WO2019163363A1 - 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム - Google Patents

温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム Download PDF

Info

Publication number
WO2019163363A1
WO2019163363A1 PCT/JP2019/001737 JP2019001737W WO2019163363A1 WO 2019163363 A1 WO2019163363 A1 WO 2019163363A1 JP 2019001737 W JP2019001737 W JP 2019001737W WO 2019163363 A1 WO2019163363 A1 WO 2019163363A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
internal temperature
terminal
housing
heat
Prior art date
Application number
PCT/JP2019/001737
Other languages
English (en)
French (fr)
Inventor
美穂 西出
裕生 國安
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019163363A1 publication Critical patent/WO2019163363A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • G01K7/12Arrangements with respect to the cold junction, e.g. preventing influence of temperature of surrounding air

Definitions

  • the present invention relates to an ambient temperature measurement technique in a temperature measurement device using a thermocouple.
  • thermocouple A mode in which a thermocouple is used when measuring and adjusting the temperature of an object or target device is disclosed in, for example, Patent Document 1.
  • Patent Document 1 includes a thermocouple and a temperature adjustment device.
  • the thermocouple is connected to a connection terminal provided on the casing of the temperature adjustment device.
  • the thermocouple is placed on the target object or target device.
  • the temperature adjustment device is disposed at a position different from the target device.
  • the temperature adjusting device calculates the temperature from the voltage generated by the thermocouple and acquired through the connection terminal, and executes the temperature adjustment.
  • the calculated temperature is affected by the temperature of the connection terminal (cold junction).
  • the temperature sensor which measures the temperature of a connection terminal is provided in the housing
  • the temperature control apparatus is calculating the temperature of a target object by adding the cold junction temperature measured with this temperature sensor to the temperature measured with the thermocouple.
  • a temperature adjustment device it may be required to measure not only the temperature of the object but also the ambient temperature of the housing. Since the ambient temperature of the casing is close to the cold junction temperature, conventionally, it has been considered to use the cold junction temperature as the ambient temperature.
  • the cold junction temperature changes due to the influence of the heat source arranged inside the casing of the temperature control device. Therefore, the cold junction temperature and the ambient temperature do not necessarily match. Furthermore, the influence varies depending on the orientation (arrangement mode) of the casing of the temperature adjusting device.
  • an object of the present invention is to provide a temperature measurement technique capable of measuring the ambient temperature more accurately while suppressing the influence of the internal heat source and the influence of the arrangement mode.
  • the temperature measurement device includes a terminal temperature measurement element, a first internal temperature measurement element, a second internal temperature measurement element, and a control unit.
  • the terminal temperature measuring element is disposed in the vicinity of the terminal to which the thermocouple is connected in the housing.
  • the first internal temperature measuring element is disposed in the housing at a position closer to the heat source than the terminal temperature measuring element.
  • the second internal temperature measuring element is disposed in the housing at a position closer to the heat source than the terminal temperature measuring element and at a position different from the first internal temperature measuring element.
  • the first internal temperature measuring element and the second internal temperature measuring element include an influence of heat from the heat source in the first internal temperature measuring element and an influence of heat from the heat source in the second internal temperature measuring element.
  • the difference is arranged at a position that changes according to the posture of the housing.
  • the control unit uses the terminal temperature measured by the terminal temperature measuring element, the first internal temperature measured by the first internal temperature measuring element, and the second internal temperature measured by the second internal temperature measuring element to Calculate the body ambient temperature.
  • the second internal temperature measurement element has the same heat effect as the first internal temperature measurement element in the first posture of the housing, and the first internal temperature measurement device in the second posture of the housing.
  • the temperature measurement element and the thermal effect are arranged at different positions.
  • This configuration makes it easy to set a correction term using the first internal temperature and the second internal temperature for calculating the ambient temperature.
  • the calculation formula for calculating the ambient temperature by the control unit includes a difference term between the terminal temperature and the first internal temperature, and the correction coefficient for the difference term is the first internal temperature and the above-described correction factor. It is a value calculated from the second internal temperature.
  • the ambient temperature is calculated without using a complicated calculation formula.
  • the correction coefficient is a value corresponding to a ratio between the first internal temperature and the second internal temperature.
  • the ambient temperature is calculated using a simple calculation formula.
  • the influence of the internal heat source and the influence of the arrangement mode can be suppressed, and the ambient temperature can be measured with higher accuracy.
  • FIG. 1 is a front view of a temperature regulator
  • FIG. 1 is a side sectional view showing a schematic internal structure of a temperature regulator.
  • FIG. 1 is a figure which shows an example of the some attitude
  • FIG. 1 is a figure which shows the relationship between each attitude
  • FIG. 1 is a functional block diagram of a temperature adjustment device according to an embodiment of the present invention.
  • the temperature adjusting device 10 includes a main control unit 20, a terminal temperature measuring element 30, a first internal temperature measuring element 31, and a second internal temperature measuring element 32. Further, the temperature adjusting device 10 includes a heat source 110 that generates heat by driving.
  • the heat source 110 includes, for example, a main control unit 20, a communication unit 51, a control output unit 52, and a power supply unit 70. Note that the configuration of the heat source 110 is not limited to these, and is not limited to these sets.
  • the terminal temperature measuring element 30 is disposed in the vicinity of the thermocouple connection terminal 60.
  • the terminal temperature measuring element 30 measures the terminal temperature Tb and outputs it to the main control unit 20.
  • the first internal temperature measuring element 31 is disposed at a position that is more susceptible to heat from the heat source 110 than the terminal temperature measuring element 30.
  • the first internal temperature measuring element 31 measures the first internal temperature Tin1 and outputs it to the main control unit 20.
  • the second internal temperature measurement element 32 is arranged at a position where the influence of heat from the heat generation source 110 is different from that of the first internal temperature measurement element 31 according to the attitude of the casing of the temperature adjustment device 10.
  • the second internal temperature measuring element 32 measures the second internal temperature Tin ⁇ b> 2 and outputs it to the main control unit 20.
  • the main control unit 20 calculates the ambient temperature Ta from the following equation using the terminal temperature Tb, the first internal temperature Tin1, and the second internal temperature Tin2.
  • Ta Tb-Tg-(Formula 1)
  • Tg (Tin1-Tb) ⁇ a + b ⁇ (Formula 2)
  • a and b are correction values set from the first internal temperature Tin1 and the second internal temperature Tin2.
  • (Tin1-Tb) corresponds to the difference term referred to in the present invention, and a corresponds to the correction coefficient referred to in the present invention. Further, a is a value corresponding to the ratio between the first internal temperature Tin1 and the second internal temperature Tin2, as will be described later.
  • the temperature adjustment apparatus 10 can calculate the ambient temperature Ta more accurately.
  • FIG. 1 is a functional block diagram of a temperature adjustment device according to an embodiment of the present invention.
  • the temperature adjustment apparatus 10 includes a main control unit 20, a terminal temperature measurement element 30, a first internal temperature measurement element 31, a second internal temperature measurement element 32, a temperature detection signal generation unit 41, and a temperature detection signal.
