WO2019163509A1 - Lubricant oil composition, method for manufacturing lubricant oil composition and driving device - Google Patents

Lubricant oil composition, method for manufacturing lubricant oil composition and driving device Download PDF

Info

Publication number
WO2019163509A1
WO2019163509A1 PCT/JP2019/003989 JP2019003989W WO2019163509A1 WO 2019163509 A1 WO2019163509 A1 WO 2019163509A1 JP 2019003989 W JP2019003989 W JP 2019003989W WO 2019163509 A1 WO2019163509 A1 WO 2019163509A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil composition
lubricating oil
hydrocarbon group
mass
group
Prior art date
Application number
PCT/JP2019/003989
Other languages
French (fr)
Japanese (ja)
Inventor
衆一 坂上
達也 濱地
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2019163509A1 publication Critical patent/WO2019163509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Definitions

  • the present invention relates to a lubricating oil composition, a method for producing a lubricating oil composition, and a drive system device.
  • Lubricating oil compositions used for various applications such as shock absorbers, transmissions, drive system equipment such as power steering, engines, hydraulic operation, and the like are required to have characteristics corresponding to each application.
  • the characteristics of the lubricating oil composition are often greatly affected by the properties of the base oil used, the type of additive, etc., and in order to produce a lubricating oil composition that can exhibit the required characteristics, the base oil and The development of additives and the development of these formulations are widely performed.
  • the shock absorber is used as a drive system device for automobiles such as four-wheeled vehicles and two-wheeled vehicles, and is also used in a wide range of fields such as a home earthquake-resistant mechanism.
  • the lubricating oil composition used in the shock absorber is filled in the shock absorber and generates a fluid resistance when the piston expands and contracts. If it is a shock absorber for automobiles, vibration transmitted from the road surface to the vehicle body, if it is a shock absorber for housings In addition to the ability to damp vibrations caused by earthquakes, etc., the ability to lubricate sliding locations in the shock absorber is required.
  • Patent Document 1 discloses a shock absorber oil composition using hydrogenated modified mineral oil or synthetic oil as a base oil and using a viscosity index improver such as high molecular weight poly (meth) acrylate in a specific amount. Has been.
  • the shock absorber in order to improve the durability of the shock absorber, it is important to improve the wear resistance of the lubricating oil composition and suppress the occurrence of wear marks on the inner tube. Further, as the performance of automobiles is improved, the driving conditions are becoming severer year by year, so that the lubricating oil composition is required to have higher oxidation stability in addition to wear resistance.
  • the present invention has been made in view of the above circumstances, and a lubricating oil composition excellent in wear resistance and oxidation stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition
  • the purpose is to provide.
  • this invention provides the lubricating oil composition which has the following structure, the manufacturing method of this lubricating oil composition, and the drive system apparatus using this lubricating oil composition.
  • a lubricating oil composition comprising a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
  • R 11 represents a hydrocarbon group
  • R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.
  • a lubricating oil composition having excellent wear resistance and oxidation stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition.
  • this embodiment an embodiment of the present invention (hereinafter, simply referred to as “this embodiment”) will be described.
  • the numerical values relating to “above”, “below” and “ ⁇ ” relating to the description of numerical ranges are numerical values that can be arbitrarily combined.
  • the lubricating oil composition of this embodiment contains a phosphorus compound represented by the following general formula (1) and zinc dithiophosphate.
  • a phosphorus compound represented by the following general formula (1) and zinc dithiophosphate.
  • R 11 represents a hydrocarbon group
  • R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.
  • the lubricating oil composition of this embodiment is required to contain a phosphorus compound represented by the following general formula (1) (hereinafter sometimes simply referred to as “phosphorus compound”).
  • phosphorus compound represented by the following general formula (1)
  • the wear resistance is lowered, so that excellent wear resistance and oxidation stability cannot be obtained at the same time.
  • phosphoric acid esters and phosphite esters both of which all hydrocarbon groups contained in the molecule and phosphorus atoms are bonded via oxygen atoms for the purpose of improving wear resistance.
  • Ester etc. have been widely used, but when these antiwear agents and zinc dithiophosphate are combined, although the wear resistance is improved, the oxidation stability may be reduced. There was a contradictory relationship with oxidative stability. In addition, these antiwear agents and zinc dithiophosphate may react to cause precipitation, which may cause problems in terms of mixing stability.
  • the lubricating oil composition of the present embodiment is excellent as a result of combining the specific phosphorus compound and zinc dithiophosphate so that precipitation does not occur and wear resistance is improved while maintaining oxidation stability. It was possible to achieve both wear resistance and oxidation stability.
  • R 11 is a hydrocarbon group
  • R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group
  • at least one of R 12 and R 13 is a hydrocarbon group.
  • the hydrocarbon group for R 11 is not particularly limited as long as it is a monovalent hydrocarbon group.
  • an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group and the like are preferable from the viewpoint of improving wear resistance.
  • An alkyl group and an alkenyl group are more preferable, and an alkyl group is still more preferable.
  • these monovalent hydrocarbon groups are alkyl groups or alkenyl groups, they may be either linear or branched.
  • Cycloalkyl groups and aryl groups are, for example, polycyclic groups such as decalyl groups and naphthyl groups. It may be a group.
  • These monovalent hydrocarbon groups include those having a substituent containing an oxygen atom and / or a nitrogen atom such as a hydroxyl group, a carboxy group, an amino group, an amide group, a nitro group, a cyano group, a nitrogen atom, an oxygen atom It may be partially substituted with an atom, a halogen atom or the like, and when the monovalent hydrocarbon group is a cycloalkyl group or an aryl group, it further has a substituent such as an alkyl group or an alkenyl group. Also good.
  • the carbon number of the hydrocarbon group of R 11 is preferably 1 or more, more preferably 2 or more, and further preferably 4 or more when the monovalent hydrocarbon group is an alkyl group.
  • the upper limit is preferably 24 or less, more preferably 22 or less, and even more preferably 20 or less.
  • the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more.
  • the upper limit is preferably 24 or less, more preferably 22 or less, and still more preferably 20 or less.
  • the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.
  • At least one of R 12 and R 13 needs to be a hydrocarbon group.
  • both R 12 and R 13 are hydrogen atoms, it is difficult to obtain excellent wear resistance. From the viewpoint of obtaining superior wear resistance, it is preferable that both R 12 and R 13 are hydrocarbon groups.
  • the hydrocarbon group for R 12 and R 13 is not particularly limited as long as it is a monovalent hydrocarbon group, and those exemplified above as the hydrocarbon group for R 11 are preferably exemplified.
  • R 12 and R 13 may be the same or different, but are preferably the same from the viewpoint of improving wear resistance.
  • the number of carbon atoms of the hydrocarbon groups of R 12 and R 13 is preferably 1 or more, more preferably 2 or more, when the monovalent hydrocarbon group is an alkyl group.
  • the upper limit is preferably 12 or less, more preferably 8 or less, and still more preferably 6 or less.
  • the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, and the upper limit is preferably 12 or less, more preferably 8 or less, and still more preferably 4 or less.
  • the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.
  • the content of the phosphorus compound based on the total composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably, from the viewpoint of more efficiently improving the wear resistance and oxidation stability. Is 0.3% by mass or more, and the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the lubricating oil composition of this embodiment is required to contain zinc dithiophosphate.
  • zinc dithiophosphate used in the lubricating oil composition of the present embodiment include those represented by the following general formula (2).
  • R 21 to R 24 each independently represent a hydrocarbon group.
  • the hydrocarbon group is not particularly limited as long as it is a monovalent hydrocarbon group.
  • an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and the like are preferable.
  • Group and an aryl group are more preferable, and an alkyl group is still more preferable. That is, as the zinc dithiophosphate used in this embodiment, zinc dialkyldithiophosphate and zinc diaryldithiophosphate are more preferable, and zinc dialkyldithiophosphate is still more preferable.
  • the alkyl group and alkenyl group of R 21 to R 24 may be linear or branched, but from the viewpoint of obtaining superior oxidation stability, primary and secondary groups are preferred, Of these, a primary alkyl group and a secondary alkyl group are preferable, and a primary alkyl group is more preferable. That is, as the zinc dialkyldithiophosphate used in the present embodiment, a primary dialkyldithiophosphate zinc and a secondary dialkyldithiophosphate are particularly preferable. Zinc dialkyldithiophosphate is preferred, and primary zinc dialkyldithiophosphate is more preferred.
  • the cycloalkyl group and aryl group of R 21 to R 24 may be a polycyclic group such as a decalyl group or a naphthyl group. Further, these monovalent hydrocarbon groups may have a substituent exemplified as the substituent that R 11 to R 13 may have, and are substituted by a nitrogen atom, an oxygen atom, a halogen atom, or the like. It may be a thing.
  • the number of carbon atoms of the hydrocarbon groups of R 21 to R 24 is preferably 1 or more, more preferably 2 or more, and still more preferably when the monovalent hydrocarbon group is an alkyl group.
  • the upper limit is preferably 24 or less, more preferably 18 or less, still more preferably 12 or less.
  • the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more.
  • the upper limit is preferably 24 or less, more preferably 18 or less, and still more preferably 12 or less.
  • the carbon number is preferably 5 or more, and preferably 20 or less as the upper limit.
  • the carbon number is preferably 6 or more.
  • the upper limit is preferably 20 or less.
  • the content of the zinc dithiophosphate composition based on the total amount of the composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.00% by mass, from the viewpoint of improving oxidation stability more efficiently. 3% by mass or more. From the viewpoint of further improving the wear resistance, the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the base oil contained in the lubricating oil composition of the present embodiment may be either mineral oil or synthetic oil.
  • Mineral oil includes atmospheric residual oil obtained by atmospheric distillation of paraffinic, naphthenic and intermediate-based crude oil; distillate obtained by vacuum distillation of the atmospheric residual oil; Mineral oil refined by subjecting the oil to one or more of solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral oil Examples thereof include mineral oils obtained by isomerizing oils, heavy neutral oils, bright stocks, and waxes (GTL waxes) produced by the Fischer-Tropsch process or the like.
  • the mineral oil may be classified into any one of groups 1, 2, and 3 in the API (American Petroleum Institute) base oil category, but it can further suppress sludge formation, and can further reduce viscosity characteristics, oxidation, and the like. From the viewpoint of obtaining stability against deterioration or the like, those classified into groups 2 and 3 are preferred.
  • Synthetic oils include, for example, poly ⁇ -olefins such as polybutene, ethylene- ⁇ -olefin copolymers, ⁇ -olefin homopolymers or copolymers; various types such as polyol esters, dibasic acid esters, and phosphate esters. Examples include ester oils; various ethers such as polyphenyl ether; polyglycols; alkyl benzenes;
  • the base oil may be at least one mineral oil, at least one synthetic oil, or a mixed oil obtained by mixing at least one mineral oil and at least one synthetic oil.
  • mineral oil is preferable from the viewpoint of obtaining low cost, more excellent viscosity characteristics, properties that are difficult to evaporate, and fuel saving performance by lowering the viscosity.
