WO2019167592A1 - Focusing-type sound wave therapy device using planar-shape element - Google Patents

Focusing-type sound wave therapy device using planar-shape element Download PDF

Info

Publication number
WO2019167592A1
WO2019167592A1 PCT/JP2019/004671 JP2019004671W WO2019167592A1 WO 2019167592 A1 WO2019167592 A1 WO 2019167592A1 JP 2019004671 W JP2019004671 W JP 2019004671W WO 2019167592 A1 WO2019167592 A1 WO 2019167592A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
planar
focused
probe
depth
Prior art date
Application number
PCT/JP2019/004671
Other languages
French (fr)
Japanese (ja)
Inventor
満 運天
Original Assignee
有限会社ユーマンネットワーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ユーマンネットワーク filed Critical 有限会社ユーマンネットワーク
Publication of WO2019167592A1 publication Critical patent/WO2019167592A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the present invention relates to a focused sonic therapy apparatus using a planar element that applies a pulse wave to a planar element transducer and focuses a sound wave generated by the pulse wave on a treatment target region to perform treatment.
  • FIG. 9 shows the configuration of the focused sonic therapy apparatus.
  • the integrated concave element 101 is made of ceramic, and the concave side (front side) 111 of the ceramic has a spherical shape.
  • the front side 111 is filled with a sound wave transmitting gel 151.
  • the contact portion 105 has a structure that can be replaced so that the depth of focus can be adjusted.
  • the focal point F of the sound wave by the integral concave element 1 is located at the top of the conical shape of the contact part 105.
  • the angle of the line connecting the two ends between the diagonal lines on the front side 111 and the focal point F is approximately 90 °.
  • a ground line 141 is connected to the front side 111 of the integrated concave element 101, and a + signal line 142 is connected to the back side 116.
  • a predetermined time for example, 1 second.
  • the connecting point between the ground line 141 and the + signal line 142 on the front side and the back side of the integrated concave element 101 is one, but the thickness of the integrated concave element 101 is about 6 mm, and the applied voltage Therefore, the difference in the potential applied to each position between the front side and the back side is not large in the central part and the vicinity. Therefore, each position of the integrated concave element 101 is distorted by an amount corresponding to the applied voltage, and a sound wave is generated in the front side vertical direction at each position on the front side 111. This converges to the focal point F.
  • the applied sound wave is not an ultrasonic wave, but a single pulse wave is generated to eliminate attenuation due to frequency, and it is possible to efficiently deliver the sound wave to the treatment site.
  • this focused sonic therapy apparatus has a structure in which the depth of the focus that can be treated is determined by the diameter of the concave element and the shape of the concave surface, and the shape and intensity of the focused sound wave are determined.
  • the proposed focused sonic therapy device has a structure in which the depth of focus and the intensity of sound waves cannot be changed by adjusting the focus later. Therefore, when it is requested to deliver a stronger focused sound wave to a site deeper than the depth of the focus F, it is difficult to respond.
  • the human body to be treated is thick, and there are many organs at a depth exceeding 5 cm, and the focused sonic therapy device also requires a therapeutic approach to these organs.
  • the treatment of organs at deep sites requires a sonic therapy device with a deep focal depth. When the focal depth increases, a stronger focused acoustic wave must be generated due to attenuation of the acoustic wave.
  • a concentric sonication device with a concave element it is necessary to increase the oscillating area of the element and increase the pulse voltage to be applied in order to increase the sound wave intensity while increasing the focal angle.
  • the integral concave element has a curved reflecting surface, it is difficult to manufacture the element and mass production of elements having a diameter exceeding 100 mm is difficult. Actually, the depth of focus of the integrated concave element is limited to 5 cm.
  • the focused sound wave becomes weaker when the depth of focus is increased.
  • the pulse voltage to be applied there is a limit to this because it breaks when the breakdown voltage of the element is exceeded.
  • the present invention makes it possible to treat any organ such as a deep site by combining a planar element having a larger diameter and an acoustic lens by utilizing a planar element.
  • any organ such as a deep site by combining a planar element having a larger diameter and an acoustic lens by utilizing a planar element.
  • the diameter of the planar element and generating stronger sound waves strong sound waves can be generated even for organs that are expected to be greatly attenuated, such as deep organs and organs surrounded by bones. Allows focusing.
  • the present invention has been made in view of the situation as described above, and an object of the present invention is to generate a single sound wave using a planar element that generates an ultrasonic wave, and to generate the generated sound wave using an acoustic lens.
  • An object of the present invention is to provide a focusing type sonication treatment apparatus using a planar element capable of efficiently concentrating sonic energy by having a structure for focusing on the above site.
  • claim 1 of the present invention applies one to a plurality of pulsed voltages to a ceramic element or a piezoelectric element, and propagates a pulsed sound wave generated from the element to a depth adjusting gel pad.
  • the ceramic element or the piezo element is formed into a circular flat plate shape, and the front surface of the flat plate is A conical, frustoconical or trapezoidal depth-adjusting gel pad incorporating an acoustic lens for focusing a single pulsed sound wave generated by the ceramic element or piezoelectric element, and having a contact portion
  • the pulsating sound wave generated from the ceramic element or piezo element is arranged on the plane of the ceramic element or piezo element.
  • the probe is configured to be attachable to the front surface of the flat plate.
  • the mountable probes according to the second aspect of the invention, and the focal lengths of the acoustic lenses to be incorporated are different from each other, and each probe emits a sound wave. The distance between the contact surface to be added and the focal length is different, and the sound wave is focused to an arbitrary depth of the object to which the sound wave is applied.
  • the mountable probe focuses the sound wave at a position of 60 mm, 90 mm or 120 mm from the front surface of the flat plate.
  • the acoustic lens is configured by combining two members having different speeds of sound waves depending on a material, and a contact surface between the members is predetermined. A spherical surface or curved surface having a radius of is formed.
  • the two members are an epoxy resin member and a silicon rubber member.
  • a signal line for applying a voltage to one place on the back side of the ceramic element or piezo element is provided on the front side.
  • the probe is connected to a ground line at one place, or a signal line for applying a voltage to one place on the front side of the ceramic element or piezoelectric element, and a ground line to one place on the rear side.
  • Pulse voltage generation means for generating a single-phase pulse voltage to be applied to the power supply, and power supply means for supplying power to the pulse voltage generation means, wherein the one or more pulse voltages are supplied to the pulse voltage.
  • the width of the pulse voltage is several ⁇ S
  • the predetermined voltage 1 to occur within the time of Several pulse-like voltages are 1 to several tens of pulse-like voltages per second, and a pulse waveform having a width substantially the same as the pulse width of the pulse-like voltage propagates through the gel pad for depth adjustment to be treated. It is characterized by reaching.
  • the configuration described above has the following advantages.
  • the present invention makes it possible to treat a deeper site by increasing the intensity of sound waves by combining a planar element and an acoustic lens.
  • a planar element is relatively easy to manufacture, allows mass production of elements having a diameter exceeding 100 mm, and can be manufactured at low cost.
  • a concave element having a diameter of 100 mm can also be made, the number that can be manufactured per year is limited, and the unit price of the concave element becomes high.
  • the sound wave generated becomes stronger, and it is possible to generate a larger sound wave even if the applied pulse voltage is the same.
  • a strong sound wave By generating a strong sound wave, a strong sound wave can be delivered to the focal point even if the focal angle is set to an acute angle and the depth of focus is increased.
  • the sound wave generated by the planar element is focused by a cone-shaped, truncated cone-shaped or trapezoidal depth-adjusting gel pad incorporating an acoustic lens, and by preparing many types of depth-adjusting gel pads, the depth depends on the treatment target. And the intensity of sound waves can be easily selected.
  • FIG. 1 is a schematic view showing an embodiment of a focused sonic therapy apparatus using a planar element according to the present invention. It is a wave form diagram which shows the relationship between the pulse voltage applied to a planar element, and the waveform of the sound wave to generate
  • FIG. 1 is a diagram for explaining a basic configuration in the vicinity of a probe of a focused sonic therapy apparatus using a planar element according to the present invention, wherein (a) is a cross-sectional view of a probe portion; ) Is a front view of a planar element.
  • the planar element 1 is made of, for example, ceramic, and a gel pad formed of a sound wave transmission gel 51 in which an acoustic lens 43 is incorporated is disposed on the ceramic front side 11.
  • the gel pad having the contact portion 5 on the front surface has a structure that can be replaced so that the depth of focus can be adjusted.
  • the sound wave output from the planar element 1 is focused on the focal point F by the acoustic lens 43 inside the gel pad.
  • the contact part 5 When the contact part 5 is pressed against the treatment target part, the body surface and the vicinity of the top of the contact part 5 are recessed by the pressing force, and the position of the focal point F enters the internal position of the treatment target part.
  • a ground line 41 is connected to the front side 11 of the planar element 1, and a + signal line 42 is connected to the back side 16.
  • a predetermined time for example, 1 second.
  • the entire surface of the planar element 1 is covered with silver electrodes, and there is only one connection point between the ground line 41 and the + signal line 42.