  • a generation unit 42, a temperature detection signal generation unit 43, a temperature detection signal generation unit 44, a communication unit 51, a control output unit 52, a notification unit 53, a storage unit 54, a thermocouple connection terminal 60, and a power supply unit 70 are provided.
  • the main control unit 20 is composed of arithmetic processing elements such as a CPU, and executes a program for performing temperature measurement or temperature adjustment processing described later.
  • the storage unit 54 includes volatile and nonvolatile storage devices. The storage unit 54 is connected to the main control unit 20.
  • the non-volatile storage device stores the program and a correction value described later.
  • the volatile storage device is used as a work area when the main control unit 20 executes the program.
  • the terminal temperature measuring element 30, the first internal temperature measuring element 31, and the second internal temperature measuring element 32 are realized by, for example, a temperature sensor using a resistance thermometer, a thermistor, or a semiconductor.
  • the terminal temperature measuring element 30 is connected to the temperature detection signal generating unit 42.
  • the temperature detection signal generation unit 42 is connected to the main control unit 20.
  • the terminal temperature measuring element 30 generates a terminal temperature measurement voltage corresponding to the sensed temperature.
  • the measured voltage of this terminal temperature corresponds to the terminal temperature Tb.
  • the temperature detection signal generation unit 42 amplifies and A / D (analog / digital) converts the measured voltage of the terminal temperature, and outputs it to the main control unit 20.
  • the first internal temperature measurement element 31 is connected to the temperature detection signal generation unit 43.
  • the temperature detection signal generation unit 43 is connected to the main control unit 20.
  • the first internal temperature measurement element 31 generates a measurement voltage of the first internal temperature according to the sensed temperature.
  • the measurement voltage of the first internal temperature corresponds to the first internal temperature Tin1.
  • the temperature detection signal generation unit 43 amplifies and A / D (analog / digital) converts the measurement voltage of the first internal temperature and outputs the amplified voltage to the main control unit 20.
  • the second internal temperature measurement element 32 is connected to the temperature detection signal generation unit 44.
  • the temperature detection signal generation unit 44 is connected to the main control unit 20.
  • the second internal temperature measurement element 32 generates a measurement voltage of the second internal temperature according to the sensed temperature.
  • the measurement voltage of the second internal temperature corresponds to the second internal temperature Tin2.
  • the temperature detection signal generation unit 44 amplifies and A / D (analog / digital) converts the measurement voltage of the second internal temperature, for example, and outputs it to the main control unit 20.
  • thermocouple connection terminal 60 is connected to the external thermocouple 600 and is also connected to the temperature detection signal generator 41.
  • the temperature detection signal generation unit 41 is connected to the main control unit 20.
  • the thermocouple connection terminal 60 generates a measurement voltage corresponding to the temperature sensed by the thermocouple 600. This measured voltage corresponds to the temperature of the detection object before correction.
  • the temperature detection signal generation unit 41 amplifies and A / D (analog / digital) converts the measurement voltage of the detection target before correction and outputs the amplified voltage to the main control unit 20.
  • the main control unit 20 calculates the ambient temperature Ta using the terminal temperature Tb, the first internal temperature Tin1, and the second internal temperature Tin2.
  • the ambient temperature Ta corresponds to the temperature in the vicinity of the thermocouple connection terminal 60 in the temperature adjusting device 10. A specific method for calculating the ambient temperature Ta will be described later.
  • the main control unit 20 uses the calculated terminal temperature Tb to correct the temperature of the detection target before correction using a known method, and calculates the temperature of the detection target. Further, the main control unit 20 generates a temperature control signal using the difference between the calculated temperature of the detected object and the target temperature, and outputs the temperature control signal to the control output unit 52.
  • the temperature control signal is a signal for controlling the control output unit 52 so that the difference between the calculated temperature of the detected object and the target temperature approaches zero.
  • the communication unit 51 includes, for example, a communication interface IC.
  • the communication unit 51 is connected to the main control unit 20 and is connected to an external control network or the like.
  • the communication unit 51 transmits, for example, at least one of the ambient temperature Ta calculated by the main control unit 20 and the corrected temperature of the detected object to another control device, a database, or the like via the control network.
  • the control output unit 52 is constituted by, for example, a power control transistor.
  • the control output unit 52 is connected to the main control unit 20 and is connected to an external known power control device that controls energization to a heater or the like that heats the detection target. Control of the power control apparatus via the control output unit 52 realizes temperature adjustment for the detected object.
  • the notification unit 53 includes, for example, an LED, a liquid crystal display panel, and the like.
  • the notification unit 53 is connected to the main control unit 20.
  • the notification unit 53 displays any one of the ambient temperature Ta calculated by the main control unit 20, the corrected temperature of the detected object, the temperature adjustment state, and the like.
  • the power supply unit 70 is connected to an external power supply 700 via a power supply bus line or the like.
  • the power supply unit 70 receives power from the external power source 700, converts the voltage into a voltage corresponding to each function unit, and each function unit that requires power (the portion surrounded by a thick dotted line in FIG. 1). ).
  • a portion that generates heat by driving becomes a heat source 110 of the temperature adjusting device 10.
  • the heat source 110 corresponds to the hatched portion surrounded by the thin dotted line shown in FIG. 1, and the main control unit 20, the communication unit 51, the control output unit 52, and the power supply unit 70. including.
  • FIG. 2A is a front view of the temperature adjustment device
  • FIG. 2B is a side sectional view showing a schematic internal structure of the temperature adjustment device.
  • the temperature adjustment device 10 includes a housing 90 and a substrate 900.
  • the housing 90 includes a front wall 901, a back wall 902, a top wall 903, a bottom wall 904, a side wall 905, and a side wall 906.
  • the housing 90 has an internal space surrounded by these walls.
  • a thermocouple connection terminal 60 is disposed on the front wall 901.
  • the substrate 900 includes the main control unit 20, the terminal temperature measurement element 30, the first internal temperature measurement element 31, the second internal temperature measurement element 32, the temperature detection signal generation unit 41, the temperature detection signal generation unit 42, and the temperature detection.
  • Devices that implement the signal generation unit 43, the temperature detection signal generation unit 44, the communication unit 51, the control output unit 52, the notification unit 53, the storage unit 54, and the power supply unit 70 are mounted. Note that the notification unit 53 may not be directly mounted on the substrate 900.
  • the terminal temperature measuring element 30 is disposed in the vicinity of the front wall 901 of the substrate 900, that is, in the vicinity of the thermocouple connection terminal 60.
  • the first internal temperature measuring element 31 and the second internal temperature measuring element 32 are arranged at positions that are more easily affected by heat from the heat source 110 than the terminal temperature measuring element 30.
  • the position that is easily affected by heat from the heat source 110 is, for example, a position where a physical distance to the heat source 110 is close, or a position where heat conduction to the heat source 110 is high.
  • first internal temperature measurement element 31 and the second internal temperature measurement element 32 have substantially the same influence of heat from the heat source 110 in the first posture of the housing 90 and the first posture of the housing 90.
  • second posture, third posture the heat from the heat source 110 is arranged at different positions.
  • the first posture is a posture in which the top wall 903 shown in FIG. 2B is on the upper side of the housing 90
  • the second posture is the front wall shown in FIG. 3A.
