WO2019165567A1 - System and method for bioremediation of polluted water - Google Patents

System and method for bioremediation of polluted water Download PDF

Info

Publication number
WO2019165567A1
WO2019165567A1 PCT/CL2018/050056 CL2018050056W WO2019165567A1 WO 2019165567 A1 WO2019165567 A1 WO 2019165567A1 CL 2018050056 W CL2018050056 W CL 2018050056W WO 2019165567 A1 WO2019165567 A1 WO 2019165567A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioreactor
settling tank
microorganisms
water
effluent
Prior art date
Application number
PCT/CL2018/050056
Other languages
Spanish (es)
French (fr)
Inventor
Marcela Eugenia MUÑOZ AGUIRRE
Rory Laten TIBBALS
Original Assignee
Ard Solutions Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ard Solutions Ltda filed Critical Ard Solutions Ltda
Publication of WO2019165567A1 publication Critical patent/WO2019165567A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a bioreactor system and the method of application of said system that allows bioremediation of contaminated water, such as natural effluents contaminated by industrial activity.
  • Passive systems for the remediation of contaminated water are known in the art, among those existing for surface flows are: artificial wetlands, anoxic drains, organic rafts and alkaline production systems; for underground flows the permeable reactive barriers (PRB, Permeable Reactive Barriers), and for mining lakes the anaerobic bioprocesses.
  • PRB permeable reactive barriers
  • the main objective of these systems is the suppression of acidity, the precipitation of heavy metals and the elimination of polluting substances. A brief description of these passive systems is given below.
  • Aerobic wetlands In artificial aerobic wetlands it is intended to reproduce the phenomena and processes of natural wetlands (swamps, marshes, peat bogs, etc.), creating an environment conducive to the development of certain plants (Tipha, Equisetum, reed, reeds, etc. .), communities of organisms (algae, protozoa and bacteria) and mosses (Sphagnum), which participate in water purification.
  • An aerobic system usually consists of one or several connected cells through which water circulates slowly by gravity, establishing a horizontal horizontal flow.
  • systems are designed that include waterfalls, meandering beds and rafts of large areas with shallow depths where hydrophilic plant frames that cover about 40% of the wetland surface are implanted. Emerging plants used in wetlands can transfer up to about 45 g 0 2 / m 2 / day through their roots and create an aerobic zone in the wetland substrate where metal oxidation and precipitation occurs.
  • Anaerobic wetlands In this type of wetland mine water flows by gravity and the increase in pH to levels close to neutral is due to the alkalinity of the bicarbonates generated in the system from anaerobic sulfate reduction and dissolution of limestone (CaCC> 3 ). To prevent aerobic processes that trigger the generation of metallic acidity through the hydrolysis of some metals, the pre-treatment of acidic water with limestone in atmospheric conditions is used.
  • Anoxic limestone drainage This system consists of a ditch filled with limestone gravels or other limestone material sealed to the ceiling by a layer of clay soil and an impermeable geomembrane to maintain anoxic conditions, thereby increasing the partial pressure of the C0 2 to maximize the dissolution of limestone. Acid mine water is circulated inside the ditch causing limestone to dissolve, which creates alkalinity and raises the pH of the water.
  • Channel or limestone toxic drainage It is a channel whose bed is filled with limestone through which the water to be treated flows, whose objective is to increase the pH and alkalinity to decrease acidity.
  • the high oxygen content produces oxidation and hydrolysis of Fe and dissolved metals, which precipitate as oxyhydroxides.
  • PRB Permeable reactive barriers
  • Its construction consists of making a trench transverse to the flow, which is filled with various types of reactive materials.
  • the purifying processes inside the barrier are the bacterial reduction of sulfates, the retention of metals precipitating as sulphides, and the increase in pH mainly by dissolving the limestone.
  • Passive acid water treatments involve treatment in gravitational flow systems (without pumping) that contain natural materials (fertilizer, limestone, etc.). Passive systems improve water quality through biogeochemical reactions without the use of synthetic reagents and without the application of external energy, which results in a cheaper option to decontaminate these waters. In addition, it only requires sporadic (although regular) maintenance.
  • Traditional passive treatment systems such as oxic limestone drains (OLD), limestone drainage (anoxic limestone drains, ALD), alkalinity generating and reducing systems (reducing and alkalinity producing Systems, RAPS), are prone to fill (get stuck) and passivate (lose reactivity) when used to treat water with high acidity and metallic charge, typical characteristics of mine acid waters.
  • patent EP301924B1 discloses a wastewater treatment process to remove phosphorus and optionally nitrogen, from these wastewater , of the type of activated sludge or biofilter, which operates in aerobic conditions and subsequently in anaerobic conditions in a treatment pond, with the use of reducing bacteria, agitation means to maintain dissolved oxygen at a concentration of 1 to 3.2 mg / l and have Steel contacts immersed in the pond to use electrochemical corrosion of iron.
  • the method of this patent requires a lot of energy to maintain the aerobic conditions of the process.
  • JP2008194610A provides a treatment method that allows maintaining the concentration and activity of the sulfur oxidizing bacteria without additional supply of substrates so that these bacteria perform a stable treatment, when the wastewater they contain Sulfur-based COD components are treated biologically with sulfur oxidizing bacteria.
  • the process comprises a first aerobic oxidation stage, with oxygen supply, followed by a reduction stage, with constant agitation. This process also requires a high energy supply in your application.
  • the present invention relates to the treatment of contaminated water.
  • the present invention relates to a system that includes a bioreactor and the method of applying said system for bioremediation of contaminated water, such as for example acidic water.
  • the main objective of this technology is the remediation of contaminated water from an effluent. Therefore, once the effluent that will be remedied has been defined, analysis should be done to determine the existing levels of the various pollutants. A bioreactor is then constructed to remedy the effluent under analysis in situ.
  • a bioremediation system and method comprising a settling tank connected to a bioreactor comprising a consortium of microorganisms with sulfo reductive characteristics that perform biological remediation.
  • the innovative system and method of the invention consists of a reductive system that performs two functions in two separate compartments: the first: Precipitation of metal sulphides, carbonates, oxides, and elemental sulfur and the second: Biological generation of sulphides and alkalinity.
  • Figure 1 Schematic drawing of one of the modalities of the semi-passive system of the invention.
  • FIG. 1 Schematic drawing of another embodiment of the semi-passive system of the invention, which includes a mixing chamber (11).
  • FIG. 1 Schematic drawing of another embodiment of the system of the invention, with 2 separate reactors.
  • FIG. 4 Schematic drawing of another embodiment of the system of the invention, with 4 separate reactors, a settling tank and 3 bioreactors in series, with a nutrient delivery.
  • FIG. 5 Schematic drawing of another embodiment of the system of the invention, with 4 separate reactors, a settling tank and 3 bioreactors in series, where the delivery of nutrients is through a plurality of serial connections of the 3 bioreactors.
  • Figure 6. Schematic drawing of another embodiment of the system of the invention, with 5 separate reactors, a settling tank and 4 bioreactors in series, with serial nutrient feed, with a sand filter (30), a contaminated water tank (20) and a nutrient pond (40).
  • the invention relates to a system and method for the bioremediation of contaminated water, such as acidic waters from natural effluents contaminated by industrial activity, such as mining activity.
  • contaminated water such as acidic waters from natural effluents contaminated by industrial activity, such as mining activity.
  • the system and method of the invention make it possible to purify contaminated water at a low cost.
  • the present invention consists of a system comprising two separate compartments, one for the biological purification of water by means of microorganisms, especially consortium of microorganisms with sulforeductive characteristics, and another for the precipitation of solids.
  • the system is semi-passive and energy dependent. It can have a single large separate pool in two compartments or have several separate ponds, which can be a decanter and one or more bioreactors in series.
  • the system is semi-passive and comprises a settling tank, which is connected by overflow to the bioreactor, as illustrated in Figures 1 or 2.
  • the contaminated effluent reaches a settling tank, where in a first chamber it is Mix with recirculated treated water.
  • the water in the settling pond is overflowed into a bioreactor, which comprises aggregates colonized by microorganisms and receives nutrients from a nutrient supply pond.
  • energy is provided by means of a solar panel or other autonomous system available in the art, and if possible, network power can be used.
  • the treated water flows out of the system, specifically from the settling tank.
  • the settling tank of the system of the invention comprises a sludge outlet, and if said outlet is not present, these can be extracted by means of extraction available in the art, such as a truck with suction means, mechanical shovels or Other means of extraction.
  • the system comprises a settling tank (1), which is connected by pipes (7) and pumps to the bioreactor (2), as illustrated in Figure 3.
  • the contaminated effluent reaches the settling tank, where in a first chamber it is mixed with treated recirculated water. Water from the settling pond is pumped to the bioreactor, which comprises aggregates colonized by microorganisms and receives nutrients from a nutrient pond.
  • the treated water flows out of the system, specifically from the settling tank.
  • the settling tank of the system of the invention comprises a sludge outlet.
  • bioreactors In an optional embodiment there are several bioreactors connected in series, as illustrated in Figure 4.
  • the process of the invention which is carried out in any of the aforementioned systems, performs two functions in two separate compartments: 1. Biological generation of sulphides and alkalinity, in the bioreactor and 2. Precipitation of metal sulphides, carbonates, oxides, and sulfur elemental, and neutralization of sulfuric acid in the settling pond.
  • the size of the settling pond is designed to allow the precipitation of the metals of the solution to be treated, the decantation of the precipitated sludge and the storage of sludge (precipitated metals).
  • the microorganisms, located in the bioreactor are mainly bacteria, archaea, fungi or protozoa, especially bacteria and sulfo reducing archaea.
  • a source of inorganic or organic nutrients can be supplied that are easily pumped in small volumes to the bioreactor.
  • a solution from the bioreactor whose product of the activity of the microorganisms has an alkaline pH (about 7), sulphides, and bicarbonate concentrations, is recirculated and mixed with the inlet solution (solution to be treated). This neutralizes acidity and causes precipitation of sulphides, oxides and carbonated species. Recirculation is carried out by means of a pump.
  • the energy source of this pump can be a solar panel, like other available energy sources, including grid power.
  • the microorganisms contained in the bioreactor colonize the aggregates present, the which are chosen from gravel, gravel or limestone, among others, and will use nutrients as a source of food and sulfate contained in the solution from the settling pond as a source of oxygen.
  • Sulfo reducing bacteria will produce sulfide, additional alkalinity, and bicarbonate, which in turn allows the neutralization and precipitation of metals in the settling pond. Since the two compartments have a fixed volume, the treated decontaminated water will leave the system by overflow to maintain the level in the system. That is to say, the flow of contaminated water entering the system is proportional flow of treated water leaving (see figure 1).
  • This system requires minimal operation, so visits to the system site for operational and preventive maintenance purposes can be carried out weekly or even monthly depending on the criticality or degree of contamination of the water, that is, concentration of metals in the effluent of entry. All necessary functions can be performed in a single work day: 1. Preventive maintenance and equipment calibration, to ensure continuous operation. 2. Sludge disposal. 3. Address unforeseen equipment operations. In particular, sludge removal is done even more spacedly, it can be every 4, 6, 8, 10 or 12 months.