  • the thickness of the planar element 1 is about 6 mm. Since the applied voltage is high, the difference in potential applied to each position between the front side and the back side is not large in the central part and in the vicinity of the periphery. Accordingly, each position of the planar element 1 is distorted by an amount corresponding to the applied voltage, and sound waves are generated in the front side vertical direction at each position on the front side 11. This is focused on the focal point F by the acoustic lens 43.
  • FIG. 2A is a conceptual diagram for explaining a sound wave focusing principle of an acoustic lens used in a focused sound wave therapy apparatus using a planar element according to the present invention.
  • Each sound wave group emerging from the front side of the planar element 1 is indicated by a solid line directed in the traveling direction.
  • the sound wave emitted from the point 1a of the planar element 1 spreads and progresses so as to draw a semicircle.
  • the sound wave from each point 1a of the planar element 1 is synthesized while traveling.
  • the acoustic lens 43 is represented by a notation of a convex lens similar to a physical representation of a refractive lens.
  • the acoustic lens 43 is formed by contacting resin materials (silicon rubber 46 and epoxy resin 45) having different sound wave propagation speeds on a spherical surface or a curved surface, and is similar to the light refraction action by the combined resin materials. Effects are given.
  • the focal point F of the sound wave can be formed at an arbitrary position by the difference in the speed of the sound wave between the resin materials and the curvature of the contact spherical surface.
  • FIG. 2B is a diagram illustrating a model for measuring the performance of an acoustic lens used in the focused sonic therapy apparatus.
  • This model has a vibrator width of 100 mm, a radius of curvature of 108 mm between the epoxy resin 45 having a sound velocity of 2,600 m / s and the silicon rubber 46 having a sound velocity of 1,000 m / s.
  • the side of the silicon rubber 46 from which sound waves are emitted is a medium of water 47.
  • the state of sound wave displacement of such a model is shown in FIG. 2C.
  • the upper graph shows the sound wave immediately after passing through the acoustic lens. The presence of sound waves in the graph is indicated by a chain line.
  • FIG. 2D is a graph showing the relationship between the propagation distance and the amplitude in the model of FIG. 2B.
  • the vicinity of the propagation distance of 100 mm has the maximum sound wave amplitude (0, 25), and it can be seen that the position is the focal point.
  • FIG. 3 is a schematic view showing an embodiment of a focused sonic therapy apparatus using a planar element according to the present invention. It comprises a treatment probe section 2, an apparatus main body including a high voltage pulse generation circuit 10 and an AC boost circuit 9, a signal cable 4 connecting the treatment probe section 2 and the apparatus main body 3, and a power cable 7. .
  • the therapeutic probe unit 2 includes a connection structure of a planar element 1, an acoustic lens 43, a contact unit 5, a ground line 41, and a + signal line 42.
  • the AC booster circuit 9 is a circuit that boosts AC100V input from the power cable 7 by a transformer or an inverter.
  • the high-voltage pulse generation circuit 10 generates one or a plurality of (for example, 2 to 40) pulses per second from the voltage boosted by the AC boost circuit 9, and has a pulse width of, for example, 3 ⁇ S.
  • the output voltage value is 500 V to 5 KV, and these can be adjusted by the voltage adjustment knob 14. Further, the number of generated pulses can also be adjusted by the number adjusting knob 13.
  • FIG. 5 shows an external view of the apparatus main body 3. In FIG. 5, the adjusted number of pulse repetitions and the adjusted voltage value are displayed on the display unit 15.
  • the intensity of the sonic energy can be adjusted by the intensity (including the number of times) of the voltage applied to the element 1 by the plane.
  • the power switch 12 of the apparatus main body 3 is turned on, the number of generated pulses and the applied voltage value are adjusted as necessary, and then the treatment probe section 2 is applied to the treatment target section. It will be.
  • FIG. 4 is a waveform diagram showing the relationship between the pulse voltage applied to the planar element and the waveform of the generated sound wave.
  • a sound wave 1A ′ is generated in the planar element 1 with a predetermined time delay.
  • a similar pulse 1B is generated to generate a corresponding sound wave 1B ', resulting in such repeated pulse generation.
  • a pulse nA indicated by a one-dot chain line is a pulse when two or more pulses are generated.
  • a sound wave nA ′ is generated and repeatedly generated in the same manner.
  • the sound wave is generated by applying 1 to several tens of pulses per second, so that the sound wave energy focused on the focal point is easier to control than the continuous wave, and is a small and simple device. Can be made.
  • FIG. 6 is a diagram showing another embodiment of a focused sonic therapy apparatus using a planar element according to the present invention, which is suitable for anti-aging.
  • 3 is different from the focused sound wave therapy apparatus of FIG. 3 in this embodiment in that a high-voltage pulse generation circuit 24 and an AC booster circuit 23 are incorporated in the treatment probe section housing 20 and the treatment probe section housing 20 is incorporated. That is, the power cable 26 is directly connected.
  • a signal cable 25 of the high-voltage pulse generation circuit 24 is connected to the treatment probe 21.
  • a power switch, a pulse repetition number adjustment knob, and an applied signal voltage adjustment knob are provided at the position 201.
  • FIG. 7 is a diagram showing details of the probe unit of the focused sonic therapy apparatus using a planar element.
  • the treatment probe housing 20 is configured by forming a grip portion 36 integrally with a probe housing 37 that houses the planar element 31.
  • the gripping portion 36 accommodates the high-voltage pulse generation circuit 24 and the AC booster circuit 23 therein, and is connected to a power cable 26 connected to a household outlet.
  • the appearance of the simple focused sonication device is almost the same as a massager used in the home.
  • the ground line 241 and the ground line 35 from the high-voltage pulse generating circuit 24 are soldered to the terminal 40, and the ground line 35 passes through a hole formed in the vibrator holder 32 and is an end on the front side of the planar element 31. It is connected to the.
  • the + signal line 34 from the high voltage pulse generation circuit 24 is connected to the back side of the planar element 31 through a hole formed in the vibrator holder 32.
  • a frustoconical gel pad 27 incorporating an acoustic lens 43 is provided on the upper part of the probe accommodating portion 37, and the vicinity of the apex is the position of the focal point F of the acoustic lens 43.
  • the planar element 31 is supported by a vibration holder 32 fixed in the probe accommodating portion 37.
  • the front side of the planar element 31 faces the acoustic lens 43 side of the gel pad 27.
  • the depth adjusting gel pad 27 is disposed on the sheet 28.
  • the depth adjusting gel pad 27 is attached to the probe accommodating portion 37 by the depth adjusting gel pad pressing 33 pressing the flange portion 271.
  • the depth adjustment gel pad holder 33 is configured to be attachable to and detachable from the probe accommodating portion 37, and the depth adjustment gel pad 27 can be replaced.
  • FIG. 8 is a diagram showing an example of a replaceable depth adjusting gel pad with an acoustic lens.
  • Multiple types of adjustable depth gel pads are available.
  • (A) is the one where the focal length F is at a position of 120 mm from the lower surface of the depth adjustment gel pad and at a position of 100 mm from the upper surface of the acoustic lens of the depth adjustment gel pad. Therefore, if the upper surface of the depth adjusting gel pad is applied to, for example, the skin surface of the body to be treated, the sound wave can be concentrated on a portion having a depth of 100 mm. This makes it possible to treat relatively deep sites.
  • the focal length F is 90 mm from the bottom surface of the depth adjusting gel pad, and 70 mm from the top surface of the acoustic lens of the depth adjusting gel pad. Therefore, if the upper surface of the depth adjustment gel pad is applied to the skin surface of the body to be treated, for example, the sound wave can be concentrated on a portion having a depth of 70 mm.
  • (C) shows that the focal length F is 60 mm from the bottom surface of the depth adjusting gel pad and 40 mm from the top surface of the acoustic lens of the depth adjusting gel pad.
  • the sound wave can be concentrated on a portion having a depth of 40 mm. Since the depth adjustment gel pad can be easily attached in this way, the treatment target can be easily handled at any depth.
  • the above embodiment can be variously modified.
  • the depth adjusting gel pad in which the acoustic lens is incorporated has an example of a truncated cone shape, but may be trapezoidal or conical.
  • the example of the combination of a silicone rubber and epoxy resin was shown as a structure of an acoustic lens, the other resin raw material from which a sound speed differs can be used.
  • the connection points on the front side and the back side of the planar element the performance as a treatment device does not change even if a plurality of connection points are connected.
  • a conductive pattern may be formed on a part of the front side and the back side, and connected to the conductive pattern.
  • the shape of an apparatus is not restricted to these, Other shapes may be sufficient.
  • an example of ceramic is given as an integral planar element, a member that distorts and vibrates due to an applied voltage, such as a piezoelectric element, can also be used.
  • the example of 3 ⁇ S has been described as the pulse width, it is not limited to the width of 3 ⁇ S, and the time interval between pulses when generating a plurality of pulses can be set freely.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

The purpose of this focusing-type sound wave therapy device according to the present invention is to generate a single sound wave with use of a planar-shape element for generating an ultrasound wave, and cause the generated sound wave to efficiently focus on a target site. The focusing-type sound wave therapy device according to the present invention is composed of: a therapeutic probe part (2); a device body (3) including a high-voltage pulse generation circuit (10) and an AC step-up circuit (9); a signal cable (4) connecting the therapeutic probe part (2) and the device body (3) to each other; and a power supply cable (7). A sound wave generated in a planar-shape element (1) when the high-voltage pulse generation circuit (10) applies one to tens of high-voltage pulse signals to the planar-shape element (1) within a predetermined time period, is caused to focus on the distal end of a contact portion of the therapeutic probe part (2) by an acoustic lens (43) included in a depth-adjusting gel pad, thereby performing a therapy.

