WO2019163395A1 - Porous carbon material, method for producing same, and catalyst for synthesis reaction - Google Patents

Porous carbon material, method for producing same, and catalyst for synthesis reaction Download PDF

Info

Publication number
WO2019163395A1
WO2019163395A1 PCT/JP2019/002380 JP2019002380W WO2019163395A1 WO 2019163395 A1 WO2019163395 A1 WO 2019163395A1 JP 2019002380 W JP2019002380 W JP 2019002380W WO 2019163395 A1 WO2019163395 A1 WO 2019163395A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
catalyst
treatment
producing
Prior art date
Application number
PCT/JP2019/002380
Other languages
French (fr)
Japanese (ja)
Inventor
丹羽 勝也
芳春 奥田
貞子 黒田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2019163395A1 publication Critical patent/WO2019163395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a porous carbon material, a method for producing the same, and a catalyst for synthesis reaction.
  • Porous carbon materials typified by activated carbon include plant raw materials (for example, wood pulp, coconut shells, rice husks, etc.), mineral raw materials (for example, coal, tar, petroleum pitch, etc.), and synthetic resins as raw materials.
  • plant raw materials for example, wood pulp, coconut shells, rice husks, etc.
  • mineral raw materials for example, coal, tar, petroleum pitch, etc.
  • synthetic resins as raw materials.
  • the porous carbon material is used not only for such applications but also as a carrier in the catalyst.
  • a heterogeneous catalyst can be obtained by supporting a metal or a metal compound on the porous carbon material.
  • activated carbon carrying a metal or a metal compound is used as a catalyst in the synthesis of vinyl acetate or vinyl chloride.
  • the catalyst support is a porous carbon material, for example, as a catalyst carrier for fuel cell electrodes
  • the measured sheet resistance under a pressure of 75.4kgf / cm 2 is at 250m ⁇ / cm 2 or less, the average diameter of the mesopores
  • a mesoporous carbon body having a thickness of 2 to 20 nm has been proposed (for example, see Patent Document 1). Further, it has been proposed to use a supported catalyst in which metal catalyst particles are supported on this catalyst carrier for an electrode of a fuel cell.
  • an object of the present invention is to provide a porous carbon material useful as a catalyst support for selective hydrogenation reduction, a method for producing the same, and a catalyst for a synthesis reaction using the porous carbon material. To do.
  • Means for solving the problems are as follows. That is, ⁇ 1> A porous carbon material having a specific resistance value of 10 ⁇ ⁇ cm or more and 10,000 ⁇ ⁇ cm or less at a packing density of 0.4 g / cc. ⁇ 2> The porous carbon material according to ⁇ 1>, wherein a half-value width (2 ⁇ ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is 4.3 ° to 5.5 °. It is. ⁇ 3> The porous carbon material according to any one of ⁇ 1> to ⁇ 2>, which is derived from a plant.
  • ⁇ 4> The porous carbon material according to any one of ⁇ 1> to ⁇ 3>, which is derived from rice husk.
  • ⁇ 5> The porous carbon material according to any one of ⁇ 1> to ⁇ 4>, which is a support for a catalyst.
  • ⁇ 6> A catalyst for a synthesis reaction comprising the porous carbon material according to any one of ⁇ 1> to ⁇ 5> and a metal or a metal compound supported on the porous carbon material. .
  • ⁇ 7> The catalyst for synthesis reaction according to ⁇ 6>, wherein the metal or metal compound is palladium.
  • ⁇ 8> The catalyst for synthesis reaction according to any one of ⁇ 6> to ⁇ 7>, which is used in a hydrogenation reduction reaction.
  • ⁇ 9> The synthesis reaction catalyst according to any one of ⁇ 6> to ⁇ 8>, which is used in a hydrogenation reduction reaction of a compound having two or more groups capable of hydrogenation reduction.
  • a method for producing a porous carbon material for producing the porous carbon material according to any one of ⁇ 1> to ⁇ 5> In the method for producing a porous carbon material, the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized.
  • ⁇ 11> The method for producing a porous carbon material according to ⁇ 10>, wherein an activation treatment is performed after the carbonization treatment.
  • ⁇ 12> The method for producing a porous carbon material according to ⁇ 11>, wherein the activation treatment temperature is 700 ° C. or higher and 1,000 ° C. or lower.
  • the porous carbon material that can achieve the object and is useful as a catalyst support for selective hydrogenation reduction, a method for producing the same, and a synthetic reaction using the porous carbon material are provided.
  • a catalyst can be provided.
  • FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
  • porous carbon material of the present invention has a specific resistance value of 10 ⁇ ⁇ cm or more and 10,000 ⁇ ⁇ cm or less at a packing density of 0.4 g / cc.
  • the present inventors diligently investigated a catalyst useful for a selective hydroreduction reaction of a compound having two or more groups capable of hydroreduction, and a carrier thereof.
  • the porous carbon material which is a catalyst carrier
  • the porous carbon material was used by setting the specific resistance value at a packing density of 0.4 g / cc to 10 ⁇ ⁇ cm to 10,000 ⁇ ⁇ cm.
  • the inventors have found that a selective hydrogenation-reduction reaction is possible in the supported catalyst, and have completed the present invention.
  • the present inventors prepared a palladium-supported catalyst using a porous carbon material with a changed specific resistance value, and performed a hydrogenation reduction reaction of 4-chlorostyrene using the catalyst.
  • 4-Chlorostyrene was used as a model compound for confirming the selectivity of a catalyst in a selective hydroreduction reaction of a compound having two or more groups capable of hydroreduction.
  • a hydrogen reduction reaction of a vinyl group bonded to a benzene ring and a hydrogenation reduction reaction of a 4-chloro group occur.
  • a hydrogen reduction reaction of a vinyl group bonded to a benzene ring is more likely to occur than a hydrogen reduction reaction of a 4-chloro group.
  • the porous carbon material has a specific resistance value of 10 ⁇ ⁇ cm or more and 10,000 ⁇ ⁇ cm or less, preferably 10 ⁇ ⁇ cm or more and 1,000 ⁇ ⁇ cm or less, at a packing density of 0.4 g / cc. .
  • the specific resistance value is less than 10 ⁇ ⁇ cm, the selectivity of the hydroreduction reaction is lowered in the supported catalyst using the porous carbon material.
  • the specific resistance value exceeds 10,000 ⁇ ⁇ cm, the reaction rate of the hydroreduction reaction decreases in the supported catalyst using the porous carbon material.
  • the specific resistance value can be measured, for example, by the following method.
  • a porous carbon material is filled into an acrylic cylinder having a diameter of 9.0 mm and a length of 17 mm so that the packing density is 0.4 g / cc.
  • a digital multimeter the VOAC7412 by Iwasaki Tsushinki Co., Ltd.
  • the reason why the packing density of the porous carbon material is 0.4 g / cc is that when the porous carbon material is appropriately filled, the density is 0.4 g / cc.
  • the full width at half maximum (2 ⁇ ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is preferably 4.3 ° or more and 5.5 ° or less.
  • 10X means a pseudo peak found in the vicinity of the 101 plane in graphite.
  • the X-ray diffraction measurement and half-width measurement can be performed using a known X-ray diffraction apparatus, for example, PHILIPS X'Pert manufactured by PANalytical.
  • the half width (2 ⁇ ) can be adjusted by, for example, the presence or absence of heat treatment of the porous carbon material.
  • the porous carbon material has many pores.
  • the pores are classified into mesopores, micropores, and macropores.
  • the mesopore refers to a pore having a pore diameter of 2 nm to 50 nm
  • the micropore refers to a pore having a pore diameter smaller than 2 nm
  • the macropore refers to a pore having a pore diameter larger than 50 nm.
  • mesopore volume is not particularly limited and may be appropriately selected depending on the purpose, 0.15 cm 3 / g or more 1.00 cm 3 / g or less is preferred, 0.20 cm 3 / g or more 0. more preferably not more than 60cm 3 / g, 0.20cm 3 / g or more 0.50 cm 3 / g or less is particularly preferred.
  • the mesopore volume can be measured using, for example, the following apparatus.
  • Nitrogen adsorption isotherm can be measured using 3Flex manufactured by Micromeritex Japan GK and calculated by BJH method.
  • the BJH method is widely used as a pore distribution analysis method. When pore distribution analysis is performed based on the BJH method, first, desorption isotherms are obtained by adsorbing and desorbing nitrogen as adsorbed molecules on the porous carbon material.
  • the thickness of the adsorption layer when the adsorption molecules are attached and detached in stages from the state where the pores are filled with the adsorption molecules (for example, nitrogen), and the pores generated at that time It obtains an inner diameter (twice the core radius) of calculating the pore radius r p according to the following equation (1) to calculate the pore volume based on the following equation (2).
  • a pore distribution curve can be obtained by plotting the pore volume change rate (dV p / dr p ) against the pore diameter (2r p ) from the pore radius and pore volume (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). And BELSORP analysis software manual, pages 85-88).
  • V pn pore volume when the n-th attachment / detachment of nitrogen occurs
  • dV n amount of change at that time
  • dt n change in the thickness t n of the adsorption layer when the n-th attachment / detachment of nitrogen occurs
  • Amount r kn Core radius at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs.
  • the mesopore volume can be measured using 3FLEX prepared by preparing 30 mg of a porous carbon material and setting the relative pressure (P / P0) in the range of 0.0000001 to 0.995.
  • the raw material of the porous carbon material is preferably a plant-derived material. That is, the porous carbon material is preferably derived from a plant. When it is derived from a plant, it becomes easy to adjust the mesopore volume value to the desired value. Moreover, there exists an advantage derived from a plant also at a point with little environmental impact.
  • rice husks such as rice (rice), barley, wheat, rye, rice bran, millet
  • cocoons cocoons and stem wakame
  • vascular plants fern plants, moss plants, algae, and seaweeds that are vegetated on land.
  • these materials may be used independently as a raw material, and multiple types may be mixed and used.
  • shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product.
  • what processed various processes can also be used in food-drinks processing, such as beer and western liquor.
  • food-drinks processing such as beer and western liquor.
  • straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste.
  • These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, and food companies.
  • porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include adsorbents and catalyst carriers. Among these, the porous carbon material can be suitably used as a carrier for a catalyst.
  • the method for producing the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for producing a porous carbon material described later is preferable.
  • the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized. That is, in the example of the method for producing the porous carbon material, the silicon component removing element treatment and the carbonization treatment are included in this order.
  • the method for producing a porous carbon material of the present invention includes, for example, a silicon component removal process and a carbonization process, preferably includes an activation process, and further includes other processes such as a heat treatment as necessary.
  • the specific resistance value of the porous carbon material can be adjusted by appropriately changing conditions such as the carbonization treatment, the activation treatment, and the heat treatment.
  • the method for producing the porous carbon material is a method for producing the porous carbon material of the present invention.
  • the silicon component removal treatment is not particularly limited as long as it is a treatment for removing the silicon component from the raw material containing the silicon component by acid treatment or alkali treatment, and can be appropriately selected according to the purpose. Examples include a method of immersing the raw material in an aqueous solution or an alkaline aqueous solution.
  • Examples of the raw material containing the silicon component include the raw material of the porous carbon material described above.
  • the mesopore volume and the micropore volume can be easily adjusted in the carbonization treatment and activation treatment.
  • the carbonization treatment is not particularly limited as long as it is a treatment to carbonize (carbonize) the raw material subjected to the silicon component removal treatment to obtain a carbide (carbonaceous material), and may be appropriately selected according to the purpose. it can.
  • the carbonization (carbonization) generally means that an organic substance (in the present invention, for example, a plant-derived material) is heat treated to be converted into a carbonaceous substance (see, for example, JIS M0104-1984).
  • an atmosphere for carbonization an atmosphere in which oxygen is blocked can be given, and specifically, a vacuum atmosphere and an inert gas atmosphere such as nitrogen gas or argon gas can be given.
  • the rate of temperature increase until reaching the carbonization temperature 1 ° C./min or more, preferably 3 ° C./min or more, more preferably 5 ° C./min or more can be mentioned in such an atmosphere.
  • the upper limit of the carbonization time can be 10 hours, preferably 7 hours, and more preferably 5 hours, but is not limited thereto.
  • the lower limit of the carbonization time may be a time during which the raw material is reliably carbonized.
  • the carbonization temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 600 ° C. or higher, more preferably 600 ° C. or higher and 1,000 ° C. or lower.
  • the activation treatment is not particularly limited as long as it is a treatment that activates the carbide, and can be appropriately selected according to the purpose. Examples thereof include a gas activation method and a chemical activation method.
  • activation means developing the pore structure of the carbon material and adding pores.
  • the gas activation method uses oxygen, water vapor, carbon dioxide gas, air, or the like as an activator, and in the gas atmosphere, for example, at 700 ° C. or more and 1,000 ° C. or less for several tens of minutes to several hours.
  • the microstructure is developed by volatile components and carbon molecules in the carbide by heating.
  • the heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and is preferably 750 ° C. or higher and 1,000 ° C. or lower.
  • the chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc., instead of oxygen and water vapor used in the gas activation method, and washed with hydrochloric acid.
  • the pH is adjusted with an alkaline aqueous solution and dried.
  • the time for the activation treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 hours or more and 20 hours or less, and more preferably 1 hour or more and 10 hours or less.
  • the heat treatment is not particularly limited as long as it is a treatment for heating the carbide after the activation treatment, and can be appropriately selected according to the purpose. By this treatment, the carbon density of the carbide can be increased, and the electrical conductivity of the produced porous carbon material can be improved.
  • the temperature for the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may be 1,200 ° C. or higher, or 1,200 ° C. or higher, and 2,800 ° C. or lower. It may be 1,200 ° C. or more and 2,700 ° C. or less, or 1,200 ° C. or more and 2,500 ° C. or less. In addition, when manufacturing the said porous carbon material of this invention, it is not necessary to perform the said heat processing.
  • the time for the heat treatment is not particularly limited and may be appropriately selected depending on the purpose. It is preferably 1 hour or longer and 24 hours or shorter, and more preferably 5 hours or longer and 15 hours or shorter.
  • the heat treatment is preferably performed in the presence of a reducing gas in order to reduce the load on the furnace.
  • a reducing gas examples include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
  • the reducing gas is preferably used together with an inert gas.
  • the inert gas examples include nitrogen gas, helium gas, and argon gas.
  • FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
  • a plant as a raw material is prepared (S1).
  • the plant contains a silicon component.
  • the raw material is subjected to a silicon component removal treatment using an alkali to remove the silicon component from the raw material (S2).
  • the raw material from which the silicon component has been removed is subjected to carbonization (S3).
  • Carbide is obtained by subjecting to carbonization treatment.
  • the obtained carbide is subjected to an activation process (S4). By subjecting to activation treatment, the pore structure in the carbide is developed.
  • a porous carbon material is obtained.
  • the catalyst for synthesis reaction of the present invention includes the porous carbon material of the present invention and a metal or metal compound supported on the porous carbon material, and further includes other components as necessary.
  • the metal is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose.
  • platinum group elements platinum, iridium, osmium, ruthenium, rhodium, palladium
  • rhenium gold
  • Silver and the like.
  • the metal compound is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose. Examples thereof include the metal alloy. Among these, as the metal or the metal compound, palladium is preferable from the viewpoint of price and availability.
  • Examples of the method for supporting the metal or the metal compound on the porous carbon material include the following methods. (1) The porous carbon material, which is a catalyst carrier, is dispersed in the porous carbon material, which is a catalyst carrier, and a reducing agent is further added to reduce metal ions in the solution, whereby the porous material, which is a catalyst carrier, is reduced. (2) The catalyst active component is deposited on the catalyst carrier by heating and stirring the solution of the metal as the catalyst active component in which the porous carbon material as the catalyst carrier is dispersed. After that, filtration, washing, drying, etc. are performed as appropriate, and reduction treatment is performed with hydrogen gas, etc.
  • the ratio of the porous carbon material to the metal or the metal compound in the synthesis reaction catalyst is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the catalyst for synthesis reaction can be suitably used for hydrogenation reduction reaction.
  • a hydrogenation reduction reaction of a compound having two or more groups capable of hydrogenation reduction is preferable.
  • the at least two hydrogenatable groups in the compound having two or more hydrogenatable groups are different groups. Examples of the hydrogenatable group include a halogen group and a vinyl group.
  • the method for synthesizing the compound of the present invention includes at least a reduction step, and further includes other steps as necessary.
  • the reduction step is not particularly limited as long as it is a step of reducing a compound using the catalyst for synthesis reaction of the present invention, and can be appropriately selected according to the purpose.
  • the compound include a compound having a group capable of hydrogenation reduction, and a compound having two or more groups capable of hydrogenation reduction is preferable in that a selective hydrogenation reduction reaction can be performed.
  • the at least two hydrogenatable groups in the compound having two or more hydrogenatable groups are different groups. Examples of the hydrogenatable group include a halogen group and a vinyl group.
  • heating may be performed or the reaction may be performed at room temperature.
  • the compound synthesis method is preferably performed in the presence of a reducing gas.
  • a reducing gas examples include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
  • the alkali treatment for removing the silicon component was performed by immersing the rice husk in 90 ° C. of a 5.3 mass% sodium hydroxide aqueous solution for 14 hours.
  • Heat treatment was performed at a predetermined temperature and for a predetermined time under argon gas supply (30 L / min).
  • Examples 1 to 4 The treatment for rice husk was performed in the order of alkali treatment, carbonization treatment, and activation treatment under the conditions shown in Table 1 to obtain a porous carbon material.
  • the specific resistance value of the porous carbon material was measured by the following method.
  • a porous carbon material was filled into an acrylic cylinder having a diameter of 9.0 mm and a length of 17 mm so that the packing density was 0.4 g / cc.
  • a digital multimeter the VOAC7412 by Iwasaki Tsushinki Co., Ltd.
  • ⁇ Mesopore volume> For measuring the mesopore volume, a multi-analyte high performance specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics was used. The results are shown in Table 2.
  • porous carbon materials produced in Examples 1 to 4 were superior in selectivity when used as catalysts compared to the porous carbon materials produced in Comparative Examples 1 to 4.
  • the porous carbon material of the present invention can be suitably used as a carrier for a catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This porous carbon material has a specific resistance value of 10 to 10,000 Ω·cm at a packing density of 0.4 g/cc.