  • a configuration of a bioreactor of the invention in the semi-passive system mode shows the system comprising two communicated reactors, through a overflow and a recirculation means, wherein the first reactor is a settling tank (1) comprising: a. a mixing chamber (1 1), which comprises a contaminated water inlet (3), a recirculated effluent connection pipe (4), and a mixture outlet (14); and b. a treated water outlet (6); wherein the second reactor is a bioreactor (2) comprising: a. a bioreactor inlet (7) that receives the outflow of the settling tank (1), which corresponds to an outlet of the settling tank; b.
  • a nutrient input (5) for microorganisms where nutrients are supplied in a controlled manner, with a pumping system (13); c. a plurality of aggregate particles (10), where the microorganisms can be anchored; and d. a recirculating pump (12) that communicates operatively with the mixing chamber (11).
  • the settling tank (1) is overflowed to the bioreactor (2) and is separated by a barrier (9).
  • the contaminated effluent reaches the settling tank through the inlet (3), where the inlet is mixed with the recirculated effluent (4) in a mixing chamber (11).
  • the water passes overflow (7) to the bioreactor (2) that comprises aggregate particles (10) colonized by microorganisms and receives nutrients through the entrance (5) from a nutrient pond.
  • the treated water flows out of the reactor through the outlet (6). And optionally there is the outlet for decanted sludge (8).
  • the settling tank (1) is connected by pipes (7) with at least one pump to the bioreactor (2).
  • the contaminated effluent reaches the settling tank through the entrance (3), at the entrance it is mixed with recirculated effluent (4) in a mixing chamber (11).
  • the water passes through pipes with at least one pump (7) to the bioreactor (2) that comprises aggregate particles (10) colonized by microorganisms and receives nutrients through the entrance (5) from a nutrient pond .
  • the treated water flows out of the reactor through the outlet (6).
  • the outlet for decanted sludge there is the outlet for decanted sludge (8).
  • the stages it comprises are: first entering the contaminated water into the settling tank, where it is mixed with a flow of recirculation from the bioreactor, which generates the precipitation of the metals present in the contaminated water and then conducts this water with sulfate concentration towards the bioreactor with microorganisms, especially a consortium of microorganisms with sulfo reductive characteristics that reduce sulfate by increasing the alkalinity of the medium and recirculating part of the bioreactor water, as already indicated towards the settling pond to be mixed with the contaminated effluent and favor the precipitation of the metals to obtain the treated water that leaves the system by overflow.
  • the system additionally comprises adding nutrients for the microorganisms contained in the bioreactor, where the inlet and outlet flow of the system is proportional, generally 1: 1 and the recirculation flow is from 1: 1 to 1: 50.
  • the residence time within the system is between 4 hours to 10 days.
  • the nutrients to be added depend on the microorganisms chosen. These can be bacteria, archaea, fungi, protozoa or others, Sulfo reducing bacteria are especially chosen, which can be of the genera Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, or others and the archaea are chosen among the genera: Acidianus , Ferroplasma, Metallosphaera, Sulfolobus or others. . But in general they must incorporate a source of carbon and inorganic essential nutrients such as phosphate, nitrogen, potassium.
  • ethyl alcohol and NPK fertilizer are incorporated separately, other options are methanol, propanol, butanol, and even any available organic compound, such as sugar and even milk.
  • concentration of nutrients must be established in relation to the effluent to be treated.
  • the system could be used to treat nitrate waters, where metals and sulfate are present.
  • the invention could be used to precipitate soluble metals in neutral water streams such as arsenic or selenium.
  • the bioreactor and the settling tank would normally be constructed in an underground pond system (underground, buried). In another application, the bioreactor and the settling tank could be arranged on the surface. In another application, the bioreactor and the settling pond could be built in mine tunnels.
  • the bioreactor can be constructed and / or coated with HDPE, Hypalon, pvc, asphalt, concrete, clay, for example.
  • the settling tank may be constructed and / or coated with steel, polyethylene, HDPE, stainless steel and fiberglass.
  • the decanter and / or bioreactor may be covered to ensure anoxic conditions, prevent animals or even people from drinking from the reactors and protect the system from falling animals or other occasional contaminants.
  • One option is the coating with an HDPE cover, so that the cover is held above the reactor, a layer of can be included. HDPE balls, where these balls are empty and filled with air, and on them the HDPE cover is placed. Similarly, any other coating system available in the art can be used.
  • the system may comprise a sand filter at the outlet of the decanter, as a final treatment, in order to retain very fine metals that do not precipitate in the decanter.
  • the invention corresponds to an industrial process, which comprises a system and method for remediation with bacteria from contaminated water. This process It can be done through a semi-passive system, which has the following comparative advantages:
  • the operational equipment is very few and of very low energy requirement.
  • the required electrical energy can be provided by solar collectors or small wind station, or other system available in the art.
  • the system is remotely controllable.
  • the system reduces energy consumption by being semi-passive and using anaerobic bacteria.
  • the present technology discloses a system for the purification of contaminated water comprising at least two communicated reactors and a recirculation medium
  • the first reactor is at least one settling tank (1 ) comprising: a. an inlet (3) of contaminated water and a flow of recirculated water, coming from a connecting pipe of the recirculated effluent (4); b. a treated water outlet (6);
  • the second reactor is at least one bioreactor (2), which can be closed, to prevent the entry of air, comprises: a. a bioreactor inlet (7) that receives the outflow from the upper level of the fluid in the settling tank (1); b.
  • a nutrient input (5) to feed the microorganisms c. a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the microorganisms can be anchored; and d. a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
  • the settling tank (1) also comprises: a mixing chamber (1 1), which mixes the fluids from the inlet (3) of contaminated water and the connection pipe of the recirculated effluent (4), and an outlet of the mixture (14); which delivers the mixed fluids to said settling tank (1).
  • the settling tank (1) also comprises a sludge outlet (8).
  • the system additionally comprises a pump (13) to deliver the nutrients (5) to the bioreactor (2) from a nutrient pond, when the delivery of nutrients by gravity is not sufficient.
  • the aggregate particles (10), are gravel or gravel or limestone or mixture of both or any organic or inorganic material that has permeability, suitable to be colonized by microorganisms and with a diameter of up to 500 mm.
  • the outlet for the decanted sludge (8) is at the bottom of the settling tank (1).
  • the outlet of the settling tank towards the bioreactor (7) can be carried out by overflow or by pipes operated by pumps.
  • the system is powered by solar or wind energy panels, or any means of autonomous energy or mixture of said energy sources.
  • the second reactor is a plurality of bioreactors (2.0; 2.1; 2.2), which can be connected in series or in parallel or in series and parallel.
  • the microorganisms are chosen among bacteria, archaea, fungi, protozoa and especially among sulforeductive bacteria of the genera Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, or others, and sulforeducting archaees of the genera: Acidianus, Ferroplasma, Metaphabus other .
  • Nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy products, such as: cheese whey, milk and NPK fertilizers, among others.
  • a barrier (9) When the settling tank (1) and the bioreactor (2) are constructed in the same unit, said ponds are separated by a barrier (9). It can be constructed and / or coated with any suitable material available in the art. Non-limiting examples of suitable materials are: HDPE (High Density Polyethylene-High Density Polyethylene) or Hypalon, PVC, asphalt, concrete, clay, for example.
  • the at least two communicated reactors are constructed and / or coated with: steel, polyethylene, HDPE, (High Density Polyethylene - high density polyethylene) or Hypalon or PVC or concrete or stainless steel, or fiberglass, among others.
  • the settling tank (1) is closed or covered, so that no contaminants, foreign agents and / or air enter.
  • a method for the purification of contaminated water comprising: a. decant metals from contaminated water in a settling pond (1), b. treat water in a bioreactor with sulfo reducing microorganisms, and c.
  • the first reactor is a settling tank (1) comprising: an inlet (3) of contaminated water and a connection pipe of the recirculated effluent (4); a treated water outlet (6); wherein the second reactor is at least one bioreactor (2) comprises: a bioreactor inlet (7) that receives the outflow from the upper level of the fluid that is in the settling tank (1); a nutrient input (5) for microorganisms; a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the bacteria can be anchored; and a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
  • nutrients can be added to the bacteria contained in the bioreactor (2) and recirculate fluid from the bioreactor to the settling tank (1).
  • the input flow of the system is proportional to the output flow, for example, at a rate between 2: 1 to 1: 2, especially 1: 1 and the recirculation flow is 1: 1 to 1: 50, where The residence time within the system is between 1 hour to 15 days.
  • Microorganisms are found colonizing gravel or gravel where aggregate particles have a diameter of at most 500 mm. These are chosen among Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, among others.
  • Nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy products, such as: cheese whey, NPK fertilizer milk or any organic nutrient.
  • NPK Fertilizer 16PPM N; 5 PPM P and 2 PPM K.
  • HDPE balls with HDPE cover where these balls are empty and filled with air. They are located under the HDPE cover to keep it floating. This is to prevent animals, birds and humans from entering or drinking water. Also to prevent evaporation and loss of superfluous and air pollution with H2S.
  • Pond size 20m x 15m x 3m (LxWxH). Pond volume: 441 m 3 Current residence time: 133 hours without decanted sludge.
  • EXAMPLE 2 4 bioreactors in series and a settling tank were used, as shown in Figure 6. These results were obtained by using 5 tanks of 1200 liters (1; 2.0; 2.1; 2.2; 2.3) and 3 tanks of 200 liters (20, 30, 40). One of the 1200 liter ponds is the metal decanting tank (1). The other 4 tanks of 1200 liters are the bioreactors in series (2.0; 2.1; 2.2 and 2.3). Each bioreactor is full of gravel and water (500 liters each). The gravel fulfills the function of being a support for microorganisms.
  • Water from the bioreactor (2.3) contains many sulphides due to bacterial sulfate reduction that occurs in bioreactors (2.0; 2.1; 2.2; 2.3). When this water was combined with sulphides, with the contaminated water containing many metals, the precipitation of these in the form of sludge occurred and they were deposited at the bottom of the decanter (1).
  • PH levels, oxidation / reduction potential, TDS and conductivity were measured daily throughout the experiment.
  • the sampling points are below the decanter (1), below the bioreactor (2.0), below the bioreactor (2.1), below the bioreactor (2.2), below the bioreactor (2.3), in the decanter supernatant (1) above, in the bioreactor supernatant (2.3) and in the water after passing through the sand filter (30), that is, the clean water (filter).
  • the system was running 34 days without contaminated water, only with nutrients. Enough time for the microorganisms to stabilize, increase the biomass to an optimal figure and achieve the necessary alkalinity to subsequently precipitate metals with an oxygen source such as sulfate under anoxic conditions.
  • the output pH is absolutely neutral, and there is a substantial reduction of the sulfates present, as well as of the heavy metals Aluminum, Cobalt, Copper Copper, Manganese, Zinc, Arsenic, Beryllium, Cadmium , Chrome, Lithium (Citrus), Molybdenum, Nickel, Silver and Vanadium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The invention relates to a system for the purification of polluted water, which comprises at least two connected reactors and a recirculation medium, wherein the first reactor is at least one decanting tank (1) comprising: a. an inlet (3) for polluted water and a flow of recirculated water from a pipe (4) for connecting recirculated effluent; and b. an outlet (6) for treated water, and wherein the second reactor is at least one bioreactor (2) comprising: e. an inlet (7) to the bioreactor that receives the outflow from the top of the fluid that is in the decanting tank (1); f. an inlet (5) for nutrients for microorganisms; g. a plurality of aggregate particles (10) contained in the bioreactor (2), to which the microorganisms can attach themselves; and h. a recirculating pump (12) that operatively communicates with the pipe (4) for connecting recirculated effluent, so that said effluent enters the decanting tank (1). The invention also relates to a method associated with the system for the purification of polluted water.

