inner electrodes 131 are opposite.
  • the opposite sign Thereby, the block to be measured located in the Z-axis measuring tube 130 can be smoothly suspended in the Z-axis measuring tube 130, and the axis of the measuring block is prevented from deviating from the axis of the Z-axis measuring tube 130, thereby affecting the measurement accuracy.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are identical in shape, equal in length, and equal in number of electrodes.
  • the three-axis structural parameters are identical, and the circuits for measurement and control are identical, thus ensuring three-axis measurement and control consistency.
  • the shape, length, number of electrodes, and the like of the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 may be different.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are made of a metal having a good strength and a small density, for example, aluminum, tantalum, titanium alloy, or the like, and may also be made of glass, ceramics, or the like. Made of a non-metal plated metal film. It can be understood that the above materials are prepared by precision machining, and geometric characteristics such as size, cylindricity, and orthogonality of each axis can be well realized, thereby manufacturing a light-weight, high-precision, large-area measuring tube.
  • the orthogonal electrostatic levitation accelerometer sensitive structure 10 includes a sensitive mass 100 and electrodes, and the sensitive mass 100 includes X-axis measuring tubes 110, Y extending along the X-axis, the Y-axis, and the Z-axis, respectively.
  • the axis measuring tube 120 and the Z-axis measuring tube 130, the X-axis, the Y-axis, and the Z-axis are formed in a rectangular coordinate system, and the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are connected in two.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are all circular tubes having a diameter of 20 mm, a wall thickness of 0.5 mm, and a length of 60 mm.
  • the inner side of the tube wall of the X-axis measuring tube 110 is provided with four first inner electrodes 111 which are circumferentially spaced apart, and the outer peripheral wall is provided with four first outer electrodes which are circumferentially spaced apart. 112.
  • the inner side of the tube wall of the Y-axis measuring tube 120 is provided with four circumferentially spaced second inner electrodes 121, and the outer peripheral wall is provided with four second outer electrodes 122 spaced apart in the circumferential direction.
  • the inner side of the tube wall of the Z-axis measuring tube 130 is provided with four third inner electrodes 131 which are circumferentially spaced apart, and the outer peripheral wall is provided with four third outer electrodes 132 which are circumferentially spaced apart.
  • the first outer electrode 112 includes four blocks 1a, 2a, 3a, 4a
  • the second inner electrode 121 includes four blocks 1b, 2b, 3b, 4b.
  • 1a and 2b, 1b, and 2a are respectively connected to form a two-part equipotential plate to apply equal and opposite control voltages.
  • Each of the electrode plates is electrically connected to the outside through the leads, thereby ensuring that the mass to be tested is smoothly suspended in the X-axis measuring tube 110.
  • the electrodes are distributed into groups to achieve three degrees of freedom, three rotations of six degrees of freedom control.
  • the X-axis measuring tube 110, the Y-axis measuring tube 120, and the Z-axis measuring tube 130 are centered on two internal electrodes and two external electrodes, that is, the X-axis measuring tube 110 and the Y-axis measurement.
  • the tube 120 and the Z-axis measuring tube 130 are provided with 12 sets of X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, and Z4.
  • the degree of freedom of translation along the X axis is controlled by the X1, X2, X3, and X4 plate sets; the degrees of freedom along the Y axis are controlled by the Y1, Y2, Y3, and Y4 plates;
  • the degree of freedom is controlled by the Z1, Z2, Z3, and Z4 plate sets;
  • the degree of freedom about the X axis is controlled by the Y2, Y4, Z2, and Z4 plates;
  • the degree of freedom around the Y axis is X2, X4, Z1, and Z3.
  • the degree of freedom of rotation around the Z axis is controlled by the X1, X3, Y1, Y3 plate sets.
  • Each set of electrodes is electrically connected to the same direction plate as described above, and the opposite and opposite control voltages are applied to the opposing plates to realize single-arm single-direction displacement detection and control. Displacement detection can be achieved by capacitive sensing.
  • Acceleration measurement of three-axis six-degree-of-freedom can be realized simultaneously by orthogonal cylindrical structure, and the structural parameters of the three axes are completely consistent, the measurement integration is high, and the consistency of measurement and control of each axis is good;
  • the thin-walled detection tube structure is used to effectively reduce the self-weight of the detection tube and improve the surface area-to-mass ratio. Compared with other designs, it is easier to achieve high processing accuracy, thereby reducing the detection quality and the gap between the electrodes. Effectively reduce the magnitude of the supporting voltage and the errors introduced, and achieve a high degree of measurement while ensuring high measurement accuracy and resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Pressure Sensors (AREA)