  • the viscosity of the base oil is not particularly limited, but from the viewpoint of preventing seizure at high temperatures, the 40 ° C. kinematic viscosity is preferably 3 mm 2 / s or more, more preferably 5 mm 2 / s or more, 7 mm 2 / s or more. Is more preferable. From the viewpoint of securing low-temperature fluidity, preferably less 35 mm 2 / s, more preferably not more than 25 mm 2 / s, more preferably not more than 20 mm 2 / s. From the same viewpoint, the 100 ° C.
  • kinematic viscosity of the base oil is preferably 1 mm 2 / s or more, more preferably 1.5 mm 2 / s or more, and still more preferably 2 mm 2 / s or more.
  • the upper limit is preferably 15 mm 2 / s or less, more preferably 10 mm 2 / s or less, and still more preferably 5 mm 2 / s or less.
  • the viscosity index of the base oil is preferably 85 or more, more preferably 90 or more, and still more preferably 100 or more.
  • kinematic viscosity and viscosity index are values measured using a glass capillary viscometer in accordance with JIS K 2283: 2000. When the kinematic viscosity and the viscosity index of the base oil are within the above ranges, the lubricating oil composition has a more appropriate viscosity, and wear resistance and oxidation stability are improved.
  • the content of the base oil composition based on the total amount is preferably 60% by mass or more, more preferably from the viewpoint of having a more appropriate viscosity as the lubricating oil composition and improving wear resistance and oxidation stability. It is 70 mass% or more, More preferably, it is 85 mass% or more. Moreover, as an upper limit, Preferably it is 99.9 mass% or less, More preferably, it is 99 mass% or less, More preferably, it is 98 mass% or less.
  • the lubricating oil composition of the present embodiment contains the above base oil, phosphorus compound, and zinc dithiophosphate, and may comprise a base oil, a phosphorus compound, and zinc dithiophosphate.
  • a base oil a phosphorus compound, and zinc dithiophosphate.
  • other additions such as viscosity index improvers, dispersants, antioxidants, extreme pressure agents, metal deactivators, antifoaming agents, friction reducers, oiliness agents, etc.
  • An agent may be included.
  • These other additives can be used alone or in combination of two or more. The total content of these other additives may be appropriately determined as desired, and is not particularly limited.
  • the other additives it is preferably 0.10 mass on the basis of the total amount of the composition. % Or more, more preferably 0.20% by mass or more, further preferably 0.30% by mass or more, and the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. is there.
  • Mw mass average molecular weight
  • Such as olefin copolymers for example, ethylene-propylene copolymers), dispersed olefin copolymers, styrene copolymers (for example, styrene-diene copolymers, styrene-isoprene copolymers), etc. Polymer; and the like.
  • dispersant examples include monovalent or divalent compounds represented by boron-free succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic esters, fatty acids or succinic acid.
  • examples include ashless dispersants such as carboxylic acid amides.
  • antioxidants examples include amine-based antioxidants such as diphenylamine-based antioxidants and naphthylamine-based antioxidants; monophenol-based antioxidants, diphenol-based antioxidants, hindered phenol-based antioxidants, etc. Phenolic antioxidants; molybdenum trioxides and / or molybdenum antioxidants such as molybdenum amine complexes formed by reacting molybdic acid with amine compounds; and the like.
  • amine-based antioxidants such as diphenylamine-based antioxidants and naphthylamine-based antioxidants
  • monophenol-based antioxidants diphenol-based antioxidants, hindered phenol-based antioxidants, etc.
  • Phenolic antioxidants molybdenum trioxides and / or molybdenum antioxidants such as molybdenum amine complexes formed by reacting molybdic acid with amine compounds; and the like.
  • Extreme pressure agents include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiadiazole compounds, alkylthiocarbamoyl compounds, thiocarbamate compounds, etc .; zinc dialkylthiocarbamate (Zn-DTC) And sulfur-nitrogen extreme pressure agents such as molybdenum dialkylthiocarbamate (Mo-DTC); sulfur-phosphorus extreme pressure agents such as molybdenum dialkyldithiophosphate (Mo-DTP); and the like.
  • Examples of the metal deactivator include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • Examples of the antifoaming agent include silicone antifoaming agents such as silicone oil and fluorosilicone oil, Ether-based antifoaming agents such as fluoroalkyl ethers can be mentioned, and examples of friction reducing agents include aliphatic alcohols, fatty acids, fatty acid esters, aliphatic amines, aliphatic amine salts, aliphatic amides, etc., and oily agents Examples thereof include glycerol esters such as glycerol monooleate and glycerol dioleate.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition of the present embodiment is preferably 5 mm 2 / s to 35 mm 2 / s, more preferably 7 mm, from the viewpoint of preventing seizure at high temperatures and ensuring low temperature fluidity. It is 2 / s or more and 25 mm 2 / s or less, more preferably 9 mm 2 / s or more and 15 mm 2 / s or less. From the same viewpoint, the kinematic viscosity at 100 ° C.
  • the viscosity index of the lubricating oil composition of the present embodiment is preferably 85 or more, more preferably 90 or more, and still more preferably 100 or more.
  • the total phosphorus atom content contained in the composition is P 0 (mass%), and the phosphorus atom content derived from the phosphorus compound is P 1 (mass%).
  • the ratio P 1 / P 0 of the phosphorus atom content derived from the phosphorus compound to the total phosphorus atom content is preferably 50 from the viewpoint of more efficiently improving the wear resistance and oxidation stability. % Or less, more preferably 45% or less, still more preferably 40% or less, and particularly preferably 35% or less.
  • the lower limit is preferably as low as possible from the viewpoint of cost, but is usually from the viewpoint of the effect of using a phosphorus compound. It is 1% or more, preferably 5% or more.
  • the lubricating oil composition of the present embodiment is excellent in wear resistance and oxidation stability, for example, for drive system equipment such as a shock absorber, a transmission, and a power steering, for an engine, for hydraulic operation, for turbine It is suitably used for various applications such as compressors, machine tools, cutting, gears, fluid bearings, and rolling bearings.
  • a shock absorber particularly a shock absorber for automobiles such as four-wheeled vehicles and two-wheeled vehicles, particularly a shock absorber for four-wheeled vehicles. More preferably, it is used.
  • glass fiber is blended as a reinforcing material.
  • shock absorbers that require lubrication between the inner tube and the piston band, especially automobile shock absorbers such as automobiles and motorcycles, especially automobile shock absorbers. It is done.
  • the manufacturing method of the lubricating oil composition of this embodiment is characterized by blending a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
  • R 11 represents a hydrocarbon group
  • R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.
  • the base oil, the phosphorus compound, and zinc dithiophosphate are the same as those described as being included in the lubricating oil composition of the present embodiment, and their contents are This is the same as that described as the content in the lubricating oil composition of the present embodiment.
  • other additives described as components other than the base oil, phosphorus compound, and zinc dithiophosphate for example, components that can be included in the lubricating oil composition of the present embodiment are blended. May be.
  • the phosphorus compound and zinc dithiophosphate are added to the base oil. Is preferred. Further, from the same viewpoint, when other additives are blended, it is preferable that various additives used as other additives are blended sequentially into a blend of base oil, phosphorus compound and zinc dithiophosphate.
  • the drive system apparatus of this embodiment is characterized by using a lubricating oil composition containing a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
  • R 11 represents a hydrocarbon group
  • R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.
  • the base oil, phosphorus compound, and zinc dithiophosphate contained in the lubricating oil composition used in the drive train apparatus of the present embodiment are the same as those described as being included in the lubricating oil composition of the present embodiment.
  • the content of is the same as that described as the content in the lubricating oil composition of the present embodiment.
  • the lubricating oil composition used in the drive system device of the present embodiment has components other than the base oil, phosphorus compound, and zinc dithiophosphate, such as other components described as components that can be included in the lubricating oil composition of the present embodiment.
  • An agent may be blended.
  • the drive system equipment mainly includes shock absorbers, transmissions, power steering, and the like.
  • an apparatus having a member in which glass fiber is blended as a reinforcing material is preferable.
  • a shock absorber that has a piston band mixed with glass fiber as a reinforcing material and requires lubrication between the inner tube and the piston band, particularly a shock absorber for automobiles such as automobiles and motorcycles, especially A wheelbush shock absorber is preferred.
  • the properties and performance of the lubricating oil composition were measured and evaluated by the following methods.
  • Kinematic viscosity Based on JISK2283: 2000 the kinematic viscosity in 40 degreeC and 100 degreeC was measured.
  • Phosphorus atom content and zinc atom content Measured according to JPI-5S-38-03.
  • Appearance Evaluation After mixing the components shown in Table 1 at 60 ° C., the appearances of the lubricating oil compositions of Examples and Comparative Examples stored for 1 day at room temperature (20 ° C.) were visually observed. This was confirmed and evaluated for the presence of precipitation.
  • a ball-on-disk type reciprocating friction tester (Bowden Lowen) was used for the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1.
  • a friction test was conducted using a load of 29.4 N, a temperature of 100 ° C., a sliding speed of 50 mm / s, a stroke of 10 mm, and a time of 30 minutes, and the wear scar width on the disk was measured.
  • the ball is a glass sphere (diameter 12 mm), and the disk is made of the material SPCC-SB. It can be said that the smaller the wear scar width, the better the wear resistance.
  • Base oil 1 60N hydrorefined oil (40 ° C. kinematic viscosity: 7.83 mm 2 / s, 100 ° C. kinematic viscosity: 2.22 mm 2 / s, viscosity index: 83)
  • Base oil 2 70N hydrorefined oil (40 ° C. kinematic viscosity: 9.92 mm 2 / s, 100 ° C.
  • Phosphorus compound 1 diethyl stearyl phosphonate (in general formula (1), R 11 is a stearyl group, and R 12 and R 13 are ethyl groups)
  • Phosphorus compound 2 monooleyl acid phosphate
  • Phosphorus compound 3 tricresyl phosphite
  • Zinc dithiophosphate 1 primary dialkyldithiophosphate zinc (of primary alkyl group having 3, 4 and 6 carbon atoms in the molecule)
  • Zinc dithiophosphate 2 primary dialkyl dithiophosphate zinc (mixture of molecules having at least one alkyl group of primary alkyl groups having 8 and 10 carbon atoms in the molecule)
  • Fatty acid amide A reaction product of isostearic acid and tetraethylenepentamine.
  • Viscosity index improver 1 Polymethacrylate (Mw: 140,000)
  • Viscosity index improver 2 Polymethacrylate (Mw: 550,000)
  • Other additives phenolic antioxidants, metal deactivators (thiadiazole, etc.), silicone antifoaming agents
  • the lubricating oil composition of the present embodiment is excellent in mixing stability without causing precipitation, and has a wear scar width of 0.55 mm or less, preferably 0.53 mm or less.
  • the amount of elution of copper is 10 mass ppm or less, preferably 5 mass ppm or less, and has excellent oxidation stability.
  • the lubricating oil compositions of Comparative Examples 1 and 2 that do not contain the phosphorus compound represented by the general formula (1) have wear scar widths of 0.64 mm and 0.61 mm, and have excellent wear resistance. It wasn't.
  • the lubricating oil composition of Comparative Example 3 was prepared by blending oleyl acid phosphate and tricresyl phosphite instead of the phosphorus compound represented by the general formula (1) and not blending zinc dithiophosphate. Although the trace width was 0.52 mm and excellent wear resistance, the elution amount of copper was 105 ppm by mass, which was extremely inferior in oxidation stability.
  • the lubricating oil composition of Comparative Example 4 contains oleyl acid phosphate in place of the phosphorus compound represented by the general formula (1), but precipitation occurs due to the reaction between oleyl acid phosphate and zinc dithiophosphate.
  • the lubricating oil composition of Comparative Example 5 did not contain zinc dithiophosphate, and the copper elution amount was 2 mass ppm or less and had excellent oxidation stability. Was 0.57 mm, and it could not be said that the wear resistance was excellent.