Description

多孔質炭素材料、及びその製造方法、並びに合成反応用触媒Porous carbon material, method for producing the same, and catalyst for synthesis reaction
 本発明は、多孔質炭素材料、及びその製造方法、並びに合成反応用触媒に関する。 The present invention relates to a porous carbon material, a method for producing the same, and a catalyst for synthesis reaction.
 活性炭に代表される多孔質炭素材料は、植物性原料(例えば、木材パルプ、ヤシ殻、籾殻等)、鉱物性原料(例えば、石炭、タール、石油ピッチ等)、更には合成樹脂等を原料とした炭素化物を、高温下でガスや薬品で処理して賦活化することにより微細孔が形成されて、得られる。この微細孔は炭素内部に網目状に構成されており、その微細孔が大きい表面積を生じさせることから、前記多孔質炭素材料は吸着能に優れている。そのため、前記多孔質炭素材料は、従来から悪臭の除去、液中の不純物除去、溶剤蒸気の回収、除去などの各種用途に広く使用されている。 Porous carbon materials typified by activated carbon include plant raw materials (for example, wood pulp, coconut shells, rice husks, etc.), mineral raw materials (for example, coal, tar, petroleum pitch, etc.), and synthetic resins as raw materials. By treating the activated carbonized product with gas or chemicals at a high temperature and activating it, fine pores are formed and obtained. The fine pores are formed in a mesh shape inside the carbon, and the fine pores generate a large surface area. Therefore, the porous carbon material is excellent in adsorption ability. Therefore, the porous carbon material has been widely used for various purposes such as removal of malodor, removal of impurities in liquid, recovery and removal of solvent vapor, and the like.
 前記多孔質炭素材料は、そのような用途のほか、触媒における担体としても利用されている。前記多孔質炭素材料に金属や金属化合物を担持することで、不均一触媒が得られる。例えば、酢酸ビニルの合成や塩化ビニルの合成に、金属や金属化合物を担持した活性炭が触媒として使用されている。 The porous carbon material is used not only for such applications but also as a carrier in the catalyst. A heterogeneous catalyst can be obtained by supporting a metal or a metal compound on the porous carbon material. For example, activated carbon carrying a metal or a metal compound is used as a catalyst in the synthesis of vinyl acetate or vinyl chloride.
 多孔質炭素材料である触媒担体に関し、例えば、燃料電池電極の触媒担体として、75.4kgf/cmの圧力下で測定した面抵抗が250mΩ/cm以下であり、メソ細孔の平均直径が2~20nmであるメソ細孔性炭素体が提案されている(例えば、特許文献1参照)。また、この触媒担体に金属触媒粒子を担持させた担持触媒を燃料電池の電極に使用することが提案されている。 Relates the catalyst support is a porous carbon material, for example, as a catalyst carrier for fuel cell electrodes, the measured sheet resistance under a pressure of 75.4kgf / cm 2 is at 250mΩ / cm 2 or less, the average diameter of the mesopores A mesoporous carbon body having a thickness of 2 to 20 nm has been proposed (for example, see Patent Document 1). Further, it has been proposed to use a supported catalyst in which metal catalyst particles are supported on this catalyst carrier for an electrode of a fuel cell.
 また、白金を担持させた多孔質炭素材料である白金担持炭素を、ニトロ芳香族化合物中のニトロ基の選択的還元に用いることが提案されている(例えば、特許文献2参照)。 It has also been proposed to use platinum-supported carbon, which is a porous carbon material supporting platinum, for selective reduction of nitro groups in nitroaromatic compounds (see, for example, Patent Document 2).
 しかし、選択的水素化還元に有用な担持触媒は多くは知られておらず、新しい選択的水素化還元に利用可能な合成反応用触媒及びそれに利用可能な多孔質炭素材料が求められている。 However, many supported catalysts useful for selective hydrogenation reduction are not known, and a new catalyst for synthesis reaction that can be used for selective hydrogenation reduction and a porous carbon material that can be used therefor are demanded.
特開2006-321712号公報JP 2006-321712 A 国際公開第2009/060886号パンフレットInternational Publication No. 2009/060886 Pamphlet
 本発明は、以下の目的を達成することを課題とする。
 即ち、本発明は、選択的水素化還元のための触媒の担体として有用な多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いた合成反応用触媒を提供することを目的とする。
This invention makes it a subject to achieve the following objectives.
That is, an object of the present invention is to provide a porous carbon material useful as a catalyst support for selective hydrogenation reduction, a method for producing the same, and a catalyst for a synthesis reaction using the porous carbon material. To do.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 0.4g/ccの充填密度において、比抵抗値が、10Ω・cm以上10,000Ω・cm以下であることを特徴とする多孔質炭素材料である。
 <2> X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)が、4.3°以上5.5°以下である前記<1>に記載の多孔質炭素材料である。
 <3> 植物由来である、前記<1>から<2>のいずれかに記載の多孔質炭素材料である。
 <4> 籾殻由来である、前記<1>から<3>のいずれかに記載の多孔質炭素材料である。
 <5> 触媒用の担体である前記<1>から<4>のいずれかに記載の多孔質炭素材料である。
 <6> 前記<1>から<5>のいずれかに記載の多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有することを特徴とする合成反応用触媒である。
 <7> 前記金属又は金属化合物が、パラジウムである前記<6>に記載の合成反応用触媒である。
 <8> 水素化還元反応に用いられる前記<6>から<7>のいずれかに記載の合成反応用触媒である。
 <9> 2つ以上の水素化還元可能な基を有する化合物の水素化還元反応に用いられる前記<6>から<8>のいずれかに記載の合成反応用触媒である。
 <10> 前記<1>から<5>のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
 ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行うことを特徴とする多孔質炭素材料の製造方法である。
 <11> 前記炭化処理の後に、賦活処理を行う前記<10>に記載の多孔質炭素材料の製造方法である。
 <12> 前記賦活処理の温度が、700℃以上1,000℃以下である前記<11>に記載の多孔質炭素材料の製造方法である。
Means for solving the problems are as follows. That is,
<1> A porous carbon material having a specific resistance value of 10 Ω · cm or more and 10,000 Ω · cm or less at a packing density of 0.4 g / cc.
<2> The porous carbon material according to <1>, wherein a half-value width (2θ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is 4.3 ° to 5.5 °. It is.
<3> The porous carbon material according to any one of <1> to <2>, which is derived from a plant.
<4> The porous carbon material according to any one of <1> to <3>, which is derived from rice husk.
<5> The porous carbon material according to any one of <1> to <4>, which is a support for a catalyst.
<6> A catalyst for a synthesis reaction comprising the porous carbon material according to any one of <1> to <5> and a metal or a metal compound supported on the porous carbon material. .
<7> The catalyst for synthesis reaction according to <6>, wherein the metal or metal compound is palladium.
<8> The catalyst for synthesis reaction according to any one of <6> to <7>, which is used in a hydrogenation reduction reaction.
<9> The synthesis reaction catalyst according to any one of <6> to <8>, which is used in a hydrogenation reduction reaction of a compound having two or more groups capable of hydrogenation reduction.
<10> A method for producing a porous carbon material for producing the porous carbon material according to any one of <1> to <5>,
In the method for producing a porous carbon material, the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized.
<11> The method for producing a porous carbon material according to <10>, wherein an activation treatment is performed after the carbonization treatment.
<12> The method for producing a porous carbon material according to <11>, wherein the activation treatment temperature is 700 ° C. or higher and 1,000 ° C. or lower.
 本発明によれば、前記目的を達成することができ、選択的水素化還元のための触媒の担体として有用な多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いた合成反応用触媒を提供することができる。 According to the present invention, the porous carbon material that can achieve the object and is useful as a catalyst support for selective hydrogenation reduction, a method for producing the same, and a synthetic reaction using the porous carbon material are provided. A catalyst can be provided.
図1は、多孔質炭素材料の製造方法の一例のフローチャートである。FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
(多孔質炭素材料)
 本発明の多孔質炭素材料は、0.4g/ccの充填密度において、比抵抗値が、10Ω・cm以上10,000Ω・cm以下である。
(Porous carbon material)
The porous carbon material of the present invention has a specific resistance value of 10 Ω · cm or more and 10,000 Ω · cm or less at a packing density of 0.4 g / cc.
 本発明者らは、2つ以上の水素化還元可能な基を有する化合物の選択的な水素化還元反応に有用な触媒、及びその担体について鋭意検討を行った。
 その結果、触媒の担体である多孔質炭素材料において、0.4g/ccの充填密度における比抵抗値を10Ω・cm以上10,000Ω・cm以下とすることにより、当該多孔質炭素材料を用いた担持触媒において、選択的な水素化還元反応が可能であることを見出し本発明の完成に至った。
The present inventors diligently investigated a catalyst useful for a selective hydroreduction reaction of a compound having two or more groups capable of hydroreduction, and a carrier thereof.
As a result, in the porous carbon material which is a catalyst carrier, the porous carbon material was used by setting the specific resistance value at a packing density of 0.4 g / cc to 10 Ω · cm to 10,000 Ω · cm. The inventors have found that a selective hydrogenation-reduction reaction is possible in the supported catalyst, and have completed the present invention.
 具体的には、本発明者らは、比抵抗値を変えた多孔質炭素材料を用いてパラジウム担持触媒を調製し、当該触媒を用いて、4-クロロスチレンの水素化還元反応を行った。
 なお、4-クロロスチレンは、2つ以上の水素化還元可能な基を有する化合物の選択的水素化還元反応における触媒の選択性を確認するためのモデル化合物としての位置づけで用いられた。
 4-クロロスチレンの水素化還元反応では、ベンゼン環に結合するビニル基の水素化還元反応と、4-クロロ基の水素化還元反応とが起こる。ベンゼン環に結合するビニル基の水素化還元反応のほうが、4-クロロ基の水素化還元反応よりも起こりやすい。そのため、4-クロロスチレンの水素化還元反応では、1-クロロ-4-エチルベンゼンと、エチルベンゼンとが主に合成される。ここで、選択性が低いと、1-クロロ-4-エチルベンゼンを合成したい場合でも、副生成物としてエチルベンゼンがかなりの量で合成される。
 本発明者らは、多孔質炭素材料の比抵抗値を特定の範囲とすることで、上記水素化還元反応における選択性を向上できることを見出した。
Specifically, the present inventors prepared a palladium-supported catalyst using a porous carbon material with a changed specific resistance value, and performed a hydrogenation reduction reaction of 4-chlorostyrene using the catalyst.
4-Chlorostyrene was used as a model compound for confirming the selectivity of a catalyst in a selective hydroreduction reaction of a compound having two or more groups capable of hydroreduction.
In the hydrogenation reduction reaction of 4-chlorostyrene, a hydrogen reduction reaction of a vinyl group bonded to a benzene ring and a hydrogenation reduction reaction of a 4-chloro group occur. A hydrogen reduction reaction of a vinyl group bonded to a benzene ring is more likely to occur than a hydrogen reduction reaction of a 4-chloro group. Therefore, in the hydrogenation reduction reaction of 4-chlorostyrene, 1-chloro-4-ethylbenzene and ethylbenzene are mainly synthesized. Here, if the selectivity is low, even when it is desired to synthesize 1-chloro-4-ethylbenzene, ethylbenzene is synthesized in a considerable amount as a by-product.