Abstract

一种正交静电悬浮加速度计敏感结构(10),正交静电悬浮加速度计敏感结构(10)包括敏感质量块(100)和电极,敏感质量块(100)包括分别沿X轴、Y轴及Z轴延伸的X轴测量管(110)、Y轴测量管(120)及Z轴测量管(130),电极为多个,多个电极非接触安装在敏感质量块(100)上以向敏感质量块(100)施加静电悬浮力和反馈控制力,以使敏感质量块(100)处于悬浮状态。

Description

正交静电悬浮加速度计敏感结构 技术领域
本发明涉及加速度计的敏感结构,特别是涉及静电悬浮加速度计的敏感结构设计与电极配置方案。
背景技术
航空重力仪等重力测量设备要求重力异常的测量精度达到1mGal(1×10 -6g),相应地要求精度优于1×10 -6g的加速度计作为重力敏感器。
静电悬浮加速度计是一种依靠静电力实现检验质量无接触悬浮的力平衡式加速度计。其特点是易实现小量程、高精度、高稳定性,可以同时测量载体三个正交方向的线加速度,单个仪表可实现惯导***所需的三轴加速度计组件功能,是实现加速度计高精度的重要技术发展方向,在航天、航海、航空等领域的惯性导航及精密测量方面具有广阔的应景前景。
现有静电悬浮加速度计大多面向空间应用,其量程很小,应用范围受到局限,三轴大量程设计不多。其中,现有技术提出了一种面向地面惯性导航应用的静电悬浮加速度计方案,检验质量块包括六块薄板构成空心结构,目的是提高面积质量比,检验质量块的材料可用铍、硬铝、钛合金、石英或陶瓷等,12块电极用于六自由度悬浮的加力与检测。例如,质量块用硬铝时,薄板尺寸取20×10×0.3mm(薄板之间采用激光焊接),质量仅为1g;若质量块材料用石英时,薄板尺寸取20×9.8×0.3mm(薄板之间采用键合方式),六面体框架取1×1×10mm,此时质量为1.5g。电极板尺寸为45×10×5mm,标号48为止档,标号47为未用区域,保持电位与质量块相同,采用真空镀膜,超声波开槽,通过金丝施加高频载波和偏置电压。
除此之外,未见在地面应用的报道。在太空微重力环境中的小量程应用中,主要有两种结构形式,一种是立方体状检验质量块,另一种为圆筒形质量块加速度计。
立方体检验质量块加速度计采用三轴对称设计,共计包括六组十二块电极,电极组件呈六面体结构,六自由度静电悬浮,与圆筒状检验质量块相比,采用立方体质量块后的三轴解耦性能提高,还可输出三轴角加速度。采用带土星环的圆筒形质量块加速度计采用五自由度静电悬浮。
对于采用MEMS技术的微静电加速度计,受到设计和工艺局限,也大多采用其中一轴与其他两轴不对称的结构,不易实现三轴测量一致性。对于三轴测量的加速度计,现有技术的液体介质三轴静电加速度计,其三轴参数一致,但原理和结构相对复杂,加工和装配工序较为繁复。
目前,静电悬浮加速度计的主要问题是地面支承悬浮电压较高,由此带来支承电路***复杂、支承电路误差大等问题,难以实现高精度、高稳定性。此外,现有加速度计设计大多在各方向上的结构和测量参数设计不对称,难以实现三轴测量,或各轴的测量一致性不佳。因此,需要一种结构简单、三轴对称、支承电压低的加速度计设计。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种正交静电悬浮加速度计敏感结构,所述正交静电悬浮加速度计敏感结构的结构较为简单。
根据本发明实施例的正交静电悬浮加速度计敏感结构,包括:敏感质量块,所述敏感质量块包括分别沿X轴、Y轴及Z轴延伸的X轴测量管、Y轴测量管及Z轴测量管;电极,所述电极为多个,多个所述电极非接触安装在所述敏感质量块的各个测量管周围,且所述电极分别在所述X轴测量管、Y轴测量管及Z轴测量管上成对设置,每对所述电极均分别位于相应测量管的内侧和外侧;其中:所述X轴、所述Y轴及所述Z轴形成为直角坐标系,通电时多个所述电极对所述敏感质量块施加静电悬浮力和反馈控制力,以使所述敏感质量块处于悬浮状态。