  • the posture 901 is an upper side of the housing 90
  • the third posture is a posture in which the back wall 902 shown in FIG.
  • the first internal temperature measuring element 31 and the second internal temperature measuring element 32 are formed of a housing 90.
  • the heat source 110 is disposed on the same side, and the distance from the heat source 110 in this direction is also substantially the same.
  • the second internal temperature measuring element 32 is disposed at a position spaced apart from the first internal temperature measuring element 31 by a predetermined distance on the front wall 901 side. In other words, the second internal temperature measurement element 32 is disposed between the terminal temperature measurement element 30 and the first internal temperature measurement element 31.
  • the first internal temperature measuring element 31 and the second internal temperature measuring element 32 are substantially the same affected by the heat of the heat source 110.
  • the second internal temperature measurement element 32 is more susceptible to the heat of the heat source 110 than the first internal temperature measurement element 31, similarly to the terminal temperature measurement element 30.
  • the second internal temperature measurement element 32 is less susceptible to the heat of the heat source 110 than the first internal temperature measurement element 31, like the terminal temperature measurement element 30. .
  • FIG. 4A is a diagram showing the magnitude of the influence of internal heat generation on the ambient temperature, terminal temperature, and internal temperature (first internal temperature) in the front-facing arrangement (first posture).
  • FIG. 4B is a diagram illustrating the magnitude of the influence of internal heat generation on the ambient temperature, the terminal temperature, and the internal temperature (first internal temperature) in the upward arrangement (second posture).
  • FIG. 4C is a diagram illustrating the magnitude of the influence of internal heat generation of the ambient temperature, the terminal temperature, and the internal temperature (first internal temperature) in the downward arrangement (third posture).
  • the ambient temperature Ta hardly changes regardless of the arrangement (posture).
  • the terminal temperature Tb and the first internal temperature Tin1 change according to the posture.
  • first posture in the front-facing arrangement
  • second attitude in the upward arrangement (second attitude)
  • the terminal temperature Tb is more greatly affected by heat than the first internal temperature Tin1.
  • FIG. 4C in the downward arrangement (third posture), the first internal temperature Tin1 is more greatly affected by heat than the terminal temperature Tb.
  • the terminal temperature Tb is affected by the heat generated by the heat source 110, and an error occurs.
  • the temperature adjustment device 10 executes the following configuration and processing.
  • FIG. 5 is a diagram showing the relationship between the difference between the first internal temperature Tin1 and the second internal temperature Tin2 and each posture.
  • the second internal temperature measurement element 32 is provided between the terminal temperature measurement element 30 and the first internal temperature measurement element 31. Is arranged. Therefore, the influence of the second internal temperature measurement element 32 due to heat generation is closer to the influence of the terminal temperature measurement element 30 due to heat generation than the influence of the first internal temperature measurement element 31 due to heat generation.
  • the value obtained by subtracting the second internal temperature Tin2 from the first internal temperature Tin1 is substantially 0 in the front-facing arrangement (first attitude), and is a negative value in the upward arrangement (second attitude). In the downward arrangement (third posture), it becomes a positive value.
  • the main control unit 20 calculates the ambient temperature Ta using the following equations.
  • Ta Tb-Tg-(Formula 1)
  • Tg (Tin1-Tb) ⁇ a + b ⁇ (Formula 2)
  • a (Tin2 / Tin1) ⁇ c ⁇ (Formula 3)
  • b (Tin2 / Tin1) ⁇ d ⁇ (Formula 4)
  • Tb is the terminal temperature
  • Tg is the thermal error
  • Tin1 is the first internal temperature
  • Tin2 is the second internal temperature.
  • c and d are correction values determined in advance through experiments or the like.
  • a is a value corresponding to the ratio between the first internal temperature Tin1 and the second internal temperature Tin2.
  • the thermal error Tg due to the heat source 110 included in the terminal temperature Tb is corrected. Further, the influence of the heat error Tg on the heat source 110 is suppressed.
  • the main controller 20 can accurately calculate the ambient temperature Ta without being affected by the heat generation state of the heat source 110 and the attitude of the housing 90.
  • correction values c and d may be set as follows, for example. Note that the following method is performed under the condition that there is no adjacent device or that the device is not affected by heat from the adjacent device.
  • a state in which the heat generation from the heat source 110 is the smallest is realized by fixing to one kind of posture (the above-described front arrangement (first posture)).
  • the temperature at this time is arbitrary but constant.
  • the terminal temperature Tb and the first internal temperature Tin1 at this time are measured and recorded.
  • the ambient temperature Ta is measured and recorded using another temperature measuring instrument or the like.
  • the state in which the heat generation from the heat source 110 is the smallest is, for example, a state in which the control output unit 52 is in an operation off state and the communication load of the communication unit 51 is the smallest.
  • (A-2) The same operating state as (A-1) above, but with a different constant temperature.
  • the terminal temperature Tb and the first internal temperature Tin1 at this time are measured and recorded.
  • the ambient temperature Ta is measured and recorded using another temperature measuring instrument or the like.
  • (B) Second method (a method of setting from the condition that the difference in heat generation is maximized) (B-1) Similar to the above (A-1), it is fixed in one kind of posture (the above-described front arrangement (first posture)) to realize a state where the heat generation of the heat source 110 is the smallest.
  • the temperature at this time is arbitrary but constant.
  • the terminal temperature Tb and the first internal temperature Tin1 at this time are measured and recorded.
  • the ambient temperature Ta is measured and recorded using another temperature measuring instrument or the like.
  • (B-2) A state in which the heat generation from the heat source 110 is the largest is realized by fixing to one kind of posture (the above-described front arrangement (first posture)).
  • the temperature at this time is arbitrary but constant.
  • the terminal temperature Tb and the first internal temperature Tin1 at this time are measured and recorded.
  • the ambient temperature Ta is measured and recorded using another temperature measuring instrument or the like.
  • the state in which the heat generation from the heat source 110 is the largest is, for example, a state in which the control output unit 52 is in an operation-on state and the communication load of the communication unit 51 is the largest.
  • the ambient temperature Ta can be accurately calculated without using a complicated calculation formula.
  • FIG. 6 is a flowchart showing the temperature measurement method according to the embodiment of the present invention.
  • the temperature adjusting device 10 acquires the terminal temperature Tb (S11).
  • the temperature adjusting device 10 acquires the first internal temperature Tin1 and the second internal temperature Tin2 (S12).
  • the temperature adjustment device 10 calculates the ambient temperature Ta by substituting the terminal temperature Tb, the first internal temperature Tin1, and the second internal temperature Tin2 into the above-described (Expression 1) and (Expression 2).
  • the configuration of the temperature adjustment device 10 is shown. However, when the above-described temperature adjustment processing is not performed, for example, when the configuration does not include the control output unit 52, the temperature adjustment device 10 is also used. it can.
  • the ratio between the first internal temperature Tin1 and the second internal temperature Tin2 is used as the correction coefficient for calculating the ambient temperature Ta.
  • any value corresponding to the ratio using the first internal temperature Tin1 and the second internal temperature Tin2 can be used for the correction coefficient.
  • Temperature control device 20 Main control unit 30: Terminal temperature measurement element 31: First internal temperature measurement element 32: Second internal temperature measurement elements 41, 42, 43, 44: Temperature detection signal generation unit 51: Communication unit 52 : Control output unit 53: Notification unit 54: Storage unit 60: Thermocouple connection terminal 70: Power supply unit 90: Case 110: Heat source 600: Thermocouple 700: External power supply 900: Substrate 901: Front wall 902: Back wall 903: Top wall 904: Bottom wall 905, 906: Side wall

