WO2019163592A1 - Inverter - Google Patents

Inverter Download PDF

Info

Publication number
WO2019163592A1
WO2019163592A1 PCT/JP2019/004964 JP2019004964W WO2019163592A1 WO 2019163592 A1 WO2019163592 A1 WO 2019163592A1 JP 2019004964 W JP2019004964 W JP 2019004964W WO 2019163592 A1 WO2019163592 A1 WO 2019163592A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
electrode
bar electrode
smoothing capacitor
capacitor
Prior art date
Application number
PCT/JP2019/004964
Other languages
French (fr)
Japanese (ja)
Inventor
田島 豊
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980014089.8A priority Critical patent/CN111742480A/en
Publication of WO2019163592A1 publication Critical patent/WO2019163592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter.
  • This application is based on Japanese Patent Application No. 2018-029517 filed on Feb. 22, 2018. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
  • some power conversion devices have a capacitor module and a bus bar connected to the capacitor module.
  • the positive terminal of the capacitor module and the positive power terminal of the semiconductor module are connected to the positive bus bar.
  • the negative terminal of the capacitor module and the negative power terminal of the semiconductor module are connected to the negative bus bar.
  • the positive electrode plate is connected to one electrode of the plurality of capacitor elements.
  • the negative electrode plate is connected to the other electrode of the plurality of capacitor elements.
  • a part of the positive electrode plate is a positive terminal.
  • a part of the negative electrode plate is a negative terminal.
  • Each capacitor element is a film capacitor.
  • the problem to be solved by the present invention is to provide an inverter that is reduced in size, weight, and cost.
  • One exemplary aspect of the present invention is directed to an inverter. *
  • the inverter includes a smoothing capacitor, a semiconductor power module, a first bus bar electrode, and a second bus bar electrode.
  • the smoothing capacitor smoothes the direct current.
  • the smoothing capacitor has one end, the other end, and a side surface. The side surface extends from one end to the other end.
  • the smoothing capacitor includes a first electrode and a second electrode. The first electrode is disposed at one end. The second electrode is disposed at the other end. *
  • the semiconductor power module generates direct current by switching direct current.
  • the semiconductor power module is separated from the first electrode by a first distance and separated from the second electrode by a second distance.
  • the semiconductor power module is disposed at a position where the second distance is longer than the first position.
  • the first bus bar electrode electrically connects the first electrode to the semiconductor power module.
  • the second bus bar electrode electrically connects the second electrode to the semiconductor power module.
  • the second bus bar electrode includes a side wall portion and a bottom portion.
  • the side wall portion includes a storage space and a bottom end, and extends along the side surface of the smoothing capacitor.
  • the bottom portion is disposed at the bottom side end and contacts the second electrode.
  • the storage space stores the smoothing capacitor.
  • the smoothing capacitor provided in the inverter is accommodated in the second bus bar electrode used for electrical connection. For this reason, the parts used for storing the smoothing capacitor can be reduced. Therefore, an inverter that is reduced in size, weight, and cost can be provided.
  • 1 is a block diagram schematically illustrating an inverter according to a first embodiment. It is a top view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, the 2nd bus bar electrode, and the semiconductor power module with which the inverter of a 1st embodiment is equipped. It is a perspective view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, and the 2nd bus bar electrode with which the inverter of a 1st embodiment is equipped.
  • FIG. It is a top view which illustrates typically the smoothing capacitor with which the inverter of a 1st embodiment is provided, the 1st bus bar electrode, and the 2nd bus bar electrode. It is sectional drawing which illustrates typically the smoothing capacitor and 2nd bus bar electrode with which the inverter of 1st Embodiment is equipped.
  • the first exemplary embodiment of the present invention relates to an inverter.
  • FIG. 1 is a block diagram schematically illustrating the inverter according to the first embodiment.
  • An inverter 1000 illustrated in FIG. 1 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current.
  • DC and control signals are input to the inverter 1000.
  • Inverter 1000 smoothes the input direct current, and switches the smoothed direct current according to the input control signal to generate a three-phase alternating current.
  • the generated three-phase alternating current is output from the inverter 1000.
  • the output three-phase alternating current is supplied to the electric motor.
  • the generated three-phase alternating current may be supplied to a load other than the electric motor.
  • the inverter 1000 may generate alternating current other than three-phase alternating current. For example, the inverter 1000 may generate a single-phase alternating current. *
  • the inverter 1000 includes a smoothing capacitor 1020, a semiconductor power module 1021, a first bus bar electrode 1022, and a second bus bar electrode 1023. *
  • Smoothing capacitor 1020 smoothes the direct current input to inverter 1000. *
  • the semiconductor power module 1021 switches the smoothed direct current in accordance with a control signal input to the inverter 1000 to generate alternating current.
  • Two bus bar electrodes including the first bus bar electrode 1022 and the second bus bar electrode 1023 connect the smoothing capacitor 1020 to the semiconductor power module 1021 and transmit the smoothed direct current from the smoothing capacitor 1020 to the semiconductor power module 1021.
  • the direct current potentials of the first bus bar electrode 1022 and the second bus bar electrode 1023 are different from each other.
  • FIG. 2 is a plan view schematically illustrating a smoothing capacitor, a semiconductor power module, a first bus bar electrode, and a second bus bar electrode provided in the inverter of the first embodiment.
  • FIG. 3 is a perspective view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment.
  • FIG. 4 schematically shows a state in which the tip portions of the first bus bar electrode and the second bus bar electrode are omitted from the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment. It is a perspective view illustrated in figure.
  • FIG. 1 is a plan view schematically illustrating a smoothing capacitor, a semiconductor power module, a first bus bar electrode, and a second bus bar electrode provided in the inverter of the first embodiment.
  • FIG. 3 is a perspective view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment
  • FIG. 5 is a plan view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment.
  • FIG. 6 is a cross-sectional view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment.
  • the smoothing capacitor 1020 includes a plurality of capacitors 1040. Each of the plurality of capacitors 1040 has a cylindrical shape. *
  • Capacitor 1040 has one end 1060, the other end 1061, and a side surface 1062.
  • the side surface 1062 extends from one end 1060 to the other end 1061.
  • the smoothing capacitor 1020 includes a first electrode 1081 and a second electrode 1082.
  • the first electrode 1081 is disposed at one end 1060 of the smoothing capacitor 1020.
  • the second electrode 1082 is disposed at the other end 1061 of the smoothing capacitor 1020. *
  • the semiconductor power module 1021 is separated from the first electrode 1081 by a first distance L1, and is separated from the second electrode 1082 by a second distance L2.
  • the semiconductor power module 1021 is disposed at a position where the second distance L2 is longer than the first distance L1. Therefore, the first electrode 1081 is an end electrode located on the side close to the semiconductor power module 1021.
  • the second electrode 1082 is the other end electrode located on the side far from the semiconductor power module 1021.
  • the first bus bar electrode 1022 electrically connects the first electrode 1081 to the semiconductor power module 1021.
  • the first bus bar electrode 1022 is made of metal.
  • the metal may be a pure metal or an alloy. *
  • the first bus bar electrode 1022 includes a plate-like portion 1100. *
  • the plate-like portion 1100 is in contact with the first electrode 1081 and connected to the first electrode 1081. By connecting the plate-like portion 1100 to the first electrode 1081, the plate-like portion 1100 is electrically connected to the first electrode 1081. *
  • the first bus bar electrode 1022 further includes a first tip portion 1101. *
  • the first tip portion 1101 is connected to the plate-like portion 1100. By connecting the first tip portion 1101 to the plate-like portion 1100, the first tip portion 1101 is electrically connected to the plate-like portion 1100. *
  • the first tip portion 1101 is connected to the power module terminal of the semiconductor power module 1021. By connecting the first tip portion 1101 to the power module terminal of the semiconductor power module 1021, the first tip portion 1101 is electrically connected to the semiconductor power module 1021. *
  • the plate-like portion 1100 is electrically connected to the first electrode 1081, and the first tip portion 1101 is electrically connected to the plate-like portion 1100 and the semiconductor power module 1021, so that the first electrode 1081 is It is electrically connected to the semiconductor power module 1021 through the first portion 1100 and the first tip portion 1101. *
  • the second bus bar electrode 1023 electrically connects the second electrode 1082 to the semiconductor power module 1021.
  • the second bus bar electrode 1023 is made of metal.
  • the metal may be a pure metal or an alloy. *
  • the second bus bar electrode 1023 includes a side wall 1120 and a bottom 1121.
  • Side wall portion 1120 is connected to bottom portion 1121. By connecting the side wall 1120 to the bottom 1121, the side wall 1120 is electrically connected to the bottom 1121.
  • the bottom portion 1121 is in contact with the second electrode 1082 and connected to the second electrode 1082.
  • the bottom 1121 is connected to the second electrode 1082, whereby the bottom 1121 is electrically connected to the second electrode 1082.
  • the second bus bar electrode 1023 further includes a second tip portion 1122. *
  • the second tip portion 1122 is connected to the side wall portion 1120. By connecting the second tip portion 1122 to the side wall portion 1120, the second tip portion 1122 is electrically connected to the side wall portion 1120. *
  • the second tip portion 1122 is connected to the power module terminal of the semiconductor power module 1021. By connecting the second tip portion 1122 to the power module terminal of the semiconductor power module 1021, the second tip portion 1122 is electrically connected to the semiconductor power module 1021. *
  • the side wall portion 1120 is electrically connected to the bottom portion 1121
  • the bottom portion 1121 is electrically connected to the second electrode 1082
  • the second tip portion 1122 is electrically connected to the side wall portion 1120 and the semiconductor power module 1021.
  • the second electrode 1082 is electrically connected to the semiconductor power module 1021 via the bottom portion 1121, the side wall portion 1120, and the second tip portion 1122.
  • the second bus bar electrode 1023 has a socket shape that matches the shape of the smoothing capacitor 1020 and houses the smoothing capacitor 1020.
  • the side wall 1120 has a cylindrical shape.
  • the side wall 1120 includes a storage space 1140 and a bottom end 1141.
  • the bottom 1121 is disposed at the bottom end 1141.
  • the side wall 1120 having a cylindrical shape may be replaced with a side wall made of a member having a groove.
  • a storage space 1140 included in the side wall portion 1120 having a cylindrical shape is a space inside the hole.
  • the bottom side end 1141 of the side wall portion 1120 having a cylindrical shape is one end of both ends in the length direction of the cylinder.
  • the storage space that the side wall portion having the channel shape has is a space inside the groove.
  • the bottom end of the side wall portion having a channel shape is one end of both ends in the length direction of the channel. *
  • Side wall 1120 houses smoothing capacitor 1020.
  • Side wall 1120 extends along side surface 1062 of smoothing capacitor 1020.
  • the side wall portion 1120 is in close contact with or close to the side surface 1062 of the smoothing capacitor 1020.
  • the bottom portion 1121 is in contact with the second electrode 1082.
  • the bottom 1121 whose side wall 1120 extends along the side surface 1062 of the smoothing capacitor 1020 is in contact with the second electrode 1082, so that the smoothing capacitor 1020 is positioned in the storage space 1140 with the side wall 1120 and the bottom 1121 positioned. To position. *
  • the smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are accommodated in the case 906 and fixed to the case 906.
  • the smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are fixed to the case 906 by the resin material 908.
  • the smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are fixed to the case 906. This is done by joining.
  • Case 906 is made of metal, epoxy resin, or the like.
  • the resin material 908 is made of an epoxy resin or the like.
  • An external connection terminal 910 is disposed at one end of the case 906.
  • the external connection terminal 910 includes high-potential side and low-potential side external connection terminals.
  • the high potential side and low potential side external connection terminals are close to each other and are electrically connected to the power module terminals of the semiconductor power module.
  • the smoothing capacitor 900 includes a plurality of capacitors 920.
  • Each of the plurality of capacitors 920 has a cylindrical shape or a rectangular parallelepiped shape, and includes a first capacitor electrode 940 and a second capacitor electrode 942.
  • the first capacitor electrode 940 is disposed at one end of the smoothing capacitor 900, is disposed near the external connection terminal 910, and is disposed near the semiconductor power module.
  • the second capacitor electrode 942 is disposed at the other end of the smoothing capacitor 900, is disposed on the side far from the external connection terminal 910, and is disposed on the side far from the semiconductor power module. *
  • the first bus bar electrode 902 is connected to the first capacitor electrode 940 provided in each capacitor 920 disposed inside the case 906, and is connected to one external connection terminal 960.
  • the first bus bar electrode 902 is disposed along the shortest path connecting the first capacitor electrode 940 and the one external connection terminal 960.
  • the first bus bar electrode 902 extends from one external connection terminal 960 and is connected to the power module terminal of the semiconductor power module.
  • the second bus bar electrode 904 is connected to the second capacitor electrode 942 provided in each capacitor 920 disposed inside the case 906, and is connected to the other external connection terminal 962.
  • the second bus bar electrode 904 is arranged along a path passing through the vicinity of the resin material 908 that connects the second capacitor electrode 942 and the other external connection terminal 962 and covers the side surface of the smoothing capacitor 900.
  • the second bus bar electrode 904 extends from the other external connection terminal 962 and is connected to the power module terminal of the semiconductor power module.
  • the first bus bar electrode 902 is connected to the first capacitor electrode 940 included in each capacitor 920, and the second bus bar electrode 904 is connected to the second capacitor electrode 942 included in each capacitor 920.
  • Capacitors 920 are electrically connected in parallel.
