WO2019165853A1 - 激光投射模组、深度相机和电子装置 - Google Patents

激光投射模组、深度相机和电子装置 Download PDF

Info

Publication number
WO2019165853A1
WO2019165853A1 PCT/CN2019/070770 CN2019070770W WO2019165853A1 WO 2019165853 A1 WO2019165853 A1 WO 2019165853A1 CN 2019070770 W CN2019070770 W CN 2019070770W WO 2019165853 A1 WO2019165853 A1 WO 2019165853A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
positioning portion
limiting
lens barrel
protrusion
Prior art date
Application number
PCT/CN2019/070770
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810162419.5A external-priority patent/CN108344375A/zh
Priority claimed from CN201820278744.3U external-priority patent/CN207780466U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019165853A1 publication Critical patent/WO2019165853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present application relates to the field of optical and electronic technologies, and more particularly to a laser projection module, a depth camera, and an electronic device.
  • the inner surface of the diffractive optical element (DOE) of the laser projection module is etched with a specific grain, and the structure of the outer side surface opposite to the inner side surface is different from the structure of the inner side surface.
  • DOE diffractive optical element
  • Embodiments of the present application provide a laser projection module, a depth camera, and an electronic device.
  • the laser projection module of the embodiment of the present application includes a substrate assembly, a lens barrel, a light source, a collimating element, and a diffractive optical element.
  • the lens barrel includes a lens barrel sidewall disposed on the substrate assembly and forming a receiving cavity together with the substrate assembly, the lens barrel including inwardly protruding from the side wall of the lens barrel
  • the limiting protrusion has a first positioning portion formed on the lens barrel.
  • the light source is disposed on the substrate and is configured to emit laser light to the receiving cavity.
  • the collimating element is housed in the receiving cavity.
  • the light source, the collimating element and the diffractive optical element are sequentially disposed on an optical path of the light source, and the outer surface of the diffractive optical element includes a bottom surface, the bottom surface is combined with the limiting protrusion, the diffraction
  • the optical element includes a second positioning portion formed on the outer surface, the first positioning portion mating with the second positioning portion if and only when the bottom surface is combined with the limiting protrusion.
  • the depth camera of the embodiment of the present application includes a laser projection module, an image collector, and a processor respectively connected to the laser projection module and the image collector;
  • the laser projection module includes a substrate assembly, a lens barrel, and a light source. , collimating elements and diffractive optical elements.
  • the lens barrel includes a lens barrel sidewall disposed on the substrate assembly and forming a receiving cavity together with the substrate assembly, the lens barrel including inwardly protruding from the side wall of the lens barrel
  • the limiting protrusion has a first positioning portion formed on the lens barrel.
  • the light source is disposed on the substrate and is configured to emit laser light to the receiving cavity.
  • the collimating element is housed in the receiving cavity.
  • the light source, the collimating element and the diffractive optical element are sequentially disposed on an optical path of the light source, and the outer surface of the diffractive optical element includes a bottom surface, the bottom surface is combined with the limiting protrusion, the diffraction
  • the optical element includes a second positioning portion formed on the outer surface, the first positioning portion mating with the second positioning portion if and only when the bottom surface is combined with the limiting protrusion.
  • An electronic device of an embodiment of the present application includes a housing and a depth camera disposed within the housing and exposed from the housing to acquire a depth image.
  • the depth camera includes a laser projection module, an image collector, and a processor coupled to the laser projection module and the image collector, respectively.
  • the laser projection module includes a substrate assembly, a lens barrel, a light source, a collimating element, and a diffractive optical element.
  • the lens barrel includes a lens barrel sidewall disposed on the substrate assembly and forming a receiving cavity together with the substrate assembly, the lens barrel including inwardly protruding from the side wall of the lens barrel
  • the limiting protrusion has a first positioning portion formed on the lens barrel.
  • the light source is disposed on the substrate and is configured to emit laser light to the receiving cavity.
  • the collimating element is housed in the receiving cavity.
  • the light source, the collimating element and the diffractive optical element are sequentially disposed on an optical path of the light source, and the outer surface of the diffractive optical element includes a bottom surface, the bottom surface is combined with the limiting protrusion, the diffraction
  • the optical element includes a second positioning portion formed on the outer surface, the first positioning portion mating with the second positioning portion if and only when the bottom surface is combined with the limiting protrusion.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a depth camera according to an embodiment of the present application.
  • FIG. 3 is a perspective view of a laser projection module according to an embodiment of the present application.
  • FIG. 4 is a schematic plan view of a laser projection module according to an embodiment of the present application.
  • FIG. 5 is a perspective exploded view of a laser projection module according to an embodiment of the present application.
  • Figure 6 is a cross-sectional view of the laser projection module shown in Figure 4 taken along line VI-VI;
  • FIG. 7 is a schematic cross-sectional view along line VI-VI of the laser projection module shown in FIG. 4 according to another embodiment of the present application;
  • Figure 8 is a cross-sectional view of the laser projection module shown in Figure 4 taken along line VIII-VIII;
  • Figure 9 is an enlarged schematic view showing a portion IX of the laser projection module of Figure 8.
  • Figure 10 is an enlarged schematic view showing a portion X of the laser projection module shown in Figure 5;
  • FIG. 11 is a perspective view of a protective cover of a laser projection module according to an embodiment of the present application.
  • FIG. 12 is a partial schematic structural diagram of a laser projection module according to an embodiment of the present application.
  • FIG. 13 is a partial schematic structural diagram of a laser projection module according to an embodiment of the present application.
  • FIG. 14 is a schematic plan view of the laser projection module of the embodiment of the present application after removing the protective cover;
  • FIG. 15 is a plan view showing the laser projection module of the other embodiment of the present invention with the protective cover removed;
  • 16 is a schematic plan view showing the laser projection module of the embodiment of the present application with the protective cover removed;
  • 17 is a schematic structural view of a side wall of a diffractive optical element and a lens barrel according to an embodiment of the present application;
  • FIG. 18 is a plan view showing the laser projection module of the embodiment of the present application with the protective cover removed;
  • FIG. 19 is a schematic structural view of a side wall of a diffractive optical element and a lens barrel according to still another embodiment of the present application.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the laser projection module 10 of the embodiment of the present application includes a substrate assembly 11, a lens barrel 12, a light source 13, a collimating element 14, and a diffractive optical element 15.
  • the lens barrel 12 includes a lens barrel sidewall 121 disposed on the substrate assembly 11 and forming a receiving cavity 121 together with the substrate assembly 11, the lens barrel 12 including the mirror
  • the limiting sidewall 123 protrudes inwardly from the cylindrical sidewall 121, and the lens barrel 12 is formed with a first positioning portion 128.
  • the light source 13 is disposed on the substrate assembly 11 and is configured to emit laser light to the receiving cavity 121.
  • the collimating element 14 is received in the receiving cavity 121.
  • the light source 13, the collimating element 14 and the diffractive optical element 15 are sequentially disposed on the optical path of the light source 13, and the outer surface of the diffractive optical element 15 includes a bottom surface 152, the bottom surface 152 and the limit
  • the protrusion 123 is combined, and the diffractive optical element 15 includes a second positioning portion 154 formed on the outer surface, and the first positioning portion is only when the bottom surface 152 is combined with the limiting protrusion 123 128 is mated with the second positioning portion 154.
  • the outer surface further includes a top surface 151 opposite the bottom surface 152, and a side surface 153 connecting the bottom surface 152 and the top surface 151, the first positioning portion 128 including the formation At a first chamfer 1281 where the limiting protrusion 123 intersects the barrel sidewall 121, the second positioning portion 154 includes a second inverted portion formed at the intersection of the bottom surface 152 and the side surface 153 Corner 1541.
  • the limiting protrusion 123 is formed with a limiting surface 1232 coupled to the bottom surface 152, and the first positioning portion 128 includes a limiting surface depression formed on the limiting surface 1232.
  • the second positioning portion 154 includes a bottom surface protrusion 1542 protruding from the bottom surface 152. When the bottom surface 152 is combined with the limiting protrusion 123, the bottom surface protrusion 1542 extends into the limit. The plane is recessed within 1282.
  • the limiting protrusion 123 is formed with a limiting surface 1232 coupled to the bottom surface 152, and the first positioning portion 128 includes a limiting surface convex protruding from the limiting surface 1232.
  • the second positioning portion 154 includes a bottom surface recess 1543 formed on the bottom surface 152.
  • the outer surface further includes a top surface 151 opposite the bottom surface 152, and a side surface 153 connecting the bottom surface 152 and the top surface 151, the first positioning portion 128 including the formation
  • the second positioning portion 154 includes a side protrusion 1544 protruding outward from the side surface 153, when the bottom surface 152 and the limiting protrusion 123 When combined, the side bumps 1544 extend into the barrel recess 1284.
  • the side surface 153 includes a plurality of sub-sides 1531 that are sequentially joined end to end.
  • the number of the barrel recess 1284 and the side bumps 1544 are both single, and the side bumps 1544 are formed in Other locations than the intermediate position of the sub-side 1531.
  • the number of the barrel recesses 1284 and the side bumps 1544 are equal and multiple, and the plurality of the barrel recesses 1284 correspond to the plurality of the side bumps 1544, each The shape of the side protrusion 1544 is the same as the shape of the corresponding barrel recess 1284, and the shape of the different side protrusions 1544 are different.
  • the side surface 153 includes a plurality of sub-sides 1531 that are sequentially connected end to end.
  • the barrel recess 1284 and the side bumps 1544 are equal in number and each of the plurality, the plurality of sides.
  • the bump 1544 is not symmetrical about the intermediate position of any one of the sub-sides 1531.
  • the number of the barrel recesses 1284 and the side bumps 1544 are equal and multiple, and the plurality of side bumps 1544 are not equiangularly spaced.
  • the size of the side bumps 1544 gradually decreases in the direction from the top surface 151 to the bottom surface 152, and the size of the barrel recess 1284 gradually decreases.
  • the shape of the side bumps 1544 that are parallel to the plane of the bottom surface 152 is any one or more of a rectangle, a semicircle, a triangle, a trapezoid, and a circle.
  • the outer surface further includes a top surface 151 opposite the bottom surface 152, and a side surface 153 connecting the bottom surface 152 and the top surface 151, the first positioning portion 128 including a barrel protrusion 1285 protruding from the barrel side wall 121, the second positioning portion 154 includes a side recess 1545 formed on the side surface 153, when the bottom surface 152 is combined with the limiting protrusion 123 The barrel protrusion 1285 extends into the side recess 1545.
  • the size of the side recess 1545 is gradually increased in the direction from the top surface 151 to the bottom surface 152, and the size of the barrel bump 1285 is gradually increased.
  • the depth camera 100 of the embodiment of the present application includes the laser projection module 10, the image collector 20, and the processor 30 respectively connected to the laser projection module 10 and the image collector 20.
  • the image collector 20 is configured to collect a laser pattern projected through the diffractive optical element 15 in a target space; the processor 30 is configured to process the laser image to obtain a depth image.
  • the electronic device 1000 of the embodiment of the present application includes a housing 200 and the depth camera 100 described in the above embodiment, and the depth camera 100 is disposed inside the housing 200 and exposed from the housing 200 to acquire a depth image.
  • an electronic device 1000 of an embodiment of the present application includes a housing 200 and a depth camera 100 .
  • the electronic device 1000 can be a mobile phone, a tablet computer, a laptop computer, a game machine, a head display device, an access control system, a teller machine, etc.
