WO2019163948A1 - 細胞培養用基材及び培養方法 - Google Patents

細胞培養用基材及び培養方法 Download PDF

Info

Publication number
WO2019163948A1
WO2019163948A1 PCT/JP2019/006806 JP2019006806W WO2019163948A1 WO 2019163948 A1 WO2019163948 A1 WO 2019163948A1 JP 2019006806 W JP2019006806 W JP 2019006806W WO 2019163948 A1 WO2019163948 A1 WO 2019163948A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
sulfated hyaluronic
cells
cell culture
culturing
Prior art date
Application number
PCT/JP2019/006806
Other languages
English (en)
French (fr)
Inventor
祥子 西原
三浦 太一
祐二 松▲崎▼
徳行 湯浅
正人 羽生
Original Assignee
学校法人創価大学
東京化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人創価大学, 東京化成工業株式会社 filed Critical 学校法人創価大学
Priority to JP2020501061A priority Critical patent/JP7373100B2/ja
Publication of WO2019163948A1 publication Critical patent/WO2019163948A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells

Definitions

  • the present invention relates to a cell culture substrate and a culture method in the field of cell culture.
  • ES cells embryonic stem cells
  • iPS cells human induced pluripotent stem cells having both differentiation pluripotency and self-replication ability like ES cells are created. Studies have been actively conducted to induce differentiation into major organ cells in vitro using iPS cells.
  • pluripotent stem cells have the ability to differentiate into cells of various tissues and organs and the ability to proliferate almost infinitely. Therefore, elucidation of the cause of diseases, development of new drugs, cell transplantation therapy, etc. Applications are expected.
  • human pluripotent stem cells such as human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) are expected to be applied to drug discovery and regenerative medicine.
  • hPSC human pluripotent stem cells
  • hESC human embryonic stem cells
  • hiPSC human induced pluripotent stem cells
  • Non-patent document 2 Fan Y., et al., Stem Cell Rev. 2015 Feb; 11 (1): 96-109.
  • Non-patent document 3 Chen YM, et al ., Sci Rep. 2017 Mar 23; 7: 45146.
  • Non-patent Document 4 LG Villa-Diaz et al., Stem Cells. 2013 Jan; 31 (1): 1-7.
  • hPSC is cultured on an extracellular matrix, for example, on Matrigel or Geltrex.
  • An extracellular matrix for cell culture such as matrigel contains, as main components, laminin, collagen IV, heparan sulfate proteoglycan, and entactin / nidogen, and further includes various growth factors, etc.
  • Engelbreth-Holm-Swarm (EHS) It consists of a substrate isolated from mouse sarcoma. These have been reported to support the pluripotency of many hESC strains (Non-patent Document 5: KG Chen, et al., Cell Stem Cell. 2014 Jan 2; 14 (1): 13 -26.), Since the exact composition is not clear and it contains components derived from different organisms, the use of such culture conditions may hinder clinical application of hPSC.
  • immunogenic epitopes such as N-glycolylneuraminic acid (Neu5Gc) that are not derived from humans and the transmission of heterologous infectious viruses to humans.
  • hPSC hPSC fibroblast growth factor
  • bFGF basic fibroblast growth factor
  • FGF is generally added to a medium in order to stably cultivate stem cells, and is one of highly important components even in a serum-free medium.
  • the stability in the medium is low, and it is a factor that requires a high frequency medium exchange in cell culture. This also hinders the industrial production of hPSC.
  • Patent Document 1 Japanese Patent Laid-Open No. 02-1382273 discloses a method for stabilizing FGF or a mutein thereof, which comprises contacting FGF or a mutein thereof with a sulfated glucan in an aqueous medium.
  • Patent Document 6 J. Cell.
  • HHS-4 heparin or hexuronylhexosaminoglycan sulfate
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-211920. It describes that the growth of human mesenchymal cells is promoted by anion-modified hyaluronic acid.
  • Patent Document 4 Japanese Patent No. 5088864.
  • a biological tissue filling agent coated with sulfated hyaluronic acid having a sulfation degree of 0.6 or 1.0 promotes the proliferation of chondrocytes and the ability to differentiate into cartilage.
  • a culture medium and a culture method that can activate cells using sulfated hyaluronic acid and promote differentiation and maturation into neurons have been reported (Patent Document 5: JP 2009-278873 A). .
  • sulfated hyaluronic acid having a degree of sulfation of 0.4 or 1.0 is used.
  • FGF-2 a combination of sulfated hyaluronic acid and FGF-2, cells are activated and nerves are activated. It is described that differentiation / maturation into cells can be promoted.
  • An object of the present invention is to provide a new cell culture substrate or culture method capable of improving the culture efficiency in culturing hPSCs or hybridomas producing antibodies.
  • hPSC can be cultured and grown in an undifferentiated state or in a state of maintaining pluripotency without using feeder cells. be able to.
  • the present invention by using sulfated hyaluronic acid having a relatively high degree of sulfidation, the amount of antibody production can be increased in the culture of antibody-producing hybridomas. More specifically, the present invention includes the following cell culture method and cell culture substrate.
  • One aspect of the present invention is a sulfated hyaluronic acid having a relatively high degree of sulfation (the degree of sulfation is the number of sulfate groups per disaccharide unit of hyaluronic acid (hereinafter referred to as “sulfation degree (number of sulfate groups / 2 disaccharide units)”).
  • sulfation degree number of sulfate groups per disaccharide unit of hyaluronic acid
  • the present invention provides a cell culture method for culturing and growing hPSC in an undifferentiated state or in a state where pluripotency is maintained.
  • the present invention has a relatively high degree of sulfation (sulfation degree (number of sulfate groups / 2 sugar units) of about 1.3 or more, preferably about 1.5 or more, more preferably about 2.0 or more. (And more preferably, about 3.0 or more) by using sulfated hyaluronic acid, hPSC can be cultured and proliferated in an undifferentiated state or in a state of maintaining pluripotency without using supporting cells and bFGF. A method for cell culture is provided.
  • sulfation degree number of sulfate groups / 2 sugar units
  • the cells are cultured in a state in which hPSCs are maintained in an undifferentiated state or in a state that maintains multipotency Sulfated hyaluronic acid having a relatively high sulfation degree (sulfation degree (sulfuric acid group / 2 sugar units) of about 1.3 or more, preferably about 1.3 to about 3.0) for growth is A coated cell culture substrate is provided, optionally with an extracellular matrix.
  • the present invention provides a method for culturing hPSC using the cell culture substrate described above.
  • a relatively high degree of sulfation is preferably about 1.3 or more, more preferably about 2.0 or more, and still more preferably.
  • a method for producing an antibody by culturing a hybridoma having an antibody-producing ability using a medium containing about 3.0 or more of sulfated hyaluronic acid.
  • the present invention includes the following aspects.
  • [1] A cell culture substrate having a surface coated with sulfated hyaluronic acid.
  • the cell culture substrate according to [6], wherein the pluripotent stem cells are iPS cells.
  • a cell culture instrument comprising the cell culture substrate according to any one of [1] to [9] above.
  • pluripotent stem cells preferably ES cells or iPS cells
  • a method for culturing pluripotent stem cells comprising maintaining the pluripotent stem cells.
  • a method for culturing pluripotent stem cells comprising the following steps: A step of culturing cells using a culture medium to which sulfated hyaluronic acid is added under culture conditions not containing feeder cells, wherein the sulfated hyaluronic acid has an S content of about 7% or more (preferably about 10 %, More preferably about 13% or more, and still more preferably about 14% or more).
  • a culture method comprising: [13] A method for culturing pluripotent stem cells (preferably ES cells or iPS cells), comprising the following steps: A step of culturing cells under a culture condition without supporting cells using a medium to which sulfated hyaluronic acid is added, wherein the sulfated hyaluronic acid has a sulfate group with respect to a disaccharide unit as a constituent unit; Introduced at a rate of at least about 1.3 on average (preferably about 2.0 or more, more preferably about 2.5 or more, more preferably about 3.0 or more, even more preferably about 3.5 or more) Being A culture method comprising: [14] The culture method according to [12] or [13] above, wherein the culture condition is a culture condition not further containing bFGF.
  • pluripotent stem cells preferably ES cells or iPS cells
  • a method for producing an antibody by culturing a hybridoma having the ability to produce an antibody comprising the following steps: A step of culturing cells in a medium to which sulfated hyaluronic acid is added, wherein the sulfated hyaluronic acid has an S content of 7% or more (preferably 10% or more, more preferably 13% or more, more preferably 14 % Of sulfation degree) A method comprising the steps of: [18] A method for producing an antibody by culturing a hybridoma having the ability to produce an antibody, comprising the following steps: A step of culturing cells in a medium to which sulfated hyaluronic acid is added, wherein the sulfated hyaluronic acid has an average of at least 1.3 sulfate groups (preferably 2 or more) with respect to a disaccharide unit as a constituent unit. 0.0 or more, more preferably 2.5 or more, more preferably 3.0 or
  • the culture efficiency can be improved in the culture of hPSC and the hybridoma that produces antibodies.
  • the left figure (A) shows the results when cultured without adding feeder cells and bFGF, and differentiation is observed.
  • the right figure (B) shows the results when high sulfated hyaluronic acid is added, although no supporting cells and bFGF are added, and the undifferentiated state is maintained.
  • 10 ⁇ g / ml hyaluronic acid (HA), 10 ⁇ g / ml highly sulfated hyaluronic acid (molecular weight 100,000) (HA-HS) was added and cultured for 3 days, then Western blot analysis Were used to examine the expression level of each undifferentiated maintenance transcription factor (OCT4, KLF4, NANOG).
  • the lower graph shows values after correcting the band intensity of each undifferentiated maintenance transcription factor with the band intensity of ⁇ -actin, which is an endogenous control.
  • sulfated hyaluronic acid refers to a hydroxyl group of hyaluronic acid, which is a linear polymer polysaccharide formed by alternately binding ⁇ -DN-acetylglucosamine and ⁇ -D-glucuronic acid. This refers to substances in which part or all of them are substituted with sulfate groups. The degree of sulfation is expressed as “degree of sulfation”.
  • the degree of sulfation is represented by the sulfuric acid content (S content) (%) in the sulfated hyaluronic acid molecule, or the number of introduced sulfate groups (0 to 4) in the disaccharide unit which is a structural unit. Is done.
  • the sulfuric acid content (turbidimetric method) is determined by the Dogson-Price turbidimetric method (Dogson, KS and Price, RG, A note on the determination of the ester sulphate content of sulphated polysaccharides, Biochem J. vol 84 (1), 106- 110, 1962), and can be measured using potassium sulfate as a standard.
  • the sulfuric acid content can be measured using a method according to JIS JB. 2.17.3 Sulfate-weight method.
  • the degree of sulfation can also be expressed as the average number of sulfate groups introduced. 0 to 4 sulfate groups can be introduced as disaccharide units. When expressed by the average number, the average number of sulfate groups in the disaccharide unit can be calculated from the S content based on the molecular weight of sulfated hyaluronic acid.
  • the sulfated hyaluronic acid used in the present invention (hereinafter sometimes simply referred to as “sulfated hyaluronic acid”) is hyaluronic acid having a relatively high degree of sulfation.
  • sulfated hyaluronic acid As a specific compound of sulfated hyaluronic acid, hyaluronic acid having a sulfated degree of 1.0 or less as a sulfate group / 2 monosaccharide has been reported (see, for example, JP-A-2009-278873). ).
  • the sulfated hyaluronic acid used in the present invention has an S content of about 7% or more by the turbidimetric method, and the number of sulfate groups / 2 monosaccharide is about 1.3 or more.