  • the plurality of capacitors 920 are electrically connected in parallel as necessary, so that the necessary capacitance for the smoothing capacitor 900 is ensured.
  • the smoothing capacitor 900 is covered with the resin material 908 and stored in the case 906. For this reason, the size of the inverter provided with the smoothing capacitor 900 increases in accordance with the thickness of the resin material 908 and the size of the case 906.
  • the resin material 908 and the case 906 do not have an electrical function such as ensuring the capacitance of the smoothing capacitor 900. Therefore, when the structure to be compared is adopted, the inverter becomes large due to the resin material 908 and the case 906 having no electrical function.
  • the weight and cost of the inverter increase due to the resin material 908 and the case 906 having no electrical function.
  • the inverter it is desired to reduce the parasitic inductance of the bus bar electrode in order to reduce the surge voltage generated when the switching element performs switching. Therefore, a structure is adopted in which the high potential side and low potential side bus bar electrodes are stacked close to each other, and the directions of the currents flowing through the high potential side and low potential side bus bar electrodes are opposite to each other. Is desired. When this structure is adopted, magnetic fluxes generated by currents flowing through the high potential side and low potential side bus bar electrodes cancel each other. For this reason, the parasitic inductance of the bus bar electrode is reduced. *
  • the first bus bar electrode 902 is arranged along the shortest path connecting the first capacitor electrode 940 arranged on the side close to the semiconductor power module and the one external connection terminal 960.
  • One capacitor electrode 940 extends to one external connection terminal 960.
  • the second bus bar electrode 904 passes through the vicinity of the resin material 908 that connects the second capacitor electrode 942 disposed on the side far from the semiconductor power module and the other external connection terminal 962 and covers the side surface of the smoothing capacitor 900. It extends from the second capacitor electrode 942 to the other external connection terminal 962 along the path.
  • the first bus bar electrode 902 and the second bus bar electrode 904 can be stacked in the path from the external connection terminal 910 to the semiconductor power module, but in the case 906, the first bus bar electrode 902 and The second bus bar electrode 904 cannot be stacked.
  • the first bus bar electrode 902 and the second bus bar electrode 904 cannot be stacked inside the case 906, magnetic fluxes generated by currents flowing through the first bus bar electrode 902 and the second bus bar electrode 904 cancel each other.
  • a portion that cannot be formed is long on the side surface of the smoothing capacitor 900. Therefore, due to the fact that the parasitic inductance of the first bus bar electrode 902 and the second bus bar electrode 904 cannot be reduced, the electrical characteristics of the inverter deteriorate, such as the surge voltage cannot be reduced. *
  • the film capacitor includes an insulating film and a metal film, and the metal film is deposited on the surface of the insulating film.
  • the laminated body has a shape of multiple winding.
  • the reason why the heat radiation from the side surface of the film capacitor having the shape is not effective is that in the film capacitor, an insulating film having only low thermal conductivity is wound in multiple layers. That is, the thermal resistance increases in the direction from the inside of the film capacitor that must pass through a large number of insulating films to the side surface of the film capacitor. For this reason, it is expected that heat is radiated from the first capacitor electrode 940 and the second capacitor electrode 942 of the smoothing capacitor 900.
  • the first capacitor electrode of the smoothing capacitor 900 is used. It is difficult to dissipate heat from 940 and the second capacitor electrode 942. For this reason, the internal heat generation of the smoothing capacitor 900 cannot be effectively radiated.
  • the first bus bar electrode 902 and the second bus bar electrode 904 are thickened, heat is transmitted to the first bus bar electrode 902 and the second bus bar electrode 904, and the first bus bar electrode 902 and the second bus bar electrode 904 are passed through. Then, measures to release heat to the atmosphere can be considered. However, the heat dissipation performance realized by this measure is not sufficient. In addition, when this measure is taken, the cost of the first bus bar electrode 902 and the second bus bar electrode 904 increases. *
  • the second bus bar electrode 1023 is made of metal. For this reason, since it can be processed by press working by using a metal plate, it is easy to produce the second bus bar electrode 1023 including the cylindrical side wall portion 1120 by machining. Further, it is easy to electrically connect the second bus bar electrode 1023 to the first electrode 1081. *
  • the smoothing capacitor 1020 When the structure in which the smoothing capacitor 1020 is accommodated in the second bus bar electrode 1023 is employed, the current that has entered the first electrode 1081 from the first bus bar electrode 1022 flows through the smoothing capacitor 1020, and the second Electrode 1082. The current that reaches the second electrode 1082 is output from the second electrode 1082 to the second bus bar electrode 1023. For this reason, the direction of the current flowing through the smoothing capacitor 1020 is opposite to the direction of the current flowing through the side wall 1120. Further, the side wall 1120 is disposed along the side surface 1062 of the smoothing capacitor 1020 as described above. Therefore, when a current flows through the smoothing capacitor 1020, a state in which the smoothing capacitor 1020 and the side wall 1120 in which current flows in opposite directions is in contact with each other over a wide area and stacked is realized. *
  • the surge voltage decreases.
  • the switching speed of the semiconductor element is increased.
  • the switching loss of the semiconductor element is also reduced.
  • the first electrode 1081 provided in each of the plurality of capacitors 1040 is electrically connected to the first bus bar electrode 1022.
  • the second electrode 1082 provided in each of the plurality of capacitors 1040 is electrically connected to the second bus bar electrode 1023.
  • the first electrode 1081 and the second electrode 1082 are electrically connected to the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively, whereby the plurality of capacitors 1040 are electrically connected in parallel.
  • the plurality of capacitors 1040 are electrically connected in parallel, so that the capacitance necessary for the smoothing capacitor 1020 is ensured.
  • the second bus bar electrode 1023 further includes a partition plate 1160. *
  • the partition plate 1160 is an electrode plate having a partition shape.
  • the partition plate 1160 is disposed in the storage space 1140 and partitions the storage space 1140 into a plurality of partitions 1170.
  • a plurality of capacitors 1040 are housed in the plurality of compartments 1170, respectively.
  • the partition plate 1160 constituting the second bus bar electrode 1023 exists between the two adjacent capacitors 1040.
  • the partition plate 1160 increases the effect of reducing the parasitic inductance described above.
  • the second bus bar electrode 1023 is made of metal, the second bus bar electrode 1023 including a partition plate 1160 that partitions the storage space 1140 into a plurality of sections 1170 each having a size that matches the size of the plurality of capacitors 1040 is manufactured. Is easy. *
  • FIG. 7 is a cross-sectional view schematically illustrating a second bus bar electrode, a case, and an electrical insulating material provided in the inverter of the first embodiment. *
  • the inverter 1000 further includes a case 1180 and an electrical insulating material 1181 illustrated in FIG. 7. *
  • Case 1180 houses smoothing capacitor 1020 and semiconductor power module 1021. *
  • the second bus bar electrode 1023 is fixed to the case 1180 via an electrical insulating material 1181. Since the second bus bar electrode 1023 is fixed to the case 1180 via the electrical insulating material 1181, the second bus bar electrode 1023 does not directly contact the case 1180. Therefore, the second bus bar electrode 1023 is electrically insulated from the case 1180. *
  • the smoothing capacitor 1020 is securely held by the second bus bar electrode 1023 by being housed in the second bus bar electrode 1023. For this reason, when the second bus bar electrode 1023 is fixed to the case 1180, the smoothing capacitor 1020 is reliably fixed to the case 1180 via the second bus bar electrode 1023. *
  • FIG. 8 is a cross-sectional view schematically illustrating a first bus bar electrode, a second bus bar electrode, a cooler, and an electrical insulating material included in the inverter according to the first embodiment.
  • the inverter 1000 further includes a cooler 1201 and an electrical insulating material 1202 illustrated in FIG. 8. *
  • the cooler 1201 is provided in the case 1180 described above or is fixed to the case 1180 described above. *
  • the first bus bar electrode 1022 and the second bus bar electrode 1023 are fixed to the cooler 1201 via an electrical insulating material 1202. *
  • the first bus bar electrode 1022 and the second bus bar electrode 1023 are fixed to the cooler 1201 through the electrical insulating material 1202, so that the first bus bar electrode 1022 and the second bus bar electrode 1023 are directly connected to the cooler 1201. Will not touch. Therefore, the first bus bar electrode 1022 and the second bus bar electrode 1023 are electrically insulated from the cooler 1201. *
  • the first bus bar electrode 1022 and the second bus bar electrode 1023 are in close contact with the electrical insulating material 1202 or bonded to the electrical insulating material 1202.
  • the electrical insulating material 1202 is in close contact with the cooler 1201 or joined to the cooler 1201.
  • the first bus bar electrode 1022 is fixed to the cooler 1201 via the electrical insulating material 1202, whereby the first electrode 1081 that is in contact with the first bus bar electrode 1022 is thermally coupled to the cooler 1201.
  • the second bus bar electrode 1023 is fixed to the cooler 1201 via the electrical insulating material 1202, whereby the second electrode 1082 that is in contact with the second bus bar electrode 1023 is thermally coupled to the cooler 1201.
  • the first electrode 1081 and the second electrode 1082 are thermally coupled to the cooler 1201, the first electrode 1081 and the second electrode 1082 to which heat generated inside the smoothing capacitor 1020 is transferred directly. Cooled. For this reason, the temperature rise of the smoothing capacitor 1020 is suppressed.
  • the smoothing capacitor 1020 is securely held by the second bus bar electrode 1023 by being housed in the second bus bar electrode 1023. Therefore, the first electrode 1081 and the second electrode 1082 can be easily adhered to the cooler 1201 through the electric insulating material 1202. Accordingly, the first electrode 1081 and the second electrode 1082 are effectively cooled. *
  • a smoothing capacitor may be enlarged in order not only to secure a necessary capacitance but also to suppress a rise in temperature due to heat generation. That is, the smoothing capacitor may have a capacitance that is greater than the required capacitance. However, if the smoothing capacitor 1020 is effectively cooled, the smoothing capacitor 1020 need not have a capacitance greater than the required capacitance. For this reason, the smoothing capacitor 1020 can be reduced in size. When the smoothing capacitor 1020 can be reduced in size, the inverter 1000 can be reduced in size and cost. *
  • FIG. 9 is a perspective view schematically illustrating a smoothing capacitor provided in an inverter according to a modification of the first embodiment.
  • FIG. 10 is a perspective view schematically illustrating the second bus bar electrode provided in the inverter according to the modification of the first embodiment.
  • FIG. 11 is a perspective view schematically illustrating a first bus bar electrode, a second bus bar electrode, and a smoothing capacitor provided in an inverter according to a modification of the first embodiment.
  • the smoothing capacitor 1320, the first bus bar electrode 1321 and the second bus bar electrode 1322 shown in FIGS. 9, 10 and 11 are the same as the smoothing capacitor 1020 and the first bus bar electrode 1022 shown in FIGS.
  • the second bus bar electrode 1023 can be used instead. *
  • the smoothing capacitor 1320 includes a capacitor 1340.
  • the capacitor 1340 has a rectangular parallelepiped shape.
  • the smoothing capacitor 1320 includes a capacitor body 1360, a first electrode 1361, and a second electrode 1362.
  • the first electrode 1361 is a metallicon electrode and is disposed at one end 1380 of the smoothing capacitor 1320.
  • the second electrode 1362 is a metallicon electrode and is disposed at the other end 1381 of the smoothing capacitor 1320. *
  • the first bus bar electrode 1321 and the second bus bar electrode 1322 each include a smoothing capacitor 1320 including one capacitor 1340 having a rectangular parallelepiped shape instead of the smoothing capacitor 1020 including a plurality of capacitors 1040 each having a cylindrical shape.
  • the second bus bar electrode 1322 is different from the second bus bar electrode 1023 in that it does not include a partition plate. Except for these differences, the first bus bar electrode 1321 and the second bus bar electrode 1322 have the same characteristics as the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively. *
  • a gap 1400 exists between the first bus bar electrode 1321 connected to the first electrode 1361 and the second bus bar electrode 1322 connected to the second electrode 1362.
  • the gap 1400 prevents the first bus bar electrode 1321 from being short-circuited with the second bus bar electrode 1322.
  • FIG. 12 is a perspective view schematically illustrating a first bus bar electrode, a second bus bar electrode, and a smoothing capacitor provided in an inverter according to a modification of the first embodiment.
  • FIG. 13 is a cross-sectional view schematically illustrating a second bus bar electrode and a smoothing capacitor provided in the inverter according to the modification of the first embodiment.
  • FIG. 13 illustrates a cross section at the position of section line AA in FIG. *
  • the smoothing capacitor 1420, the first bus bar electrode 1421, and the second bus bar electrode 1422 shown in FIGS. 12 and 13 are the same as the smoothing capacitor 1020, the first bus bar electrode 1022, and the second bus bar electrode 1422 shown in FIGS.
  • the bus bar electrode 1023 can be used instead.
  • the smoothing capacitor 1420 includes a plurality of capacitors 1440.
  • the plurality of capacitors 1440 are electrically connected in parallel.
  • Each of the plurality of capacitors 1440 has a rectangular parallelepiped shape.
  • the first bus bar electrode 1421 and the second bus bar electrode 1422 are respectively the first bus bar except for storing a smoothing capacitor 1420 having a rectangular parallelepiped capacitor 1440 instead of the smoothing capacitor 1020 having a cylindrical capacitor 1040.
  • the bus bar electrode 1022 and the second bus bar electrode 1023 have the same characteristics.
  • the first bus bar electrode 1421 and the second bus bar electrode 1422 are provided with a plurality of capacitors 1440 each having a rectangular parallelepiped shape instead of the smoothing capacitor 1020 having a plurality of capacitors 1040 each having a cylindrical shape. It differs from the first bus bar electrode 1022 and the second bus bar electrode 1023 in that it has a shape suitable for the capacitor 1420. Except for this difference, the first bus bar electrode 1421 and the second bus bar electrode 1422 have the same characteristics as the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively. *