Abstract

A lubricant oil composition that comprises a base oil, a specific phosphorus compound and zinc thiophosphate and has good abrasion resistance and high oxidative stability; a method for manufacturing the lubricant oil composition; and a driving device using the lubricant oil composition.

Description

潤滑油組成物、潤滑油組成物の製造方法及び駆動系機器Lubricating oil composition, method for producing lubricating oil composition, and drive system device
 本発明は、潤滑油組成物、潤滑油組成物の製造方法及び駆動系機器に関する。 The present invention relates to a lubricating oil composition, a method for producing a lubricating oil composition, and a drive system device.
 緩衝器、変速機、パワーステアリング等の駆動系機器、エンジン、油圧作動等の様々な用途に用いられる潤滑油組成物には、各用途に応じた特性が求められている。潤滑油組成物の特性は、使用する基油の性状、添加剤の種類等に大きく左右される場合が多く、要求された特性を発現し得る潤滑油組成物を製造するために、基油及び添加剤の開発、またこれらの配合の開発等が広く行われている。 ∙ Lubricating oil compositions used for various applications such as shock absorbers, transmissions, drive system equipment such as power steering, engines, hydraulic operation, and the like are required to have characteristics corresponding to each application. The characteristics of the lubricating oil composition are often greatly affected by the properties of the base oil used, the type of additive, etc., and in order to produce a lubricating oil composition that can exhibit the required characteristics, the base oil and The development of additives and the development of these formulations are widely performed.
 例えば、緩衝器は、四輪車、二輪車等の自動車の駆動系機器として用いられるほか、住宅の耐震機構等の幅広い分野で用いられる機器である。緩衝器に用いられる潤滑油組成物は、緩衝器内に充填され、ピストンが伸縮する際に流体抵抗を生じ、自動車用緩衝器であれば路面から車体に伝わる振動、住宅用緩衝器であれば地震等による振動、を減衰する性能とともに、緩衝器内の摺動箇所を潤滑する性能が要求される。
 自動車用緩衝器の場合、潤滑箇所としては、ロッド-ブッシュ間、ロッド-オイルシール間、インナーチューブ-ピストンバンド間等があり、これらの箇所における摩擦特性を最適化することにより、自動車の乗り心地を制御するとともに、部品の摩擦及び摩耗を防止し、耐久性が得られることとなる。例えば、特許文献1には、基油として水素化改質鉱油、合成油を使用し、高分子量のポリ(メタ)アクリレート等の粘度指数向上剤を特定量で用いたショックアブソーバー油組成物が開示されている。
For example, the shock absorber is used as a drive system device for automobiles such as four-wheeled vehicles and two-wheeled vehicles, and is also used in a wide range of fields such as a home earthquake-resistant mechanism. The lubricating oil composition used in the shock absorber is filled in the shock absorber and generates a fluid resistance when the piston expands and contracts. If it is a shock absorber for automobiles, vibration transmitted from the road surface to the vehicle body, if it is a shock absorber for housings In addition to the ability to damp vibrations caused by earthquakes, etc., the ability to lubricate sliding locations in the shock absorber is required.
In the case of automotive shock absorbers, lubrication points include rod-bush, rod-oil seal, inner tube-piston band, etc., and by optimizing the friction characteristics at these points, the ride comfort of the vehicle In addition, the friction and wear of parts are prevented and durability is obtained. For example, Patent Document 1 discloses a shock absorber oil composition using hydrogenated modified mineral oil or synthetic oil as a base oil and using a viscosity index improver such as high molecular weight poly (meth) acrylate in a specific amount. Has been.
特開2005-314609号公報JP-A-2005-314609
 ところで、ピストンバンドには、強化材としてガラス繊維が配合されていると、このガラス繊維の配合に起因して、緩衝器の耐久性が低下するといった問題が生じる場合がある。耐久性の低下は、ガラス繊維が配合されたピストンバンドに接するインナーチューブ上に摺動方向に生じる摩耗痕による摩耗量の増加に伴い、インナーチューブ-ピストンバンド間の隙間が広くなることで、減衰性能が低下し、結果として緩衝器の性能が損なわれることで発生するものである。そして、この耐久性の低下は、緩衝器に用いられる潤滑油組成物の耐摩耗性が不足する場合に、顕著となる。すなわち、緩衝器の耐久性を向上させるには、潤滑油組成物の耐摩耗性を向上させて、インナーチューブの摩耗痕の発生を抑制することが重要となる。また、自動車の性能向上とともに、運転条件が年々過酷となってきていることから、潤滑油組成物には、耐摩耗性に加えて、より高い酸化安定性も求められるようになっている。 By the way, when glass fibers are blended as a reinforcing material in the piston band, there may be a problem that the durability of the shock absorber is lowered due to the blending of the glass fibers. The decrease in durability is attenuated by the increase in the amount of wear caused by wear marks generated in the sliding direction on the inner tube in contact with the piston band containing glass fiber, resulting in a wider gap between the inner tube and the piston band. This occurs when the performance is lowered and the performance of the shock absorber is impaired as a result. And this fall of durability becomes remarkable when the abrasion resistance of the lubricating oil composition used for a shock absorber is insufficient. That is, in order to improve the durability of the shock absorber, it is important to improve the wear resistance of the lubricating oil composition and suppress the occurrence of wear marks on the inner tube. Further, as the performance of automobiles is improved, the driving conditions are becoming severer year by year, so that the lubricating oil composition is required to have higher oxidation stability in addition to wear resistance.
 本発明は、上記事情に鑑みてなされたものであり、耐摩耗性及び酸化安定性に優れた潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a lubricating oil composition excellent in wear resistance and oxidation stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition The purpose is to provide.
 本発明者らは、上記課題に鑑みて鋭意検討の結果、下記の発明により上記課題を解決できることを見出した。すなわち、本発明は、下記の構成を有する潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供するものである。 As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be solved by the following invention. That is, this invention provides the lubricating oil composition which has the following structure, the manufacturing method of this lubricating oil composition, and the drive system apparatus using this lubricating oil composition.
1.基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物。 1. A lubricating oil composition comprising a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
Figure JPOXMLDOC01-appb-C000004

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
2.基油と、上記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合する潤滑油組成物の製造方法。
3.基油と、上記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物を用いた駆動系機器。
Figure JPOXMLDOC01-appb-C000004

(In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
2. The manufacturing method of the lubricating oil composition which mix | blends a base oil, the phosphorus compound represented by the said General formula (1), and zinc dithiophosphate.
3. Drive system equipment using a lubricating oil composition comprising a base oil, a phosphorus compound represented by the above general formula (1), and zinc dithiophosphate.
 本発明によれば、耐摩耗性及び酸化安定性に優れた潤滑油組成物、該潤滑油組成物の製造方法及び該潤滑油組成物を用いた駆動系機器を提供することができる。 According to the present invention, it is possible to provide a lubricating oil composition having excellent wear resistance and oxidation stability, a method for producing the lubricating oil composition, and a drive system device using the lubricating oil composition.
 以下、本発明の実施形態(以後、単に「本実施形態」と称する場合がある。)について説明する。なお、本明細書中において、数値範囲の記載に関する「以上」、「以下」及び「~」に係る数値は任意に組み合わせできる数値である。 Hereinafter, an embodiment of the present invention (hereinafter, simply referred to as “this embodiment”) will be described. In the present specification, the numerical values relating to “above”, “below” and “˜” relating to the description of numerical ranges are numerical values that can be arbitrarily combined.
[潤滑油組成物]
 本実施形態の潤滑油組成物は、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含むものである。以下、本実施形態の潤滑油組成物が含有し得る各成分について具体的に説明する。
[Lubricating oil composition]
The lubricating oil composition of this embodiment contains a phosphorus compound represented by the following general formula (1) and zinc dithiophosphate. Hereinafter, each component which the lubricating oil composition of this embodiment may contain is demonstrated concretely.
Figure JPOXMLDOC01-appb-C000005