  • the embodiment of the present application is described by taking the electronic device 1000 as a mobile phone as an example. It can be understood that the specific form of the electronic device 1000 It can be other and is not limited here.
  • the depth camera 100 is disposed in the housing 200 and exposed from the housing 200 to obtain a depth image, and the housing 200 can provide protection for the depth camera 100 from dust, water, drop, etc., and the housing 200 is provided with the depth camera 100 Corresponding apertures allow light to pass through or penetrate the housing 200.
  • the depth camera 100 includes a laser projection module 10, an image collector 20, and a processor 30.
  • a projection window 40 corresponding to the laser projection module 10 and an acquisition window 50 corresponding to the image collector 20 may be formed on the depth camera 100.
  • the laser projection module 10 is configured to project a laser pattern into the target space through the projection window 40
  • the image collector 20 is configured to collect the laser pattern modulated by the target object through the acquisition window 50.
  • the laser projected by the laser projection module 10 is infrared light
  • the image capture device 20 is an infrared camera.
  • the processor 30 is coupled to both the laser projection module 10 and the image capture unit 20 for processing the laser pattern to obtain a depth image.
  • the processor 30 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the offset value.
  • the image matching algorithm may be a Digital Image Correlation (DIC) algorithm.
  • DIC Digital Image Correlation
  • other image matching algorithms can be used instead of the DIC algorithm.
  • the structure of the laser projection module 10 will be further described below.
  • the laser projection module 10 includes a substrate assembly 11 , a lens barrel 12 , a light source 13 , a collimating element 14 , a diffractive optical element 15 , and a protective cover 16 .
  • the light source 13, the collimating element 14, and the diffractive optical element 15 are sequentially disposed on the optical path of the light source 13, and specifically, the light emitted from the light source 13 sequentially passes through the collimating element 14 and the diffractive optical element 15.
  • the substrate assembly 11 includes a substrate 111 and a circuit board 112 carried on the substrate 111 .
  • the substrate 111 is used to carry the lens barrel 12, the light source 13, and the circuit board 112.
  • the material of the substrate 111 may be plastic, such as Polyethylene Glycol Terephthalate (PET), Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Polyacyl. At least one of imine (Polyimide, PI). That is, the substrate 111 can be made of a single plastic material of any of PET, PMMA, PC or PI. As such, the substrate 111 is lighter in weight and has sufficient support strength.
  • the circuit board 112 may be any one of a printed circuit board, a flexible circuit board, and a soft and hard board.
  • the circuit board 112 may be provided with a through hole 113.
  • the through hole 113 may be used for accommodating the light source 13.
  • a part of the circuit board 112 is covered by the lens barrel 12, and another part is extended and connected to the connector 17, and the connector 17 can be
  • the laser projection module 10 is connected to the main board of the electronic device 1000.
  • the lens barrel 12 is disposed on the substrate assembly 11 and forms a receiving cavity 121 together with the substrate assembly 11.
  • the lens barrel 12 can be connected to the circuit board 112 of the substrate assembly 11, and the lens barrel 12 and the circuit board 112 can be bonded by adhesive to improve the airtightness of the receiving cavity 121.
  • the specific connection manner of the lens barrel 12 and the substrate assembly 11 may be other, for example, by a snap connection.
  • the receiving cavity 121 can be used to accommodate components such as the collimating element 14 and the diffractive optical element 15, and the receiving cavity 121 simultaneously forms a part of the optical path of the laser projection module 10.
  • the lens barrel 12 has a hollow cylindrical shape, and the lens barrel 12 includes a barrel side wall 122 and a limiting protrusion 123.
  • the lens barrel side wall 122 surrounds the receiving cavity 121, and the outer wall of the lens barrel side wall 122 may be formed with a positioning and mounting structure to fix the position of the laser projection module 10 when the laser projection module 10 is mounted in the electronic device 1000.
  • the lens barrel 12 includes a first surface 124 and a second surface 125 opposite to each other, wherein one opening of the receiving cavity 121 is opened on the second surface 125 and the other opening is opened on the first surface 124.
  • the second face 125 is bonded to the circuit board 112, for example, glued, and the first face 124 can serve as a bonding surface of the lens barrel 12 with the diffractive optical element 15 or the protective cover 16 or the like.
  • the outer wall of the side wall 122 of the lens barrel is provided with a glue receiving groove 126 , and the plastic groove 126 can be opened from the first surface 124 and extend toward the second surface 125 .
  • the limiting protrusion 123 protrudes inward from the lens barrel sidewall 122 .
  • the limiting protrusion 123 protrudes from the lens barrel sidewall 122 into the receiving cavity 121 .
  • the limiting protrusions 123 may have a continuous annular shape, or the limiting protrusions 123 may include a plurality of, and the plurality of limiting protrusions 123 are spaced apart.
  • the limiting protrusion 123 encloses the light-passing hole 1231.
  • the light-passing hole 1231 can serve as a part of the receiving cavity 121.
  • the laser light passes through the light-passing hole 1231 and penetrates into the diffractive optical element 15. In the embodiment shown in FIG.
  • the limiting protrusion 123 is located between the first surface 124 and the second surface 125 , and the receiving cavity 121 between the limiting protrusion 123 and the second surface 125 can be used for receiving The receiving member 121 between the limiting protrusion 123 and the first surface 124 of the straight element 14 can be used for receiving the diffractive optical element 15.
  • the diffractive optical element 15 when the laser projection module 10 is assembled, when the diffractive optical element 15 is in contact with the limiting protrusion 123, it can be considered that the diffractive optical element 15 is mounted in position, and when the collimating element 14 is in contact with the limiting protrusion 123, it can be considered as collimating. Element 14 is mounted in place.
  • the limiting protrusion 123 includes a limiting surface 1232 that is coupled to the diffractive optical element 15 when the diffractive optical element 15 is mounted on the limiting protrusion 123.
  • the light source 13 is disposed on the substrate assembly 11 .
  • the light source 13 may be disposed on the circuit board 112 and electrically connected to the circuit board 112 .
  • the light source 13 may also be disposed on the substrate 111 and corresponding to the via 113 .
  • the light source 13 can be electrically connected to the circuit board 112 by arranging wires.
  • the light source 13 is for emitting laser light, and the laser light may be infrared light.
  • the light source 13 may include a semiconductor substrate and a transmitting laser disposed on the semiconductor substrate.
  • the semiconductor substrate is disposed on the substrate 111, and the emitting laser may be vertical. Vertical Cavity Surface Emitting Laser (VCSEL).
  • the semiconductor substrate may be provided with a single emitting laser, or an array laser composed of a plurality of transmitting lasers. Specifically, the plurality of transmitting lasers may be arranged on the semiconductor substrate in a regular or irregular two-dimensional pattern.
  • the collimating element 14 may be an optical lens, and the collimating element 14 is used to collimate the laser light emitted by the light source 13.
  • the collimating element 14 is received in the receiving cavity 121, and the collimating element 14 may be directed along the second side 125.
  • the direction of the first face 124 is assembled into the receiving cavity 121.
  • the collimating element 14 includes an optical portion 141 and a mounting portion 142 for engaging with the lens barrel sidewall 122 and fixing the collimating element 14.
  • the optical portion 141 includes the collimating element 14 opposite to each other. Two surfaces on each side.
  • the diffractive optical element 15 is mounted on the limiting protrusion 123. Specifically, the diffractive optical element 15 is combined with the limiting surface 1232 to be mounted on the limiting protrusion 123.
  • the outer surface of the diffractive optical element 15 includes a top surface 151, a bottom surface 152, and a side surface 153.
  • the top surface 151 and the bottom surface 152 are opposite each other, and the side surface 153 is connected to the top surface 151 and the bottom surface 152.
  • the bottom surface 152 is combined with the limiting surface 1232.
  • the bottom surface 152 is formed with a diffractive structure, and the top surface 151 may be a smooth plane.
  • the diffractive optical element 15 may project the laser light collimated by the collimating element 14 to project a laser pattern corresponding to the diffractive structure.
  • the diffractive optical element 15 can be made of glass or can be said to be made of a composite plastic such as PET.
  • the protective cover 16 is coupled to the lens barrel 12, and the protective cover 16 is used to limit the position of the diffractive optical element 15. Specifically, the protective cover 16 serves to prevent the combination of the diffractive optical element 15 and the lens barrel 12 from failing. After that, it is taken out from the lens barrel 12. Referring to FIG. 11 , the protective cover 16 includes a protective top wall 161 and a protective sidewall 162 .
  • the protective top wall 161 and the limiting protrusion 123 are respectively located on opposite sides of the diffractive optical element 15, or the diffractive optical element 15 is located between the limiting protrusion 123 and the protective top wall 161, so that even the diffractive optical element The combination of the 15 and the limit projections 123 is disabled, and the diffractive optical element 15 does not come out due to the restriction of the protective top wall 161.
  • the protective top wall 161 defines a light-passing hole 1611. The position of the light-passing hole 1611 corresponds to the diffractive optical element 15. The laser passes through the light-passing hole 1231, the diffractive optical element 15 and the light-passing hole 1611, and then passes through the laser projection module 10. Shoot out.
  • the overall shape of the protection top wall 161 is rounded square, and the light-passing hole 1611 may have a shape of a circle, a rectangle, an ellipse, a trapezoid or the like.
  • the protective top wall 161 when the protective cover 16 is combined with the lens barrel 12, the protective top wall 161 is abutted against the first surface 124. Further, the protective top wall 161 may also be glued to the first surface 124. The way to combine.
  • the protective sidewall 162 extends from the periphery of the protective top wall 161 , and the protective cover 16 is disposed on the lens barrel 12 , and the protective sidewall 162 is fixedly connected to the lens barrel sidewall 122 .
  • the protective sidewall 162 includes a plurality of protective sub-walls 1621 that are sequentially connected end to end. Each of the protective sub-sides 1621 and the lens can sidewall 122 are fixedly connected, and each of the protective sub-walls 1621 has a small rubber hole 163. .
  • the position of the dispensing hole 163 corresponds to the position of the adhesive tank 126.
  • each of the protective sub-walls 1621 is provided with a single dispensing hole 163.
  • each of the protective sub-sides 1621 is provided with a plurality of dispensing holes 163, such as two or three.
  • each of the protection sub-sides 1621 is provided with two dispensing holes 163, and the two dispensing holes 163 respectively correspond to the two inner sidewalls 1261 of the adhesive tank 126, which is convenient.
  • the user simultaneously dispenses glue to both sides of the glue tank 126 to increase the dispensing speed.
  • the inner side wall 1261 of the plastic tank 126 is obliquely connected to the inner bottom wall 1262 of the plastic tank 126 and the outer wall of the lens barrel side wall 122.
  • the oblique connection refers to the inner side wall 1261 and the inner bottom wall 1262, and the inner side wall 1261 and the mirror
  • the outer wall of the side wall 122 of the cylinder is not perpendicular.
  • the diffractive optical element when the diffractive optical element is mounted, the diffractive optical element is easily reversed, resulting in the laser projection module being unable to be used normally.
  • the protective cover 16 since the protective cover 16 is combined with the lens barrel 12, the protective top wall 161 of the protective cover 16 and the limiting protrusion 123 together limit the position of the diffractive optical element 15, and the diffractive optical element 15 does not follow. The light exiting direction is detached, and the laser is prevented from being emitted after passing through the diffractive optical element 15, thereby protecting the user and improving safety.
  • the limiting protrusion 123 may also be formed on the top of the lens barrel 12 .
  • the limiting surface 1232 of the limiting protrusion 123 may coincide with the first surface 124 , and the diffraction optics may be
  • the diffractive optical element 15 is combined with the first face 124.
  • the protective top wall 161 abuts against the diffractive optical element 15, and the protective top wall 161 and the limiting projection 123 collectively sandwich the diffractive optical element 15.
  • the structure of the lens barrel 12 is simple, and the diffractive optical element 15 is easily mounted on the stopper protrusion 123.
  • the protective cover 16 further includes an elastic first hook 164 protruding inward from the protective sidewall 162
  • the lens barrel 12 further includes a self-adhesive tank 126 .
  • the second hook 127 protrudes from the bottom wall 1262.
  • the first hook 164 corresponds to the position of the second hook 127.