Description

SISTEMA Y MÉTODO DE BIORREMEDACIÓN DE AGUAS CONTAMINADAS  SYSTEM AND METHOD OF BIORREMEDATION OF POLLUTED WATERS
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La invención se refiere a un sistema de biorreactor y el método de aplicación de dicho sistema que permite la biorremedación de aguas contaminadas, tales como efluentes naturales contaminados por la actividad industrial.  The invention relates to a bioreactor system and the method of application of said system that allows bioremediation of contaminated water, such as natural effluents contaminated by industrial activity.
ESTADO DEL ARTE STATE OF ART
Hay muchas fuentes pequeñas de agua contaminada en el mundo. Por ejemplo, en Chile, muchas de estas fuentes están relacionadas con actividades de grandes, medianas y pequeñas mineras, pero otras actividades también pueden crear fuentes de contaminación. Minas a cielo abierto (Rajos abiertos), socavones de las minas, depósitos de residuos mineros (botaderos) y relaves son todos conocidos por producir agua contaminada cuando se exponen a aguas lluvia. Estas aguas contaminadas deben ser tratadas para ser devueltas de forma inocua al medio ambiente, no sólo por ética e imagen empresarial, sino también para cumplir con la respectiva Resolución de Calificación Ambiental de cada faena y de acuerdo a lo indicado en la ley 20.551 que Regula el Cierre de Faenas e Instalaciones Mineras. De acuerdo a la información disponible en Sernageomin, por ejemplo, existen 651 depósitos de relaves de los cuales 359 se encuentran no activos, 158 activos, 95 abandonados y que podrían ser fuentes de efluentes de aguas ácidas al entrar en contacto con aguas lluvias.  There are many small sources of contaminated water in the world. For example, in Chile, many of these sources are related to large, medium and small mining activities, but other activities can also create sources of pollution. Open pit mines (open pit), mine subways, mining waste deposits (dumps) and tailings are all known to produce contaminated water when exposed to rainwater. These contaminated waters must be treated to be returned innocuously to the environment, not only for business ethics and image, but also to comply with the respective Environmental Qualification Resolution of each task and in accordance with the provisions of Law 20.551 that Regulates the closure of mining sites and facilities. According to the information available in Sernageomin, for example, there are 651 tailings deposits of which 359 are non-active, 158 active, 95 abandoned and that could be sources of acid water effluents when they come into contact with rainwater.
Dado las locaciones aisladas donde se producen estas aguas contaminadas, es conveniente que el sistema de tratamiento escogido requiera la mínima mantención posible, tanto en procesos de operación y de energía necesaria. Por esta razón una primera aproximación a la depuración de estas aguas han sido sistemas pasivos de remediación. Given the isolated locations where these polluted waters are produced, it is convenient that the chosen treatment system requires the minimum possible maintenance, both in the necessary operation and energy processes. For this reason, a first approach to the purification of these waters has been passive remediation systems.
En la técnica se conocen sistemas pasivos de remediación de aguas contaminadas, entre los existentes para flujos superficiales se encuentran: los humedales artificiales, drenajes anóxicos, balsas orgánicas y sistemas de producción alcalina; para flujos subterráneos las barreras reactivas permeables (PRB, Permeable Reactive Barriers), y para lagos mineros los bioprocesos anaerobios. El objetivo principal de estos sistemas es la supresión de la acidez, la precipitación de los metales pesados y la eliminación de sustancias contaminantes. A continuación, se entrega una breve descripción de dichos sistemas pasivos. Passive systems for the remediation of contaminated water are known in the art, among those existing for surface flows are: artificial wetlands, anoxic drains, organic rafts and alkaline production systems; for underground flows the permeable reactive barriers (PRB, Permeable Reactive Barriers), and for mining lakes the anaerobic bioprocesses. The main objective of these systems is the suppression of acidity, the precipitation of heavy metals and the elimination of polluting substances. A brief description of these passive systems is given below.
Humedales aeróbicos: En los humedales aerobios artificiales se pretende reproducir los fenómenos y procesos de los humedales naturales (pantanos, marismas, turberas, etc.), creando un ambiente propicio para el desarrollo de ciertas plantas (Tipha, Equisetum, carrizo, juncos, etc.), comunidades de organismos (algas, protozoos y bacterias) y musgos (Sphagnum), los cuales participan en la depuración del agua. Un sistema aerobio suele consistir en una o varias celdas conectadas por las que circula el agua lentamente por gravedad, estableciéndose un flujo horizontal superficial. Para favorecer la oxigenación del agua y mejorar la eficiencia en el tratamiento se diseñan sistemas que incluyan cascadas, lechos serpenteantes y balsas de grandes superficies con poca profundidad en donde se implanten entramados de plantas hidrófitas que cubran cerca del 40% de la superficie del humedal. Las plantas emergentes que se emplean en los humedales pueden transferir hasta unos 45 g 02/m2/día a través de sus raíces y crear una zona aerobia en el substrato del humedal en donde se produce la oxidación y precipitación de metales. Aerobic wetlands: In artificial aerobic wetlands it is intended to reproduce the phenomena and processes of natural wetlands (swamps, marshes, peat bogs, etc.), creating an environment conducive to the development of certain plants (Tipha, Equisetum, reed, reeds, etc. .), communities of organisms (algae, protozoa and bacteria) and mosses (Sphagnum), which participate in water purification. An aerobic system usually consists of one or several connected cells through which water circulates slowly by gravity, establishing a horizontal horizontal flow. In order to favor the oxygenation of the water and improve the efficiency in the treatment, systems are designed that include waterfalls, meandering beds and rafts of large areas with shallow depths where hydrophilic plant frames that cover about 40% of the wetland surface are implanted. Emerging plants used in wetlands can transfer up to about 45 g 0 2 / m 2 / day through their roots and create an aerobic zone in the wetland substrate where metal oxidation and precipitation occurs.
Humedales anaeróbicos: En este tipo de humedal el agua de mina fluye por gravedad y el incremento del pH hasta niveles cercanos al neutro se debe a la alcalinidad de los bicarbonatos que se generan en el sistema a partir de la reducción anaerobia del sulfato y la disolución de la caliza (CaCC>3). Para evitar que se produzcan procesos aerobios que desencadenen la generación de acidez metálica a través de hidrólisis de algunos metales se recurre al pre-tratamiento del agua ácida con caliza en condiciones atmosféricas. Anaerobic wetlands: In this type of wetland mine water flows by gravity and the increase in pH to levels close to neutral is due to the alkalinity of the bicarbonates generated in the system from anaerobic sulfate reduction and dissolution of limestone (CaCC> 3 ). To prevent aerobic processes that trigger the generation of metallic acidity through the hydrolysis of some metals, the pre-treatment of acidic water with limestone in atmospheric conditions is used.
Drenaje anóxico calizo (ALD): Este sistema consiste en una zanja rellena con gravas de caliza u otro material calcáreo sellada a techo por una capa de tierra arcillosa y una geomembrana impermeable para mantener condiciones anóxicas, con lo que se consigue incrementar la presión parcial del C02 para maximizar la disolución de la caliza. El agua ácida de mina se hace circular por el interior de la zanja provocando la disolución de la caliza, lo que genera alcalinidad y eleva el pH del agua. Anoxic limestone drainage (ALD): This system consists of a ditch filled with limestone gravels or other limestone material sealed to the ceiling by a layer of clay soil and an impermeable geomembrane to maintain anoxic conditions, thereby increasing the partial pressure of the C0 2 to maximize the dissolution of limestone. Acid mine water is circulated inside the ditch causing limestone to dissolve, which creates alkalinity and raises the pH of the water.
Canal o drenaje óxico calizo (OLC Ó OLD): Es un canal cuyo lecho está relleno de caliza por el que fluye el agua a tratar, cuyo objetivo es incrementar el pH y la alcalinidad para disminuir la acidez. El elevado contenido de oxígeno, produce la oxidación e hidrólisis del Fe y de los metales disueltos, que precipitan como oxihidróxidos. Su diseño está en función del tiempo de retención y caudal a tratar. Barreras reactivas permeables (PRB): Cuando las aguas ácidas de roca se manifiestan como un flujo subterráneo, el dispositivo de tratamiento se configura como una pantalla permeable y reactiva dispuesta perpendicularmente a la dirección del flujo. Su objetivo es reducir la cantidad de sólidos disueltos (sulfatos y metales principalmente) e incrementar el pH. Su construcción consiste en hacer una zanja transversal al flujo, la cual se rellena con diversos tipos de materiales reactivos. Así, los procesos depuradores en el interior de la barrera son la reducción bacteriana de los sulfatos, la retención de los metales precipitando como sulfuras, y el incremento del pH principalmente por disolución de la caliza. Channel or limestone toxic drainage (OLC or OLD): It is a channel whose bed is filled with limestone through which the water to be treated flows, whose objective is to increase the pH and alkalinity to decrease acidity. The high oxygen content produces oxidation and hydrolysis of Fe and dissolved metals, which precipitate as oxyhydroxides. Its design is based on the retention time and flow to be treated. Permeable reactive barriers (PRB): When acidic rock waters manifest as an underground flow, the treatment device is configured as a permeable and reactive screen arranged perpendicular to the direction of flow. Its objective is to reduce the amount of dissolved solids (sulfates and metals mainly) and increase the pH. Its construction consists of making a trench transverse to the flow, which is filled with various types of reactive materials. Thus, the purifying processes inside the barrier are the bacterial reduction of sulfates, the retention of metals precipitating as sulphides, and the increase in pH mainly by dissolving the limestone.
Los tratamientos pasivos de aguas ácidas implican el tratamiento en sistemas de flujo gravitacional (sin bombeo) que contienen materiales naturales (abono, piedra caliza, etc.). Los sistemas pasivos mejoran la calidad del agua por medio de reacciones biogeoquímicas sin el uso de reactivos sintéticos y sin la aplicación de energía externa, lo cual da como resultado una opción más económica para descontaminar estas aguas. Además, solo requiere de un mantenimiento esporádico (aunque regular). Los sistemas de tratamiento pasivo tradicionales como drenajes óxicos de caliza (oxic limestone drains, OLD), drenajes anóxicos de caliza (anoxic limestone drains, ALD), sistemas reductores y generadores de alcalinidad (reducing and alkalinity producing Systems, RAPS), son propensos a colmatarse (atascarse) y a pasivarse (perder la reactividad) cuando se usan para tratar aguas con elevada acidez y carga metálica, típicas características de aguas ácidas de minas. Passive acid water treatments involve treatment in gravitational flow systems (without pumping) that contain natural materials (fertilizer, limestone, etc.). Passive systems improve water quality through biogeochemical reactions without the use of synthetic reagents and without the application of external energy, which results in a cheaper option to decontaminate these waters. In addition, it only requires sporadic (although regular) maintenance. Traditional passive treatment systems such as oxic limestone drains (OLD), limestone drainage (anoxic limestone drains, ALD), alkalinity generating and reducing systems (reducing and alkalinity producing Systems, RAPS), are prone to fill (get stuck) and passivate (lose reactivity) when used to treat water with high acidity and metallic charge, typical characteristics of mine acid waters.
Los sistemas pasivos de tratamiento de aguas ácidas existentes, realizan las funciones de limpieza, actividad biológica y la precipitación de sulfuras metálicos, carbonatos, óxidos y azufre elemental en un mismo reactor. De este modo se presenta la desventaja de que la actividad biológica es entonces obstaculizada por la precipitación constante de los contaminantes. Esto lleva en primer lugar a la ineficiencia del sistema, lo que puede redundar ya sea en que el efluente no cumple con los estándares necesarios o que el tiempo de retención hidráulica para cumplir dichos estándares es muy alto, por lo que se requieren instalaciones mayores. Además, dado que la operación del biorreactor depende de la permeabilidad del medio, la precipitación de contaminantes pone en peligro la funcionalidad operativa del biorreactor. Estos problemas resultan a la larga en mayores costos operativos y de capital que los requeridos con el proceso propuesto en esta invención. Además de los sistemas pasivos, en el arte previo se han encontrado varias patentes que apuntan a la biorremedación de aguas contaminadas, entre ellas, la patente EP301924B1 que divulga un proceso de tratamiento de aguas residuales para eliminar fósforo y opcionalmente nitrógeno, de estas aguas residuales, del tipo de lodo activado o biofiltro, que opera en condiciones aeróbicas y posteriormente en condiciones anaeróbicas en un estanque de tratamiento, con utilización de bacterias reductoras, medios de agitación para mantener oxígeno disuelto en una concentración de 1 a 3.2 mg/l y contar con contactos de acero inmersos en el estanque para utilizar corrosión electroquímica de hierro. El método de esta patente requiere mucha energía para mantener las condiciones aeróbicas del proceso. Passive existing acidic water treatment systems perform the functions of cleaning, biological activity and precipitation of metal sulphides, carbonates, oxides and elemental sulfur in the same reactor. In this way the disadvantage arises that the biological activity is then hindered by the constant precipitation of the contaminants. This leads first to the inefficiency of the system, which can result in either the effluent not meeting the necessary standards or that the hydraulic retention time to meet these standards is very high, so larger installations are required. In addition, since the operation of the bioreactor depends on the permeability of the medium, the precipitation of contaminants jeopardizes the operational functionality of the bioreactor. These problems eventually result in higher operating and capital costs than those required with the process proposed in this invention. In addition to passive systems, several patents have been found in the prior art that point to the bioremediation of contaminated water, among them, patent EP301924B1 that discloses a wastewater treatment process to remove phosphorus and optionally nitrogen, from these wastewater , of the type of activated sludge or biofilter, which operates in aerobic conditions and subsequently in anaerobic conditions in a treatment pond, with the use of reducing bacteria, agitation means to maintain dissolved oxygen at a concentration of 1 to 3.2 mg / l and have Steel contacts immersed in the pond to use electrochemical corrosion of iron. The method of this patent requires a lot of energy to maintain the aerobic conditions of the process.