根据本发明实施的正交静电悬浮加速度计敏感结构,由于敏感质量块为中空结构且内外表面均可用于安置电极,使得敏感质量块具有较大的表面积质量比,即在相同的支承电压下,电极能提供较大的支承力,从而扩大了正交静电悬浮加速度计敏感结构的量程。此外,由于正交静电悬浮加速度计敏感结构的整体结构紧凑,能够实现三轴加速度的同步测量,测量的集成度较高,各轴的测量和控制的同步性较好实现,简化了测量及控制电路。
在一些实施例中,所述X轴测量管、Y轴测量管及Z轴测量管均为圆管。
在一些实施例中,所述X轴测量管的管壁内侧设有多个沿周向间隔开分布的第一内电极,所述X轴测量管的管壁外侧设有多个沿周向间隔开分布的第一外电极,所述第一内电极和所述第一外电极一一对应设置。
具体地,相邻两个所述第一外电极之间有间距且不导通,相邻两个所述第一内电极之间的距离等于相邻两个第一外电极之间的间距。
具体地,所述第一外电极与所述第一内电极的个数均为偶数,中心相对的两个所述第一外电极施加的电压符号相反,中心相对的两个所述第一内电极施加的电压符号相反。
在一些实施例中,所述Y轴测量管的管壁内侧设有多个沿周向间隔开分布的第二内电极,所述Y轴测量管的管壁外侧设有多个沿周向间隔开分布的第二外电极,所述第二内电极和所述第二外电极一一对应设置。
具体地,所述第二外电极与所述第二内电极的个数均为偶数,中心相对的两个所述第二外电极的极性相反,中心相对的两个所述第二内电极的极性相反。
在一些实施例中,所述Z轴测量管的管壁内侧设有多个沿周向间隔开分布的第三内电极,所述Z轴测量管的管壁外侧设有多个沿周向间隔开分布的第三外电极,所述第三内电极和所述第三外电极一一对应设置。
具体地,所述第三外电极与所述第三内电极的个数均为偶数,中心相对的两个所述第三外电极施加的电压符号相反,中心相对的两个第三内电极施加的电压符号相反。
在一些实施例中,所述X轴测量管、Y轴测量管及Z轴测量管的形状相同,长度相等,所述电极的数量相等。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的正交静电悬浮加速度计敏感结构的整体结构示意图。
图2是根据本发明实施例的敏感质量块的结构示意图。
图3是根据本发明实施例的X轴测量管的上的电极分布示意图。
图4是根据本发明实施例的正交静电悬浮加速度计敏感结构的电极分组示意图。
附图标记:
正交静电悬浮加速度计敏感结构10、
敏感质量块100、
X轴测量管110、
第一内电极111、第一外电极112、
Y轴测量管120、
第二内电极121、第二外电极122、
Z轴测量管130、
第三内电极131、第三外电极132。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图4描述根据本发明实施例的正交静电悬浮加速度计敏感结构10的具体结构。
如图1-图2所示,根据本发明实施例的正交静电悬浮加速度计敏感结构10包括敏感质量块100和电极,敏感质量块100包括分别沿X轴、Y轴及Z轴延伸的X轴测量管110、Y轴测量管120及Z轴测量管130,电极为多个,多个电极非接触安装在敏感质量块100的各测量管周围,且电极分别在X轴测量管110、Y轴测量管120及Z轴测量管130上成对设置,每对电极均分别位于相应测量管的内侧和外侧。X轴、Y轴及Z轴形成为直角坐标系,通电时多个电极对敏感质量块100施加静电悬浮力和反馈控制力,以使敏感质量块100处于悬浮状态。
需要说明的是,在通电状态下,多个电极对敏感质量块100施加静电悬浮力使得敏 感质量块100处于初始悬浮状态,当敏感质量块100发生运动时,会偏离初始悬浮状态,此时与正交静电悬浮加速度计敏感结构10的相连检测机构检测到了敏感质量块100的偏移,此时为了使得敏感质量块100回复到初始悬浮状态,需要对电极的电压进行调整,完成调整的电极会对敏感质量块100施加反馈控制力,以使敏感质量块100回复到初始悬浮位置,通过电极电压的变化即可得到敏感质量块100的加速度,从而反应出敏感质量块所受到的加速度。这里需要额外说明的是,反馈控制力的本质还是电极施加给敏感质量块100的静电悬浮力,是克服敏感质量块的加速度而施加的静电悬浮力,这样,保证敏感质量块100始终处于力平衡状态。
