WO2019169544A1 - 传感器数量不完备时结构模态识别的稀疏分量分析方法 - Google Patents

传感器数量不完备时结构模态识别的稀疏分量分析方法 Download PDF

Info

Publication number
WO2019169544A1
WO2019169544A1 PCT/CN2018/078116 CN2018078116W WO2019169544A1 WO 2019169544 A1 WO2019169544 A1 WO 2019169544A1 CN 2018078116 W CN2018078116 W CN 2018078116W WO 2019169544 A1 WO2019169544 A1 WO 2019169544A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
single source
time
source point
sensors
Prior art date
Application number
PCT/CN2018/078116
Other languages
English (en)
French (fr)
Inventor
伊廷华
姚小俊
李宏男
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/078116 priority Critical patent/WO2019169544A1/zh
Priority to US16/342,952 priority patent/US11170070B2/en
Publication of WO2019169544A1 publication Critical patent/WO2019169544A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/556Logarithmic or exponential functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the invention belongs to the technical field of structural health monitoring data analysis, and relates to a method for structural modal identification when the number of sensors is incomplete, and specifically relates to a sparse component analysis method for structural modal recognition when the number of sensors is incomplete.
  • Modal recognition can acquire the dynamic characteristics of the structure and is one of the important techniques of structural dynamics.
  • the dynamic characteristics of the structure generally include the frequency, mode shape and damping ratio of the structure.
  • the process of identifying modal parameters from vibration data is consistent with the principle of blind source separation method. Therefore, the modal identification method based on blind source separation theory emerges. For field testing of large civil engineering structures, the number of installed sensors is sometimes less than the modal order to be identified, so the study of underdetermined blind source separation has very high practical value.
  • the second-order blind identification method for decomposing by constructing a Hankel matrix can reduce the number of sensors by using matrix expansion; the second-order blind identification method based on parallel factorization can keep the matrix decomposition unique in underdetermined conditions. Sex, thus solving the underdetermined problem.
  • these methods are mainly based on the cross-correlation matrix decomposition of the vibration signal, so the vibration signal needs to satisfy the stationarity assumption.
  • the vibration mode is firstly obtained by using the clustering characteristics of the vibration signal in the time-frequency domain, and then the modal response is reconstructed according to the sparse reconstruction method, and finally the frequency and damping ratio are obtained. Because it utilizes the sparse characteristics of the vibration signal in the time-frequency domain, it is not necessary to assume that the signal to be analyzed is a stationary signal, so it has greater advantages.
  • the sparse component analysis process includes single source point detection.
  • the purpose is to extract time-frequency points with only first-order modes participating in the contribution from all time-frequency points, thereby improving the accuracy of the mode estimation and reducing the amount of calculation.
  • the accuracy of single source point detection is low, which results in lower accuracy of mode shape estimation.
  • the modal response is sparsely reconstructed, the number of available sensors is small, which may result in the incomplete reconstruction of all modal responses, which may result in reduced or missing reproducibility. Therefore, it is necessary to improve the modal identification accuracy of the sparse component analysis method when the number of sensors is small.
  • a sparse component analysis method for structural modal identification when the number of sensors is incomplete the short-time Fourier transform of the structural acceleration response data is converted to the time-frequency domain, and only the first-order modality is detected by using the same direction of the real part and the imaginary part.
  • the time-frequency point of the contribution is the single source point, which is the initial result of the single source point; the initial result of the single source point detection is purified according to the single source point located near the peak of the power spectrum, and the single source point is clustered to obtain the mode shape.