Por otro lado, está la solicitud de patente JP2008194610A, que proporciona un método de tratamiento que permite mantener la concentración y actividad de las bacterias oxidantes de azufre sin suministro adicional de sustratos para que estas bacterias realicen un tratamiento estable, cuando las aguas residuales que contienen componentes COD a base de azufre sean tratadas biológicamente con bacterias oxidantes de azufre. El proceso comprende una primera etapa aerobia de oxidación, con suministro de oxígeno, seguido de una etapa de reducción, con agitación constante. Este proceso también requiere un alto suministro de energía en su aplicación. On the other hand, there is the patent application JP2008194610A, which provides a treatment method that allows maintaining the concentration and activity of the sulfur oxidizing bacteria without additional supply of substrates so that these bacteria perform a stable treatment, when the wastewater they contain Sulfur-based COD components are treated biologically with sulfur oxidizing bacteria. The process comprises a first aerobic oxidation stage, with oxygen supply, followed by a reduction stage, with constant agitation. This process also requires a high energy supply in your application.
La presente invención se relaciona con el tratamiento de aguas contaminadas. En particular, la presente invención se relaciona con un sistema que incluye un biorreactor y el método de aplicación de dicho sistema para la biorremedación de aguas contaminadas, tales como por ejemplo aguas ácidas. La presente tecnología tiene por objetivo principal la remediación de agua contaminada de un efluente. Para lo cual una vez definido el efluente que será remediado, se deberá hacer análisis para determinar los niveles existentes de los diversos agentes contaminantes. Después se construye un bioreactor para remediar in situ el efluente en análisis. The present invention relates to the treatment of contaminated water. In particular, the present invention relates to a system that includes a bioreactor and the method of applying said system for bioremediation of contaminated water, such as for example acidic water. The main objective of this technology is the remediation of contaminated water from an effluent. Therefore, once the effluent that will be remedied has been defined, analysis should be done to determine the existing levels of the various pollutants. A bioreactor is then constructed to remedy the effluent under analysis in situ.
Debido a los inconvenientes ocasionados en los sistemas pasivos, sigue vigente la necesidad de contar con un sistema y método de biorremediación para la purificación de aguas contaminadas que consuma poca energía, que sea de bajo costo, no use elementos químicos para el tratamiento de dichas aguas contaminadas y que dicha biorremediación se logre con bacterias anaeróbicas, ya que estas no requieren aireación, lo que implica sistemas de suministro de aire adicional que para su funcionamiento consumen grandes cantidades de energía, como en el caso de las patentes mencionadas anteriormente. Due to the inconvenience caused by passive systems, the need for a bioremediation system and method for the purification of contaminated water that consumes low energy, that is low cost, does not use chemical elements for the treatment of said waters contaminated and that said bioremediation is achieved with anaerobic bacteria, since these do not require aeration, which implies additional air supply systems that for their operation consume large amounts of energy, as in the case of the aforementioned patents.
SOLUCIÓN AL PROBLEMA TÉCNICO SOLUTION TO THE TECHNICAL PROBLEM
Para subsanar el problema planteado, se presenta un sistema y método de biorremediación, donde el sistema comprende un estanque de decantación conectado a un biorreactor que comprende un consorcio de microorganismos con características sulfo reducto ras que realizan la remediación biológica.  To solve the problem, a bioremediation system and method is presented, where the system comprises a settling tank connected to a bioreactor comprising a consortium of microorganisms with sulfo reductive characteristics that perform biological remediation.
La hipótesis comprobada de la invención es que:“es posible separar las funciones de actividad biológica y la precipitación de sulfuras metálicos, carbonatos, óxidos y azufre elemental, evitando así obstaculizar la actividad biológica por la precipitación de metales", de esta manera se puede operar indefinidamente sin problemas de bloqueo del reactor. Por lo tanto, el sistema y método innovador de la invención consiste en un sistema reductivo que realiza dos funciones en dos compartimentos separados: el primero: Precipitación de sulfuras metálicos, carbonatos, óxidos, y azufre elemental y el segundo: Generación biológica de sulfuras y alcalinidad. The proven hypothesis of the invention is that: "it is possible to separate the functions of biological activity and the precipitation of metal sulphides, carbonates, oxides and elemental sulfur, thus avoiding impeding the biological activity by the precipitation of metals", in this way it can be operate indefinitely without reactor blockage problems, therefore, the innovative system and method of the invention consists of a reductive system that performs two functions in two separate compartments: the first: Precipitation of metal sulphides, carbonates, oxides, and elemental sulfur and the second: Biological generation of sulphides and alkalinity.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Dibujo esquemático de una de las modalidades del sistema semipasivo de la invención.  Figure 1. Schematic drawing of one of the modalities of the semi-passive system of the invention.
Figura 2. Dibujo esquemático de otra de las modalidades del sistema semipasivo de la invención, que incluye una cámara de mezclado (11). Figure 2. Schematic drawing of another embodiment of the semi-passive system of the invention, which includes a mixing chamber (11).
Figura 3. Dibujo esquemático de otra modalidad del sistema de la invención, con 2 reactores separados. Figure 3. Schematic drawing of another embodiment of the system of the invention, with 2 separate reactors.
Figura 4. Dibujo esquemático de otra modalidad del sistema de la invención, con 4 reactores separados, un estanque de decantación y 3 biorreactores en serie, con una entrega de nutrientes. Figure 4. Schematic drawing of another embodiment of the system of the invention, with 4 separate reactors, a settling tank and 3 bioreactors in series, with a nutrient delivery.
Figura 5. Dibujo esquemático de otra modalidad del sistema de la invención, con 4 reactores separados, un estanque de decantación y 3 biorreactores en serie, en donde la entrega de nutrientes es por medio de una pluralidad de conexiones en serie los 3 biorreactores. Figura 6. Dibujo esquemático de otra modalidad del sistema de la invención, con 5 reactores separados, un estanque de decantación y 4 biorreactores en serie, con alimentación de nutrientes en serie, con un filtro de arena (30), un estanque de agua contaminada (20) y un estanque de nutrientes (40). Figure 5. Schematic drawing of another embodiment of the system of the invention, with 4 separate reactors, a settling tank and 3 bioreactors in series, where the delivery of nutrients is through a plurality of serial connections of the 3 bioreactors. Figure 6. Schematic drawing of another embodiment of the system of the invention, with 5 separate reactors, a settling tank and 4 bioreactors in series, with serial nutrient feed, with a sand filter (30), a contaminated water tank (20) and a nutrient pond (40).
DESCRIPCIÓN GENERAL DE LA INVENCIÓN GENERAL DESCRIPTION OF THE INVENTION
La invención se refiere a un sistema y un método para la biorremediación de aguas contaminadas, tales como aguas ácidas de efluentes naturales contaminados por actividad industrial, como por ejemplo la actividad minera. El sistema y método de la invención permiten depurar el agua contaminada a un bajo costo. The invention relates to a system and method for the bioremediation of contaminated water, such as acidic waters from natural effluents contaminated by industrial activity, such as mining activity. The system and method of the invention make it possible to purify contaminated water at a low cost.
La presente invención consiste en un sistema que comprende dos compartimentos separados, uno para la depuración biológica del agua por medio de microorganismos, en especial consorcio de microorganismos con características sulforeductoras, y otro para la precipitación de sólidos The present invention consists of a system comprising two separate compartments, one for the biological purification of water by means of microorganisms, especially consortium of microorganisms with sulforeductive characteristics, and another for the precipitation of solids.
El sistema es semipasivo y dependiente de energía. Puede tener una sola gran piscina separada en dos compartimentos o tener varios estanques separados, los cuales pueden ser un decantador y uno o más biorreactores en serie. The system is semi-passive and energy dependent. It can have a single large separate pool in two compartments or have several separate ponds, which can be a decanter and one or more bioreactors in series.
En una realización preferida el sistema es semipasivo y comprende un estanque de decantación, el que se conecta por rebalse al biorreactor, como se ilustra en las Figuras 1 ó 2. El efluente contaminado llega a un estanque de decantación, donde en una primera cámara se mezcla con agua tratada recirculada. El agua del estanque de decantación pasa por rebalse a un biorreactor, que comprende áridos colonizados por microorganismos y recibe nutrientes desde un estanque de suministro de nutrientes. Hay una bomba de recirculación y una bomba para agregar los nutrientes, las que se alimentan con energía eléctrica. Convenientemente la energía se provee por medio de un panel solar u otro sistema autónomo disponible en la técnica, y si es posible se puede emplear energía de la red. El agua tratada sale por rebalse del sistema, específicamente desde el estanque de decantación. Opcionalmente el estanque de decantación del sistema de la invención comprende una salida para lodos, y en caso de no estar dicha salida, estos pueden ser extraídos por medios de extracción disponibles en la técnica, tales como un camión con medios de aspiración, palas mecánicas u otros medios de extracción. En otra realización preferida el sistema comprende un estanque de decantación (1), el que se conecta por cañerías (7) y bombas al biorreactor (2), como se ilustra en la figura 3. El efluente contaminado llega al estanque de decantación, donde en una primera cámara se mezcla con agua tratada recirculada. El agua del estanque de decantación es bombeada al biorreactor, que comprende áridos colonizados por microorganismos y recibe nutrientes desde un estanque de nutrientes. Hay una bomba de recirculación y una bomba para agregar los nutrientes, las que también se alimentan con energía eléctrica. Convenientemente la energía se provee por un panel solar u otro sistema autónomo disponible en la técnica, y si es posible se puede emplear energía de la red. El agua tratada sale por rebalse del sistema, específicamente desde el estanque de decantación. Opcionalmente el estanque de decantación del sistema de la invención comprende una salida para lodos. In a preferred embodiment the system is semi-passive and comprises a settling tank, which is connected by overflow to the bioreactor, as illustrated in Figures 1 or 2. The contaminated effluent reaches a settling tank, where in a first chamber it is Mix with recirculated treated water. The water in the settling pond is overflowed into a bioreactor, which comprises aggregates colonized by microorganisms and receives nutrients from a nutrient supply pond. There is a recirculation pump and a pump to add nutrients, which are fed with electrical energy. Conveniently, energy is provided by means of a solar panel or other autonomous system available in the art, and if possible, network power can be used. The treated water flows out of the system, specifically from the settling tank. Optionally, the settling tank of the system of the invention comprises a sludge outlet, and if said outlet is not present, these can be extracted by means of extraction available in the art, such as a truck with suction means, mechanical shovels or Other means of extraction. In another preferred embodiment the system comprises a settling tank (1), which is connected by pipes (7) and pumps to the bioreactor (2), as illustrated in Figure 3. The contaminated effluent reaches the settling tank, where in a first chamber it is mixed with treated recirculated water. Water from the settling pond is pumped to the bioreactor, which comprises aggregates colonized by microorganisms and receives nutrients from a nutrient pond. There is a recirculation pump and a pump to add nutrients, which are also fed with electrical energy. Conveniently, energy is provided by a solar panel or other autonomous system available in the art, and if possible, network power can be used. The treated water flows out of the system, specifically from the settling tank. Optionally the settling tank of the system of the invention comprises a sludge outlet.
En una realización opcional existen varios biorreactores conectados en serie, como se ilustra en la figura 4. In an optional embodiment there are several bioreactors connected in series, as illustrated in Figure 4.
El proceso de la invención que se realiza en cualquiera de los sistemas anteriormente mencionados, realiza dos funciones en dos compartimentos separados: 1. Generación biológica de sulfuras y alcalinidad, en el biorreactor y 2. Precipitación de sulfuras metálicos, carbonatos, óxidos, y azufre elemental, y neutralización de ácido sulfúrico en el estanque de decantación. The process of the invention, which is carried out in any of the aforementioned systems, performs two functions in two separate compartments: 1. Biological generation of sulphides and alkalinity, in the bioreactor and 2. Precipitation of metal sulphides, carbonates, oxides, and sulfur elemental, and neutralization of sulfuric acid in the settling pond.