Description

平面形素子を用いた集束式音波治療装置Focused sonotherapy device using planar element
 本発明は、平面形素子振動子にパルス波を印加し、治療対象となる部位にパルス波による音波を集束させて治療を行う平面形素子を用いた集束式音波治療装置に関する。 The present invention relates to a focused sonic therapy apparatus using a planar element that applies a pulse wave to a planar element transducer and focuses a sound wave generated by the pulse wave on a treatment target region to perform treatment.
 本件発明者は、一体形凹面素子を使用した集束式音波治療装置を既に提案している(特許文献1)。図9は、その集束式音波治療装置の構成を示すものである。一体形凹面素子101は、セラミックで構成され、セラミックの凹面側(前面側)111は球面形状となっている。前面側111は音波透過ゲル151によって満たされている。接触部105は焦点の深度が調整できるように取り替えることが可能な構造になっている。一体形凹面素子1による音波の焦点F位置は接触部105の円錐形状の頂部に位置している。前面側111の対角線間の2つの端部それぞれと焦点Fが結ぶ線の角度は略90°になっている。
 接触部105を治療対象部に押しつけた場合、押し付ける力加減で体表面と接触部5の頂部付近が凹み、焦点Fの位置が治療対象部の内部位置に入り込む構造になっている。
The present inventor has already proposed a focused sonic therapy apparatus using an integral concave element (Patent Document 1). FIG. 9 shows the configuration of the focused sonic therapy apparatus. The integrated concave element 101 is made of ceramic, and the concave side (front side) 111 of the ceramic has a spherical shape. The front side 111 is filled with a sound wave transmitting gel 151. The contact portion 105 has a structure that can be replaced so that the depth of focus can be adjusted. The focal point F of the sound wave by the integral concave element 1 is located at the top of the conical shape of the contact part 105. The angle of the line connecting the two ends between the diagonal lines on the front side 111 and the focal point F is approximately 90 °.
When the contact portion 105 is pressed against the treatment target portion, the body surface and the vicinity of the top of the contact portion 5 are recessed by the pressing force, and the position of the focal point F enters the internal position of the treatment target portion.
 一体形凹面素子101の前面側111にはグランド線141が接続され、背面側116には+信号線142がそれぞれ接続されている。+信号線142とグランド線141との間には例えば500V~5KVで3μS幅のパルスが所定時間(例えば、1秒)の間に1個または複数個、印加されるようになっている。
 一体形凹面素子101の前面側および背面側のグランド線141と+信号線142の接続点は一か所であるが、一体形凹面素子101の厚さが6mm程度であって、印加される電圧が高いため、前面側および背面側の間の各位置にかかる電位は中央部分でも周辺付近でもその差は大きくない。したがって、一体形凹面素子101の各位置は、印加電圧に対応する量だけ歪み、前面側111の各位置において前面側垂直方向に音波が発生する。これが焦点Fに集束することとなる。
A ground line 141 is connected to the front side 111 of the integrated concave element 101, and a + signal line 142 is connected to the back side 116. Between the + signal line 142 and the ground line 141, for example, one or a plurality of pulses of 500 μV to 5 KV and a width of 3 μS are applied during a predetermined time (for example, 1 second).
The connecting point between the ground line 141 and the + signal line 142 on the front side and the back side of the integrated concave element 101 is one, but the thickness of the integrated concave element 101 is about 6 mm, and the applied voltage Therefore, the difference in the potential applied to each position between the front side and the back side is not large in the central part and the vicinity. Therefore, each position of the integrated concave element 101 is distorted by an amount corresponding to the applied voltage, and a sound wave is generated in the front side vertical direction at each position on the front side 111. This converges to the focal point F.
 印加する音波は、超音波ではなく単発のパルス波を発生させることにより周波数による減衰を排除し、治療部位に音波を効率良く届けることを可能にしている。
 この集束式音波治療装置は、図9から明らかなように、凹面形素子の直径と凹面の形状によって治療できる焦点の深さが決定され、集束する音波の形状および強度が決まる構造である。そのため、この提案した集束式音波治療器は、後から焦点を調整するなどして焦点の深度や音波の強度を変更することはできない構造である。したがって、焦点Fの深度より深い部位へのより強力な集束音波を届けることを要請された場合、対応することは困難である。
The applied sound wave is not an ultrasonic wave, but a single pulse wave is generated to eliminate attenuation due to frequency, and it is possible to efficiently deliver the sound wave to the treatment site.
As is apparent from FIG. 9, this focused sonic therapy apparatus has a structure in which the depth of the focus that can be treated is determined by the diameter of the concave element and the shape of the concave surface, and the shape and intensity of the focused sound wave are determined. For this reason, the proposed focused sonic therapy device has a structure in which the depth of focus and the intensity of sound waves cannot be changed by adjusting the focus later. Therefore, when it is requested to deliver a stronger focused sound wave to a site deeper than the depth of the focus F, it is difficult to respond.
 また、治療対象の人体は厚みがあり、5cmを超える深さにある臓器が多数存在し、集束式音波治療器はこれらの臓器に対する治療のアプローチも必要となってくる。
 深い部位にある臓器の治療には深い焦点深度の音波治療器が必要であり、焦点深度が深くなると音波の減衰などで、より強い集束音波を発生させなければならない。
 凹面形素子の集束式音波治療装置で焦点深度を深くするには、集束角度を鋭角にするとともに、音波強度を増加させるため、素子の発振面積を大きくし、印加するパルス電圧を上げる必要がある。しかし、一体形凹面素子は曲面の反射面を有することから、その製造が難しく直径100mmを超える素子の大量生産は困難である。実際には一体形凹面素子の焦点深度は5cmが限界となっている。
In addition, the human body to be treated is thick, and there are many organs at a depth exceeding 5 cm, and the focused sonic therapy device also requires a therapeutic approach to these organs.
The treatment of organs at deep sites requires a sonic therapy device with a deep focal depth. When the focal depth increases, a stronger focused acoustic wave must be generated due to attenuation of the acoustic wave.
In order to increase the depth of focus with a concentric sonication device with a concave element, it is necessary to increase the oscillating area of the element and increase the pulse voltage to be applied in order to increase the sound wave intensity while increasing the focal angle. . However, since the integral concave element has a curved reflecting surface, it is difficult to manufacture the element and mass production of elements having a diameter exceeding 100 mm is difficult. Actually, the depth of focus of the integrated concave element is limited to 5 cm.
 なお、凹面型素子の外形を変えることなく集束角度を変えることも考えられるが、焦点深度を深くすると集束音波が弱くなってしまう。また、印加するパルス電圧を上げることも考えられるが、素子の持つ耐電圧を超えると破損するためこれも限界がある。 Although it is conceivable to change the focusing angle without changing the outer shape of the concave element, the focused sound wave becomes weaker when the depth of focus is increased. Although it is conceivable to increase the pulse voltage to be applied, there is a limit to this because it breaks when the breakdown voltage of the element is exceeded.
特許第5557800号公報Japanese Patent No. 5557800
 このように従来の凹面型素子では、治療できる深さや照射できる音波の強度に限界があり、体内の5cmを超える深さの臓器や部位に対して治療を行うことは困難である。
 本発明は、平面形素子を利用することで、より大きな直径の平面形素子と音響レンズを組み合わせることにより、深い部位など、あらゆる臓器を治療できるようにするものである。すなわち、平面形素子の直径を大きくし、より強い音波を発生させることで、深い部位にある臓器や骨などに囲まれた臓器のように大きな減衰が想定される臓器に対しても強い音波を集束させることを可能とする。
Thus, with the conventional concave element, there is a limit to the depth that can be treated and the intensity of sound waves that can be radiated, and it is difficult to treat an organ or site with a depth exceeding 5 cm in the body.
The present invention makes it possible to treat any organ such as a deep site by combining a planar element having a larger diameter and an acoustic lens by utilizing a planar element. In other words, by increasing the diameter of the planar element and generating stronger sound waves, strong sound waves can be generated even for organs that are expected to be greatly attenuated, such as deep organs and organs surrounded by bones. Allows focusing.
 本発明は前述したような状況に鑑みなしたもので、その目的は、超音波を発生させる平面形素子を利用して単発の音波を発生させ、発生させた音波を音響レンズを利用して5cm以上の部位に集束させる構造を有することにより効率的に音波エネルギーを集中させることができる平面形素子を用いた集束式音波治療装置を提供することにある。 The present invention has been made in view of the situation as described above, and an object of the present invention is to generate a single sound wave using a planar element that generates an ultrasonic wave, and to generate the generated sound wave using an acoustic lens. An object of the present invention is to provide a focusing type sonication treatment apparatus using a planar element capable of efficiently concentrating sonic energy by having a structure for focusing on the above site.
 前記目的を達成するために、本発明の請求項1は、1~複数個のパルス状電圧をセラミック素子またはピエゾ素子に印加し、該素子から発生するパルス状の音波を深度調整ゲルパッドに伝播させ焦点位置に集束させることにより、治療対象部分に前記パルス状の音波を到達させる集束式音波治療装置において、前記セラミック素子またはピエゾ素子を円形の平面板形状に形成し、前記平面板の前面に、前記セラミック素子またはピエゾ素子により発生させた単発のパルス状の音波を集束させる音響レンズを組み込んだ円錐状,円錐台形状または台形状の深度調整用のゲルパッドであって、接触部を持つ探触子を配置して構
成し、前記セラミック素子またはピエゾ素子から発生するパルス状の音波を前記セラミック素子またはピエゾ素子の平面板の前面に対し略直角方向に放射させ前記音響レンズにより所定の位置に集束させることを特徴とする。
 本発明の請求項2は、請求項1記載の発明において、前記探触子は、前記平面板の前面に装着可能に構成したことを特徴とする。
 本発明の請求項3は、請求項2記載の発明において、前記装着可能な探触子は、複数個有し、それぞれ組み込まれる音響レンズの集束させる焦点距離は異なるとともに各探触子は音波を加える対象の接触面と前記焦点距離との距離は異なり、音波を加える対象の任意の深さに音波を集束させることを特徴とする。
 本発明の請求項4は、請求項3記載の発明において、前記装着可能な探触子は、音波を、前記平面板の前面から60mm、90mmまたは120mmの位置に集束することを特徴とする。
 本発明の請求項5は、請求項1,2,3または4記載の発明において、前記音響レンズは材質により音波の進行する速度が異なる2部材を組み合わせて構成され、部材間の接触
面は所定の半径の球面または曲面を形成していることを特徴とする。
 本発明の請求項6は、請求項5記載の発明において、前記2部材は、エポキシ樹脂部材およびシリコンゴム部材であることを特徴とする。
 本発明の請求項7は、請求項1,2,3,4,5または6記載の発明において、前記セラミック素子またはピエゾ素子の背面側の一か所に電圧を印加する信号線を前面側の一か所にグランド線を接続するか、または該セラミック素子またはピエゾ素子の前面側の一か所に電圧を印加する信号線を背面側の一か所にグランド線を接続し、前記探触子に印加する単相のパルス状の電圧を発生するパルス電圧発生手段と、前記パルス電圧発生手段に電力を供給する電力供給手段と、を備え、前記1~複数個のパルス状電圧を前記パルス電圧発生手段で所定の時間内に前記セラミック素子またはピエゾ素子に印加し、治療対象に前