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure JPOXMLDOC01-appb-C000005

(In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
(リン化合物)
 本実施形態の潤滑油組成物は、下記一般式(1)で表されるリン化合物(以下、単に「リン化合物」と称することがある。)を含有することを要する。本実施形態の潤滑油組成物において、前記リン化合物を含有しないと、特に耐摩耗性が低下するため、優れた耐摩耗性及び酸化安定性が同時に得られない。これまで、耐摩耗性を向上させることを目的としてリン酸エステル及び亜リン酸エステル(いずれも、分子中に含まれる全ての炭化水素基と、リン原子と、が酸素原子を介して結合する構造を有するエステル)等の耐摩耗剤が汎用されていたが、これらの耐摩耗剤とジチオリン酸亜鉛と組み合わせると、耐摩耗性は向上するものの酸化安定性が低下することがあり、耐摩耗性と酸化安定性とは二律相反の関係にあった。また、これらの耐摩耗剤とジチオリン酸亜鉛とが反応し、沈殿を生じる場合があり、混合安定性の点でも問題が生じる場合があった。本実施形態の潤滑油組成物は、特定のリン化合物とジチオリン酸亜鉛とを組み合わせることにより、沈殿が生じることがなく、また酸化安定性を維持しつつ耐摩耗性が向上するため、結果として優れた耐摩耗性と酸化安定性とを両立することを可能とした。
(Phosphorus compound)
The lubricating oil composition of this embodiment is required to contain a phosphorus compound represented by the following general formula (1) (hereinafter sometimes simply referred to as “phosphorus compound”). In the lubricating oil composition of the present embodiment, if the phosphorus compound is not contained, particularly the wear resistance is lowered, so that excellent wear resistance and oxidation stability cannot be obtained at the same time. So far, phosphoric acid esters and phosphite esters (both of which all hydrocarbon groups contained in the molecule and phosphorus atoms are bonded via oxygen atoms for the purpose of improving wear resistance. Ester etc.) have been widely used, but when these antiwear agents and zinc dithiophosphate are combined, although the wear resistance is improved, the oxidation stability may be reduced. There was a contradictory relationship with oxidative stability. In addition, these antiwear agents and zinc dithiophosphate may react to cause precipitation, which may cause problems in terms of mixing stability. The lubricating oil composition of the present embodiment is excellent as a result of combining the specific phosphorus compound and zinc dithiophosphate so that precipitation does not occur and wear resistance is improved while maintaining oxidation stability. It was possible to achieve both wear resistance and oxidation stability.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。 In the general formula (1), R 11 is a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.
 R11の炭化水素基としては、1価の炭化水素基であれば特に制限はなく、例えば、耐摩耗性を向上させる観点から、アルキル基、アルケニル基、シクロアルキル基、アリール基等が好ましく挙げられ、アルキル基、アルケニル基がより好ましく、アルキル基が更に好ましい。これらの1価の炭化水素基がアルキル基、アルケニル基の場合は直鎖状、分岐状のいずれであってもよく、シクロアルキル基、アリール基は例えばデカリル基、ナフチル基等の多環式の基であってもよい。また、これらの1価の炭化水素基は、水酸基、カルボキシ基、アミノ基、アミド基、ニトロ基、シアノ基等の酸素原子及び/又は窒素原子を含む置換基を有するもの、また窒素原子、酸素原子、ハロゲン原子等により一部が置換されたものであってもよく、1価の炭化水素基がシクロアルキル基、アリール基の場合は更にアルキル基、アルケニル基等の置換基を有していてもよい。 The hydrocarbon group for R 11 is not particularly limited as long as it is a monovalent hydrocarbon group. For example, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group and the like are preferable from the viewpoint of improving wear resistance. An alkyl group and an alkenyl group are more preferable, and an alkyl group is still more preferable. When these monovalent hydrocarbon groups are alkyl groups or alkenyl groups, they may be either linear or branched. Cycloalkyl groups and aryl groups are, for example, polycyclic groups such as decalyl groups and naphthyl groups. It may be a group. These monovalent hydrocarbon groups include those having a substituent containing an oxygen atom and / or a nitrogen atom such as a hydroxyl group, a carboxy group, an amino group, an amide group, a nitro group, a cyano group, a nitrogen atom, an oxygen atom It may be partially substituted with an atom, a halogen atom or the like, and when the monovalent hydrocarbon group is a cycloalkyl group or an aryl group, it further has a substituent such as an alkyl group or an alkenyl group. Also good.
 耐摩耗性を向上させる観点から、R11の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上、更に好ましくは4以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 From the viewpoint of improving the wear resistance, the carbon number of the hydrocarbon group of R 11 is preferably 1 or more, more preferably 2 or more, and further preferably 4 or more when the monovalent hydrocarbon group is an alkyl group. The upper limit is preferably 24 or less, more preferably 22 or less, and even more preferably 20 or less. When the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more. The upper limit is preferably 24 or less, more preferably 22 or less, and still more preferably 20 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.
 R12及びR13は、少なくとも一方が炭化水素基であることを要する。R12及びR13の両方が水素原子であると、優れた耐摩耗性が得られにくくなる。より優れた耐摩耗性を得る観点から、R12及びR13の両方が炭化水素基であることが好ましい。
 R12及びR13の炭化水素基としては、1価の炭化水素基であれば特に制限なく、R11の炭化水素基として上記例示したものが好ましく挙げられる。R12及びR13の両方が炭化水素基である場合、R12及びR13は同じでも異なっていてもよいが、耐摩耗性を向上させる観点から、同じであることが好ましい。
At least one of R 12 and R 13 needs to be a hydrocarbon group. When both R 12 and R 13 are hydrogen atoms, it is difficult to obtain excellent wear resistance. From the viewpoint of obtaining superior wear resistance, it is preferable that both R 12 and R 13 are hydrocarbon groups.
The hydrocarbon group for R 12 and R 13 is not particularly limited as long as it is a monovalent hydrocarbon group, and those exemplified above as the hydrocarbon group for R 11 are preferably exemplified. When both R 12 and R 13 are hydrocarbon groups, R 12 and R 13 may be the same or different, but are preferably the same from the viewpoint of improving wear resistance.
 また、耐摩耗性を向上させる観点から、R12及びR13の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは6以下である。1価の炭化水素がアルケニル基の場合、好ましくは2以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは4以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 From the viewpoint of improving the wear resistance, the number of carbon atoms of the hydrocarbon groups of R 12 and R 13 is preferably 1 or more, more preferably 2 or more, when the monovalent hydrocarbon group is an alkyl group. The upper limit is preferably 12 or less, more preferably 8 or less, and still more preferably 6 or less. When the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, and the upper limit is preferably 12 or less, more preferably 8 or less, and still more preferably 4 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.
 リン化合物の組成物全量基準の含有量は、耐摩耗性及び酸化安定性をより効率的に向上させる観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、上限として好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 The content of the phosphorus compound based on the total composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably, from the viewpoint of more efficiently improving the wear resistance and oxidation stability. Is 0.3% by mass or more, and the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
(ジチオリン酸亜鉛)
 本実施形態の潤滑油組成物は、ジチオリン酸亜鉛を含むことを要する。本実施形態の潤滑油組成物において、ジチオリン酸亜鉛を含有しないと、特に酸化安定性が低下するため、優れた耐摩耗性及び酸化安定性が同時に得られない。本実施形態の潤滑油組成物に用いられるジチオリン酸亜鉛は、以下の一般式(2)で表されるものが好ましく挙げられる。
(Zinc dithiophosphate)
The lubricating oil composition of this embodiment is required to contain zinc dithiophosphate. In the lubricating oil composition of this embodiment, unless zinc dithiophosphate is contained, the oxidation stability is particularly lowered, so that excellent wear resistance and oxidation stability cannot be obtained at the same time. Preferred examples of the zinc dithiophosphate used in the lubricating oil composition of the present embodiment include those represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(2)中、R21~R24は各々独立に炭化水素基を示す。炭化水素基としては、1価の炭化水素基であれば特に制限はなく、例えば、酸化安定性を向上させる観点から、アルキル基、アルケニル基、シクロアルキル基、アリール基等が好ましく挙げられ、アルキル基、アリール基がより好ましく、アルキル基が更に好ましい。すなわち、本実施形態で用いられるジチオリン酸亜鉛としては、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛がより好ましく、ジアルキルジチオリン酸亜鉛が更に好ましい。 In the general formula (2), R 21 to R 24 each independently represent a hydrocarbon group. The hydrocarbon group is not particularly limited as long as it is a monovalent hydrocarbon group. For example, from the viewpoint of improving oxidative stability, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and the like are preferable. Group and an aryl group are more preferable, and an alkyl group is still more preferable. That is, as the zinc dithiophosphate used in this embodiment, zinc dialkyldithiophosphate and zinc diaryldithiophosphate are more preferable, and zinc dialkyldithiophosphate is still more preferable.
 R21~R24のアルキル基、アルケニル基は直鎖状、分岐状のいずれであってもよいが、より優れた酸化安定性を得る観点から、第一級、第二級のものが好ましく、中でも第一級アルキル基、第二級アルキル基が好ましく、第一級アルキル基がより好ましい、すなわち本実施形態で用いられるジアルキルジチオリン酸亜鉛としては、中でも第一級ジアルキルジチオリン酸亜鉛、第二級ジアルキルジチオリン酸亜鉛が好ましく、第一級ジアルキルジチオリン酸亜鉛がより好ましい。
 R21~R24のシクロアルキル基、アリール基は、例えばデカリル基、ナフチル基等の多環式の基であってもよい。
 また、これらの1価の炭化水素基は、上記R11~R13が有し得る置換基として例示した置換基を有していてもよく、窒素原子、酸素原子、ハロゲン原子等により置換されたものであってもよい。
The alkyl group and alkenyl group of R 21 to R 24 may be linear or branched, but from the viewpoint of obtaining superior oxidation stability, primary and secondary groups are preferred, Of these, a primary alkyl group and a secondary alkyl group are preferable, and a primary alkyl group is more preferable. That is, as the zinc dialkyldithiophosphate used in the present embodiment, a primary dialkyldithiophosphate zinc and a secondary dialkyldithiophosphate are particularly preferable. Zinc dialkyldithiophosphate is preferred, and primary zinc dialkyldithiophosphate is more preferred.
The cycloalkyl group and aryl group of R 21 to R 24 may be a polycyclic group such as a decalyl group or a naphthyl group.
Further, these monovalent hydrocarbon groups may have a substituent exemplified as the substituent that R 11 to R 13 may have, and are substituted by a nitrogen atom, an oxygen atom, a halogen atom, or the like. It may be a thing.
 酸化安定性を向上させる観点から、R21~R24の炭化水素基の炭素数としては、1価の炭化水素基がアルキル基の場合、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、上限として好ましくは24以下、より好ましくは18以下、更に好ましくは12以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上、より好ましくは3以上であり、上限として好ましくは24以下、より好ましくは18以下、更に好ましくは12以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上、上限として好ましくは20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上、上限として好ましくは20以下である。 From the viewpoint of improving oxidation stability, the number of carbon atoms of the hydrocarbon groups of R 21 to R 24 is preferably 1 or more, more preferably 2 or more, and still more preferably when the monovalent hydrocarbon group is an alkyl group. The upper limit is preferably 24 or less, more preferably 18 or less, still more preferably 12 or less. When the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more. The upper limit is preferably 24 or less, more preferably 18 or less, and still more preferably 12 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more, and preferably 20 or less as the upper limit. When the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more. The upper limit is preferably 20 or less.
 ジチオリン酸亜鉛の組成物全量基準の含有量は、酸化安定性をより効率的に向上させる観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上である。また、耐摩耗性をより向上させる観点から、上限として好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 The content of the zinc dithiophosphate composition based on the total amount of the composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.00% by mass, from the viewpoint of improving oxidation stability more efficiently. 3% by mass or more. From the viewpoint of further improving the wear resistance, the upper limit is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
(基油)
 本実施形態の潤滑油組成物に含まれる基油としては、鉱油、合成油のいずれであってもよい。
 鉱油としては、パラフィン基系、ナフテン基系、中間基系の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られた留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油、例えば、軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストック、またフィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる鉱油等が挙げられる。
 また、鉱油としては、API(米国石油協会)の基油カテゴリーにおいて、グループ1、2、3のいずれに分類されるものでもよいが、スラッジ生成をより抑制することができ、また粘度特性、酸化劣化等に対する安定性を得る観点から、グループ2、3に分類されるものが好ましい。
(Base oil)
The base oil contained in the lubricating oil composition of the present embodiment may be either mineral oil or synthetic oil.
Mineral oil includes atmospheric residual oil obtained by atmospheric distillation of paraffinic, naphthenic and intermediate-based crude oil; distillate obtained by vacuum distillation of the atmospheric residual oil; Mineral oil refined by subjecting the oil to one or more of solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral oil Examples thereof include mineral oils obtained by isomerizing oils, heavy neutral oils, bright stocks, and waxes (GTL waxes) produced by the Fischer-Tropsch process or the like.
Further, the mineral oil may be classified into any one of groups 1, 2, and 3 in the API (American Petroleum Institute) base oil category, but it can further suppress sludge formation, and can further reduce viscosity characteristics, oxidation, and the like. From the viewpoint of obtaining stability against deterioration or the like, those classified into groups 2 and 3 are preferred.