可以理解的是,由于X轴测量管110、Y轴测量管120及Z轴测量管130均为中空结构,因此在三个测量管的管壁内侧和外侧均可以设置电极,从而能够使得敏感质量块100具有较大的表面积-质量比,也就是说在相同的支承电压下电极能够提供的静电悬浮力较大,从而增大正交静电悬浮加速度计敏感结构10的量程。此外,由于敏感质量块100在结构上三轴测量管连接较为紧凑,这样可以同时实现三轴的加速度测量,测量的集成度较高,各轴的测量和控制的同步性较好实现,简化了测量及控制电路。
根据本发明实施的正交静电悬浮加速度计敏感结构10,由于敏感质量块100为中空结构且内外表面均可用于安置电极,使得敏感质量块具有较大的单位体积比表面积,即在相同的支承电压下,电极能提供较大的支承力,从而扩大了正交静电悬浮加速度计敏感结构10得到量程。此外,由于正交静电悬浮加速度计敏感结构10的整体结构紧凑,能够实现三轴加速度的同步测量,测量的集成度较高,各轴的测量和控制的同步性较好实现,简化了测量及控制电路。
在一些实施例中,X轴测量管110、Y轴测量管120及Z轴测量管130均为圆管。圆管的加工较为方便,降低了正交静电悬浮加速度计敏感结构10的生产成本,当然,X轴测量管110、Y轴测量管120或者Z轴测量管130也可以形成为其他管件,例如方管,椭圆管等等。
在一些实施例中,如图1所示,X轴测量管110的管壁内侧设有多个沿周向间隔开分布的第一内电极111,X轴测量管110的管壁外侧设有多个沿周向间隔开分布的第一外电极112,第一内电极111和第一外电极112一一对应设置。可以理解的是,在X轴测量管110上设有沿周向间隔开的第一外电极112和第一内电极111能够实现对X轴测量管110内的待测量块在Y轴和Z轴上方向上的移动及绕X轴的转动测量,从而实现了待测量的三自由度控制和检测,提高了正交静电悬浮加速度计敏感结构10的集成性。
具体地,相邻两个第一外电极112之间设有间距,此间距大小需满足相邻电压达到 最大差值时,电极之间无击穿放电,相邻两个第一内电极111之间的距离等于相邻两个第一外电极112之间的间距。可以理解的是,相邻两个第一外电极112之间的间距过大会损失电极面积,导致敏感质量块在受到相同加速度情况下,需要施加在电极上的电压加大,间距过小则容易发生相邻两个第一外电极112击穿放电造成短接,影响测量结果。在实际应用中,相邻两个第一外电极112之间的间距可以根据实际情况做出调整。
具体地,第一外电极112与第一内电极111的个数均为偶数,中心相对的两个第一外电极112施加的电压符号相反,中心相对的两个第一内电极111施加的电压符号相反。由此,可以使得位于X轴测量管110中的待测量块电位为零,能够平稳的悬浮在X轴测量管110内,避免了敏感质量块偏离X轴测量管110的轴线,从而影响测量精度。
在一些实施例中,如图1所示,Y轴测量管120的管壁内侧设有多个沿周向间隔开分布的第二内电极121,Y轴测量管120的管壁外侧设有多个沿周向间隔开分布的第二外电极122,第二内电极121和第二外电极122一一对应设置。可以理解的是,在Y轴测量管120上设有沿周向间隔开的第二外电极122和第二内电极121能够实现对Y轴测量管120内的待测量块在X轴和Z轴上方向上的移动及绕Y轴的转动,从而实现了待测量的三自由度控制和检测,提高了正交静电悬浮加速度计敏感结构10的集成性。
具体地,第二外电极122与第二内电极121的个数均为偶数,中心相对的两个第二外电极122施加的电压符号相反,中心相对的两个第二内电极121施加的电压符号相反。由此,可以使得位于Y轴测量管120中的待测量块能够平稳的悬浮在Y轴测量管120内,避免了带测量块偏离Y轴测量管120的轴线,从而影响测量精度。