記探触子の接触部を接触させて治療を行い、前記パルス状電圧の幅は数μSであり、前記所定の時間内に発生させる1~複数個のパルス状電圧は、1秒間に、1個~数十個のパルス状電圧であり、該パルス状電圧のパルス幅と略同じ幅のパルス波形が深度調整用のゲルパッドを伝搬し治療対象に達することを特徴とする。
In order to achieve the object, claim 1 of the present invention applies one to a plurality of pulsed voltages to a ceramic element or a piezoelectric element, and propagates a pulsed sound wave generated from the element to a depth adjusting gel pad. In the converging sonic therapy device that allows the pulsed sound wave to reach the treatment target portion by focusing at the focal position, the ceramic element or the piezo element is formed into a circular flat plate shape, and the front surface of the flat plate is A conical, frustoconical or trapezoidal depth-adjusting gel pad incorporating an acoustic lens for focusing a single pulsed sound wave generated by the ceramic element or piezoelectric element, and having a contact portion The pulsating sound wave generated from the ceramic element or piezo element is arranged on the plane of the ceramic element or piezo element. Substantially it is emitted in a direction perpendicular to the front of and wherein the focusing in place by the acoustic lens.
According to a second aspect of the present invention, in the first aspect of the present invention, the probe is configured to be attachable to the front surface of the flat plate.
According to a third aspect of the present invention, there is provided a plurality of the mountable probes according to the second aspect of the invention, and the focal lengths of the acoustic lenses to be incorporated are different from each other, and each probe emits a sound wave. The distance between the contact surface to be added and the focal length is different, and the sound wave is focused to an arbitrary depth of the object to which the sound wave is applied.
According to a fourth aspect of the present invention, in the invention according to the third aspect, the mountable probe focuses the sound wave at a position of 60 mm, 90 mm or 120 mm from the front surface of the flat plate.
According to a fifth aspect of the present invention, in the first, second, third, or fourth aspect, the acoustic lens is configured by combining two members having different speeds of sound waves depending on a material, and a contact surface between the members is predetermined. A spherical surface or curved surface having a radius of is formed.
According to a sixth aspect of the present invention, in the fifth aspect, the two members are an epoxy resin member and a silicon rubber member.
According to a seventh aspect of the present invention, in the invention according to the first, second, third, fourth, fifth or sixth aspect, a signal line for applying a voltage to one place on the back side of the ceramic element or piezo element is provided on the front side. The probe is connected to a ground line at one place, or a signal line for applying a voltage to one place on the front side of the ceramic element or piezoelectric element, and a ground line to one place on the rear side. Pulse voltage generation means for generating a single-phase pulse voltage to be applied to the power supply, and power supply means for supplying power to the pulse voltage generation means, wherein the one or more pulse voltages are supplied to the pulse voltage. Applying to the ceramic element or piezo element within a predetermined time by the generating means to perform the treatment by bringing the contact portion of the probe into contact with the treatment target, the width of the pulse voltage is several μS, the predetermined voltage 1 to occur within the time of Several pulse-like voltages are 1 to several tens of pulse-like voltages per second, and a pulse waveform having a width substantially the same as the pulse width of the pulse-like voltage propagates through the gel pad for depth adjustment to be treated. It is characterized by reaching.
 前述した構成により、以下に示すような利点を有する。
 本発明は、平面形の素子と音響レンズを組み合わせて、より深い部位に対して音波の強度を強くして治療することが可能となる。平面形素子は製造方法が比較的容易で、直径100mmを超える大きさの素子の量産が可能であり、安価に製造することができる。なお、直径100mmの凹面型素子を作ることもできるが、年間に製造できる個数は限られ、凹面型素子の単価は高くなる。
 素子の直径を大きくし、素子の発信する面積を大きくすることにより発生する音波が強くなり、印加するパルス電圧が同じであっても、より大きな音波を発生させることが可能となる。強力な音波を発生させることにより、集束角度を鋭角にして焦点深度を深くしても、焦点に強力な音波を届けることができる。
 平面形素子で発生させた音波は、音響レンズを組み込んだ円錐状又は円錐台形状又は台形状の深度調整用ゲルパッドで集束させ、深度調整用ゲルパッドの種類を多数用意することにより、治療対象によって深度や音波の強度を容易に選択することが可能になる。
The configuration described above has the following advantages.
The present invention makes it possible to treat a deeper site by increasing the intensity of sound waves by combining a planar element and an acoustic lens. A planar element is relatively easy to manufacture, allows mass production of elements having a diameter exceeding 100 mm, and can be manufactured at low cost. Although a concave element having a diameter of 100 mm can also be made, the number that can be manufactured per year is limited, and the unit price of the concave element becomes high.
By increasing the diameter of the element and increasing the area transmitted by the element, the sound wave generated becomes stronger, and it is possible to generate a larger sound wave even if the applied pulse voltage is the same. By generating a strong sound wave, a strong sound wave can be delivered to the focal point even if the focal angle is set to an acute angle and the depth of focus is increased.
The sound wave generated by the planar element is focused by a cone-shaped, truncated cone-shaped or trapezoidal depth-adjusting gel pad incorporating an acoustic lens, and by preparing many types of depth-adjusting gel pads, the depth depends on the treatment target. And the intensity of sound waves can be easily selected.
本発明による平面形素子を用いた集束式音波治療装置の探触子付近の基本的構成を説明するための図である。It is a figure for demonstrating the fundamental structure of the probe vicinity of the focusing-type sound wave therapy apparatus using the planar element by this invention. 本発明による平面形素子を用いた集束式音波治療装置に用いる音響レンズの音波集束原理を説明するための概念図である。It is a conceptual diagram for demonstrating the sound-wave focusing principle of the acoustic lens used for the focusing-type sound wave therapy apparatus using the planar element by this invention. 集束式音波治療装置に用いる音響レンズの性能を測定する模型を示す図である。It is a figure which shows the model which measures the performance of the acoustic lens used for a focusing type | formula sonication apparatus. 図2Bの模型で音波の集束形態を示すグラフを説明するための図である。It is a figure for demonstrating the graph which shows the convergence form of a sound wave with the model of FIG. 2B. 図2Bの模型における伝搬距離と振幅の関係を示すグラフの概念図である。It is a conceptual diagram of the graph which shows the relationship between the propagation distance and amplitude in the model of FIG. 2B. 本発明による平面形素子を用いた集束式音波治療装置の実施の形態を示す概略図である。1 is a schematic view showing an embodiment of a focused sonic therapy apparatus using a planar element according to the present invention. 平面形素子に印加されるパルス電圧と発生する音波の波形の関係を示す波形図である。It is a wave form diagram which shows the relationship between the pulse voltage applied to a planar element, and the waveform of the sound wave to generate | occur | produce. 図3の装置本体の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the apparatus main body of FIG. 本発明による平面形素子を用いた集束式音波治療装置の他の実施の形態を示す図で、簡易形集束式音波治療機の例を示す図である。It is a figure which shows other embodiment of the focusing type | formula sonication apparatus using the planar element by this invention, and is a figure which shows the example of a simple focusing type | formula sonication apparatus. 平面形素子を用いた集束式音波治療装置の探触子部の詳細を示す図である。It is a figure which shows the detail of the probe part of the focusing type | formula sonication apparatus using a planar element. 交換可能な、音響レンズ入りの深度調整ゲルパッドの一例を示す図である。It is a figure which shows an example of the exchangeable depth adjustment gel pad containing an acoustic lens. 従来の集束式音波治療装置の構成を説明するための図である。It is a figure for demonstrating the structure of the conventional focusing type | formula sonication apparatus.
 以下、図面を参照して本発明の実施の形態を詳しく説明する。
 図1は、本発明による平面形素子を用いた集束式音波治療装置の探触子付近の基本的構成を説明するための図であり、(a)は探触子部の断面図、(b)は平面形素子の正面図である。
 平面形素子1は、例えばセラミックで構成され、セラミック前面側11には音響レンズ43が組み込まれた、音波透過ゲル51により形成されたゲルパッドが配置されている。
接触部5を前面に有するゲルパッドは焦点の深度が調整できるように取り替えることが可能な構造になっている。平面形素子1から出力された音波は、ゲルパッド内部にある音響レンズ43によって焦点Fに集束する。接触部5を治療対象部に押しつけた場合、押し付ける力加減で体表面と接触部5の頂部付近が凹み、焦点Fの位置が治療対象部の内部位置に入り込む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining a basic configuration in the vicinity of a probe of a focused sonic therapy apparatus using a planar element according to the present invention, wherein (a) is a cross-sectional view of a probe portion; ) Is a front view of a planar element.
The planar element 1 is made of, for example, ceramic, and a gel pad formed of a sound wave transmission gel 51 in which an acoustic lens 43 is incorporated is disposed on the ceramic front side 11.