  • Matrix constructing a generalized spectral matrix by using short-time Fourier transform coefficients, performing singular value decomposition on the generalized spectral matrix at a single source point, and treating the first singular value as the self-power spectrum of the single-order mode, by picking up the self-power
  • the peak of the spectrum acquires the frequencies of each order, and the inverse Fourier transform is used to convert the self-power spectrum to the time domain to extract the damping ratios of the respective orders;
  • the first step is to obtain the acceleration response of the structure at time t when the number of sensors is incomplete.
  • the single source point detection is based on the fact that the real and imaginary parts of the time-frequency coefficient have the same direction, using the following formula: Where Re ⁇ represents the real part of the extracted data, Im ⁇ represents the imaginary part of the extracted data, and ⁇ represents the threshold of single source point detection;
  • the detected single source point position is marked as (t k , ⁇ k ), and its value is:
  • Y(t k , ⁇ k ) [y 1 (t k , ⁇ k ), y 2 (t k , ⁇ k ),...,y l (t k , ⁇ k )] T ;
  • the third step is to average the logarithmic amplitudes of all sensor locations.
  • the frequency coefficients y j (t, ⁇ i ) are sequentially connected to obtain a sequence Where N represents the number of frequency points used by the short-time Fourier transform;
  • Average the logarithmic magnitude of all sensor locations Calculate each sequence The logarithmic magnitude of each element in it, where Sequence The ⁇ th element in the middle, Amp j ( ⁇ ) represents the ⁇ th element in the logarithmic magnitude of the jth sensor position; Obtain an average logarithmic magnitude;
  • polynomial regression is used to calculate the trend term of the average log magnitude sequence Amp mean , and then the trend term is removed to obtain the sequence. Correct Perform statistical analysis to calculate the number of samples falling into each statistical interval; when the cumulative number of samples reaches 90% of the total number of samples, set the sample value of the corresponding statistical interval as the threshold, and the time-frequency point set represented by the sample below the threshold Marked as ⁇ ; the initial result of the single source point detection obtained in the second step Y(t k , ⁇ k ) falls into the point of the set ⁇ , and the purified single source point is obtained.
  • the fifth step is to use the hierarchical clustering method for the purified single source point. Classify and calculate the cluster center of each class, which is the mode matrix;
  • the generalized spectral matrix is constructed by using the time-frequency coefficient Y(t, ⁇ ) in the first step:
  • t i represents the ith time; the superscript * represents the conjugate of the complex number; E[ ⁇ ] represents the expectation of extracting the data;
  • the seventh step single source location
  • the included frequency indicator is in Singular value decomposition is performed on the generalized spectral matrix H yy to obtain the first singular value sequence s 1 at each frequency;
  • the values of the various single source points obtained in the fifth step on the first singular value sequence s 1 are regarded as the self-power spectra of the respective mode modes, and the frequency of each order is obtained by picking the peak frequency of s 1 , The damping ratio is extracted by shifting s 1 through the inverse Fourier transform to the time domain.
  • the present invention provides a modal parameter identification method based on sparse component analysis, which improves the single source point detection result and directly extracts the frequency and damping ratio from the time-frequency coefficient to increase the number of sensors. The accuracy of modal recognition in less cases.
  • the mass matrix, stiffness matrix and damping matrix are:
  • the excitation is excited by Gaussian white noise, and the sampling frequency is 100 Hz. Acceleration time-sampling is performed on two of the node positions.
  • represents the circular frequency.
  • t i denotes the ith time; the superscript * denotes the conjugate of the complex number; E[ ⁇ ] denotes the expectation of extracting the data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Psychiatry (AREA)
  • Databases & Information Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Algebra (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明属于结构健康监测技术领域,提供传感器数量不完备时结构模态识别的稀疏分量分析方法。对结构加速度响应数据进行短时傅里叶变换转换到时频域,利用实部和虚部方向相同检测出仅有一阶模态参与贡献的时频点即单源点,作为单源点的初始结果;依据单源点位于功率谱峰值附近对单源点检测的初始结果进行提纯,并对单源点进行聚类获得振型矩阵;利用短时傅里叶变换系数构造广义谱矩阵,对单源点处的广义谱矩阵进行奇异值分解,将第一个奇异值视为单阶模态的自功率谱,通过拾取自功率谱的峰值获取各阶频率,利用逆傅里叶变换将自功率谱转换到时域提取各阶阻尼比。本方法在传感器不完备的情况下获取结构的模态参数,提高稀疏分量分析方法的识别准确性。