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Temperature (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

端子温度測定素子(30)は、筐体(90)内における熱電対(600)が接続される端子の近傍、第1内部温度測定素子(31)と第2内部温度測定素子(32)は、筐体(900)内の、端子温度測定素子(30)よりも発熱源に近い位置、に配置されている。第1内部温度測定素子(31)における発熱源からの熱の影響と、第2内部温度測定素子(32)における発熱源からの熱の影響との差が筐体(90)の姿勢に応じて変化する。メイン制御部(20)は、3つの温度測定素子によって測定された温度を用いて、筐体(90)の周囲温度を算出する。

Description

温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム
 本発明は、熱電対を用いた温度測定装置における周囲温度の測定技術に関する。
 対象物または対象機器の温度を測定して調整する際に、熱電対を利用する態様が、例えば、特許文献1に示されている。
 特許文献1の構成は、熱電対と温度調整装置とを備える。熱電対は、温度調整装置の筐体に設けられた接続端子に接続されている。
 熱電対は、対象物または対象装置に配置されている。温度調整装置は、対象機器とは別の位置に配置されている。温度調整装置は、熱電対で発生し、接続端子を介して取得した電圧から温度を算出して、温度の調整を実行する。
 この場合、算出される温度は、接続端子(冷接点)の温度の影響を受けてしまう。このため、特許文献1の構成では、接続端子の温度を測定する温度センサを、温度調整装置の筐体に備える。そして、温度調整装置は、熱電対で測定した温度に、この温度センサで測定した冷接点温度を加算することで、対象物の温度を算出している。
特開2001-124636号公報
 温度調整装置として、対象物の温度のみでなく、筐体の周囲温度を測定することが求められることがある。筐体の周囲温度は、冷接点温度に近いため、従来では、冷接点温度を用いて、周囲温度とすることも考えられていた。
 しかしながら、冷接点温度は、温度調整装置の筐体の内部に配置された発熱源の影響を受けて変化する。したがって、冷接点温度と周囲温度とは、必ずしも一致しない。さらには、温度調整装置の筐体の配置の向き(配置態様)によって、その影響は変化する。
 このため、冷接点温度を周囲温度にとする従来の温度測定方法では、この影響を十分に相殺できず、周囲温度に誤差を有してしまうことがあった。
 したがって、本発明の目的は、内部の発熱源の影響、配置態様による影響を抑制し、周囲温度をより精度良く測定できる温度測定技術を提供することにある。
 本開示の一例によれば、温度測定装置は、端子温度測定素子、第1内部温度測定素子、第2内部温度測定素子、および、制御部を備える。端子温度測定素子は、筐体内における熱電対が接続される端子の近傍に配置されている。第1内部温度測定素子は、筐体内において、端子温度測定素子よりも発熱源に近い位置に配置されている。第2内部温度測定素子は、筐体内において、端子温度測定素子よりも発熱源に近い位置で、第1内部温度測定素子と異なる位置に配置されている。また、第1内部温度測定素子、および第2内部温度測定素子は、第1内部温度測定素子における発熱源からの熱の影響と、第2内部温度測定素子における発熱源からの熱の影響との差が、筐体の姿勢に応じて変化する位置に配置されている。制御部は、端子温度測定素子が測定した端子温度と、第1内部温度測定素子が測定した第1内部温度と、第2内部温度測定素子が測定した第2内部温度と、を用いて、筐体の周囲温度を算出する。
 この構成では、内部温度を用いることによって、端子温度に対する発熱源の熱の影響が抑制される。さらに、内部温度の測定箇所が、筐体内のそれぞれに異なる複数箇所であることによって、筐体の姿勢による周囲温度の算出結果に与える影響が、抑制される。
 本開示の一例によれば、第2内部温度測定素子は、筐体の第1姿勢において、第1内部温度測定素子と熱の影響が同じであり、筐体の第2姿勢において、第1内部温度測定素子と熱の影響が異なる、位置に配置されている。
 この構成では、周囲温度を算出するための第1内部温度と第2内部温度とを用いた補正項の設定が容易になる。
 本開示の一例によれば、制御部が周囲温度を算出する算出式には、端子温度と、第1内部温度との差分項が含まれ、この差分項の補正係数が第1内部温度と前記第2内部温度とから算出される値である。
 この構成では、複雑な算出式を用いることなく、周囲温度が算出される。
 本開示の一例によれば、補正係数は、第1内部温度と第2内部温度との比に応じた値である。
 この構成では、簡素な算出式を用いて、周囲温度が算出される。
 この発明によれば、内部の発熱源の影響、配置態様による影響を抑制し、周囲温度をより精度良く測定できる。
本発明の実施形態に係る温度調整装置の機能ブロック図である。 (A)は、温度調整装置の正面図であり、(B)は、温度調整装置の概略的な内部構造を示す側面断面図である。 (A)、(B)は、温度調整装置の複数の姿勢の一例を示す図である。 (A)、(B)、(C)は、姿勢による温度の影響を示すグラフである。 第1内部温度Tin1と第2内部温度Tin2との差と、各姿勢との関係を示す図である。 本発明の実施形態に係る温度測定方法を示すフローチャートである。
 以下、本発明の実施形態を、図を参照して説明する。
 ・適用例
 まず、本発明の実施形態に係る温度調整装置の適用例について説明する。図1は、本発明の実施形態に係る温度調整装置の機能ブロック図である。