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is an inverter having reduced size, weight, and cost. In an inverter (1000), a first bus bar electrode (1022) electrically connects a first electrode (1081) of a smoothing capacitor (1020) to a semiconductor power module (1021). Furthermore, a second bus bar electrode (1023) electrically connects a second electrode (1082) of the smoothing capacitor (1020) to the semiconductor power module (1021). The semiconductor power module (1021) is separated from the first electrode (1081) by a first distance (L1), and is separated from the second electrode (1082) by a second distance (L2). The second distance (L2) is longer than the first distance (L1). A side wall section (1120) of the second bus bar electrode (1023) is provided along the side surface of the smoothing capacitor (1020). A bottom section (1121) of the second bus bar electrode (1023) is in contact with the second electrode (1082) of the smoothing capacitor (1020). A storing space (1140) of the side wall section (1120) stores the smoothing capacitor (1020).

Description

インバータInverter
本発明は、インバータに関する。本出願は、2018年2月22日に提出された日本特許出願第2018-029517号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 The present invention relates to an inverter. This application is based on Japanese Patent Application No. 2018-029517 filed on Feb. 22, 2018. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
従来、電力変換装置は、コンデンサモジュールと、当該コンデンサモジュールに接続されるバスバと、を有するものがある。例えば、特開2015-167428号公報に記載された電力変換装置においては、コンデンサモジュールの正端子及び半導体モジュールの正極パワー端子が、正極バスバーに接続される。コンデンサモジュールの負端子及び半導体モジュールの負極パワー端子が、負極バスバーに接続される。  2. Description of the Related Art Conventionally, some power conversion devices have a capacitor module and a bus bar connected to the capacitor module. For example, in the power conversion device described in Japanese Patent Application Laid-Open No. 2015-167428, the positive terminal of the capacitor module and the positive power terminal of the semiconductor module are connected to the positive bus bar. The negative terminal of the capacitor module and the negative power terminal of the semiconductor module are connected to the negative bus bar. *
コンデンサモジュールにおいては、正電極板が、複数のコンデンサ素子の一方の電極に接続される。負電極板が、複数のコンデンサ素子の他方の電極に接続される。正電極板の一部は、正端子となっている。負電極板の一部は、負端子となっている。各コンデンサ素子は、フィルムコンデンサである。  In the capacitor module, the positive electrode plate is connected to one electrode of the plurality of capacitor elements. The negative electrode plate is connected to the other electrode of the plurality of capacitor elements. A part of the positive electrode plate is a positive terminal. A part of the negative electrode plate is a negative terminal. Each capacitor element is a film capacitor. *
コンデンサモジュールにおいては、複数のコンデンサ素子が、封止部材により封止され、コンデンサケースに収容される。  
特開2015-167428号公報
In the capacitor module, a plurality of capacitor elements are sealed by a sealing member and accommodated in a capacitor case.
Japanese Patent Laying-Open No. 2015-167428
特開2015-167428号公報に記載された電力変換装置においては、複数のコンデンサ素子が、封止部材により封止され、コンデンサケースに収容される。このため、封止部材及びコンデンサケースを配置するスペースが必要になる。また、封止部材及びコンデンサケースの重量だけインバータが重くなる。また、封止部材及びコンデンサケースのコストだけインバータのコストが高くなる。したがって、インバータを小型化、軽量化及び低コスト化することが困難である。  In the power conversion device described in JP-A-2015-167428, a plurality of capacitor elements are sealed with a sealing member and accommodated in a capacitor case. For this reason, the space which arrange | positions a sealing member and a capacitor | condenser case is needed. Further, the inverter becomes heavier than the sealing member and the capacitor case. Further, the cost of the inverter is increased by the cost of the sealing member and the capacitor case. Therefore, it is difficult to reduce the size, weight, and cost of the inverter. *
上記問題に鑑み、本発明が解決しようとする課題は、小型化、軽量化及び低コスト化されたインバータを提供することである。 In view of the above problems, the problem to be solved by the present invention is to provide an inverter that is reduced in size, weight, and cost.
本発明の例示的なひとつの態様は、インバータに向けられる。  One exemplary aspect of the present invention is directed to an inverter. *
インバータは、平滑コンデンサ、半導体パワーモジュール、第1のバスバ電極及び第2のバスバ電極を備える。  The inverter includes a smoothing capacitor, a semiconductor power module, a first bus bar electrode, and a second bus bar electrode. *
平滑コンデンサは、直流を平滑する。平滑コンデンサは、一端、他端及び側面を有する。側面は、一端から他端まで延びる。平滑コンデンサは、第1の電極及び第2の電極を備える。第1の電極は、一端に配置される。第2の電極は、他端に配置される。  The smoothing capacitor smoothes the direct current. The smoothing capacitor has one end, the other end, and a side surface. The side surface extends from one end to the other end. The smoothing capacitor includes a first electrode and a second electrode. The first electrode is disposed at one end. The second electrode is disposed at the other end. *
半導体パワーモジュールは、直流をスイッチングし交流を生成する。半導体パワーモジュールは、第1の電極から第1の距離だけ離れており、第2の電極から第2の距離だけ離れている。半導体パワーモジュールは、第2の距離が第1の位置より長くなる位置に配置される。  The semiconductor power module generates direct current by switching direct current. The semiconductor power module is separated from the first electrode by a first distance and separated from the second electrode by a second distance. The semiconductor power module is disposed at a position where the second distance is longer than the first position. *
第1のバスバ電極は、第1の電極を半導体パワーモジュールに電気的に接続する。  The first bus bar electrode electrically connects the first electrode to the semiconductor power module. *
第2のバスバ電極は、第2の電極を半導体パワーモジュールに電気的に接続する。  The second bus bar electrode electrically connects the second electrode to the semiconductor power module. *
第2のバスバ電極は、側壁部及び底部を備える。側壁部は、収納空間及び底側端を備え、平滑コンデンサの側面に沿う。底部は、底側端に配置され、第2の電極に接触する。収納空間は、平滑コンデンサを収納する。 The second bus bar electrode includes a side wall portion and a bottom portion. The side wall portion includes a storage space and a bottom end, and extends along the side surface of the smoothing capacitor. The bottom portion is disposed at the bottom side end and contacts the second electrode. The storage space stores the smoothing capacitor.
本発明の例示的なひとつの態様によれば、インバータに備えられる平滑コンデンサが電気的な接続に使用される第2のバスバ電極に収納される。このため、平滑コンデンサの収納に用いられる部品を削減することができる。したがって、小型化、軽量化及び低コスト化されたインバータを提供することができる。 According to one exemplary aspect of the present invention, the smoothing capacitor provided in the inverter is accommodated in the second bus bar electrode used for electrical connection. For this reason, the parts used for storing the smoothing capacitor can be reduced. Therefore, an inverter that is reduced in size, weight, and cost can be provided.
第1実施形態のインバータを模式的に図示するブロック図である。1 is a block diagram schematically illustrating an inverter according to a first embodiment. 第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極、第2のバスバ電極及び半導体パワーモジュールを模式的に図示する平面図である。It is a top view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, the 2nd bus bar electrode, and the semiconductor power module with which the inverter of a 1st embodiment is equipped. 第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する斜視図である。It is a perspective view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, and the 2nd bus bar electrode with which the inverter of a 1st embodiment is equipped. 第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極から第1のバスバ電極及び第2のバスバ電極の先端部分が省略された状態を模式的に図示する斜視図である。The perspective view which illustrates typically the state by which the front-end | tip part of the 1st bus bar electrode and the 2nd bus bar electrode was abbreviate | omitted from the smoothing capacitor, the 1st bus bar electrode, and the 2nd bus bar electrode with which the inverter of 1st Embodiment was equipped. FIG. 第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する平面図である。It is a top view which illustrates typically the smoothing capacitor with which the inverter of a 1st embodiment is provided, the 1st bus bar electrode, and the 2nd bus bar electrode. 第1実施形態のインバータに備えられる平滑コンデンサ及び第2のバスバ電極を模式的に図示する断面図である。It is sectional drawing which illustrates typically the smoothing capacitor and 2nd bus bar electrode with which the inverter of 1st Embodiment is equipped. 第1実施形態のインバータに備えられる第2のバスバ電極、ケース及び電気絶縁材を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 2nd bus bar electrode with which the inverter of 1st Embodiment is equipped, a case, and an electrical insulating material. 第1実施形態のインバータに備えられる第1のバスバ電極、第2のバスバ電極、冷却器及び電気絶縁材を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 1st bus bar electrode, the 2nd bus bar electrode, the cooler, and the electrical insulation material which are provided in the inverter of the first embodiment. 第1実施形態の変形例のインバータに備えられる平滑コンデンサを模式的に図示する斜視図である。It is a perspective view which illustrates typically the smoothing capacitor with which the inverter of the modification of a 1st embodiment is provided. 第1実施形態の変形例のインバータに備えられる第2のバスバ電極を模式的に図示する斜視図である。It is a perspective view which illustrates typically the 2nd bus bar electrode with which the inverter of the modification of a 1st embodiment is provided. 第1実施形態の変形例のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する斜視図である。It is a perspective view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, and the 2nd bus bar electrode with which the inverter of the modification of a 1st embodiment is provided. 第1実施形態の変形例のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する斜視図である。It is a perspective view which illustrates typically the smoothing capacitor, the 1st bus bar electrode, and the 2nd bus bar electrode with which the inverter of the modification of a 1st embodiment is provided. 第1実施形態の変形例のインバータに備えられる平滑コンデンサ及び第2のバスバ電極を模式的に図示する断面図である。It is sectional drawing which illustrates typically the smoothing capacitor and 2nd bus bar electrode with which the inverter of the modification of 1st Embodiment is equipped. 比較対象の構造を模式的に図示する断面図である。It is sectional drawing which illustrates the structure of a comparison object typically.
1 第1実施形態



 1.1 インバータの概略



 本発明の例示的な第1実施形態は、インバータに関する。 
1 First Embodiment



1.1 Outline of the inverter



The first exemplary embodiment of the present invention relates to an inverter.
図1は、第1実施形態のインバータを模式的に図示するブロック図である。


FIG. 1 is a block diagram schematically illustrating the inverter according to the first embodiment.