The gel pad having the contact portion 5 on the front surface has a structure that can be replaced so that the depth of focus can be adjusted. The sound wave output from the planar element 1 is focused on the focal point F by the acoustic lens 43 inside the gel pad. When the contact part 5 is pressed against the treatment target part, the body surface and the vicinity of the top of the contact part 5 are recessed by the pressing force, and the position of the focal point F enters the internal position of the treatment target part.
 平面形素子1の前面側11にはグランド線41が接続され、背面側16には+信号線42がそれぞれ接続されている。+信号線42とグランド線41との間には例えば500V~5KVで3μS幅のパルスが所定時間(例えば、1秒)の間に1個または複数個、印加されるようになっている。
 この平面形素子1の前面および背面は全面が銀電極で覆われ、グランド線41と+信号線42の接続点は一か所であるが、平面形素子1の厚さが6mm程度であって、印加される電圧が高いため、前面側および背面側の間の各位置にかかる電位は中央部分でも周辺付近でもその差は大きくない。したがって、平面形素子1の各位置は、印加電圧に対応する量だけ歪み、前面側11の各位置において前面側垂直方向に音波が発生する。これは音響レンズ43により焦点Fに集束することとなる。
A ground line 41 is connected to the front side 11 of the planar element 1, and a + signal line 42 is connected to the back side 16. Between the + signal line 42 and the ground line 41, for example, one or a plurality of pulses of 500 μV to 5 KV and a width of 3 μS are applied during a predetermined time (for example, 1 second).
The entire surface of the planar element 1 is covered with silver electrodes, and there is only one connection point between the ground line 41 and the + signal line 42. However, the thickness of the planar element 1 is about 6 mm. Since the applied voltage is high, the difference in potential applied to each position between the front side and the back side is not large in the central part and in the vicinity of the periphery. Accordingly, each position of the planar element 1 is distorted by an amount corresponding to the applied voltage, and sound waves are generated in the front side vertical direction at each position on the front side 11. This is focused on the focal point F by the acoustic lens 43.
 図2Aは、本発明による平面形素子を用いた集束式音波治療装置に用いる音響レンズの音波集束原理を説明するための概念図である。
 平面形素子1の前面側から出る各音波群は進む方向に向けた実線で示してある。例えば、平面形素子1の地点1aから出射した音波は半円を描くように広がり進行する。平面形素子1の各地点1aからの音波は進行しながら合成されていくことになる。音響レンズ43は屈折レンズを物理的に表現したと同様な凸レンズの表記で示されている。すなわち、音波の進行に対し音響レンズ43内では、音波を集束する方向になるような作用が与えられる。音響レンズ43は、図1で示すように音波の進行速度が異なる樹脂素材(シリコンゴム46とエポキシ樹脂45)を球面や曲面で接触させて構成され、組み合わせた樹脂素
材により光の屈折作用と同様な効果が与えられる。これら樹脂素材間の音波の速度差および接触球面の曲率により任意の位置に音波の焦点Fを形成することができる。
FIG. 2A is a conceptual diagram for explaining a sound wave focusing principle of an acoustic lens used in a focused sound wave therapy apparatus using a planar element according to the present invention.
Each sound wave group emerging from the front side of the planar element 1 is indicated by a solid line directed in the traveling direction. For example, the sound wave emitted from the point 1a of the planar element 1 spreads and progresses so as to draw a semicircle. The sound wave from each point 1a of the planar element 1 is synthesized while traveling. The acoustic lens 43 is represented by a notation of a convex lens similar to a physical representation of a refractive lens. That is, in the acoustic lens 43, an action is given so as to focus the sound wave against the progress of the sound wave. As shown in FIG. 1, the acoustic lens 43 is formed by contacting resin materials (silicon rubber 46 and epoxy resin 45) having different sound wave propagation speeds on a spherical surface or a curved surface, and is similar to the light refraction action by the combined resin materials. Effects are given. The focal point F of the sound wave can be formed at an arbitrary position by the difference in the speed of the sound wave between the resin materials and the curvature of the contact spherical surface.
 図2Bは、集束式音波治療装置に用いる音響レンズの性能を測定する模型を示す図である。この模型は振動子幅が100mmで、音速が2,600m/sのエポシキ樹脂45と音速が1,000m/sのシリコンゴム46との間の曲率半径は108mmである。シリコンゴム46の音波が出射する側は水47の媒体である。
 このような模型の音波の変位の状態を図2Cに示す。上側のグラフは音波が音響レンズ通過直後を示すものである。グラフ中の音波の存在は鎖線で示されている。音響レンズ通過直後の音波は、Y軸40mm,X軸10mm,100mm付近の音響レンズの周辺部分に集中していることが示されている。下側のグラフは音波が焦点距離付近に達した状態を示すものである。Y軸120mm,X軸50mmの付近で音波が集中し、この部分が焦点距離F点となっている。
 図2Dは、図2Bの模型における伝搬距離と振幅の関係を示すグラフである。焦点距離101mmの音響レンズにおいて伝搬距離100mm付近が最大の音波振幅(0,25)となっており、その位置が焦点であることが分かる。
FIG. 2B is a diagram illustrating a model for measuring the performance of an acoustic lens used in the focused sonic therapy apparatus. This model has a vibrator width of 100 mm, a radius of curvature of 108 mm between the epoxy resin 45 having a sound velocity of 2,600 m / s and the silicon rubber 46 having a sound velocity of 1,000 m / s. The side of the silicon rubber 46 from which sound waves are emitted is a medium of water 47.
The state of sound wave displacement of such a model is shown in FIG. 2C. The upper graph shows the sound wave immediately after passing through the acoustic lens. The presence of sound waves in the graph is indicated by a chain line. It is shown that the sound wave immediately after passing through the acoustic lens is concentrated in the peripheral portion of the acoustic lens near the Y axis 40 mm, the X axis 10 mm, and 100 mm. The lower graph shows a state where the sound wave has reached the vicinity of the focal length. Sound waves concentrate in the vicinity of the Y axis 120 mm and the X axis 50 mm, and this portion is the focal length F point.
FIG. 2D is a graph showing the relationship between the propagation distance and the amplitude in the model of FIG. 2B. In the acoustic lens having a focal length of 101 mm, the vicinity of the propagation distance of 100 mm has the maximum sound wave amplitude (0, 25), and it can be seen that the position is the focal point.
 図3は、本発明による平面形素子を用いた集束式音波治療装置の実施の形態を示す概略図である。
 治療用探触子部2,高圧パルス発生回路10および交流昇圧回路9を含む装置本体3,治療用探触子部2と装置本体3を接続する信号ケーブル4ならびに電源ケーブル7により構成されている。治療用探触子部2は、平面形素子1,音響レンズ43,接触部5,グランド線41および+信号線42の接続構造を含む。交流昇圧回路9は電源ケーブル7より入力するAC100Vをトランスやインバータにより昇圧する回路である。
FIG. 3 is a schematic view showing an embodiment of a focused sonic therapy apparatus using a planar element according to the present invention.
It comprises a treatment probe section 2, an apparatus main body including a high voltage pulse generation circuit 10 and an AC boost circuit 9, a signal cable 4 connecting the treatment probe section 2 and the apparatus main body 3, and a power cable 7. . The therapeutic probe unit 2 includes a connection structure of a planar element 1, an acoustic lens 43, a contact unit 5, a ground line 41, and a + signal line 42. The AC booster circuit 9 is a circuit that boosts AC100V input from the power cable 7 by a transformer or an inverter.
 高圧パルス発生回路10は、交流昇圧回路9によって昇圧された電圧を1秒間に1個または複数個(例えば、2~40個)のパルスを発生させるもので、パルス幅は例えば3μSである。出力される電圧値は500V~5KVであり、これらは電圧調整ノブ14により調整することができる。また、発生するパルスの数も回数調整ノブ13で調整可能である。図5に装置本体3の外観図が示されている。図5において、調整されたパルス繰り返し回数および調整された電圧値は表示部15に表示される。音波エネルギーの強さは平面が素子1にかける電圧の強さ(回数も含め)により調整することができる。
 集束式音波治療装置を使用する場合、装置本体3の電源スイッチ12をオンし、必要に応じ発生パルスの数および印加電圧値を調整した後に、治療用探触子部2を治療対象部に当てることとなる。
The high-voltage pulse generation circuit 10 generates one or a plurality of (for example, 2 to 40) pulses per second from the voltage boosted by the AC boost circuit 9, and has a pulse width of, for example, 3 μS. The output voltage value is 500 V to 5 KV, and these can be adjusted by the voltage adjustment knob 14. Further, the number of generated pulses can also be adjusted by the number adjusting knob 13. FIG. 5 shows an external view of the apparatus main body 3. In FIG. 5, the adjusted number of pulse repetitions and the adjusted voltage value are displayed on the display unit 15. The intensity of the sonic energy can be adjusted by the intensity (including the number of times) of the voltage applied to the element 1 by the plane.
In the case of using the focused sonic therapy apparatus, the power switch 12 of the apparatus main body 3 is turned on, the number of generated pulses and the applied voltage value are adjusted as necessary, and then the treatment probe section 2 is applied to the treatment target section. It will be.
 図4は、平面形素子に印加されるパルス電圧と発生する音波の波形の関係を示す波形図である。
 平面形素子1に3μS幅で4KVの1個のパルス1Aが印加されると、平面形素子1には、所定時間遅れて音波1A’が発生する。次の1秒も同じような一個のパルス1Bが発生して対応の音波1B’が発生し、このような繰り返しのパルス発生となる。一点鎖線で示したパルスnAは2個以上発生させる場合のパルスであり、同様に音波nA’が発生し、同様にして繰り返して発生する。このように1秒間に1~数十回のパルスを印加して音波を発生する構成であるので、焦点位置へ集束される音波エネルギーは連続波に比較し、制御しやすく、小形で簡易な装置を作ることができる。
FIG. 4 is a waveform diagram showing the relationship between the pulse voltage applied to the planar element and the waveform of the generated sound wave.
When one pulse 1A having a width of 3 μS and 4 KV is applied to the planar element 1, a sound wave 1A ′ is generated in the planar element 1 with a predetermined time delay. In the next 1 second, a similar pulse 1B is generated to generate a corresponding sound wave 1B ', resulting in such repeated pulse generation. A pulse nA indicated by a one-dot chain line is a pulse when two or more pulses are generated. Similarly, a sound wave nA ′ is generated and repeatedly generated in the same manner. As described above, the sound wave is generated by applying 1 to several tens of pulses per second, so that the sound wave energy focused on the focal point is easier to control than the continuous wave, and is a small and simple device. Can be made.