Description

传感器数量不完备时结构模态识别的稀疏分量分析方法 技术领域
本发明属于结构健康监测数据分析技术领域,涉及传感器数量不完备时结构模态识别的方法,具体为传感器数量不完备时结构模态识别的稀疏分量分析方法。
背景技术
模态识别能够获取结构的动力特性,是结构动力学的重要技术之一。结构的动力特性一般包括结构的频率、振型和阻尼比。从振动数据中识别模态参数的过程与盲源分离方法的原理一致,因此基于盲源分离理论的模态识别方法应运而生。对于大型土木工程结构现场测试,安装的传感器个数有时会少于待识别的模态阶数,因此欠定盲源分离问题的研究具有非常高的实用价值。
针对欠定盲源分离问题,目前研究者们已提出了多种方法。例如,通过构造Hankel矩阵进行分解的二阶盲辨识方法,能够利用矩阵扩维降低对传感器个数的要求;基于平行因子分解法的二阶盲辨识方法,能够在欠定情况保持矩阵分解的唯一性,从而解决欠定问题。然而这些方法主要基于振动信号的互相关矩阵分解,因此振动信号需要满足平稳性假定。而基于稀疏分量分析的方法,首先利用振动信号在时频域内的聚类特性获得振型矩阵,再依据稀疏重构方法重构出各阶模态响应,最终得到频率和阻尼比。因其利用的是振动信号在时频域的稀疏特性,无需假定待分析信号为平稳信号,因此具有较大的优越性。
稀疏分量分析过程包含单源点检测,其目的是从所有时频点中抽取仅有一阶模态参与贡献的时频点,从而提高振型估计的精度,并减小计算量。然而,当传感器个数的较少时,单源点检测的精度较低,会导致振型估计的准确性较低。此外,模态响应在稀疏重构时,可用传感器个数较少会导致不能完全重构 出所有的模态响应,从而会导致重构的精度降低或者遗漏。因此,提高稀疏分量分析方法在传感器个数较少时的模态识别精度十分有必要。
发明内容
本发明的目的是提供一种改进的基于稀疏分量分析的模态识别方法,提高稀疏分量分析方法在传感器个数较少情况下的模态识别的精度。
本发明的技术方案:
一种传感器数量不完备时结构模态识别的稀疏分量分析方法,对结构加速度响应数据进行短时傅里叶变换转换到时频域,利用实部和虚部方向相同检测出仅有一阶模态参与贡献的时频点即单源点,作为单源点的初始结果;依据单源点位于功率谱峰值附近对单源点检测的初始结果进行提纯,并对单源点进行聚类获得振型矩阵;利用短时傅里叶变换系数构造广义谱矩阵,对单源点处的广义谱矩阵进行奇异值分解,将第一个奇异值视为单阶模态的自功率谱,通过拾取自功率谱的峰值获取各阶频率,利用逆傅里叶变换将自功率谱转换到时域提取各阶阻尼比;
分为估算振型矩阵、提取频率和阻尼比,具体步骤如下:
(一)估算振型矩阵
第一步,获取传感器数量不完备时结构在t时刻的加速度响应
Y(t)=[y 1(t),y 2(t),…,y l(t)] T;采用短时傅里叶变换将时域加速度响应变换到时频域,其表达式变为Y(t,ω)=[y 1(t,ω),y 2(t,ω),…,y l(t,ω)],其中l为传感器的个数,ω表示圆频率;
第二步,获取单源点检测的初始结果并标记;
单源点检测的依据为时频系数的实部和虚部具有相同的方向,采用以下公 式:
Figure PCTCN2018078116-appb-000001
其中Re{·}表示所提取数据的实部,Im{·}表示所提取数据的虚部,Δβ表示单源点检测的阈值;
检测出的单源点位置标记为(t kk),其值为:
Y(t kk)=[y 1(t kk),y 2(t kk),…,y l(t kk)] T
第三步,对所有传感器位置的对数幅值进行平均
对所有传感器位置的时频系数做相同的如下处理:第j个传感器位置的时频系数为y j(t,ω),将各频率截面ω i,i=1,2,,N对应的时频系数y j(t,ω i)依次连接得到序列
Figure PCTCN2018078116-appb-000002
其中N表示短时傅里叶变换采用的频点数;
对所有传感器位置的对数幅值进行平均:采用
Figure PCTCN2018078116-appb-000003
计算各序列
Figure PCTCN2018078116-appb-000004
中每个元素的对数幅值,其中
Figure PCTCN2018078116-appb-000005
为序列
Figure PCTCN2018078116-appb-000006
中的第τ个元素,Amp j(τ)表示第j个传感器位置的对数幅值中的第τ个元素;
Figure PCTCN2018078116-appb-000007
得到平均对数幅值;
第四步,采用多项式回归计算平均对数幅值序列Amp mean的趋势项,然后将趋势项去除,得到序列
Figure PCTCN2018078116-appb-000008
Figure PCTCN2018078116-appb-000009
进行统计分析,计算落入各统计区间的样本个数;当累积样本个数达到总样本个数90%时,将相应统计区间的样本值设为阈值,阈值以下的样本代表的时频点集合标记为Ω;剔除第二步得到的单源点检测的初始结果Y(t kk)中落入集合Ω的点,得到提纯的单源点
Figure PCTCN2018078116-appb-000010