在一些实施例中,如图1所示,Z轴测量管130的管壁内侧设有多个沿周向间隔开分布的第三内电极131,Z轴测量管130的管壁外侧设有多个沿周向间隔开分布的第三外电极132,第三内电极131和第三外电极132一一对应设置。可以理解的是,在Z轴测量管130上设有沿周向间隔开的第三外电极132和第三内电极131能够实现对Z轴测量管130内的待测量块在Y轴和Z轴上方向上的移动及绕Z轴的转动,从而实现了待测量的三自由度控制和检测,提高了正交静电悬浮加速度计敏感结构10的集成性。
具体地,第三外电极132与第三内电极131的个数均为偶数,中心相对的两个第三外电极132施加的电压符号相反,中心相对的两个第三内电极131施加的电压符号相反。由此,可以使得位于Z轴测量管130中的待测量块能够平稳的悬浮在Z轴测量管130内,避免了带测量块偏离Z轴测量管130的轴线,从而影响测量精度。
在一些实施例中,X轴测量管110、Y轴测量管120及Z轴测量管130的形状相同,长度相等,电极的数量相等。由此,三轴的结构参数完全一致,其测量和控制的电路也 会相同,从而保证了三轴的测量和控制一致性。在本发明的其他实施例中,X轴测量管110、Y轴测量管120及Z轴测量管130的形状,长度和电极个数等可以均不相同。
在一些实施例中,X轴测量管110、Y轴测量管120及Z轴测量管130采用强度好,密度小的金属例如,铝、铍、钛合金等制成,也可以采用玻璃、陶瓷等非金属镀敷金属膜制成。可以理解的是,上述材料通过精密加工进行制备,能够较好地实现尺寸、圆柱度、各轴正交度等几何特征,从而制造轻质量、高精度、大面积的测量管。
下面参考图1-图4描述本发明一个具体实施例的正交悬浮加速度计敏感结构。
如图1-图2所示,正交静电悬浮加速度计敏感结构10包括敏感质量块100和电极,敏感质量块100包括分别沿X轴、Y轴及Z轴延伸的X轴测量管110、Y轴测量管120及Z轴测量管130,X轴、Y轴及Z轴形成为直角坐标系,X轴测量管110、Y轴测量管120及Z轴测量管130两两连通。X轴测量管110、Y轴测量管120及Z轴测量管130均为直径为20mm,壁厚为0.5mm,长度为60mm的圆管。如图1所示,X轴测量管110的管壁内侧设有四个沿周向间隔开设置的第一内电极111,外周壁上设有四个沿周向间隔开设置的第一外电极112。Y轴测量管120的管壁内侧设有四个沿周向间隔开设置的第二内电极121,外周壁上设有四个沿周向间隔开设置的第二外电极122。Z轴测量管130的管壁内侧设有四个沿周向间隔开设置的第三内电极131,外周壁上设有四个沿周向间隔开设置的第三外电极132。如图3所示,以X轴测量管110为例,第一外电极112包含1a、2a、3a、4a四块,第二内电极121包括1b、2b、3b、4b四块。以相对的1a、1b、2a、2b为例,对其中1a与2b、1b与2a分别连通构成两部分等势极板,以施加大小相等、方向相反的控制电压。各电极板通过引线均与外界进行电气连接,由此即可保证待测质量块在X轴测量管110内平稳悬浮。
如图4所示,电极分配为若干组,以实现三个平动、三个转动的六自由度控制。例如,图中X轴测量管110、Y轴测量管120及Z轴测量管130上中心相对的两个内电极和两个外电极为一组,也就是说,X轴测量管110、Y轴测量管120及Z轴测量管130设有X1、X2、X3、X4、Y1、Y2、Y3、Y4、Z1、Z2、Z3、Z4共12组。整体上,沿X轴平动自由度由X1、X2、X3、X4极板组进行控制;沿Y轴平动自由度由Y1、Y2、Y3、Y4极板组进行控制;沿Z轴平动自由度由Z1、Z2、Z3、Z4极板组进行控制;绕X轴转动自由度由Y2、Y4、Z2、Z4极板组控制;绕Y轴转动自由度由X2、X4、Z1、Z3极板组控制;绕Z轴转动自由度由X1、X3、Y1、Y3极板组进行控制。每组电极如前文所述,同向极板电气连通,对向极板施加大小相等、方向相反的控制电压,实现单臂单方向的位移检测和控制。位移检测可通过电容检测实现。