 図1に示すように、温度調整装置10は、メイン制御部20、端子温度測定素子30、第1内部温度測定素子31、および、第2内部温度測定素子32を備える。また、温度調整装置10は、駆動によって熱を発生する発熱源110を有する。発熱源110には、例えば、メイン制御部20、通信部51、制御出力部52、および、電源供給部70が含まれる。なお、発熱源110の構成は、これらに限らず、これらの組に限るものではない。
 端子温度測定素子30は、熱電対接続端子60の近傍に配置されている。端子温度測定素子30は、端子温度Tbを測定し、メイン制御部20に出力する。
 第1内部温度測定素子31は、端子温度測定素子30よりも発熱源110による熱の影響を受け易い位置に配置されている。第1内部温度測定素子31は、第1内部温度Tin1を測定し、メイン制御部20に出力する。
 第2内部温度測定素子32は、発熱源110からの熱の影響が温度調整装置10の筐体の姿勢に応じて第1内部温度測定素子31と異なる位置に配置されている。第2内部温度測定素子32は、第2内部温度Tin2を測定し、メイン制御部20に出力する。
 メイン制御部20は、端子温度Tb、第1内部温度Tin1、および、第2内部温度Tin2を用いて、次式から、周囲温度Taを算出する。
 Ta=Tb-Tg    -(式1)
 Tg=(Tin1-Tb)×a+b    -(式2)
 なお、a、bは、第1内部温度Tin1と第2内部温度Tin2とから設定される補正値である。
 また、(Tin1-Tb)が、この発明で言う差分項に相当し、aが、この発明で言う補正係数に相当する。さらに、aは、後述するように、第1内部温度Tin1と第2内部温度Tin2との比に応じた値である。
 このような構成および処理を用いることによって、温度調整装置10内の発熱源110からの熱の影響を算出式上で抑制し、且つ、筐体の姿勢による発熱源110からの熱の影響の変化が、周囲温度Taの算出に与える影響を抑制できる。これにより、温度調整装置10は、周囲温度Taをより精度良く算出できる。
 ・構成例
 本発明の実施形態に係る温度調整装置について、図を参照して説明する。図1は、本発明の実施形態に係る温度調整装置の機能ブロック図である。
 (機能ブロック)
 図1に示すように、温度調整装置10は、メイン制御部20、端子温度測定素子30、第1内部温度測定素子31、第2内部温度測定素子32、温度検出信号生成部41、温度検出信号生成部42、温度検出信号生成部43、温度検出信号生成部44、通信部51、制御出力部52、通知部53、記憶部54、熱電対接続端子60、および、電源供給部70を備える。
 メイン制御部20は、CPU等の演算処理素子からなり、後述の温度測定、または、温度調整の処理を実行するプログラムを実行する。記憶部54は、揮発性および不揮発性の記憶デバイスからなる。記憶部54は、メイン制御部20に接続されている。不揮発性の記憶デバイスには、前記プログラム、および、後述の補正値が記憶されている。揮発性の記憶デバイスは、メイン制御部20がプログラムを実行する際の作業領域等として利用される。
 端子温度測定素子30、第1内部温度測定素子31、および、第2内部温度測定素子32は、例えば、測熱抵抗体、サーミスタ、または、半導体等を用いた温度センサによって実現されている。
 端子温度測定素子30は、温度検出信号生成部42に接続されている。温度検出信号生成部42は、メイン制御部20に接続されている。
 端子温度測定素子30は、感知した温度に応じた端子温度の測定電圧を発生する。この端子温度の測定電圧が、端子温度Tbに対応する。温度検出信号生成部42は、例えば、端子温度の測定電圧を、増幅、A/D(アナログ/デジタル)変換して、メイン制御部20に出力する。
 第1内部温度測定素子31は、温度検出信号生成部43に接続されている。温度検出信号生成部43は、メイン制御部20に接続されている。
 第1内部温度測定素子31は、感知した温度に応じた第1内部温度の測定電圧を発生する。この第1内部温度の測定電圧が、第1内部温度Tin1に対応する。温度検出信号生成部43は、例えば、第1内部温度の測定電圧を、増幅、A/D(アナログ/デジタル)変換して、メイン制御部20に出力する。
 第2内部温度測定素子32は、温度検出信号生成部44に接続されている。温度検出信号生成部44は、メイン制御部20に接続されている。
 第2内部温度測定素子32は、感知した温度に応じた第2内部温度の測定電圧を発生する。この第2内部温度の測定電圧が、第2内部温度Tin2に対応する。温度検出信号生成部44は、例えば、第2内部温度の測定電圧を、増幅、A/D(アナログ/デジタル)変換して、メイン制御部20に出力する。
 熱電対接続端子60は、外部の熱電対600に接続されるとともに、温度検出信号生成部41に接続されている。温度検出信号生成部41は、メイン制御部20に接続されている。
 熱電対接続端子60は、熱電対600が感知した温度に応じた測定電圧を発生する。この測定電圧が、補正前の被検知体の温度に対応する。温度検出信号生成部41は、例えば、補正前の被検知体の測定電圧を、増幅、A/D(アナログ/デジタル)変換して、メイン制御部20に出力する。
 メイン制御部20は、端子温度Tb、第1内部温度Tin1、および、第2内部温度Tin2を用いて、周囲温度Taを算出する。周囲温度Taとは、温度調整装置10における熱電対接続端子60の近傍の温度に対応する。なお、周囲温度Taの具体的な算出方法は、後述する。
 また、メイン制御部20は、算出した端子温度Tbを用いて、既知の方法から、補正前の被検知体の温度を補正し、被検知体の温度を算出する。さらには、メイン制御部20は、算出した被検知体の温度と目標温度との差を用いて、温度制御信号を生成し、制御出力部52に出力する。温度制御信号は、算出した被検知体の温度と目標温度との差が0に近づくように、制御出力部52を制御する信号である。