第五步,使用层次聚类方法对提纯后的单源点
Figure PCTCN2018078116-appb-000011
进行分类,并计算各个类的聚类中心,即为振型矩阵;
(二)提取频率和阻尼比
第五步,利用第一步中的时频系数Y(t,ω)构造广义谱矩阵:
Figure PCTCN2018078116-appb-000012
式中:
Figure PCTCN2018078116-appb-000013
t i表示第i个时刻;上标*表示求复数的共轭;E[·]表示提取数据的期望;
第七步,单源点位置
Figure PCTCN2018078116-appb-000014
包含的频率指标为
Figure PCTCN2018078116-appb-000015
Figure PCTCN2018078116-appb-000016
处对广义谱矩阵H yy进行奇异值分解,得到各频率处的第一个奇异值序列s 1
第八步,将第五步得到的各类单源点在第一个奇异值序列s 1上的值视为各阶模态的自功率谱,通过拾取s 1的峰值频率得到各阶频率,通过将s 1经过逆傅里叶变换转到时域提取阻尼比。
本发明的有益效果:本发明提供了一种基于稀疏分量分析的模态参数识别方法,通过对单源点检测结果进行提纯,并直接从时频系数中提取频率和阻尼比,提高传感器个数较少情况下模态识别的准确性。
具体实施方式
以下结合技术方案,进一步阐明本发明的实施方式。
取一个三自由度弹簧质量块***,质量矩阵、刚度矩阵和阻尼矩阵分别为:
Figure PCTCN2018078116-appb-000017
激励采用高斯白噪声激励,采样频率为100Hz,对其中两个节点位置进行加速度时程采样。
一、振型矩阵估计
(1)采样得到结构在t时刻的加速度响应Y(t)=[y 1(t),y 2(t)] T。采用短时傅里叶变换将时域的加速度响应Y变换到时频域,其表达式变为 Y(t,ω)=[y 1(t,ω),y 2(t,ω)],这里ω表示圆频率。
(2)依据
Figure PCTCN2018078116-appb-000018
获取单源点检测初始结果,其中Re{·}表示提取数据的实部,Im{·}表示提取数据的虚部。检测出的单源点位置记为(t kk),则单源点处的值为:Y(t kk)=[y 1(t kk),y 2(t kk)] T
(3)第1个传感器位置的时频系数为y 1(t,ω),将各频率截面ω i,(i=1,2,…,N)对应的时频系数y 1(t,ω i)依次连接得到序列
Figure PCTCN2018078116-appb-000019
对y 2(t,ω)做相同的处理。采用
Figure PCTCN2018078116-appb-000020
计算各序列
Figure PCTCN2018078116-appb-000021
中每个元素的对数幅值,其中
Figure PCTCN2018078116-appb-000022
为序列
Figure PCTCN2018078116-appb-000023
中的第τ个元素,Amp j(τ)表示第j个传感器位置的对数幅值中的第τ个元素。将两个传感器位置的对数幅值进行平均:
Figure PCTCN2018078116-appb-000024
得到平均对数幅值。
(4)采用多项式回归计算平均对数幅值序列Amp mean的趋势项,并将趋势项去除,得到序列
Figure PCTCN2018078116-appb-000025
Figure PCTCN2018078116-appb-000026
进行统计分析,计算落入各统计区间的样本个数。当累积样本个数达到总样本数的90%时,将相应统计区间的样本值设为阈值,阈值以下的样本代表的时频点集合标记为Ω。剔除步骤(2)得到的单源点检测的初始结果Y(t kk)中落入集合Ω的点,得到提纯的单源点
Figure PCTCN2018078116-appb-000027
(5)使用层次聚类方法将提纯后的单源点
Figure PCTCN2018078116-appb-000028
分成3类,并计算各个类的聚类中心,得到归一化的振型矩阵:
Figure PCTCN2018078116-appb-000029
二、提取频率和阻尼比
(6)利用步骤(1)中的时频系数Y(t,ω)构造广义谱矩阵:
Figure PCTCN2018078116-appb-000030
式中:
Figure PCTCN2018078116-appb-000031
t i表示第i个时刻;上标*表示求复数的共轭;E[·]表示提取数据的期望。
(7)在各频率指标
Figure PCTCN2018078116-appb-000032
处对广义谱矩阵H yy进行奇异值分解,得到第一个奇异值序列s 1
(8)步骤(5)得到的各类单源点在s 1上的值视为各阶模态的自功率谱,通过拾取s 1的峰值频率得到各阶频率,通过将s 1经过逆傅里叶变换转到时域提取阻尼比。频率的识别结果为:f n1=3.2959Hz,f n2=10.8099Hz,f n3=11.7813Hz。阻尼比的识别结果为:ξ 1=0.0474,ξ 2=0.0290,ξ 3=0.0112。