 図6は、本発明による平面形素子を用いた集束式音波治療装置の他の実施の形態を示す図で、アンチエイジング用に適したものである。
 この実施形態の図3の集束式音波治療装置と異なる点は、治療用探触子部筐体20に高圧パルス発生回路24,交流昇圧回路23を組み込み、治療用探触子部筐体20に直接電源ケーブル26が接続されていることである。高圧パルス発生回路24の信号ケーブル25は治療用探触子21に接続されている。201の位置に、電源スイッチ,パルス繰り返し回数調整ノブおよび印加信号電圧調整ノブが設けられている。
FIG. 6 is a diagram showing another embodiment of a focused sonic therapy apparatus using a planar element according to the present invention, which is suitable for anti-aging.
3 is different from the focused sound wave therapy apparatus of FIG. 3 in this embodiment in that a high-voltage pulse generation circuit 24 and an AC booster circuit 23 are incorporated in the treatment probe section housing 20 and the treatment probe section housing 20 is incorporated. That is, the power cable 26 is directly connected. A signal cable 25 of the high-voltage pulse generation circuit 24 is connected to the treatment probe 21. A power switch, a pulse repetition number adjustment knob, and an applied signal voltage adjustment knob are provided at the position 201.
 図7は、平面形素子を用いた集束式音波治療装置の探触子部の詳細を示す図である。
 治療用探触子部筐体20は、平面形素子31を収容する探触子収容部37に一体に把持部36が形成されて構成されている。把持部36は、内部に高圧パルス発生回路24および交流昇圧回路23が収容され、家庭用コンセントに接続する電源ケーブル26が接続されている。
 簡易形集束式音波治療機の見た目の形状は家庭内で使用されるマッサージ器とほとんど変わらない。
FIG. 7 is a diagram showing details of the probe unit of the focused sonic therapy apparatus using a planar element.
The treatment probe housing 20 is configured by forming a grip portion 36 integrally with a probe housing 37 that houses the planar element 31. The gripping portion 36 accommodates the high-voltage pulse generation circuit 24 and the AC booster circuit 23 therein, and is connected to a power cable 26 connected to a household outlet.
The appearance of the simple focused sonication device is almost the same as a massager used in the home.
 高圧パルス発生回路24からのグランド線241およびグランド線35は端子40にハンダ付け接続され、グランド線35は振動子ホルダ32に形成されている孔を通って平面形素子31の前面側の端部に接続されている。高圧パルス発生回路24からの+信号線34は同じく振動子ホルダ32に形成されている孔を通って平面形素子31の背面側に接続されている。 The ground line 241 and the ground line 35 from the high-voltage pulse generating circuit 24 are soldered to the terminal 40, and the ground line 35 passes through a hole formed in the vibrator holder 32 and is an end on the front side of the planar element 31. It is connected to the. The + signal line 34 from the high voltage pulse generation circuit 24 is connected to the back side of the planar element 31 through a hole formed in the vibrator holder 32.
 探触子収容部37の上部には音響レンズ43を内蔵した円錐台形状のゲルパッド27が設けられ、その頂部付近が音響レンズ43の焦点Fの位置となる。平面形素子31は探触子収容部37内に固定された振動ホルダ32に支持されている。平面形素子31の前面側は、ゲルパッド27の音響レンズ43側に対面している。深度調整ゲルパッド27はシート28の上に配置されている。深度調整ゲルパッド27は深度調整ゲルパッド押さえ33がフランジ部271を押さえることにより探触子収容部37に取り付けられている。深度調整ゲルパッド押さえ33は、探触子収容部37に着脱可能に構成され、深度調整ゲルパ
ッド27の交換が可能である。
A frustoconical gel pad 27 incorporating an acoustic lens 43 is provided on the upper part of the probe accommodating portion 37, and the vicinity of the apex is the position of the focal point F of the acoustic lens 43. The planar element 31 is supported by a vibration holder 32 fixed in the probe accommodating portion 37. The front side of the planar element 31 faces the acoustic lens 43 side of the gel pad 27. The depth adjusting gel pad 27 is disposed on the sheet 28. The depth adjusting gel pad 27 is attached to the probe accommodating portion 37 by the depth adjusting gel pad pressing 33 pressing the flange portion 271. The depth adjustment gel pad holder 33 is configured to be attachable to and detachable from the probe accommodating portion 37, and the depth adjustment gel pad 27 can be replaced.
 図8は、交換可能な、音響レンズ入りの深度調整ゲルパッドの一例を示す図である。交換できる深度調整ゲルパッドは複数種類用意されている。
 (a)は、焦点距離Fが深度調整ゲルパッド下面から120mmの位置にあり、深度調整ゲルパッドの音響レンズの上面から100mmの位置にあるものである。したがって、深度調整ゲルパッドの上面を例えば、治療対象である体の皮膚面に当てれば、100mmの深さの部位に音波を集中させることができる。これは比較的深い部位を治療することが可能になる。
(b)は、焦点距離Fが深度調整ゲルパッド下面から90mmの位置にあり、深度調整ゲルパッドの音響レンズの上面から70mmの位置にあるものである。したがって、深度調整ゲルパッドの上面を例えば、治療対象である体の皮膚面に当てれば、70mmの深さの部位に音波を集中させることができる。
 また、(c)は、焦点距離Fが深度調整ゲルパッド下面から60mmの位置にあり、深度調整ゲルパッドの音響レンズの上面から40mmの位置にあるものである。したがって、深度調整ゲルパッドの上面を例えば、治療対象である体の皮膚面に当てれば40mmの深さの部位に音波を集中させることができる。
 このように簡単に深度調整ゲルパッドを装着できる構造であるので、治療対象がどんな深さでも容易に対応できる。
FIG. 8 is a diagram showing an example of a replaceable depth adjusting gel pad with an acoustic lens. Multiple types of adjustable depth gel pads are available.
(A) is the one where the focal length F is at a position of 120 mm from the lower surface of the depth adjustment gel pad and at a position of 100 mm from the upper surface of the acoustic lens of the depth adjustment gel pad. Therefore, if the upper surface of the depth adjusting gel pad is applied to, for example, the skin surface of the body to be treated, the sound wave can be concentrated on a portion having a depth of 100 mm. This makes it possible to treat relatively deep sites.
In (b), the focal length F is 90 mm from the bottom surface of the depth adjusting gel pad, and 70 mm from the top surface of the acoustic lens of the depth adjusting gel pad. Therefore, if the upper surface of the depth adjustment gel pad is applied to the skin surface of the body to be treated, for example, the sound wave can be concentrated on a portion having a depth of 70 mm.
(C) shows that the focal length F is 60 mm from the bottom surface of the depth adjusting gel pad and 40 mm from the top surface of the acoustic lens of the depth adjusting gel pad. Therefore, if the upper surface of the depth adjusting gel pad is applied to, for example, the skin surface of the body to be treated, the sound wave can be concentrated on a portion having a depth of 40 mm.
Since the depth adjustment gel pad can be easily attached in this way, the treatment target can be easily handled at any depth.
 以上の実施の形態は、種々の変形を施すことが可能である。音響レンズが組み込まれている深度調整ゲルパッドは円錐台形状の例を示したが、台形状や円錐状にすることも可能である。また、音響レンズの構成として、シリコンゴムとエポシキ樹脂の組み合わせの例を示したが、音速速度が異なる他の樹脂素材を用いることができる。また、平面形素子の前面側および背面側の接続点をそれぞれ1つの例について説明したが、複数個所接続しても治療器としての性能が変わることはない。さらに、前面側および背面側の一部に導電パターンを形成し、導電パターンに接続する構成にすることもできる。 The above embodiment can be variously modified. The depth adjusting gel pad in which the acoustic lens is incorporated has an example of a truncated cone shape, but may be trapezoidal or conical. Moreover, although the example of the combination of a silicone rubber and epoxy resin was shown as a structure of an acoustic lens, the other resin raw material from which a sound speed differs can be used. In addition, although one example has been described for each of the connection points on the front side and the back side of the planar element, the performance as a treatment device does not change even if a plurality of connection points are connected. Further, a conductive pattern may be formed on a part of the front side and the back side, and connected to the conductive pattern.
 さらには集束式音波治療装置の形状を図3や図7とする例を説明したが、装置の形状はこれらに限るものではなく、他の形状であってもよい。一体形平面形素子としてセラミックの例を上げたが、ピエゾ素子など印加電圧により歪みを起こし振動する部材を用いることもできる。パルス幅として3μSの例を説明したが、3μSの幅に限定するものではなく、さらに複数のパルスを発生する場合のパルス間の時間間隔も自由に設定することができる。 Furthermore, although the example which makes the shape of a focusing type | formula sonication apparatus into FIG.3 and FIG.7 was demonstrated, the shape of an apparatus is not restricted to these, Other shapes may be sufficient. Although an example of ceramic is given as an integral planar element, a member that distorts and vibrates due to an applied voltage, such as a piezoelectric element, can also be used. Although the example of 3 μS has been described as the pulse width, it is not limited to the width of 3 μS, and the time interval between pulses when generating a plurality of pulses can be set freely.
 治療部位に音波をあてて治療を行う平面形素子を用いた集束式音波治療装置である。 This is a focused sonic therapy device that uses a planar element to apply treatment to a treatment site by applying sound waves.
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。 All the contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of this application are incorporated herein.
 1,31  平面形素子
 2  治療用探触子部
 3  装置本体
 4,25  信号ケーブル
 5  接触部
 7,26  電源ケーブル
 9,23  交流昇圧回路
 11  前面側
 10,24  高圧パルス発生回路
 12  電源スイッチ
 13  パルス繰り返し回数調整ノブ
 14  印加信号電圧調整ノブ
 15  表示部
 20  治療用探触子部筐体
 21  治療用探触子
 27  深度調整ゲルパッド
 28  シート
 30  エポキシ樹脂
 32  振動子ホルダ
 34  +信号線
 35  グランド線
 36  把持部
 41  グランド線
 42  信号線
 43  音響レンズ
 44  曲率半径
 45  エポシキ樹脂
 46  シリコンゴム
 47  水
DESCRIPTION OF SYMBOLS 1,31 Planar element 2 Therapeutic probe part 3 Apparatus main body 4,25 Signal cable 5 Contact part 7,26 Power supply cable 9,23 AC booster circuit 11 Front side 10,24 High voltage pulse generation circuit 12 Power switch 13 Pulse Repeating frequency adjustment knob 14 Applied signal voltage adjustment knob 15 Display unit 20 Treatment probe unit housing 21 Treatment probe 27 Depth adjustment gel pad 28 Sheet 30 Epoxy resin 32 Vibrator holder 34 + Signal line 35 Ground line 36 Gripping Part 41 Ground line 42 Signal line 43 Acoustic lens 44 Radius of curvature 45 Epoxy resin 46 Silicon rubber 47 Water