El tamaño del estanque de decantación, se diseña para permitir la precipitación de los metales de la solución a tratar, la decantación de los lodos precipitados y el almacenamiento de lodos (metales precipitados). Los microorganismos, ubicados en el biorreactor, son principalmente bacterias, arqueas, hongos o protozoos, en especial bacterias y arqueas sulfo reductoras. De modo de asegurar el estado óptimo de la biomasa se puede suministrar una fuente de nutrientes inorgánicos u orgánicos que son bombeados fácilmente en pequeños volúmenes al biorreactor. Una solución desde el biorreactor, que producto de la actividad de los microorganismos tiene un pH alcalino (sobre 7), sulfuras, y concentraciones de bicarbonato, es recirculada y se mezcla con la solución de entrada (solución a tratar). Esto neutraliza la acidez y provoca la precipitación de sulfuras, óxidos y especies carbonatadas. La recirculación se lleva a cabo mediante una bomba. La fuente de energía de esta bomba puede ser un panel solar, como otras fuentes de energía disponibles, incluso energía de la red. Los microorganismos contenidos en el biorreactor colonizan los áridos presentes, los que se escogen entre ripios, gravilla o piedra caliza, entre otros, y utilizarán los nutrientes como fuente de alimento y el sulfato contenido en la solución proveniente del estanque de decantación como fuente de oxígeno. Las bacterias sulfo reductoras, producirán sulfuro, alcalinidad adicional, y bicarbonato, que a su vez permite la neutralización y precipitación de metales en el estanque de decantación. Dado que los dos compartimentos tienen un volumen fijo, el agua tratada descontaminada saldrá del sistema por rebalse para mantener el nivel en el sistema. Es decir, el flujo de agua contaminada que entra en el sistema es proporcional flujo de agua tratada que sale (ver figura 1). Este sistema requiere mínima operación, por lo que las visitas al sitio del sistema para fines operacionales y de mantenimiento preventivo se pueden realizar semanal o incluso mensualmente dependiendo de la criticidad o grado de contaminación del agua, es decir, concentración de metales en el efluente de entrada. Todas las funciones necesarias se pueden realizar en un solo día de trabajo: 1. Mantenimiento preventivo y la calibración de equipos, para asegurar la operación continua. 2. Eliminación de lodos. 3. Atender imprevistos operativos del equipo. En particular, la eliminación de lodos se realiza incluso más espaciadamente, puede ser cada 4, 6, 8, 10 ó 12 meses. The size of the settling pond is designed to allow the precipitation of the metals of the solution to be treated, the decantation of the precipitated sludge and the storage of sludge (precipitated metals). The microorganisms, located in the bioreactor, are mainly bacteria, archaea, fungi or protozoa, especially bacteria and sulfo reducing archaea. In order to ensure the optimum state of the biomass, a source of inorganic or organic nutrients can be supplied that are easily pumped in small volumes to the bioreactor. A solution from the bioreactor, whose product of the activity of the microorganisms has an alkaline pH (about 7), sulphides, and bicarbonate concentrations, is recirculated and mixed with the inlet solution (solution to be treated). This neutralizes acidity and causes precipitation of sulphides, oxides and carbonated species. Recirculation is carried out by means of a pump. The energy source of this pump can be a solar panel, like other available energy sources, including grid power. The microorganisms contained in the bioreactor colonize the aggregates present, the which are chosen from gravel, gravel or limestone, among others, and will use nutrients as a source of food and sulfate contained in the solution from the settling pond as a source of oxygen. Sulfo reducing bacteria will produce sulfide, additional alkalinity, and bicarbonate, which in turn allows the neutralization and precipitation of metals in the settling pond. Since the two compartments have a fixed volume, the treated decontaminated water will leave the system by overflow to maintain the level in the system. That is to say, the flow of contaminated water entering the system is proportional flow of treated water leaving (see figure 1). This system requires minimal operation, so visits to the system site for operational and preventive maintenance purposes can be carried out weekly or even monthly depending on the criticality or degree of contamination of the water, that is, concentration of metals in the effluent of entry. All necessary functions can be performed in a single work day: 1. Preventive maintenance and equipment calibration, to ensure continuous operation. 2. Sludge disposal. 3. Address unforeseen equipment operations. In particular, sludge removal is done even more spacedly, it can be every 4, 6, 8, 10 or 12 months.
Una configuración de un biorreactor de la invención en la modalidad de sistema semipasivo, como se aprecia en la Figura 2, muestra el sistema que comprende dos reactores comunicados, a través de un rebalse y de un medio de recirculación, en donde el primer reactor es un estanque de decantación (1) que comprende: a. una cámara de mezcla (1 1), la cual comprende una entrada de agua contaminada (3), una cañería de conexión del efluente recirculado (4), y una salida de la mezcla (14); y b. una salida de agua tratada (6); en donde el segundo reactor es un biorreactor (2) que comprende: a. una entrada a biorreactor (7) que recibe por rebalse el flujo de salida del estanque de decantación (1), que corresponde a una salida del estanque de decantación; b. una entrada de nutrientes (5) para los microorganismos, en donde nutrientes se suministran controladamente, con un sistema de bombeo (13); c. una pluralidad de partículas de áridos (10), en donde se pueden anclar los microorganismos; y d. una bomba recirculadora (12) que se comunica operativamente con la cámara de mezcla (11). A configuration of a bioreactor of the invention in the semi-passive system mode, as shown in Figure 2, shows the system comprising two communicated reactors, through a overflow and a recirculation means, wherein the first reactor is a settling tank (1) comprising: a. a mixing chamber (1 1), which comprises a contaminated water inlet (3), a recirculated effluent connection pipe (4), and a mixture outlet (14); and b. a treated water outlet (6); wherein the second reactor is a bioreactor (2) comprising: a. a bioreactor inlet (7) that receives the outflow of the settling tank (1), which corresponds to an outlet of the settling tank; b. a nutrient input (5) for microorganisms, where nutrients are supplied in a controlled manner, with a pumping system (13); c. a plurality of aggregate particles (10), where the microorganisms can be anchored; and d. a recirculating pump (12) that communicates operatively with the mixing chamber (11).
En una realización de la presente invención, el estanque de decantación (1) se conecta por rebalse al biorreactor (2) y están separados por una barrera (9). El efluente contaminado llega al estanque de decantación por la entrada (3), en donde la entrada se mezcla con el efluente recirculado (4) en una cámara de mezcla (11). Del estanque de decantación (1) el agua pasa por rebalse (7) al biorreactor (2) que comprende partículas de árido (10) colonizadas por microrganismos y recibe nutrientes por la entrada (5) desde un estanque de nutrientes. Hay una bomba de recirculación (12) y una bomba para agregar los nutrientes (13), las que se pueden alimentar con diferentes fuentes de energía, como, por ejemplo, la obtenida de un panel solar. El agua tratada sale por rebalse del reactor a través de la salida (6). Y opcionalmente está la salida para los lodos decantados (8). In one embodiment of the present invention, the settling tank (1) is overflowed to the bioreactor (2) and is separated by a barrier (9). The contaminated effluent reaches the settling tank through the inlet (3), where the inlet is mixed with the recirculated effluent (4) in a mixing chamber (11). From the settling tank (1) the water passes overflow (7) to the bioreactor (2) that comprises aggregate particles (10) colonized by microorganisms and receives nutrients through the entrance (5) from a nutrient pond. There is a recirculation pump (12) and a pump to add nutrients (13), which can be fed with different energy sources, such as that obtained from a solar panel. The treated water flows out of the reactor through the outlet (6). And optionally there is the outlet for decanted sludge (8).
En otra realización de la invención, como se muestra en la figura 3, el estanque de decantación (1) se conecta por cañerías (7) con al menos una bomba al biorreactor (2). El efluente contaminado llega al estanque de decantación por la entrada (3), en la entrada se mezcla con efluente recirculado (4) en una cámara de mezcla (11). Del estanque de decantación (1) el agua pasa por cañerías con al menos una bomba (7) al biorreactor (2) que comprende partículas de árido (10) colonizadas por microrganismos y recibe nutrientes por la entrada (5) desde un estanque de nutrientes. Hay una bomba de recirculación (12) y una bomba para agregar los nutrientes (13), las que se puede alimentar con diferentes fuentes de energía, como, por ejemplo, la obtenida de un panel solar. El agua tratada sale por rebalse del reactor a través de la salida (6). Y opcionalmente está la salida para los lodos decantados (8). En una realización opcional existen varios biorreactores conectados en serie, como se ilustra en las figuras 4, 5 y 6. La invención se refiere al método para la purificación de aguas empleando el sistema anteriormente mencionado, una vez que el sistema entra en funcionamiento estable, las etapas que comprende son: primero ingresar el agua contaminada hacia el estanque de decantación, donde se mezcla con un flujo de recirculación proveniente del biorreactor, lo que genera la precipitación de los metales presentes en el agua contaminada y posteriormente conducir esta agua con concentración de sulfato hacia el biorreactor con microorganismos, en especial un consorcio de microorganismos con características sulfo reducto ras que reducen el sulfato aumentando la alcalinidad del medio y recircular parte del agua del biorreactor, como ya se indicó hacia el estanque de decantación para ser mezclada con el efluente contaminado y favorecer la precipitación de los metales para obtener el agua tratada que sale del sistema por rebalse. El sistema adicionalmente comprende agregar nutrientes para los microorganismos contenidos en el biorreactor, donde el flujo de entrada y salida del sistema es proporcional, generalmente 1 :1 y el flujo de recirculación es de 1 :1 a 1 :50. El tiempo de residencia dentro del sistema es entre 4 horas a 10 días. In another embodiment of the invention, as shown in Figure 3, the settling tank (1) is connected by pipes (7) with at least one pump to the bioreactor (2). The contaminated effluent reaches the settling tank through the entrance (3), at the entrance it is mixed with recirculated effluent (4) in a mixing chamber (11). From the settling pond (1) the water passes through pipes with at least one pump (7) to the bioreactor (2) that comprises aggregate particles (10) colonized by microorganisms and receives nutrients through the entrance (5) from a nutrient pond . There is a recirculation pump (12) and a pump to add nutrients (13), which can be fed with different energy sources, such as that obtained from a solar panel. The treated water flows out of the reactor through the outlet (6). And optionally there is the outlet for decanted sludge (8). In an optional embodiment there are several bioreactors connected in series, as illustrated in Figures 4, 5 and 6. The invention relates to the method for water purification using the aforementioned system, once the system enters In stable operation, the stages it comprises are: first entering the contaminated water into the settling tank, where it is mixed with a flow of recirculation from the bioreactor, which generates the precipitation of the metals present in the contaminated water and then conducts this water with sulfate concentration towards the bioreactor with microorganisms, especially a consortium of microorganisms with sulfo reductive characteristics that reduce sulfate by increasing the alkalinity of the medium and recirculating part of the bioreactor water, as already indicated towards the settling pond to be mixed with the contaminated effluent and favor the precipitation of the metals to obtain the treated water that leaves the system by overflow. The system additionally comprises adding nutrients for the microorganisms contained in the bioreactor, where the inlet and outlet flow of the system is proportional, generally 1: 1 and the recirculation flow is from 1: 1 to 1: 50. The residence time within the system is between 4 hours to 10 days.
Los nutrientes a adicionar dependen de los microorganismos escogidos. Estos pueden ser bacterias, arqueas, hongos, protozoos u otros, En especial se escogen bacterias sulfo reductoras, las que pueden ser de los géneros Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, u otros y las arqueas se escogen entre los generas: Acidianus, Ferroplasma, Metallosphaera, Sulfolobus u otros. . Pero en general deben incorporar una fuente de carbono y nutrientes esenciales inorgánicos como fosfato, nitrógeno, potasio. En una realización se incorpora, por separado, alcohol etílico y fertilizante NPK, otras opciones son metanol, propanol, butanol, e incluso cualquier compuesto orgánico disponible, tal como azúcar e incluso leche. No obstante, la concentración de nutrientes debe establecerse en relación al efluente a tratar. The nutrients to be added depend on the microorganisms chosen. These can be bacteria, archaea, fungi, protozoa or others, Sulfo reducing bacteria are especially chosen, which can be of the genera Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, or others and the archaea are chosen among the genera: Acidianus , Ferroplasma, Metallosphaera, Sulfolobus or others. . But in general they must incorporate a source of carbon and inorganic essential nutrients such as phosphate, nitrogen, potassium. In one embodiment, ethyl alcohol and NPK fertilizer are incorporated separately, other options are methanol, propanol, butanol, and even any available organic compound, such as sugar and even milk. However, the concentration of nutrients must be established in relation to the effluent to be treated.
Inicialmente se debe inocular con bacterias sulfo reductoras u otros micrroganismos y esperar a que estas colonicen el medio, en presencia de nutrientes para formar el consorcio de microorganismos con características sulforeductoras, lo que debiera demorar de dos a tres semanas, para luego empezar a pasar agua contaminada desde el efluente. Con la planta en operación, los primeros 6 meses son de visitas periódicas para corroborar que el sistema funciona adecuadamente, medir parámetros y tomar muestras para ser analizadas en laboratorio. Luego de este periodo las visitas serán menos frecuentes al igual que los muéstraos para laboratorio. El sistema y método de la invención permiten tratar aguas contaminadas cargadas de metales. No obstante, para el experto en la técnica será evidente que en presencia de aguas de otras características podrían emplearse otras bacterias, las que naturalmente se desarrollarán en el efluente a tratar empleando el sistema y método de la invención para otros contaminantes. Por ejemplo, el sistema podría usarse para tratar aguas con nitrato, donde están presentes metales y sulfato. En otra aplicación, la invención podría usarse para precipitar metales solubles en corrientes de agua neutra tales como arsénico o selenio. Initially it should be inoculated with sulfo reducing bacteria or other microorganisms and wait for them to colonize the environment, in the presence of nutrients to form the consortium of microorganisms with sulforeductive characteristics, which should take two to three weeks, and then begin to pass water contaminated from the effluent. With the plant in operation, the first 6 months are of periodic visits to confirm that the system is working properly, measuring parameters and taking samples to be analyzed in the laboratory. After this period, visits will be less frequent, as will laboratory tests. The system and method of the invention allow to treat contaminated water loaded with metals. However, it will be apparent to the person skilled in the art that other bacteria could be used in the presence of waters of other characteristics, which will naturally be developed in the effluent to be treated using the system and method of the invention for other contaminants. For example, the system could be used to treat nitrate waters, where metals and sulfate are present. In another application, the invention could be used to precipitate soluble metals in neutral water streams such as arsenic or selenium.