  • sulfated hyaluronic acid used when culturing pluripotent stem cells without using supporting cells has an average number of introduced sulfate groups of about 1.3 or more, preferably about 1.5 or more, more preferably about 2.0 or more, and further preferably about 2.5 or more.
  • the sulfated hyaluronic acid used in the case of culturing pluripotent stem cells without using supporting cells and bFGF has an average number of introduced sulfate groups of about 1.3 or more, preferably Is about 1.5 or more, more preferably about 2.0 or more, and still more preferably about 3.0 or more.
  • pluripotent stem cells can be cultured without using supporting cells and bFGF, and the pluripotent stem cells are maintained in an undifferentiated state or in a state where pluripotency is maintained. Can be cultured. However, culture in a medium containing sulfated hyaluronic acid and containing bFGF is also included in the present invention and is part of the present invention.
  • Sulfated hyaluron used in the cell culture substrate of the present invention coated with sulfated hyaluronic acid used for culturing pluripotent stem cells that do not use feeder cells, and in addition to feeder cells, and in addition, do not use bFGF.
  • the acid is sulfated hyaluronic acid having an average number of introduced sulfate groups of about 1.3 or more, preferably about 1.3 to about 3.0.
  • the cell culture substrate of the present invention used is preferably a cell culture substrate coated with the sulfated hyaluronic acid together with an extracellular matrix.
  • pluripotent stem cells can be cultured without using supporting cells and bFGF, Can be cultured in a state of maintaining pluripotency or maintaining pluripotency.
  • the use of the cell culture substrate of the present invention in a medium containing bFGF is not excluded, and the cell culture substrate of the present invention used for culture in a medium added with bFGF is also included in the present invention. And is part of the present invention.
  • the sulfated hyaluronic acid used when culturing a hybridoma capable of producing an antibody according to the culture method of the present invention has a sulfation degree of about 7% or more, preferably about 10% or more in terms of sulfuric acid content. Preferably it is about 13% or more, more preferably about 14% or more.
  • the sulfated hyaluronic acid used when culturing a hybridoma capable of producing an antibody according to the culture method of the present invention has an average number of introduced sulfate groups of about 1.3 or more, preferably about 1.5 or more. More preferably, it is about 2.5 or more, more preferably about 3.0 or more, and still more preferably about 3.5 or more.
  • Sulfated hyaluronic acid can be obtained by dissolving hyaluronic acid and a sulfating agent in an appropriate solvent using a known sulfation reaction and reacting under heating.
  • the degree of sulfation can be adjusted by appropriately changing the amount of sulfating agent used with reference to known methods.
  • the degree of sulfation can be measured by, for example, the method described above, but can also be determined by quantifying sulfate ions generated by acid hydrolysis by ion chromatography.
  • a solvent used in the sulfation reaction a solvent that can be generally used in the technical field can be used without limitation.
  • N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, N, N-dimethylacetamide examples thereof include pyridine, N, N-dimethylacrylamide, or a mixed solvent thereof.
  • a sulfating agent generally used in the art can be used without limitation.
  • an acid catalyst such as trifluoroacetic acid or trifluoromethanesulfonic acid may be added to the reaction system.
  • reaction temperature and reaction time of the sulfation are not particularly limited, and examples thereof include 0 to 100 ° C. and 5 minutes to 5 days.
  • the molecular weight of sulfated hyaluronic acid that can be used in the present invention is not particularly limited, and any molecular weight of sulfated hyaluronic acid can be used.
  • low molecular weight hyaluronic acid for example, having an average molecular weight of about 100,000
  • high molecular weight hyaluronic acid for example, having an average molecular weight of 600,000 Either can be used.
  • the molecular weight of sulfated hyaluronic acid when referring to the molecular weight of sulfated hyaluronic acid, it means the molecular weight indicated by any of the display methods generally used in the technical field, and is not limited to this, for example, kinematic viscosity of hyaluronic acid as a raw material The molecular weight calculated from can be used.
  • the substrate for cell culture of the present invention can be produced by coating sulfated hyaluronic acid on the surface of the substrate for cell culture.
  • a substrate for cell culture a substrate for cell culture used in the technical field relating to cell culture can be used without limitation.
  • a substrate used for a petri dish or plate for animal cell culture. Materials can be used.
  • the material that can be such a base material is not limited to this, and examples thereof include polypropylene, polystyrene, high density polyethylene, polyethylene terephthalate copolymer, polycarbonate, polyethersulfine, and MPC polymer. .
  • the surface is coated with sulfated hyaluronic acid means a state in which the sulfated hyaluronic acid is physically bound or held on the surface of the cell culture substrate. Including the state.
  • the term “physically bound” refers to a state in which they are bound non-covalently or covalently, and is not limited thereto, but, for example, it is bound in an ionic manner, directly or via a linker or the like. You can raise the state.
  • the means for covalent bonding can be appropriately selected according to the physicochemical properties of the substrate surface and the reactive groups presented on the surface. For example, it can be linked directly or via a linker using a photoreactive crosslinking agent.
  • the state in which sulfated hyaluronic acid is retained on the substrate surface is not limited to this.
  • sulfated hyaluronic acid is retained on the substrate surface.
  • a solution or solvent containing sulfated hyaluronic acid to the surface of the substrate, and then removing the solution or solvent, a cell culture substrate coated with sulfated hyaluronic acid on the surface is prepared.
  • the method for removing the solution or the solvent is not particularly limited, and for example, room temperature drying, high temperature drying, reduced pressure drying and the like can be used.
  • the sulfated hyaluronic acid is retained on the substrate surface while the sulfated hyaluronic acid is retained in the polymeric substance such as the extracellular matrix.
  • the state that has been done is also included.
  • the amount of sulfated hyaluronic acid coated on the surface of the cell culture substrate of the present invention depends on the purpose of the culture, as compared to the case where the cells are cultured on a substrate not coated with sulfated hyaluronic acid.
  • the amount is about 0.05 ⁇ g / cm 2 or more, preferably about 0.5 ⁇ g / cm 2 or more, more preferably about 1 ⁇ g / cm 2 or more, and still more preferably.
  • the thickness of the sulfated hyaluronic acid coated on the surface is not particularly limited, but can be appropriately selected in consideration of the purpose of use, preparation method, cost and the like.
  • the base material for cell culture of the present invention also includes a material obtained by coating the surface thereof with a sulfate, hyaluronic acid and a high-molecular substance such as a protein, a polymer or an extracellular matrix. These macromolecules serve to retain sulfated hyaluronic acid, but are not limited thereto.
  • a protein that can be used any protein that does not inhibit cell culture / proliferation can be used without limitation. For example, albumin, transferrin, collagen, fibronectin, Fc fusion protein and other chimeric proteins, and cell adhesion support Peptide fragments and the like.
  • the polymer that can be used is not particularly limited as long as it does not inhibit cell culture and proliferation, and examples thereof include polylysine, polylactic acid, polyglycolic acid, and a copolymer of lactic acid and glycolic acid. Can do.
  • an extracellular matrix is preferable. By coating the extracellular matrix together with hyaluronic acid sulfate, the efficiency of cell culture and proliferation can be further increased. Examples of the extracellular matrix include matrigel, laminin, laminin 511, proteoglycan and the like.
  • the amount of the extracellular matrix coated on the surface of the cell culture substrate of the present invention can be appropriately selected according to the cells used, the purpose of use, the culture conditions, and the like. For example, when using Matrigel, cells using Matrigel are used. You can refer to reports on culture.
  • the method for coating sulfated hyaluronic acid with a polymer substance is not particularly limited.
  • a mixed solution is prepared by adding sulfated hyaluronic acid to a medium in which the extracellular matrix (eg, Matrigel) is dissolved, and then the mixed solution is added to the culture medium. It can be prepared by applying to the surface of the material and adding it to a culture dish, for example.
  • the cell culture substrate coated with sulfated hyaluronic acid and extracellular matrix prepared as described above may be used as it is, but may be used after storage until use. it can.
  • the storage method can be appropriately selected according to the extracellular matrix used for the coating, and examples include normal temperature, refrigeration, and frozen storage.
  • examples include normal temperature, refrigeration, and frozen storage.
  • refrigeration or frozen storage is desirable.
  • the medium containing the extracellular matrix that is not coated on the surface and the sulfated hyaluronic acid is removed, and then the medium and cells are added for culturing.
  • sulfated hyaluronic acid when sulfated hyaluronic acid is coated on the surface together with a polymer substance (for example, protein, polymer or extracellular matrix), sulfated hyaluronic acid is uniformly distributed in the polymer substance. It is preferable to hold in a dispersed state. If the concentration of the sulfated hyaluronic acid in the mixture is too high, the sulfated hyaluronic acid is not preferable because it is agglomerated with each other or stretched into a fiber.
  • a polymer substance for example, protein, polymer or extracellular matrix
  • the amount of sulfated hyaluronic acid retained in the polymer substance can be adjusted, for example, by appropriately selecting the concentration of sulfated hyaluronic acid in the mixed solution before being added to a culture substrate such as a petri dish.
  • a culture substrate such as a petri dish.
  • the cell culture substrate according to one embodiment of the present invention includes a cell culture substrate coated with sulfated hyaluronic acid on the surface, and a sulfated hyaluronic acid polymer material such as an extracellular matrix such as matrigel, protein Alternatively, any cell culture substrate coated with a polymer is included.
  • a cell culture substrate having a surface coated with sulfated hyaluronic acid can be produced in a sterile state or sterilized after production. The sterilization treatment can be appropriately selected by those skilled in the art according to the components used together with the sulfated hyaluronic acid.
  • the sterilization treatment method is not limited to this, but for example, electron beam, gamma ray, ethylene oxide, High pressure steam (autoclave) can be raised.
  • the cell culture substrate coated with sulfated hyaluronic acid together with an extracellular matrix such as matrigel is preferably produced in a sterile state according to a conventional method.
  • the cell culture substrate of the present invention can also be used in a part of a container, instrument or apparatus for cell culture. Such culture vessels, instruments and devices are also included in the present invention.
  • the container, instrument, and apparatus for cell culture those generally used for cell culture can be used without limitation.
  • the present invention is also a method for culturing a cell by culturing and proliferating a pluripotent stem cell while maintaining an undifferentiated state or having a differentiation potential using the cell culture substrate of the present invention.
  • pluripotent stem cells used in the culture using the cell culture method of the present invention or the cell culture substrate of the present invention include ES cells and iPS cells.
  • ES cells Preferably, human ES cells or human iPS cells are used.
  • a cell particularly preferably a human iPS cell.
  • Cell culturing conditions can be appropriately selected according to the type of cells intended for culturing and the purpose of culturing, and such culturing conditions have been reported in various ways.
  • pluripotent stem cells can be cultured without using supporting cells (feeder cells).
  • the present invention when pluripotent stem cells are cultured using the cell culture substrate of the present invention, the amount of bFGF that is normally required to maintain an undifferentiated state can be reduced or eliminated. That is, the present invention, as one aspect thereof, in a case where pluripotent stem cells are not differentiated or have a differentiation ability, without using a supporting cell layer for supporting cell proliferation, in some cases as supporting cells. In addition, a culture method for stably and consistently growing without using bFGF is provided.
  • the present invention also includes a culture method for the production of an antibody using a sulfated hyaluronic acid having a relatively high degree of sulfation.
  • a culture method for the production of an antibody using a sulfated hyaluronic acid having a relatively high degree of sulfation According to the culture method of the present invention, antibody production ability can be remarkably increased by culturing a hybridoma having antibody production ability together with sulfated hyaluronic acid.
  • the sulfated hyaluronic acid that can be used in the culture for antibody production according to the present invention is a sulfated hyaluronic acid having a relatively high degree of sulfation as described above.
  • the S content is 7% or more (preferably 10% or more, more preferably 13% or more, more preferably 14% or more) sulfated hyaluronic acid having a degree of sulfation, or an average of at least 1 sulfate group with respect to a disaccharide unit as a constituent unit. 3 or higher (preferably 2.0 or higher, more preferably 2.5 or higher, still more preferably 3.0 or higher, and still more preferably 3.5 or higher). Both low molecular weight sulfated hyaluronic acid and high molecular weight sulfated hyaluronic acid can be used.
  • the amount of sulfated hyaluronic acid added to the medium can be appropriately selected depending on the cells used, culture conditions, etc., but is not limited thereto, for example, It is added to the medium at a concentration of 0.1 to 100 ⁇ g / mL, preferably 1 to 100 ⁇ g / mL.
  • the medium is not particularly limited, and any medium that can be used in antibody production using a hybridoma can be used.
  • the culture conditions of the hybridoma producing the antibody can be appropriately determined by referring to a method known per se.
  • the present invention also includes a method of culturing cells having antibody production ability using the cell culture substrate of the present invention. When cells capable of producing an antibody are cultured using the cell culture substrate of the present invention, the amount of antibody produced can be remarkably increased. Therefore, the present invention provides, as another aspect, a cell culture method and a cell culture substrate for producing an antibody by culturing antibody-producing cells.
  • Example 1 Preparation of Sulfated Hyaluronic Acid Sulfated hyaluronic acid was prepared by sulfating hyaluronic acid. For sulfation of hyaluronic acid, known sulfation reactions were used, and various sulfation degrees were produced by appropriately adjusting the conditions.
  • Hyaluronic acid used for the sulfation was one having a molecular weight of 100,000 (hereinafter referred to as low molecular weight hyaluronic acid) and 600,000 (hereinafter referred to as high molecular weight hyaluronic acid).
  • Preparation of sulfated hyaluronic acid was first done at a small level (amount of hyaluronic acid used, 1 g) and then at a scaled up level (amount of hyaluronic acid used, 20 g). The degree of sulfation was confirmed for the prepared sulfated hyaluronic acid. The results are shown below. Table 1 shows the results of measuring the degree of sulfation of sulfated hyaluronic acid prepared using low molecular weight hyaluronic acid, and Table 2 shows the degree of sulfidation of sulfated hyaluronic acid prepared using high molecular weight hyaluronic acid. It is a result.
  • S content (turbidimetric method) is a result measured by the Dogson-Price turbidimetric method
  • “S content (gravimetric method)” is a method according to JIS JB. 2.17.3 Sulfate-weight method. It is the result of having measured using.
  • the “sulfation degree” is the number of sulfate groups introduced by the average number per disaccharide unit.
  • the sulfated hyaluronic acid used in the present invention has a relatively high degree of sulfation.
  • high sulfated hyaluronic acid having a high degree of sulfation specifically, high sulfated hyaluronic acid having a degree of sulfation (number of sulfate groups / 2 monosaccharides) of 3 or more Called acid.
  • the highly sulfated hyaluronic acid shown in the above table indicates that most of the hydroxyl groups that can be substituted with sulfate groups are sulfated.
  • Example 2 Culture of iPS / ES cells
  • culture on mouse-derived feeder cells and addition of bFGF to the medium is necessary.
  • human iPS cells differentiate rapidly. Therefore, the necessity of addition of both of these is an obstacle to culturing a large amount of iPS cells that have maintained undifferentiation. Therefore, it was examined whether or not human iPS cells can be cultured and proliferated while maintaining undifferentiated state in the absence of supporting cells and bFGF by adding the highly sulfated hyaluronic acid prepared in Example 1 to the medium.
  • MRC-hiPS_Fetch cell number: NIHS0604
  • MRC-hiPS_Tic cell number: JCRB13311
  • mitomycin C manufactured by Sigma
  • iPSellon manufactured by Cell-Sight
  • bFGF manufactured by Wako Pure Chemical Industries
  • hiPS cells (hiPS # 16 and hiPS # 25) were cultured in hiPS cells (with a molecular weight of 100,000) added with high sulfated hyaluronic acid (molecular weight 100,000) to a concentration of 10 ⁇ g / ml in the absence of feeder cells and bFGF.
  • FIG. A shows the results when the cells were cultured without adding the feeder cells and bFGF
  • B shows the results when the cells were not added with the feeder cells and bFGF but highly sulfated hyaluronic acid was added.
  • Example 3 Confirmation of the expression of undifferentiated factors
  • OCT4, KLF4, NANOG transcription factors essential for maintaining undifferentiated properties
  • Example 4 Adhesion of Sulfated Hyaluronic Acid to Culture Substrate Sulfated hyaluronic acid was adhered to a cell culture substrate, and the amount of adhesion was evaluated. Sulfated hyaluronic acid was adhered to various cell culture substrates with different surface treatments, and the amount of adhesion was confirmed.
  • BD Becton Dickinson
  • cell culture treatment petri dish 35mm, polystyrene, hydrophilic treatment by vacuum gas plasma treatment
  • BD untreated petri dish 35mm, polystyrene, hydrophobic surface
  • BD NH 2 treatment (6 well, polystyrene, amino group addition surface
  • BD COOH (6 well, polystyrene, carboxyl group addition surface)
  • cell culture treatment (6 well, polystyrene, hydrophilic treatment) manufactured by IWAKI, Sumitomo Bakelite Cell culture treatment (6 well, polystyrene, hydrophilic treatment), untreated (6 well, polystyrene, hydrophobic surface) manufactured by Sumitomo Bakelite Co., Ltd. was used.
  • sulfated hyaluronic acid a low molecular weight high sulfated hyaluronic acid was used. Specifically, sulfated hyaluronic acid was dissolved in PBS buffer and kept at 37 ° C. for 1 hour, and sulfated hyaluronic acid that did not adhere was washed with PBS. Adhesion amount of sulfated hyaluronic acid was evaluated by DMMB method (Connect Tissue Res. 1982; 9 (4): 247-8. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Farndale RW, Sayers CA, Barrett AJ.) did.
  • the adhesion amount was the sulfated sugar chain adhesion amount ( ⁇ g) per area (9.6 cm 2 ). 100 ⁇ g / mL and 10 ⁇ g / mL are treatment concentrations at the time of coating. u. d. Is below the measurement limit
  • Adhesion to a culture substrate to which an amino group was added was good.
  • sulfated sugar chains were covalently bound to a culture substrate using a photoreactive diazirine compound as follows.
  • SDA NHS-Diazirine
  • a sulfated sugar chain chondroitin sulfate D was added and bound to the substrate surface by UV irradiation.
  • Example 5 Coating of Sulfated Hyaluronic Acid and Matrigel on Culture Substrate
  • a culture substrate coated with a cell matrix matrix in addition to sulfated hyaluronic acid was prepared, and culture using it was examined.
  • a mixed coating of a basement membrane matrix (Matrigel (registered trademark), Corning) used for iPS cell culture and sulfated hyaluronic acid was performed.
  • As the sulfated hyaluronic acid a low molecular weight (molecular weight 100,000) sulfated hyaluronic acid was used.
  • the culture substrate was coated as follows.
  • Dissolve Matrigel to 2.5% in cell culture medium DMEM add sulfated hyaluronic acid to 2 ⁇ g / ml, 10 ⁇ g / ml or 100 ⁇ g / ml and mix, then mix was incubated at 37 ° C. and 5% CO 2 for 1 hour.
  • the petri dish was frozen and stored until use, and the cell culture medium containing Matrigel was extracted before use.
  • sulfated sugar was quantified by DMMB method.
  • the sulfated hyaluronic acid concentration per 9 cm 2 of the culture substrate surface area was 0.96 ⁇ g, 5.11 ⁇ g, and 8.08 ⁇ g, respectively, when the coating amount was 2 ⁇ g / ml, 10 ⁇ g / ml, or 100 ⁇ / ml. It was. Moreover, as a result of confirming the surface state with a microscope, it was confirmed that the sulfated hyaluronic acid was uniformly dispersed in the matrigel when the coating addition amount was 10 ⁇ g / ml.
  • Example 6 Enhancement of antibody production ability The effect of enhancement of antibody production ability by sulfated hyaluronic acid was confirmed.
  • Sulfated hyaluronic acid was prepared in Example 1, low molecular weight low sulfated hyaluronic acid (molecular weight 100,000) (HA-LS), low molecular weight high sulfated hyaluronic acid (molecular weight 100,000) (HA-HS).
  • HA-LS low molecular weight low sulfated hyaluronic acid
  • HA-HS low molecular weight high sulfated hyaluronic acid
  • HA unsulfated hyaluronic acid
  • dermatan sulfate were used.
  • UltraDoma-PF medium purchased from LONZA
  • hyaluronic acid, low and high sulfated hyaluronic acid, and dermatan sulfate were added to a concentration of 10 ⁇ g / ml.
  • the cell used was GGR12 strain which is a hybridoma producing IgG.
  • Antibody production was performed according to conventional methods. Specifically, the hybridoma was seeded at a concentration of 4 ⁇ 10 4 cells / ml, cultured for 3 days in a medium supplemented with sulfated hyaluronic acid, and the number of cells and the amount of antibody in the culture solution were measured.
  • the amount of antibody was measured by sandwich ELISA using an anti-IgG polyclonal antibody. The results are shown in FIG. There was no difference in the number of cells (cell proliferation) even when cultured in a medium to which any compound was added. However, the amount of antibody production was significantly increased in the medium supplemented with sulfated hyaluronic acid, and increased three times or more in the medium supplemented with highly sulfated hyaluronic acid.
  • hPSCs are cultured in an undifferentiated state or in a state in which pluripotency is maintained without using support cells (feeder cells) that hinder the production of large-scale cells. It becomes possible to proliferate.
  • the culture method of the present invention can increase the amount of antibody produced by a hybridoma.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、工業的な細胞の製造に適したhPSCの細胞培養方法及び培養用基材を提供することを目的とする。例えば、大規模な細胞の製造の妨げとなっている支持細胞(フィーダー細胞)を用いなくとも、未分化状態に維持した或いは多分化能を維持した状態でhPSCを培養、増殖可能とする培養方法及び培養用基材を提供することを目的とする。 本発明により、多能性幹細胞を未分化状態に維持しながら培養する方法であって、以下の工程:硫酸化ヒアルロン酸を添加した培地であって、支持細胞とbFGFを含まない培地にて細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、S含量にて7%以上の硫酸化度である、を含むことを特徴とする培養方法、が提供される。また、S含量にて7%以上の硫酸化度である硫酸化ヒアルロン酸がコートされた細胞培養用基材が提供される。

Description

細胞培養用基材及び培養方法
 本発明は、細胞培養分野における、細胞培養用基材及び培養方法に関するものである。
 個体のすべての細胞に分化しうる分化多能性(pluripotency)を保ちつつ、無限に増殖できる自己複製能を併せ持つ胚性幹細胞(ES細胞)がヒトにおいて樹立されて以来、ES細胞を、インビトロで主要臓器細胞へと分化誘導する研究が盛んに行われている。また、体細胞へ特定の遺伝子を導入することにより、ES細胞のように分化多能性と自己複製能を併せ持つヒト人工多能性幹細胞(iPS細胞)が作られてからは、ES細胞に加え、iPS細胞を用いて、インビトロで主要臓器細胞へと分化誘導する研究が盛んに行われている。
 これらの多能性幹細胞は、様々な組織や臓器の細胞に分化する能力とほぼ無限に増殖する能力をもつため、病気の原因の解明、新しい薬の開発、細胞移植治療などの再生医療への応用などが期待されている。特に、ヒト胚性幹細胞(hESC)やヒト人工多能性幹細胞(hiPSC)などのヒト多能性幹細胞(hPSC)は、創薬や再生医療への応用が期待され、近年、多くの研究・開発がなされている(非特許文献1:D. A. Robinton et al., Nature. 2012 Jan 18; 481(7381): 295-305.)。
 多能性幹細胞を安全に、かつ再現性良く培養し、増殖させることは、これらの細胞を応用する上で必須の技術となっている。特に、再生医療の分野においては、幹細胞を未分化状態で多量に扱う必要があることから、天然及び合成の高分子を用いて多能性幹細胞の増殖を支持すると同時に多分化能を維持する技術について様々な研究が行われている(非特許文献2:Fan Y., et al., Stem Cell Rev. 2015 Feb;11(1):96-109.、非特許文献3:Chen YM, et al., Sci Rep. 2017 Mar 23;7:45146.)。
  未分化状態でhPSCを維持するために現在最もよく使用されている手法は、支持細胞(例えば、マウス胚性線維芽細胞(MEF)や、ヒト***線維芽細胞、ヒト脂肪由来細胞など)上で培養を行うという方法である(非特許文献4:L.G. Villa-Diaz et al., Stem Cells. 2013 Jan; 31(1): 1-7.)。しかし、支持細胞を用いたhPSCの培養は、時間がかかり、支持細胞のロットごとにばらつきが生じるという問題があり、また、支持細胞からの物質のコンタミの懸念もある。
 或いは、hPSCを、細胞外マトリックス上、例えば、マトリゲル上もしくはゲルトレックス上において培養を行うという方法である。マトリゲルなどの細胞培養用の細胞外マトリックスは、主成分として、ラミニン、コラーゲンIV、へパラン硫酸プロテオグリカン、及びエンタクチン/ニドゲンを含み、さらに、様々な増殖因子などを含むEngelbreth-Holm-Swarm(EHS)マウス肉腫から分離された基質により構成されている。これらは、多くのhESC株の多分化能を支持することが報告されているが(非特許文献5:K G. Chen, et al., Cell Stem Cell. 2014 Jan 2; 14(1): 13-26.)、厳密な組成が明らかでなく、異種生物由来成分を含むものであるため、このような培養条件を用いた場合にはhPSCの臨床応用が妨げられる恐れがある。
 また、MEFやマトリゲルを用いた場合は、ヒトに由来しないN-グリコリルノイラミン酸(Neu5Gc)などの免疫原性エピトープや、異種感染ウイルスのヒトへの伝播に関する懸念がある。
 hESCやhiPSCなどの細胞の製造を、GMPに適合した施設において大規模に行うことが現在求められているが、支持細胞の存在が特にhPSCの利用を妨げている。
また、hPSCの多分化能の維持のためには、培地中に塩基性線維芽細胞成長因子(bFGF)を添加することが必要であるが、bFGFは、高価で、また長期に安定に保存することが困難であり、そのことも、hPSCの工業的製造を妨げている。
 FGFは、幹細胞の培養を安定して行なうために一般的に培地に添加されており、無血清培地においても重要性が高い成分の1つとなっている。しかしながら、培地中での安定性が低いことが知られており、細胞培養において高頻度の培地交換が要求される要因ともなっている。このことも、hPSCの工業的製造を妨げている。
 これまでに、ある種の硫酸化多糖類がFGFを分解、変性、失活等から保護する作用を有することが報告されている。例えば、特許文献1(WO92/13526号パンフレット)には、カラギーナンがbFGFを安定化することが開示されている。特許文献2(特開平02-138223号公報)には、FGFもしくはそのムテインと硫酸化グルカンとを水性媒体中で接触させることを特徴とするFGFもしくはそのムテインの安定化方法等が開示されている。非特許文献6(J. Cell. Physiol., 1986, 128, 475-484)には、ヘパリン又はヘキシウロニルヘキソサミノグリカン硫酸(HHS-4)がbFGFを不活性化から保護しその生理活性を増強することが記載されている。
 一方、培地内に陰イオン修飾ヒアルロン酸を含有させてなるヒト細胞を培養する方法が報告されている(特許文献3:特開2006-211920号公報)。そこでは、ヒト間葉系細胞が、陰イオン修飾ヒアルロン酸によってその増殖が促進されることが記載されている。
 また、硫酸化多糖類である硫酸化ヒアルロン酸をコーティングした生体組織補填剤が報告されている(特許文献4:特許第5088864号公報)。そこでは、硫酸化度が、0.6又は1.0の硫酸化ヒアルロン酸をコートした生体組織補填剤が、軟骨細胞の増殖及び軟骨への分化能を促進していることが記載されている。
 その他、硫酸化ヒアルロン酸を用いて細胞を活性化させ、神経細胞への分化・成熟を促進することができる培地及び培養方法が報告されている(特許文献5:特開2009-278873号公報)。そこでは、硫酸化度が、0.4又は1.0の硫酸化ヒアルロン酸が用いられており、硫酸化ヒアルロン酸とFGF-2とを組み合わせて添加することにより、細胞を活性化させ、神経細胞への分化・成熟を促進することができると記載されている。
WO92/13526号パンフレット 特開平02-138223号公報 特開2006-211920号公報 特許第5088864号公報 特開2009-278873号公報
D. A. Robinton et al., Nature. 2012 Jan 18; 481(7381): 295-305 Fan Y., et al., Stem Cell Rev. 2015 Feb;11(1):96-109 Chen YM, et al., Sci Rep. 2017 Mar 23;7:45146 L.G. Villa-Diaz et al., Stem Cells. 2013 Jan; 31(1): 1-7 K G. Chen, et al., Cell Stem Cell. 2014 Jan 2; 14(1): 13-26 Gospodarowics D., et al,, J. Cell. Physiol., 1986, 128, 475-484
 本発明は、hPSCの培養や抗体を産生するハイブリドーマの培養において、培養効率を向上させることができる新たな細胞培養用基材又は培養方法を提供することを目的とする。 
 本発明者らは鋭意研究をした結果、比較的高い硫化度の硫酸化ヒアルロン酸を用いることにより、hPSCの培養や抗体を産生するハイブリドーマの培養において、培養効率を向上させることができることを見いだし、本発明を完成した。
 本発明の一つの観点において、比較的高い硫化度の硫酸化ヒアルロン酸を用いることにより、フィーダー細胞を用いなくてもhPSCを未分化状態に維持した或いは多分化能を維持した状態で培養増殖させることができる。
 本発明の別の一つの観点において、比較的高い硫化度の硫酸化ヒアルロン酸を用いることにより、抗体産生ハイブリドーマの培養において、抗体産生量を増加させることができる。
 より具体的には本発明は以下の細胞培養方法及び細胞培養用基材を含むものである。
(細胞培養方法)
 本発明は一つの観点において、比較的高い硫酸化度の硫酸化ヒアルロン酸(硫酸化度が、ヒアルロン酸2糖単位当たりの硫酸基数(以下、「硫酸化度(硫酸基数/2糖単位)」という表現を用いる場合がある)で、約1.3以上、好ましくは約1.5以上、より好ましくは、約2.0以上である硫酸化ヒアルロン酸)を用いることにより、支持細胞を用いなくてもhPSCを未分化状態に維持した或いは多分化能を維持した状態で培養増殖するための細胞培養方法を提供する。
 本発明は別の観点において、比較的高い硫酸化度(硫酸化度(硫酸基数/2糖単位)が、約1.3以上、好ましくは約1.5以上、より好ましくは約2.0以上、さらに好ましくは約3.0以上)の硫酸化ヒアルロン酸を用いることにより、支持細胞及びbFGFを用いなくても、hPSCを未分化状態に維持した或いは多分化能を維持した状態で培養増殖するための細胞培養用方法を提供する。
(細胞培養用基材)
 本発明はまた別の観点において、支持細胞を用いない、場合により支持細胞に加えてさらにbFGFを用いないhPSCの培養において、hPSCを未分化状態に維持した或いは多分化能を維持した状態で培養増殖するための、比較的高い硫酸化度(硫酸化度(硫酸基数/2糖単位)が、約1.3以上、好ましくは約1.3~約3.0)の硫酸化ヒアルロン酸が、場合により細胞外マトリックスとともに、コートされた細胞培養用基材を提供する。
 本発明はまた別の一つの観点において、上記の細胞培養用基材を用いた、hPSCの培養方法を提供する。
 本発明はさらにまた別の観点において、比較的高い硫酸化度(硫酸化度(硫酸基数/2糖単位)が、好ましくは約1.3以上、より好ましくは約2.0以上、さらに好ましくは約3.0以上)の硫酸化ヒアルロン酸を加えた培地を用いて、抗体産生能をもつハイブリドーマを培養して抗体を産生する方法を提供する。
 具体的には、本発明は以下の態様を含むものである。
[1]硫酸化ヒアルロン酸が表面にコートされた細胞培養用基材。
[2]前記硫酸化ヒアルロン酸は、S含量にて約7%以上(好ましくは10%以上)の硫酸化度である硫酸化ヒアルロン酸である上記[1]に記載の細胞培養用基材。
[3]前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも約1.3以上の割合で導入されている上記[1]に記載の細胞培養用基材。
[4]前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して約1.3~約3.0の割合で導入されている、上記[3]に記載の細胞培養用基材。
[5]前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して3.0以上の割合で導入されている、上記[3]に記載の細胞培養用基材。
[6]多能性幹細胞の培養用基材であって、多能性幹細胞を未分化状態に維持するための培養に用いることを特徴とする上記[1]~[5]のいずれか一つに記載の細胞培養用基材。
[7]前記多能性幹細胞が、iPS細胞である上記[6]に記載の細胞培養用基材。
[8]前記硫酸化ヒアルロン酸が、細胞外マトリックス、たんぱく質又はポリマーとともに表面にコートされた上記[1]~[7]のいずれか一つに記載の細胞培養用基材。
[9]前記硫酸化ヒアルロン酸が、細胞外マトリックス、たんぱく質又はポリマー中に均一に分散された状態で存在することを特徴とする上記[8]に記載の細胞培養用基材。
[10]上記[1]~[9]のいずれか一つに記載の細胞培養用基材を含む細胞培養器具。
[11]上記[1]~[9]のいずれか一つに記載の細胞培養用基材を用いて、多能性幹細胞(好ましくは、ES細胞又はiPS細胞)を培養し、その分化能を維持することを特徴とする多能性幹細胞の培養方法。
[12]多能性幹細胞(好ましくは、ES細胞又はiPS細胞)を培養する方法であって、以下の工程:
硫酸化ヒアルロン酸を添加した培地を用いて、支持細胞を含まない培養条件にて細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、S含量にて約7%以上(好ましくは約10%以上、より好ましくは約13%以上、さらに好ましくは約14%以上)の硫酸化度である、
を含むことを特徴とする培養方法。
[13]多能性幹細胞(好ましくは、ES細胞又はiPS細胞)を培養する方法であって、以下の工程:
硫酸化ヒアルロン酸を添加した培地を用いて、支持細胞を含まない培養条件にて細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも約1.3以上(好ましくは約2.0以上、より好ましくは約2.5以上、さらに好ましくは約3.0以上、よりさらに好ましくは約3.5以上)の割合で導入されている、
を含むことを特徴とする培養方法。
[14]前記培養条件が、さらにbFGFを含まない培養条件である、上記[12]又は[13]に記載の培養方法。
[15]前記培養する工程が、細胞外マトリックス、たんぱく質又はポリマーが存在する状態で行われる、上記[12]~[14]のいずれか一つに記載の培養方法。
[16]前記多能性幹細胞が、ヒトiPS細胞である上記[12]~[15]のいずれか一つに記載の培養方法。
[17]抗体を産生する能力を有するハイブリドーマを培養して抗体を産生する方法であって、以下の工程:
硫酸化ヒアルロン酸を添加した培地で細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、S含量にて7%以上(好ましくは10%以上、さらに好ましくは13%以上、より好ましくは14%以上)の硫酸化度である、
を含むことを特徴とする方法。
[18]抗体を産生する能力を有するハイブリドーマを培養して抗体を産生する方法であって、以下の工程:
硫酸化ヒアルロン酸を添加した培地で細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも1.3以上(好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上、よりさらに好ましくは3.5以上)の割合で導入されている硫酸化度である、
を含むことを特徴とする方法。
 本発明によれば、hPSCの培養や抗体を産生するハイブリドーマの培養において、培養効率を向上させることができる。
支持細胞及びbFGFを加えずに、10μg/mlのヒアルロン酸(HA)、高硫酸化ヒアルロン酸(HA-HS)をそれぞれ加え3日間培養した後に、コロニー数をカウントした結果である。実験には、hiPS#16(左)とhiPS#25(右)の2種類のヒトiPS細胞株を用いた。試行回数3回の平均値を示す。硫酸化ヒアルロン酸の添加により、hiPS細胞の未分化性が維持されていることが判る。 培養3日後のヒトiPS細胞のコロニーの顕微鏡写真である。左図(A)は、支持細胞及びbFGFを加えず培養した場合の結果であり、分化が見られる。一方、右図(B)は、支持細胞及びbFGFを加えないが、高硫酸化ヒアルロン酸を加えた場合の結果であり、未分化性が維持されている。 支持細胞及びbFGFを加えずに、10μg/mlのヒアルロン酸(HA)、10μg/mlの高硫酸化ヒアルロン酸(分子量10万)(HA-HS)を加え、3日間培養した後、ウェスタンブロット解析により各未分化性維持転写因子(OCT4、KLF4、NANOG)のタンパク質の発現量を検討した。下のグラフは各未分化性維持転写因子のバンド強度を、内在性コントロールであるβ-actinのバンド強度で補正した後の値を示す。実験には、hiPS#16(左)とhiPS#25(右)の2種類のヒトiPS細胞株を用いた。各実験は3回行った。バンドは代表的な結果のみを示す。有意差はp*<0.05、p**<0.01で示した。 硫酸化ヒアルロン酸とマトリゲルを混合コートした培養用基材を用いて、ヒトiPS細胞を培養し、未分化性を確認した結果である。培養2日後のヒトiPS細胞のコロニーの様子を示している。 培養液中に硫酸化ヒアルロン酸を加え3日間培養し、細胞数及び培養液中の抗体量(Ab.Conc)をサンドイッチELISAにより定量した結果である。対照として、添加物なし、比較として、ヒアルロン酸、デルマタン硫酸を添加したものを一緒に示してある。
 以下、本発明を、例示的な実施態様を例として、本発明の実施において使用することができる好ましい方法及び材料とともに説明する。なお、文中で特に断らない限り、本明細書で用いるすべての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。また、本明細書に記載されたものと同等又は同様の任意の材料及び方法は、本発明の実施において同様に使用することができる。また、本明細書に記載された発明に関連して本明細書中で引用されるすべての刊行物及び特許は、例えば、本発明で使用できる方法や材料その他を示すものとして、本明細書の一部を構成するものである。
 本明細書中で、「X~Y」という表現を用いた場合は、下限としてXを、上限としてYを含む意味で用いる。本明細書中で「約」とは、±10%を許容する意味で用いる。
 本発明において「硫酸化ヒアルロン酸」とは、 β-D-N-アセチルグルコサミンとβ-D-グルクロン酸が交互に結合してできた直鎖状の高分子多糖であるヒアルロン酸の水酸基の一部又は全てが硫酸基で置換された物質をいう。
 硫酸化の程度は「硫酸化度」として表される。本明細書中では、硫酸化度は、硫酸化ヒアルロン酸分子中の硫酸含量(S含量)(%)、或いは、構成単位である2糖単位における硫酸基の導入数(0~4)で表される。
 硫酸含量(比濁法)は、Dogson-Priceの比濁法(Dogson, K. S. and Price, R.G., A note on the determination of the ester sulphate content of sulphated polysaccharides, Biochem J. vol 84(1),106-110, 1962)により、硫酸カリウムを標準として測定できる。また、硫酸含量(重量法)は、JIS JB. 2.17.3 硫酸塩-重量法に準じた方法を用いて測定できる。硫酸化度はまた、導入される硫酸基の平均個数で表すこともできる。硫酸基は、2糖単位で、0~4個導入され得る。平均個数で表す場合は、硫酸化ヒアルロン酸の分子量をもとに、2糖単位における硫酸基の平均個数をS含量より算出できる。
 本発明で用いる硫酸化ヒアルロン酸(以下、単に「硫酸化ヒアルロン酸」という場合がある)は、比較的高い硫酸化度を有するヒアルロン酸である。硫酸化ヒアルロン酸は、具体的な化合物としては、硫酸基数/2単糖として、1.0又はそれ以下の硫酸化度のヒアルロン酸が報告されている(例えば、特開2009-278873号公報参照)。本発明において用いる硫酸化ヒアルロン酸は、そのS含量は比濁法にて約7%以上であり、また、硫酸基数/2単糖は約1.3以上である。
 本発明の培養方法に従い、支持細胞を用いずに多能性幹細胞の培養を行う場合に用いる硫酸化ヒアルロン酸とは、導入された硫酸基の平均個数は、約1.3以上、好ましくは約1.5以上、より好ましくは約2.0以上、さらに好ましくは約2.5以上である。
 本発明の培養方法に従い、支持細胞及びbFGFを用いずに多能性幹細胞の培養を行う場合に用いる硫酸化ヒアルロン酸とは、導入された硫酸基の平均個数は、約1.3以上、好ましくは約1.5以上、より好ましくは約2.0以上、さらに好ましくは約3.0以上である。
 本発明の培養方法に従えば、支持細胞及びbFGFを用いずに、多能性幹細胞の培養を行うことができ、多能性幹細胞を、未分化状態を維持した或いは多分化能を維持した状態で培養できる。ただし、硫酸化ヒアルロン酸を含有しかつbFGFを含んだ培地での培養も本発明に含まれ、本発明の一部である。
 支持細胞を用いない、場合により支持細胞に加えてさらにbFGFを用いない多能性幹細胞の培養に用いる、硫酸化ヒアルロン酸がコートされた本発明の細胞培養用基材において、用いられる硫酸化ヒアルロン酸は、導入された硫酸基の平均個数が、約1.3以上、好ましくは約1.3~約3.0である硫酸化ヒアルロン酸である。
 また、上記の培養において、用いられる本発明の細胞培養用基材は、好ましくは細胞外マトリックスとともに上記硫酸化ヒアルロン酸がコートされた細胞培養用基材である。
 硫酸化ヒアルロン酸がコートされた本発明の細胞培養用基材を用いて、支持細胞及びbFGFを用いないで、多能性幹細胞の培養を行うことができ、多能性幹細胞を、未分化状態を維持した或いは多分化能を維持した状態で培養できる。ただし、bFGFを含んだ培地での本発明の細胞培養用基材の使用も排除するものではなく、bFGFを添加した培地での培養に用いられる本発明の細胞培養用基材も本発明に含まれ、本発明の一部である。
 本発明の培養方法に従い、抗体産生能をもつハイブリドーマの培養を行う場合に用いる硫酸化ヒアルロン酸とは、硫酸化度が、硫酸含量にて、約7%以上、好ましくは約10%以上、より好ましくは約13%以上、さらに好ましくは約14%以上である。
 本発明の培養方法に従い、抗体産生能をもつハイブリドーマの培養を行う場合に用いる硫酸化ヒアルロン酸とは、導入された硫酸基の平均個数は、約1.3以上、好ましくは約1.5以上、より好ましくは約2.5以上、さらに好ましくは約3.0以上、よりさらに好ましくは約3.5以上である。
 硫酸化ヒアルロン酸は、既知の硫酸化反応を用いて、ヒアルロン酸と硫酸化剤を適当な溶媒に溶解させ、加熱下に反応させることにより得ることができる。また、硫酸化度の調整は、公知の方法を参考にして、用いる硫酸化剤の使用量を適宜変更することにより行うことができる。硫酸化度の測定は、例えば、上記した方法により行うことができるが、他に、酸加水分解して生成する硫酸イオンをイオンクロマトグラフィーによって定量することにより行うこともできる。
  硫酸化反応において使用される溶媒としては、当該技術分野において一般に使用できる溶媒が制限なく使用できるが、例えば、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、N,N-ジメチルアセトアミド、ピリジン、N,N-ジメチルアクリルアミド、又はこれらの混合溶媒等をあげることができる。
  硫酸化剤としては、当該技術分野において一般に使用できる硫酸化剤が制限なく使用できるが、例えば、無水硫酸とピリジン、ピコリン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、N,N-ジメチルホルムアミド、ジオキサン等の錯体、或いは、硫酸-ジシクロヘキシルカルボジイミド、クロロスルホン等をあげることができる。また、硫酸化反応においては反応系内に、トリフルオロ酢酸やトリフルオロメタンスルホン酸等の酸触媒を添加しても良い。
 硫酸化の反応温度及び反応時間は、特に限定されるものではないが、例えば、0~100℃で、5分~5日が挙げられる。
 本発明で用いることができる硫酸化ヒアルロン酸の分子量は特に制限なく、何れの分子量の硫酸化ヒアルロン酸も用いることができる。本発明においては、以下の実施例で示されるように、低分子量のヒアルロン酸(例えば、平均分子量が10万程度のもの)、高分子量のヒアルロン酸(例えば、平均分子量が60万のもの)の何れも用いることができる。本発明において硫酸化ヒアルロン酸の分子量を言うときは、当該技術分野において一般に用いられる表示法の何れかで示される分子量を意味し、これに限定されないが、例えば、原料であるヒアルロン酸の動粘度から算出した分子量を用いることができる。
 本発明の細胞培養用基材は、細胞培養のための基材の表面に硫酸化ヒアルロン酸をコートすることにより製造できる。細胞培養のための基材としては、細胞培養に関する技術分野で用いられている細胞培養のための基材を制限なく用いることができるが、例えば、動物細胞培養用のシャーレやプレートに用いられる基材を用いることができる。
 このような基材となり得る材料は、これに制限されるものではないが、例えば、ポリプロピレン、ポリスチレン、高密度ポリエチレン、ポリエチレンテレフタレート共重合体、ポリカーボネート、ポリエーテルサルフィン、MPCポリマーをあげることができる。
 本発明において、硫酸化ヒアルロン酸が「表面にコートされた」とは、硫酸化ヒアルロン酸が細胞培養用基材の表面に、物理的に結合又は保持された状態を意味し、単に接着している状態も含む。物理的に結合とは、非共有結合的又は共有結合的に結合した状態を意味し、これに限定されないが、例えば、イオン的に結合している状態、直接又はリンカー等を介して共有結合している状態をあげることができる。共有結合させる手段は、基材表面の物理化学的性質や表面に提示されている反応基に応じて、適宜選択できる。例えば、光反応性架橋剤を用いて、直接又はリンカーを介して結合させることができる。基材表面に硫酸化ヒアルロン酸が保持されている状態とは、これに限定されないが、例えば、硫酸化ヒアルロン酸と基材間の親和性に基づき、硫酸化ヒアルロン酸が基材表面に保持されている状態をあげることができる。例えば、硫酸化ヒアルロン酸を含有する溶液又は溶媒を基材表面に塗布した後、溶液又は溶媒を除去することによっても、硫酸化ヒアルロン酸が表面にコートされた細胞培養用基材を作成することができる。溶液又は溶媒を除去する方法は、特に制限がなく、例えば、常温乾燥、高温乾燥、減圧乾燥その他を用いることができる。
 その他、細胞外マトリックス等の高分子物質ともに表面にコートされる場合は、細胞外マトリックス等の高分子物質の中に硫酸化ヒアルロン酸が保持された状態で基材表面に硫酸化ヒアルロン酸が保持されている状態も含まれる。
 本発明の細胞培養用基材において表面にコートされる硫酸化ヒアルロン酸の量は、培養目的に応じて、硫酸化ヒアルロン酸がコートされていない基材で細胞を培養した場合に比べて細胞の培養、増殖を促進できる限り特に制限されないが、例えば、量としては、約0.05μg/cm2以上、好ましく約0.5μg/cm2以上、より好ましくは約1μg/cm2以上、よりさらに好ましくは約2μg/cm2以上をあげることができる。表面にコートされる硫酸化ヒアルロン酸の厚みは、特に制限はないが、使用目的、調製方法、コスト等を勘案して適宜選択することができる。
 本発明の細胞培養用基材はまた、硫酸化ヒアルロン酸とともに、たんぱく質、ポリマー又は細胞外マトリックス等の高分子物質をその表面にコートしたものを含む。これらの高分子は、これに限定されないが、硫酸化ヒアルロン酸を保持する役目を果たす。用いることができるたんぱく質としては、細胞の培養・増殖を阻害するものでなければ特に制限なく用いることができ、例えば、アルブミン、トランスフェリン、コラーゲン、フィブロネクチン、Fc融合タンパク質などのキメラタンパク質、細胞接着を補助するペプチド断片などをあげることができる。用いることができるポリマーとしては、細胞の培養・増殖を阻害するものでなければ特に制限なく用いることができ、例えば、ポリリシン、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸の共重合ポリマーをあげることができる。硫酸化ヒアルロン酸とともにコートされる高分子物質としては、細胞外マトリックスが好ましい。硫酸ヒアルロン酸とともに細胞外マトリックスをコートすることにより、細胞の培養、増殖の効率をさらに高めることができる。細胞外マトリックスとしては、例えば、マトリゲル、ラミニン、ラミニン511、プロテオグリカン等をあげることができる。本発明の細胞培養用基材の表面にコートされる細胞外マトリックスの量は、使用細胞、使用目的、培養条件その他に応じて適宜選択できるが、例えば、マトリゲルを用いる場合はマトリゲルを用いた細胞培養についての報告を参考にすることができる。
 本発明の細胞培養用基材において、硫酸化ヒアルロン酸を高分子物質とともにコートする方法は特に制限がない。例えば、細胞外マトリックスとともにコートする場合は、これに限定されないが、細胞外マトリックス(例えば、マトリゲル)を溶解した培地に硫酸化ヒアルロン酸を添加し混合溶液を調製したのち、混合溶液を、培養基材の表面に塗布し、例えば培養シャーレに加えることにより調製できる。このようにして調製した硫酸化ヒアルロン酸と細胞外マトリックスが表面にコートされた細胞培養用基材(例えば、培養シャーレ)は、そのまま使用しても良いが、使用まで保存した後使用することもできる。保存方法は、コートに用いる細胞外マトリックスに応じて適宜選択することができ、常温、冷蔵、冷凍保存をあげることができる。例えば、細胞外マトリックスとしてマトリゲルを用いた場合は、冷蔵又は冷凍保存が望ましい。使用に際しては、表面にコートされていない細胞外マトリックスと硫酸化ヒアルロン酸を含む培地を除去し、その後、培地及び細胞を添加し培養を行う。
 本発明の細胞培養用基材において、硫酸化ヒアルロン酸が高分子物質(例えば、たんぱく質、ポリマー又は細胞外マトリックス)とともに表面にコートされている場合、硫酸化ヒアルロン酸が高分子物質中に均一に分散された状態で保持されるのが好ましい。混合物中の硫酸化ヒアルロン酸の濃度が高すぎると、硫酸化ヒアルロン酸は相互に凝集したり繊維状に伸びたりした状態となり好ましくない。高分子物質中に保持される硫酸化ヒアルロン酸の量は、例えば、シャーレ等の培養用基材に添加する前の混合溶液中の硫酸化ヒアルロン酸の濃度を適宜選択することにより調整することができ、それにより、高分子物質中に均一に分散した硫酸化ヒアルロン酸がコートされた本発明の細胞培養用基材を調製できる。
 本発明の一態様である細胞培養用基材は、硫酸化ヒアルロン酸が表面にコートされた細胞培養用基材、及び、硫酸化ヒアルロン酸が高分子物質、例えばマトリゲル等の細胞外マトリックス、タンパク質又はポリマーとともにコートされた細胞培養用基材の何れも含む。硫酸化ヒアルロン酸が表面にコートされた細胞培養用基材は、無菌状態で製造すること又は製造後に滅菌処理することも可能である。滅菌処理は、硫酸化ヒアルロン酸とともに用いられる成分に応じて、当業者が適宜選択することができるが、例えば、滅菌処理方法としては、これに限定されないが、例えば、電子線、ガンマ線、エチレンオキシド、高圧蒸気(オートクレーブ)をあげることができる。硫酸化ヒアルロン酸がマトリゲル等の細胞外マトリックスとともにコートされた細胞培養用基材は、常法に従って無菌状態で製造することが好ましい。
 本発明の細胞培養用基材は、細胞培養のための容器、器具や装置の一部に用いることもできる。そのような培養容器、器具、装置も本発明に含まれる。細胞培養のための容器、器具、及び装置は、細胞培養のために一般に用いられているものを制限なく用いることができる。
 本発明はまた、本発明の細胞培養用基材を用いて、多能性幹細胞を、未分化状態を維持したまま又は分化能を有した状態で培養、増殖させる細胞の培養方法である。
 本発明の細胞培養方法又は本発明の細胞培養用基材を用いる培養で使用する多能性幹細胞は、例えば、ES細胞やiPS細胞をあげることができるが、好ましくは、ヒトES細胞又はヒトiPS細胞であり、特に好ましくはヒトiPS細胞である。
 細胞の培養条件は、培養を目的とする細胞の種類、培養目的に応じ、適宜選択でき、そのような培養条件は、種々報告されているので、それを参考に行えばよい。
 本発明の細胞培養方法又は細胞培養用基材を用いると、支持細胞(フィーダー細胞)を用いることなく多能性幹細胞の培養ができる。また、本発明の細胞培養用基材を用いて多能性幹細胞を培養する場合は、未分化状態を維持するために通常必要とされるbFGFの添加量を低減又は添加不要とすることができる。
 つまり、本発明は、その一態様として、多能性幹細胞を、未分化な状態又は分化能を有する状態で、細胞の増殖を支持するための支持細胞層を用いずに、場合により支持細胞に加えてさらにbFGFを用いずに、安定かつ一貫して増殖させるための培養方法を提供するものである。
 本発明はまた、比較的高い硫酸化度の硫酸化ヒアルロン酸を用いた抗体の製造のための培養方法を含むものである。本発明の培養方法に従い、抗体産生能を有するハイブリドーマを、硫酸化ヒアルロン酸とともに培養することにより、抗体の産生能を顕著に増加させることができる。
 本発明に従って、抗体産生のための培養において用いることができる硫酸化ヒアルロン酸は、上記した比較的高い硫酸化度を有する硫酸化ヒアルロン酸、具体的には、S含量にて7%以上(好ましくは10%以上、さらに好ましくは13%以上、より好ましくは14%以上)の硫酸化度を有する硫酸化ヒアルロン酸、或いは、構成単位である2糖単位に対して硫酸基が平均して少なくとも1.3以上(好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上、よりさらに好ましくは3.5以上)の割合で導入されている硫酸化ヒアルロン酸であり、低分子量硫酸化ヒアルロン酸及び高分子量硫酸化ヒアルロン酸の何れも用いることができる。本発明の抗体の製造のための培養方法において、培地中に添加される硫酸化ヒアルロン酸の量は、用いる細胞、培養条件等により適宜選択することができるが、これに限定されないが、例えば、0.1~100μg/mL、好ましくは1~100μg/mLの濃度にて培地に添加される。培地は、特に制限されず、ハイブリドーマを用いた抗体産生において使用することができる何れの培地も用いることができるが、例えば、RPMI-1640培地、ダルベッコ改変イーグル培地、 Nutrient Mixture F-12 Ham、Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham、Iscove's Modified Dulbecco's Medium、GIT培地をあげることができる。また、抗体を産生するハイブリドーマの培養条件等は、自体公知の方法を適宜参考として行うことができる。
 本発明はまた、本発明の細胞培養用基材を用いて、抗体の産生能力を有する細胞を培養する方法も含む。本発明の細胞培養用基材を用いて、抗体産生能力のある細胞を培養すると、抗体の産生量を顕著に増加させることができる。
 よって、本発明は、他の一態様として、抗体産生細胞を培養して抗体を製造するための細胞培養方法と細胞培養用基材を提供するものである。
 以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1:硫酸化ヒアルロン酸の調製
 硫酸化ヒアルロン酸は、ヒアルロン酸を硫酸化することにより調製した。ヒアルロン酸の硫酸化は、既知の硫酸化反応を用い、条件を適宜調整することにより、種々の硫酸化度のものを製造した。硫酸化に用いたヒアルロン酸は、分子量が10万のもの(以下、低分子量ヒアルロン酸という)及び60万のもの(以下、高分子量ヒアルロン酸という)を用いた。
 硫酸化ヒアルロン酸の調製は、まず少量レベル(用いたヒアルロン酸量、1g)で、次いで、スケールアップしたレベル(用いたヒアルロン酸量、20g)で行った。
 調製した硫酸化ヒアルロン酸について硫酸化度を確認した。結果を以下に示す。表1は、低分子量ヒアルロン酸を用いて調製した硫酸化ヒアルロン酸の硫化度を測定した結果であり、表2は、高分子量ヒアルロン酸を用いて調製した硫酸化ヒアルロン酸の硫化度を測定した結果である。「S含量(比濁法)」は、Dogson-Priceの比濁法により測定した結果であり、「S含量(重量法)」は、JIS JB. 2.17.3 硫酸塩-重量法に準じた方法を用いて測定した結果である。また、「硫酸化度」は、導入される硫酸基の数を、2糖単位当たりの平均個数で表したものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明で用いる硫酸化ヒアルロン酸は、比較的高い硫酸化度を有するものである。本明細書では、比較的高い硫酸化度を有するが、その中でも硫酸化度が低いものを低硫酸化ヒアルロン酸、具体的には、硫酸化度(硫酸基数/2単糖)が約1.5程度のものを低硫酸化ヒアルロン酸、硫酸化度が高いものを高硫酸化ヒアルロン酸、具体的には、硫酸化度(硫酸基数/2単糖)が3以上のものを高硫酸化ヒアルロン酸とよぶ。上記表に示されている、高硫酸化ヒアルロン酸は、硫酸基に置換可能な水酸基の殆どが硫酸化されていることを示している。
実施例2:iPS/ES細胞の培養
 ヒトiPS細胞を、その未分化性を維持した状態で培養、増殖させるには、マウス由来の支持細胞上での培養、及び、培地へのbFGFの添加が必要である。この両者が無い状態での培養では、ヒトiPS細胞は速やかに分化する。よって、この両者の添加の必要性は、未分化性を維持したiPS細胞を大量に培養するための妨げとなっている。
 そこで、実施例1で調製した高硫酸化ヒアルロン酸を培地に加えることにより、支持細胞やbFGFがない状態でもヒトiPS細胞が未分化性を維持して培養、増殖できるか検討した。
 ヒトiPS細胞(hiPSC)として、MRC-hiPS_Fetch(細胞番号:NIHS0604)及びMRC-hiPS_Tic(細胞番号:JCRB1331)(いずれもExp.Cell  Res.315(2009)2727-2740に記載、国立生育医療センターから入手)を使用した。各々の細胞を、10ng/mLの濃度でbFGF(和光純薬社製)を加えたiPSellon(Cell-Sight社製)中において、10μg/mLのマイトマイシン C(シグマ社製)で不活化したMEFs上で維持した。
 上記hiPS細胞(hiPS#16及びhiPS#25)を、支持細胞とbFGFが無い状態で、10μg/mlの濃度になるように高硫酸化ヒアルロン酸(分子量10万)を添加したhiPS細胞用培地(DMEM/F-12 (Gibco)、20 % KnockOut Serum Replacement XenoFree (Thermo Fisher Scientific)、0.1 mM Non-Essential Amino Acids Solution (Thermo Fisher Scientific)、1 % Penicillin-Streptomycin(Thermo Fisher Scientific)、0.1 mM 2-Mercaptoethanol (Gibco)、2 mM L-Glutamine (Gibco))に加え、これを用いてマトリゲル(BD Bioscience)を処理した培養皿上で3日間培養した。3日後に、形成された未分化なhiPS細胞のコロニー数をカウントし定量的に解析した。結果を、図1に示す。他の条件と比べ、高硫酸化ヒアルロン酸を添加した培地では、未分化なhiPS細胞のコロニー数が顕著に増加した。硫酸化ヒアルロン酸の有無のそれぞれの条件における形成されたコロニーの写真を図2に示す。Aは、支持細胞及びbFGFを加えず培養した場合の結果であり、Bは、支持細胞及びbFGFを加えないが、高硫酸化ヒアルロン酸を加えた場合の結果である。高硫酸化ヒアルロン酸を加えることにより、支持細胞及びbFGFが無くとも、hiPS細胞の未分化性が維持されていることが確認された。
実施例3:未分化因子の発現の確認
 硫酸化ヒアルロン酸を添加した培地で培養したhiPS細胞について、未分化性維持に必須の転写因子(OCT4、KLF4、NANOG)の発現量を免疫ブロットにより測定することで、未分化性を確認した。結果を図3に示す。
 培地中の高硫酸化ヒアルロン酸は、支持細胞やbFGFが無い状態でも未分化性維持転写因子の発現量を促進し、未分化性維持に寄与していることが示唆された。
実施例4:培養基材への硫酸化ヒアルロン酸の接着
 硫酸化ヒアルロン酸を、細胞培養用の基材に接着させ、その接着量を評価した。
 表面処理の異なる種々の細胞培養用の基材に、硫酸化ヒアルロン酸を接着させ、接着量を確認した。細胞培養用基材としては、BD(Becton Dickinson)社製 細胞培養処理シャーレ(35mm、ポリスチレン、真空ガスプラズマ処理による親水性処理)、BD社製 未処理シャーレ(35mm、ポリスチレン、疎水性表面)、BD NH2処理(6 well、ポリスチレン、アミノ基付加表面)、BD COOH(6 well、ポリスチレン、カルボキシル基付加表面)、IWAKI社製 細胞培養処理(6 well、ポリスチレン、親水性処理)、住友ベークライト社製 細胞培養処理(6 well、ポリスチレン、親水性処理)、住友ベークライト社製 未処理(6 well、ポリスチレン、疎水性表面)を用いた。硫酸化ヒアルロン酸は、低分子量の高硫酸化ヒアルロン酸を用いた。具体的には、硫酸化ヒアルロン酸をPBSバッファーに溶解し、37℃で1時間保温し、接着しなかった硫酸化ヒアルロン酸はPBSで洗浄した。硫酸化ヒアルロン酸の接着量は、DMMB法(Connect Tissue Res. 1982;9(4):247-8. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures.Farndale RW, Sayers CA, Barrett AJ.)により評価した。結果を以下の表に示す。接着量は、面積当たり(9.6cm2)の硫酸化糖鎖接着量(μg)を示した。100μg/mL,10μg/mLはコート時の処理濃度である。u.d.は測定限界以下
Figure JPOXMLDOC01-appb-T000003
アミノ基が付与された培養基材への接着が良好であった。
 次いで、硫酸化糖鎖の培養用基材への共有結合による接着を検討した。具体的には、以下のようにして、光反応性ジアジリン化合物を用いて、硫酸化糖鎖を培養用基材に共有結合させた。
 SDA(NHS-Diazirine)を50mMの濃度で溶解し、アミノ基を有する培養シャーレに添加し、30分間室温で反応させ、シャーレ表面にDiazirineを結合させた。これに硫酸化糖鎖(コンドロイチン硫酸D)を添加しUV照射により基材表面に結合させた。その結果、硫酸化糖鎖の培養用基材(シャーレ)への共有結合による接着が確認できた。これにより、光反応性ジアリジン化合物を用いた方法で、BD NH2 6wellプレート等に対して硫酸化ヒアルロン酸を含む硫酸化糖鎖の結合が可能であることが判った。
実施例5:硫酸化ヒアルロン酸及びマトリゲルの培養基材へのコーティング
 硫酸化ヒアルロン酸に加えて細胞基質マトリックスをさらにコーティングした培養基材を作製し、それを用いた培養を検討した。
 iPS細胞の培養に使用される基底膜マトリックス(マトリゲル(登録商標)、Corning社)と硫酸化ヒアルロン酸の混合コートを行った。硫酸化ヒアルロン酸は、低分子量(分子量10万)の硫酸化ヒアルロン酸を用いた。具体的には、以下のようにして、培養用基材へのコーティングを行った。マトリゲルを2.5%になるように細胞培養用培地DMEMで溶解し、そこに硫酸化ヒアルロン酸を2μg/ml、10μg/ml又は100μg/mlとなるように添加して混合し、次いで混合液を培養シャーレに加え、37℃、5% CO2条件下で1時間保温した、シャーレは使用まで凍結して保存し、使用前にマトリゲルを含む細胞培養用培地を抜き取り使用した。
 作製した培養基材の表面の硫酸化ヒアルロン酸濃度を確認するために、DMMB法で硫酸化糖を定量した。結果、培養基材表面面積9cm2あたりの硫酸化ヒアルロン酸濃度は、コート添加量が2μg/ml、10μg/ml又は100μ/mlで、それぞれ、0.96μg、5.11μg、8.08μgであった。また、顕微鏡にて表面の状態を確認した結果、コート添加量が10μg/mlでは、硫酸化ヒアルロン酸がマトリゲル中に均一に分散していることが確認できた。
 10μg/mLの硫酸化ヒアルロン酸を混合させたマトリゲルをコートした培養皿を用い、bFGFを加えずに培養を行った。具体的には、フィーダー細胞及びbFGFを加えずに、マトリゲルのみ、10μg/ml ヒアルロン酸(HA)混合マトリゲル、10μg/ml 低硫酸化ヒアルロン酸(HA-LS)混合マトリゲル、10μg/ml 高硫酸化ヒアルロン酸(HA-HS)混合マトリゲルをコートしたプレート上に、hiPS細胞(hiPS#16及びhiPS#25)をそれぞれ播種し、培養した。その結果、低硫酸化ヒアルロン酸、高硫酸化ヒアルロン酸の何れを用いた場合でも、培養2日目において、未分化性を維持しているコロニーが観察された。結果を図4に示す。
実施例6:抗体産生能の増強
 硫酸化ヒアルロン酸による抗体産生能の増強効果を確認した。
 硫酸化ヒアルロン酸は、実施例1で調製した、低分子量の低硫酸化ヒアルロン酸(分子量10万)(HA-LS)、低分子量の高硫酸化ヒアルロン酸(分子量10万)(HA-HS)を用いた。比較例として、硫酸化されていないヒアルロン酸(HA)、デルマタン硫酸を用いた。
 培地は、UltraDoma-PF培地(LONZA社から購入)を用い、ヒアルロン酸、低及び高硫酸化ヒアルロン酸、及びデルマタン硫酸を、それぞれ10μg/mlの濃度となるように添加した。
 細胞は、IgGを産生するハイブリドーマであるGGR12株を用いた。
 抗体産生を常法に従い行った。具体的には、ハイブリドーマを4x104cells/mlの濃度にて播種し、硫酸化ヒアルロン酸を添加した培地で3日間培養し、細胞数及び培養液中の抗体量を測定した。抗体量(抗体濃度)は、抗IgGポリクローナル抗体を用いて、サンドイッチELISAにより測定した。結果を図5に示す。
 細胞数(細胞増殖)は、いずれの化合物を添加した培地で培養しても差がなかった。しかし、抗体産生量は、硫酸化ヒアルロン酸を添加した培地で有意に増加しており、高硫酸化ヒアルロン酸を添加した培地では3倍以上に増加していた。
 上記の詳細な記載は、本発明の目的及び対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更及び置換は、本明細書に記載された教示より当業者にとって明らかである。
 本発明の培養方法を用いると、大規模な細胞の製造の妨げとなっている支持細胞(フィーダー細胞)を用いなくとも、未分化状態に維持した或いは多分化能を維持した状態でhPSCを培養、増殖可能となる。また、本発明の培養方法は、ハイブリドーマによる抗体の産生量を増加させることができる。

Claims (20)

  1.  硫酸化ヒアルロン酸が表面にコートされた細胞培養用基材。
  2.  前記硫酸化ヒアルロン酸が、S含量にて7%以上の硫酸化度である硫酸化ヒアルロン酸である請求項1に記載の細胞培養用基材。
  3.  前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも1.3以上の割合で導入されている請求項1に記載の細胞培養用基材。
  4.  前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して1.3~3.0の割合で導入されている、請求項3に記載の細胞培養用基材。
  5.  前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して3.0以上の割合で導入されている、請求項3に記載の細胞培養用基材。
  6.  多能性幹細胞の培養用基材であって、多能性幹細胞を未分化状態に維持するための培養に用いることを特徴とする請求項1~5のいずれか一つに記載の細胞培養用基材。
  7.  前記多能性幹細胞が、iPS細胞である請求項6に記載の細胞培養用基材。
  8.  前記硫酸化ヒアルロン酸が、細胞外マトリックス、タンパク質又はポリマーとともに表面にコートされた請求項1~7のいずれか一つに記載の細胞培養用基材。
  9.  前記硫酸化ヒアルロン酸が、細胞外マトリックス、たんぱく質又はポリマー中に均一に分散された状態で存在することを特徴とする請求項8に記載の細胞培養用基材。
  10.  請求項1~9のいずれか一つに記載の細胞培養用基材を含む細胞培養器具。
  11.  請求項1~9のいずれか一つに記載の細胞培養用基材を用いて、多能性幹細胞を培養し、その分化能を維持することを特徴とする多能性幹細胞の培養方法。
  12.  多能性幹細胞を培養する方法であって、以下の工程:
    硫酸化ヒアルロン酸を添加した培地を用いて、支持細胞を含まない培養条件にて細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、S含量にて7%以上の硫酸化度である、
    を含むことを特徴とする培養方法。
  13.  多能性幹細胞を培養する方法であって、以下の工程:
    硫酸化ヒアルロン酸を添加した培地を用いて、支持細胞を含まない培養条件にて細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも1.3以上の割合で導入されている、
    を含むことを特徴とする培養方法。
  14.  前記培養条件が、さらにbFGFを含まない培養条件である、請求項12又は13に記載の培養方法。
  15.  前記培養する工程が、細胞外マトリックス、タンパク質が又はポリマーが存在する状態で行われる、請求項12~14のいずれか一つに記載の培養方法。
  16.  前記多能性幹細胞が、ヒトiPS細胞である請求項12~15のいずれか一つに記載の培養方法。
  17.  抗体を産生する能力を有するハイブリドーマを培養して抗体を産生する方法であって、以下の工程:
    硫酸化ヒアルロン酸を添加した培地で細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、S含量にて7%以上の硫酸化度である、
    を含むことを特徴とする方法。
  18.  前記硫酸化度が13%以上である請求項17に記載の方法。
  19.  抗体を産生する能力を有するハイブリドーマを培養して抗体を産生する方法であって、以下の工程:
    硫酸化ヒアルロン酸を添加した培地で細胞を培養する工程、ここで、前記硫酸化ヒアルロン酸は、構成単位である2糖単位に対して硫酸基が平均して少なくとも1.3以上の割合で導入されている硫酸化度である、
    を含むことを特徴とする方法。
  20.  前記硫酸化度が、硫酸基が平均して3.0以上の割合で導入されている請求項19に記載の方法。
PCT/JP2019/006806 2018-02-23 2019-02-22 細胞培養用基材及び培養方法 WO2019163948A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501061A JP7373100B2 (ja) 2018-02-23 2019-02-22 細胞培養用基材及び培養方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-030780 2018-02-23
JP2018030780 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163948A1 true WO2019163948A1 (ja) 2019-08-29

Family

ID=67688363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006806 WO2019163948A1 (ja) 2018-02-23 2019-02-22 細胞培養用基材及び培養方法

Country Status (2)

Country Link
JP (1) JP7373100B2 (ja)
WO (1) WO2019163948A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510493A (ja) * 1994-03-23 1997-10-21 フィディア・アドヴァンスト・バイオポリマーズ・ソシエタ・ア・レスポンサビリタ・リミタータ 新規なヘパリン様硫酸化多糖類
JP2012502664A (ja) * 2008-09-19 2012-02-02 ウィスコンシン・アルムニ・リサーチ・ファウンデーション 多能性細胞の長期培養のためのペプチド提示表面
JP2012147793A (ja) * 2008-03-17 2012-08-09 Agency For Science Technology & Research 幹細胞培養のためのマイクロキャリア
WO2013147264A1 (ja) * 2012-03-30 2013-10-03 味の素株式会社 硫酸化化合物を含む幹細胞増殖用培地
JP2015534825A (ja) * 2012-11-08 2015-12-07 インジェネロン インコーポレイテッド 再生細胞の培養、保存、及び投与のための培地

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510493A (ja) * 1994-03-23 1997-10-21 フィディア・アドヴァンスト・バイオポリマーズ・ソシエタ・ア・レスポンサビリタ・リミタータ 新規なヘパリン様硫酸化多糖類
JP2012147793A (ja) * 2008-03-17 2012-08-09 Agency For Science Technology & Research 幹細胞培養のためのマイクロキャリア
JP2012502664A (ja) * 2008-09-19 2012-02-02 ウィスコンシン・アルムニ・リサーチ・ファウンデーション 多能性細胞の長期培養のためのペプチド提示表面
WO2013147264A1 (ja) * 2012-03-30 2013-10-03 味の素株式会社 硫酸化化合物を含む幹細胞増殖用培地
JP2015534825A (ja) * 2012-11-08 2015-12-07 インジェネロン インコーポレイテッド 再生細胞の培養、保存、及び投与のための培地

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAHATA, MISAO ET AL.: "A novel function of N- cadherin and Connexin43: marked enhancement of alkaline phosphatase activity in rat calvarial osteoblast exposed to sulfated hyaluronan", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 315, no. 3, 2004, pages 603 - 611, XP004490107, doi:10.1016/j.bbrc.2004.01.098 *

Also Published As

Publication number Publication date
JP7373100B2 (ja) 2023-11-02
JPWO2019163948A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
Wang et al. Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro
Cimino et al. Xeno-free strategies for safe human mesenchymal stem/stromal cell expansion: supplements and coatings
AU2007202150B2 (en) Extracellular matrix coated surface for culturing cells
Chen et al. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction
Gholipourmalekabadi et al. Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue‐derived stromal cells?
Hoshiba et al. Characterization of initial cell adhesion on charged polymer substrates in serum-containing and serum-free media
US11046931B2 (en) Synthetic attachment medium for cell culture
Kim et al. Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount
Deng et al. A novel hydrogel surface grafted with dual functional peptides for sustaining long‐term self‐renewal of human induced pluripotent stem cells and manipulating their osteoblastic maturation
Gepp et al. Bioactive surfaces from seaweed-derived alginates for the cultivation of human stem cells
JP2013534404A (ja) 細胞培養用の合成多糖マイクロキャリア
Deng et al. Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells
AU2010208137A1 (en) Swellable (meth)acrylate surfaces for culturing cells in chemically defined media
US10407662B2 (en) Method of culturing pluripotent stem cell, and polypeptide to be used therefor
Li et al. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells
WO2014199754A1 (ja) ラミニンフラグメントが乾燥状態でコーティングされている細胞培養器具
Nash et al. Thermoresponsive substrates used for the expansion of human mesenchymal stem cells and the preservation of immunophenotype
Li et al. Poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) scaffolds coated with PhaP‐RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro
JP2017023008A (ja) ポリロタキサンブロック共重合体表面を有する培養器を用いた幹細胞の培養方法
JP2013507959A (ja) 細胞培養/処理用製品、並びにそれらの製造及び使用方法
DK2585586T3 (en) IMPROVED cross-linked HYALURONIC ACID HYDROGLES FOR 3D CELL CULTURE
Shpichka et al. Transparent PEG-fibrin gel as a flexible tool for cell encapsulation
JP2023508476A (ja) 細胞培養基材及びその製造方法
WO2019163948A1 (ja) 細胞培養用基材及び培養方法
Soares da Costa et al. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757395

Country of ref document: EP

Kind code of ref document: A1