Claims (1)

  1. 一种传感器数量不完备时结构模态识别的稀疏分量分析方法,分为估算振型矩阵、提取频率和阻尼比,其特征在于,步骤如下:
    (一)估算振型矩阵
    第一步,获取传感器数量不完备时结构在t时刻的加速度响应Y(t)=[y l(t),y 2(t),…,Y l(t)I T;采用短时傅里叶变换将时域加速度响应变换到时频域,其表达式变为Y(t,ω)=[y 1(t,ω),y 2(t,ω),…,y l(t,ω)],其中l为传感器的个数,ω表示圆频率;
    第二步,获取单源点检测的初始结果并标记;
    单源点检测的依据为时频系数的实部和虚部具有相同的方向,采用以下公式:
    Figure PCTCN2018078116-appb-100001
    其中Re{·}表示所提取数据的实部,Im{·}表示所提取数据的虚部,Δβ表示单源点检测的阈值;
    检测出的单源点位置标记为(t kk),其值为:
    Y(t k,ω k)=y 1(t k,ω k),y 2(t k,ω k),…y l(t k,ω k)] T
    第三步,对所有传感器位置的对数幅值进行平均
    对所有传感器位置的时频系数做相同的如下处理:第j个传感器位置的时频系数为y j(t,ω),将各频率截面ω i,i=1,2,…,N对应的时频系数y j(t,ω i)依次连接得到序列
    Figure PCTCN2018078116-appb-100002
    其中N表示短时傅里叶变换采用的频点数;
    对所有传感器位置的对数幅值进行平均:采用
    Figure PCTCN2018078116-appb-100003
    计算各序列
    Figure PCTCN2018078116-appb-100004
    j=1,2,…,l中每个元素的对数幅值,其中
    Figure PCTCN2018078116-appb-100005
    为序列
    Figure PCTCN2018078116-appb-100006
    中的第τ个元素,Amp j(τ)表示第j个传感器位置的对数幅值中的第τ个元素;
    Figure PCTCN2018078116-appb-100007
    得到平均对数幅值;
    第四步,采用多项式回归计算平均对数幅值序列Amp mean的趋势项,然后将 趋势项去除,得到序列
    Figure PCTCN2018078116-appb-100008
    Figure PCTCN2018078116-appb-100009
    进行统计分析,计算落入各统计区间的样本个数;当累积样本个数达到总样本个数90%时,将相应统计区间的样本值设为阈值,阈值以下的样本代表的时频点集合标记为Ω;剔除第二步得到的单源点检测的初始结果Y(t kk)中落入集合Ω的点,得到提纯的单源点
    Figure PCTCN2018078116-appb-100010
    第五步,使用层次聚类方法对提纯后的单源点
    Figure PCTCN2018078116-appb-100011
    进行分类,并计算各个类的聚类中心,即为振型矩阵;
    (二)提取频率和阻尼比
    第五步,利用第一步中的时频系数Y(t,ω)构造广义谱矩阵:
    Figure PCTCN2018078116-appb-100012
    式中:
    Figure PCTCN2018078116-appb-100013
    t i表示第i个时刻;上标*表示求复数的共轭;E[·]表示提取数据的期望;
    第七步,单源点位置
    Figure PCTCN2018078116-appb-100014
    包含的频率指标为
    Figure PCTCN2018078116-appb-100015
    Figure PCTCN2018078116-appb-100016
    处对广义谱矩阵H yy进行奇异值分解,得到各频率处的第一个奇异值序列s 1
    第八步,将第五步得到的各类单源点在第一个奇异值序列s 1上的值视为各阶模态的自功率谱,通过拾取s 1的峰值频率得到各阶频率,通过将s 1经过逆傅里叶变换转到时域提取阻尼比。
PCT/CN2018/078116 2018-03-06 2018-03-06 传感器数量不完备时结构模态识别的稀疏分量分析方法 WO2019169544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/078116 WO2019169544A1 (zh) 2018-03-06 2018-03-06 传感器数量不完备时结构模态识别的稀疏分量分析方法
US16/342,952 US11170070B2 (en) 2018-03-06 2018-03-06 Sparse component analysis method for structural modal identification when the number of sensors is incomplete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078116 WO2019169544A1 (zh) 2018-03-06 2018-03-06 传感器数量不完备时结构模态识别的稀疏分量分析方法