 合成油としては、例えば、ポリブテン、エチレン-α-オレフィン共重合体、α-オレフィン単独重合体又は共重合体等のポリα-オレフィン類;ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種エステル油;ポリフェニルエーテル等の各種エーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン等が挙げられる。 Synthetic oils include, for example, polyα-olefins such as polybutene, ethylene-α-olefin copolymers, α-olefin homopolymers or copolymers; various types such as polyol esters, dibasic acid esters, and phosphate esters. Examples include ester oils; various ethers such as polyphenyl ether; polyglycols; alkyl benzenes;
 本実施形態においては、基油は、少なくとも一種の鉱油、少なくとも一種の合成油、又は少なくとも一種の鉱油と少なくとも一種の合成油とを混合した混合油でもよい。本実施形態においては、安価であり、より優れた粘度特性、蒸発しにくい性状、及び低粘度化による省燃費性能を得る観点から、鉱油が好ましい。 In this embodiment, the base oil may be at least one mineral oil, at least one synthetic oil, or a mixed oil obtained by mixing at least one mineral oil and at least one synthetic oil. In the present embodiment, mineral oil is preferable from the viewpoint of obtaining low cost, more excellent viscosity characteristics, properties that are difficult to evaporate, and fuel saving performance by lowering the viscosity.
 基油の粘度については特に制限はないが、高温時の焼付き防止の観点から、40℃動粘度は、3mm/s以上が好ましく、5mm/s以上がより好ましく、7mm/s以上が更に好ましい。また、低温流動性の確保の観点から、35mm/s以下が好ましく、25mm/s以下がより好ましく、20mm/s以下が更に好ましい。これと同様の観点から、基油の100℃動粘度は、1mm/s以上が好ましく、1.5mm/s以上がより好ましく、2mm/s以上が更に好ましい。また上限は、15mm/s以下が好ましく、10mm/s以下がより好ましく、5mm/s以下が更に好ましい。
 また、基油の粘度指数は、85以上が好ましく、90以上がより好ましく、100以上が更に好ましい。本明細書において、動粘度、及び粘度指数は、JIS K 2283:2000に準拠し、ガラス製毛管式粘度計を用いて測定した値である。基油の動粘度、粘度指数が上記範囲内であると、潤滑油組成物としてより適正な粘度を有するものとなり、また耐摩耗性及び酸化安定性が向上する。
The viscosity of the base oil is not particularly limited, but from the viewpoint of preventing seizure at high temperatures, the 40 ° C. kinematic viscosity is preferably 3 mm 2 / s or more, more preferably 5 mm 2 / s or more, 7 mm 2 / s or more. Is more preferable. From the viewpoint of securing low-temperature fluidity, preferably less 35 mm 2 / s, more preferably not more than 25 mm 2 / s, more preferably not more than 20 mm 2 / s. From the same viewpoint, the 100 ° C. kinematic viscosity of the base oil is preferably 1 mm 2 / s or more, more preferably 1.5 mm 2 / s or more, and still more preferably 2 mm 2 / s or more. The upper limit is preferably 15 mm 2 / s or less, more preferably 10 mm 2 / s or less, and still more preferably 5 mm 2 / s or less.
Further, the viscosity index of the base oil is preferably 85 or more, more preferably 90 or more, and still more preferably 100 or more. In this specification, kinematic viscosity and viscosity index are values measured using a glass capillary viscometer in accordance with JIS K 2283: 2000. When the kinematic viscosity and the viscosity index of the base oil are within the above ranges, the lubricating oil composition has a more appropriate viscosity, and wear resistance and oxidation stability are improved.
 基油の組成物全量基準の含有量は、潤滑油組成物としてより適正な粘度を有するものとし、また耐摩耗性及び酸化安定性を向上させる観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは85質量%以上である。また上限として好ましくは99.9質量%以下、より好ましくは99質量%以下であり、更に好ましくは98質量%以下である。 The content of the base oil composition based on the total amount is preferably 60% by mass or more, more preferably from the viewpoint of having a more appropriate viscosity as the lubricating oil composition and improving wear resistance and oxidation stability. It is 70 mass% or more, More preferably, it is 85 mass% or more. Moreover, as an upper limit, Preferably it is 99.9 mass% or less, More preferably, it is 99 mass% or less, More preferably, it is 98 mass% or less.
(その他添加剤)
 本実施形態の潤滑油組成物は、上記基油、リン化合物、及びジチオリン酸亜鉛を含むものであり、基油、リン化合物、及びジチオリン酸亜鉛からなるものであってもよいし、また、基油、リン化合物、及びジチオリン酸亜鉛以外に、例えば、粘度指数向上剤、分散剤、酸化防止剤、極圧剤、金属不活性化剤、消泡剤、摩擦低減剤、油性剤等のその他添加剤を含むものであってもよい。これらのその他添加剤は、単独で、又は複数種を組み合わせて用いることができる。
 これらのその他添加剤の合計含有量は、所望に応じて適宜決定すればよく、特に制限はないが、その他添加剤を添加する効果を考慮すると、組成物全量基準で、好ましくは0.10質量%以上、より好ましくは0.20質量%以上、更に好ましくは0.30質量%以上であり、上限として好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
(Other additives)
The lubricating oil composition of the present embodiment contains the above base oil, phosphorus compound, and zinc dithiophosphate, and may comprise a base oil, a phosphorus compound, and zinc dithiophosphate. In addition to oil, phosphorus compounds, and zinc dithiophosphate, other additions such as viscosity index improvers, dispersants, antioxidants, extreme pressure agents, metal deactivators, antifoaming agents, friction reducers, oiliness agents, etc. An agent may be included. These other additives can be used alone or in combination of two or more.
The total content of these other additives may be appropriately determined as desired, and is not particularly limited. However, considering the effect of adding the other additives, it is preferably 0.10 mass on the basis of the total amount of the composition. % Or more, more preferably 0.20% by mass or more, further preferably 0.30% by mass or more, and the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. is there.
 粘度指数向上剤としては、例えば、質量平均分子量(Mw)が好ましくは500~1,000,000、より好ましくは5,000~800,000、更に好ましくは10,000~700,000の非分散型ポリメタクリレート、分散型ポリメタクリレート等のポリメタクリレート;質量平均分子量(Mw)が好ましくは800~300,000、より好ましくは10,000~200,000、更に好ましくは20,000~150,000のオレフィン系共重合体(例えば、エチレン-プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン共重合体、スチレン-イソプレン共重合体等)等の重合体;などが挙げられる。 As the viscosity index improver, for example, a non-dispersion having a mass average molecular weight (Mw) of preferably 500 to 1,000,000, more preferably 5,000 to 800,000, still more preferably 10,000 to 700,000. Type polymethacrylates, polymethacrylates such as dispersed polymethacrylates; the weight average molecular weight (Mw) is preferably 800 to 300,000, more preferably 10,000 to 200,000, and even more preferably 20,000 to 150,000. Such as olefin copolymers (for example, ethylene-propylene copolymers), dispersed olefin copolymers, styrene copolymers (for example, styrene-diene copolymers, styrene-isoprene copolymers), etc. Polymer; and the like.
 分散剤としては、例えば、ホウ素非含有コハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類等の無灰系分散剤が挙げられる。 Examples of the dispersant include monovalent or divalent compounds represented by boron-free succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic esters, fatty acids or succinic acid. Examples include ashless dispersants such as carboxylic acid amides.
 酸化防止剤としては、例えば、ジフェニルアミン系酸化防止剤、ナフチルアミン系酸化防止剤等のアミン系酸化防止剤;モノフェノール系酸化防止剤、ジフェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤等のフェノール系酸化防止剤;三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等のモリブデン系酸化防止剤;などが挙げられる。 Examples of the antioxidant include amine-based antioxidants such as diphenylamine-based antioxidants and naphthylamine-based antioxidants; monophenol-based antioxidants, diphenol-based antioxidants, hindered phenol-based antioxidants, etc. Phenolic antioxidants; molybdenum trioxides and / or molybdenum antioxidants such as molybdenum amine complexes formed by reacting molybdic acid with amine compounds; and the like.
 極圧剤としては、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チアジアゾール化合物、アルキルチオカルバモイル化合物、チオカーバメート化合物等の硫黄系極圧剤;ジアルキルチオカルバミン酸亜鉛(Zn-DTC)、ジアルキルチオカルバミン酸モリブデン(Mo-DTC)等の硫黄-窒素系極圧剤;ジアルキルジチオリン酸モリブデン(Mo-DTP)等の硫黄-リン系極圧剤;などが挙げられる。 Extreme pressure agents include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiadiazole compounds, alkylthiocarbamoyl compounds, thiocarbamate compounds, etc .; zinc dialkylthiocarbamate (Zn-DTC) And sulfur-nitrogen extreme pressure agents such as molybdenum dialkylthiocarbamate (Mo-DTC); sulfur-phosphorus extreme pressure agents such as molybdenum dialkyldithiophosphate (Mo-DTP); and the like.
 また、金属不活性化剤としては、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等が挙げられ、消泡剤としては、シリコーン油、フルオロシリコーン油等のシリコーン系消泡剤、フルオロアルキルエーテル等のエーテル系消泡剤が挙げられ、摩擦低減剤としては、例えば脂肪族アルコール、脂肪酸、脂肪酸エステル、脂肪族アミン、脂肪族アミン塩、脂肪族アミド等が挙げられ、また油性剤としてはグリセロールモノオレエート、グリセロールジオレエート等のグリセロールエステル等が挙げられる。 Examples of the metal deactivator include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds. Examples of the antifoaming agent include silicone antifoaming agents such as silicone oil and fluorosilicone oil, Ether-based antifoaming agents such as fluoroalkyl ethers can be mentioned, and examples of friction reducing agents include aliphatic alcohols, fatty acids, fatty acid esters, aliphatic amines, aliphatic amine salts, aliphatic amides, etc., and oily agents Examples thereof include glycerol esters such as glycerol monooleate and glycerol dioleate.
(潤滑油組成物の各種物性)
 本実施形態の潤滑油組成物の40℃における動粘度は、高温時の焼付き防止、及び低温流動性の確保の観点から、好ましくは5mm/s以上35mm/s以下、より好ましくは7mm/s以上25mm/s以下、更に好ましくは9mm/s以上15mm/s以下である。これと同様の観点から、本実施形態の潤滑油組成物の100℃における動粘度は、好ましくは0.5mm/s以上15mm/s以下、より好ましくは1mm/s以上10mm/s以下、更に好ましくは1.5mm/s以上5mm/s以下である。また、本実施形態の潤滑油組成物の粘度指数は、好ましくは85以上、より好ましくは90以上、更に好ましくは100以上である。
(Various physical properties of lubricating oil composition)
The kinematic viscosity at 40 ° C. of the lubricating oil composition of the present embodiment is preferably 5 mm 2 / s to 35 mm 2 / s, more preferably 7 mm, from the viewpoint of preventing seizure at high temperatures and ensuring low temperature fluidity. It is 2 / s or more and 25 mm 2 / s or less, more preferably 9 mm 2 / s or more and 15 mm 2 / s or less. From the same viewpoint, the kinematic viscosity at 100 ° C. of the lubricating oil composition of the present embodiment is preferably 0.5 mm 2 / s to 15 mm 2 / s, more preferably 1 mm 2 / s to 10 mm 2 / s. Hereinafter, it is more preferably 1.5 mm 2 / s or more and 5 mm 2 / s or less. Further, the viscosity index of the lubricating oil composition of the present embodiment is preferably 85 or more, more preferably 90 or more, and still more preferably 100 or more.
 本実施形態の潤滑油組成物のリン原子の含有量について、組成物に含まれる全リン原子含有量をP(質量%)とし、リン化合物に由来のリン原子含有量をP(質量%)としたときに、該全リン原子含有量に対するリン化合物由来のリン原子含有量の割合P/Pは、より効率的に耐摩耗性及び酸化安定性を向上させる観点から、好ましくは50%以下、より好ましくは45%以下、更に好ましくは40%以下、特に好ましくは35%以下であり、下限としては、コスト面から少なければ少ないほど好ましいが、リン化合物の使用効果の観点から、通常1%以上、好ましくは5%以上である。 Regarding the phosphorus atom content of the lubricating oil composition of the present embodiment, the total phosphorus atom content contained in the composition is P 0 (mass%), and the phosphorus atom content derived from the phosphorus compound is P 1 (mass%). ), The ratio P 1 / P 0 of the phosphorus atom content derived from the phosphorus compound to the total phosphorus atom content is preferably 50 from the viewpoint of more efficiently improving the wear resistance and oxidation stability. % Or less, more preferably 45% or less, still more preferably 40% or less, and particularly preferably 35% or less. The lower limit is preferably as low as possible from the viewpoint of cost, but is usually from the viewpoint of the effect of using a phosphorus compound. It is 1% or more, preferably 5% or more.
(潤滑油組成物の用途)
 本実施形態の潤滑油組成物は、耐摩耗性及び酸化安定性に優れるものであるため、例えば、緩衝器、変速機、パワーステアリング等の駆動系機器用、エンジン用、油圧作動用、タービン用、圧縮機用、工作機械用、切削用、ギヤ用、流体軸受け用、転がり軸受け用等の様々な用途に好適に用いられる。中でも、耐摩耗性及び酸化安定性に優れるという特徴を考慮すると、駆動系機器に用いられることが好ましく、緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に用いられることがより好ましい。
 また、特に優れた耐摩耗性を有効に活用する観点から、上記機器で、強化材としてガラス繊維が配合されている部材を有する機器に好適に用いることができ、例えば強化材としてガラス繊維が配合されているピストンバンドを部材として有し、インナーチューブ-ピストンバンド間の潤滑が必要となる緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に好適に用いられる。
(Use of lubricating oil composition)
Since the lubricating oil composition of the present embodiment is excellent in wear resistance and oxidation stability, for example, for drive system equipment such as a shock absorber, a transmission, and a power steering, for an engine, for hydraulic operation, for turbine It is suitably used for various applications such as compressors, machine tools, cutting, gears, fluid bearings, and rolling bearings. Among these, in consideration of the characteristics of excellent wear resistance and oxidation stability, it is preferably used for a drive system device, and a shock absorber, particularly a shock absorber for automobiles such as four-wheeled vehicles and two-wheeled vehicles, particularly a shock absorber for four-wheeled vehicles. More preferably, it is used.
In addition, from the viewpoint of effectively utilizing particularly excellent wear resistance, it can be suitably used in the above-mentioned equipment, and equipment having a member in which glass fiber is blended as a reinforcing material. For example, glass fiber is blended as a reinforcing material. Suitable for use in shock absorbers that require lubrication between the inner tube and the piston band, especially automobile shock absorbers such as automobiles and motorcycles, especially automobile shock absorbers. It is done.
[潤滑油組成物の製造方法]
 本実施形態の潤滑油組成物の製造方法は、基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合することを特徴とするものである。
[Method for producing lubricating oil composition]
The manufacturing method of the lubricating oil composition of this embodiment is characterized by blending a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
Figure JPOXMLDOC01-appb-C000008