Claims (7)

  1.  1~複数個のパルス状電圧をセラミック素子またはピエゾ素子に印加し、該素子から発生するパルス状の音波を深度調整ゲルパッドに伝播させ焦点位置に集束させることにより、治療対象部分に前記パルス状の音波を到達させる集束式音波治療装置において、
     前記セラミック素子またはピエゾ素子を円形の平面板形状に形成し、前記平面板の前面に、前記セラミック素子またはピエゾ素子により発生させた単発のパルス状の音波を集束させる音響レンズを組み込んだ円錐状,円錐台形状または台形状の深度調整用のゲルパッドであって、接触部を持つ探触子を配置して構成し、
     前記セラミック素子またはピエゾ素子から発生するパルス状の音波を前記セラミック素子またはピエゾ素子の平面板の前面に対し略直角方向に放射させ前記音響レンズにより所定の位置に集束させることを特徴とする平面形素子を用いた集束式音波治療装置。
    One or a plurality of pulsed voltages are applied to a ceramic element or a piezoelectric element, and a pulsed sound wave generated from the element is propagated to a depth adjusting gel pad to be focused at a focal position, whereby the pulsed voltage is applied to a treatment target portion. In a focused sonic therapy device that allows sound waves to reach,
    The ceramic element or the piezoelectric element is formed into a circular plane plate shape, and a conical shape incorporating an acoustic lens for focusing a single pulsed sound wave generated by the ceramic element or the piezoelectric element on the front surface of the plane plate, It is a frustoconical or trapezoidal depth-adjustable gel pad, which is configured by arranging a probe having a contact part,
    A planar shape characterized in that a pulsed sound wave generated from the ceramic element or the piezoelectric element is emitted in a direction substantially perpendicular to the front surface of the plane plate of the ceramic element or the piezoelectric element and focused at a predetermined position by the acoustic lens. Focused sonic therapy device using elements.
  2.  前記探触子は、前記平面板の前面に装着可能に構成したことを特徴とする請求項1記載の平面形素子を用いた集束式音波治療装置。 2. The focused sonic therapy apparatus using a planar element according to claim 1, wherein the probe is configured to be attachable to a front surface of the planar plate.
  3.  前記装着可能な探触子は、複数個有し、それぞれ組み込まれる音響レンズの集束させる焦点距離は異なるとともに各探触子は音波を加える対象の接触面と前記焦点距離との距離は異なり、
     音波を加える対象の任意の深さに音波を集束させることを特徴とする請求項2記載の平面形素子を用いた集束式音波治療装置。
    There are a plurality of probes that can be mounted, and the focal lengths of the acoustic lenses incorporated therein are different from each other, and the distance between the contact surface to which the sound wave is applied and the focal length of each probe is different.
    3. A focused sonic therapy apparatus using a planar element according to claim 2, wherein the sonic wave is focused to an arbitrary depth of a target to which the sonic wave is applied.
  4.  前記装着可能な探触子は、音波を、前記平面板の前面から60mm、90mmまたは120mmの位置に集束することを特徴とする請求項3記載の平面形素子を用いた集束式音波治療装置。 4. The focused sonic therapy apparatus using a planar element according to claim 3, wherein the mountable probe focuses a sound wave at a position of 60 mm, 90 mm or 120 mm from the front surface of the plane plate.
  5.  前記音響レンズは材質により音波の進行する速度が異なる2部材を組み合わせて構成され、部材間の接触面は所定の半径の球面または曲面を形成していることを特徴とする請求項1,2,3または4記載の平面形素子を用いた集束式音波治療装置。 The acoustic lens is configured by combining two members having different speeds of sound waves depending on a material, and a contact surface between the members forms a spherical surface or a curved surface having a predetermined radius. A focused sonic therapy apparatus using the planar element according to 3 or 4.
  6.  前記2部材は、エポキシ樹脂部材およびシリコンゴム部材であることを特徴とする請求項5記載の平面形素子を用いた集束式音波治療装置。 6. The focused sonic therapy apparatus using a planar element according to claim 5, wherein the two members are an epoxy resin member and a silicon rubber member.
  7.  前記セラミック素子またはピエゾ素子の背面側の一か所に電圧を印加する信号線を前面側の一か所にグランド線を接続するか、または該セラミック素子またはピエゾ素子の前面側の一か所に電圧を印加する信号線を背面側の一か所にグランド線を接続し、前記探触子に印加する単相のパルス状の電圧を発生するパルス電圧発生手段と、前記パルス電圧発生手段に電力を供給する電力供給手段と、を備え、
     前記1~複数個のパルス状電圧を前記パルス電圧発生手段で所定の時間内に前記セラミック素子またはピエゾ素子に印加し、治療対象に前記探触子の接触部を接触させて治療を行い、
     前記パルス状電圧の幅は数μSであり、
     前記所定の時間内に発生させる1~複数個のパルス状電圧は、1秒間に、1個~数十個のパルス状電圧であり、該パルス状電圧のパルス幅と略同じ幅のパルス波形が深度調整用のゲルパッドを伝搬し治療対象に達することを特徴とする請求項1,2,3,4,5または6記載の平面形素子を用いた集束式音波治療装置。
    A signal line for applying a voltage to one place on the back side of the ceramic element or piezo element is connected to a ground line in one place on the front side, or one place on the front side of the ceramic element or piezo element. A signal line for applying a voltage is connected to a ground line at one location on the back side, pulse voltage generating means for generating a single-phase pulse voltage to be applied to the probe, and power to the pulse voltage generating means Power supply means for supplying
    Applying the one or more pulsed voltages to the ceramic element or piezo element within a predetermined time by the pulse voltage generating means, and bringing the contact portion of the probe into contact with a treatment target to perform treatment,
    The width of the pulse voltage is several μS,
    The one or more pulsed voltages generated within the predetermined time are one to several tens of pulsed voltages per second, and a pulse waveform having a width substantially the same as the pulse width of the pulsed voltage. 7. A focused sonic therapy apparatus using a planar element according to claim 1, which propagates through a gel pad for depth adjustment and reaches a treatment target.
PCT/JP2019/004671 2018-03-01 2019-02-08 Focusing-type sound wave therapy device using planar-shape element WO2019167592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-000733U 2018-03-01
JP2018000733U JP3216192U (en) 2018-03-01 2018-03-01 Focused sonotherapy device using planar element