Publications (1)

Publication Number Publication Date
WO2019169544A1 true WO2019169544A1 (zh) 2019-09-12

Family

ID=67845478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078116 WO2019169544A1 (zh) 2018-03-06 2018-03-06 传感器数量不完备时结构模态识别的稀疏分量分析方法

Country Status (2)

Country Link
US (1) US11170070B2 (zh)
WO (1) WO2019169544A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560699A (zh) * 2020-12-18 2021-03-26 南京航空航天大学 基于密度和压缩感知的齿轮振动信源欠定盲源分离方法
CN112629786A (zh) * 2020-12-03 2021-04-09 华侨大学 一种工作模态参数识别方法及设备故障诊断方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993160B (zh) * 2020-06-05 2022-02-22 中国工程物理研究院机械制造工艺研究所 一种基于超精密金刚石车床面形的相近振动频率辨识方法
CN111626000B (zh) * 2020-06-29 2023-09-29 杭州鲁尔物联科技有限公司 一种桥梁状态的评估方法、装置、设备和存储介质
CN112069945B (zh) * 2020-08-25 2024-01-05 大连理工大学 工程结构时变频率和阻尼比的一种识别方法
CN112417709A (zh) * 2020-12-12 2021-02-26 西北工业大学 一种基于纹影图像的动力学模态分析方法
CN113229829B (zh) * 2021-04-15 2023-09-01 广东工业大学 一种四元数脑电信号提取方法及***
CN113375789B (zh) * 2021-06-09 2023-03-14 北京科技大学 一种基于自由振动的结构阻尼比识别方法
CN113919388A (zh) * 2021-08-20 2022-01-11 苏州智为物联科技有限公司 一种融合信号频谱幅值调制和深度学习的机电装备故障诊断方法及装置
CN113945633B (zh) * 2021-09-30 2022-10-28 西安交通大学 一种基于高空间分辨率振型分型维数的结构微弱损伤识别方法
CN114357829B (zh) * 2021-12-23 2024-06-11 北京北方车辆集团有限公司 一种基于光纤光栅传感器的油箱虚假模态识别方法
CN114818182B (zh) * 2022-04-25 2024-07-02 东南大学 一种响应驱动的薄壁结构宽频减振动力吸振器参数设计方法
CN116701883B (zh) * 2023-07-31 2023-10-13 北京建筑大学 基于频段辨识的模态参数自动化识别方法、装置及设备
CN117093815B (zh) * 2023-10-10 2024-01-26 浙江威格泵业有限公司 一种用于bmc变频循环屏蔽泵流速检测方法
CN117093843B (zh) * 2023-10-19 2024-02-20 华侨大学 信号重构与工作模态参数识别方法、装置、设备及介质
CN117235476B (zh) * 2023-11-14 2024-02-13 利维智能(深圳)有限公司 故障检测方法、装置、计算机设备和存储介质
CN117688422A (zh) * 2023-11-20 2024-03-12 华南理工大学 基于改进稀疏分量分析的欠定模态参数识别方法、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112072A (zh) * 2014-07-15 2014-10-22 华侨大学 基于小波阈值去噪的主成分分析的工作模态参数识别方法
CN105008887A (zh) * 2012-10-05 2015-10-28 西门子公司 使用非接触测量和动态响应重构技术的涡轮机叶片疲劳寿命分析
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法
CN107133195A (zh) * 2017-04-14 2017-09-05 大连理工大学 一种工程结构模态识别的模型定阶方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125676B2 (en) * 2002-02-25 2006-10-24 Vanderbilt University Expression system for human brain-specific voltage-gated sodium channel, type 1
US10433742B2 (en) * 2013-08-05 2019-10-08 The Regents Of The University Of California Magnetoencephalography source imaging for neurological functionality characterizations
US10989542B2 (en) * 2016-03-11 2021-04-27 Kaarta, Inc. Aligning measured signal data with slam localization data and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008887A (zh) * 2012-10-05 2015-10-28 西门子公司 使用非接触测量和动态响应重构技术的涡轮机叶片疲劳寿命分析
CN104112072A (zh) * 2014-07-15 2014-10-22 华侨大学 基于小波阈值去噪的主成分分析的工作模态参数识别方法
CN106844935A (zh) * 2017-01-18 2017-06-13 大连理工大学 一种大阻尼工程结构模态参数识别方法
CN107133195A (zh) * 2017-04-14 2017-09-05 大连理工大学 一种工程结构模态识别的模型定阶方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629786A (zh) * 2020-12-03 2021-04-09 华侨大学 一种工作模态参数识别方法及设备故障诊断方法
CN112560699A (zh) * 2020-12-18 2021-03-26 南京航空航天大学 基于密度和压缩感知的齿轮振动信源欠定盲源分离方法
CN112560699B (zh) * 2020-12-18 2024-04-16 南京航空航天大学 基于密度和压缩感知的齿轮振动信源欠定盲源分离方法