  • the first hook 164 and the second hook 127 are opposite to each other and elastically deformed.
  • the protective cover 16 is installed in place, the first hook 164 and the second hook 127 are engaged with each other, and the tactile feedback and the click sound in place are accompanied.
  • the protective cover 16 is more reliably combined with the lens barrel 12, and before the protective cover 16 and the lens barrel 12 are bonded with the glue, the first hook 164 and the second hook 127 can be engaged with each other, and can be effectively fixed.
  • the relative position of the protective cover 16 and the lens barrel 12 facilitates dispensing.
  • a first hook 164 is formed on each of the protector sidewalls 1621.
  • a plurality of second hooks 127 are also disposed in the plurality of adhesive tanks 126.
  • the second hooks 127 correspond to the positions of the first hooks 164, and the plurality of first hooks 164 and the corresponding second hooks 127 At the same time, the combination of the protective cover 16 and the lens barrel 12 is more reliable.
  • the first hook 164 may correspond to an intermediate position of the protection sub-side wall 1621
  • the second hook 127 may correspond to an intermediate position of the adhesive tank 126.
  • the first hook 164 is located between the at least two dispensing holes 163, and more specifically, at least two of each of the protective sub-walls 1621.
  • the dispensing holes 163 are symmetrically distributed with respect to the first hook 164. In this way, the glue is allowed to flow on both sides of the first hook 164 and the second hook 127 respectively, and the amount of glue on both sides is equivalent, and the bonding force is relatively uniform.
  • the protective sidewall 162 is provided with a relief hole 165 at a position corresponding to the first hook 164 .
  • the escape hole 165 provides the elastic deformation of the first hook 164.
  • the deformation space that is, the first hook 164 is elastically deformed and protrudes into the escape hole 165.
  • the first hook 164 and the second hook 127 are opposite to each other, the first hook 164 is elastically deformed outward, and the first hook 164 extends into the escape hole 165 to avoid motion interference with the protective sidewall 162. It is also convenient for the user to observe the cooperation of the first hook 164 and the second hook 127 through the avoidance hole 165, for example, to determine whether all the first hooks 164 are engaged with the corresponding second hook 127.
  • the second hook 127 is formed with a guiding slope 1271 , and the guiding slope 1271 is away from the inner bottom wall 1262 in the direction of the protective cover 16 being inserted into the lens barrel 12 .
  • the first hook 164 is opposed to the guide slope 1271. Because the guiding slope 1271 is inclined with respect to the inner bottom wall 1262, during the cooperation of the first hook 164 and the second hook 127, the resisting force of the second hook 127 received by the first hook 164 is slowly and continuously increased. Large, the shape variable of the first hook 164 is also continuously increased, and the first hook 164 and the second hook 127 are easily engaged.
  • the lens barrel 12 is formed with a first positioning portion 128, and the outer surface of the diffractive optical element 15 is formed with a second positioning portion 154 if and only if the bottom surface of the diffractive optical element 15 When the 152 is combined with the limiting protrusion 123, the first positioning portion 128 is engaged with the second positioning portion 154. It can be understood that the bottom surface 152 of the diffractive optical element 15 is different from the structure of the top surface 151, and the bottom surface 152 and the top surface 151 have different effects on the laser light.
  • the diffractive optical element 15 In use, if the diffractive optical element 15 is reversed (top surface 151 and limit) The dimples 123 are combined, and the diffractive optical element 15 will not be able to diffract the desired laser pattern, and may even cause the laser to be concentrated and easily burned to the user.
  • the first positioning portion 128 and the second positioning portion 154 of the present embodiment can be correctly matched only when the bottom surface 152 is combined with the limiting protrusion 123, and the cooperation relationship between the diffractive optical element 15 and the lens barrel 12 is not the bottom surface 152 and the limit position.
  • the limiting surface 1232 of the protrusion 123 When the limiting surface 1232 of the protrusion 123 is combined, neither the first positioning portion 128 nor the second positioning portion 154 can properly cooperate and the user can easily perceive it. In this way, the installation of the diffractive optical element 15 is prevented from being wrong.
  • the first positioning portion 128 includes a first chamfer 1281 , and the first chamfer 1281 is formed at the intersection of the limiting protrusion 123 and the lens barrel sidewall 122 , specifically, the first The chamfer 1281 is formed at the intersection of the limiting surface 1232 and the barrel sidewall 122.
  • the second positioning portion 154 includes a second chamfer 1541 formed at a side where the bottom surface 152 of the diffractive optical element 15 intersects the side surface 153. The angle of inclination of the first chamfer 1281 and the second chamfer 1541 may be equal.
  • the top surface 151 will oppose the second chamfer 1541, causing the diffractive optical element 15 to be
  • the second chamfer 1541 is raised, and the user can easily perceive that the diffractive optical element 15 is reversed, so that the first chamfer 1281 and the second chamfer 1541 can prevent the diffractive optical element 15 from being reversed.
  • the first positioning portion 128 includes a limiting surface recess 1282 formed on the limiting surface 1232
  • the second positioning portion 154 includes a bottom surface protrusion 1542 protruding from the bottom surface 152 .
  • the bottom surface protrusion 1542 extends into the limiting surface recess 1282.
  • the bottom surface bumps 1542 correspond to the positions of the limiting surface recesses 1282, and the bottom surface protrusions 1542 and the limiting surface recesses 1282 are equal in number, and the bottom surface protrusions 1542 may have a cylindrical shape, a truncated cone shape, a prismatic shape, or the like. It can be understood that if the user reverses the diffractive optical element 15, the bottom surface 152 faces upward and the bottom surface bump 1542 makes the diffractive optical element 15 uneven after installation, and the user can easily perceive that the diffractive optical element 15 is reversed, so the bottom surface bump 1542 and The limiting surface recess 1282 can prevent the diffractive optical element 15 from being reversed.
  • the first positioning portion 128 includes a limiting surface protrusion 1283 protruding from the limiting surface 1232
  • the second positioning portion 154 includes a bottom surface recess 1543 formed on the bottom surface 152 .
  • the limiting surface protrusion 1283 extends into the bottom surface recess 1543.
  • the position of the limiting surface bump 1283 corresponds to the position of the bottom surface recess 1543
  • the number of the limiting surface protrusion 1283 is equal to the number of the bottom surface recess 1543.
  • the shape of the limiting surface protrusion 1283 may be a cylindrical shape, a truncated cone shape or a prismatic shape. Etc. It can be understood that if the user reverses the diffractive optical element 15, the limiting surface bump 1283 will abut against the bottom surface 152, causing the diffractive optical element 15 to be raised by the limiting surface bump 1283, and the user can easily perceive the diffractive optical element 15 The reversed surface bump 1283 and the bottom surface recess 1543 prevent the diffractive optical element 15 from being reversed.
  • the first positioning portion 128 includes a barrel recess 1284 formed in the barrel sidewall 122
  • the second positioning portion 154 includes a protrusion from the side 153 of the diffractive optical element 15 .
  • the side bump 1544 extends into the barrel recess 1284 when the bottom surface 152 is combined with the limiting protrusion 123.
  • the side bump 1544 corresponds to the position of the barrel recess 1284, and the side bump 1544 is equal to the number of the barrel recess 1284, and the shape of the side bump 1544 which is parallel to the plane of the bottom surface 152 may be rectangular, semi-circular, One or more of a triangle, a trapezoid, or a circle.
  • the side bump 1544 will abut against the barrel sidewall 122, causing the diffractive optical element 15 to be mounted on the limiting protrusion 123, and the user can easily perceive that the diffractive optical element 15 is
  • the reverse side bump 1544 and the barrel recess 1284 can prevent the diffractive optical element 15 from being reversed.
  • the side surface 153 includes a plurality of sub-sides 1531 that are sequentially connected end to end, and the number of the barrel recess 1284 and the side bumps 1544 are both single.
  • the side bumps 1544 are formed at other positions than the intermediate position of the sub-side 1531. That is to say, when the number of the side bumps 1544 is one, the side bumps 1544 can be opened at other positions than the intermediate position of the sub-sides 1531, preventing the side convex bumps 1544 from being able to prevent the user from reversing the diffractive optical element 15 The insertion into the barrel recess 1284 occurs, further preventing the diffractive optical element 15 from being reversed.
  • the number of the barrel recess 1284 and the side bump 1544 are equal and multiple, and the plurality of barrel recesses 1284 correspond to the plurality of side bumps 1544, each side bump
  • the shape of 1544 is the same as the shape of the corresponding barrel recess 1284, and the shape of the different side bumps 1544 are different.
  • the same shape of the side bump 1544 and the barrel recess 1284 means that the outer contour of the side bump 1544 is the same as the hollow shape of the barrel recess 1284.
  • the side bumps 1544 and the barrel recesses 1284 which are not corresponding to each other cannot be completely matched due to the different shapes, and the user can easily perceive whether the diffractive optical element 15 is correctly mounted.
  • the side surface 153 includes a plurality of sub-sides 1531 that are sequentially connected end to end.
  • the number of the barrel recesses 1284 and the side bumps 1544 are equal and multiple, and the plurality of side bumps 1544 It is not symmetrical about the intermediate position of any one of the sub-sides 1531.
  • the diffractive optical element 15 has a square shape as a whole
  • the side surface 153 includes four sub-sides 1531, and the number of side bumps 1544 are two and both are located on one sub-side 1531, and two side projections 1544 is not symmetrical about the intermediate position of any one of the sub-sides 1531.
  • the number of side bumps 1544 on one of the sub-sides 1531 may also be one, and the side bumps 1544 are also distributed on the other sub-sides 1531, but the plurality of side lugs 1544 are not related to the middle of any one of the sub-sides 1531. symmetry.
  • the side bumps 1544 will abut against the lens barrel side wall 122, and the user can easily perceive that the diffractive optical element 15 is reversed.
  • the number of barrel recesses 1284 and side bumps 1544 are equal and multiple, and the plurality of side bumps 1544 are not equiangularly spaced.
  • the angle between the two side bumps 1544 and the line connecting the centers of the diffractive optical elements 15 respectively is not one hundred and eighty degrees; when the number of side bumps 1544 In the case of three, the angle between the adjacent two side bumps 1544 and the line connecting the centers of the diffractive optical elements 15 is not all one hundred and twenty degrees.
  • the user wants to rotate the diffractive optical element 15 to be mounted at least one of the side bumps 1544 will abut against the lens barrel side wall 122, and the user can easily perceive that the diffractive optical element 15 is reversed.
  • the size of the side bumps 1544 gradually decreases in the direction from the top surface 151 to the bottom surface 152, and the size of the barrel recess 1284 gradually decreases. Further, the maximum size of the side bump 1544 is larger than the minimum size of the barrel recess 1284.
  • the side bump 1544 cannot fully protrude into the barrel recess 1284, and the side bump 1544 will The diffractive optical element 15 is raised, and the user can easily perceive that the diffractive optical element 15 is reversed.
  • the first positioning portion 128 includes a barrel protrusion 1285 protruding from the barrel side wall 122
  • the second positioning portion 154 includes a side recess 1545 formed on the side surface 153.
  • the barrel projection 1285 extends into the side recess 1545.
  • the barrel projection 1285 corresponds to the position of the side recess 1545, and the number of the barrel projection 1285 and the side recess 1545 are equal, and the shape of the barrel projection 1285 which is parallel to the plane of the bottom surface 152 may be rectangular or semi-circular. One or more of a triangle, a trapezoid, or a circle.
  • the lens barrel 1285 will abut against the diffractive optical element 15, causing the diffractive optical element 15 to be mounted on the limiting protrusion 123, and the user can easily perceive that the diffractive optical element 15 is In reverse, the barrel projection 1285 and the side recess 1545 prevent the diffractive optical element 15 from being reversed.
  • the size of the side recesses 1545 gradually increases in the direction from the top surface 151 to the bottom surface 152, and the size of the barrel projections 1285 gradually increases. Further, the maximum size of the barrel projection 1285 is larger than the minimum size of the side recess 1545.
  • the barrel protrusion 1285 cannot fully protrude into the barrel recess 1284 , and the barrel protrusion 1285 will raise the diffractive optical element 15 and the user will easily perceive that the diffractive optical element 15 is reversed.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, for example two, three, unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lens Barrels (AREA)