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure JPOXMLDOC01-appb-C000008

(In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
 本実施形態の潤滑油組成物の製造方法において、基油、リン化合物、ジチオリン酸亜鉛は、本実施形態の潤滑油組成物に含まれるものとして説明したものと同じであり、これらの含有量は、本実施形態の潤滑油組成物における含有量として説明したものと同じである。また、本実施形態の潤滑油組成物の製造方法において、基油、リン化合物、ジチオリン酸亜鉛以外の成分、例えば本実施形態の潤滑油組成物に含み得る成分として説明したその他添加剤を配合してもよい。 In the manufacturing method of the lubricating oil composition of the present embodiment, the base oil, the phosphorus compound, and zinc dithiophosphate are the same as those described as being included in the lubricating oil composition of the present embodiment, and their contents are This is the same as that described as the content in the lubricating oil composition of the present embodiment. Further, in the method for producing the lubricating oil composition of the present embodiment, other additives described as components other than the base oil, phosphorus compound, and zinc dithiophosphate, for example, components that can be included in the lubricating oil composition of the present embodiment are blended. May be.
 潤滑油組成物を製造するに際し、基油とリン化合物とジチオリン酸亜鉛との配合において、より安定した性状の潤滑油組成物を得る観点から、基油にリン化合物とジチオリン酸亜鉛とを加えることが好ましい。また、これと同様の観点から、その他添加剤を配合する場合、その他添加剤として用いる各種添加剤を、基油とリン化合物とジチオリン酸亜鉛とを配合したものに、逐次配合することが好ましい。 In producing a lubricating oil composition, in order to obtain a lubricating oil composition having a more stable property in the blending of the base oil, the phosphorus compound and zinc dithiophosphate, the phosphorus compound and zinc dithiophosphate are added to the base oil. Is preferred. Further, from the same viewpoint, when other additives are blended, it is preferable that various additives used as other additives are blended sequentially into a blend of base oil, phosphorus compound and zinc dithiophosphate.
[駆動系機器]
 本実施形態の駆動系機器は、基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物を用いることを特徴とするものである。
[Drive system equipment]
The drive system apparatus of this embodiment is characterized by using a lubricating oil composition containing a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
Figure JPOXMLDOC01-appb-C000009