The present inventors have found that the selectivity in the hydrogenation-reduction reaction can be improved by setting the specific resistance value of the porous carbon material within a specific range.
<比抵抗値>
 前記多孔質炭素材料は、0.4g/ccの充填密度において、比抵抗値が、10Ω・cm以上10,000Ω・cm以下であり、10Ω・cm以上1,000Ω・cm以下であることが好ましい。
 前記比抵抗値が、10Ω・cm未満であると、前記多孔質炭素材料を用いた担持触媒において、水素化還元反応の選択性が低下する。前記比抵抗値が、10,000Ω・cmを超えると、前記多孔質炭素材料を用いた担持触媒において、水素化還元反応の反応率が低下する。
<Specific resistance value>
The porous carbon material has a specific resistance value of 10 Ω · cm or more and 10,000 Ω · cm or less, preferably 10 Ω · cm or more and 1,000 Ω · cm or less, at a packing density of 0.4 g / cc. .
When the specific resistance value is less than 10 Ω · cm, the selectivity of the hydroreduction reaction is lowered in the supported catalyst using the porous carbon material. When the specific resistance value exceeds 10,000 Ω · cm, the reaction rate of the hydroreduction reaction decreases in the supported catalyst using the porous carbon material.
 前記比抵抗値は、例えば、以下の方法で測定することができる。
 直径9.0mm×長さ17mmのアクリル製の円筒に、多孔質炭素材料を充填密度が0.4g/ccになるように充填する。そして、円筒の長さ方向の両端に取り付けた電極にデジタル・マルチメータ(岩崎通信機株式会社製、VOAC7412)を接続して測定する。
 ここで、多孔質炭素材料の充填密度を0.4g/ccとしたのは、多孔質炭素材料を適度に充填した場合に、密度が0.4g/ccであったためである。
The specific resistance value can be measured, for example, by the following method.
A porous carbon material is filled into an acrylic cylinder having a diameter of 9.0 mm and a length of 17 mm so that the packing density is 0.4 g / cc. And it measures by connecting a digital multimeter (the VOAC7412 by Iwasaki Tsushinki Co., Ltd.) to the electrode attached to the both ends of the length direction of a cylinder.
Here, the reason why the packing density of the porous carbon material is 0.4 g / cc is that when the porous carbon material is appropriately filled, the density is 0.4 g / cc.
<半値幅>
 前記多孔質炭素材料において、X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)は、4.3°以上5.5°以下が好ましい。
<Half width>
In the porous carbon material, the full width at half maximum (2θ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is preferably 4.3 ° or more and 5.5 ° or less.
 ここで、「10X」とは、黒鉛における101面近傍に見られる疑似ピークを意味する。 Here, “10X” means a pseudo peak found in the vicinity of the 101 plane in graphite.
 前記X線回折測定、及び半値幅の測定は、公知のX線回折装置により行うことができ、例えば、PANalytical社製のPHILIPS X’Pertにより行うことができる。 The X-ray diffraction measurement and half-width measurement can be performed using a known X-ray diffraction apparatus, for example, PHILIPS X'Pert manufactured by PANalytical.
 前記半値幅(2θ)は、例えば、多孔質炭素材料の熱処理の有無により調整することができる。 The half width (2θ) can be adjusted by, for example, the presence or absence of heat treatment of the porous carbon material.
<孔容積>
 前記多孔質炭素材料は、細孔(ポア)を多く有している。細孔は、メソ孔、マイクロ孔、マクロ孔に分類される。ここで、メソ孔は孔径が2nm~50nmの細孔をいい、マイクロ孔は孔径が2nmよりも小さい細孔をいい、マクロ孔は孔径が50nmよりも大きい細孔をいう。
<Pore volume>
The porous carbon material has many pores. The pores are classified into mesopores, micropores, and macropores. Here, the mesopore refers to a pore having a pore diameter of 2 nm to 50 nm, the micropore refers to a pore having a pore diameter smaller than 2 nm, and the macropore refers to a pore having a pore diameter larger than 50 nm.
<<メソ孔容積>>
 前記メソ孔容積としては、特に制限はなく、目的に応じて適宜選択することができるが、0.15cm/g以上1.00cm/g以下が好ましく、0.20cm/g以上0.60cm/g以下がより好ましく、0.20cm/g以上0.50cm/g以下が特に好ましい。
<< Mesopore volume >>
As the mesopore volume is not particularly limited and may be appropriately selected depending on the purpose, 0.15 cm 3 / g or more 1.00 cm 3 / g or less is preferred, 0.20 cm 3 / g or more 0. more preferably not more than 60cm 3 / g, 0.20cm 3 / g or more 0.50 cm 3 / g or less is particularly preferred.
 前記メソ孔容積は、例えば、以下の装置を使用して測定することができる。
 マイクロメリテックスジャパン合同会社製の3Flexを使用して、窒素吸着等温線を測定し、BJH法で算出することができる。
 前記BJH法は、細孔分布解析法として広く用いられている方法である。BJH法に基づき細孔分布解析をする場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、脱着等温線を求める。そして、求められた脱着等温線に基づき、細孔が吸着分子(例えば窒素)によって満たされた状態から吸着分子が段階的に着脱する際の吸着層の厚さ、及び、その際に生じた孔の内径(コア半径の2倍)を求め、下記式(1)に基づき細孔半径rを算出し、下記式(2)に基づき細孔容積を算出する。そして、細孔半径及び細孔容積から細孔径(2r)に対する細孔容積変化率(dV/dr)をプロットすることにより細孔分布曲線が得られる(日本ベル株式会社製BELSORP-mini及びBELSORP解析ソフトウェアのマニュアル、第85頁~第88頁参照)。
The mesopore volume can be measured using, for example, the following apparatus.
Nitrogen adsorption isotherm can be measured using 3Flex manufactured by Micromeritex Japan GK and calculated by BJH method.
The BJH method is widely used as a pore distribution analysis method. When pore distribution analysis is performed based on the BJH method, first, desorption isotherms are obtained by adsorbing and desorbing nitrogen as adsorbed molecules on the porous carbon material. Then, based on the obtained desorption isotherm, the thickness of the adsorption layer when the adsorption molecules are attached and detached in stages from the state where the pores are filled with the adsorption molecules (for example, nitrogen), and the pores generated at that time It obtains an inner diameter (twice the core radius) of calculating the pore radius r p according to the following equation (1) to calculate the pore volume based on the following equation (2). A pore distribution curve can be obtained by plotting the pore volume change rate (dV p / dr p ) against the pore diameter (2r p ) from the pore radius and pore volume (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). And BELSORP analysis software manual, pages 85-88).
 r=t+r                (1)
 Vpn=R・dV-R・dt・c・ΣApj  (2)
 但し、R=rpn /(rkn-1+dt       (3)
r p = t + r k (1)
V pn = R n · dV n -R n · dt n · c · ΣA pj (2)
However, R n = r pn 2 / (r kn-1 + dt n) 2 (3)
 ここで、
 r:細孔半径
 r:細孔半径rの細孔の内壁にその圧力において厚さtの吸着層が吸着した場合のコア半径(内径/2)
 Vpn:窒素の第n回目の着脱が生じたときの細孔容積
 dV:そのときの変化量
 dt:窒素の第n回目の着脱が生じたときの吸着層の厚さtの変化量
 rkn:その時のコア半径
 c:固定値
 rpn:窒素の第n回目の着脱が生じたときの細孔半径
である。また、ΣApjは、j=1からj=n-1までの細孔の壁面の面積の積算値を表す。
here,
r p : pore radius r k : core radius (inner diameter / 2) when the adsorption layer having a thickness t is adsorbed on the inner wall of the pore having the pore radius r p at that pressure
V pn : pore volume when the n-th attachment / detachment of nitrogen occurs dV n : amount of change at that time dt n : change in the thickness t n of the adsorption layer when the n-th attachment / detachment of nitrogen occurs Amount r kn : Core radius at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs. ΣA pj represents the integrated value of the wall area of the pores from j = 1 to j = n−1.
[メソ孔容積の具体的な測定方法]
 多孔質炭素材料を30mg用意し、相対圧(P/P0)0.0000001から0.995の範囲を測定する条件に設定した3FLEXを使用して、メソ孔容積を測定することができる。
[Specific measurement method of mesopore volume]
The mesopore volume can be measured using 3FLEX prepared by preparing 30 mg of a porous carbon material and setting the relative pressure (P / P0) in the range of 0.0000001 to 0.995.
<多孔質炭素材料の原材料>
 前記多孔質炭素材料の原材料は、植物由来の材料であることが好ましい。即ち、前記多孔質炭素材料は、植物由来であることが好ましい。植物由来であると、メソ孔容積値を上記所望の値に調整することが容易となる。また、環境負荷が少ない点でも、植物由来とする利点がある。
<Raw material of porous carbon material>
The raw material of the porous carbon material is preferably a plant-derived material. That is, the porous carbon material is preferably derived from a plant. When it is derived from a plant, it becomes easy to adjust the mesopore volume value to the desired value. Moreover, there exists an advantage derived from a plant also at a point with little environmental impact.
 前記植物由来の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、米(稲)、大麦、小麦、ライ麦、稗(ヒエ)、粟(アワ)等の籾殻や藁、あるいは、葦、茎ワカメを挙げることができる。更には、例えば、陸上に植生する維管束植物、シダ植物、コケ植物、藻類、海草を挙げることができる。尚、これらの材料を、原料として、単独で用いてもよいし、複数種を混合して用いてもよい。また、植物由来の材料の形状や形態も特に限定はなく、例えば、籾殻や藁そのものでもよいし、あるいは乾燥処理品でもよい。更には、ビールや洋酒等の飲食品加工において、発酵処理、焙煎処理、抽出処理等の種々の処理を施されたものを使用することもできる。特に、産業廃棄物の資源化を図るという観点から、脱穀等の加工後の藁や籾殻を使用することが好ましい。これらの加工後の藁や籾殻は、例えば、農業協同組合や酒類製造会社、食品会社から、大量、且つ、容易に入手することができる。 There is no restriction | limiting in particular as said plant-derived material, According to the objective, it can select suitably, For example, rice husks, such as rice (rice), barley, wheat, rye, rice bran, millet, Examples include cocoons, cocoons and stem wakame. Further examples include vascular plants, fern plants, moss plants, algae, and seaweeds that are vegetated on land. In addition, these materials may be used independently as a raw material, and multiple types may be mixed and used. Further, the shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product. Furthermore, what processed various processes, such as a fermentation process, a roasting process, an extraction process, can also be used in food-drinks processing, such as beer and western liquor. In particular, it is preferable to use straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste. These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, and food companies.
 前記多孔質炭素材料の用途としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、吸着剤、触媒用の担体などが挙げられる。これらの中でも、前記多孔質炭素材料は、触媒用の担体として好適に用いることができる。 The application of the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include adsorbents and catalyst carriers. Among these, the porous carbon material can be suitably used as a carrier for a catalyst.
 前記多孔質炭素材料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する多孔質炭素材料の製造方法が好ましい。 The method for producing the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for producing a porous carbon material described later is preferable.
(多孔質炭素材料の製造方法)
 本発明の多孔質炭素材料の製造方法の一例では、ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行う。即ち、多孔質炭素材料の製造方法の一例では、ケイ素成分除去素処理と、炭化処理とをこの順で含む。
(Method for producing porous carbon material)
In an example of the method for producing a porous carbon material of the present invention, the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized. That is, in the example of the method for producing the porous carbon material, the silicon component removing element treatment and the carbonization treatment are included in this order.