本实施例的正交静电悬浮加速度计敏感结构10的优点如下:
(1)采用正交圆柱结构可同时实现三轴六自由度的加速度测量,且三轴的结构参数完全一致,测量集成度高,各轴测量和控制的一致性好;
(2)采用薄壁检测管结构,有效减轻检测管自重,提高表面积质量比,相比其他设计,更容易实现高加工精度,从而减小检测质量与电极的间隙。有效降低支承电压量级及其引入的误差,实现大量程的同时能保证高的测量精度与分辨率。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种正交静电悬浮加速度计敏感结构,其特征在于,包括:
    敏感质量块,所述敏感质量块包括分别沿X轴、Y轴及Z轴延伸的X轴测量管、Y轴测量管及Z轴测量管;
    电极,所述电极为多个,多个所述电极非接触安装在所述敏感质量块的多个各测量管周围,且所述电极分别在所述X轴测量管、Y轴测量管及Z轴测量管上成对设置,每对所述电极均分别位于相应测量管的内侧和外侧;其中:
    所述X轴、所述Y轴及所述Z轴形成为直角坐标系,通电时多个所述电极对所述敏感质量块施加静电悬浮力和反馈控制力,以使所述敏感质量块处于悬浮状态。
  2. 根据权利要求1所述的正交静电悬浮加速度计敏感结构,其特征在于,所述X轴测量管、Y轴测量管及Z轴测量管均为圆管。
  3. 根据权利要求2所述的正交静电悬浮加速度计敏感结构,其特征在于,所述X轴测量管的管壁侧设有多个沿周向间隔开分布的第一内电极,所述X轴测量管的管壁外侧设有多个沿周向间隔开分布的第一外电极,所述第一内电极和所述第一外电极一一对应设置。
  4. 根据权利要求3所述的正交静电悬浮加速度计敏感结构,其特征在于,相邻两个所述第一外电极之间有间距且不导通,,相邻两个所述第一内电极之间的距离等于相邻两个第一外电极之间的间距。
  5. 根据权利要求3所述的正交静电悬浮加速度计敏感结构,其特征在于,所述第一外电极与所述第一内电极的个数均为偶数,中心相对的两个所述第一外电极施加的电压符号相反,中心相对的两个所述第一内电极施加的电压符号相反。
  6. 根据权利要求2所述的正交静电悬浮加速度计敏感结构,其特征在于,所述Y轴测量管的管壁内侧设有多个沿周向间隔开分布的第二内电极,所述Y轴测量管的管壁外侧设有多个沿周向间隔开分布的第二外电极,所述第二内电极和所述第二外电极一一对应设置。
  7. 根据权利要求6所述的正交静电悬浮加速度计敏感结构,其特征在于,所述第二外电极与所述第二内电极的个数均为偶数,中心相对的两个所述第二外电极施加的电压符号相反,中心相对的两个所述第二内电极施加的电压符号相反。
  8. 根据权利要求2所述的正交静电悬浮加速度计敏感结构,其特征在于,所述Z轴测量管的管壁内侧设有多个沿周向间隔开分布的第三内电极,所述Z轴测量管的管壁 外侧设有多个沿周向间隔开分布的第三外电极,所述第三内电极和所述第三外电极一一对应设置。
  9. 根据权利要求8所述的正交静电悬浮加速度计敏感结构,其特征在于,所述第三外电极与所述第三内电极的个数均为偶数,中心相对的两个所述第三外电极施加的电压符号相反,中心相对的两个第三内电极施加的电压符号相反。
  10. 根据权利要求1所述的正交静电悬浮加速度计敏感结构,其特征在于,所述X轴测量管、Y轴测量管及Z轴测量管的形状相同,长度相等,所述电极的数量相等。
PCT/CN2018/116472 2018-03-05 2018-11-20 正交静电悬浮加速度计敏感结构 WO2019169902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810180617.4 2018-03-05
CN201810180617.4A CN108508234B (zh) 2018-03-05 2018-03-05 正交静电悬浮加速度计敏感结构