図1に図示されるインバータ1000は、直流を三相交流に変換する電力変換装置として動作するインバータ装置である。インバータ1000には、直流及び制御用の信号が入力される。インバータ1000は、入力された直流を平滑し、平滑された直流を入力された制御用の信号にしたがってスイッチングし、三相交流を生成する。生成された三相交流は、インバータ1000から出力される。出力された三相交流は、電動機に供給される。生成された三相交流が電動機以外の負荷に供給されてもよい。インバータ1000が三相交流以外の交流を生成してもよい。例えば、インバータ1000が単相交流を生成してもよい。  An inverter 1000 illustrated in FIG. 1 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current. DC and control signals are input to the inverter 1000. Inverter 1000 smoothes the input direct current, and switches the smoothed direct current according to the input control signal to generate a three-phase alternating current. The generated three-phase alternating current is output from the inverter 1000. The output three-phase alternating current is supplied to the electric motor. The generated three-phase alternating current may be supplied to a load other than the electric motor. The inverter 1000 may generate alternating current other than three-phase alternating current. For example, the inverter 1000 may generate a single-phase alternating current. *
インバータ1000は、平滑コンデンサ1020、半導体パワーモジュール1021、第1のバスバ電極1022及び第2のバスバ電極1023を備える。  The inverter 1000 includes a smoothing capacitor 1020, a semiconductor power module 1021, a first bus bar electrode 1022, and a second bus bar electrode 1023. *
平滑コンデンサ1020は、インバータ1000に入力された直流を平滑する。  Smoothing capacitor 1020 smoothes the direct current input to inverter 1000. *
半導体パワーモジュール1021は、平滑された直流を、インバータ1000に入力された制御用の信号にしたがってスイッチングし、交流を生成する。  The semiconductor power module 1021 switches the smoothed direct current in accordance with a control signal input to the inverter 1000 to generate alternating current. *
第1のバスバ電極1022及び第2のバスバ電極1023からなる2本のバスバ電極は、平滑コンデンサ1020を半導体パワーモジュール1021に繋ぎ、平滑された直流を平滑コンデンサ1020から半導体パワーモジュール1021まで伝送する。第1のバスバ電極1022及び第2のバスバ電極1023の直流電位は、互いに異なる。  Two bus bar electrodes including the first bus bar electrode 1022 and the second bus bar electrode 1023 connect the smoothing capacitor 1020 to the semiconductor power module 1021 and transmit the smoothed direct current from the smoothing capacitor 1020 to the semiconductor power module 1021. The direct current potentials of the first bus bar electrode 1022 and the second bus bar electrode 1023 are different from each other. *
1.2 平滑コンデンサ、第1のバスバ電極、第2のバスバ電極及び半導体パワーモジュールの構造



 図2は、第1実施形態のインバータに備えられる平滑コンデンサ、半導体パワーモジュール、第1のバスバ電極及び第2のバスバ電極を模式的に図示する平面図である。図3は、第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する斜視図である。図4は、第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極から第1のバスバ電極及び第2のバスバ電極の先端部分が省略された状態を模式的に図示する斜視図である。図5は、第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する平面図である。図6は、第1実施形態のインバータに備えられる平滑コンデンサ、第1のバスバ電極及び第2のバスバ電極を模式的に図示する断面図である。 
1.2 Structure of smoothing capacitor, first bus bar electrode, second bus bar electrode, and semiconductor power module



FIG. 2 is a plan view schematically illustrating a smoothing capacitor, a semiconductor power module, a first bus bar electrode, and a second bus bar electrode provided in the inverter of the first embodiment. FIG. 3 is a perspective view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment. FIG. 4 schematically shows a state in which the tip portions of the first bus bar electrode and the second bus bar electrode are omitted from the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment. It is a perspective view illustrated in figure. FIG. 5 is a plan view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment. FIG. 6 is a cross-sectional view schematically illustrating the smoothing capacitor, the first bus bar electrode, and the second bus bar electrode provided in the inverter of the first embodiment.
平滑コンデンサ1020は、複数のコンデンサ1040を備える。複数のコンデンサ1040の各々は、円筒状の形状を有する。  The smoothing capacitor 1020 includes a plurality of capacitors 1040. Each of the plurality of capacitors 1040 has a cylindrical shape. *
コンデンサ1040は、一端1060、他端1061及び側面1062を有する。側面1062は、一端1060から他端1061まで延びる。平滑コンデンサ1020は、第1の電極1081及び第2の電極1082を備える。第1の電極1081は、平滑コンデンサ1020の一端1060に配置される。第2の電極1082は、平滑コンデンサ1020の他端1061に配置される。  Capacitor 1040 has one end 1060, the other end 1061, and a side surface 1062. The side surface 1062 extends from one end 1060 to the other end 1061. The smoothing capacitor 1020 includes a first electrode 1081 and a second electrode 1082. The first electrode 1081 is disposed at one end 1060 of the smoothing capacitor 1020. The second electrode 1082 is disposed at the other end 1061 of the smoothing capacitor 1020. *
半導体パワーモジュール1021は、第1の電極1081から第1の距離L1だけ離れており、第2の電極1082から第2の距離L2だけ離れている。半導体パワーモジュール1021は、第2の距離L2が第1の距離L1より長くなる位置に配置される。したがって、第1の電極1081は、半導体パワーモジュール1021に近い側に位置する一端電極である。また、第2の電極1082は、半導体パワーモジュール1021から遠い側に位置する他端電極である。  The semiconductor power module 1021 is separated from the first electrode 1081 by a first distance L1, and is separated from the second electrode 1082 by a second distance L2. The semiconductor power module 1021 is disposed at a position where the second distance L2 is longer than the first distance L1. Therefore, the first electrode 1081 is an end electrode located on the side close to the semiconductor power module 1021. The second electrode 1082 is the other end electrode located on the side far from the semiconductor power module 1021. *
第1のバスバ電極1022は、第1の電極1081を半導体パワーモジュール1021に電気的に接続する。第1のバスバ電極1022は、金属からなる。金属は、純金属及び合金のいずれであってもよい。  The first bus bar electrode 1022 electrically connects the first electrode 1081 to the semiconductor power module 1021. The first bus bar electrode 1022 is made of metal. The metal may be a pure metal or an alloy. *
第1のバスバ電極1022は、板状部1100を備える。  The first bus bar electrode 1022 includes a plate-like portion 1100. *
板状部1100は、第1の電極1081に接触し、第1の電極1081に接続される。板状部1100が第1の電極1081に接続されることにより、板状部1100が第1の電極1081に電気的に接続される。  The plate-like portion 1100 is in contact with the first electrode 1081 and connected to the first electrode 1081. By connecting the plate-like portion 1100 to the first electrode 1081, the plate-like portion 1100 is electrically connected to the first electrode 1081. *
第1のバスバ電極1022は、第1の先端部分1101をさらに備える。  The first bus bar electrode 1022 further includes a first tip portion 1101. *
第1の先端部分1101は、板状部1100に接続される。第1の先端部分1101が板状部1100に接続されることにより、第1の先端部分1101が板状部1100に電気的に接続される。  The first tip portion 1101 is connected to the plate-like portion 1100. By connecting the first tip portion 1101 to the plate-like portion 1100, the first tip portion 1101 is electrically connected to the plate-like portion 1100. *
第1の先端部分1101は、半導体パワーモジュール1021のパワーモジュール端子に接続される。第1の先端部分1101が半導体パワーモジュール1021のパワーモジュール端子に接続されることにより、第1の先端部分1101が半導体パワーモジュール1021に電気的に接続される。  The first tip portion 1101 is connected to the power module terminal of the semiconductor power module 1021. By connecting the first tip portion 1101 to the power module terminal of the semiconductor power module 1021, the first tip portion 1101 is electrically connected to the semiconductor power module 1021. *
板状部1100が第1の電極1081に電気的に接続され、第1の先端部分1101が板状部1100及び半導体パワーモジュール1021に電気的に接続されることにより、第1の電極1081が板状部1100及び第1の先端部分1101を介して半導体パワーモジュール1021に電気的に接続される。  The plate-like portion 1100 is electrically connected to the first electrode 1081, and the first tip portion 1101 is electrically connected to the plate-like portion 1100 and the semiconductor power module 1021, so that the first electrode 1081 is It is electrically connected to the semiconductor power module 1021 through the first portion 1100 and the first tip portion 1101. *
第2のバスバ電極1023は、第2の電極1082を半導体パワーモジュール1021に電気的に接続する。第2のバスバ電極1023は、金属からなる。金属は、純金属及び合金のいずれであってもよい。  The second bus bar electrode 1023 electrically connects the second electrode 1082 to the semiconductor power module 1021. The second bus bar electrode 1023 is made of metal. The metal may be a pure metal or an alloy. *
第2のバスバ電極1023は、側壁部1120及び底部1121を備える。


The second bus bar electrode 1023 includes a side wall 1120 and a bottom 1121.