 本発明の多孔質炭素材料の製造方法は、例えば、ケイ素成分除去処理と、炭化処理とを含み、好ましくは賦活処理を含み、更に必要に応じて、熱処理などのその他の処理を含む。 The method for producing a porous carbon material of the present invention includes, for example, a silicon component removal process and a carbonization process, preferably includes an activation process, and further includes other processes such as a heat treatment as necessary.
 前記多孔質炭素材料の前記比抵抗値は、前記炭化処理、前記賦活処理、前記熱処理などの条件を適宜変更することで調整することができる。 The specific resistance value of the porous carbon material can be adjusted by appropriately changing conditions such as the carbonization treatment, the activation treatment, and the heat treatment.
 前記多孔質炭素材料の製造方法は、本発明の前記多孔質炭素材料を製造する方法である。 The method for producing the porous carbon material is a method for producing the porous carbon material of the present invention.
<ケイ素成分除去処理>
 前記ケイ素成分除去処理としては、ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除く処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸水溶液又はアルカリ水溶液に前記原材料を浸漬する方法などが挙げられる。
<Silicon component removal treatment>
The silicon component removal treatment is not particularly limited as long as it is a treatment for removing the silicon component from the raw material containing the silicon component by acid treatment or alkali treatment, and can be appropriately selected according to the purpose. Examples include a method of immersing the raw material in an aqueous solution or an alkaline aqueous solution.
 前記ケイ素成分を含む原材料としては、例えば、前述の多孔質炭素材料の原材料などが挙げられる。 Examples of the raw material containing the silicon component include the raw material of the porous carbon material described above.
 前記ケイ素成分除去処理を経ることにより、炭化処理、賦活処理において、メソ孔容積、マイクロ孔容積が調整しやすくなる。 By passing through the silicon component removal treatment, the mesopore volume and the micropore volume can be easily adjusted in the carbonization treatment and activation treatment.
<炭化処理>
 前記炭化処理としては、ケイ素成分除去処理が行われた原材料を炭化(炭素化)し、炭化物(炭素質物質)を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記炭化(炭素化)とは、一般に、有機物質(本発明においては、例えば、植物由来の材料)を熱処理して炭素質物質に変換することを意味する(例えば、JIS M0104-1984参照)。尚、炭素化のための雰囲気として、酸素を遮断した雰囲気を挙げることができ、具体的には、真空雰囲気、窒素ガスやアルゴンガスといった不活性ガス雰囲気を挙げることができる。炭素化温度に至るまでの昇温速度として、係る雰囲気下、1℃/分以上、好ましくは3℃/分以上、より好ましくは5℃/分以上を挙げることができる。また、炭素化時間の上限として、10時間、好ましくは7時間、より好ましくは5時間を挙げることができるが、これに限定されるものではない。炭素化時間の下限は、前記原材料が確実に炭素化される時間とすればよい。
<Carbonization treatment>
The carbonization treatment is not particularly limited as long as it is a treatment to carbonize (carbonize) the raw material subjected to the silicon component removal treatment to obtain a carbide (carbonaceous material), and may be appropriately selected according to the purpose. it can.
The carbonization (carbonization) generally means that an organic substance (in the present invention, for example, a plant-derived material) is heat treated to be converted into a carbonaceous substance (see, for example, JIS M0104-1984). As an atmosphere for carbonization, an atmosphere in which oxygen is blocked can be given, and specifically, a vacuum atmosphere and an inert gas atmosphere such as nitrogen gas or argon gas can be given. As the rate of temperature increase until reaching the carbonization temperature, 1 ° C./min or more, preferably 3 ° C./min or more, more preferably 5 ° C./min or more can be mentioned in such an atmosphere. Further, the upper limit of the carbonization time can be 10 hours, preferably 7 hours, and more preferably 5 hours, but is not limited thereto. The lower limit of the carbonization time may be a time during which the raw material is reliably carbonized.
 前記炭化処理の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、600℃以上が好ましく、600℃以上1,000℃以下がより好ましい。 The carbonization temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 600 ° C. or higher, more preferably 600 ° C. or higher and 1,000 ° C. or lower.
<賦活処理>
 前記賦活処理としては、前記炭化物を賦活する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガス賦活法、薬品賦活法などが挙げられる。
 ここで、賦活とは、炭素材料の細孔構造を発達させ、細孔を付加することをいう。
<Activation processing>
The activation treatment is not particularly limited as long as it is a treatment that activates the carbide, and can be appropriately selected according to the purpose. Examples thereof include a gas activation method and a chemical activation method.
Here, activation means developing the pore structure of the carbon material and adding pores.
 前記ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、係るガス雰囲気下、例えば、700℃以上1,000℃以下にて、数十分~数時間、前記炭化物を加熱することにより、前記炭化物中の揮発成分や炭素分子により微細構造を発達させる方法である。尚、加熱温度は、植物由来の材料の種類、ガスの種類や濃度等に基づき、適宜、選択すればよいが、好ましくは、750℃以上1,000℃以下である。
 前記薬品賦活法とは、ガス賦活法で用いられる酸素や水蒸気の替わりに、塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カリウム、硫酸等を用いて賦活させ、塩酸で洗浄、アルカリ性水溶液でpHを調整し、乾燥させる方法である。
The gas activation method uses oxygen, water vapor, carbon dioxide gas, air, or the like as an activator, and in the gas atmosphere, for example, at 700 ° C. or more and 1,000 ° C. or less for several tens of minutes to several hours. In this method, the microstructure is developed by volatile components and carbon molecules in the carbide by heating. The heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and is preferably 750 ° C. or higher and 1,000 ° C. or lower.
The chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc., instead of oxygen and water vapor used in the gas activation method, and washed with hydrochloric acid. In this method, the pH is adjusted with an alkaline aqueous solution and dried.
 前記賦活処理の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5時間以上20時間以下が好ましく、1時間以上10時間以下がより好ましい。 The time for the activation treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 hours or more and 20 hours or less, and more preferably 1 hour or more and 10 hours or less.
<熱処理>
 前記熱処理としては、前記賦活処理の後の前記炭化物を加熱する処理であれば、特に制限はなく、目的に応じて適宜選択することができる。この処理により、前記炭化物の炭素密度を上げることができ、製造される前記多孔質炭素材料の電気伝導性を向上させることができる。
<Heat treatment>
The heat treatment is not particularly limited as long as it is a treatment for heating the carbide after the activation treatment, and can be appropriately selected according to the purpose. By this treatment, the carbon density of the carbide can be increased, and the electrical conductivity of the produced porous carbon material can be improved.
 前記熱処理の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、1,200℃以上であってもよいし、1,200℃以上2,800℃以下であってもよいし、1,200℃以上2,700℃以下であってもよいし、1,200℃以上2,500℃以下であってもよい。
 なお、本発明の前記多孔質炭素材料を製造する際には、前記熱処理は行なわなくてもよい。
The temperature for the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may be 1,200 ° C. or higher, or 1,200 ° C. or higher, and 2,800 ° C. or lower. It may be 1,200 ° C. or more and 2,700 ° C. or less, or 1,200 ° C. or more and 2,500 ° C. or less.
In addition, when manufacturing the said porous carbon material of this invention, it is not necessary to perform the said heat processing.
 前記熱処理の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上24時間以下が好ましく、5時間以上15時間以下がより好ましい。 The time for the heat treatment is not particularly limited and may be appropriately selected depending on the purpose. It is preferably 1 hour or longer and 24 hours or shorter, and more preferably 5 hours or longer and 15 hours or shorter.
 前記熱処理は、炉への負荷を低減させるために還元性ガス存在下で行われることが好ましい。前記還元性ガスとしては、例えば、水素ガス、一酸化炭素ガス、有機物の蒸気(例えば、メタンガス)などが挙げられる。
 前記還元性ガスは、不活性ガスと共に使用されることが好ましい。前記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガスなどが挙げられる。
The heat treatment is preferably performed in the presence of a reducing gas in order to reduce the load on the furnace. Examples of the reducing gas include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
The reducing gas is preferably used together with an inert gas. Examples of the inert gas include nitrogen gas, helium gas, and argon gas.
 前記多孔質炭素材料の製造方法の一例を、図1を用いて説明する。
 図1は、多孔質炭素材料の製造方法の一例のフローチャートである。
 まず、原材料としての植物を用意する(S1)。植物にはケイ素成分が含まれている。
 続いて、原材料について、アルカリを用いてケイ素成分除去処理を行い、原材料からケイ素成分を除去する(S2)。
 続いて、ケイ素成分が除去された原材料を炭化処理に供する(S3)。炭化処理に供することにより、炭化物が得られる。
 続いて、得られた炭化物を賦活処理に供する(S4)。賦活処理に供することにより、炭化物中の細孔構造を発達させる。
 以上により多孔質炭素材料が得られる。
An example of the method for producing the porous carbon material will be described with reference to FIG.
FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
First, a plant as a raw material is prepared (S1). The plant contains a silicon component.
Subsequently, the raw material is subjected to a silicon component removal treatment using an alkali to remove the silicon component from the raw material (S2).
Subsequently, the raw material from which the silicon component has been removed is subjected to carbonization (S3). Carbide is obtained by subjecting to carbonization treatment.
Subsequently, the obtained carbide is subjected to an activation process (S4). By subjecting to activation treatment, the pore structure in the carbide is developed.
Thus, a porous carbon material is obtained.
(合成反応用触媒)
 本発明の合成反応用触媒は、本発明の前記多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有し、更に必要に応じて、その他の成分を有する。
(Catalyst for synthesis reaction)
The catalyst for synthesis reaction of the present invention includes the porous carbon material of the present invention and a metal or metal compound supported on the porous carbon material, and further includes other components as necessary.
 前記金属としては、触媒活性成分であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、白金族元素(白金、イリジウム、オスミウム、ルテニウム、ロジウム、パラジウム)、レニウム、金、銀などが挙げられる。
 前記金属化合物としては、触媒活性成分であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属の合金などが挙げられる。
 これらの中でも、前記金属又は前記金属化合物としては、パラジウムが価格及び入手容易性の点で好ましい。
The metal is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose. For example, platinum group elements (platinum, iridium, osmium, ruthenium, rhodium, palladium), rhenium, gold , Silver and the like.
The metal compound is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose. Examples thereof include the metal alloy.