Abstract

一种激光投射模组(10)。激光投射模组(10)包括基板组件(11)、镜筒(12)、光源(13)、准直元件(14)和衍射光学元件(15)。镜筒(12)包括镜筒侧壁(122),镜筒侧壁(122)设置在基板组件(11)上并与基板组件(11)共同形成收容腔(121),镜筒(12)包括自镜筒侧壁(122)向内凸出的限位凸起(123),镜筒(12)上形成有第一定位部(128)。光源(13)设置在基板组件(11)上并用于向收容腔(121)发射激光。准直元件(14)收容在收容腔(121)内。光源(13)、准直元件(14)和衍射光学元件(15)依次设置在光源(13)的光路上,衍射光学元件(15)的外表面包括底面(152),底面(152)与限位凸起(123)结合,衍射光学元件(15)包括形成在外表面的第二定位部(154),当且仅当底面(152)与限位凸起(123)结合时,第一定位部(128)与第二定位部(154)配合。

Description

激光投射模组、深度相机和电子装置
优先权信息
本申请请求2018年02月27日向中国国家知识产权局提交的、专利申请号为201810162419.5和201820278744.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及光学及电子技术领域,更具体而言,涉及一种激光投射模组、深度相机和电子装置。
背景技术
激光投射模组的衍射光学元件(diffractive optical elements,DOE)的内侧面上蚀刻有特定的纹路,而与内侧面相背的外侧面的结构与内侧面的结构不相同,在使用衍射光学元件时,内侧面与外侧面在激光光路中的位置需要严格按照既定要求布置。
发明内容
本申请实施方式提供一种激光投射模组、深度相机和电子装置。
本申请实施方式的激光投射模组包括基板组件、镜筒、光源、准直元件和衍射光学元件。所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部。所述光源设置在所述基板上并用于向所述收容腔发射激光。所述准直元件收容在所述收容腔内。所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合。
本申请实施方式的深度相机包括激光投射模组、图像采集器及分别与所述激光投射模组和所述图像采集器连接的处理器;所述激光投射模组包括基板组件、镜筒、光源、准直元件和衍射光学元件。所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部。所述光源设置在所述基板上并用于向所述收容腔发射激光。所述准直元件收容在所述收容腔内。所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合。
本申请实施方式的电子装置包括壳体和深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。所述深度相机包括激光投射模组、图像采集器及分别与所述激光投射模组和所述图 像采集器连接的处理器。所述激光投射模组包括基板组件、镜筒、光源、准直元件和衍射光学元件。所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部。所述光源设置在所述基板上并用于向所述收容腔发射激光。所述准直元件收容在所述收容腔内。所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的电子装置的结构示意图;
图2是本申请实施方式的深度相机的结构示意图;
图3是本申请实施方式的激光投射模组的立体示意图;
图4是本申请实施方式的激光投射模组的平面示意图;
图5是本申请实施方式的激光投射模组的立体分解示意图图;
图6是图4所示的激光投射模组沿VI-VI线的截面示意图;
图7是本申请另一实施方式的沿与图4所示的激光投射模组VI-VI线的截面示意图;
图8是图4所示的激光投射模组沿VIII-VIII线的截面示意图;
图9是图8中的激光投射模组的IX部分的放大示意图;
图10是图5所示的激光投射模组的X部分的放大示意图;
图11是本申请实施方式的激光投射模组的保护盖的立体示意图;
图12是本申请实施方式的激光投射模组的部分结构示意图;
图13是本申请实施方式的激光投射模组的部分结构示意图;
图14是本申请实施方式的激光投射模组去掉保护盖后的平面示意图;
图15是本申请另一实施方式的激光投射模组去掉保护盖后的平面示意图;
图16是本申请再一实施方式的激光投射模组去掉保护盖后的平面示意图;
图17是本申请实施方式的衍射光学元件和镜筒侧壁的结构示意图;
图18是本申请又一实施方式的激光投射模组去掉保护盖后的平面示意图;
图19是本申请又一实施方式的衍射光学元件和镜筒侧壁的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请实施方式的激光投射模组10包括基板组件11、镜筒12、光源13、准直元件14和衍射光学元件15。所述镜筒12包括镜筒侧壁121,所述镜筒侧壁121设置在所述基板组件11上并与所述基板组件11共同形成收容腔121,所述镜筒12包括自所述镜筒侧壁121向内凸出的限位凸起123,所述镜筒12上形成有第一定位部128。所述光源13设置在所述基板组件11上并用于向所述收容腔121发射激光。所述准直元件14收容在所述收容腔121内。所述光源13、所述准直元件14和所述衍射光学元件15依次设置在所述光源13的光路上,所述衍射光学元件15外表面包括底面152,所述底面152与所述限位凸起123结合,所述衍射光学元件15包括形成在所述外表面的第二定位部154,当且仅当所述底面152与所述限位凸起123结合时,所述第一定位部128与所述第二定位部154配合。
在某些实施方式中,所述外表面还包括与所述底面152相背的顶面151,和连接所述底面152与所述顶面151的侧面153,所述第一定位部128包括形成在所述限位凸起123与所述镜筒侧壁121相交处的第一倒角1281,所述第二定位部154包括形成在所述底面152与所述侧面153相交处的第二倒角1541。
在某些实施方式中,所述限位凸起123形成有与所述底面152结合的限位面1232,所述第一定位部128包括形成在所述限位面1232上的限位面凹陷1282,所述第二定位部154包括自所述底面152凸出的底面凸块1542,当所述底面152与所述限位凸起123结合时,所述底面凸块1542伸入所述限位面凹陷1282内。
在某些实施方式中,所述限位凸起123形成有与所述底面152结合的限位面1232,所述第一定位部128包括自所述限位面1232凸出的限位面凸块1283,所述第二定位部154包括形成在所述底面152的底面凹陷1543,当所述底面152与所述限位凸起123结合时,所述限位面凸块1283伸入所述底面凹陷1543内。
在某些实施方式中,所述外表面还包括与所述底面152相背的顶面151,和连接所述底面152与所述顶面151的侧面153,所述第一定位部128包括形成在所述镜筒侧壁121的镜筒凹陷1284,所述第二定位部154包括自所述侧面153向外凸出的侧面凸块1544,当所述底面152与所述限位凸起123结合时, 所述侧面凸块1544伸入所述镜筒凹陷1284内。
在某些实施方式中,所述侧面153包括多个首尾依次相接的子侧面1531,所述镜筒凹陷1284与所述侧面凸块1544的数量均为单个,所述侧面凸块1544形成在所述子侧面1531的中间位置之外的其他位置。
在某些实施方式中,所述镜筒凹陷1284与所述侧面凸块1544的数量相等且均为多个,多个所述镜筒凹陷1284与多个所述侧面凸块1544对应,每个所述侧面凸块1544的形状与对应的所述镜筒凹陷1284的形状相同,不同的所述侧面凸块1544的形状不相同。
在某些实施方式中,所述侧面153包括多个首尾依次相接的子侧面1531,所述镜筒凹陷1284与所述侧面凸块1544的数量相等且均为多个,多个所述侧面凸块1544不关于任意一个所述子侧面1531的中间位置对称。
在某些实施方式中,所述镜筒凹陷1284与所述侧面凸块1544的数量相等且均为多个,多个所述侧面凸块1544非等角度间隔分布。
在某些实施方式中,沿所述顶面151至所述底面152的方向,所述侧面凸块1544的尺寸逐渐减小,所述镜筒凹陷1284的尺寸逐渐减小。
在某些实施方式中,所述侧面凸块1544被平行于所述底面152的平面截得的形状为矩形、半圆形、三角形、梯形、圆形中的任意一种或多种。
在某些实施方式中,所述外表面还包括与所述底面152相背的顶面151,和连接所述底面152与所述顶面151的侧面153,所述第一定位部128包括自所述镜筒侧壁121凸出的镜筒凸块1285,所述第二定位部154包括形成在所述侧面153的侧面凹陷1545,当所述底面152与所述限位凸起123结合时,所述镜筒凸块1285伸入所述侧面凹陷1545内。
在某些实施方式中,沿所述顶面151至所述底面152的方向,所述侧面凹陷1545的尺寸逐渐增大,所述镜筒凸块1285的尺寸逐渐增大。
本申请实施方式的深度相机100包括上述任一实施方式所述的激光投射模组10、图像采集器20和分别与所述激光投射模组10和所述图像采集器20连接的处理器30,所述图像采集器20用于采集经所述衍射光学元件15后向目标空间中投射的激光图案;所述处理器30用于处理所述激光图像以获得深度图像。
本申请实施方式的电子装置1000包括壳体200和上述实施方式所述的深度相机100,所述深度相机100设置在所述壳体200内并从所述壳体200暴露以获取深度图像。
请参阅图1,本申请实施方式的电子装置1000包括壳体200和深度相机100。电子装置1000可以是手机、平板电脑、手提电脑、游戏机、头显设备、门禁***、柜员机等,本申请实施例以电子装置1000是手机为例进行说明,可以理解,电子装置1000的具体形式可以是其他,在此不作限制。深度相机100设置在壳体200内并从壳体200暴露以获取深度图像,壳体200可以给深度相机100提供防尘、防水、 防摔等的保护,壳体200上开设有与深度相机100对应的孔,以使光线从孔中穿出或穿入壳体200。