Also Published As

Publication number Publication date
US20200073908A1 (en) 2020-03-05
US11170070B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2019169544A1 (zh) 传感器数量不完备时结构模态识别的稀疏分量分析方法
CN108491608B (zh) 传感器数量不完备时结构模态识别的稀疏分量分析方法
Yao et al. Blind modal identification using limited sensors through modified sparse component analysis by time‐frequency method
Yang Interpretation of mechanical signals using an improved Hilbert–Huang transform
WO2020041935A1 (zh) 一种基于扩展稀疏分量分析的非比例阻尼结构模态识别方法
WO2017024692A1 (zh) 一种单测量节点模拟电路故障诊断方法
CN110321518B (zh) 一种判定水文时间序列趋势类型的方法
WO2019104904A1 (zh) 一种基于稀疏分量分析模态识别中的阶数确定方法
CN105069309A (zh) 一种识别水文时间序列非线性趋势的方法
CN111753776A (zh) 基于回声状态与多尺度卷积联合模型的结构损伤识别方法
CN106248201B (zh) 基于增强谱峭度的谐波成分检测方法
CN109840386B (zh) 基于因子分析的损伤识别方法
CN109580146B (zh) 一种基于改进稀疏分量分析的结构振动参数识别方法
Zhang et al. An Efficient Porcine Acoustic Signal Denoising Technique Based on EEMD‐ICA‐WTD
Farzampour et al. Unsupervised identification of arbitrarily-damped structures using time-scale independent component analysis: Part I
CN116561541A (zh) 随机动载荷识别模型、模型的训练方法以及识别方法
Boyraz Acoustic road-type estimation for intelligent vehicle safety applications
Lili et al. Research on recognition of CHD heart sound using MFCC and LPCC
RU2351005C1 (ru) Способ оценки параметров сигнала и устройство для реализации способа (варианты)
Zhao et al. Pipeline leak fault feature extraction based on wavelet packet analysis and application
Liguori et al. Real-time detection of low-frequency components
Ren et al. Variational mode decomposition denoising combined with the Euclidean distance for diesel engine vibration signal
Jiang et al. VMD and HMM based rolling bearing fault diagnosis
CN117688422A (zh) 基于改进稀疏分量分析的欠定模态参数识别方法、计算机设备及存储介质
CN114299907B (zh) 一种减振器总成异响检测方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909130

Country of ref document: EP

Kind code of ref document: A1