Among these, as the metal or the metal compound, palladium is preferable from the viewpoint of price and availability.
 前記多孔質炭素材料に前記金属又は前記金属化合物を担持させる方法としては、例えば、以下の方法などが挙げられる。
 (1)触媒活性成分である金属の溶液に、触媒担体である前記多孔質炭素材料を分散し、さらに還元剤を加えて、前記溶液中の金属イオンを還元して、触媒担体である前記多孔質炭素材料に金属を析出させる方法
 (2)触媒担体である前記多孔質炭素材料を分散させた、触媒活性成分である金属の溶液を加熱撹拌して、触媒活性成分を触媒担体上に析出させた後に、ろ過、洗浄、乾燥などを適宜行い、水素ガスなどにより還元処理する方法
Examples of the method for supporting the metal or the metal compound on the porous carbon material include the following methods.
(1) The porous carbon material, which is a catalyst carrier, is dispersed in the porous carbon material, which is a catalyst carrier, and a reducing agent is further added to reduce metal ions in the solution, whereby the porous material, which is a catalyst carrier, is reduced. (2) The catalyst active component is deposited on the catalyst carrier by heating and stirring the solution of the metal as the catalyst active component in which the porous carbon material as the catalyst carrier is dispersed. After that, filtration, washing, drying, etc. are performed as appropriate, and reduction treatment is performed with hydrogen gas, etc.
 前記合成反応用触媒における前記多孔質炭素材料と、前記金属又は前記金属化合物との割合としては、特に制限はなく、目的に応じて適宜選択することができる。 The ratio of the porous carbon material to the metal or the metal compound in the synthesis reaction catalyst is not particularly limited and may be appropriately selected depending on the intended purpose.
 前記合成反応用触媒は、水素化還元反応に好適に用いることができる。前記水素化還元反応としては、2つ以上の水素化還元可能な基を有する化合物の水素化還元反応が好ましい。
 前記2つ以上の水素化還元可能な基を有する化合物における少なくとも2つの水素化可能な基は、異なる基である。前記水素化還元可能な基としては、例えば、ハロゲン基、ビニル基などが挙げられる。
The catalyst for synthesis reaction can be suitably used for hydrogenation reduction reaction. As the hydrogenation reduction reaction, a hydrogenation reduction reaction of a compound having two or more groups capable of hydrogenation reduction is preferable.
The at least two hydrogenatable groups in the compound having two or more hydrogenatable groups are different groups. Examples of the hydrogenatable group include a halogen group and a vinyl group.
(化合物の合成方法)
 本発明の化合物の合成方法は、還元工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
(Method for synthesizing compounds)
The method for synthesizing the compound of the present invention includes at least a reduction step, and further includes other steps as necessary.
<還元工程>
 前記還元工程としては、本発明の前記合成反応用触媒を用いて、化合物を還元する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記化合物としては、例えば、水素化還元可能な基を有する化合物が挙げられ、選択的な水素化還元反応を行うことができる点で、2つ以上の水素化還元可能な基を有する化合物が好ましい。前記2つ以上の水素化還元可能な基を有する化合物における少なくとも2つの水素化可能な基は、異なる基である。前記水素化還元可能な基としては、例えば、ハロゲン基、ビニル基などが挙げられる。
<Reduction process>
The reduction step is not particularly limited as long as it is a step of reducing a compound using the catalyst for synthesis reaction of the present invention, and can be appropriately selected according to the purpose.
Examples of the compound include a compound having a group capable of hydrogenation reduction, and a compound having two or more groups capable of hydrogenation reduction is preferable in that a selective hydrogenation reduction reaction can be performed. . The at least two hydrogenatable groups in the compound having two or more hydrogenatable groups are different groups. Examples of the hydrogenatable group include a halogen group and a vinyl group.
 前記化合物の合成方法における前記合成反応用触媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記化合物100質量部に対して、0.5質量部以上5.0質量部以下が好ましく、1.0質量部以上3.0質量部以下がより好ましい。 There is no restriction | limiting in particular as the usage-amount of the said catalyst for synthetic | combination reactions in the synthesis | combining method of the said compound, Although it can select suitably according to the objective, 0.5 to 5 mass parts with respect to 100 mass parts of said compounds. 0.0 part by mass or less is preferable, and 1.0 part by mass or more and 3.0 parts by mass or less is more preferable.
 前記化合物の合成方法においては、加熱を行ってもよいし、常温で反応を行ってもよい。 In the method for synthesizing the compound, heating may be performed or the reaction may be performed at room temperature.
 前記化合物の合成方法は、還元性ガス存在下で行われることが好ましい。前記還元性ガスとしては、例えば、水素ガス、一酸化炭素ガス、有機物の蒸気(例えば、メタンガス)などが挙げられる。 The compound synthesis method is preferably performed in the presence of a reducing gas. Examples of the reducing gas include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
<原材料>
 原材料として、宮城県産のもみ殻を使用した。
<Raw materials>
Rice husks from Miyagi Prefecture were used as raw materials.
<アルカリ処理>
 ケイ素成分を除去するためのアルカリ処理(ケイ素成分除去処理)は、もみ殻を水酸化ナトリウム5.3質量%水溶液90℃に14時間浸漬することで行った。
<Alkali treatment>
The alkali treatment (silicon component removal treatment) for removing the silicon component was performed by immersing the rice husk in 90 ° C. of a 5.3 mass% sodium hydroxide aqueous solution for 14 hours.
<炭化処理>
 炭化処理は、炭化炉にて、窒素雰囲気下(N=30L/min)、600℃、3時間で行った。
<Carbonization treatment>
The carbonization treatment was performed in a carbonization furnace under a nitrogen atmosphere (N 2 = 30 L / min) at 600 ° C. for 3 hours.
<賦活処理>
 賦活処理は、ロータリーキルンを使用し、窒素バブリング(N=10L/min)条件下、水蒸気により、所定温度、所定時間で行った。
<Activation processing>
The activation treatment was performed using a rotary kiln at a predetermined temperature and a predetermined time with water vapor under nitrogen bubbling (N 2 = 10 L / min) conditions.
<熱処理>
 熱処理は、アルゴンガス供給下(30L/min)、所定温度、所定時間で行った。
<Heat treatment>
The heat treatment was performed at a predetermined temperature and for a predetermined time under argon gas supply (30 L / min).
(実施例1~4)
 もみ殻に対する処理を、表1に示すとおりの条件で、アルカリ処理、炭化処理、及び賦活処理の順で行い、多孔質炭素材料を得た。
(Examples 1 to 4)
The treatment for rice husk was performed in the order of alkali treatment, carbonization treatment, and activation treatment under the conditions shown in Table 1 to obtain a porous carbon material.
(比較例1)
 もみ殻に対する処理を、表1に示すとおりの条件で、アルカリ処理、及び炭化処理の順で行い、多孔質炭素材料を得た。
(Comparative Example 1)
The treatment for rice husk was carried out in the order of alkali treatment and carbonization treatment under the conditions shown in Table 1 to obtain a porous carbon material.
(比較例2~4)
 もみ殻に対する処理を、表1に示すとおりの条件で、アルカリ処理、炭化処理、賦活処理、及び熱処理の順で行い、多孔質炭素材料を得た。
(Comparative Examples 2 to 4)
The treatment for rice husk was performed in the order of alkali treatment, carbonization treatment, activation treatment, and heat treatment under the conditions shown in Table 1 to obtain a porous carbon material.
 得られた多孔質炭素材料について、以下の評価を行った。 The following evaluation was performed on the obtained porous carbon material.
<比抵抗値の測定>
 多孔質炭素材料の比抵抗値は、以下の方法で測定した。
 直径9.0mm×長さ17mmのアクリル製の円筒に、多孔質炭素材料を充填密度が0.4g/ccになるように充填した。そして、円筒の長さ方向の両端に取り付けた電極にデジタル・マルチメータ(岩崎通信機株式会社製、VOAC7412)を接続して測定した。結果を表2に示した。
<Measurement of specific resistance value>
The specific resistance value of the porous carbon material was measured by the following method.
A porous carbon material was filled into an acrylic cylinder having a diameter of 9.0 mm and a length of 17 mm so that the packing density was 0.4 g / cc. And it measured by connecting a digital multimeter (the VOAC7412 by Iwasaki Tsushinki Co., Ltd.) to the electrode attached to the both ends of the length direction of a cylinder. The results are shown in Table 2.
<半値幅>
 X線回折による(10X)(38°~49°)の半値幅(2θ)の測定には、PANalytical社製のPHILIPS X’Pertを用いた。結果を表2に示した。
<Half width>
PHILIPS X'Pert manufactured by PANalytical was used to measure the half width (2θ) of (10X) (38 ° to 49 °) by X-ray diffraction. The results are shown in Table 2.
<メソ孔容積>
 メソ孔容積の測定には、マイクロメリティックス社製の多検体高性能比表面積・細孔分布測定装置3Flexを用いた。結果を表2に示した。
<Mesopore volume>
For measuring the mesopore volume, a multi-analyte high performance specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics was used. The results are shown in Table 2.
<触媒性能>
<<パラジウム炭素触媒の製造>
 多孔質炭素材料1gに対して、Pd金属が5質量%になるように調整された塩酸溶液に、多孔質炭素材料を浸漬させた。その後、100℃で2時間減圧乾燥させた。更に、水素含有ガス雰囲気内で、400℃、3時間還元処理を行った。その結果、多孔質炭素材料にパラジウムが担持されたパラジウム炭素触媒を得た。
<Catalyst performance>
<< Production of palladium carbon catalyst >>
The porous carbon material was immersed in a hydrochloric acid solution adjusted to 5 mass% of Pd metal with respect to 1 g of the porous carbon material. Then, it dried under reduced pressure at 100 degreeC for 2 hours. Furthermore, reduction treatment was performed at 400 ° C. for 3 hours in a hydrogen-containing gas atmosphere. As a result, a palladium carbon catalyst having palladium supported on a porous carbon material was obtained.
<<4-クロロスチレンの選択的還元>>
 下記組成を10ml試験管に投入し、水素ガスをバルーン供給しながら、500rpmの回転数で撹拌し1時間水素化反応を行った。
 生成物は、1-クロロ-4-エチルベンゼン及びエチルベンゼンであり、反応収率は、その生成量を4-クロロスチレンの投入量から算出した。反応収率は、Agilent 6890N/5975MSD(GC/MS)を用いて求めた。結果を表3に示した。
〔組成〕
 ・4-クロロスチレン:89.1mg
 ・上記パラジウム炭素触媒:1.3mg
 ・溶媒としての重メタノール:1ml
<< Selective reduction of 4-chlorostyrene >>
The following composition was put into a 10 ml test tube, and a hydrogenation reaction was carried out for 1 hour with stirring at 500 rpm while supplying hydrogen gas with a balloon.
The products were 1-chloro-4-ethylbenzene and ethylbenzene, and the reaction yield was calculated from the amount of 4-chlorostyrene input. The reaction yield was determined using Agilent 6890N / 5975MSD (GC / MS). The results are shown in Table 3.
〔composition〕
・ 4-Chlorostyrene: 89.1 mg
・ Palladium carbon catalyst: 1.3mg
・ Deuterated methanol as solvent: 1ml
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、「*」は検出限界以下であることを示す。 In addition, “*” indicates that it is below the detection limit.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~4で作製した多孔質炭素材料は、比較例1~4で作製した多孔質炭素材料と比較して、触媒とした場合に、選択性に優れていた。 The porous carbon materials produced in Examples 1 to 4 were superior in selectivity when used as catalysts compared to the porous carbon materials produced in Comparative Examples 1 to 4.
 本発明の多孔質炭素材料は、触媒用の担体等に好適に使用することができる。 The porous carbon material of the present invention can be suitably used as a carrier for a catalyst.

Claims (12)

  1.  0.4g/ccの充填密度において、比抵抗値が、10Ω・cm以上10,000Ω・cm以下であることを特徴とする多孔質炭素材料。 A porous carbon material having a specific resistance value of 10 Ω · cm or more and 10,000 Ω · cm or less at a packing density of 0.4 g / cc.
  2.  X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)が、4.3°以上5.5°以下である請求項1に記載の多孔質炭素材料。 2. The porous carbon material according to claim 1, wherein a half-value width (2θ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is 4.3 ° or more and 5.5 ° or less.
  3.  植物由来である、請求項1から2のいずれかに記載の多孔質炭素材料。 The porous carbon material according to claim 1, which is derived from a plant.
  4.  籾殻由来である、請求項1から3のいずれかに記載の多孔質炭素材料。 The porous carbon material according to any one of claims 1 to 3, which is derived from rice husk.
  5.  触媒用の担体である請求項1から4のいずれかに記載の多孔質炭素材料。 The porous carbon material according to any one of claims 1 to 4, which is a support for a catalyst.
  6.  請求項1から5のいずれかに記載の多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有することを特徴とする合成反応用触媒。 A catalyst for synthesis reaction comprising the porous carbon material according to any one of claims 1 to 5 and a metal or a metal compound supported on the porous carbon material.
  7.  前記金属又は金属化合物が、パラジウムである請求項6に記載の合成反応用触媒。 The catalyst for synthesis reaction according to claim 6, wherein the metal or metal compound is palladium.
  8.  水素化還元反応に用いられる請求項6から7のいずれかに記載の合成反応用触媒。 The catalyst for synthesis reaction according to any one of claims 6 to 7, which is used in a hydrogenation reduction reaction.
  9.  2つ以上の水素化還元可能な基を有する化合物の水素化還元反応に用いられる請求項6から8のいずれかに記載の合成反応用触媒。 The catalyst for synthesis reaction according to any one of claims 6 to 8, which is used for a hydrogenation reduction reaction of a compound having two or more groups capable of hydrogenation reduction.
  10.  請求項1から5のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
     ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行うことを特徴とする多孔質炭素材料の製造方法。
    A method for producing a porous carbon material for producing the porous carbon material according to any one of claims 1 to 5,
    A method for producing a porous carbon material, characterized by performing carbonization after removing the silicon component from a raw material containing a silicon component by acid treatment or alkali treatment.
  11.  前記炭化処理の後に、賦活処理を行う請求項10に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 10, wherein an activation treatment is performed after the carbonization treatment.
  12.  前記賦活処理の温度が、700℃以上1,000℃以下である請求項11に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 11, wherein the temperature of the activation treatment is 700 ° C or higher and 1,000 ° C or lower.
PCT/JP2019/002380 2018-02-21 2019-01-24 Porous carbon material, method for producing same, and catalyst for synthesis reaction WO2019163395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-028502 2018-02-21
JP2018028502A JP6646087B2 (en) 2018-02-21 2018-02-21 Porous carbon material, method for producing the same, and catalyst for synthesis reaction

Publications (1)

Publication Number Publication Date
WO2019163395A1 true WO2019163395A1 (en) 2019-08-29

Family

ID=67687640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002380 WO2019163395A1 (en) 2018-02-21 2019-01-24 Porous carbon material, method for producing same, and catalyst for synthesis reaction

Country Status (2)

Country Link
JP (1) JP6646087B2 (en)
WO (1) WO2019163395A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123130A (en) * 1980-12-24 1982-07-31 Rhone Poulenc Ind Manufacture of metachlorophenol
JPS58146446A (en) * 1982-02-25 1983-09-01 Asahi Chem Ind Co Ltd Fixed bed catalyst
JPH1087519A (en) * 1996-09-11 1998-04-07 Kansai Tec:Kk Dechlorination treatment of polychlorinated aromatic compound
KR20040026191A (en) * 2002-09-23 2004-03-30 제일모직주식회사 Mesoporous Caborn Fibers and Method of Preparation Thereof
JP2011173109A (en) * 2010-01-26 2011-09-08 Sanwa Yushi Kk Adsorbent
CN103121674A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of high-strength and low ash content palm shell activated carbon
JP2015026480A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Electrode material and secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190277A (en) * 1991-09-26 1994-07-12 Nikko S C Kk Production of palladium catalyst
JP2002186854A (en) * 2000-12-20 2002-07-02 Nippon Shokubai Co Ltd Selective hydrogenation catalyst and method for selective hydrogenation using the same
JP4724390B2 (en) * 2004-07-16 2011-07-13 エナックス株式会社 Negative electrode carbon material for lithium ion secondary battery and method for producing the same
ATE546224T1 (en) * 2007-05-10 2012-03-15 Basf Se METHOD FOR PRODUCING AMINES
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123130A (en) * 1980-12-24 1982-07-31 Rhone Poulenc Ind Manufacture of metachlorophenol
JPS58146446A (en) * 1982-02-25 1983-09-01 Asahi Chem Ind Co Ltd Fixed bed catalyst
JPH1087519A (en) * 1996-09-11 1998-04-07 Kansai Tec:Kk Dechlorination treatment of polychlorinated aromatic compound
KR20040026191A (en) * 2002-09-23 2004-03-30 제일모직주식회사 Mesoporous Caborn Fibers and Method of Preparation Thereof
JP2011173109A (en) * 2010-01-26 2011-09-08 Sanwa Yushi Kk Adsorbent
CN103121674A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of high-strength and low ash content palm shell activated carbon
JP2015026480A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Electrode material and secondary battery

Also Published As

Publication number Publication date
JP2019142743A (en) 2019-08-29
JP6646087B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6450352B2 (en) Porous carbon material, method for producing the same, and catalyst for synthesis reaction
CN109174085B (en) Atomic-level dispersed palladium-based nano-diamond/graphene composite material catalyst and preparation method and application thereof
CN1006788B (en) The method of carboxylic acid alcohols production by hydrogenation
Truong-Phuoc et al. Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions
JP6175552B2 (en) Porous carbon material, method for producing the same, filter, sheet, and catalyst carrier
Rossetti et al. Graphitised carbon as support for Ru/C ammonia synthesis catalyst
JP2021525772A (en) Selective hydrogenation of polyunsaturated substances
Castillejos et al. When the nature of surface functionalities on modified carbon dominates the dispersion of palladium hydrogenation catalysts
WO2019163395A1 (en) Porous carbon material, method for producing same, and catalyst for synthesis reaction
WO2019163396A1 (en) Porous carbon material, method for producing same, and catalyst for synthesis reaction
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
CN111511682B (en) Activated carbon, metal-supported activated carbon using same, and hydrogenation catalyst
CN107626327B (en) Dechlorination catalyst for carbon tetrachloride
CN114890864B (en) Method for using ultralow-content gold-based catalyst in reaction of preparing vinyl chloride through fixed bed acetylene hydrochlorination
CN115155573A (en) Method for applying nitrogen-sulfur modified ultralow-content gold-based catalyst to reaction of preparing vinyl chloride through fixed bed acetylene hydrochlorination
CN107999139B (en) Preparation method of mercury-free catalyst for improving purity of vinyl chloride crude product
MXPA00004065A (en) Hydrogenation of an anthraquinoa compound in the presence of a catalyst consisting of, as the active metal, at least one metal of transition group vIII of the periodic table of the elements
CN109879719B (en) Catalyst for catalyzing polychlorinated substitute of ethane to prepare tetrachloroethylene and preparation method thereof
US20180043337A1 (en) Catalyst comprising gold homogeneously dispersed in a porous support
CN113215818A (en) Metal interstitial compound/activated carbon fiber composite material and preparation method and application thereof
CN113398977A (en) Nitrogen-doped carbon catalyst prepared by taking waste cigarette ends as carbon source and preparation method and application thereof
Liu et al. Glucose hydrogenation over Ru nanoparticles embedded in templated porous carbon
AbdelDayem Platinum-copper on carbon catalyst synthesised by reduction with hydride anion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757325

Country of ref document: EP

Kind code of ref document: A1