请参阅图2,深度相机100包括激光投射模组10、图像采集器20和处理器30。深度相机100上可以形成有与激光投射模组10对应的投射窗口40,和与图像采集器20对应的采集窗口50。激光投射模组10用于通过投射窗口40向目标空间投射激光图案,图像采集器20用于通过采集窗口50采集被标的物调制后的激光图案。在一个例子中,激光投射模组10投射的激光为红外光,图像采集器20为红外摄像头。处理器30与激光投射模组10及图像采集器20均连接,处理器30用于处理激光图案以获得深度图像。具体地,处理器30采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据该偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。下面将对激光投射模组10的结构作进一步介绍。
请参阅图3至图5,激光投射模组10包括基板组件11、镜筒12、光源13、准直元件14、衍射光学元件15和保护盖16。光源13、准直元件14和衍射光学元件15依次设置在光源13的光路上,具体地,光源13发出的光依次穿过准直元件14和衍射光学元件15。
请参阅图5和图6,基板组件11包括基板111及承载在基板111上的电路板112。基板111用于承载镜筒12、光源13和电路板112。基板111的材料可以是塑料,比如聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)中的至少一种。也就是说,基板111可以采用PET、PMMA、PC或PI中任意一种的单一塑料材质制成。如此,基板111质量较轻且具有足够的支撑强度。
电路板112可以是印刷电路板、柔性电路板、软硬结合板中的任意一种。电路板112上可以开设有过孔113,过孔113内可以用于容纳光源13,电路板112一部分被镜筒12罩住,另一部分延伸出来并可以与连接器17连接,连接器17可以将激光投射模组10连接到电子装置1000的主板上。
请参阅图6至图8,镜筒12设置在基板组件11上并与基板组件11共同形成收容腔121。具体地,镜筒12可以与基板组件11的电路板112连接,镜筒12与电路板112可以通过粘胶粘接,以提高收容腔121的气密性。当然,镜筒12与基板组件11的具体连接方式可以有其他,例如通过卡合连接。收容腔121可以用于容纳准直元件14、衍射光学元件15等元器件,收容腔121同时形成激光投射模组10的光路的一部分。在本申请实施例中,镜筒12呈中空的筒状,镜筒12包括镜筒侧壁122和限位凸起123。
镜筒侧壁122包围收容腔121,镜筒侧壁122的外壁可以形成有定位和安装结构,以便于在将激光投射模组10安装在电子装置1000内时固定激光投射模组10的位置。镜筒12包括相背的第一面124和第二面125,其中收容腔121的一个开口开设在第二面125上,另一个开口开设在第一面124上。第二面125与电路板112结合,例如胶合,第一面124可以作为镜筒12与衍射光学元件15或保护盖16等的结合面。请结合图9和图10,镜筒侧壁122的外壁开设有容胶槽126,容胶槽126可以自第一面124开设并向第二面125的方向延伸。
请参阅图8和图9,限位凸起123自镜筒侧壁122向内凸出,具体地,限位凸起123自镜筒侧壁122向收容腔121内突出。限位凸起123可以呈连续的环状,或者限位凸起123包括多个,多个限位凸起123间隔分布。限位凸起123围成过光孔1231,过光孔1231可以作为收容腔121的一部分,激光穿过过光孔1231后穿入衍射光学元件15。在如图6所示的实施例中,限位凸起123位于第一面124与第二面125之间,限位凸起123与第二面125之间的收容腔121可以用于收容准直元件14,限位凸起123与第一面124之间的收容腔121可以用于收容衍射光学元件15。同时,在组装激光投射模组10时,当衍射光学元件15与限位凸起123相抵,可以认为衍射光学元件15安装到位,当准直元件14与限位凸起123相抵,可以认为准直元件14安装到位。限位凸起123包括限位面1232,当衍射光学元件15安装在限位凸起123上时,限位面1232与衍射光学元件15结合。
请参阅图8,光源13设置在基板组件11上,具体地,光源13可以设置在电路板112上并与电路板112电连接,光源13也可以设置在基板111上并与过孔113对应,此时,可以通过布置导线将光源13与电路板112电连接。光源13用于发射激光,激光可以是红外光,在一个例子中,光源13可以包括半导体衬底及设置在半导体衬底上的发射激光器,半导体衬底设置在基板111上,发射激光器可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)。半导体衬底可以设置单个发射激光器,也可以设置由多个发射激光器组成的阵列激光器,具体地,多个发射激光器可以以规则或者不规则的二维图案的形式排布在半导体衬底上。
请参阅图8,准直元件14可以是光学透镜,准直元件14用于准直光源13发射的激光,准直元件14收容在收容腔121内,准直元件14可以沿第二面125指向第一面124的方向组装到收容腔121内。准直元件14包括光学部141和安装部142,安装部142用于与镜筒侧壁122结合并固定准直元件14,在本申请实施例中,光学部141包括位于准直元件14相背两侧的两个曲面。
请参阅图8和图9,衍射光学元件15安装在限位凸起123上,具体地,衍射光学元件15与限位面1232结合以安装在限位凸起123上。衍射光学元件15的外表面包括顶面151、底面152和侧面153。顶面151和底面152相背,侧面153连接顶面151和底面152,当衍射光学元件15安装在限位凸起123上时,底面152与限位面1232结合。本申请实施例中,底面152上形成有衍射结构,顶面151可以是光滑的平面,衍射光学元件15可以将经准直元件14准直后的激光投射出与衍射结构对应的激光图案。衍射光学元件15可以由玻璃制成,也可以说由复合塑料(如PET)制成。
请参阅图8和图9,保护盖16与镜筒12结合,保护盖16用于限制衍射光学元件15的位置,具体地,保护盖16用于防止衍射光学元件15与镜筒12的结合失效后从镜筒12中脱出。请结合图11,保护盖16包括保护顶壁161和保护侧壁162。
保护顶壁161与限位凸起123分别位于衍射光学元件15的相背的两侧,或者说,衍射光学元件15位于限位凸起123与保护顶壁161之间,如此,即使衍射光学元件15与限位凸起123的结合失效了,由于保护顶壁161的限制作用,衍射光学元件15也不会脱出。保护顶壁161开设有通光孔1611,通光 孔1611的位置与衍射光学元件15对应,激光先后穿过过光孔1231、衍射光学元件15和通光孔1611后从激光投射模组10中射出。在本申请实施例中,保护顶壁161的整体形状呈圆角方形,通光孔1611可以呈圆形、矩形、椭圆形、梯形等形状。在如图6所示的实施例中,当保护盖16与镜筒12结合时,保护顶壁161与第一面124相抵,进一步地,保护顶壁161还可以与第一面124通过胶粘等的方式结合。
请参阅图9至图11,保护侧壁162自保护顶壁161的周缘延伸,保护盖16罩设在镜筒12上,保护侧壁162与镜筒侧壁122固定连接。保护侧壁162包括多个首尾依次相接的保护子侧壁1621,每个保护子侧壁1621与镜筒侧壁122均固定连接,每个保护子侧壁1621上均形成有点胶孔163。点胶孔163的位置与容胶槽126的位置对应,当保护盖16罩设在镜筒12上后,可以从点胶孔163向容胶槽126内点胶,胶水固化后,保护侧壁162与镜筒侧壁122固定连接。在一个例子中,每个保护子侧壁1621上开设有单个点胶孔163,在另一个例子中,每个保护子侧壁1621上开设有多个点胶孔163,例如两个、三个、四个等,在本申请实施例中,每个保护子侧壁1621上开设有两个点胶孔163,两个点胶孔163分别与容胶槽126的两个内侧壁1261对应,便于用户向容胶槽126的两侧同时点胶,提高点胶速度。进一步地,容胶槽126的内侧壁1261倾斜连接容胶槽126的内底壁1262与镜筒侧壁122的外壁,倾斜连接指的是内侧壁1261与内底壁1262,内侧壁1261与镜筒侧壁122的外壁均不垂直,当胶水被注入到内侧壁1261上时,在内侧壁1261的导引作用下,胶水容易向容胶槽126的中间位置流动,加快胶水填充容胶槽126的速度。
现有技术中,在安装衍射光学元件时,衍射光学元件容易装反,导致激光投射模组无法正常使用。本申请实施方式的电子装置1000中,由于保护盖16与镜筒12结合,保护盖16的保护顶壁161与限位凸起123一起限制衍射光学元件15的位置,衍射光学元件15不会沿出光方向脱落,避免激光未经过衍射光学元件15后发射出去,保护用户,提高安全性。
请参阅图7,在某些实施方式中,限位凸起123也可以形成在镜筒12的顶部,具体地,限位凸起123的限位面1232可以与第一面124重合,衍射光学元件15安装在限位凸起123上时,衍射光学元件15与第一面124结合。此时,保护顶壁161与衍射光学元件15相抵,保护顶壁161与限位凸起123共同夹持衍射光学元件15。如此,镜筒12的结构简单,衍射光学元件15容易安装在限位凸起123上。
请参阅图9至图11,在某些实施方式中,保护盖16还包括自保护侧壁162向内凸出的弹性的第一卡勾164,镜筒12还包括自容胶槽126的内底壁1262向外凸出的第二卡勾127,保护盖16罩设在镜筒12上时,第一卡勾164与第二卡勾127咬合以限制保护盖16脱离镜筒12。
具体地,第一卡勾164与第二卡勾127的位置对应,在将保护盖16罩设在镜筒12上的过程中,第一卡勾164与第二卡勾127相抵并发生弹性形变,当保护盖16安装到位后,第一卡勾164与第二卡勾127互相咬合,且会伴随触感反馈和咬合到位的“嗒”声。如此,保护盖16与镜筒12结合更可靠,且在用胶水将保护盖16与镜筒12粘结前,可以先将第一卡勾164与第二卡勾127互相咬合,能有效地固定保护盖16与镜筒12的相对位置,利于点胶的进行。
请参阅图9至图11,在某些实施方式中,每个保护子侧壁1621上均形成有第一卡勾164。对应的,多个容胶槽126内也均设置有第二卡勾127,第二卡勾127与第一卡勾164的位置对应,多个第一卡勾164与对应的第二卡勾127同时咬合,保护盖16与镜筒12的结合更可靠。具体地,第一卡勾164可以与保护子侧壁1621的中间位置对应,第二卡勾127可以与容胶槽126的中间位置对应。当每个保护子侧壁1621形成有至少两个点胶孔163时,第一卡勾164位于至少两个点胶孔163之间,更具体地,每个保护子侧壁1621上的至少两个点胶孔163相对于第一卡勾164对称分布。如此,便于胶水在第一卡勾164和第二卡勾127的两侧分别流动,且两侧的胶水量相当,粘结力较均匀。
请参阅图9和图11,在某些实施方式中,保护侧壁162在与第一卡勾164对应的位置开设有避让孔165。在保护盖16罩设在镜筒12的过程中,第一卡勾164与第二卡勾127相抵且第一卡勾164发生弹性形变时,避让孔165为第一卡勾164的弹性形变提供形变空间,即,第一卡勾164发生弹性形变且伸入避让孔165。具体地,第一卡勾164与第二卡勾127相抵时,第一卡勾164向外发生弹性形变,第一卡勾164伸入避让孔165以避免与保护侧壁162发生运动干涉,另外,也便于用户通过避让孔165观察第一卡勾164与第二卡勾127的配合情况,例如判断是不是所有的第一卡勾164均与对应的第二卡勾127咬合好了。
请参阅图9和图10,在某些实施方式中,第二卡勾127形成有导引斜面1271,沿保护盖16套入镜筒12的方向,导引斜面1271远离内底壁1262,保护盖16罩设在镜筒12的过程中,第一卡勾164与导引斜面1271相抵。由于导引斜面1271的相对于内底壁1262倾斜,第一卡勾164与第二卡勾127配合的过程中,第一卡勾164受到的第二卡勾127的抵持力缓慢连续地增大,第一卡勾164的形变量也连续地变大,第一卡勾164与第二卡勾127容易卡合。
请参阅图9,在某些实施方式中,镜筒12上形成有第一定位部128,衍射光学元件15的外表面上形成有第二定位部154,当且仅当衍射光学元件15的底面152与限位凸起123结合时,第一定位部128与第二定位部154配合。可以理解,衍射光学元件15的底面152与顶面151的结构不同,底面152与顶面151对激光的作用也不相同,在使用时,如果将衍射光学元件15装反(顶面151与限位凸起123结合),衍射光学元件15将不能衍射出需要的激光图案,甚至还会导致激光集中发射而容易灼伤用户。本实施方式的第一定位部128与第二定位部154仅在底面152与限位凸起123结合时能够正确配合,而当衍射光学元件15与镜筒12的配合关系不是底面152与限位凸起123的限位面1232结合时,第一定位部128与第二定位部154均不能正确配合而用户容易察觉到。如此,防止衍射光学元件15安装错误。
请参阅图9,在某些实施方式中,第一定位部128包括第一倒角1281,第一倒角1281形成在限位凸起123与镜筒侧壁122相交处,具体地,第一倒角1281形成在限位面1232与镜筒侧壁122相交处。第二定位部154包括第二倒角1541,第二倒角1541形成在衍射光学元件15的底面152与侧面153相交处。第一倒角1281与第二倒角1541的倾斜角度可以是相等的,可以理解,如果用户将衍射光学元件15装反,顶面151将与第二倒角1541相抵,导致衍射光学元件15被第二倒角1541垫高,用户容易察觉 到衍射光学元件15被装反,故第一倒角1281与第二倒角1541可以避免衍射光学元件15被装反。
请参阅图12,某些实施方式中,第一定位部128包括形成在限位面1232上的限位面凹陷1282,第二定位部154包括自底面152凸出的底面凸块1542,当底面152与限位凸起123结合时,底面凸块1542伸入限位面凹陷1282内。具体地,底面凸块1542与限位面凹陷1282的位置对应,且底面凸块1542与限位面凹陷1282的数量相等,底面凸块1542的形状可以是圆柱状、圆台状、棱柱状等,可以理解,如果用户将衍射光学元件15装反,底面152朝上且底面凸块1542使得衍射光学元件15安装后不平整,用户容易察觉到衍射光学元件15被装反,故底面凸块1542与限位面凹陷1282可以避免衍射光学元件15被装反。
请参阅图13,在某些实施方式中,第一定位部128包括自限位面1232凸出的限位面凸块1283,第二定位部154包括形成在底面152的底面凹陷1543,当底面152与限位凸起123结合时,限位面凸块1283伸入底面凹陷1543内。具体地,限位面凸块1283与底面凹陷1543的位置对应,且限位面凸块1283与底面凹陷1543的数量相等,限位面凸块1283的形状可以是圆柱状、圆台状、棱柱状等,可以理解,如果用户将衍射光学元件15装反,限位面凸块1283将与底面152相抵,导致衍射光学元件15被限位面凸块1283垫高,用户容易察觉到衍射光学元件15被装反,故限位面凸块1283与底面凹陷1543可以避免衍射光学元件15被装反。
请参阅图14,在某些实施方式中,第一定位部128包括形成在镜筒侧壁122的镜筒凹陷1284,第二定位部154包括自衍射光学元件15的侧面153向外凸出的侧面凸块1544,当底面152与限位凸起123结合时,侧面凸块1544伸入镜筒凹陷1284内。侧面凸块1544与镜筒凹陷1284的位置对应,且侧面凸块1544与镜筒凹陷1284的数量相等,侧面凸块1544被平行于底面152的平面截得的形状可以是矩形、半圆形、三角形、梯形、圆形中的一种或多种。可以理解,如果用户将衍射光学元件15装反,侧面凸块1544将与镜筒侧壁122相抵,导致衍射光学元件15无法安装在限位凸起123上,用户容易察觉到衍射光学元件15被装反,故侧面凸块1544与镜筒凹陷1284可以避免衍射光学元件15被装反。
具体地,请参阅图14,在某些实施方式中,侧面153包括多个首尾依次相接的子侧面1531,镜筒凹陷1284与侧面凸块1544的数量均为单个。侧面凸块1544形成在子侧面1531的中间位置之外的其他位置。也就是说,当侧面凸块1544的数量为一个时,侧面凸块1544可以开设在子侧面1531中间位置之外的其他位置,防止用户将衍射光学元件15装反时,侧面凸块1544依然能够伸入镜筒凹陷1284的情况发生,进一步避免衍射光学元件15装反。
请参阅图15,在某些实施方式中,镜筒凹陷1284与侧面凸块1544的数量相等且均为多个,多个镜筒凹陷1284与多个侧面凸块1544对应,每个侧面凸块1544的形状与对应的镜筒凹陷1284的形状相同,不同的侧面凸块1544的形状不相同。侧面凸块1544与镜筒凹陷1284的形状相同指的是侧面凸块1544的外轮廓与镜筒凹陷1284的中空的形状相同。本实施例中,由于不同的侧面凸块1544的形状不相同,不相互对应的侧面凸块1544与镜筒凹陷1284由于形状不同而不能完全配合,用户容易察觉衍射光学元 件15是否正确安装。
请参阅图16,在某些实施方式中,侧面153包括多个首尾依次相接的子侧面1531,镜筒凹陷1284与侧面凸块1544的数量相等且均为多个,多个侧面凸块1544不关于任意一个子侧面1531的中间位置对称。在如图16所示的实施例中,衍射光学元件15整体呈方形,侧面153包括四个子侧面1531,侧面凸块1544的数量为两个且均位于一个子侧面1531上,两个侧面凸块1544不关于任意一个子侧面1531的中间位置对称。当然,侧面凸块1544在某个子侧面1531上的数量也可以是一个,而侧面凸块1544在其他子侧面1531上也有分布,但是多个侧面凸块1544不关于任意一个子侧面1531的中间位置对称。如此,当用户欲将衍射光学元件15调转安装时,至少一个侧面凸块1544会与镜筒侧壁122相抵,用户容易察觉到衍射光学元件15装反。
请参阅图16,在某些实施方式中,镜筒凹陷1284与侧面凸块1544的数量相等且均为多个,多个侧面凸块1544非等角度间隔分布。具体地,当侧面凸块1544的数量为两个时,两个侧面凸块1544分别与衍射光学元件15的中心的连线的夹角不呈一百八十度;当侧面凸块1544的数量为三个时,相邻的两个侧面凸块1544分别与衍射光学元件15的中心的连线的夹角不全部呈一百二十度。如此,当用户欲将衍射光学元件15调转安装时,至少一个侧面凸块1544会与镜筒侧壁122相抵,用户容易察觉到衍射光学元件15装反。
请参阅图17,在某些实施方式中,沿顶面151至底面152的方向,侧面凸块1544的尺寸逐渐减小,镜筒凹陷1284的尺寸逐渐减小。进一步地,侧面凸块1544的最大尺寸大于镜筒凹陷1284的最小尺寸,当用户欲将衍射光学元件15调转安装时,侧面凸块1544不能完全伸入镜筒凹陷1284内,侧面凸块1544会将衍射光学元件15垫高,用户容易察觉到衍射光学元件15装反。
请参阅图18,在某些实施方式中,第一定位部128包括自镜筒侧壁122凸出的镜筒凸块1285,第二定位部154包括形成在侧面153的侧面凹陷1545,当底面152与限位凸起123结合时,镜筒凸块1285伸入侧面凹陷1545内。镜筒凸块1285与侧面凹陷1545的位置对应,且镜筒凸块1285与侧面凹陷1545的数量相等,镜筒凸块1285被平行于底面152的平面截得的形状可以是矩形、半圆形、三角形、梯形、圆形中的一种或多种。可以理解,如果用户将衍射光学元件15装反,镜筒凸块1285将与衍射光学元件15相抵,导致衍射光学元件15无法安装在限位凸起123上,用户容易察觉到衍射光学元件15被装反,故镜筒凸块1285与侧面凹陷1545可以避免衍射光学元件15被装反。
请参阅图19,在某些实施方式中,沿顶面151至底面152的方向,侧面凹陷1545的尺寸逐渐增大,镜筒凸块1285的尺寸逐渐增大。进一步地,镜筒凸块1285的最大尺寸大于侧面凹陷1545的最小尺寸,当用户欲将衍射光学元件15调转安装时,镜筒凸块1285不能完全伸入镜筒凹陷1284内,镜筒凸块1285会将衍射光学元件15垫高,用户容易察觉到衍射光学元件15装反。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、 结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (39)