側壁部1120は、底部1121に接続される。側壁部1120が底部1121に接続されることにより、側壁部1120が底部1121に電気的に接続される。  Side wall portion 1120 is connected to bottom portion 1121. By connecting the side wall 1120 to the bottom 1121, the side wall 1120 is electrically connected to the bottom 1121. *
底部1121は、第2の電極1082に接触し、第2の電極1082に接続される。底部1121が第2の電極1082に接続されることにより、底部1121が第2の電極1082に電気的に接続される。  The bottom portion 1121 is in contact with the second electrode 1082 and connected to the second electrode 1082. The bottom 1121 is connected to the second electrode 1082, whereby the bottom 1121 is electrically connected to the second electrode 1082. *
第2のバスバ電極1023は、第2の先端部分1122をさらに備える。  The second bus bar electrode 1023 further includes a second tip portion 1122. *
第2の先端部分1122は、側壁部1120に接続される。第2の先端部分1122が側壁部1120に接続されることにより、第2の先端部分1122が側壁部1120に電気的に接続される。  The second tip portion 1122 is connected to the side wall portion 1120. By connecting the second tip portion 1122 to the side wall portion 1120, the second tip portion 1122 is electrically connected to the side wall portion 1120. *
第2の先端部分1122は、半導体パワーモジュール1021のパワーモジュール端子に接続される。第2の先端部分1122が半導体パワーモジュール1021のパワーモジュール端子に接続されることにより、第2の先端部分1122が半導体パワーモジュール1021に電気的に接続される。  The second tip portion 1122 is connected to the power module terminal of the semiconductor power module 1021. By connecting the second tip portion 1122 to the power module terminal of the semiconductor power module 1021, the second tip portion 1122 is electrically connected to the semiconductor power module 1021. *
側壁部1120が底部1121に電気的に接続され、底部1121が第2の電極1082に電気的に接続され、第2の先端部分1122が側壁部1120及び半導体パワーモジュール1021に電気的に接続されることにより、第2の電極1082が底部1121、側壁部1120及び第2の先端部分1122を介して半導体パワーモジュール1021に電気的に接続される。  The side wall portion 1120 is electrically connected to the bottom portion 1121, the bottom portion 1121 is electrically connected to the second electrode 1082, and the second tip portion 1122 is electrically connected to the side wall portion 1120 and the semiconductor power module 1021. As a result, the second electrode 1082 is electrically connected to the semiconductor power module 1021 via the bottom portion 1121, the side wall portion 1120, and the second tip portion 1122. *
第2のバスバ電極1023は、平滑コンデンサ1020の形状に適合するソケット状の形状を有し、平滑コンデンサ1020を収納する。  The second bus bar electrode 1023 has a socket shape that matches the shape of the smoothing capacitor 1020 and houses the smoothing capacitor 1020. *
側壁部1120は、筒状の形状を有する。側壁部1120は、収納空間1140及び底側端1141を備える。底部1121は、底側端1141に配置される。筒状の形状を有する側壁部1120が、溝を有する部材からなる側壁部に置き換えられてもよい。筒状の形状を有する側壁部1120が有する収納空間1140は、孔の内部の空間である。筒状の形状を有する側壁部1120が有する底側端1141は、筒の長さ方向の両端の一方の端である。チャンネル状の形状を有する側壁部が有する収納空間は、溝の内部の空間である。チャンネル状の形状を有する側壁部が有する底側端は、チャンネルの長さ方向の両端の一方の端である。  The side wall 1120 has a cylindrical shape. The side wall 1120 includes a storage space 1140 and a bottom end 1141. The bottom 1121 is disposed at the bottom end 1141. The side wall 1120 having a cylindrical shape may be replaced with a side wall made of a member having a groove. A storage space 1140 included in the side wall portion 1120 having a cylindrical shape is a space inside the hole. The bottom side end 1141 of the side wall portion 1120 having a cylindrical shape is one end of both ends in the length direction of the cylinder. The storage space that the side wall portion having the channel shape has is a space inside the groove. The bottom end of the side wall portion having a channel shape is one end of both ends in the length direction of the channel. *
側壁部1120は、平滑コンデンサ1020を収納する。側壁部1120は、平滑コンデンサ1020の側面1062に沿って延びる。側壁部1120が平滑コンデンサ1020の側面1062に沿う状態においては、側壁部1120が平滑コンデンサ1020の側面1062に密着又は近接する。底部1121は、第2の電極1082に接触する。側壁部1120が平滑コンデンサ1020の側面1062に沿って延びる底部1121が第2の電極1082に接触することにより、平滑コンデンサ1020は、側壁部1120及び底部1121により位置決めされた状態で収納空間1140内に位置する。  Side wall 1120 houses smoothing capacitor 1020. Side wall 1120 extends along side surface 1062 of smoothing capacitor 1020. In a state where the side wall portion 1120 is along the side surface 1062 of the smoothing capacitor 1020, the side wall portion 1120 is in close contact with or close to the side surface 1062 of the smoothing capacitor 1020. The bottom portion 1121 is in contact with the second electrode 1082. The bottom 1121 whose side wall 1120 extends along the side surface 1062 of the smoothing capacitor 1020 is in contact with the second electrode 1082, so that the smoothing capacitor 1020 is positioned in the storage space 1140 with the side wall 1120 and the bottom 1121 positioned. To position. *
1.3 平滑コンデンサが第2のバスバ電極に収納される構造の利点



 1.3.1 序



 以下では、比較対象の構造、比較対象の構造の問題点、比較対象の構造に対する、平滑コンデンサ1020が第2のバスバ電極1023に収納される構造の利点が順次に説明される。 
1.3 Advantages of the structure in which the smoothing capacitor is housed in the second bus bar electrode



1.3.1 Introduction



Hereinafter, the advantages of the structure in which the smoothing capacitor 1020 is housed in the second bus bar electrode 1023 with respect to the structure to be compared, the problems of the structure to be compared, and the structure to be compared will be sequentially described.
1.3.2 比較対象の構造



 図14に模式的に図示される比較対象の構造においては、平滑コンデンサ900、第1のバスバ電極902及び第2のバスバ電極904が、ケース906に収納され、ケース906に固定される。平滑コンデンサ900、第1のバスバ電極902及び第2のバスバ電極904のケース906への固定は、樹脂材908により平滑コンデンサ900、第1のバスバ電極902及び第2のバスバ電極904をケース906に接合することにより行われる。 
1.3.2 Structure to be compared



In the structure to be compared schematically illustrated in FIG. 14, the smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are accommodated in the case 906 and fixed to the case 906. The smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are fixed to the case 906 by the resin material 908. The smoothing capacitor 900, the first bus bar electrode 902, and the second bus bar electrode 904 are fixed to the case 906. This is done by joining.
ケース906は、金属、エポキシ樹脂等からなる。樹脂材908は、エポキシ樹脂等からなる。  Case 906 is made of metal, epoxy resin, or the like. The resin material 908 is made of an epoxy resin or the like. *
ケース906の一端には、外部接続端子910が配置される。外部接続端子910は、高電位側及び低電位側の外部接続端子を含む。高電位側及び低電位側の外部接続端子は、互いに近接し、半導体パワーモジュールのパワーモジュール端子に電気的に接続される。  An external connection terminal 910 is disposed at one end of the case 906. The external connection terminal 910 includes high-potential side and low-potential side external connection terminals. The high potential side and low potential side external connection terminals are close to each other and are electrically connected to the power module terminals of the semiconductor power module. *
平滑コンデンサ900は、複数のコンデンサ920を備える。複数のコンデンサ920の各々は、円筒状の形状又は直方体状の形状を有し、第1のコンデンサ電極940及び第2のコンデンサ電極942を備える。第1のコンデンサ電極940は、平滑コンデンサ900の一端に配置され、外部接続端子910に近い側に配置され、半導体パワーモジュールに近い側に配置される。第2のコンデンサ電極942は、平滑コンデンサ900の他端に配置され、外部接続端子910から遠い側に配置され、半導体パワーモジュールから遠い側に配置される。  The smoothing capacitor 900 includes a plurality of capacitors 920. Each of the plurality of capacitors 920 has a cylindrical shape or a rectangular parallelepiped shape, and includes a first capacitor electrode 940 and a second capacitor electrode 942. The first capacitor electrode 940 is disposed at one end of the smoothing capacitor 900, is disposed near the external connection terminal 910, and is disposed near the semiconductor power module. The second capacitor electrode 942 is disposed at the other end of the smoothing capacitor 900, is disposed on the side far from the external connection terminal 910, and is disposed on the side far from the semiconductor power module. *
第1のバスバ電極902は、ケース906の内部に配置された各コンデンサ920に備えられる第1のコンデンサ電極940に接続され、一方の外部接続端子960に接続される。第1のバスバ電極902は、第1のコンデンサ電極940と一方の外部接続端子960とを結ぶ最短の経路に沿って配置される。第1のバスバ電極902は、一方の外部接続端子960から延伸され、半導体パワーモジュールのパワーモジュール端子に接続される。  The first bus bar electrode 902 is connected to the first capacitor electrode 940 provided in each capacitor 920 disposed inside the case 906, and is connected to one external connection terminal 960. The first bus bar electrode 902 is disposed along the shortest path connecting the first capacitor electrode 940 and the one external connection terminal 960. The first bus bar electrode 902 extends from one external connection terminal 960 and is connected to the power module terminal of the semiconductor power module. *
第2のバスバ電極904は、ケース906の内部に配置された各コンデンサ920に備えられる第2のコンデンサ電極942に接続され、他方の外部接続端子962に接続される。第2のバスバ電極904は、第2のコンデンサ電極942と他方の外部接続端子962とを結び平滑コンデンサ900の側面を覆う樹脂材908の近傍を通る経路に沿って配置される。第2のバスバ電極904は、他方の外部接続端子962から延伸され、半導体パワーモジュールのパワーモジュール端子に接続される。  The second bus bar electrode 904 is connected to the second capacitor electrode 942 provided in each capacitor 920 disposed inside the case 906, and is connected to the other external connection terminal 962. The second bus bar electrode 904 is arranged along a path passing through the vicinity of the resin material 908 that connects the second capacitor electrode 942 and the other external connection terminal 962 and covers the side surface of the smoothing capacitor 900. The second bus bar electrode 904 extends from the other external connection terminal 962 and is connected to the power module terminal of the semiconductor power module. *
第1のバスバ電極902が各コンデンサ920に備えられる第1のコンデンサ電極940に接続され、第2のバスバ電極904が各コンデンサ920に備えられる第2のコンデンサ電極942に接続されることにより、複数のコンデンサ920が電気的に並列接続される。複数のコンデンサ920が必要に応じて電気的に並列接続されることにより、平滑コンデンサ900に必要な静電容量が確保される。  The first bus bar electrode 902 is connected to the first capacitor electrode 940 included in each capacitor 920, and the second bus bar electrode 904 is connected to the second capacitor electrode 942 included in each capacitor 920. Capacitors 920 are electrically connected in parallel. The plurality of capacitors 920 are electrically connected in parallel as necessary, so that the necessary capacitance for the smoothing capacitor 900 is ensured. *
1.3.3 比較対象の構造の問題点



 比較対象の構造においては、平滑コンデンサ900が、樹脂材908で覆われ、ケース906に収納される。このため、平滑コンデンサ900を備えるインバータのサイズが、樹脂材908の肉厚及びケース906のサイズに応じて大きくなる。しかし、樹脂材908及びケース906は、平滑コンデンサ900の静電容量を確保する等の電気的な機能を有しない。したがって、比較対象の構造が採用された場合は、電気的な機能を有しない樹脂材908及びケース906により、インバータが大きくなる。加えて、比較対象の構造が採用された場合は、電気的な機能を有しない樹脂材908及びケース906により、インバータの重量及びコストが増加する。 
1.3.3 Problems of the structure to be compared