Publications (1)

Publication Number Publication Date
WO2019169902A1 true WO2019169902A1 (zh) 2019-09-12

Family

ID=63376059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116472 WO2019169902A1 (zh) 2018-03-05 2018-11-20 正交静电悬浮加速度计敏感结构

Country Status (2)

Country Link
CN (1) CN108508234B (zh)
WO (1) WO2019169902A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508234B (zh) * 2018-03-05 2019-09-17 清华大学 正交静电悬浮加速度计敏感结构
CN112684208A (zh) * 2019-10-17 2021-04-20 中国科学院长春光学精密机械与物理研究所 一种六自由度正交惯性传感器
CN113466491B (zh) * 2021-07-01 2023-12-05 兰州空间技术物理研究所 一种卫星加速度计敏感结构
CN114324978A (zh) * 2021-12-17 2022-04-12 兰州空间技术物理研究所 一种加速度计捕获范围的地面静态标定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583404A (en) * 1983-02-28 1986-04-22 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Electrostatic accelerometer
CN101509935A (zh) * 2009-03-20 2009-08-19 华中科技大学 一种空间惯性传感器地面测试装置
CN102253238A (zh) * 2011-04-07 2011-11-23 上海交通大学 静电悬浮六轴微加速度计及其制造方法
CN103344786A (zh) * 2013-06-21 2013-10-09 浙江大学 一种静电支撑式差分电容法测量三维加速度的方法
CN104158431A (zh) * 2014-08-05 2014-11-19 中国空间技术研究院 一种静电悬浮式天基超静平台***
CN104654997A (zh) * 2015-02-14 2015-05-27 中国科学院测量与地球物理研究所 一种多自由度差分电容位移传感器标定装置
CN106872730A (zh) * 2017-05-04 2017-06-20 三峡大学 一种加速度测量装置及方法
CN108508234A (zh) * 2018-03-05 2018-09-07 清华大学 正交静电悬浮加速度计敏感结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340960A (ja) * 1992-06-09 1993-12-24 Hitachi Ltd 多次元加速度センサ
CN100510754C (zh) * 2007-03-22 2009-07-08 上海交通大学 悬浮式反磁敏感质量微型加速度计
CN103323622B (zh) * 2013-06-21 2015-02-25 浙江大学 一种静电支撑式光学检测法测量三维加速度的方法
CN104237563B (zh) * 2014-09-04 2017-04-05 兰州空间技术物理研究所 适用于静电悬浮加速度计地面测试的高压静电悬浮电路
CN106706958A (zh) * 2015-11-15 2017-05-24 重庆松瑞汽车销售有限公司 微机械硅谐振梁加速度计

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583404A (en) * 1983-02-28 1986-04-22 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Electrostatic accelerometer
CN101509935A (zh) * 2009-03-20 2009-08-19 华中科技大学 一种空间惯性传感器地面测试装置
CN102253238A (zh) * 2011-04-07 2011-11-23 上海交通大学 静电悬浮六轴微加速度计及其制造方法
CN103344786A (zh) * 2013-06-21 2013-10-09 浙江大学 一种静电支撑式差分电容法测量三维加速度的方法
CN104158431A (zh) * 2014-08-05 2014-11-19 中国空间技术研究院 一种静电悬浮式天基超静平台***
CN104654997A (zh) * 2015-02-14 2015-05-27 中国科学院测量与地球物理研究所 一种多自由度差分电容位移传感器标定装置
CN106872730A (zh) * 2017-05-04 2017-06-20 三峡大学 一种加速度测量装置及方法
CN108508234A (zh) * 2018-03-05 2018-09-07 清华大学 正交静电悬浮加速度计敏感结构

Also Published As

Publication number Publication date
CN108508234B (zh) 2019-09-17
CN108508234A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019169902A1 (zh) 正交静电悬浮加速度计敏感结构
US10473686B2 (en) Inertia measurement module and triaxial accelerometer
KR101927647B1 (ko) 3축 mems 자이로스코프
CN102062604A (zh) 一种电容式微机械音叉陀螺仪
US11150265B2 (en) Single proof mass based three-axis accelerometer
CN101270989A (zh) 一种基于mems技术的集成五轴运动传感器
CN101504425A (zh) 基于9-sps并联机构的压电式六维加速度传感器
CN105698780B (zh) 微壳体振动陀螺及其制备方法
CN117129712B (zh) 一种环形压电陶瓷六维加速度传感器及其测量方法
CN108872637B (zh) 一种两轴挠性摆式加速度计
CN109579811B (zh) 一种采用多边形振动梁的蝶翼式微陀螺及其制备方法
Kou et al. Design and fabrication of a novel MEMS vibrating ring gyroscope
EP2169408B1 (en) Capacitive accelerometer
CN102520210B (zh) 一种压电式六维加速度传感器
CN109163717B (zh) 一种基于轮-环形式的单片三轴mems陀螺仪
JP4056591B2 (ja) 加速度センサ
CN115078769B (zh) Mems加速度计
US11573246B2 (en) Inertial sensor and inertial measurement unit
CN108871302B (zh) 电极谐振微陀螺
CN118150862A (zh) 静电悬浮加速度计敏感结构
CN117268597A (zh) 测量粗糙表面摩阻的mems摩阻传感器及其制作和设计方法
CN117268598A (zh) 一种双框架结构的两分量mems摩阻传感器
CN117054687A (zh) 一种单支点单片集成三轴电容式加速度计芯片
CN115183757A (zh) 一种集成式六自由度微机械量子陀螺仪
CN112556892A (zh) 一种高精度谐振球式压力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908978

Country of ref document: EP

Kind code of ref document: A1