  1. 一种激光投射模组,其特征在于,包括:
    基板组件;
    镜筒,所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部;
    光源,所述光源设置在所述基板组件上并用于向所述收容腔发射激光;
    准直元件,所述准直元件收容在所述收容腔内;和
    衍射光学元件,所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合。
  2. 根据权利要求1所述的激光投射模组,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述限位凸起与所述镜筒侧壁相交处的第一倒角,所述第二定位部包括形成在所述底面与所述侧面相交处的第二倒角。
  3. 根据权利要求1所述的激光投射模组,其特征在于,所述限位凸起形成有与所述底面结合的限位面,所述第一定位部包括形成在所述限位面上的限位面凹陷,所述第二定位部包括自所述底面凸出的底面凸块,当所述底面与所述限位凸起结合时,所述底面凸块伸入所述限位面凹陷内。
  4. 根据权利要求1所述的激光投射模组,其特征在于,所述限位凸起形成有与所述底面结合的限位面,所述第一定位部包括自所述限位面凸出的限位面凸块,所述第二定位部包括形成在所述底面的底面凹陷,当所述底面与所述限位凸起结合时,所述限位面凸块伸入所述底面凹陷内。
  5. 根据权利要求1所述的激光投射模组,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述镜筒侧壁的镜筒凹陷,所述第二定位部包括自所述侧面向外凸出的侧面凸块,当所述底面与所述限位凸起结合时,所述侧面凸块伸入所述镜筒凹陷内。
  6. 根据权利要求5所述的激光投射模组,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量均为单个,所述侧面凸块形成在所述子侧面的中间位置之外的其他位置。
  7. 根据权利要求5所述的激光投射模组,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述镜筒凹陷与多个所述侧面凸块对应,每个所述侧面凸块的形状与对应的所述镜筒凹陷的形状相同,不同的所述侧面凸块的形状不相同。
  8. 根据权利要求5所述的激光投射模组,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块不关于任意一个所述子侧面的 中间位置对称。
  9. 根据权利要求5所述的激光投射模组,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块非等角度间隔分布。
  10. 根据权利要求5所述的激光投射模组,其特征在于,沿所述顶面至所述底面的方向,所述侧面凸块的尺寸逐渐减小,所述镜筒凹陷的尺寸逐渐减小。
  11. 根据权利要求5所述的激光投射模组,其特征在于,所述侧面凸块被平行于所述底面的平面截得的形状为矩形、半圆形、三角形、梯形、圆形中的任意一种或多种。
  12. 根据权利要求1所述的激光投射模组,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括自所述镜筒侧壁凸出的镜筒凸块,所述第二定位部包括形成在所述侧面的侧面凹陷,当所述底面与所述限位凸起结合时,所述镜筒凸块伸入所述侧面凹陷内。
  13. 根据权利要求12所述的激光投射模组,其特征在于,沿所述顶面至所述底面的方向,所述侧面凹陷的尺寸逐渐增大,所述镜筒凸块的尺寸逐渐增大。
  14. 一种深度相机,其特征在于,包括激光投射模组、图像采集器及分别与所述激光投射模组和所述图像采集器连接的处理器;所述激光投射模组包括:
    基板组件;
    镜筒,所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部;
    光源,所述光源设置在所述基板组件上并用于向所述收容腔发射激光;
    准直元件,所述准直元件收容在所述收容腔内;和
    衍射光学元件,所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合;
    所述图像采集器用于采集经所述衍射光学元件后向目标空间中投射的激光图案;和
    所述处理器用于处理所述激光图像以获得深度图像。
  15. 根据权利要求14所述的深度相机,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述限位凸起与所述镜筒侧壁相交处的第一倒角,所述第二定位部包括形成在所述底面与所述侧面相交处的第二倒角。
  16. 根据权利要求14所述的深度相机,其特征在于,所述限位凸起形成有与所述底面结合的限位面,所述第一定位部包括形成在所述限位面上的限位面凹陷,所述第二定位部包括自所述底面凸出的底面凸块,当所述底面与所述限位凸起结合时,所述底面凸块伸入所述限位面凹陷内。
  17. 根据权利要求14所述的深度相机,其特征在于,所述限位凸起形成有与所述底面结合的限位面, 所述第一定位部包括自所述限位面凸出的限位面凸块,所述第二定位部包括形成在所述底面的底面凹陷,当所述底面与所述限位凸起结合时,所述限位面凸块伸入所述底面凹陷内。
  18. 根据权利要求14所述的深度相机,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述镜筒侧壁的镜筒凹陷,所述第二定位部包括自所述侧面向外凸出的侧面凸块,当所述底面与所述限位凸起结合时,所述侧面凸块伸入所述镜筒凹陷内。
  19. 根据权利要求18所述的深度相机,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量均为单个,所述侧面凸块形成在所述子侧面的中间位置之外的其他位置。
  20. 根据权利要求18所述的深度相机,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述镜筒凹陷与多个所述侧面凸块对应,每个所述侧面凸块的形状与对应的所述镜筒凹陷的形状相同,不同的所述侧面凸块的形状不相同。
  21. 根据权利要求18所述的深度相机,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块不关于任意一个所述子侧面的中间位置对称。
  22. 根据权利要求18所述的深度相机,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块非等角度间隔分布。
  23. 根据权利要求18所述的深度相机,其特征在于,沿所述顶面至所述底面的方向,所述侧面凸块的尺寸逐渐减小,所述镜筒凹陷的尺寸逐渐减小。
  24. 根据权利要求18所述的深度相机,其特征在于,所述侧面凸块被平行于所述底面的平面截得的形状为矩形、半圆形、三角形、梯形、圆形中的任意一种或多种。
  25. 根据权利要求14所述的深度相机,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括自所述镜筒侧壁凸出的镜筒凸块,所述第二定位部包括形成在所述侧面的侧面凹陷,当所述底面与所述限位凸起结合时,所述镜筒凸块伸入所述侧面凹陷内。
  26. 根据权利要求25所述的深度相机,其特征在于,沿所述顶面至所述底面的方向,所述侧面凹陷的尺寸逐渐增大,所述镜筒凸块的尺寸逐渐增大。
  27. 一种电子装置,其特征在于,包括壳体和深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像,所述深度相机包括激光投射模组、图像采集器及分别与所述激光投射模组和所述图像采集器连接的处理器;所述激光投射模组包括:
    基板组件;
    镜筒,所述镜筒包括镜筒侧壁,所述镜筒侧壁设置在所述基板组件上并与所述基板组件共同形成收 容腔,所述镜筒包括自所述镜筒侧壁向内凸出的限位凸起,所述镜筒上形成有第一定位部;
    光源,所述光源设置在所述基板组件上并用于向所述收容腔发射激光;
    准直元件,所述准直元件收容在所述收容腔内;和
    衍射光学元件,所述光源、所述准直元件和所述衍射光学元件依次设置在所述光源的光路上,所述衍射光学元件外表面包括底面,所述底面与所述限位凸起结合,所述衍射光学元件包括形成在所述外表面的第二定位部,当且仅当所述底面与所述限位凸起结合时,所述第一定位部与所述第二定位部配合;
    所述图像采集器用于采集经所述衍射光学元件后向目标空间中投射的激光图案;和
    所述处理器用于处理所述激光图像以获得深度图像。
  28. 根据权利要求27所述的电子装置,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述限位凸起与所述镜筒侧壁相交处的第一倒角,所述第二定位部包括形成在所述底面与所述侧面相交处的第二倒角。
  29. 根据权利要求27所述的电子装置,其特征在于,所述限位凸起形成有与所述底面结合的限位面,所述第一定位部包括形成在所述限位面上的限位面凹陷,所述第二定位部包括自所述底面凸出的底面凸块,当所述底面与所述限位凸起结合时,所述底面凸块伸入所述限位面凹陷内。
  30. 根据权利要求27所述的电子装置,其特征在于,所述限位凸起形成有与所述底面结合的限位面,所述第一定位部包括自所述限位面凸出的限位面凸块,所述第二定位部包括形成在所述底面的底面凹陷,当所述底面与所述限位凸起结合时,所述限位面凸块伸入所述底面凹陷内。
  31. 根据权利要求27所述的电子装置,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括形成在所述镜筒侧壁的镜筒凹陷,所述第二定位部包括自所述侧面向外凸出的侧面凸块,当所述底面与所述限位凸起结合时,所述侧面凸块伸入所述镜筒凹陷内。
  32. 根据权利要求31所述的电子装置,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量均为单个,所述侧面凸块形成在所述子侧面的中间位置之外的其他位置。
  33. 根据权利要求31所述的电子装置,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述镜筒凹陷与多个所述侧面凸块对应,每个所述侧面凸块的形状与对应的所述镜筒凹陷的形状相同,不同的所述侧面凸块的形状不相同。
  34. 根据权利要求31所述的电子装置,其特征在于,所述侧面包括多个首尾依次相接的子侧面,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块不关于任意一个所述子侧面的中间位置对称。
  35. 根据权利要求31所述的电子装置,其特征在于,所述镜筒凹陷与所述侧面凸块的数量相等且均为多个,多个所述侧面凸块非等角度间隔分布。
  36. 根据权利要求31所述的电子装置,其特征在于,沿所述顶面至所述底面的方向,所述侧面凸块的尺寸逐渐减小,所述镜筒凹陷的尺寸逐渐减小。
  37. 根据权利要求31所述的电子装置,其特征在于,所述侧面凸块被平行于所述底面的平面截得的形状为矩形、半圆形、三角形、梯形、圆形中的任意一种或多种。
  38. 根据权利要求27所述的电子装置,其特征在于,所述外表面还包括与所述底面相背的顶面,和连接所述底面与所述顶面的侧面,所述第一定位部包括自所述镜筒侧壁凸出的镜筒凸块,所述第二定位部包括形成在所述侧面的侧面凹陷,当所述底面与所述限位凸起结合时,所述镜筒凸块伸入所述侧面凹陷内。
  39. 根据权利要求38所述的电子装置,其特征在于,沿所述顶面至所述底面的方向,所述侧面凹陷的尺寸逐渐增大,所述镜筒凸块的尺寸逐渐增大。
PCT/CN2019/070770 2018-02-27 2019-01-08 激光投射模组、深度相机和电子装置 WO2019165853A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820278744.3 2018-02-27
CN201810162419.5A CN108344375A (zh) 2018-02-27 2018-02-27 激光投射模组、深度相机和电子装置
CN201820278744.3U CN207780466U (zh) 2018-02-27 2018-02-27 激光投射模组、深度相机和电子装置
CN201810162419.5 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019165853A1 true WO2019165853A1 (zh) 2019-09-06