 通信部51は、例えば、通信用のインターフェースIC等からなる。通信部51は、メイン制御部20に接続されるとともに、外部の制御ネットワーク等に接続されている。通信部51は、例えば、メイン制御部20で算出された周囲温度Ta、補正後の被検知体の温度の少なくとも一方を、制御ネットワークを介して、他の制御機器、データベース等に送信する。
 制御出力部52は、例えば、電力制御用のトランジスタ等によって構成されている。制御出力部52は、メイン制御部20に接続されるとともに、被検知体を加熱するヒータ等へ通電を制御する外部の既知の電力制御装置に接続されている。この制御出力部52を介した電力制御装置の制御によって、被検知体に対する温度調整が実現される。
 通知部53は、例えば、LED、液晶表示パネル等によって構成されている。通知部53は、メイン制御部20に接続されている。通知部53は、メイン制御部20で算出された周囲温度Ta、補正後の被検知体の温度、温度調整の状態等のいずれかを表示する。
 電源供給部70は、電源用のバスライン等を介して、外部電源700に接続されている。電源供給部70は、外部電源700から電力の供給を受けて、それぞれの機能部に応じた電圧に変換し、電力を必要とする各機能部(図1に示す、太い点線で囲まれた部分)に供給する。
 このような構成において、駆動によって熱を発生する部分が、温度調整装置10の発熱源110となる。例えば、図1の例では、発熱源110は、図1に示す細い点線で囲まれたハッチングの部分に相当し、メイン制御部20、通信部51、制御出力部52、および、電源供給部70を含む。
 (構造)
 図2(A)は、温度調整装置の正面図であり、図2(B)は、温度調整装置の概略的な内部構造を示す側面断面図である。
 図2(A)、図2(B)に示すように、温度調整装置10は、筐体90、基板900を備える。筐体90は、正面壁901、背面壁902、天面壁903、底面壁904、側面壁905、および、側面壁906を備える。筐体90は、これらの壁によって囲まれる内部空間を有する。正面壁901には、熱電対接続端子60が配置されている。
 基板900には、上述のメイン制御部20、端子温度測定素子30、第1内部温度測定素子31、第2内部温度測定素子32、温度検出信号生成部41、温度検出信号生成部42、温度検出信号生成部43、温度検出信号生成部44、通信部51、制御出力部52、通知部53、記憶部54、および、電源供給部70を実現するデバイスが実装されている。なお、通知部53は、基板900に直接に実装されていなくてもよい。
 この際、図2(B)に示すように、端子温度測定素子30は、基板900における正面壁901の近傍、すなわち、熱電対接続端子60の近傍に配置されている。
 第1内部温度測定素子31および第2内部温度測定素子32は、端子温度測定素子30と比較して、発熱源110による熱の影響を受け易い位置に配置されている。発熱源110による熱の影響を受け易い位置とは、例えば、発熱源110までの物理的な距離が近い位置、また、発熱源110までの熱伝導が高い位置である。
 さらに、第1内部温度測定素子31と第2内部温度測定素子32は、筐体90の第1姿勢において、発熱源110からの熱の影響が略同じで、且つ、筐体90の第1姿勢以外の姿勢(第2姿勢、第3姿勢)において、発熱源110からの熱の影響が異なる位置に配置されている。なお、ここでは、第1姿勢とは、図2(B)に示した天面壁903が筐体90の上側になる姿勢であり、第2姿勢とは、図3(A)に示した正面壁901が筐体90の上側になる姿勢であり、第3姿勢とは、図3(B)に示した背面壁902が筐体90の上側になる姿勢である。
 そして、具体的な一例として、図2(B)、図3(A)、図3(B)に示すように、第1内部温度測定素子31と第2内部温度測定素子32は、筐体90の天面壁903と底面壁904とを結ぶ方向において、発熱源110に対して同じ側に配置されており、この方向における発熱源110からの距離も略同じである。さらに、第2内部温度測定素子32は、第1内部温度測定素子31に対して、正面壁901側に所定距離離間した位置に配置されている。言い換えれば、第2内部温度測定素子32は、端子温度測定素子30と第1内部温度測定素子31との間に配置されている。
 このような構造とすることによって、図2(B)に示す第1姿勢では、第1内部温度測定素子31と第2内部温度測定素子32とが発熱源110の熱から受ける影響は略同じになる。図3(A)に示す第2姿勢では、第2内部温度測定素子32は、端子温度測定素子30と同様に、第1内部温度測定素子31よりも、発熱源110の熱の影響を受け易い。図3(B)に示す第3姿勢では、第2内部温度測定素子32は、端子温度測定素子30と同様に、第1内部温度測定素子31よりも、発熱源110の熱の影響を受け難い。
 図4(A)は、正面向き配置(第1姿勢)における周囲温度、端子温度、内部温度(第1内部温度)の内部発熱による影響の大きさを示す図である。図4(B)は、上向き配置(第2姿勢)における周囲温度、端子温度、内部温度(第1内部温度)の内部発熱による影響の大きさを示す図である。図4(C)は、下向き配置(第3姿勢)における周囲温度、端子温度、内部温度(第1内部温度)の内部発熱による影響の大きさを示す図である。
 図4(A)、図4(B)、図4(C)に示すように、配置(姿勢)によらず、周囲温度Taは殆ど変化しない。一方、端子温度Tbおよび第1内部温度Tin1は、姿勢に応じて、変化する。例えば、図4(A)に示すように、正面向き配置(第1姿勢)では、端子温度Tbおよび第1内部温度Tin1は、負荷の大きさに応じて、類似する影響を受ける。図4(B)に示すように、上向き配置(第2姿勢)では、端子温度Tbは、第1内部温度Tin1よりも熱の影響を大きく受ける。逆に、図4(C)に示すように、下向き配置(第3姿勢)では、第1内部温度Tin1は、端子温度Tbよりも熱の影響を大きく受ける。
 このような発熱源110が温度調整装置10にある場合、端子温度Tbは、発熱源110で発生する熱の影響を受け、誤差を生じてしまう。
 このような発熱源110の熱の影響による誤差を補正するために、温度調整装置10は、次に示す構成および処理を実行する。
 図5は、第1内部温度Tin1と第2内部温度Tin2との差と、各姿勢との関係を示す図である。
 上述の図2(B)、図3(A)、図3(B)に示すように、第2内部温度測定素子32は、端子温度測定素子30と第1内部温度測定素子31との間に配置されている。したがって、第2内部温度測定素子32が発熱により受ける影響は、第1内部温度測定素子31が発熱により受ける影響よりも、端子温度測定素子30が発熱により受ける影響に近くなる。
 これにより、図5に示すように、第1内部温度Tin1から第2内部温度Tin2を減算した値は、正面向き配置(第1姿勢)では略0となり、上向き配置(第2姿勢)では負値となり、下向き配置(第3姿勢)では正値となる。
 すなわち、この減算した値を、周囲温度Taの算出式の補正に用いることによって、姿勢による誤差を抑制することが可能になる。
 メイン制御部20は、次の各式を用いて、周囲温度Taを算出する。
 Ta=Tb-Tg    -(式1)
 Tg=(Tin1-Tb)×a+b    -(式2)
 a=(Tin2/Tin1)×c     -(式3)
 b=(Tin2/Tin1)×d     -(式4)
 なお、上述のように、Tbは端子温度、Tgは熱誤差、Tin1は第1内部温度、Tin2は第2内部温度である。また、c、dは、予め実験等によって決定した補正値である。
 式3から明らかなように、aは、第1内部温度Tin1と第2内部温度Tin2との比に応じた値である。
 これらの式を用いることによって、端子温度Tbに含まれる発熱源110による熱誤差Tgが補正される。また、熱誤差Tgが発熱源110によって受ける影響が抑制される。
 これにより、メイン制御部20は、発熱源110の発熱状態、筐体90の姿勢に影響されることなく、周囲温度Taを精度良く算出できる。
 補正値c、dは、例えば、次に示すように設定すればよい。なお、以下の方法では、隣接する機器が存在しない、または、隣接する機器からの熱の影響を受けない条件で実行される。
 (A)第1の方法(異なる2種類の温度条件から設定する方法)
 (A-1)1種類の姿勢(上述の正面配置(第1姿勢))に固定して、発熱源110の発熱が最も小さい状態を実現する。この際の温度は任意であるが、一定とする。この時の端子温度Tb、第1内部温度Tin1を測定し、記録する。また、周囲温度Taを他の温度計測器等を用いて測定し、記録する。ここで、発熱源110の発熱が最も小さい状態とは、例えば、制御出力部52が動作オフ状態にあり、通信部51の通信負荷が最も小さい状態である。
 (A-2)上述の(A-1)と同じ動作状態で、異なる一定温度の状態とする。この時の端子温度Tb、第1内部温度Tin1を測定し、記録する。また、周囲温度Taを他の温度計測器等を用いて測定し、記録する。
 (A-3)上述の(A-1)、(A-2)の測定結果を、上述の(式1)、(式2)に代入し、連立方程式から、a、bを算出する。そして、算出したaを補正値cに設定し、算出したbを補正値dに設定する。
 (B)第2の方法(発熱の差が最大になる条件から設定する方法)
 (B-1)上述の(A-1)と同様に、1種類の姿勢(上述の正面配置(第1姿勢))に固定して、発熱源110の発熱が最も小さい状態を実現する。この際の温度は任意であるが、一定とする。この時の端子温度Tb、第1内部温度Tin1を測定し、記録する。また、周囲温度Taを他の温度計測器等を用いて測定し、記録する。
 (B-2)1種類の姿勢(上述の正面配置(第1姿勢))に固定して、発熱源110の発熱が最も大きい状態を実現する。この際の温度は任意であるが、一定とする。この時の端子温度Tb、第1内部温度Tin1を測定し、記録する。また、周囲温度Taを他の温度計測器等を用いて測定し、記録する。ここで、発熱源110の発熱が最も大きい状態とは、例えば、制御出力部52が動作オン状態にあり、通信部51の通信負荷が最も大きな状態である。
 (B-3)上述の(B-1)、(B-2)の測定結果を、上述の(式1)、(式2)に代入し、連立方程式から、a、bを算出する。そして、算出したaを補正値cに設定し、算出したbを補正値dに設定する。
 このような処理を用いることによって、複雑な算出式を用いることなく、周囲温度Taを精度良く算出できる。
 なお、上述の説明では、周囲温度Taの算出を、複数の機能ブロックに分けて実行する態様を示したが、周囲温度Taの算出は、図6に示すフローに示す処理を少なくとも有しいればよい。図6は、本発明の実施形態に係る温度測定方法を示すフローチャートである。
 温度調整装置10は、端子温度Tbを取得する(S11)。温度調整装置10は、第1内部温度Tin1と第2内部温度Tin2を取得する(S12)。温度調整装置10は、端子温度Tb、第1内部温度Tin1、および、第2内部温度Tin2を、上述の(式1)、(式2)に代入して、周囲温度Taを算出する。
 また、上述の説明では、温度調整装置10の構成を示したが、上述の温度調整用の処理を行わない場合、例えば、制御出力部52を有さない構成の場合、温度測定装置としても利用できる。
 また、上述の説明では、周囲温度Taの算出用の補正係数に、第1内部温度Tin1と第2内部温度Tin2との比を用いた。しかしながら、第1内部温度Tin1と第2内部温度Tin2とを用いた当該比に相当する値であれば、補正係数に利用できる。
10:温度調整装置
20:メイン制御部
30:端子温度測定素子
31:第1内部温度測定素子
32:第2内部温度測定素子
41、42、43、44:温度検出信号生成部
51:通信部
52:制御出力部
53:通知部
54:記憶部
60:熱電対接続端子
70:電源供給部
90:筐体
110:発熱源
600:熱電対
700:外部電源
900:基板
901:正面壁
902:背面壁
903:天面壁
904:底面壁
905、906:側面壁