Publications (1)

Publication Number Publication Date
WO2019167592A1 true WO2019167592A1 (en) 2019-09-06

Family

ID=62143633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004671 WO2019167592A1 (en) 2018-03-01 2019-02-08 Focusing-type sound wave therapy device using planar-shape element

Country Status (2)

Country Link
JP (1) JP3216192U (en)
WO (1) WO2019167592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840829A (en) * 2020-07-21 2020-10-30 无锡迈普科技有限公司 Multilayer lens focusing ultrasonic probe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199857A1 (en) * 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
US20080156577A1 (en) * 2006-10-24 2008-07-03 Dennis Raymond Dietz Ultrasonic transducer system
WO2009131028A1 (en) * 2008-04-25 2009-10-29 株式会社 日立メディコ Ultrasonic diagnostic apparatus
JP2010527644A (en) * 2007-05-07 2010-08-19 ガイデッド セラピー システムズ, エル.エル.シー. Method and system for coupling and focusing acoustic energy using a coupler member
US20120029393A1 (en) * 2010-07-30 2012-02-02 General Electric Company Compact ultrasound transducer assembly and methods of making and using the same
JP5557800B2 (en) * 2011-05-24 2014-07-23 有限会社ユーマンネットワーク Focused sonic therapy device
US20150245822A1 (en) * 2014-02-28 2015-09-03 Samsung Medison Co., Ltd. Gel patch for probe and ultrasonic diagnosis apparatus including the same
JP2016515901A (en) * 2013-03-28 2016-06-02 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション Focused ultrasound equipment and method of use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199857A1 (en) * 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
US20080156577A1 (en) * 2006-10-24 2008-07-03 Dennis Raymond Dietz Ultrasonic transducer system
JP2010527644A (en) * 2007-05-07 2010-08-19 ガイデッド セラピー システムズ, エル.エル.シー. Method and system for coupling and focusing acoustic energy using a coupler member
WO2009131028A1 (en) * 2008-04-25 2009-10-29 株式会社 日立メディコ Ultrasonic diagnostic apparatus
US20120029393A1 (en) * 2010-07-30 2012-02-02 General Electric Company Compact ultrasound transducer assembly and methods of making and using the same
JP5557800B2 (en) * 2011-05-24 2014-07-23 有限会社ユーマンネットワーク Focused sonic therapy device
JP2016515901A (en) * 2013-03-28 2016-06-02 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション Focused ultrasound equipment and method of use
US20150245822A1 (en) * 2014-02-28 2015-09-03 Samsung Medison Co., Ltd. Gel patch for probe and ultrasonic diagnosis apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840829A (en) * 2020-07-21 2020-10-30 无锡迈普科技有限公司 Multilayer lens focusing ultrasonic probe

Also Published As

Publication number Publication date
JP3216192U (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US9555267B2 (en) Direct contact shockwave transducer
RU2201169C2 (en) Ultrasonic device for carrying out neurosurgical treatment
JP6078343B2 (en) Apparatus and system for generating high frequency shock waves and method of use
KR100904812B1 (en) An apparatus for noninvasively applying an ultrasound excitation signal
KR100991846B1 (en) Shock wave and ultrasound wave integrated therapy device
KR20180004727A (en) System and method for improved control of ultrasound therapy
CN109589132A (en) The capacitive micromachined ultrasound transducer array of adjustable focal length based on flexible substrate
WO1993019705A1 (en) Apparatus and method for acoustic heat generation and hyperthermia
JP2018538071A (en) Apparatus and method for generating a holographic ultrasonic field in an object
JP5557800B2 (en) Focused sonic therapy device
JP3216192U (en) Focused sonotherapy device using planar element
Iwamoto et al. Focused ultrasound for tactile feeling display
Tsai et al. Skull impact on the ultrasound beam profile of transcranial focused ultrasound stimulation
JPS63130012U (en)
US20170151446A1 (en) Method and apparatus for effecting alternating ultrasonic transmissions without cavitation
Lukavenko et al. Effect of ultrasound radiation on biological tissues: physical bases and technological principles
KR102383268B1 (en) Transducer of integrated type which generates complex ultrasonic sound
KR102532129B1 (en) Dental device of using Ultrasound Generation Device
JPH02177957A (en) Ultrasonic therapeutic appliance using convergence/oscillation piezoelectric ceramic
Qi et al. Design of a novel wearable LIPUS treatment device for mental health treatment
CZ34056U1 (en) Therapeutic ultrasound multi-converter rotary applicator
US20220184424A1 (en) Ultrasound stimulation of musculo-skeletal tissue structures
JP2012005602A (en) Ultrasonic irradiation device
WO2023190834A1 (en) Ultrasonic wave unit, diffraction swelling tape, and ultrasonic wave focusing device
Bansevičius et al. Investigation of ultrasonic probe for medical purposes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19760794

Country of ref document: EP

Kind code of ref document: A1