Family

ID=67805933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070770 WO2019165853A1 (zh) 2018-02-27 2019-01-08 激光投射模组、深度相机和电子装置

Country Status (1)

Country Link
WO (1) WO2019165853A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064929A (ja) * 2004-08-26 2006-03-09 Sony Corp レンズ鏡筒および撮像装置
CN101196603A (zh) * 2006-12-08 2008-06-11 鸿富锦精密工业(深圳)有限公司 镜筒、具有该镜筒的光学模组及该光学模组的组装方法
TW201310104A (zh) * 2011-08-29 2013-03-01 Hon Hai Prec Ind Co Ltd 鏡頭模組
CN206362957U (zh) * 2016-12-30 2017-07-28 上饶市宇瞳光学有限公司 一种弯月形镜片及镜头模组
CN107390461A (zh) * 2017-06-20 2017-11-24 深圳奥比中光科技有限公司 3d成像子模组及其电子设备
CN206920675U (zh) * 2016-10-25 2018-01-23 瑞声科技(新加坡)有限公司 镜头模组
CN108196416A (zh) * 2018-02-27 2018-06-22 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN108388067A (zh) * 2018-02-27 2018-08-10 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN207780466U (zh) * 2018-02-27 2018-08-28 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064929A (ja) * 2004-08-26 2006-03-09 Sony Corp レンズ鏡筒および撮像装置
CN101196603A (zh) * 2006-12-08 2008-06-11 鸿富锦精密工业(深圳)有限公司 镜筒、具有该镜筒的光学模组及该光学模组的组装方法
TW201310104A (zh) * 2011-08-29 2013-03-01 Hon Hai Prec Ind Co Ltd 鏡頭模組
CN206920675U (zh) * 2016-10-25 2018-01-23 瑞声科技(新加坡)有限公司 镜头模组
CN206362957U (zh) * 2016-12-30 2017-07-28 上饶市宇瞳光学有限公司 一种弯月形镜片及镜头模组
CN107390461A (zh) * 2017-06-20 2017-11-24 深圳奥比中光科技有限公司 3d成像子模组及其电子设备
CN108196416A (zh) * 2018-02-27 2018-06-22 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN108388067A (zh) * 2018-02-27 2018-08-10 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN207780466U (zh) * 2018-02-27 2018-08-28 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置

Similar Documents

Publication Publication Date Title
TWI708110B (zh) 鐳射投射器、圖像獲取裝置和電子設備
TWI771569B (zh) 鐳射投射模組、深度相機及電子裝置
CN108924295B (zh) 光电模组、深度相机和终端
US11402199B2 (en) Laser generator, structured light projector, and electronic device
CN108196416A (zh) 激光投射模组、深度相机和电子装置
CN108490631B (zh) 结构光投射器、图像获取结构和电子装置
WO2019201010A1 (zh) 激光投射器、相机模组和电子装置
CN108390971B (zh) 支架、输入输出组件和终端
TWI749276B (zh) 結構光投影模組及具有該模組的電子裝置
WO2019174434A1 (zh) 结构光投射器、深度相机和电子设备
WO2020052289A1 (zh) 深度获取模组及电子装置
CN108845428B (zh) 激光投射模组、深度相机和电子装置
CN108388067A (zh) 激光投射模组、深度相机和电子装置
CN208110247U (zh) 激光投射模组、深度相机和电子装置
CN108490572B (zh) 激光投射模组、深度相机及电子装置
WO2019165853A1 (zh) 激光投射模组、深度相机和电子装置
US11563930B2 (en) Laser projection component, detection method thereof, and electronic device
CN210109471U (zh) 激光投射模组、深度相机和电子装置
CN108983432B (zh) 激光投射器、深度获取装置和终端
CN108508688B (zh) 激光发射器、结构光投射模组、深度相机和电子设备
WO2019223451A1 (zh) 激光投射模组、深度相机和电子装置
CN210015299U (zh) 激光投射模组、深度相机和电子装置
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
CN108493771A (zh) 激光发生器、激光投射模组、深度相机和电子装置
CN108344375A (zh) 激光投射模组、深度相机和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760119

Country of ref document: EP

Kind code of ref document: A1