Claims (6)

  1.  筐体内における熱電対が接続される端子の近傍に配置された端子温度測定素子と、
     前記筐体内において、前記端子温度測定素子よりも発熱源に近い位置に配置された第1内部温度測定素子と、
     前記筐体内において、前記端子温度測定素子よりも前記発熱源に近い位置で、前記第1内部温度測定素子と異なる位置に配置された第2内部温度測定素子と、
     前記端子温度測定素子が測定した端子温度と、前記第1内部温度測定素子が測定した第1内部温度と、前記第2内部温度測定素子が測定した第2内部温度と、を用いて、前記筐体の周囲温度を算出する制御部と、
     を備え、
     前記第1内部温度測定素子、および前記第2内部温度測定素子は、前記第1内部温度測定素子における前記発熱源からの熱の影響と、前記第2内部温度測定素子における前記発熱源からの熱の影響との差が、前記筐体の姿勢に応じて変化する位置に配置されている、
     温度測定装置。
  2.  前記第2内部温度測定素子は、
     前記筐体の第1姿勢において、前記第1内部温度測定素子と熱の影響が同じであり、前記筐体の第2姿勢において、前記第1内部温度測定素子と熱の影響が異なる、位置に配置されている、
     請求項1に記載の温度測定装置。
  3.  前記制御部が前記周囲温度を算出する算出式には、
     前記端子温度と、前記第1内部温度との差分項が含まれ、
     前記差分項の補正係数は、前記第1内部温度と前記第2内部温度とから算出される値である、
     請求項1または請求項2に記載の温度測定装置。
  4.  前記補正係数は、前記第1内部温度と前記第2内部温度との比に応じた値である、
     請求項3に記載の温度測定装置。
  5.  筐体における熱電対が接続される端子での端子温度を測定する処理と、
     前記筐体内における前記端子温度の測定位置よりも発熱源に近い位置で、第1内部温度を測定する処理と、
     前記筐体内における前記端子温度の測定位置よりも発熱源に近い位置で、前記第1内部温度の測定位置と異なる位置で、第2内部温度を測定する処理と、
     前記端子温度と、前記第1内部温度と、前記第2内部温度と、を用いて、前記筐体の周囲温度を算出する処理と、
     を有し、
     前記第1内部温度の測定位置、および前記第2内部温度の測定位置は、前記第1内部温度の測定位置における前記発熱源からの熱の影響と、前記第2内部温度の測定位置における前記発熱源からの熱の影響との差が、前記筐体の姿勢に応じて変化する位置である、
     周囲温度測定方法。
  6.  筐体における熱電対が接続される端子での端子温度を測定する処理と、
     前記筐体内における前記端子温度の測定位置よりも発熱源に近い位置で、第1内部温度を測定する処理と、
     前記筐体内における前記端子温度の測定位置よりも発熱源に近い位置で、前記第1内部温度の測定位置と異なる位置で、第2内部温度を測定する処理と、
     前記端子温度と、前記第1内部温度と、前記第2内部温度と、を用いて、前記筐体の周囲温度を算出する処理と、
     を演算処理装置に実行させ、
     前記第1内部温度の測定位置、および前記第2内部温度の測定位置は、前記第1内部温度の測定位置における前記発熱源からの熱の影響と、前記第2内部温度の測定位置における前記発熱源からの熱の影響との差が、前記筐体の姿勢に応じて変化する位置である、
     周囲温度測定プログラム。
PCT/JP2019/001737 2018-02-21 2019-01-22 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム WO2019163363A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-028391 2018-02-21
JP2018028391A JP6973161B2 (ja) 2018-02-21 2018-02-21 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム

Publications (1)

Publication Number Publication Date
WO2019163363A1 true WO2019163363A1 (ja) 2019-08-29

Family

ID=67686789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001737 WO2019163363A1 (ja) 2018-02-21 2019-01-22 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム

Country Status (3)

Country Link
JP (1) JP6973161B2 (ja)
TW (1) TWI695159B (ja)
WO (1) WO2019163363A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577621A (zh) * 2020-12-28 2021-03-30 中国航天空气动力技术研究院 同轴热电偶冷端温度测量装置及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133588A (ja) * 1995-11-10 1997-05-20 Omron Corp 温度測定機器の零接点補償装置とその方法
JP2002286556A (ja) * 2001-03-27 2002-10-03 Yamatake Corp 測温装置
DE102013109809A1 (de) * 2013-09-09 2015-03-12 Endress + Hauser Wetzer Gmbh + Co. Kg Verfahren zur Bestimmung der Vergleichsstellentemperatur eines Thermoelements
JP2018112502A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 熱電対による温度測定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485724B2 (en) * 2010-03-31 2013-07-16 Microchip Technology Incorporated Thermocouple electromotive force voltage to temperature converter with integrated cold-junction compensation and linearization
US9279731B2 (en) * 2013-03-12 2016-03-08 Lam Research Corporation Multichannel thermocouple compensation for three dimensional temperature gradient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133588A (ja) * 1995-11-10 1997-05-20 Omron Corp 温度測定機器の零接点補償装置とその方法
JP2002286556A (ja) * 2001-03-27 2002-10-03 Yamatake Corp 測温装置
DE102013109809A1 (de) * 2013-09-09 2015-03-12 Endress + Hauser Wetzer Gmbh + Co. Kg Verfahren zur Bestimmung der Vergleichsstellentemperatur eines Thermoelements
JP2018112502A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 熱電対による温度測定装置

Also Published As

Publication number Publication date
TW201937139A (zh) 2019-09-16
TWI695159B (zh) 2020-06-01
JP6973161B2 (ja) 2021-11-24
JP2019144101A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP4177183B2 (ja) 熱式空気流量計
JP5563507B2 (ja) ガス検出装置
US7467547B2 (en) Fluid-measuring device and fluid-measuring method
US8874387B2 (en) Air flow measurement device and air flow correction method
US11022481B2 (en) Load cell having compensation of temperature differences
WO2015137075A1 (ja) 内部温度測定方法及び内部温度測定装置
US20180328872A1 (en) Gas sensor device, and heating current control method for gas sensor device
JP5904136B2 (ja) 検出温度誤差補正方法、及び検出温度誤差補正システム
JP6344101B2 (ja) ガス検出装置
KR20190101745A (ko) 온도 측정 장치 및 방법
WO2019163363A1 (ja) 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム
KR101630848B1 (ko) 미세열량 측정기의 보정 계수 산출 방법
JPH0577931B2 (ja)
JP2018112502A (ja) 熱電対による温度測定装置
JP5682822B2 (ja) 温度ドリフト補正装置
JP6942580B2 (ja) 計量装置
JP6297243B1 (ja) 処理装置
JP6200896B2 (ja) 風速計
JP6881355B2 (ja) 温度測定装置、温度調整装置、温度測定方法、および、温度測定プログラム
JP2019066253A (ja) 流量計測装置
JP7415494B2 (ja) ガスセンサ
JP2005114574A (ja) ピラニ真空計
JP2532309B2 (ja) 熱電対の温度補正装置
JP5178263B2 (ja) 熱式流量計およびその初期調整方法と初期調整装置
JP2729599B2 (ja) 熱電対の温度補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757023

Country of ref document: EP

Kind code of ref document: A1