En una aplicación los estanques del sistema de la invención o reactores, el biorreactor y el estanque de decantación normalmente se construirían en un sistema de estanques subterráneos (bajo tierra, enterrados). En otra aplicación, el biorreactor y el estanque de decantación podrían estar dispuestos sobre la superficie. En otra aplicación, el biorreactor y el estanque de decantación podrían construirse en túneles de mina. El biorreactor puede estar construido y/o revestido con HDPE, Hypalon, pvc, asfalto, concreto, arcilla, por ejemplo. El estanque de decantación puede estar construido y/o revestido con acero, polietileno, HDPE, acero inoxidable y fibra de vidrio. In one application the ponds of the system of the invention or reactors, the bioreactor and the settling tank would normally be constructed in an underground pond system (underground, buried). In another application, the bioreactor and the settling tank could be arranged on the surface. In another application, the bioreactor and the settling pond could be built in mine tunnels. The bioreactor can be constructed and / or coated with HDPE, Hypalon, pvc, asphalt, concrete, clay, for example. The settling tank may be constructed and / or coated with steel, polyethylene, HDPE, stainless steel and fiberglass.
En otra aplicación, podría haber dos estanques de decantación, por ejemplo, ambos construidos de hormigón. Uno podría estar en uso y el otro en modo de secado. Luego, el lodo seco podría descargarse usando una retro excavadora. In another application, there could be two settling ponds, for example, both constructed of concrete. One could be in use and the other in drying mode. Then, the dried mud could be unloaded using a retro excavator.
En una aplicación el decantador y/o el biorreactor pueden estar cubiertos para asegurar las condiciones anóxicas, evitar que animales o incluso personas beban de los reactores y proteger el sistema de la caída de animales u otros contaminantes ocasionales. Una opción es el recubrimiento con una cubierta de HDPE, de modo de que la cubierta se mantenga sobre el reactor, se puede incluir una capa de. Bolas de HDPE, en donde estas bolas están vacías y llenas con aire, y sobre ellas se pone la cubierta de HDPE. Del mismo modo, puede utilizarse cualquier otro sistema de recubrimiento disponible en la técnica. In one application the decanter and / or bioreactor may be covered to ensure anoxic conditions, prevent animals or even people from drinking from the reactors and protect the system from falling animals or other occasional contaminants. One option is the coating with an HDPE cover, so that the cover is held above the reactor, a layer of can be included. HDPE balls, where these balls are empty and filled with air, and on them the HDPE cover is placed. Similarly, any other coating system available in the art can be used.
Opcionalmente el sistema puede comprender un filtro de arena a la salida del decantador, como tratamiento final, con el objeto de retener los metales muy finos que no precipitan en el decantador. Optionally, the system may comprise a sand filter at the outlet of the decanter, as a final treatment, in order to retain very fine metals that do not precipitate in the decanter.
La invención corresponde a un proceso industrial, que comprende un sistema y método para la remediación con bacterias de aguas contaminadas. Este proceso puede realizarse mediante un sistema semipasivo, el que cuenta con las siguientes ventajas comparativas: The invention corresponds to an industrial process, which comprises a system and method for remediation with bacteria from contaminated water. This process It can be done through a semi-passive system, which has the following comparative advantages:
• No requiere labor operacional. • Does not require operational work.
•Solo requiere visitas periódicas para llenar los estanques de nutrientes, sacar muestras y hacer mantención preventiva. • It only requires periodic visits to fill the nutrient ponds, take samples and do preventive maintenance.
• Los equipos operacionales son muy pocos y de muy bajo requerimiento energético. La energía eléctrica requerida puede ser proveída por colectores solares o estación eólica pequeña, u otro sistema disponible en la técnica. • The operational equipment is very few and of very low energy requirement. The required electrical energy can be provided by solar collectors or small wind station, or other system available in the art.
•Porque las dos funciones del estanque decantación y la del biorreactor son en estanques grandes (o piscinas), el sistema es muy estable y requiere mucho tiempo para reaccionar a alguna perturbación del sistema. • Because the two functions of the settling tank and that of the bioreactor are in large ponds (or pools), the system is very stable and requires a lot of time to react to some system disturbance.
• El sistema es sustentable. • The system is sustainable.
• El sistema tiene una vida útil muy larga. • The system has a very long service life.
• El sistema tiene costos de capital y operacionales muy bajos. • The system has very low capital and operational costs.
• El sistema es controlable a distancia. • The system is remotely controllable.
• El sistema reduce el consumo energético por ser semipasivo y usar bacterias anaeróbicas. • The system reduces energy consumption by being semi-passive and using anaerobic bacteria.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Tal como se muestra en las figuras 1 a 3 la presente tecnología divulga un sistema para la purificación de aguas contaminadas que comprende al menos dos reactores comunicados y de un medio de recirculación, en donde el primer reactor es al menos un estanque de decantación (1) que comprende: a. una entrada (3) de aguas contaminadas y un flujo de agua recirculada, proveniente de una cañería de conexión del efluente recirculado (4); b. una salida de agua tratada (6); en donde el segundo reactor es al menos un biorreactor (2), el que puede ser cerrado, para impedir el ingreso del aire, comprende: a. una entrada a biorreactor (7) que recibe el flujo de salida desde el nivel superior del fluido que está en el estanque de decantación (1); b. una entrada de nutrientes (5) para alimentar los microorganismos; c. una pluralidad de partículas de áridos (10), las que se alojan en el biorreactor (2), en donde se pueden anclar los microorganismos; y d. una bomba recirculadora (12) que se comunica operativamente con la cañería de conexión del efluente recirculado (4), para que dicho efluente ingrese al estanque de decantación (1). As shown in Figures 1 to 3, the present technology discloses a system for the purification of contaminated water comprising at least two communicated reactors and a recirculation medium, wherein the first reactor is at least one settling tank (1 ) comprising: a. an inlet (3) of contaminated water and a flow of recirculated water, coming from a connecting pipe of the recirculated effluent (4); b. a treated water outlet (6); wherein the second reactor is at least one bioreactor (2), which can be closed, to prevent the entry of air, comprises: a. a bioreactor inlet (7) that receives the outflow from the upper level of the fluid in the settling tank (1); b. a nutrient input (5) to feed the microorganisms; c. a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the microorganisms can be anchored; and d. a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
En donde, el estanque de decantación (1) además comprende: una cámara de mezcla (1 1), la cual mezcla los fluidos provenientes de la entrada (3) de aguas contaminadas y la cañería de conexión del efluente recirculado (4), y una salida de la mezcla (14); que entrega los fluidos mezclados a dicho estanque de decantación (1). En otra configuración preferente el estanque de decantación (1) además comprende una salida para lodos (8). Wherein, the settling tank (1) also comprises: a mixing chamber (1 1), which mixes the fluids from the inlet (3) of contaminated water and the connection pipe of the recirculated effluent (4), and an outlet of the mixture (14); which delivers the mixed fluids to said settling tank (1). In another preferred configuration the settling tank (1) also comprises a sludge outlet (8).
El sistema comprende adicionalmente una bomba (13) para entregar los nutrientes (5) al biorreactor (2) desde un estanque de nutrientes, cuando la entrega de nutrientes por gravedad no es suficiente. The system additionally comprises a pump (13) to deliver the nutrients (5) to the bioreactor (2) from a nutrient pond, when the delivery of nutrients by gravity is not sufficient.
Las partículas de áridos (10), son ripio o gravilla o piedra caliza o mezcla de ambos o cualquier material orgánico o inorgánico que tiene permeabilidad, adecuadas para ser colonizadas por los microorganismos y con un diámetro de hasta 500 mm. The aggregate particles (10), are gravel or gravel or limestone or mixture of both or any organic or inorganic material that has permeability, suitable to be colonized by microorganisms and with a diameter of up to 500 mm.
En otra configuración preferente, la salida para los lodos decantados (8) está en el fondo del estanque de decantación (1). In another preferred configuration, the outlet for the decanted sludge (8) is at the bottom of the settling tank (1).
La salida del estanque de decantación hacia el biorreactor (7) se puede realizar por rebalse o por cañerías operadas por bombas. The outlet of the settling tank towards the bioreactor (7) can be carried out by overflow or by pipes operated by pumps.
Con la finalidad de disminuir aún más el consumo energético de la red eléctrica, el sistema es alimentado por unos paneles de energía solar o eólica, o cualquier medio de energía autónoma o mezcla de dichas fuentes de energía. En otra configuración preferente, el segundo reactor es una pluralidad de biorreactores (2.0; 2.1 ; 2.2), los que pueden estar conectados en serie o en paralelo o serie y paralelo. In order to further reduce the energy consumption of the electricity grid, the system is powered by solar or wind energy panels, or any means of autonomous energy or mixture of said energy sources. In another preferred configuration, the second reactor is a plurality of bioreactors (2.0; 2.1; 2.2), which can be connected in series or in parallel or in series and parallel.
Los microorganismos se escogen entre bacterias, arqueas, hongos, protozoos y en especial entre bacterias sulforeductoras de los géneros Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, u otros, y arqueas sulforeductoras de los generas: Acidianus, Ferroplasma, Metallosphaera, Sulfolobus u otros. Los nutrientes se escogen entre metanol, etanol, butanol, acetato, azúcar, malaza, derivados lácteos, tales como: suero de queso, leche y fertilizantes NPK, entre otros. The microorganisms are chosen among bacteria, archaea, fungi, protozoa and especially among sulforeductive bacteria of the genera Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, or others, and sulforeducting archaees of the genera: Acidianus, Ferroplasma, Metaphabus other . Nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy products, such as: cheese whey, milk and NPK fertilizers, among others.
Cuando el estanque de decantación (1) y el biorreactor (2) están construidos en una misma unidad, dichos estanques están separados por una barrera (9). Esta puede ser construida y/o revestida de cualquier material adecuado disponible en la técnica. Ejemplos no limitantes de materiales apropiados son: HDPE (High Density Polyethylene - polietileno de alta densidad) o Hypalon, PVC, asfalto, concreto, arcilla, por ejemplo. Los al menos dos reactores comunicados, son construidos y/o revestidos con: acero, polietileno, HDPE, (High Density Polyethylene - polietileno de alta densidad) o Hypalon o PVC o concreto o acero inoxidable, o fibra de vidrio, entre otros. When the settling tank (1) and the bioreactor (2) are constructed in the same unit, said ponds are separated by a barrier (9). It can be constructed and / or coated with any suitable material available in the art. Non-limiting examples of suitable materials are: HDPE (High Density Polyethylene-High Density Polyethylene) or Hypalon, PVC, asphalt, concrete, clay, for example. The at least two communicated reactors are constructed and / or coated with: steel, polyethylene, HDPE, (High Density Polyethylene - high density polyethylene) or Hypalon or PVC or concrete or stainless steel, or fiberglass, among others.
En otra configuración preferente, el estanque de decantación (1) es cerrado o cubierto, para que no entren contaminantes, agentes extraños y/o aire. In another preferred configuration, the settling tank (1) is closed or covered, so that no contaminants, foreign agents and / or air enter.
Con el sistema previamente definido, se ejecuta un método para la purificación de aguas contaminadas, que comprende: a. decantar los metales desde aguas contaminadas en un estanque de decantación (1), b. tratar el agua en un biorreactor con microorganismos sulfo reductores, y c. mezclar el agua proveniente de dicho biorreactor con el efluente contaminado para obtener el agua tratada, empleando un sistema que comprende al menos dos reactores comunicados y de un medio de recirculación, en donde el primer reactor es un estanque de decantación (1) que comprende: una entrada (3) de aguas contaminadas y una cañería de conexión del efluente recirculado (4); una salida de agua tratada (6); en donde el segundo reactor es al menos un biorreactor (2) comprende: una entrada a biorreactor (7) que recibe el flujo de salida desde el nivel superior del fluido que está en el estanque de decantación (1); una entrada de nutrientes (5) para los microorganismos; una pluralidad de partículas de áridos (10), las que se alojan en el biorreactor (2), en donde se pueden anclar las bacterias; y una bomba recirculadora (12) que se comunica operativamente con la cañería de conexión del efluente recirculado (4), para que dicho efluente ingrese al estanque de decantación (1). With the previously defined system, a method for the purification of contaminated water is executed, comprising: a. decant metals from contaminated water in a settling pond (1), b. treat water in a bioreactor with sulfo reducing microorganisms, and c. mixing the water from said bioreactor with the contaminated effluent to obtain the treated water, using a system comprising at least two communicated reactors and a recirculation means, wherein the first reactor is a settling tank (1) comprising: an inlet (3) of contaminated water and a connection pipe of the recirculated effluent (4); a treated water outlet (6); wherein the second reactor is at least one bioreactor (2) comprises: a bioreactor inlet (7) that receives the outflow from the upper level of the fluid that is in the settling tank (1); a nutrient input (5) for microorganisms; a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the bacteria can be anchored; and a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
Además, se le puede agregar nutrientes a las bacterias contenidas en el biorreactor (2) y recircular fluido desde del biorreactor hacia el estanque de decantación (1). In addition, nutrients can be added to the bacteria contained in the bioreactor (2) and recirculate fluid from the bioreactor to the settling tank (1).
El flujo de entrada del sistema es proporcional respecto al flujo de salida, por ejemplo, a razón entre 2:1 a 1 :2, en especial 1 :1 y el flujo de recirculación es de 1 :1 a 1 :50, en donde el tiempo de residencia dentro del sistema es entre 1 hora a 15 días. The input flow of the system is proportional to the output flow, for example, at a rate between 2: 1 to 1: 2, especially 1: 1 and the recirculation flow is 1: 1 to 1: 50, where The residence time within the system is between 1 hour to 15 days.
Los microorganismos se encuentran colonizando ripio o gravilla donde las partículas de áridos tienen un diámetro de a lo más 500 mm. Estas se escogen entre Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, entre otras. Microorganisms are found colonizing gravel or gravel where aggregate particles have a diameter of at most 500 mm. These are chosen among Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum, among others.
El suministro de nutrientes se realiza en forma continua o discontinua a través de pulsos. Los nutrientes se escogen entre metanol, etanol, butanol, acetato, azúcar, malaza, derivados lácteos, tales como: suero de queso, leche fertilizantes NPK o cualquier nutriente orgánico. The supply of nutrients is carried out continuously or discontinuously through pulses. Nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy products, such as: cheese whey, NPK fertilizer milk or any organic nutrient.
EJEMPLOS DE APLICACIÓN APPLICATION EXAMPLES
EJEMPLO 1. EXAMPLE 1.
Teniendo en cuenta el diseño de la planta se usó un efluente de agua a tratar y posteriormente se analizó en un laboratorio certificado. Una vez conocida la calidad del agua a tratar (flujo, pH, TDS, entre otros), se diseñó la planta para luego construir dos piscinas de tamaño definido como se muestra más adelante.  Taking into account the design of the plant, an effluent of water to be treated was used and subsequently analyzed in a certified laboratory. Once the quality of the water to be treated (flow, pH, TDS, among others) was known, the plant was designed to then build two pools of defined size as shown below.
Se consideraron las siguientes variables en el diseño de la planta a construir: • Tamaño apropiado del biorreactor The following variables were considered in the design of the plant to be built: • Appropriate bioreactor size
• Flujo de recirculación • Recirculation flow
• Flujo de entrada de nutrientes (de acuerdo a la concentración requerida) • Nutrient inflow (according to the required concentration)
• Tamaño de estanque de nutrientes · Dimensionamiento de tuberías de acuerdo al flujo deseado • Nutrient pond size · Pipe sizing according to the desired flow
Requerimiento energético de las bombas según el flujo mínimo y máximo a tratar Energy requirement of the pumps according to the minimum and maximum flow to be treated
AGUA A TRATAR: WATER TO TREAT:
Flujo Nominal de agua contaminada (en este caso ARD)  Nominal flow of contaminated water (in this case ARD)
(drenaje ácido de roca, por sus siglas en inglés): 5 l/min Relación entrada de ARD y recirculación desde Biorreactor: 1 :10 (50 l/min) (acid rock drainage): 5 l / min ARD input and recirculation ratio from bioreactor: 1: 10 (50 l / min)
Concentración de Sulfato: 2500 mg/l Sulfate concentration: 2500 mg / l
Concentración de Metales: 10 -100 mg/l Metal concentration: 10 -100 mg / l
Metales disueltos: Fe, Al, Mn, Cu, Zn pH de ARD entrada: 2,0 CARACTERISTICAS EFLUENTE Dissolved metals: Fe, Al, Mn, Cu, Zn pH of ARD input: 2.0 EFFLUENT CHARACTERISTICS
Resultados: Reducción de Sulfato a 250 mg/l Results: Sulfate reduction to 250 mg / l
Reducción de Metales de 99% pH del efluente de salida mayor o igual a 6,5 y menor o igual a 7,2 Metal reduction of 99% pH of the effluent output greater than or equal to 6.5 and less than or equal to 7.2
DISEÑO BIORREACTOR: BIREACTOR DESIGN:
Construcción: Estanque revestido de HDPE con laderas laterales Construction: HDPE coated pond with side slopes
2,5:1 2.5: 1
Material de llenado: Gravilla +12mm -50mm (sin finos) Densidad de Roca: 2,7 g/cc Filling material: Gravel + 12mm -50mm (without fines) Rock Density: 2.7 g / cc
Densidad Gravilla: 1 ,5 g/cc Gravel Density: 1.5 g / cc
Peso de 1 m3 de gravilla: 1 .500 kg. Volumen de roca: 1 .500 kg / 2.700 kg /m3 = 0,55 m3 Volumen disponible para agua 1 m3 - 0,55 m3 = 0,45 m3 / m3 Biorreactor Tiempo de residencia mínimo: 96 horas Flujo de recirculación: 50 l/min Volumen requerido: 50 l/min * 60 min/hr * 96 horas /1000 l/m3/ 0,45 m3/m3 de biorreactor= 640 m3 Biorreactor Tamaño Biorreactor: 20m x 20m x 3m (LxAxH). Weight of 1 m 3 of gravel: 1 .500 kg. Rock volume: 1 .500 kg / 2,700 kg / m 3 = 0.55 m 3 Volume available for water 1 m 3 - 0.55 m 3 = 0.45 m 3 / m 3 Bioreactor Minimum residence time: 96 hours Recirculation flow: 50 l / min Required volume: 50 l / min * 60 min / hr * 96 hours / 1000 l / m 3 / 0.45 m 3 / m 3 bioreactor = 640 m 3 Bioreactor Bioreactor Size: 20m x 20m x 3m (LxAxH).
Volumen Biorreactor: 751 m3 Bioreactor volume: 751 m 3
Tiempo de residencia: 1 12 horas Residence time: 1 12 hours
ADICIÓN DE NUTRIENTES: ADDITION OF NUTRIENTS:
Alcohol etílico: 6cm3/min. Ethyl alcohol: 6cm 3 / min
Fertilizante NPK: 16PPM N; 5 PPM P y 2 PPM K. NPK Fertilizer: 16PPM N; 5 PPM P and 2 PPM K.
ESTANQUE DE DECANTACIÓN: DECANTATION POND:
Construcción: Estanque revestido de HDPE con laderas laterales Construction: HDPE coated pond with side slopes
2,5:1  2.5: 1
Bolas de HDPE con cubierta de HDPE, en donde estas bolas están vacías y llenas con aire. Se ubican debajo de la cubierta de HDPE para mantenerla flotante. Esto es para evitar que entren animales, aves y seres humanos o tomen agua. También para prevenir evaporación y la pérdida de súlfuro y la contaminación del aire con H2S. HDPE balls with HDPE cover, where these balls are empty and filled with air. They are located under the HDPE cover to keep it floating. This is to prevent animals, birds and humans from entering or drinking water. Also to prevent evaporation and loss of superfluous and air pollution with H2S.
Tamaño del estanque: 20m x 15m x 3m (LxAxH). Volumen estanque: 441 m3 Tiempo de residencia actual: 133 horas sin lodos decantados. Pond size: 20m x 15m x 3m (LxWxH). Pond volume: 441 m 3 Current residence time: 133 hours without decanted sludge.
EJEMPLO 2: Se usaron 4 biorreactores en serie y un estanque de decantación, como se muestra en la figura 6. Estos resultados se obtuvieron al usar 5 estanques de 1200 litros (1 ; 2.0; 2.1 ; 2.2; 2.3) y 3 estanques de 200 litros (20, 30, 40). Uno de los estanques de 1200 litros es el tanque de decantación de metales (1). Los otros 4 estanques de 1200 litros son los biorreactores en serie (2.0; 2.1 ; 2.2 y 2.3). Cada biorreactor está lleno de ripio y agua (500 litros cada uno). El ripio cumple la función de ser un soporte para los microorganismos. EXAMPLE 2: 4 bioreactors in series and a settling tank were used, as shown in Figure 6. These results were obtained by using 5 tanks of 1200 liters (1; 2.0; 2.1; 2.2; 2.3) and 3 tanks of 200 liters (20, 30, 40). One of the 1200 liter ponds is the metal decanting tank (1). The other 4 tanks of 1200 liters are the bioreactors in series (2.0; 2.1; 2.2 and 2.3). Each bioreactor is full of gravel and water (500 liters each). The gravel fulfills the function of being a support for microorganisms.
Mediante una bomba peristáltica de impulsos se pasaron 500 litros al día desde el (1) hacia el (2.0). Con la ayuda de otra bomba se inyectó alimento para los microorganismos desde el estanque de nutrientes (40) hacia el biorreactor (2.0). El agua pasó por todos los demás biorreactores (2.1 ; 2.2; 2.3) hasta volver al decantador (1) por diferencia de nivel. Al entrar el agua del biorreactor (2.3) al decantador (1) se juntó adentro del estanque de decantación con agua contaminada que venía desde el estanque de agua contaminada (20) de 200 litros por medio de una bomba (no mostrada en la figura). El agua proveniente del biorreactor (2.3) contiene muchos sulfuras producto de la reducción bacteriana de sulfato que ocurre en los biorreactores (2.0; 2.1 ; 2.2; 2.3). Al juntarse esta agua con sulfuras, con el agua contaminada que contiene muchos metales se produjo la precipitación de estos en forma de lodos y quedaron depositados en el fondo del decantador (1). Through a peristaltic impulse pump, 500 liters per day were passed from (1) to (2.0). With the help of another pump, food for the microorganisms was injected from the nutrient pool (40) into the bioreactor (2.0). The water passed through all other bioreactors (2.1; 2.2; 2.3) until returning to the decanter (1) by level difference. Upon entering the water from the bioreactor (2.3) to the decanter (1), it was collected inside the settling tank with contaminated water coming from the contaminated water tank (20) of 200 liters by means of a pump (not shown in the figure) . Water from the bioreactor (2.3) contains many sulphides due to bacterial sulfate reduction that occurs in bioreactors (2.0; 2.1; 2.2; 2.3). When this water was combined with sulphides, with the contaminated water containing many metals, the precipitation of these in the form of sludge occurred and they were deposited at the bottom of the decanter (1).
El agua de la parte de arriba del decantador (1) libre de la mayoría de los metales pasó por rebalse a un estanque de 200 litros que contiene un filtro de arena (30) que retuvo los metales muy finos que no precipitaron en el decantador (1), luego del cual salió por abajo limpia y con pH sobre 6 (Ver los resultados en la tabla 1). The water from the top of the decanter (1) free of most metals was overflowed into a 200-liter pond containing a sand filter (30) that retained the very fine metals that did not precipitate in the decanter ( 1), after which it came out below clean and with pH over 6 (See the results in table 1).
Todos los estanques de 1200 litros (decantador y biorreactor) tienen una válvula para toma de muestras en la parte de abajo. Además, se tomaron muestras y analizaron metales en el biorreactor (2.3) arriba y el decantador (1) arriba, además de la salida del filtro, que es el agua que finalmente fue vertida al medio ambiente. Los resultados se muestran en la Tabla 1. All 1200 liter ponds (decanter and bioreactor) have a sampling valve at the bottom. In addition, samples were taken and analyzed metals in the bioreactor (2.3) above and the decanter (1) above, in addition to the filter outlet, which is the water that was finally poured into the environment. The results are shown in Table 1.
Se midieron diariamente los niveles pH, potencial de oxidación/reducción, TDS y conductividad durante todo el experimento. Los puntos de tomas de muestra son abajo del decantador (1), abajo del biorreactor (2.0), abajo del biorreactor (2.1), abajo del biorreactor (2.2), abajo del biorreactor (2.3), en el sobrenadante del decantador (1) arriba, en el sobrenadante del biorreactor (2.3) y en el agua después de pasar por el filtro de arena (30), es decir, el agua limpia (filtro). PH levels, oxidation / reduction potential, TDS and conductivity were measured daily throughout the experiment. The sampling points are below the decanter (1), below the bioreactor (2.0), below the bioreactor (2.1), below the bioreactor (2.2), below the bioreactor (2.3), in the decanter supernatant (1) above, in the bioreactor supernatant (2.3) and in the water after passing through the sand filter (30), that is, the clean water (filter).
En un comienzo el sistema estuvo funcionando 34 días sin agua contaminada, sólo con nutrientes. Tiempo suficiente para que los microrganismos logren estabilizarse, aumentar la biomasa a una cifra óptima y lograr la alcalinidad necesaria para poder posteriormente precipitar metales con una fuente de oxígeno como el sulfato en condiciones anóxicas. In the beginning, the system was running 34 days without contaminated water, only with nutrients. Enough time for the microorganisms to stabilize, increase the biomass to an optimal figure and achieve the necessary alkalinity to subsequently precipitate metals with an oxygen source such as sulfate under anoxic conditions.
En este ejemplo se trató 1 litro/hr en la entrada, también la salida es de 1 litro/hr. Tabla 1 : Análisis químico del flujo entrada ARD, del flujo de salida y porcentaje de disminución de los distintos contaminantes. In this example, 1 liter / hr was treated at the entrance, the output is also 1 liter / hr. Table 1: Chemical analysis of the ARD input flow, the output flow and percentage of decrease of the different pollutants.
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000021_0001
Figure imgf000022_0001
Como puede apreciarse la planta da resultados excepcionales, el pH de salida es absolutamente neutro, y se produce una reducción sustancial de los sulfatos presentes, así como de los metales pesados Aluminio, Cobalto, Cobre Hierro, Manganeso, Zinc, Arsénico, Berilio, Cadmio, Cromo, Litio (Cítricos), Molibdeno, Níquel, Plata y Vanadio. As you can see the plant gives exceptional results, the output pH is absolutely neutral, and there is a substantial reduction of the sulfates present, as well as of the heavy metals Aluminum, Cobalt, Copper Copper, Manganese, Zinc, Arsenic, Beryllium, Cadmium , Chrome, Lithium (Citrus), Molybdenum, Nickel, Silver and Vanadium.
Como referencia para el lector se entrega el listado de las partes componentes con sus números respectivos. The list of component parts with their respective numbers is given as a reference for the reader.
1 . Estanque de decantación one . Settling pond
2. Biorreactor  2. Bioreactor
2.0. Primer Biorreactor  2.0. First bioreactor
2.1 . Segundo Biorreactor  2.1. Second Bioreactor
2.2. Tercer Biorreactor  2.2. Third Bioreactor
2.3. Cuarto Biorreactor  2.3. Fourth Bioreactor
3. Entrada de agua contaminada  3. Contaminated water inlet
4. Efluente recirculado desde biorreactor  4. Effluent recirculated from bioreactor
5. Entrada nutrientes  5. Nutrient input
6. Salida agua tratada  6. Treated water outlet
7. Entrada a biorreactor 8. Salida para lodos 7. Bioreactor input 8. Sludge outlet
9. Barrera  9. Barrier
10. partículas de ripio  10. gravel particles
11. Cámara de mezcla  11. Mixing chamber
12. Bomba sumergible 12. Submersible pump
13. Bomba recirculadora  13. Recirculating pump
20. Estanque de agua contaminada 20. Polluted water pond
30. Filtro de arena 30. Sand filter
40. Estanque de nutrientes  40. Nutrient Pond

Claims

REIVINDICACIONES
1 . Un sistema para la purificación de aguas contaminadas, CARACTERIZADO porque comprende al menos dos reactores comunicados y de un medio de recirculación, en donde el primer reactor es al menos un estanque de decantación (1) que comprende: a. una entrada (3) de aguas contaminadas y un flujo de agua recirculada, proveniente de una cañería de conexión del efluente recirculado (4); b. una salida de agua tratada (6); one . A system for the purification of contaminated water, CHARACTERIZED because it comprises at least two communicated reactors and a recirculation medium, wherein the first reactor is at least one settling tank (1) comprising: a. an inlet (3) of contaminated water and a flow of recirculated water, coming from a connecting pipe of the recirculated effluent (4); b. a treated water outlet (6);
en donde el segundo reactor es al menos un biorreactor (2), comprende:  wherein the second reactor is at least one bioreactor (2), it comprises:
a. una entrada a biorreactor (7) que recibe el flujo de salida desde el nivel superior del fluido que está en el estanque de decantación (1); b. una entrada de nutrientes (5) para los microorganismos;  to. a bioreactor inlet (7) that receives the outflow from the upper level of the fluid in the settling tank (1); b. a nutrient input (5) for microorganisms;
c. una pluralidad de partículas de áridos (10), las que se alojan en el biorreactor (2), en donde se pueden anclar los microorganismos; y d. una bomba recirculadora (12) que se comunica operativamente con la cañería de conexión del efluente recirculado (4), para que dicho efluente ingrese al estanque de decantación (1).  c. a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the microorganisms can be anchored; and d. a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
2. El sistema para la purificación de aguas contaminadas de acuerdo con la reivindicación 1 , CARACTERIZADO el estanque de decantación (1) además comprende: una cámara de mezcla (11), la cual mezcla los fluidos provenientes de la entrada (3) de aguas contaminadas y la cañería de conexión del efluente recirculado (4), y una salida de la mezcla (14); que entrega los fluidos mezclados a dicho estanque de decantación (1). 2. The system for the purification of contaminated water according to claim 1, CHARACTERIZED the settling tank (1) further comprises: a mixing chamber (11), which mixes the fluids from the water inlet (3) contaminated and the connection pipe of the recirculated effluent (4), and an outlet of the mixture (14); which delivers the mixed fluids to said settling tank (1).
3. El sistema para la purificación de aguas contaminadas de acuerdo con la reivindicación 1 , CARACTERIZADO porque el estanque de decantación (1) comprende opcionalmente una salida para lodos (8). 3. The system for the purification of contaminated water according to claim 1, CHARACTERIZED in that the settling tank (1) optionally comprises a sludge outlet (8).
4. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque comprende adicionalmente una bomba (13) para entregar los nutrientes (5) al biorreactor (2) desde un estanque de nutrientes. 4. The system according to claim 1, CHARACTERIZED in that it additionally comprises a pump (13) for delivering nutrients (5) to the bioreactor (2) from a nutrient pond.
5. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque las partículas de áridos (10), son ripio o gravilla o piedra caliza o mezcla de ambos, las que son colonizadas por los microorganismos. 5. The system according to claim 1, CHARACTERIZED because the aggregate particles (10), are gravel or gravel or limestone or mixture of both, which are colonized by microorganisms.
6. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque las partículas de áridos (10), tienen un diámetro de hasta 500 mm. 6. The system according to claim 1, CHARACTERIZED in that the aggregate particles (10) have a diameter of up to 500 mm.
7. El sistema de acuerdo con la reivindicación 3 CARACTERIZADO porque la salida para los lodos decantados (8) está en el fondo del estanque de decantación (1). 7. The system according to claim 3 CHARACTERIZED because the outlet for the decanted sludge (8) is at the bottom of the settling tank (1).
8. El sistema de acuerdo a cualquiera de las reivindicaciones 1 a 7, CARACTERIZADO porque la salida del estanque de decantación hacia el biorreactor (7) se realiza por rebalse. 8. The system according to any of claims 1 to 7, CHARACTERIZED in that the outlet of the settling tank towards the bioreactor (7) is carried out by overflow.
9. El sistema de acuerdo a cualquiera de las reivindicaciones 1 a 7, CARACTERIZADO porque la salida del estanque de decantación hacia el biorreactor (7) se realiza por cañerías operadas por bombas. 9. The system according to any of claims 1 to 7, CHARACTERIZED because the exit of the settling tank towards the bioreactor (7) is carried out by pipes operated by pumps.
10. El sistema de acuerdo a cualquiera de las reivindicaciones anteriores10. The system according to any of the preceding claims
CARACTERIZADO porque el sistema es alimentado por unos paneles de energía solar o eólica. CHARACTERIZED because the system is powered by solar or wind energy panels.
1 1. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque el segundo reactor es una pluralidad de biorreactores (2.0;2.1 ;2.2). The system according to claim 1, CHARACTERIZED in that the second reactor is a plurality of bioreactors (2.0; 2.1; 2.2).
12. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque la pluralidad de biorreactores (2.0; 2.1 ; 2.2) están conectados en serie. 12. The system according to claim 1, CHARACTERIZED in that the plurality of bioreactors (2.0; 2.1; 2.2) are connected in series.
13. El sistema de acuerdo con la reivindicación 1 CARACTERIZADO porque la pluralidad de biorreactores (2.0; 2.1 ; 2.2) están conectados en paralelo. 13. The system according to claim 1 CHARACTERIZED in that the plurality of bioreactors (2.0; 2.1; 2.2) are connected in parallel.
14. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque los microorganismos se escogen entre bacterias, arqueas, hongos o protozoos. 14. The system according to claim 1, CHARACTERIZED in that the microorganisms are chosen from bacteria, archaea, fungi or protozoa.
15. El sistema de acuerdo con la reivindicación 14, CARACTERIZADO porque las bacterias se escogen entre Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum y las arqueas se escogen entre Acidianus, Ferroplasma, Metallosphaera, Sulfolobus. 15. The system according to claim 14, CHARACTERIZED in that the bacteria are chosen from Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum and the archaea are chosen from Acidianus, Ferroplasma, Metallosphaera, Sulfolobus.
16. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque los nutrientes se escogen entre metanol, etanol, butanol, acetato, azúcar, malaza, derivados lácteos, tales como: suero de queso, leche, fertilizantes NPK 16. The system according to claim 1, CHARACTERIZED in that the nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy derivatives, such as: cheese whey, milk, NPK fertilizers
17. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque el estanque de decantación (1) el biorreactor (2) están separados por una barrera (9). 17. The system according to claim 1, CHARACTERIZED in that the settling tank (1) the bioreactor (2) is separated by a barrier (9).
18. El sistema de acuerdo con la reivindicación 17, CARACTERIZADO porque la barrera (9), es construida y/o revestida con: HDPE (High Density Polyethylene - polietileno de alta densidad) o Hypalon o PVC o asfalto o concreto o arcilla o acero inoxidable, o fibra de vidrio. 18. The system according to claim 17, CHARACTERIZED in that the barrier (9), is constructed and / or coated with: HDPE (High Density Polyethylene - High Density Polyethylene) or Hypalon or PVC or asphalt or concrete or clay or steel stainless, or fiberglass.
19. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque los al menos dos reactores comunicados, son construidos y/o revestidos con: acero, polietileno, HDPE, (High Density Polyethylene - polietileno de alta densidad) o Hypalon o PVC o concreto o acero inoxidable, o fibra de vidrio. 19. The system according to claim 1, CHARACTERIZED in that the at least two reactors communicated, are constructed and / or coated with: steel, polyethylene, HDPE, (High Density Polyethylene-high density polyethylene) or Hypalon or PVC or concrete or stainless steel, or fiberglass.
20. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque el estanque de decantación (1) está cubierto. 20. The system according to claim 1, CHARACTERIZED because the settling tank (1) is covered.
21. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque el segundo reactor es al menos un biorreactor (2). 21. The system according to claim 1, CHARACTERIZED in that the second reactor is at least one bioreactor (2).
22. El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque adicionalmente comprende un filtro de arena (30) a la salida del estanque de decantación 22. The system according to claim 1, CHARACTERIZED in that it additionally comprises a sand filter (30) at the outlet of the settling tank
23. Un método para la purificación de aguas contaminadas, CARACTERIZADO porque comprende: a. decantar los metales presentes en aguas contaminadas en un estanque de decantación (1); b. tratar en un biorreactor (2) con microorganismos sulfo reductores; y c. mezclar el agua proveniente de dicho biorreactor con en el efluente contaminado para obtener el agua tratada, empleando un sistema que comprende al menos dos reactores comunicados y de un medio de recirculación, en donde el primer reactor es un estanque de decantación (1) que comprende: una entrada (3) de aguas contaminadas y una cañería de conexión del efluente recirculado (4); 23. A method for the purification of contaminated water, CHARACTERIZED because it comprises: a. decant the metals present in contaminated water in a settling pond (1); b. treat in a bioreactor (2) with sulfo reducing microorganisms; and c. mixing the water from said bioreactor with in the contaminated effluent to obtain the treated water, using a system comprising at least two communicated reactors and a means of recirculation, wherein the first reactor is a settling tank (1) comprising: an inlet (3) of contaminated water and a connecting pipe of the recirculated effluent (4);
una salida de agua tratada (6);  a treated water outlet (6);
en donde el segundo reactor es al menos un biorreactor (2) comprende:  wherein the second reactor is at least one bioreactor (2) comprises:
una entrada a biorreactor (7) que recibe el flujo de salida desde el nivel superior del fluido que está en el estanque de decantación (1); una entrada de nutrientes (5) para los microorganismos;  a bioreactor inlet (7) that receives the outflow from the upper level of the fluid in the settling tank (1); a nutrient input (5) for microorganisms;
una pluralidad de partículas de áridos (10), las que se alojan en el biorreactor (2), en donde se pueden anclar las bacterias; y una bomba recirculadora (12) que se comunica operativamente con la cañería de conexión del efluente recirculado (4), para que dicho efluente ingrese al estanque de decantación (1).  a plurality of aggregate particles (10), which are housed in the bioreactor (2), where the bacteria can be anchored; and a recirculating pump (12) that communicates operatively with the connection pipe of the recirculated effluent (4), so that said effluent enters the settling tank (1).
24. El método de acuerdo con la cláusula 23, CARACTERIZADO porque comprende agregar nutrientes a las bacterias contenidas en el biorreactor (2). 24. The method according to clause 23, CHARACTERIZED because it comprises adding nutrients to the bacteria contained in the bioreactor (2).
25. El método de acuerdo con la cláusula 23, CARACTERIZADO porque comprende recirculación del efluente del biorreactor hacia el estanque de decantación (1). 25. The method according to clause 23, CHARACTERIZED because it comprises recirculation of the bioreactor effluent into the settling tank (1).
26. El método de acuerdo con la cláusula 23, CARACTERIZADO porque el flujo de entrada y salida del sistema es en razón entre 1 :2 a 2:1 . 26. The method according to clause 23, CHARACTERIZED because the system's input and output flow is in a ratio between 1: 2 to 2: 1.
27. El método de acuerdo con la cláusula 25, CARACTERIZADO porque el flujo de recirculación es de 1 :1 a 1 :50. 27. The method according to clause 25, CHARACTERIZED because the recirculation flow is from 1: 1 to 1: 50.
28. El método de acuerdo con la cláusula 23, CARACTERIZADO porque el tiempo de residencia dentro del sistema es entre 1 hora a 15 días. 28. The method according to clause 23, CHARACTERIZED because the residence time within the system is between 1 hour to 15 days.
29. El método de acuerdo con la cláusula 23, CARACTERIZADO porque los microorganismos se encuentran colonizando ripio o gravilla donde las partículas de áridos tienen un diámetro a lo más 500 mm. 29. The method according to clause 23, CHARACTERIZED because microorganisms are colonizing gravel or gravel where aggregate particles have a diameter of at most 500 mm.
30. El método de acuerdo con la cláusula 23, CARACTERIZADO porque los microorganismos se escogen entre bacterias, arqueas, hongos o protozoos. 30. The method according to clause 23, CHARACTERIZED because microorganisms are chosen among bacteria, archaea, fungi or protozoa.
31. El método de acuerdo con la cláusula 30, CARACTERIZADO porque las bacterias se escogen entre Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum. y las arqueas se escogen entre Acidianus, Ferroplasma, Metallosphaera y Sulfolobus. 31. The method according to clause 30, CHARACTERIZED because bacteria are chosen from Acidithiobacillus, Sulfobacillus, Pseudomonas, Acidiphilium, Leptospirillum. and the archaea are chosen between Acidianus, Ferroplasma, Metallosphaera and Sulfolobus.
32. El método de acuerdo con la cláusula 30, CARACTERIZADO porque los microorganismos forman un consorcio de microorganismos con características sulfo reducto ras. 32. The method according to clause 30, CHARACTERIZED because the microorganisms form a consortium of microorganisms with sulfo reductive ras characteristics.
33. El método de acuerdo con la cláusula 23, CARACTERIZADO porque los nutrientes se escogen entre metanol, etanol, butanol, acetato, azúcar, malaza, derivados lácteos, tales como: suero de queso, leche, fertilizantes NPK. 33. The method according to clause 23, CHARACTERIZED because the nutrients are chosen from methanol, ethanol, butanol, acetate, sugar, malaza, dairy products, such as: cheese whey, milk, NPK fertilizers.
34. El método de acuerdo con la cláusula 23, CARACTERIZADO porque adicionalmente comprende el efluente del estanque de decantación pasa por un filtro de arena (30). 34. The method according to clause 23, CHARACTERIZED because it additionally comprises the effluent from the settling tank passes through a sand filter (30).
PCT/CL2018/050056 2018-02-28 2018-07-20 System and method for bioremediation of polluted water WO2019165567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2018000550A CL2018000550A1 (en) 2018-02-28 2018-02-28 Polluted water bioremediation system and method
CLN°550-2018 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019165567A1 true WO2019165567A1 (en) 2019-09-06

Family

ID=63046485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050056 WO2019165567A1 (en) 2018-02-28 2018-07-20 System and method for bioremediation of polluted water

Country Status (2)

Country Link
CL (1) CL2018000550A1 (en)
WO (1) WO2019165567A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436254A1 (en) * 1990-01-05 1991-07-10 Shell Internationale Researchmaatschappij B.V. Treatment of aqueous waste streams
US5587079A (en) * 1995-04-21 1996-12-24 Rowley; Michael V. Process for treating solutions containing sulfate and metal ions.
US5976372A (en) * 1995-01-14 1999-11-02 Vesterager; Niels Ole Method of treating a biomass in order to remove heavy metals with hydrogen sulphide
US6197196B1 (en) * 1998-10-15 2001-03-06 Water Research Commission Treatment of water
US6387669B1 (en) * 1998-12-21 2002-05-14 Battelle Memorial Institute Methods for producing hydrogen (BI) sulfide and/or removing metals
US20070278150A1 (en) * 2006-06-06 2007-12-06 Lupton Francis S System and methods for biological selenium removal from water
ES2338988T3 (en) * 2000-10-25 2010-05-14 The Regents Of The University Of California RECOVERY OF WATER AND A CONCENTRATE OF USEFUL SALMUERA FROM DOMESTIC WASTEWATER.
US20100176055A1 (en) * 2006-08-16 2010-07-15 Michael Riebensahm Method for removing sulphate and heavy metals from waste water
AU2007202864B8 (en) * 2006-06-27 2011-07-14 Universidad Catolica Del Norte Biotechnological process for the treatment of As-containing hydroxide sludge resulting from potable water treatment processes which use FeC13 as a coagulant, through the action of sulfate reducing bacteria
US20120003057A1 (en) * 2010-07-02 2012-01-05 Leyba Frank L Wrenchable drill bit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436254A1 (en) * 1990-01-05 1991-07-10 Shell Internationale Researchmaatschappij B.V. Treatment of aqueous waste streams
US5976372A (en) * 1995-01-14 1999-11-02 Vesterager; Niels Ole Method of treating a biomass in order to remove heavy metals with hydrogen sulphide
US5587079A (en) * 1995-04-21 1996-12-24 Rowley; Michael V. Process for treating solutions containing sulfate and metal ions.
US6197196B1 (en) * 1998-10-15 2001-03-06 Water Research Commission Treatment of water
US6387669B1 (en) * 1998-12-21 2002-05-14 Battelle Memorial Institute Methods for producing hydrogen (BI) sulfide and/or removing metals
ES2338988T3 (en) * 2000-10-25 2010-05-14 The Regents Of The University Of California RECOVERY OF WATER AND A CONCENTRATE OF USEFUL SALMUERA FROM DOMESTIC WASTEWATER.
US20070278150A1 (en) * 2006-06-06 2007-12-06 Lupton Francis S System and methods for biological selenium removal from water
AU2007202864B8 (en) * 2006-06-27 2011-07-14 Universidad Catolica Del Norte Biotechnological process for the treatment of As-containing hydroxide sludge resulting from potable water treatment processes which use FeC13 as a coagulant, through the action of sulfate reducing bacteria
US20100176055A1 (en) * 2006-08-16 2010-07-15 Michael Riebensahm Method for removing sulphate and heavy metals from waste water
US20120003057A1 (en) * 2010-07-02 2012-01-05 Leyba Frank L Wrenchable drill bit

Also Published As

Publication number Publication date
CL2018000550A1 (en) 2018-07-06

Similar Documents

Publication Publication Date Title
US5893975A (en) Enhanced subsurface flow constructed wetland
Klein et al. Bioremediation of mine water
CN211871728U (en) Comprehensive treatment system for acidic wastewater in coal mine
CN102007076B (en) A phytosystem for treatment of sewage
Sheoran Management of acidic mine waste water by constructed wetland treatment systems: a bench scale study
US10597318B2 (en) Bioreactor for sulfate reduction
Geller et al. Remediation and management of acidified pit lakes and outflowing waters
SØNDERGAARD et al. 10 Chemical treatment of water and sediments with special reference to lakes
KR100618305B1 (en) In-Adit-Sulfate-Reducing System
CN111943453A (en) Acid coal gangue pile leaching wastewater treatment system and method
KR101070477B1 (en) Apparatus and method for treating mine drainage in a semi-passive way
Klapper et al. Ways of controlling acid by ecotechnology
WO2019165567A1 (en) System and method for bioremediation of polluted water
James Gusek et al. The challenges of designing, permitting and building a 1,200 gpm passive bioreactor for metal mine drainage West Fork mine, Missouri
Simm et al. Biological treatment technologies
US11104596B2 (en) Bioreactor, system, and method for reduction of sulfates from surface waters
Vyawahre et al. Acid mine drainage: a case study of an Indian coal mine
CN104961288B (en) The sewage disposal system that ecological oxidation ditch is combined with ecological box wetland
Banjoko et al. Upgrading Wastewater Treatment Systems for Urban Water Reuse
Kaksonen et al. Review of sulfate reduction based bioprocesses for acid mine drainage treatment and metals recovery
ES2363363B2 (en) ARTIFICIAL HUMEDAL AND USE OF THE SAME FOR THE FITOPURIFICATION OF LIQUID EFFLUENTS
TW201016620A (en) Constructed wetland for treating saline wastewater
Borkar et al. Tidal flow constructed wetland: An overview
Walker et al. Sulfate removal from coal mine water in Western Pennsylvania: Regulatory requirements, design, and performance
du Preez Treatment of Acid Mine Drainage for Reuse in Irrigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907817

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18907817

Country of ref document: EP

Kind code of ref document: A1