(一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
Figure JPOXMLDOC01-appb-C000009

(In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
 本実施形態の駆動系機器に用いられる潤滑油組成物に含まれる基油、リン化合物、ジチオリン酸亜鉛は、本実施形態の潤滑油組成物に含まれるものとして説明したものと同じであり、これらの含有量は、本実施形態の潤滑油組成物における含有量として説明したものと同じである。また、本実施形態の駆動系機器に用いられる潤滑油組成物には、基油、リン化合物、ジチオリン酸亜鉛以外の成分、例えば本実施形態の潤滑油組成物に含み得る成分として説明したその他添加剤を配合してもよい。 The base oil, phosphorus compound, and zinc dithiophosphate contained in the lubricating oil composition used in the drive train apparatus of the present embodiment are the same as those described as being included in the lubricating oil composition of the present embodiment. The content of is the same as that described as the content in the lubricating oil composition of the present embodiment. In addition, the lubricating oil composition used in the drive system device of the present embodiment has components other than the base oil, phosphorus compound, and zinc dithiophosphate, such as other components described as components that can be included in the lubricating oil composition of the present embodiment. An agent may be blended.
 駆動系機器としては、主に緩衝器、変速機、パワーステアリング等が挙げられる。本実施形態の駆動系機器に用いられる潤滑油組成物の特に優れる耐摩耗性を有効に活用する観点から、強化材としてガラス繊維が配合されている部材を有する機器が好ましい。例えば、強化材としてガラス繊維が配合されているピストンバンドを部材として有し、インナーチューブ-ピストンバンド間の潤滑が必要となる緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器が好ましい。 The drive system equipment mainly includes shock absorbers, transmissions, power steering, and the like. From the viewpoint of effectively utilizing particularly excellent wear resistance of the lubricating oil composition used in the drive train apparatus of the present embodiment, an apparatus having a member in which glass fiber is blended as a reinforcing material is preferable. For example, a shock absorber that has a piston band mixed with glass fiber as a reinforcing material and requires lubrication between the inner tube and the piston band, particularly a shock absorber for automobiles such as automobiles and motorcycles, especially A wheelbush shock absorber is preferred.
 次に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。 Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 潤滑油組成物の性状、性能の測定及び評価は以下の方法で行った。
(1)動粘度
 JIS K 2283:2000に準拠し、40℃、100℃における動粘度を測定した。
(2)粘度指数(VI)
 JIS K 2283:2000に準拠して測定した。
(3)リン原子含有量及び亜鉛原子含有量
 JPI-5S-38-03に準拠して測定した。
(4)外観の評価
 表1に記載の各成分を60℃にて混合した後、室温下(20℃)にて1日間貯蔵した各実施例及び比較例の潤滑油組成物の外観を目視で確認し、沈殿の発生の有無を評価した。沈殿が発生するものは、混合安定性が低いものであり、潤滑油組成物としての使用に耐えられないものである。
(5)耐摩耗性の評価
 表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、ボール・オン・ディスク型の往復動摩擦試験機(バウデン・レーベン式)使い、荷重29.4N、温度100℃、すべり速度50mm/s、ストローク10mm、時間30分で摩擦試験を行い、ディスク上の摩耗痕幅を測定した。ボールは、ガラス球(直径12mm)であり、ディスクは材質SPCC-SBである。摩耗痕幅が小さいほど、耐摩耗性に優れているといえる。
(6)酸化安定性の評価
 表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、JIS K2514-1:2013に準拠するISOT試験にて、該潤滑油組成物に銅板と鉄板を触媒として入れて、試験温度120℃、試験時間24時間、撹拌速度1300rpmとして試料を劣化させた後、銅の溶出量を測定した。銅の溶出量が少ないほど、酸化安定性に優れているといえる。
The properties and performance of the lubricating oil composition were measured and evaluated by the following methods.
(1) Kinematic viscosity Based on JISK2283: 2000, the kinematic viscosity in 40 degreeC and 100 degreeC was measured.
(2) Viscosity index (VI)
It measured based on JISK2283: 2000.
(3) Phosphorus atom content and zinc atom content Measured according to JPI-5S-38-03.
(4) Appearance Evaluation After mixing the components shown in Table 1 at 60 ° C., the appearances of the lubricating oil compositions of Examples and Comparative Examples stored for 1 day at room temperature (20 ° C.) were visually observed. This was confirmed and evaluated for the presence of precipitation. Those where precipitation occurs have low mixing stability and cannot be used as a lubricating oil composition.
(5) Evaluation of Abrasion Resistance A ball-on-disk type reciprocating friction tester (Bowden Lowen) was used for the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1. A friction test was conducted using a load of 29.4 N, a temperature of 100 ° C., a sliding speed of 50 mm / s, a stroke of 10 mm, and a time of 30 minutes, and the wear scar width on the disk was measured. The ball is a glass sphere (diameter 12 mm), and the disk is made of the material SPCC-SB. It can be said that the smaller the wear scar width, the better the wear resistance.
(6) Evaluation of oxidation stability The lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components described in Table 1 were subjected to an ISOT test in accordance with JIS K2514-1: 2013. After putting a copper plate and an iron plate into the lubricating oil composition as a catalyst and degrading the sample at a test temperature of 120 ° C., a test time of 24 hours, and a stirring speed of 1300 rpm, the elution amount of copper was measured. It can be said that the smaller the amount of copper eluted, the better the oxidation stability.
(実施例1、2、及び比較例1~5の潤滑油組成物の作製)
 下記表1に示す配合処方に従い配合して、潤滑油組成物を作製した。得られた各潤滑油組成物について、上記方法により測定した各性状及び性能の評価結果を表1に示す。
(Production of lubricating oil compositions of Examples 1 and 2 and Comparative Examples 1 to 5)
A lubricating oil composition was prepared by blending according to the blending formulation shown in Table 1 below. Table 1 shows the evaluation results of the properties and performances measured by the above methods for the obtained lubricating oil compositions.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本実施例で用いた表1に示される各成分の詳細は以下の通りである。
・基油1:60N水素化精製油(40℃動粘度:7.83mm/s、100℃動粘度:2.22mm/s、粘度指数:83)
・基油2:70N水素化精製油(40℃動粘度:9.92mm/s、100℃動粘度:2.71mm/s、粘度指数:114)
・リン化合物1:ジエチルステアリルホスホネート(一般式(1)において、R11がステアリル基であり、R12及びR13がエチル基であるリン化合物)
・リン化合物2:モノオレイルアシッドホスフェート
・リン化合物3:トリクレジルホスファイト
・ジチオリン酸亜鉛1:第一級ジアルキルジチオリン酸亜鉛(分子中に炭素数3、4及び6の第一級アルキル基の少なくとも一種のアルキル基を有するものの混合物)
・ジチオリン酸亜鉛2:第一級ジアルキルジチオリン酸亜鉛(分子中に炭素数8及び10の第一級アルキル基の少なくとも一種のアルキル基を有するものの混合物)
・脂肪酸アミド:イソステアリン酸とテトラエチレンペンタミンの反応物である。
・粘度指数向上剤1:ポリメタクリレート(Mw:140,000)
・粘度指数向上剤2:ポリメタクリレート(Mw:550,000)
・その他添加剤:フェノール系酸化防止剤、金属不活性化剤(チアジアゾール等)、シリコーン系消泡剤
The details of each component shown in Table 1 used in this example are as follows.
Base oil 1: 60N hydrorefined oil (40 ° C. kinematic viscosity: 7.83 mm 2 / s, 100 ° C. kinematic viscosity: 2.22 mm 2 / s, viscosity index: 83)
Base oil 2: 70N hydrorefined oil (40 ° C. kinematic viscosity: 9.92 mm 2 / s, 100 ° C. kinematic viscosity: 2.71 mm 2 / s, viscosity index: 114)
Phosphorus compound 1: diethyl stearyl phosphonate (in general formula (1), R 11 is a stearyl group, and R 12 and R 13 are ethyl groups)
Phosphorus compound 2: monooleyl acid phosphate Phosphorus compound 3: tricresyl phosphite Zinc dithiophosphate 1: primary dialkyldithiophosphate zinc (of primary alkyl group having 3, 4 and 6 carbon atoms in the molecule) A mixture of at least one alkyl group)
Zinc dithiophosphate 2: primary dialkyl dithiophosphate zinc (mixture of molecules having at least one alkyl group of primary alkyl groups having 8 and 10 carbon atoms in the molecule)
Fatty acid amide: A reaction product of isostearic acid and tetraethylenepentamine.
・ Viscosity index improver 1: Polymethacrylate (Mw: 140,000)
-Viscosity index improver 2: Polymethacrylate (Mw: 550,000)
Other additives: phenolic antioxidants, metal deactivators (thiadiazole, etc.), silicone antifoaming agents
 表1の結果から、本実施形態の潤滑油組成物は、いずれも沈殿を生じることがなく混合安定性に優れており、また摩耗痕幅が0.55mm以下、好ましくは0.53mm以下と優れた耐摩耗性を有しており、銅の溶出量が10質量ppm以下、好ましくは5質量ppm以下と優れた酸化安定性を有するものであることが確認された。
 一方、一般式(1)で表されるリン化合物を含まない比較例1及び2の潤滑油組成物は、摩耗痕幅が0.64mm、0.61mmであり、優れた耐摩耗性を有するものとはいえないものであった。比較例3の潤滑油組成物は、一般式(1)で表されるリン化合物のかわりにオレイルアシッドホスフェート及びトリクレジルホスファイトを配合し、ジチオリン酸亜鉛を配合しなかったものであり、摩耗痕幅は0.52mmと優れた耐摩耗性を有するものであったが、銅の溶出量が105質量ppmと酸化安定性に極めて劣るものであった。比較例4の潤滑油組成物は、一般式(1)で表されるリン化合物のかわりにオレイルアシッドホスフェートを配合したものであるが、オレイルアシッドホスフェートとジチオリン酸亜鉛との反応により沈殿が生じており、潤滑油組成物として使用できるものではなかった(そのため、耐摩耗性及び酸化安定性の評価は行わなかった。)。また、比較例5の潤滑油組成物は、ジチオリン酸亜鉛を配合しなかったものであり、銅の溶出量は2質量ppm以下と優れた酸化安定性を有するものであったが、摩耗痕幅が0.57mmであり、耐摩耗性に優れているとはいえないものであった。
From the results in Table 1, the lubricating oil composition of the present embodiment is excellent in mixing stability without causing precipitation, and has a wear scar width of 0.55 mm or less, preferably 0.53 mm or less. Thus, it was confirmed that the amount of elution of copper is 10 mass ppm or less, preferably 5 mass ppm or less, and has excellent oxidation stability.
On the other hand, the lubricating oil compositions of Comparative Examples 1 and 2 that do not contain the phosphorus compound represented by the general formula (1) have wear scar widths of 0.64 mm and 0.61 mm, and have excellent wear resistance. It wasn't. The lubricating oil composition of Comparative Example 3 was prepared by blending oleyl acid phosphate and tricresyl phosphite instead of the phosphorus compound represented by the general formula (1) and not blending zinc dithiophosphate. Although the trace width was 0.52 mm and excellent wear resistance, the elution amount of copper was 105 ppm by mass, which was extremely inferior in oxidation stability. The lubricating oil composition of Comparative Example 4 contains oleyl acid phosphate in place of the phosphorus compound represented by the general formula (1), but precipitation occurs due to the reaction between oleyl acid phosphate and zinc dithiophosphate. Therefore, it could not be used as a lubricating oil composition (thus, wear resistance and oxidation stability were not evaluated). Further, the lubricating oil composition of Comparative Example 5 did not contain zinc dithiophosphate, and the copper elution amount was 2 mass ppm or less and had excellent oxidation stability. Was 0.57 mm, and it could not be said that the wear resistance was excellent.