In the structure to be compared, the smoothing capacitor 900 is covered with the resin material 908 and stored in the case 906. For this reason, the size of the inverter provided with the smoothing capacitor 900 increases in accordance with the thickness of the resin material 908 and the size of the case 906. However, the resin material 908 and the case 906 do not have an electrical function such as ensuring the capacitance of the smoothing capacitor 900. Therefore, when the structure to be compared is adopted, the inverter becomes large due to the resin material 908 and the case 906 having no electrical function. In addition, when the structure to be compared is adopted, the weight and cost of the inverter increase due to the resin material 908 and the case 906 having no electrical function.
また、インバータにおいては、スイッチング素子がスイッチングを行う際に生じるサージ電圧を低下させるために、バスバ電極の寄生インダクタンスを小さくすることが望まれる。このため、高電位側及び低電位側のバスバ電極を互いに近接させた状態で積層し、高電位側及び低電位側のバスバ電極に流れる電流の向きを互いに逆の向きにする構造を採用することが望まれる。当該構造が採用された場合は、高電位側及び低電位側のバスバ電極に流れる電流により生じる磁束が互いに打ち消しあう。このため、バスバ電極の寄生インダクタンスが小さくなる。  In the inverter, it is desired to reduce the parasitic inductance of the bus bar electrode in order to reduce the surge voltage generated when the switching element performs switching. Therefore, a structure is adopted in which the high potential side and low potential side bus bar electrodes are stacked close to each other, and the directions of the currents flowing through the high potential side and low potential side bus bar electrodes are opposite to each other. Is desired. When this structure is adopted, magnetic fluxes generated by currents flowing through the high potential side and low potential side bus bar electrodes cancel each other. For this reason, the parasitic inductance of the bus bar electrode is reduced. *
しかし、比較対象の構造においては、第1のバスバ電極902が、半導体パワーモジュールに近い側に配置される第1のコンデンサ電極940と一方の外部接続端子960とを結ぶ最短の経路に沿って第1のコンデンサ電極940から一方の外部接続端子960まで延びる。また、第2のバスバ電極904が、半導体パワーモジュールから遠い側に配置される第2のコンデンサ電極942と他方の外部接続端子962とを結び平滑コンデンサ900の側面を覆う樹脂材908の近傍を通る経路に沿って第2のコンデンサ電極942から他方の外部接続端子962まで延びる。このため、外部接続端子910から半導体パワーモジュールに至る経路においては第1のバスバ電極902及び第2のバスバ電極904を積層することはできるが、ケース906の内部においては第1のバスバ電極902及び第2のバスバ電極904を積層することはできない。ケース906の内部において第1のバスバ電極902及び第2のバスバ電極904を積層することができない場合は、第1のバスバ電極902及び第2のバスバ電極904を流れる電流により生じる磁束が互いに打ち消しあうことができない部分が平滑コンデンサ900の側面に長く生じる。したがって、第1のバスバ電極902及び第2のバスバ電極904の寄生インダクタンスを小さくすることができないことに起因して、サージ電圧を小さくすることができない等のインバータの電気特性の悪化が生じる。  However, in the structure to be compared, the first bus bar electrode 902 is arranged along the shortest path connecting the first capacitor electrode 940 arranged on the side close to the semiconductor power module and the one external connection terminal 960. One capacitor electrode 940 extends to one external connection terminal 960. Further, the second bus bar electrode 904 passes through the vicinity of the resin material 908 that connects the second capacitor electrode 942 disposed on the side far from the semiconductor power module and the other external connection terminal 962 and covers the side surface of the smoothing capacitor 900. It extends from the second capacitor electrode 942 to the other external connection terminal 962 along the path. For this reason, the first bus bar electrode 902 and the second bus bar electrode 904 can be stacked in the path from the external connection terminal 910 to the semiconductor power module, but in the case 906, the first bus bar electrode 902 and The second bus bar electrode 904 cannot be stacked. When the first bus bar electrode 902 and the second bus bar electrode 904 cannot be stacked inside the case 906, magnetic fluxes generated by currents flowing through the first bus bar electrode 902 and the second bus bar electrode 904 cancel each other. A portion that cannot be formed is long on the side surface of the smoothing capacitor 900. Therefore, due to the fact that the parasitic inductance of the first bus bar electrode 902 and the second bus bar electrode 904 cannot be reduced, the electrical characteristics of the inverter deteriorate, such as the surge voltage cannot be reduced. *
また、インバータが動作する際には、平滑コンデンサ900に電流が流れることにより平滑コンデンサ900が内部発熱する。このため、平滑コンデンサ900を冷却することが望まれる。しかし、平滑コンデンサ900の側面から放熱を行うことは効果的ではない。特に、平滑コンデンサ900がフィルムコンデンサである場合は、平滑コンデンサ900の側面から放熱を行うことは効果的ではない。平滑コンデンサ900がフィルムコンデンサである場合に平滑コンデンサ900の側面から放熱を行うことが効果的ではない理由は、フィルムコンデンサが、絶縁膜及び金属膜を備え、金属膜が絶縁膜の表面に蒸着された積層体が多重巻きされた形状を有するためである。当該形状を有するフィルムコンデンサの側面からの放熱が効果的ではない理由は、フィルムコンデンサにおいては低い熱伝導率しか有しない絶縁膜が多重巻きされているためである。すなわち、多数の絶縁膜を通過しなければならないフィルムコンデンサの内部からフィルムコンデンサの側面へ向かう方向については熱抵抗が大きくなるためである。このため、平滑コンデンサ900の第1のコンデンサ電極940及び第2のコンデンサ電極942から放熱を行うことが期待される。しかし、比較対象の構造においては、平滑コンデンサ900の第1のコンデンサ電極940及び第2のコンデンサ電極942の外側に樹脂材908及びケース906が配置されるため、平滑コンデンサ900の第1のコンデンサ電極940及び第2のコンデンサ電極942から放熱を行うことが困難である。このため、平滑コンデンサ900の内部発熱を効果的に放熱することができない。第1のバスバ電極902及び第2のバスバ電極904を厚くし、第1のバスバ電極902及び第2のバスバ電極904に熱を伝え、第1のバスバ電極902及び第2のバスバ電極904を経由して大気への放熱を行うという対策も考えられる。しかし、当該対策によって実現される放熱性能は、十分でない。また、当該対策が行われた場合は、第1のバスバ電極902及び第2のバスバ電極904のコストが増加する。  Further, when the inverter operates, a current flows through the smoothing capacitor 900, so that the smoothing capacitor 900 generates heat internally. For this reason, it is desirable to cool the smoothing capacitor 900. However, it is not effective to perform heat dissipation from the side surface of the smoothing capacitor 900. In particular, when the smoothing capacitor 900 is a film capacitor, it is not effective to radiate heat from the side surface of the smoothing capacitor 900. When the smoothing capacitor 900 is a film capacitor, it is not effective to dissipate heat from the side of the smoothing capacitor 900. The film capacitor includes an insulating film and a metal film, and the metal film is deposited on the surface of the insulating film. This is because the laminated body has a shape of multiple winding. The reason why the heat radiation from the side surface of the film capacitor having the shape is not effective is that in the film capacitor, an insulating film having only low thermal conductivity is wound in multiple layers. That is, the thermal resistance increases in the direction from the inside of the film capacitor that must pass through a large number of insulating films to the side surface of the film capacitor. For this reason, it is expected that heat is radiated from the first capacitor electrode 940 and the second capacitor electrode 942 of the smoothing capacitor 900. However, in the structure to be compared, since the resin material 908 and the case 906 are disposed outside the first capacitor electrode 940 and the second capacitor electrode 942 of the smoothing capacitor 900, the first capacitor electrode of the smoothing capacitor 900 is used. It is difficult to dissipate heat from 940 and the second capacitor electrode 942. For this reason, the internal heat generation of the smoothing capacitor 900 cannot be effectively radiated. The first bus bar electrode 902 and the second bus bar electrode 904 are thickened, heat is transmitted to the first bus bar electrode 902 and the second bus bar electrode 904, and the first bus bar electrode 902 and the second bus bar electrode 904 are passed through. Then, measures to release heat to the atmosphere can be considered. However, the heat dissipation performance realized by this measure is not sufficient. In addition, when this measure is taken, the cost of the first bus bar electrode 902 and the second bus bar electrode 904 increases. *
1.3.4 平滑コンデンサが第2のバスバ電極に収納される構造の利点



 平滑コンデンサ1020が第2のバスバ電極1023に収納される構造が採用された場合は、インバータ1000に備えられる平滑コンデンサ1020が、電気的な接続に使用される第2のバスバ電極1023に収納される。また、平滑コンデンサ1020が、第2のバスバ電極1023により保持される。このため、平滑コンデンサ1020の収納にのみ用いられる部品を削減することができる。したがって、インバータ1000を小型化、軽量化及び低コスト化することができる。 
1.3.4 Advantages of structure in which smoothing capacitor is housed in second bus bar electrode



When the structure in which the smoothing capacitor 1020 is accommodated in the second bus bar electrode 1023 is adopted, the smoothing capacitor 1020 provided in the inverter 1000 is accommodated in the second bus bar electrode 1023 used for electrical connection. . Further, the smoothing capacitor 1020 is held by the second bus bar electrode 1023. For this reason, the components used only for storing the smoothing capacitor 1020 can be reduced. Therefore, the inverter 1000 can be reduced in size, weight, and cost.
第2のバスバ電極1023は、金属からなる。このため、金属板を用いることによりプレス加工で加工できるので筒状の側壁部1120を備える第2のバスバ電極1023を加工により作製することは容易である。また、第2のバスバ電極1023を第1の電極1081に電気的に接続することも容易である。  The second bus bar electrode 1023 is made of metal. For this reason, since it can be processed by press working by using a metal plate, it is easy to produce the second bus bar electrode 1023 including the cylindrical side wall portion 1120 by machining. Further, it is easy to electrically connect the second bus bar electrode 1023 to the first electrode 1081. *
平滑コンデンサ1020が第2のバスバ電極1023に収納される構造が採用された場合は、第1のバスバ電極1022から第1の電極1081に入った電流が、平滑コンデンサ1020の内部を流れ、第2の電極1082に至る。第2の電極1082に至った電流は、第2の電極1082から第2のバスバ電極1023に出る。このため、平滑コンデンサ1020の内部を流れる電流の向きは、側壁部1120を流れる電流の向きとは逆の向きになる。また、側壁部1120は、上述したように、平滑コンデンサ1020の側面1062に沿って配置される。したがって、平滑コンデンサ1020に電流が流れる際には、互いに逆の方向に電流が流れる平滑コンデンサ1020及び側壁部1120が広い面積に渡って互いに接触し積層された状態が実現される。  When the structure in which the smoothing capacitor 1020 is accommodated in the second bus bar electrode 1023 is employed, the current that has entered the first electrode 1081 from the first bus bar electrode 1022 flows through the smoothing capacitor 1020, and the second Electrode 1082. The current that reaches the second electrode 1082 is output from the second electrode 1082 to the second bus bar electrode 1023. For this reason, the direction of the current flowing through the smoothing capacitor 1020 is opposite to the direction of the current flowing through the side wall 1120. Further, the side wall 1120 is disposed along the side surface 1062 of the smoothing capacitor 1020 as described above. Therefore, when a current flows through the smoothing capacitor 1020, a state in which the smoothing capacitor 1020 and the side wall 1120 in which current flows in opposite directions is in contact with each other over a wide area and stacked is realized. *
比較対象の構造においては、互いに逆の方向に電流が流れるが積層することが困難であったふたつの部分がケース906の内部に存在したため、バスバ電極の寄生インダクタンスを小さくすることが困難あった。これに対して、平滑コンデンサ1020が第2のバスバ電極1023に収納される構造においては、上述したように、互いに逆の方向に電流が流れる平滑コンデンサ1020及び側壁部1120が広い面積に渡って互いに接触し積層された状態が実現されるため、第1のバスバ電極1022及び第2のバスバ電極1023の寄生インダクタンスを小さくすることができる。また、平滑コンデンサ1020自体の寄生インダクタンスも小さくすることができる。  In the structure to be compared, there are two portions inside the case 906 where currents flow in opposite directions but are difficult to stack, so it is difficult to reduce the parasitic inductance of the bus bar electrode. On the other hand, in the structure in which the smoothing capacitor 1020 is housed in the second bus bar electrode 1023, as described above, the smoothing capacitor 1020 and the side wall portion 1120 in which currents flow in opposite directions to each other over a wide area. Since the contacted and stacked state is realized, the parasitic inductance of the first bus bar electrode 1022 and the second bus bar electrode 1023 can be reduced. Also, the parasitic inductance of the smoothing capacitor 1020 itself can be reduced. *
寄生インダクタンスを小さくすることができた場合は、サージ電圧が低下する。サージ電圧が低下した場合は、半導体素子のスイッチング速度が速くなる。半導体素子のスイッチング速度が速くなった場合は、半導体素子のスイッチング損失も減少する。  When the parasitic inductance can be reduced, the surge voltage decreases. When the surge voltage is reduced, the switching speed of the semiconductor element is increased. When the switching speed of the semiconductor element is increased, the switching loss of the semiconductor element is also reduced. *
1.4 仕切り板



 複数のコンデンサ1040の各々に備えられる第1の電極1081は、第1のバスバ電極1022に電気的に接続される。複数のコンデンサ1040の各々に備えられる第2の電極1082は、第2のバスバ電極1023に電気的に接続される。第1の電極1081及び第2の電極1082がそれぞれ第1のバスバ電極1022及び第2のバスバ電極1023に電気的に接続されることにより、複数のコンデンサ1040が電気的に並列接続される。複数のコンデンサ1040が電気的に並列接続されることにより、平滑コンデンサ1020に必要な静電容量が確保される。 
1.4 Partition plate



The first electrode 1081 provided in each of the plurality of capacitors 1040 is electrically connected to the first bus bar electrode 1022. The second electrode 1082 provided in each of the plurality of capacitors 1040 is electrically connected to the second bus bar electrode 1023. The first electrode 1081 and the second electrode 1082 are electrically connected to the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively, whereby the plurality of capacitors 1040 are electrically connected in parallel. The plurality of capacitors 1040 are electrically connected in parallel, so that the capacitance necessary for the smoothing capacitor 1020 is ensured.
第2のバスバ電極1023は、仕切り板1160をさらに備える。  The second bus bar electrode 1023 further includes a partition plate 1160. *
仕切り板1160は、仕切り形状を有する電極板である。仕切り板1160は、収納空間1140に配置され、収納空間1140を複数の区画1170に仕切る。複数の区画1170内には、それぞれ複数のコンデンサ1040が収納される。  The partition plate 1160 is an electrode plate having a partition shape. The partition plate 1160 is disposed in the storage space 1140 and partitions the storage space 1140 into a plurality of partitions 1170. A plurality of capacitors 1040 are housed in the plurality of compartments 1170, respectively. *
各区画1170内にコンデンサ1040が収納されることにより、隣接するふたつのコンデンサ1040の間には、第2のバスバ電極1023を構成する仕切り板1160が存在する。当該仕切り板1160は、上述した寄生インダクタンスを小さくする効果をより大きくする。  By storing the capacitor 1040 in each section 1170, the partition plate 1160 constituting the second bus bar electrode 1023 exists between the two adjacent capacitors 1040. The partition plate 1160 increases the effect of reducing the parasitic inductance described above. *
第2のバスバ電極1023は金属からなるため、複数のコンデンサ1040のサイズにそれぞれ適合するサイズを有する複数の区画1170に収納空間1140を仕切る仕切り板1160を備える第2のバスバ電極1023を作製することは容易である。  Since the second bus bar electrode 1023 is made of metal, the second bus bar electrode 1023 including a partition plate 1160 that partitions the storage space 1140 into a plurality of sections 1170 each having a size that matches the size of the plurality of capacitors 1040 is manufactured. Is easy. *
1.5 ケース又は冷却器への固定



 以下では、第2のバスバ電極1023がケースに固定される例が説明された後に、第1のバスバ電極1022及び第2のバスバ電極1023が冷却器に固定される例が説明される。 
1.5 Fixing to case or cooler



In the following, after an example in which the second bus bar electrode 1023 is fixed to the case, an example in which the first bus bar electrode 1022 and the second bus bar electrode 1023 are fixed to the cooler will be described.
図7は、第1実施形態のインバータに備えられる第2のバスバ電極、ケース及び電気絶縁材を模式的に図示する断面図である。  FIG. 7 is a cross-sectional view schematically illustrating a second bus bar electrode, a case, and an electrical insulating material provided in the inverter of the first embodiment. *
図7に図示される例においては、インバータ1000は、図7に図示されるケース1180及び電気絶縁材1181をさらに備える。  In the example illustrated in FIG. 7, the inverter 1000 further includes a case 1180 and an electrical insulating material 1181 illustrated in FIG. 7. *
ケース1180は、平滑コンデンサ1020及び半導体パワーモジュール1021を収納する。  Case 1180 houses smoothing capacitor 1020 and semiconductor power module 1021. *
第2のバスバ電極1023は、電気絶縁材1181を介してケース1180に固定される。第2のバスバ電極1023が電気絶縁材1181を介してケース1180に固定されることにより、第2のバスバ電極1023がケース1180に直接的に接触しなくなる。このため、第2のバスバ電極1023がケース1180から電気的に絶縁される。  The second bus bar electrode 1023 is fixed to the case 1180 via an electrical insulating material 1181. Since the second bus bar electrode 1023 is fixed to the case 1180 via the electrical insulating material 1181, the second bus bar electrode 1023 does not directly contact the case 1180. Therefore, the second bus bar electrode 1023 is electrically insulated from the case 1180. *
平滑コンデンサ1020は、第2のバスバ電極1023に収納されることにより、第2のバスバ電極1023に確実に保持される。このため、第2のバスバ電極1023がケース1180に固定されることにより、平滑コンデンサ1020は第2のバスバ電極1023を介してケース1180に確実に固定される。  The smoothing capacitor 1020 is securely held by the second bus bar electrode 1023 by being housed in the second bus bar electrode 1023. For this reason, when the second bus bar electrode 1023 is fixed to the case 1180, the smoothing capacitor 1020 is reliably fixed to the case 1180 via the second bus bar electrode 1023. *
図8は、第1実施形態のインバータに備えられる第1のバスバ電極、第2のバスバ電極、冷却器及び電気絶縁材を模式的に図示する断面図である。  FIG. 8 is a cross-sectional view schematically illustrating a first bus bar electrode, a second bus bar electrode, a cooler, and an electrical insulating material included in the inverter according to the first embodiment. *
図8に図示される例においては、インバータ1000は、図8に図示される冷却器1201及び電気絶縁材1202をさらに備える。  In the example illustrated in FIG. 8, the inverter 1000 further includes a cooler 1201 and an electrical insulating material 1202 illustrated in FIG. 8. *
冷却器1201は、上述したケース1180に備えられるか、又は上述したケース1180に固定される。  The cooler 1201 is provided in the case 1180 described above or is fixed to the case 1180 described above. *
第1のバスバ電極1022及び第2のバスバ電極1023は、電気絶縁材1202を介して冷却器1201に固定される。  The first bus bar electrode 1022 and the second bus bar electrode 1023 are fixed to the cooler 1201 via an electrical insulating material 1202. *
第1のバスバ電極1022及び第2のバスバ電極1023が電気絶縁材1202を介して冷却器1201に固定されることにより、第1のバスバ電極1022及び第2のバスバ電極1023が冷却器1201に直接的に接触しなくなる。このため、第1のバスバ電極1022及び第2のバスバ電極1023が冷却器1201から電気的に絶縁される。  The first bus bar electrode 1022 and the second bus bar electrode 1023 are fixed to the cooler 1201 through the electrical insulating material 1202, so that the first bus bar electrode 1022 and the second bus bar electrode 1023 are directly connected to the cooler 1201. Will not touch. Therefore, the first bus bar electrode 1022 and the second bus bar electrode 1023 are electrically insulated from the cooler 1201. *
第1のバスバ電極1022及び第2のバスバ電極1023は、電気絶縁材1202に密接するか、又は電気絶縁材1202に接合される。電気絶縁材1202は、冷却器1201に密接するか、又は冷却器1201に接合される。第1のバスバ電極1022が電気絶縁材1202を介して冷却器1201に固定されることにより、第1のバスバ電極1022に接触する第1の電極1081が冷却器1201に熱結合される。第2のバスバ電極1023が電気絶縁材1202を介して冷却器1201に固定されることにより、第2のバスバ電極1023に接触する第2の電極1082が冷却器1201に熱結合される。第1の電極1081及び第2の電極1082が冷却器1201に熱結合されることにより、平滑コンデンサ1020の内部において発生した熱が伝熱してくる第1の電極1081及び第2の電極1082が直接的に冷却される。このため、平滑コンデンサ1020の温度の上昇が抑制される。


The first bus bar electrode 1022 and the second bus bar electrode 1023 are in close contact with the electrical insulating material 1202 or bonded to the electrical insulating material 1202. The electrical insulating material 1202 is in close contact with the cooler 1201 or joined to the cooler 1201. The first bus bar electrode 1022 is fixed to the cooler 1201 via the electrical insulating material 1202, whereby the first electrode 1081 that is in contact with the first bus bar electrode 1022 is thermally coupled to the cooler 1201. The second bus bar electrode 1023 is fixed to the cooler 1201 via the electrical insulating material 1202, whereby the second electrode 1082 that is in contact with the second bus bar electrode 1023 is thermally coupled to the cooler 1201. When the first electrode 1081 and the second electrode 1082 are thermally coupled to the cooler 1201, the first electrode 1081 and the second electrode 1082 to which heat generated inside the smoothing capacitor 1020 is transferred directly. Cooled. For this reason, the temperature rise of the smoothing capacitor 1020 is suppressed.


平滑コンデンサ1020は、第2のバスバ電極1023に収納されることにより、第2のバスバ電極1023に確実に保持される。このため、第1の電極1081及び第2の電極1082を、電気絶縁材1202を介して冷却器1201に密着させることは容易である。したがって、第1の電極1081及び第2の電極1082は、効果的に冷却される。  The smoothing capacitor 1020 is securely held by the second bus bar electrode 1023 by being housed in the second bus bar electrode 1023. Therefore, the first electrode 1081 and the second electrode 1082 can be easily adhered to the cooler 1201 through the electric insulating material 1202. Accordingly, the first electrode 1081 and the second electrode 1082 are effectively cooled. *
インバータにおいては、必要な静電容量を確保するためだけでなく、発熱に伴う温度の上昇を抑制するために、平滑コンデンサが大型化される場合がある。すなわち、平滑コンデンサが必要な静電容量より大きい静電容量を有する場合がある。しかし、平滑コンデンサ1020が効果的に冷却される場合は、平滑コンデンサ1020が必要な静電容量より大きい静電容量を有する必要がない。このため、平滑コンデンサ1020を小型化することができる。平滑コンデンサ1020を小型化することができる場合は、インバータ1000を小型化及び低コスト化することができる。  In an inverter, a smoothing capacitor may be enlarged in order not only to secure a necessary capacitance but also to suppress a rise in temperature due to heat generation. That is, the smoothing capacitor may have a capacitance that is greater than the required capacitance. However, if the smoothing capacitor 1020 is effectively cooled, the smoothing capacitor 1020 need not have a capacitance greater than the required capacitance. For this reason, the smoothing capacitor 1020 can be reduced in size. When the smoothing capacitor 1020 can be reduced in size, the inverter 1000 can be reduced in size and cost. *
1.6 直方体状の形状を有するコンデンサ



 図9は、第1実施形態の変形例のインバータに備えられる平滑コンデンサを模式的に図示する斜視図である。図10は、第1実施形態の変形例のインバータに備えられる第2のバスバ電極を模式的に図示する斜視図である。図11は、第1実施形態の変形例のインバータに備えられる第1のバスバ電極、第2のバスバ電極及び平滑コンデンサを模式的に図示する斜視図である。


1.6 Capacitor having a rectangular parallelepiped shape



FIG. 9 is a perspective view schematically illustrating a smoothing capacitor provided in an inverter according to a modification of the first embodiment. FIG. 10 is a perspective view schematically illustrating the second bus bar electrode provided in the inverter according to the modification of the first embodiment. FIG. 11 is a perspective view schematically illustrating a first bus bar electrode, a second bus bar electrode, and a smoothing capacitor provided in an inverter according to a modification of the first embodiment.