Claims (14)

  1.  基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
    A lubricating oil composition comprising a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
    Figure JPOXMLDOC01-appb-C000001

    (In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
  2.  前記一般式(1)において、R11が炭素数1以上24以下のアルキル基又は炭素数2以上24以下のアルケニル基であり、R12及びR13が各々独立に炭素数1以上12以下のアルキル基又は炭素数2以上12以下のアルケニル基である請求項1に記載の潤滑油組成物。 In the general formula (1), R 11 is an alkyl group having 1 to 24 carbon atoms or an alkenyl group having 2 to 24 carbon atoms, and R 12 and R 13 are each independently alkyl having 1 to 12 carbon atoms. The lubricating oil composition according to claim 1, which is a group or an alkenyl group having 2 to 12 carbon atoms.
  3.  前記リン化合物の組成物全量基準の含有量が、0.01質量%以上3質量%以下である請求項1又は2に記載の潤滑油組成物。 The lubricating oil composition according to claim 1 or 2, wherein the content of the phosphorus compound based on the total amount of the composition is 0.01 mass% or more and 3 mass% or less.
  4.  前記ジチオリン酸亜鉛が、ジアルキルジチオリン酸亜鉛である請求項1~3のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 3, wherein the zinc dithiophosphate is zinc dialkyldithiophosphate.
  5.  前記ジアルキルジチオリン酸亜鉛が、第一級ジアルキルジチオリン酸亜鉛である請求項4に記載の潤滑油組成物。 The lubricating oil composition according to claim 4, wherein the zinc dialkyldithiophosphate is a primary zinc dialkyldithiophosphate.
  6.  前記第一級ジアルキルジチオリン酸亜鉛が、炭素数が1以上24以下の第一級アルキル基を有する請求項4又は5に記載の潤滑油組成物。 The lubricating oil composition according to claim 4 or 5, wherein the primary zinc dialkyldithiophosphate has a primary alkyl group having 1 to 24 carbon atoms.
  7.  前記ジチオリン酸亜鉛の組成物全量基準の含有量が、0.01質量%以上3質量%以下である請求項1~6のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6, wherein the content of the zinc dithiophosphate composition based on the total composition is 0.01% by mass or more and 3% by mass or less.
  8.  全リン原子含有量P(質量%)に対する、前記リン化合物に由来のリン原子含有量P(質量%)の割合P/Pが50%以下である請求項1~7のいずれか1項に記載の潤滑油組成物。 The ratio P 1 / P 0 of the phosphorus atom content P 1 (mass%) derived from the phosphorus compound to the total phosphorus atom content P 0 (mass%) is 50% or less. 2. The lubricating oil composition according to item 1.
  9.  40℃動粘度が5mm/s以上35mm/s以下である請求項1~8のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 8, which has a kinematic viscosity at 40 ° C of 5 mm 2 / s to 35 mm 2 / s.
  10.  駆動系機器に用いられる請求項1~9のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 9, which is used for drive system equipment.
  11.  緩衝器に用いられる請求項1~10のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 10, which is used in a shock absorber.
  12.  基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを配合する潤滑油組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
    The manufacturing method of the lubricating oil composition which mix | blends a base oil, the phosphorus compound represented by following General formula (1), and zinc dithiophosphate.
    Figure JPOXMLDOC01-appb-C000002

    (In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
  13.  基油と、下記一般式(1)で表されるリン化合物と、ジチオリン酸亜鉛とを含む潤滑油組成物を用いた駆動系機器。
    Figure JPOXMLDOC01-appb-C000003

    (一般式(1)中、R11は炭化水素基、R12及びR13は各々独立に水素原子又は炭化水素基を示し、R12及びR13の少なくとも一方は炭化水素基である。)
    Drive system equipment using a lubricating oil composition comprising a base oil, a phosphorus compound represented by the following general formula (1), and zinc dithiophosphate.
    Figure JPOXMLDOC01-appb-C000003

    (In general formula (1), R 11 represents a hydrocarbon group, R 12 and R 13 each independently represent a hydrogen atom or a hydrocarbon group, and at least one of R 12 and R 13 is a hydrocarbon group.)
  14.  緩衝器である請求項13に記載の駆動系機器。 The drive system device according to claim 13, which is a shock absorber.
PCT/JP2019/003989 2018-02-23 2019-02-05 Lubricant oil composition, method for manufacturing lubricant oil composition and driving device WO2019163509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031186A JP7089899B2 (en) 2018-02-23 2018-02-23 Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment
JP2018-031186 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163509A1 true WO2019163509A1 (en) 2019-08-29

Family

ID=67688238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003989 WO2019163509A1 (en) 2018-02-23 2019-02-05 Lubricant oil composition, method for manufacturing lubricant oil composition and driving device

Country Status (2)

Country Link
JP (1) JP7089899B2 (en)
WO (1) WO2019163509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090722A4 (en) * 2020-01-17 2024-02-21 Afton Chemical Corp Friction modifier compounds and related compositions and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154406A (en) * 1978-03-30 1979-12-05 Cooper Edwin Inc Lubricant oil
JP2001172660A (en) * 1999-12-16 2001-06-26 Nippon Mitsubishi Oil Corp Hydraulic fluid composition for shock absorber
JP2005002215A (en) * 2003-06-11 2005-01-06 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2008255239A (en) * 2007-04-05 2008-10-23 Japan Energy Corp Gear oil composition
JP2009013380A (en) * 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154406A (en) * 1978-03-30 1979-12-05 Cooper Edwin Inc Lubricant oil
JP2001172660A (en) * 1999-12-16 2001-06-26 Nippon Mitsubishi Oil Corp Hydraulic fluid composition for shock absorber
JP2005002215A (en) * 2003-06-11 2005-01-06 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2008255239A (en) * 2007-04-05 2008-10-23 Japan Energy Corp Gear oil composition
JP2009013380A (en) * 2007-07-09 2009-01-22 Idemitsu Kosan Co Ltd Lubricant composition for shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090722A4 (en) * 2020-01-17 2024-02-21 Afton Chemical Corp Friction modifier compounds and related compositions and methods

Also Published As

Publication number Publication date
JP2019143107A (en) 2019-08-29
JP7089899B2 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
KR100957279B1 (en) Lubricating oil Composition for 6-speed Automatic Transmissions
JP6500271B2 (en) Lubricating oil composition
JP6035175B2 (en) Lubricating oil composition
WO2015025977A1 (en) Lubricating oil composition for shock absorber
WO2017150656A1 (en) Lubricating oil composition, lubricating method, and transmission
US11072759B2 (en) Lubricating oil composition, lubrication method, and transmission
WO2018074557A1 (en) Lubricant composition, lubricating method and transmission
WO2019146779A1 (en) Lubricant composition, method for producing lubricant composition, and continuously variable transmission
WO2019230412A1 (en) Lubricating oil composition for drive system device, production method thereof, method for lubricating drive system device, and drive system device
WO2019069878A1 (en) Gear oil composition for automobile, and lubrication method
WO2019163509A1 (en) Lubricant oil composition, method for manufacturing lubricant oil composition and driving device
WO2018074128A1 (en) Lubricating oil composition, lubrication method, and transmission
JP2019151804A (en) Lubricant oil composition
JP2014098063A (en) Lubricating oil composition
JP7126357B2 (en) lubricating oil composition
WO2019230405A1 (en) Lubricating oil composition, production method thereof, method for lubricating drive system device, and drive system device
JP2001089779A (en) Lubricating oil composition
WO2018043495A1 (en) Lubricant composition
US11499113B2 (en) Lubricating oil composition
JP7348747B2 (en) Lubricating oil composition for transmissions, method for producing the same, lubrication method using the lubricating oil composition for transmissions, and transmissions
CN110724580B (en) Gear oil extreme pressure antiwear additive composition and application thereof
JP2023165448A (en) Lubricant composition, lubrication method and transmission
WO2022004870A1 (en) Lubricating oil composition, shock absorber, and method for using lubricating oil composition
WO2022009791A1 (en) Lubricating oil composition, buffer and method for using lubricating oil composition
KR101526769B1 (en) Automatic Transmission Oil Composition for Enhanced Fuel Efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758315

Country of ref document: EP

Kind code of ref document: A1