図9、図10及び図11に図示される平滑コンデンサ1320、第1のバスバ電極1321及び第2のバスバ電極1322は、図2から図6に図示される平滑コンデンサ1020、第1のバスバ電極1022及び第2のバスバ電極1023に代えて用いることができる。  The smoothing capacitor 1320, the first bus bar electrode 1321 and the second bus bar electrode 1322 shown in FIGS. 9, 10 and 11 are the same as the smoothing capacitor 1020 and the first bus bar electrode 1022 shown in FIGS. The second bus bar electrode 1023 can be used instead. *
平滑コンデンサ1320は、コンデンサ1340を備える。コンデンサ1340は、直方体状の形状を有する。平滑コンデンサ1320は、コンデンサ本体1360、第1の電極1361及び第2の電極1362を備える。第1の電極1361は、メタリコン電極であり、平滑コンデンサ1320の一端1380に配置される。第2の電極1362は、メタリコン電極であり、平滑コンデンサ1320の他端1381に配置される。  The smoothing capacitor 1320 includes a capacitor 1340. The capacitor 1340 has a rectangular parallelepiped shape. The smoothing capacitor 1320 includes a capacitor body 1360, a first electrode 1361, and a second electrode 1362. The first electrode 1361 is a metallicon electrode and is disposed at one end 1380 of the smoothing capacitor 1320. The second electrode 1362 is a metallicon electrode and is disposed at the other end 1381 of the smoothing capacitor 1320. *
第1のバスバ電極1321及び第2のバスバ電極1322は、各々が円筒状の形状を有する複数のコンデンサ1040を備える平滑コンデンサ1020に代えて直方体状の形状を有するひとつのコンデンサ1340を備える平滑コンデンサ1320に適合する形状を有する点で、それぞれ第1のバスバ電極1022及び第2のバスバ電極1023と相違する。また、第2のバスバ電極1322は、仕切り板を備えない点で、第2のバスバ電極1023と相違する。これらの相違を除いて、第1のバスバ電極1321及び第2のバスバ電極1322は、それぞれ第1のバスバ電極1022及び第2のバスバ電極1023と同様の特徴を有する。  The first bus bar electrode 1321 and the second bus bar electrode 1322 each include a smoothing capacitor 1320 including one capacitor 1340 having a rectangular parallelepiped shape instead of the smoothing capacitor 1020 including a plurality of capacitors 1040 each having a cylindrical shape. Are different from the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively. The second bus bar electrode 1322 is different from the second bus bar electrode 1023 in that it does not include a partition plate. Except for these differences, the first bus bar electrode 1321 and the second bus bar electrode 1322 have the same characteristics as the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively. *
平滑コンデンサ1320の一端1380は、第2のバスバ電極1322からはみ出している。このため、第1の電極1361に接続される第1のバスバ電極1321と第2の電極1362に接続される第2のバスバ電極1322との間には、隙間1400が存在する。隙間1400により、第1のバスバ電極1321が第2のバスバ電極1322と短絡することが防止される。  One end 1380 of the smoothing capacitor 1320 protrudes from the second bus bar electrode 1322. Therefore, a gap 1400 exists between the first bus bar electrode 1321 connected to the first electrode 1361 and the second bus bar electrode 1322 connected to the second electrode 1362. The gap 1400 prevents the first bus bar electrode 1321 from being short-circuited with the second bus bar electrode 1322. *
図12は、第1実施形態の変形例のインバータに備えられる第1のバスバ電極、第2のバスバ電極及び平滑コンデンサを模式的に図示する斜視図である。図13は、第1実施形態の変形例のインバータに備えられる第2のバスバ電極及び平滑コンデンサを模式的に図示する断面図である。図13は、図12の切断線A-Aの位置における断面を図示する。  FIG. 12 is a perspective view schematically illustrating a first bus bar electrode, a second bus bar electrode, and a smoothing capacitor provided in an inverter according to a modification of the first embodiment. FIG. 13 is a cross-sectional view schematically illustrating a second bus bar electrode and a smoothing capacitor provided in the inverter according to the modification of the first embodiment. FIG. 13 illustrates a cross section at the position of section line AA in FIG. *
図12及び図13に図示される平滑コンデンサ1420、第1のバスバ電極1421及び第2のバスバ電極1422は、図2から図6に図示される平滑コンデンサ1020、第1のバスバ電極1022及び第2のバスバ電極1023に代えて用いることができる。  The smoothing capacitor 1420, the first bus bar electrode 1421, and the second bus bar electrode 1422 shown in FIGS. 12 and 13 are the same as the smoothing capacitor 1020, the first bus bar electrode 1022, and the second bus bar electrode 1422 shown in FIGS. The bus bar electrode 1023 can be used instead. *
平滑コンデンサ1420は、複数のコンデンサ1440を備える。複数のコンデンサ1440は、電気的に並列接続される。複数のコンデンサ1440の各々は、直方体状の形状を有する。  The smoothing capacitor 1420 includes a plurality of capacitors 1440. The plurality of capacitors 1440 are electrically connected in parallel. Each of the plurality of capacitors 1440 has a rectangular parallelepiped shape. *
第1のバスバ電極1421及び第2のバスバ電極1422は、円筒状のコンデンサ1040を備える平滑コンデンサ1020に代えて直方体状のコンデンサ1440を備える平滑コンデンサ1420を収納する点を除いて、それぞれ第1のバスバ電極1022及び第2のバスバ電極1023と同様の特徴を有する。第1のバスバ電極1421及び第2のバスバ電極1422は、各々が円筒状の形状を有する複数のコンデンサ1040を備える平滑コンデンサ1020に代えて各々が直方体状の形状を有する複数のコンデンサ1440を備える平滑コンデンサ1420に適合する形状を有する点で、それぞれ第1のバスバ電極1022及び第2のバスバ電極1023と相違する。この相違を除いて、第1のバスバ電極1421及び第2のバスバ電極1422は、それぞれ第1のバスバ電極1022及び第2のバスバ電極1023と同様の特徴を有する。  The first bus bar electrode 1421 and the second bus bar electrode 1422 are respectively the first bus bar except for storing a smoothing capacitor 1420 having a rectangular parallelepiped capacitor 1440 instead of the smoothing capacitor 1020 having a cylindrical capacitor 1040. The bus bar electrode 1022 and the second bus bar electrode 1023 have the same characteristics. The first bus bar electrode 1421 and the second bus bar electrode 1422 are provided with a plurality of capacitors 1440 each having a rectangular parallelepiped shape instead of the smoothing capacitor 1020 having a plurality of capacitors 1040 each having a cylindrical shape. It differs from the first bus bar electrode 1022 and the second bus bar electrode 1023 in that it has a shape suitable for the capacitor 1420. Except for this difference, the first bus bar electrode 1421 and the second bus bar electrode 1422 have the same characteristics as the first bus bar electrode 1022 and the second bus bar electrode 1023, respectively. *
本発明は、上述の実施形態に限らず、種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made.
1000 インバータ、1020 平滑コンデンサ、1021 半導体パワーモジュール、 1022 第1のバスバ電極、1023 第2のバスバ電極、1040 コンデンサ、1081 第1の電極、1082 第2の電極、1120 側壁部、1121 底部、1140 収納空間、1141 底側端、1160 仕切り板、1170 区画、1180 ケース、1181 電気絶縁材、1200 ケース、1201 冷却器、1202 電気絶縁材、1320 平滑コンデンサ、1321 第1のバスバ電極、1322 第2のバスバ電極、1340 コンデンサ、1361 第1の電極、1362 第2の電極、1420 平滑コンデンサ、1421 第1のバスバ電極、1422 第2のバスバ電極 1000 inverter, 1020 smoothing capacitor, 1021 semiconductor power module, 1022 first bus bar electrode, 1023 second bus bar electrode, 1040 capacitor, 1081 first electrode, 1082 second electrode, 1120 side wall, 1121 bottom, 1140 storage Space, 1141 bottom end, 1160 partition plate, 1170 section, 1180 case, 1181 electrical insulation, 1200 case, 1201 cooler, 1202 electrical insulation, 1320 smoothing capacitor, 1321 first bus bar electrode, 1322 second bus bar Electrode, 1340 capacitor, 1361 first electrode, 1362 second electrode, 1420 smoothing capacitor, 1421 first bus bar electrode, 1422 second bus bar electrode

Claims (5)




  1.  直流を平滑し、一端、他端、及び前記一端から前記他端まで延びる側面を有するコンデンサと、前記一端に配置される第1の電極及び前記他端に配置される第2の電極を備える平滑コンデンサと、



     直流をスイッチングし交流を生成し、前記第1の電極から第1の距離だけ離れており、前記第2の電極から第2の距離だけ離れており、前記第2の距離が前記第1の距離より長くなる位置に配置された半導体パワーモジュールと、



     前記第1の電極を前記半導体パワーモジュールに電気的に接続する第1のバスバ電極と、



     前記第2の電極を前記半導体パワーモジュールに電気的に接続し、側壁部及び底部を備え、前記側壁部が収納空間及び底側端を有し前記側面に沿い、前記底部が前記底側端に配置され前記第2の電極に接触し、前記収納空間内に前記平滑コンデンサを収納する第2のバスバ電極と、



    を備えるインバータ。





    A smoothing comprising a capacitor for smoothing direct current and having one end, the other end, and a side surface extending from the one end to the other end, a first electrode disposed at the one end, and a second electrode disposed at the other end A capacitor,



    A direct current is switched to generate an alternating current, and is separated from the first electrode by a first distance, separated from the second electrode by a second distance, and the second distance is the first distance. A semiconductor power module arranged at a longer position;



    A first bus bar electrode that electrically connects the first electrode to the semiconductor power module;



    The second electrode is electrically connected to the semiconductor power module, and includes a side wall portion and a bottom portion, the side wall portion has a storage space and a bottom side end along the side surface, and the bottom portion is at the bottom side end. A second bus bar electrode disposed and in contact with the second electrode to house the smoothing capacitor in the housing space;



    Inverter comprising.


  2. 前記平滑コンデンサは、電気的に並列接続される複数の前記コンデンサを備え、



     前記第2のバスバ電極は、前記収納空間を、前記複数のコンデンサをそれぞれ収納する複数の区画に仕切る仕切り板をさらに備える請求項1のインバータ。


    The smoothing capacitor includes a plurality of the capacitors electrically connected in parallel,



    2. The inverter according to claim 1, wherein the second bus bar electrode further includes a partition plate that divides the storage space into a plurality of sections each storing the plurality of capacitors.


  3. 前記平滑コンデンサ及び前記半導体パワーモジュールを収納するケースと、



    電気絶縁材と、



    をさらに備え、



     前記第2のバスバ電極は、前記電気絶縁材を介して前記ケースに固定される請求項1又は2のインバータ。


    A case for housing the smoothing capacitor and the semiconductor power module;



    Electrical insulation,



    Further comprising



    The inverter according to claim 1 or 2, wherein the second bus bar electrode is fixed to the case via the electrical insulating material.


  4. 前記ケースは、冷却器を備え、



     前記第1のバスバ電極及び前記第2のバスバ電極は、前記電気絶縁材を介して前記冷却器に固定される請求項3のインバータ。


    The case includes a cooler,



    The inverter according to claim 3, wherein the first bus bar electrode and the second bus bar electrode are fixed to the cooler via the electrical insulating material.


  5. 前記平滑コンデンサ及び前記半導体パワーモジュールを収納するケースと、



     前記ケースに固定される冷却器と、



     電気絶縁材と、



    をさらに備え、



     前記第1のバスバ電極及び前記第2のバスバ電極は、前記電気絶縁材を介して前記冷却器に固定される請求項1又は2のインバータ。
    A case for housing the smoothing capacitor and the semiconductor power module;



    A cooler fixed to the case;



    Electrical insulation,



    Further comprising



    The inverter according to claim 1 or 2, wherein the first bus bar electrode and the second bus bar electrode are fixed to the cooler via the electric insulating material.
PCT/JP2019/004964 2018-02-22 2019-02-13 Inverter WO2019163592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980014089.8A CN111742480A (en) 2018-02-22 2019-02-13 Inverter with a voltage regulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029517 2018-02-22
JP2018029517 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163592A1 true WO2019163592A1 (en) 2019-08-29

Family

ID=67688362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004964 WO2019163592A1 (en) 2018-02-22 2019-02-13 Inverter

Country Status (2)

Country Link
CN (1) CN111742480A (en)
WO (1) WO2019163592A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214273A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Power converter and capacitor element
JP2014039384A (en) * 2012-08-14 2014-02-27 Hitachi Automotive Systems Ltd Dc-dc converter device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012940A (en) * 2003-06-19 2005-01-13 Toshiba Corp Inverter device
JP5506740B2 (en) * 2011-05-31 2014-05-28 日立オートモティブシステムズ株式会社 Power converter
JP5836879B2 (en) * 2012-05-01 2015-12-24 日立オートモティブシステムズ株式会社 Inverter device
JP6232315B2 (en) * 2014-03-03 2017-11-15 株式会社Soken Power converter
JP6457800B2 (en) * 2014-11-28 2019-01-23 株式会社日立製作所 Power conversion device and railway vehicle equipped with the same
JP6429721B2 (en) * 2015-05-07 2018-11-28 株式会社日立製作所 Power converter and railway vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214273A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Power converter and capacitor element
JP2014039384A (en) * 2012-08-14 2014-02-27 Hitachi Automotive Systems Ltd Dc-dc converter device

Also Published As

Publication number Publication date
CN111742480A (en) 2020-10-02

Similar Documents

Publication Publication Date Title
US11153966B2 (en) Electronic circuit device
JP5830480B2 (en) Wiring board and power conversion device using the same
EP3358736B1 (en) Power conversion device
JP5733234B2 (en) Power converter
JP2015100223A (en) Electric power conversion system
JP2021197838A (en) Power conversion device
JP5017970B2 (en) Power converter
JP6070581B2 (en) Terminal block and power conversion device including the terminal block
US10840819B2 (en) Electric power conversion device
US20220407431A1 (en) Power conversion device
WO2019163592A1 (en) Inverter
JP6439483B2 (en) Power converter
JP2020064917A (en) Resin-molded capacitor and power converter
JP7065595B2 (en) Film capacitor module
JP2007068294A (en) Power converter
JP2019024319A (en) Power converter
JP6435906B2 (en) Power converter
US20230291322A1 (en) Power conversion device
JP7134305B1 (en) power converter
WO2020203615A1 (en) Power conversion device
WO2024154478A1 (en) Power conversion device
US20240235410A9 (en) Power Conversion Apparatus
US10763757B2 (en) Power converter
US20230396183A1 (en) Power conversion device
JP2024101332A (en) Power Conversion Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP